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Abstract. Let H be a Krull monoid with �nite class group G such that every class contains a prime
divisor (for example, a ring of integers in an algebraic number �eld or a holomorphy ring in an algebraic
function �eld). The catenary degree c(H) of H is the smallest integer N with the following property:
for each a 2 H and each two factorizations z; z0 of a, there exist factorizations z = z0; : : : ; zk = z0 of a
such that, for each i 2 [1; k], zi arises from zi�1 by replacing at most N atoms from zi�1 by at most N
new atoms. Under a very mild condition on the Davenport constant of G, we establish a new and simple
characterization of the catenary degree. This characterization gives a new structural understanding of
the catenary degree. In particular, it clari�es the relationship between c(H) and the set of distances of H
and opens the way towards obtaining more detailed results on the catenary degree. As �rst applications,
we give a new upper bound on c(H) and characterize when c(H) � 4.

1. Introduction

In this paper we study the arithmetic of Krull monoids, focusing on the case that the class group is
�nite, and in addition, we often suppose that every class contains a prime divisor. This setting includes,
in particular, rings of integers in algebraic number �elds and holomorphy rings in algebraic function �elds
(more examples are given in Section 2). Let H be a Krull monoid with �nite class group. Then sets of
lengths of H have a well-de�ned structure: they are AAMPs (almost arithmetical multiprogressions) with
universal bounds on all parameters (see [19, Section 4.7] for an overview). Moreover, a recent realization
theorem reveals that this description of the sets of lengths is best possible (see [34]).

Here we focus on the catenary degree of H. This invariant considers factorizations in a more direct way
and not only their lengths, and thus has found strong attention in the recent development of factorization
theory (see [8, 20, 6, 17, 3]). The catenary degree c(H) of H is de�ned as the smallest integer N with the
following property: for each a 2 H and each two factorizations z and z0 of a, there exist factorizations
z = z0; : : : ; zk = z0 of a such that, for each i 2 [1; k], zi arises from zi�1 by replacing at most N
atoms from zi�1 by at most N new atoms. The de�nition reveals immediately that H is factorial if and
only if its catenary degree equals zero. Furthermore, it is easy to verify that the �niteness of the class
group implies the �niteness of the catenary degree, and that the catenary degree depends only on the
class group (under the assumption that every class contains a prime divisor). However, apart from this
straightforward information, there is up to now almost no insight into the structure of the concatenating
chains of factorizations and no information on the relationship between the catenary degree and other
invariants such as the set of distances. Almost needless to say, apart from very simple cases, the precise
value of the catenary degree|in terms of the group invariants of the class group|is unknown.

The present paper brings some light into the nature of the catenary degree. To do so, we introduce
a new arithmetical invariant, k(H), which is de�ned as follows (see De�nition 3.1): for each two atoms
u; v 2 H, we look at a factorization having the smallest number of factors besides two, say uv = w1 �: : :�ws,
where s � 3, w1; : : : ; ws are atoms of H and uv has no factorization of length k with 2 < k < s. Then
k(H) denotes the largest possible value of s over all atoms u; v 2 H. By de�nition, we have k(H) � c(H),
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and Examples 3.3 o�er a list of well-studied monoids where k(H) is indeed strictly smaller than c(H).
But the behavior is di�erent for Krull monoids H with �nite class group and every class containing a
prime divisor. Under a very mild condition on the Davenport constant of the class group, we show that
the catenary degree is equal to k(H) (see Corollary 4.3 and Remark 4.4), which immediately implies that
the catenary degree equals the maximum of the set of distances plus two.

Since k(H) is a much more accessible invariant than the original condition given in the de�nition of
the catenary degree, the equality k(H) = c(H) widely opens the door for further investigations of the
catenary degree, both for explicit computations as well as for more abstract studies based on methods
from Additive and Combinatorial Number Theory (the latter is done in [18], with a focus on groups with
large exponent). Exemplifying this, in Section 5, we derive an upper bound on k(H), and thus on c(H)
as well, and then characterize Krull monoids with small catenary degree (Corollary 5.6).

2. Preliminaries

Our notation and terminology are consistent with [19]. We briey gather some key notions. We
denote by N the set of positive integers, and we put N0 = N [ f0g. For real numbers a; b 2 R, we set
[a; b] = fx 2 Z j a � x � bg, and we de�ne sup ; = max ; = min ; = 0. By a monoid, we always mean a
commutative semigroup with identity which satis�es the cancellation law (that is, if a; b; c are elements
of the monoid with ab = ac, then b = c follows). The multiplicative semigroup of non-zero elements of
an integral domain is a monoid.

Let G be an additive abelian group and G0 � G a subset. Then [G0] � G denotes the submonoid
generated by G0 and hG0i � G denotes the subgroup generated by G0. We set G�

0 = G0 n f0g. A family
(ei)i2I of nonzero elements of G is said to be independent ifX

i2I

miei = 0 implies miei = 0 for all i 2 I; where mi 2 Z :

If I = [1; r] and (e1; : : : ; er) is independent, then we simply say that e1; : : : ; er are independent elements
of G. The tuple (ei)i2I is called a basis if (ei)i2I is independent and hfei j i 2 Igi = G.

Let A; B � G be subsets. Then A + B = fa + b j a 2 A; b 2 Bg is their sumset. If A � Z, then
the set of distances of A, denoted �(A), is the set of all di�erences between consecutive elements of A,
formally, all d 2 N for which there exist l 2 A such that A \ [l; l + d] = fl; l + dg. In particular, we have
�(;) = ;.

For n 2 N, let Cn denote a cyclic group with n elements. If G is �nite with jGj > 1, then we have

G �= Cn1 � : : :� Cnr ; and we set d�(G) =

rX
i=1

(ni � 1) ;

where r = r(G) 2 N is the rank of G, n1; : : : ; nr 2 N are integers with 1 < n1 j : : : j nr and nr = exp(G)
is the exponent of G. If jGj = 1, then r(G) = 0, exp(G) = 1, and d�(G) = 0.

Monoids and factorizations. Let H be a monoid. We denote by H� the set of invertible elements of
H, and we say that H is reduced if H� = f1g. Let Hred = H=H� = faH� j a 2 Hg be the associated
reduced monoid and q(H) a quotient group of H. For a subset H0 � H, we denote by [H0] � H the
submonoid generated by H0. Let a; b 2 H. We say that a divides b (and we write a j b) if there is an
element c 2 H such that b = ac, and we say that a and b are associated (a ' b) if a j b and b j a.

A monoid F is called free (abelian, with basis P � F ) if every a 2 F has a unique representation of
the form

a =
Y
p2P

pvp(a) with vp(a) 2 N0 and vp(a) = 0 for almost all p 2 P :
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We set F = F(P ) and call

jajF = jaj =
X
p2P

vp(a) the length of a :

We denote by A(H) the set of atoms of H, and we call Z(H) = F(A(Hred)) the factorization monoid of
H. Further, � : Z(H) ! Hred denotes the natural homomorphism given by mapping a factorization to
the element it factorizes. For a 2 H, the set

Z(a) = ZH(a) = ��1(aH�) � Z(H) is called the set of factorizations of a;

L(a) = LH(a) =
�
jzj

�� z 2 Z(a)
	
� N0 is called the set of lengths of a, and

�(H) =
[
a2H

�
�
L(a)

�
� N denotes the set of distances of H :

The monoid H is called

� atomic if Z(a) 6= ; for all a 2 H (equivalently, every non-unit of H may be written as a �nite
product of atoms of H).

� factorial if jZ(a)j = 1 for all a 2 H (equivalently, every non-unit of H may be written as a �nite
product of primes of H).

Two factorizations z; z0 2 Z(H) can be written in the form

z = u1 � : : : � ulv1 � : : : � vm and z0 = u1 � : : : � ulw1 � : : : � wn

with

fv1; : : : ; vmg \ fw1; : : : ; wng = ;;

where l; m; n 2 N0 and u1; : : : ; ul; v1; : : : ; vm; w1; : : : ; wn 2 A(Hred). Then gcd(z; z0) = u1 � : : : � ul, and
we call d(z; z0) = maxfm; ng = maxfjz gcd(z; z0)�1j; jz0 gcd(z; z0)�1jg 2 N0 the distance between z and
z0.

Krull monoids. The theory of Krull monoids is presented in the monographs [25, 24, 19]. We briey
summarize what is needed in the sequel. Let H and D be monoids. A monoid homomorphism ' : H ! D
is called

� a divisor homomorphism if '(a) j '(b) implies a j b, for all a; b 2 H.

� co�nal if, for every a 2 D, there exists some u 2 H such that a j'(u).

� a divisor theory (for H) if D = F(P ) for some set P , ' is a divisor homomorphism, and for
every p 2 P (equivalently, for every a 2 F(P )), there exists a �nite subset ; 6= X � H satisfying
gcd

�
'(X)

�
= p.

Note that, by de�nition, every divisor theory is co�nal. We call C(') = q(D)=q('(H)) the class group
of ' and use additive notation for this group. For a 2 q(D), we denote by [a] = [a]' = a q('(H)) 2
q(D)=q('(H)) the class containing a. If ' : H ! F(P ) is a co�nal divisor homomorphism, then

GP = f[p] = pq('(H)) j p 2 Pg � C(')

is called the set of classes containing prime divisors, and we have [GP ] = C('). If H � D is a
submonoid, then H is called co�nal (saturated, resp.) in D if the imbedding H ,! D is co�nal (a divisor
homomorphism, resp.).

The monoid H is called a Krull monoid if it satis�es one of the following equivalent conditions ([19,
Theorem 2.4.8]) :

� H is v-noetherian and completely integrally closed.

� H has a divisor theory.

� Hred is a saturated submonoid of a free monoid.
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In particular, H is a Krull monoid if and only if Hred is a Krull monoid. Let H be a Krull monoid. Then
a divisor theory ' : H ! F(P ) is unique up to unique isomorphism. In particular, the class group C(')
de�ned via a divisor theory of H and the subset of classes containing prime divisors depend only on H.
Thus it is called the class group of H and is denoted by C(H).

An integral domain R is a Krull domain if and only if its multiplicative monoid Rnf0g is a Krull monoid,
and a noetherian domain is Krull if and only if it is integrally closed. Rings of integers, holomorphy rings
in algebraic function �elds, and regular congruence monoids in these domains are Krull monoids with
�nite class group such that every class contains a prime divisor ([19, Section 2.11]). Monoid domains and
power series domains that are Krull are discussed in [23, 28, 29].

Zero-sum sequences. Let G0 � G be a subset and F(G0) the free monoid with basis G0. According
to the tradition of combinatorial number theory, the elements of F(G0) are called sequences over G0.
For a sequence

S = g1 � : : : � gl =
Y
g2G0

gvg(S) 2 F(G0) ;

we call vg(S) the multiplicity of g in S,

jSj = l =
X
g2G

vg(S) 2 N0 the length of S ; supp(S) = fg 2 G j vg(S) > 0g � G the support of S ;

�(S) =

lX
i=1

gi the sum of S and �(S) =
nX

i2I

gi j ; 6= I � [1; l]
o

the set of subsums of S :

The sequence S is called

� zero-sum free if 0 =2 �(S),
� a zero-sum sequence if �(S) = 0,
� a minimal zero-sum sequence if it is a nontrivial zero-sum sequence and every proper subsequence
is zero-sum free.

The monoid

B(G0) = fS 2 F(G0) j �(S) = 0g

is called the monoid of zero-sum sequences over G0, and we have B(G0) = B(G) \ F(G0). Since
B(G0) � F(G0) is saturated, B(G0) is a Krull monoid (the atoms are precisely the minimal zero-sum
sequences). Its signi�cance for the investigation of general Krull monoids is demonstrated by Lemma 3.6.

For every arithmetical invariant �(H) de�ned for a monoid H, we write �(G0) instead of �(B(G0)).
In particular, we set A(G0) = A(B(G0)) and �(G0) = �(B(G0)). We de�ne the Davenport constant

of G0 by

D(G0) = sup
�
jU j

�� U 2 A(G0)
	
2 N0 [ f1g ;

and the following properties will be used throughout the manuscript without further mention. If G0 is
�nite, then D(G0) is �nite ([19, Theorem 3.4.2]). Suppose that G0 = G is �nite. Then

(2.1) 1 + d�(G) � D(G) ;

and equality holds if G is a p-group or r(G) � 2 (see [19, Chapter 5] and [17, Section 4.2]).

3. The catenary degree and its refinements

We recall the de�nition of the catenary degree c(H) of an atomic monoid H and introduce, for all
k 2 N, the re�nements ck(H).

De�nition 3.1. Let H be an atomic monoid and a 2 H.
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1. Let z; z0 2 Z(a) be factorizations of a and N 2 N�0 [ f1g. A �nite sequence z0; z1; : : : ; zk in
Z(a) is called an N -chain of factorizations from z to z0 if z = z0, z0 = zk and d(zi�1; zi) � N
for every i 2 [1; k].

If there exists an N -chain of factorizations from z to z0, we say that z and z0 can be concatenated

by an N -chain.

2. Let cH(a) = c(a) 2 N0 [f1g denote the smallest N 2 N0 [f1g such that any two factorizations
z; z0 2 Z(a) can be concatenated by an N -chain.

3. For k 2 N, we set

ck(H) = supfc(a) j a 2 H with min L(a) � kg 2 N0 [ f1g ;

and we call

c(H) = supfc(a) j a 2 Hg 2 N0 [ f1g

the catenary degree of H.

4. We set

k(H) = sup
�
min

�
L(uv) n f2g

�
j u; v 2 A(H)

	
;

with the convention that min ; = sup ; = 0.

Let all notations be as above. Then k(H) = 0 if and only if L(uv) = f2g for all u; v 2 A(H). By
de�nition, we have c(a) � sup L(a). Let z; z0 2 Z(a). Then, by de�nition of the distance, we have z = z0

if and only if d(z; z0) = 0. Thus, c(a) = 0 if and only if a has unique factorization (that is, jZ(a)j = 1),
and hence H is factorial if and only if c(H) = 0. Suppose that H is not factorial. Then there is a b 2 H
having two distinct factorizations y; y0 2 Z(b). A simple calculation (see [19, Lemma 1.6.2] for details)
shows that

(3.1) 2 +
��jyj � jy0j

�� � d(y; y0) ; and hence 2 + sup�(L(b)) � c(b) :

The following lemma gathers some simple properties of the invariants introduced in De�nition 3.1.

Lemma 3.2. Let H be an atomic monoid.

1. We have 0 = c1(H) � c2(H) � : : : and

c(H) = supfck(H) j k 2 Ng :

2. We have c(H) = ck(H) for all k 2 N with k � c(H).

3. If ck(H) > ck�1(H) for some k 2 N�2, then ck(H) � k.

4. sup�(H) � supfck(H) � k j k 2 N with 2 � k < c(H)g. Moreover, if c(H) 2 N, then there is

some minimal m 2 N with c(H) = cm(H), and then

supfck(H)� k j k 2 N�2g = maxfck(H)� k j k 2 [2;m]g :

5. For every k 2 N, we have

ck(H) � supfc(a) j a 2 H with k 2 L(a)g

� supfc(a) j a 2 H with k = min L(a)g ;

and equality holds if H contains a prime element.

6. If H is not factorial, then

(3.2) k(H) � min
�
2 + sup�(H) ; c2(H)

	
� max

�
2 + sup�(H) ; c2(H)

	
� c(H) :
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Proof. 1. Obvious.

2. If c(H) is either zero or in�nite, then the assertion is clear. Suppose that c(H) = m 2 N. Then
there is an a 2 H with factorizations z = u1 � : : : � ul 2 Z(a) and z0 = v1 � : : : � vm 2 Z(a), where
l 2 [1;m] and u1; : : : ; ul; v1; : : : ; vm 2 A(Hred), such that d(z; z0) = maxfl;mg = m and z and z0 cannot
be concatenated by a d-chain of factorizations for any d < m. Since min L(a) � m, we get, for all k � m,
that

m � c(a) � cm(H) � ck(H) � c(H) = m;

and the assertion follows.

3. Suppose k 2 N�2 and ck(H) > ck�1(H). Let a 2 H with min L(a) � k such that c(a) = ck(H). We
note that actually min L(a) = k, as otherwise ck�1(H) � c(a), a contradiction. Let z; z0 2 Z(a) such that
d(z; z0) = c(a) = ck(H) and such that z and z0 cannot be concatenated by an N -chain for N < c(a). Let
x = gcd(z; z0). We note that minfjx�1zj; jx�1z0jg � k, as otherwise x�1z and x�1z0 can be concatenated
by a ck�1(H)-chain, implying that z and z0 can be concatenated by such a chain. Thus, d(z; z0) � k,
establishing the claim.

4. It su�ces to show that, for every d 2 �(H), there is a k 2 N with 2 � k < c(H) and d � ck(H)�k.
Let d 2 �(H). Then there is an element a 2 H and factorizations z; z0 2 Z(a) such that jz0j � jzj = d
and L(a) \ [jzj; jz0j] = fjzj; jz0jg. For N = minfjz0j; c(H)g, there is an N -chain z = z0; : : : ; zl = z0 of
factorizations from z to z0. We may suppose that this chain cannot be re�ned. This means that, for any
i 2 [1; l], there is no di-chain concatenating zi�1 and zi with di < d(zi�1; zi). There exists some i 2 [1; l]
such that jzi�1j � jzj < jz0j � jzij, say zi�1 = xv1 � : : : � vs and zi = xw1 � : : : �wt, where x = gcd(zi�1; zi),
s; t 2 N and v1; : : : ; vs; w1; : : : ; wt 2 A(Hred). We set b = �(v1 � : : : � vs), k = min L(b) and get that

2 � k � s < t = maxfs; tg = d(zi�1; zi) = d(v1 � : : : � vs; w1 � : : : � wt) � N � c(H) :

Since the two factorizations v1 � : : : � vs and w1 � : : : � wt of b can be concatenated by a ck(H)-chain and
since the original chain z0; : : : ; zl cannot be re�ned, it follows that t = d(v1 � : : : � vs; w1 � : : : �wt) � ck(H).
Therefore, since jzi�1j � jzj < jz0j � jzij, it follows that

d = jz0j � jzj � jzij � jzi�1j = t� s � ck(H)� k :

Now suppose that c(H) 2 N. By part 2, there is some minimal m 2 N with c(H) = cm(H). Since
c(H) > 0, it follows that m � 2. Let k 2 N�2. If k � m, then c(H) = cm(H) = ck(H) and ck(H)� k �
cm(H)�m. Thus the assertion follows.

5. The inequalities are clear. Suppose that p 2 H is a prime element. Let N 2 N and a 2 H with
c(a) � N and min L(a) � k. Then, for t = k �min L(a), we have L(apt) = t + L(a), min L(apt) = k and
c(apt) = c(a) � N . This implies that

supfc(a) j a 2 H; with k = min L(a)g � supfc(a) j a 2 H with min L(a) � kg ;

and thus equality holds in both inequalities.

6. Suppose that H is not factorial. We start with the left inequality. If L(uv) = f2g for all u; v 2 A(H),
then k(H) = 0 � min

�
sup�(H) + 2; c2(H)

	
. Let u; v 2 A(H) with L(uv) = f2; d1; : : : ; dlg with l 2 N

and 2 < d1 < : : : < dl. Then d1 � 2 2 �
�
L(uv)

�
� �(H), and thus we get k(H) � 2 � sup�(H).

Let z0 = w1 � : : : � wd1 2 Z(uv) be a factorization of length d1. Then, from the de�nition of d1, we see
z = uv and z0 cannot be concatenated by a d-chain with d < d1. Thus d1 � c(uv) � c2(H), and hence
k(H) � c2(H).

To verify the right inequality, note that c2(H) � c(H) follows from the de�nition. If b 2 H with
jZ(b)j > 1, then (3.1) shows that 2+sup�

�
L(b)

�
� c(b) � c(H), and therefore 2+ sup�(H) � c(H). �
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Corollary 4.3 will show that, for the Krull monoids under consideration, equality holds throughout
(3.2). Obviously, such a result is far from being true in general. This becomes clear from the characteri-
zation of the catenary degree in terms of minimal relations, recently given by S. Chapman et al. in [8].
But we will demonstrate this by very explicit examples which also deal with the re�nements ck(H).

Examples 3.3.

1. Numerical monoids. The arithmetic of numerical monoids has been studied in detail in recent
years (see [5, 6, 1, 7, 10, 9, 31] and the monograph [33]). The phenomena we are looking at here can
already be observed in the most simple case where the numerical monoid has two generators.

LetH = [fd1; d2g] � (N0;+) be a numerical monoid generated by integers d1 and d2, where 1 < d1 < d2
and gcd(d1; d2) = 1. Then A(H) = fd1; d2g, and d1d2 is the smallest element a 2 H|with respect to
the usual order in (N0;�)|with jZ(a)j > 1. Thus ck(H) = 0 for all k < d1 (hence k(H) = 0 if d1 > 2),
�(H) = fd2 � d1g and cd1(H) = d2 = c(H) (details of all this are worked out in [19, Example 3.1.6]).
Thus, when d1 > 2, the second two inequalities in Lemma 3.2.6 are strict.

2. Finitely primary monoids. A monoid H is called �nitely primary if there exist s; � 2 N with
the following properties:

H is a submonoid of a factorial monoid F = F��[p1; : : : ; ps] with s pairwise non-associated prime
elements p1; : : : ; ps satisfying

H nH� � p1 � : : : � psF and (p1 � : : : � ps)
�F � H :

The multiplicative monoid of every one-dimensional local noetherian domain R whose integral closure R
is a �nitely generated R-module is �nitely primary ([19, Proposition 2.10.7]). Moreover, the monoid of
invertible ideals of an order in a Dedekind domain is a product of a free monoid and a �nite product of
�nitely primary monoids (see [19, Theorem 3.7.1]).

Let H be as above with s � 2. Then 3 � c(H) � 2� + 1, min L(a) � 2� for all a 2 H, and hence
supfc(a) j a 2 H with k = min L(a)g = 0 for all k > 2� (see [19, Theorem 3.1.5]). This shows that the
assumption in Lemma 3.2.5 requiring the existence of a prime element cannot be omitted. Concerning the
inequalities in Lemma 3.2.6, equality throughout can hold (as in [19, Examples 3.1.8]) but does not hold
necessarily, as the following example shows. Let H � (Ns0;+), with s � 3, be the submonoid generated
by

A = f(m; 1; : : : ; 1); (1;m; 1; : : : ; 1); : : : ; (1; : : : ; 1;m) j m 2 Ng :

Then H is �nitely primary with A = A(H) and k(H) = 0 < c(H).

3. Finitely generated Krull monoids. Let G be an abelian group and r; n 2 N�3 with n 6= r+ 1.
Let e1; : : : ; er 2 G be independent elements with ord(ei) = n for all i 2 [1; r], e0 = �(e1 + : : : + er)
and G0 = fe0; : : : ; erg. Then B(G0) is a �nitely generated Krull monoid, �(G0) = fjn � r � 1jg,
c(G0) = maxfn; r + 1g and

0 = k(H) = c2(H) < 2 + max�(H) < c(H) :

(see [19, Proposition 4.1.2]).

4. k-factorial monoids. An atomic monoid H is called k-factorial, where k 2 N, if every element
a 2 H with min L(a) � k has unique factorization; k-factorial and, more generally, quasi-k-factorial
monoids and domains have been studied in [2]. Clearly, if H is k-factorial but not k + 1-factorial, then
0 = ck(H) < ck+1(H).

5. Half-factorial monoids. An atomic monoid H is called half-factorial if �(H) = ; (cf. [19, Section
1.2]). Then, k(H) = 0 and it follows that ck(H) � k for each k 2 N. Thus, by Lemma 3.2.3, we get that
if ck(H) > ck�1(H), then ck(H) = k. Without additional restriction on H, the set K � N�2 of all k with
ck(H) > ck�1(H) can be essentially arbitrary; an obvious restriction is that it is �nite for c(H) �nite.
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The arithmetic of Krull monoids is studied via transfer homomorphisms. We recall the required
terminology and collect the results needed for the sequel.

De�nition 3.4. A monoid homomorphism � : H ! B is called a transfer homomorphism if it has the
following properties:

(T 1) B = �(H)B� and ��1(B�) = H�.

(T 2) If u 2 H, b; c 2 B and �(u) = bc, then there exist v; w 2 H such that u = vw, �(v) ' b
and �(w) ' c.

Note that the second part of (T1) means precisely that units map to units and non-units map to non-
units, while the �rst part means � is surjective up to units. Every transfer homomorphism � gives rise to
a unique extension � : Z(H)! Z(B) satisfying

�(uH�) = �(u)B� for each u 2 A(H) :

For a 2 H, we denote by c(a; �) the smallest N 2 N0 [ f1g with the following property:

If z; z0 2 ZH(a) and �(z) = �(z0), then there exist some k 2 N0 and factorizations z = z0; : : : ; zk =
z0 2 ZH(a) such that �(zi) = �(z) and d(zi�1; zi) � N for all i 2 [1; k] (that is, z and z0 can be

concatenated by an N -chain in the �ber ZH(a) \ �
�1
(�(z)) ).

Then
c(H; �) = supfc(a; �) j a 2 Hg 2 N0 [ f1g

denotes the catenary degree in the �bres.

Lemma 3.5. Let � : H ! B be a transfer homomorphism of atomic monoids and � : Z(H) ! Z(B) its
extension to the factorization monoids.

1. For every a 2 H, we have LH(a) = LB
�
�(a)

�
. In particular, we have �(H) = �(B) and

k(H) = k(B).

2. For every a 2 H, we have c
�
�(a)

�
� c(a) � maxfc

�
�(a)

�
; c(a; �)g.

3. For every k 2 N, we have

ck(B) � ck(H) � maxfck(B); c(H; �)g;

and hence

c(B) � c(H) � maxfc(B); c(H; �)g :

Proof. 1. and 2. See [19, Theorem 3.2.5].

3. Since, for every a 2 H, we have L(a) = L
�
�(a)

�
, it follows that min L(a) = min L

�
�(a)

�
, and thus

parts 1 and 2 imply both inequalities. �

Lemma 3.6. Let H be a Krull monoid, ' : H ! F = F(P ) a co�nal divisor homomorphism, G = C(')

its class group, and GP � G the set of classes containing prime divisors. Let e� : F ! F(GP ) denoted

the unique homomorphism de�ned by e�(p) = [p] for all p 2 P .

1. The homomorphism � = e� � ' : H ! B(GP ) is a transfer homomorphism with c(H;�) � 2.

2. For every k 2 N, we have

ck(GP ) � ck(H) � maxfck(GP ); 2g;

and hence

c(GP ) � c(H) � maxfc(GP ); 2g :

3. k(H) = k(GP ) � D(GP ).
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Proof. 1. This follows from [19, Theorem 3.4.10].

2. This follows from part 1 and Lemma 3.5.

3. Since � is a transfer homomorphism, we have k(H) = k(GP ) by Lemma 3.5. In order to show
that k(GP ) � D(GP ), let U1; U2 2 A(GP ). If D(GP ) = 1, then GP = f0g, U = V = 0 and k(GP ) =
0. Suppose that D(GP ) � 2 and consider a factorization U1U2 = W1 � : : : � Ws, where s 2 N and

W1; : : : ;Ws 2 A(GP ). It su�ces to show that s � D(GP ). For i 2 [1; s], we set Wi = W
(1)
i W

(2)
i

with W
(1)
i ;W

(2)
i 2 F(GP ) such that U1 = W

(1)
1 � : : : � W

(1)
s and U2 = W

(2)
1 � : : : � W

(2)
s . If there are

i 2 [1; s] and j 2 [1; 2], say i = j = 1, such that W
(j)
i = W

(1)
1 = 1, then W1 = W

(2)
1 jU2; hence

W1 = U2, W2 = U1 and s = 2 � D(GP ). Otherwise, we have W
(j)
1 ; : : : ;W

(j)
s 2 F(GP ) n f1g, and hence

s �
Ps

i=1 jW
(j)
i j = jUj j � D(GP ). �

4. A structural result for the catenary degree

In Theorem 4.2 we obtain a structural result for the catenary degree. Since it is relevant for the
discussion of this result, we start with a technical result.

Proposition 4.1. Let G be an abelian group.

1. Let G0 = fe0; : : : ; er;�e0; : : : ;�erg � G be a subset with e1; : : : ; er 2 G independent and e0 =
k1e1 + : : : + krer, where ki 2 N and 2ki � ord(ei) for all i 2 [1; r]. If

Pr
i=1 ki 6= 1, then

k(G0) � k1 + : : :+ kr + 1.

2. Let G0 = f�e; eg � G be a subset with 3 � ord(e) <1. Then k(G0) � ord(e).

3. Let G = Cn1 � : : :�Cnr with jGj � 3 and 1 < n1 j : : : jnr, and let (e1; : : : ; er) be a basis of G with

ord(ei) = ni for all i 2 [1; r]. If fe0; : : : ; er;�e0; : : : ;�erg � G0 � G, where e0 =
Pr

i=1b
ni
2 cei,

then k(G0) � maxfnr; 1 +
Pr

i=1b
ni
2 cg.

Proof. 1. If

A = e0(�e0)
rY
i=1

ekii (�ei)
ki ;

then L(A) = f2; k1+ : : :+ kr +1g (see [19, Lemma 6.4.1]). Thus, if
Pr

i=1 ki 6= 1, the assertion follows by
de�nition of k(G0).

2. Let n = ord(e). Since L
�
(�e)nen

�
= f2; ng, we get k(G0) � n.

3. Clear, by parts 1 and 2. �

Theorem 4.2. Let H be a Krull monoid, ' : H ! F = F(P ) a co�nal divisor homomorphism, G = C(')
its class group, and GP � G the set of classes containing prime divisors. Then

(4.1) c(H) � max
nj1

2
D(GP ) + 1

k
; k(GP )

o
:

Proof. By Lemma 3.6, we have c(H) � maxfc(GP ); 2g. If D(GP ) = 1, then GP = f0g, G = [GP ] = f0g,
H = F and c(H) = 0. Thus we may suppose that 2 � D(GP ) <1, and it is su�cient to show that

c(GP ) � d0; where d0 = max
nj1

2
D(GP ) + 1

k
; k(GP )

o
:

So we have to verify that, for A 2 B(G�
P ) and z; z0 2 Z(A), there is a d0-chain of factorizations between

z and z0. Assuming this is false, consider a counter example A 2 B(G�
P ) such that jAj is minimal, and

for this A, consider a pair of factorizations z; z0 2 Z(A) for which no d0-chain between z and z0 exists
such that jzj+ jz0j is maximal (note jAj is a trivial upper bound for the length of a factorization of A).
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Note we may assume

(4.2) maxfjzj; jz0jg � d0 + 1 �
1

2
D(GP ) +

3

2
;

else the chain z; z0 is a d0-chain between z and z0, as desired. We continue with the following assertion.

A. Let

y = U1 � : : : � Ur 2 Z(A) and y0 = V1 � : : : � Vs 2 Z(A) ; where Ui; Vj 2 A(GP ) ;

be two factorizations of A with Vj1 jU1 � : : : �UrU
�1
j2

, for some j1 2 [1; s] and j2 2 [1; r]. Then there

is a d0-chain of factorizations of A between y and y0.

Proof of A. We may assume j1 = 1, j2 = r, and we obtain a factorization

U1 � : : : � Ur�1 = V1W1 � : : : �Wt ;

where W1; : : : ;Wt 2 A(GP ). By the minimality of jAj, there is a d0-chain of factorizations y0; : : : ; yk
between y0 = U1 � : : : � Ur�1 and yk = V1W1 � : : : �Wt, and there is a d0-chain of factorizations z0; : : : ; zl
between z0 =W1 � : : : �WtUr and zl = V2 � : : : � Vs. Then

y = y0Ur; y1Ur; : : : ; ykUr = V1z0; V1z1; : : : ; V1zl = y0

is a d0-chain between y and y0. �

We set z = U1 � : : : � Ur and z0 = V1 � : : : � Vs, where all Ui; Vj 2 A(GP ), and without loss of generality
we assume that r � s. Then, in view of (4.2) and D(GP ) � 2, it follows that

(4.3) r � d0 + 1 �
1

2
D(GP ) +

3

2
> 2:

Clearly, s = 1 would imply r = 1, and thus we get s � 2.
Suppose max L(V1V2) � 3. Then, by de�nition of k(GP ), there exists y 2 Z(V1V2) with 3 � jyj �

k(GP ) and

(4.4) d(z0; yV3 � : : : � Vs) = d(V1V2; y) = jyj � k(GP ) :

But, since jzj + jyV3 � : : : � Vsj > jzj + jz0j, it follows, from the maximality of jzj + jz0j, that there is a
d0-chain of factorizations between yV3 � : : : �Vs and z, and thus, in view of (4.4), a d0-chain concatenating
z0 and z, a contradiction. So we may instead assume max L(V1V2) = 2.

As a result, if s = 2, then V1V2 = A and L(A) = f2g, contradicting 2 < r 2 L(A) (cf. (4.3)). Therefore
we have s � 3.

We set V1 = V
(1)
1 � : : : � V

(r)
1 and V2 = V

(1)
2 � : : : � V

(r)
2 , where V

(j)
1 V

(j)
2 jUj for all j 2 [1; r]. In view of

A, we see that each V
(i)
1 and V

(j)
2 is nontrivial. Thus (4.3) implies

(4.5) jV1V2j � 2r � D(GP ) + 3:

By the pigeonhole principle and in view of (4.3), there exists some j 2 [1; r], say j = r, such that

jV
(r)
1 V

(r)
2 j �

1

r
jV1V2j �

2D(GP )

r
< 4 :

As a result, it follows in view of (4.5) that

(4.6) jV
(1)
1 � : : : � V

(r�1)
1 V

(1)
2 � : : : � V

(r�1)
2 j � jV1V2j � 3 � D(GP ):

Thus there exists a W1 2 A(GP ) such that W1 jV
(1)
1 � : : : � V

(r�1)
1 V

(1)
2 � : : : � V

(r�1)
2 .

Let V1V2 = W1 � : : : �Wt, where W2; : : : ;Wt 2 A(GP ). Since s � 3, we have jV1V2j < jAj. Thus, by
the minimality of jAj, there is a d0-chain of factorizations between V1V2 and W1 � : : : �Wt, and thus one

between z0 = (V1V2)V3 �: : :�Vs and (W1 �: : :�Wt)V3 �: : :�Vs as well. From the de�nitions of the V
(j)
i andW1,

we have W1 jU1 � : : : �Ur�1. Thus by A there is a d0-chain of factorizations between W1 � : : : �WtV3 � : : : �Vs
and z = U1 � : : : �Ur. Concatenating these two chains gives a d0-chain of factorizations between z0 and z,
completing the proof. �



THE CATENARY DEGREE OF KRULL MONOIDS I 11

Corollary 4.3. Let H be a Krull monoid, ' : H ! F = F(P ) a co�nal divisor homomorphism, G =
C(') �= Cn1 � : : : � Cnr its class group, where 1 < n1j : : : jnr and jGj � 3, and GP � G the set of all

classes containing prime divisors. Suppose that the following two conditions hold :

(a)
�
1
2D(GP ) + 1

�
� max

�
nr; 1 +

Pr
i=1b

ni
2 c
	
.

(b) There is a basis (e1; : : : ; er) of G with ord(ei) = ni, for all i 2 [1; r], such that

fe0; : : : ; er;�e0; : : : ;�erg � GP , where e0 =
Pr

i=1b
ni
2 cei.

Then

k(H) = 2 +max�(H) = c2(H) = c(H) :

Before giving the proof of the above corollary, we analyze the result and its assumptions.

Remark 4.4. Let all notation be as in Corollary 4.3.

1. Note that

1 +

rX
i=1

jni
2

k
= 1 +

r2(G) + d�(G)

2
;

where r2(G) denotes the 2-rank of G, i.e., the number of even nis. Thus, if D(G) = d�(G) + 1 (see the
comments after (2.1) for some groups ful�lling this), thenj1

2
D(G) + 1

k
� 1 +

rX
i=1

jni
2

k
;

and hence Condition (a) holds. Not much is known about groups G with D(G) > d�(G) + 1 (see [22],
[15, Theorem 3.3]). Note that groups of odd order with D(G) > d�(G) + 1 yield examples of groups for
which (a) fails, yet the simplest example of such a group we were able to �nd in the literature already
has rank 8 (see [22, Theorem 5]).

2. In Examples 3.3, we pointed out that some assumption on GP is needed in order to obtain the
result k(H) = c(H). Clearly, Condition (b) holds if every class contains a prime divisor. But since there
are relevant Krull monoids with GP 6= G (for examples arising in the analytic theory of Krull monoids,
we refer to [21, 26, 27]), we formulated our requirements on GP as weak as possible, and we discuss two
natural settings which enforce parts of Conditions (b) even if GP 6= G.

(i) A Dedekind domain R is a quadratic extension of a principal ideal domain R0 if R0 � R is a subring
and R is a free R0-module of rank 2. If R is such a Dedekind domain, G its class group, and GP � G the
set of classes containing prime divisors, then GP = �GP and [GP ] = G. By a result of Leedham-Green
[30], there exists, for every abelian group G, a Dedekind domain R which is a quadratic extension of a
principal ideal domain and whose class group is isomorphic to G.

(ii) If GP � G are as in Corollary 4.3, then GP is a generating set of G, and if G �= Cr
pk , where p 2 P

and k; r 2 N, then GP contains a basis by [19, Lemma A.7].

3. Corollary 4.3 tells us that the catenary degree c(H) occurs as a distance of two factorizations of
the following form

a = u1u2 = v1 � : : : � vc(H) ;

where u1; u2; v1; : : : ; vc(H) 2 A(H) and a has no factorization of length j 2 [3; c(H) � 1]. Of course, the
catenary degree may also occur as a distance between factorizations which are not of the above form. In
general, there are even elements a and integers k � 3 such that

(4.7) c(a) = c(H) ; min L(a) = k and c(b) < c(a)

for all proper divisors b of a. We provide a simple, explicit example.
Let G = C3 � C3, (e1; e2) be a basis of G and e0 = �e1 � e2. For i 2 [0; 2], let Ui = e3i and let

V = e0e1e2. Then A = V 3 2 B(G), Z(A) = fU0U1U2; V
3g, c(A) = 3 = c(G) (see Corollary 5.5) and

c(B) = 0 for all proper zero-sum subsequences B of A.
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4. Let � : H ! B(GP ) be as in Lemma 3.6. Clearly, if a 2 H is such that c(a) = c(H), then, using the
notation of Remark 4.4.3, a;�(a), u1, u2, �(u1) and �(u2) must be highly structured. On the opposite
side of the spectrum, there is the following result: if supp

�
�(a)

�
[ f0g is a subgroup of G, then c(a) � 3

(see [19, Theorem 7.6.8]), while (3.1) shows c(a) � 3 whenever jL(a)j > 1.

5. If H is factorial, in particular if jGj = 1, then k(H) = c2(H) = c(H) = 0 and 2 + max�(H) = 2.
If H is not factorial and jGj = 2, then k(H) = 0 and c2(H) = c(H) = 2 +max�(H) = 2.

Proof of Corollary 4.3. Lemma 3.2.6 and Theorem 4.2 imply that

k(H) � minf2 + max�(H); c2(H)g � maxf2 + max�(H); c2(H)g

� c(H) � max
nj1

2
D(GP ) + 1

k
; k(GP )

o
:

By assumption and by Proposition 4.1 and Lemma 3.6.3, it follows thatj1
2
D(GP ) + 1

k
� max

n
nr; 1 +

rX
i=1

jni
2

ko
� k(GP ) = k(H) ;

and thus, in the above chain of inequalities, we indeed have equality throughout. �

Corollary 4.5. Let H be a Krull monoid, ' : H ! F = F(P ) a co�nal divisor homomorphism, G = C(')
its class group, GP � G the set of classes containing prime divisors, and suppose that 3 � D(GP ) <1.

1. We have c(H) = D(GP ) if and only if k(H) = D(GP ).

2. If c(H) = D(G), then D(GP ) = D(G) and G is either cyclic or an elementary 2-group. If

GP = �GP , then the converse implication holds as well.

Proof. 1. By Theorem 4.2, (3.2) and Lemma 3.6.3, we have

(4.8) k(H) = k(GP ) � c(H) � max
nj1

2
D(GP ) + 1

k
; k(GP )

o
� D(GP ) ;

which we will also use for part 2. In view of 3 � D(GP ) < 1, we have b 12D(GP ) + 1c < D(GP ). Thus
the assertion now directly follows from (4.8).

2. We use that [GP ] = G. Furthermore, if D(GP ) = D(G), it follows that �(S) = G� for all zero-sum
free sequences S 2 F(GP ) with jSj = D(GP ) � 1 (see [19, Proposition 5.1.4]). Obviously, this implies
that hsupp(U)i = G for all U 2 A(GP ) with jU j = D(GP ).

Suppose that c(H) = D(G). Since c(H) � D(GP ) � D(G) (in view of (4.8)), it follows that
D(GP ) = D(G), and part 1 implies that k(H) = D(GP ). Thus there exist U; V 2 A(GP ) such that
f2;D(G)g � L(UV ), and [19, Proposition 6.6.1] implies that V = �U and L

�
(�U)U

�
= f2;D(G)g (since

max L((�U)U) � j(�U)U j
2 � D(G)).

Assume to the contrary that G is neither cyclic nor an elementary 2-group. We show that there
exists some W 2 A(GP ) such that W j (�U)U and 2 < jW j < D(G). Clearly, W gives rise to a
factorization (�U)U = WW2 � : : : �Wk with W2; : : : ;Wk 2 A(GP ) and 2 < k < D(G), a contradiction to
L
�
(�U)U

�
= f2;D(G)g.

Since hsupp(U)i = G (as noted above) is not an elementary 2-group, there exists some g0 2 supp(U)
with ord(g0) > 2, say U = gm0 g1 � : : : � gl with g0 62 fg1; : : : ; glg. Since G = hsupp(U)i is not cyclic, it
follows that l � 2. Let W 0 = (�g0)

mg1 � : : : � gl. Then W 0 jU(�U) and jW 0j = D(G). Hence there exists
some W 2 A(GP ) with W jW 0, and we proceed to show that 2 < jW j < D(G), which will complete the
proof. Since U 2 A(GP ), we have W - g1 � : : : �gl, and thus �g0 jW . Since g0 =2 fg1; : : : ; glg and g0 6= �g0,
it follows that W 6= g0(�g0), and thus jW j > 2.
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Assume to the contrary that jW j = D(G). Then W = W 0, and �(U) = �(W 0) = 0 implies 2mg0 = 0,
and thus m > 1. We consider the sequence S = gm0 g1 � : : : � gl�1. Since 1 < m < ord(g0) and 2mg0 = 0,
it follows that

0 6= (m+ 1)g0:

Since S is zero-sum free of length jSj = D(G)� 1, we have �(S) = G�, and thus 0 6= (m+ 1)g0 2 �(S),
say

(m+ 1)g0 = sg0 +
X
i2I

gi with s 2 [0;m] and I � [1; l � 1] :

If s = 0, then

0 = 2mg0 = (m� 1)g0 +
X
i2I

gi 2 �(S);

a contradiction. If s � 1, then it follows that

T = (�g0)
m+1�s

Y
i2I

gi

is a proper zero-sum subsequence of W , a contradiction to W 2 A(GP ).
Suppose that GP = �GP and D(GP ) = D(G). Recall the comments after (2.1) concerning the value

of D(G). First, we let G be an elementary 2-group. Then there is a U = e0e1 � : : : � er 2 A(GP ) with
jU j = D(G) = r + 1. Thus, since hsupp(U)i = G, and since a basis of an elementary 2-group is just
a minimal (by inclusion) generating set, it follows that GP contains the basis (say) (e1; : : : ; er) of G,
and Proposition 4.1 and Lemma 3.6.3 imply that k(H) = k(GP ) = D(GP ) = D(G) = r + 1, whence
c(H) = D(G) follows from part 1. Second, let G be cyclic. If U 2 A(GP ) with jU j = D(GP ) = D(G),
then jU j = jGj and [19, Theorem 5.1.10] implies that U = gjGj for some g 2 GP with ord(g) = jGj. Hence
L
�
(�U)U

�
= f2; jGjg, and now it follows from Lemma 3.6.3 that jGj = D(GP ) = k(GP ) = k(H), whence

part 1 once more shows c(H) = D(G) = D(GP ). �

5. An upper bound for the catenary degree

We apply our structural result on the catenary degree (Theorem 4.2) to obtain a new upper bound
on the catenary degree (see Theorem 5.4) and a characterization result for Krull monoids with small
catenary degree (see Corollary 5.6). We start with some technical results.

Lemma 5.1. Let G be an abelian group and let U; V 2 F(G�). Suppose that either U; V 2 A(G) or

that U and V are zero-sum free with �(UV ) = 0. Then max L(UV ) � minfjU j; jV jg. Moreover, if

max L(UV ) = jU j � 3, then � supp(U) � �(V ).

Proof. Let UV = W1 � : : : �Wm, where m = max L(UV ) and W1; : : : ;Wm 2 A(G). Let U = U1 � : : : � Um
and V = V1 � : : : � Vm with Wi = UiVi for i 2 [1;m]. If Ui 6= 1 and Vi 6= 1 for all i 2 [1;m], then
m � jU1j + : : : + jUmj = jU j and likewise m � jV j. Moreover, if equality holds in the �rst bound, then
jUij = 1 for i 2 [1;m], in which case each VijV is a subsequence of V with �(Vi) = ��(Ui) 2 � supp(U);
since

Sm
i=1f�(Ui)g = supp(U), this means � supp(U) � �(V ).

On the other hand, if there is some j 2 [1;m] such that Uj = 1 or Vj = 1, say U1 = 1, then, since
V contains no proper, nontrivial zero-sum subsequence, it follows that W1 = V1 = V , which, since U
contains no proper, nontrivial zero-sum subsequence, implies W2 = U . Hence, since U; V 2 F(G�) with
�(U) = �(W2) = 0 = �(W1) = �(V ) implies jU j; jV j � 2, we see that m = 2 � minfjU j; jV jg. �

Lemma 5.2. Let G be an abelian group, K � G a �nite cyclic subgroup, and let U; V 2 A(G) with

max L(UV ) � 3. If
P

g2K vg(UV ) � jKj+1 and there exists a nonzero g0 2 K such that vg0(U) > 0 and

v�g0(V ) > 0, then L(UV ) \ [3; jKj] 6= ;.
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Proof. Note U; V 2 A(G) and max L(UV ) � 3 imply 0 =2 supp(UV ). Moreover, note that if supp(U) � K,
then Lemma 5.1 implies that max L(UV ) � jU j � D(K) = jKj (recall the comments after (2.1)), whence
the assumption max L(UV ) � 3 completes the proof. Therefore we may assume supp(U) 6� K, and
likewise that supp(V ) 6� K.

We factor U = U0U
0 and V = V0V

0 where U0 and V0 are subsequences of terms from K such that
there exists some non-zero g0 2 K with g0 jU0 and (�g0) jV0, and jU0j + jV0j = jKj + 1. Note that by
the assumption made above, both U0 and V0 are proper subsequences of U and V , respectively, and thus
they are zero-sum free.

Let U0 = g0U
0
0 and V0 = (�g0)V

0
0 . Since U 0

0 and V 0
0 are both zero-sum free, we get (cf., e.g., [19,

Proposition 5.1.4.4]) that jf0g[�(U 0
0)j � jU 0

0j+1 = jU0j and jf0g[�(V
0
0)j � jV 0

0 j+1 = jV0j. Since these
sets are both subsets of K, the pigeonhole principle implies that

(5.1)
�
g0 +

�
f0g [ �(U 0

0)
��
\
�
f0g [ �(V 0

0)
�
6= ;:

Let U 00
0 and V 00

0 denote (possibly trivial) subsequences of U 0
0 and V 0

0 , respectively, such that �(V 00
0 ) =

g0 + �(U 00
0 ) = �(g0U

00
0 ), whose existence is guaranteed by (5.1).

We set W1 = (g0U
00
0 )

�1UV 00
0 and W2 = V 00�1

0 V (g0U
00
0 ). Then, UV = W1W2, and W1 and W2 are

nontrivial zero-sum sequence; more precisely, (�g0)g0 jW2 is a proper zero-sum subsequence (recall that
by assumption U0 and V0 are proper subsequences of U and V , respectively). Since L(W1) + L(W2) �
L(UV ), and since by the above assertion min L(W1) � 1 and min L(W2) � 2, it su�ces to assert that
max L(W1) + max L(W2) � jKj. Since, by Lemma 5.1, we have max L(W1) � jV 00

0 j � jV0j � 1 and
max L(W2) � jg0U

00
0 j � jU0j, and since by assumption jU0j+ jV0j = jKj+ 1, this is the case. �

Lemma 5.3. Let t 2 N and �; �1; : : : ; �t 2 R with �1 � : : : � �t � 0 and
tP

i=1
�i � � � 0. Then

tY
i=1

(1 + xi) is minimal

over all (x1; : : : ; xt) 2 Rt with 0 � xi � �i and
Pt

i=1 xi = � if

xi = �i for each i 2 [1; s] and xi = 0 for each i 2 [s+ 2; t]

where s 2 [0; t] is maximal with
Ps

i=1 �i � �.

Proof. This is a simple calculus problem; for completeness, we include a short proof. We may assume
� 6= 0. By compactness and continuity, the existence of a minimum is clear. Let x = (x1; : : : ; xt) be a
point where the minimum is attained. We note that for x; y 2 R with x � y � 0 we have

(5.2) (1 + x+ ")(1 + y � ") < (1 + x)(1 + y)

for each " > 0. Thus, it follows that xi =2 f0; �ig for at most one i 2 [1; t]; if such an i exists we denote it
by i0, otherwise we denote by i0 the maximal i 2 [1; t] with xi 6= 0. Suppose that for x the value of �i0
is maximal among all points where the minimum is attained. We observe that it su�ces to assert that
xj = �j for each j with �j > �i0 and xj = 0 for each j with �j < �i0 ; in view of xi 2 f0; �ig for i 6= i0,
we can then simply reorder the xi for the i's with �i = �i0 to get a point ful�lling the claimed conditions.

First, assume there exists some j with �j > �i0 and xj 6= �j , i.e., xj = 0. Then, exchanging xj and
xi0 (note xi0 � �j), yields a contradiction to the maximality of �i0 .

Second, assume there exists some j with �j < �i0 and xj 6= 0, i.e., xj = �j > 0. By de�nition of
i0, it follows that 0 < xi0 < �i0 . Thus, we can apply (5.2), in case xi0 < xj �rst exchanging the two
coordinates, to obtain a contradiction to the assumption that a minimum is attained in x. �

Note that for G �= Cr
n the bound given by Theorem 5.4 is of the form k(H) � 5

6D(G) +Or(1). Thus,
for n large relative to r this is an improvement on the bound k(H) � D(G).
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Theorem 5.4. Let H be a Krull monoid, ' : H ! F = F(P ) a co�nal divisor homomorphism, G = C(')
its class group, and GP � G the set of classes containing prime divisors. If exp(G) = n and r(G) = r,
then

k(H) � max

�
n;

2

3
D(GP ) +

1

3

jj
logbn=2c+1 jGj

k
� bn=2c+ jGj � (bn=2c+ 1)�blogbn=2c+1 jGjc

k�
(5.3)

� max

�
n;

1

3

�
2D(GP ) +

1

2
rn+ 2r

��
:

Proof. Since k(H) = k(GP ) by Lemma 3.6.3, it su�ces to show that k(GP ) satis�es the given bounds.
Let U; V 2 A(GP ) with max L(UV ) � 3, and let

z = A1 � : : : �Ar1B1 � : : : �Br2 2 Z(UV ) ;

where Ai; Bj 2 A(GP ) with jAij � 3 and jBj j = 2 for all i 2 [1; r1] and all j 2 [1; r2], be a factorization of

UV of length jzj = min
�
L(UV ) n f2g

�
. Note r2 � 2, else jzj � jUV j�2

3 + 1 � 2D(GP )+1
3 , implying (5.3) as

desired (the inequality between the two bounds in Theorem 5.4 will become apparent later in the proof).
Our goal is to show jzj is bounded above by (5.3). We set

S = B2 � : : : �Br2 2 B(G) :

Observe that, for every i 2 [2; r2], Bi contains one term from supp(U) with the other from supp(V )
(otherwise minfjU j; jV jg = 2, contradicting max L(UV ) � 3 in view of Lemma 5.1). Hence we can factor
S = SUSV so that SU = �SV with SU jU and SV jV . Let supp(SU ) = fg1; : : : ; gsg with the gi distinct
and indexed so that vg1(SU ) � : : : � vgs(SU ). If vg1(SU ) � (n+ 1)=2, thenX

g2hg1i

vg(UV ) � vg1(SU ) + v�g1(SV ) � n+ 1 � jhg1ij+ 1 ;

and Lemma 5.2 implies that jzj = min
�
L(UV ) n f2g

�
2 [3; n]. Therefore we may assume vg1(SU ) � bn2 c.

Suppose

(5.4) jSU j >
j
logbn=2c+1 jGj

k
� bn=2c+ jGj � (bn=2c+ 1)�blogbn=2c+1 jGjc � 1

or

(5.5) jSU j >
1

2
nr + 2r � 1:

Then Lemma 5.3 (applied with � = jSU j and �i = bn=2c, and with � = jSU j, �r+1 = maxfn=2; 2r � 1g
and �i = n=2 for i 6= r + 1, re-indexing the �i if need be) along with vg1(SU ) � bn2 c �

n
2 implies that

(5.6)

sY
i=1

�
vgi(SU ) + 1

�
> jGj:

Moreover, Lemma 5.3 also shows that the bound in (5.4) is at most the bound in (5.5).

Since each g
vgi

(SU )
i is zero-sum free, being a subsequence of the proper subsequence SU jU , it follows

that f0; gi; 2gi; : : : ; vgi(SU )gig are vgi(SU )+1 distinct elements. Hence, in view of (5.6) and the pigeonhole
principle, it follows that there exists ai; bi 2 [0; vgi(SU )], for i 2 [1; s], such that, letting

SA =

sY
i=1

gaii 2 F(GP ) and SB =

sY
i=1

gbii 2 F(GP );

we have �(SA) = �(SB) with SA 6= SB . Moreover, by replacing each ai and bi with ai �minfai; big and
bi �minfai; big, respectively, we may w.l.o.g. assume that

(5.7) ai = 0 or bi = 0
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for each i 2 [1; s]. By their de�nition and in view of (5.7), we have

SASB jSU and (�SB)(�SA) j (�SU ) = SV :

From SA 6= SB , �(SA) = �(SB) and SAjSU with SU a proper subsequence of U 2 A(GP ), we conclude
that �(SA) = �(SB) 6= 0, and thus both SA and SB are nontrivial. Since �(SA) = �(SB), we have
�(SA(�SB)) = 0, and in view of (5.7), the gi being distinct and SAjU and SB jU being zero-sum free, it
follows that there is no 2-term zero-sum subsequence in SA(�SB). Thus, letting T = SA(�SB), recalling
that

SUSV = SU (�SU ) = S = B2 � : : : �Br2 ;

and putting all the above conclusions of this paragraph together, we see that T is a nontrivial, zero-sum
subsequence not divisible by a zero-sum sequence of length 2 such that T (�T ) jB2 �: : :�Br2 . However, this

leads to factorizations T (�T ) = Ar1+1 � : : : �Ar0
1
and S

�
(�T )T

��1
= B0

2 � : : : �B
0
r0
2

, where Ai; B
0
j 2 A(GP )

with jAij � 3 and jB0
j j = 2 for all i 2 [r1 + 1; r01] and all j 2 [2; r02]. But now the factorization

z0 = A1 � : : : �Ar1Ar1+1 � : : : �Ar0
1
B1B

0
2 � : : : �B

0
r0
2
2 Z(UV )

contradicts the minimality of jzj = min
�
L(UV ) n f2g

�
(note jz0j � r01 + 1 � 3 since B1jz

0 and T and �T
were both nontrivial). So we may instead assume

(5.8) jSU j �
j
logbn=2c+1 jGj

k
� bn=2c+ jGj � (bn=2c+ 1)�blogbn=2c+1 jGjc � 1 �

1

2
nr + 2r � 1:

Now

jzj = r1 + r2 �
1

3
jA1 � : : : �Ar1 j+

1

2
jB1 � : : : �Br2 j

=
1

3
(jUV j � 2jSU j � 2) +

1

2
(2 + 2jSU j) �

1

3

�
2D(GP ) + jSU j+ 1

�
;

which, together with (5.8), implies the assertion. �

As an added remark, note that the only reason to exclude the set B1 from the de�nition of the sequences
S and SU was to ensure that jz0j � 3. However, if r1 � 1, then jz0j � 3 holds even if B1 is so included.
Thus the bound in (5.3) could be improved by � 1

3 in such case.

We state one more proposition|its proof will be postponed|and then we give the characterization of
small catenary degrees.

Proposition 5.5. Let G = C3 � C3 � C3. Then k(G) = c(G) = 4.

Corollary 5.6. Let H be a Krull monoid with class group G and suppose that every class contains a

prime divisor. Then k(H) is �nite if and only if the catenary degree c(H) is �nite if and only if G is

�nite. Moreover, we have

1. c(H) � 2 if and only if jGj � 2.

2. c(H) = 3 if and only if G is isomorphic to one of the following groups : C3; C2 �C2; or C3 �C3.

3. c(H) = 4 if and only if G is isomorphic to one of the following groups : C4; C2 �C4; C2 �C2 �
C2; or C3 � C3 � C3.

Proof. If G is �nite, then D(G) is �nite (see [19, Theorem 3.4.2]), and so Lemma 3.6.3 and Theorem
4.2 imply the �niteness of k(H) and of c(H). If G contains elements of arbitrarily large order, then
the in�nitude of k(G) follows by Proposition 4.1.2. And, if G contains an in�nite independent set, the
in�nitude of k(G) follows by Proposition 4.1.1. In each case the in�nitude of k(H) and c(H), thus follows
by (3.2) and Lemma 3.6.3.
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1. This part of the theorem is already known and included only for completeness. That c(H) � 2
implies jGj � 2 can be found in [19, pp. 396], while c(H) � D(G) � jGj follows from [19, Theorem 3.4.11
and Lemmas 5.7.2 and 5.7.4] and implies the other direction.

2. See [19, Corollary 6.4.9].

3. Recall the comment concerning the value of D(G) after (2.1). We may assume that G is �nite. Note
Proposition 4.1 implies c(G) � 4 for each of the groups listed in part 3. As noted for part 1, we have
c(G) � D(G) � jGj in general. Thus c(C4) � 4 and, since D(C2 � C2 � C2) = 4, c(C2 � C2 � C2) � 4 as
well. Moreover, Corollary 4.5 shows that c(C2�C4) � D(C2�C4)� 1 = 4. Finally, c(C3�C3�C3) � 4
follows by Proposition 5.5. Consequently, c(G) = 4 for all of the groups listed in part 3.

In view of parts 1 and 2, it remains to show all other groups G not listed in Corollary 5.6 have c(G) � 5.
Set exp(G) = n and r(G) = r. Now Proposition 4.1 shows that c(G) � 5 whenever n � 5 or r � 4. This
leaves only C4�C4, C4�C4�C4, C2�C4�C4 and C2�C2�C4 for possible additional candidates for
c(G) � 4. However, applying Proposition 4.1 to each one of these four groups shows c(G) � 5 for each of
them, completing the proof. �

The remainder of this section is devoted to the proof of Proposition 5.5, which requires some e�ort.
Before going into details, we would like to illustrate that geometric and combinatorial questions in Cr

3

have found much attention in the literature, and our investigations should be seen in the light of this
background. The Erd}os-Ginzburg-Ziv constant s(G) of a �nite abelian group G is the smallest integer
l 2 N with the following property:

� Every sequence S 2 F(G) of length jSj � l has a zero-sum subsequence T of length jT j = exp(G).

If r 2 N and ' is the maximal size of a cap in AG(r; 3), then s(Cr
3) = 2' + 1 (see [12, Section 5]). The

maximal size of caps in Cr
3 has been studied in �nite geometry for decades (see [13, 11, 32]; the precise

values are only known for r � 6). This shows the complexity of these combinatorial and geometric
problems. Recently, Bhowmik and Schlage-Puchta determined the Davenport constant of C3�C3�C3n.
In these investigations, they needed a detailed analysis of the group C3�C3�C3. Building on the above
results for the Erd}os{Ginzburg{Ziv constant s(G), in particular, using that s(C3

3 ) = 19, they determined
the precise values of generalized Davenport constants in C3

3 (see [4, Proposition 1], and [14] for more on
generalized Davenport constants).

We need one more de�nition. For an abelian group G and a sequence S 2 F(G) we denote

h(S) = maxfvg(S) j g 2 Gg 2 [0; jSj] the maximum of the multiplicities of S:

We give an explicit characterization of all minimal zero-sum sequences of maximal length over C3
3 . In

particular, it can be seen that for this group the Olson constant and the Strong Davenport constant do
not coincide (we do not want to go into these topics; the interested reader is referred to Section 10 in the
survey article [16]).

Lemma 5.7. Let G = C3 � C3 � C3 and U 2 F(G). Then the following statements are equivalent :

(a) U 2 A(G) with jU j = D(G).

(b) There exist a basis (e1; e2; e3) of G and ai; bj 2 [0; 2] for i 2 [1; 5] and j 2 [1; 3] with
P5

i=1 ai �P3
j=1 bj � 1 (mod 3) such that

U = e21

2Y
i=1

(aie1 + e2)

3Y
j=1

(a2+je1 + bje2 + e3) :

In particular, h(U) = 2 for each U 2 A(G) with jU j = D(G).

Proof. Since D(G) = 7 (see the comments by (2.1)) it is easily seen that statement (b) implies statement
(a). Let U 2 A(G) with jU j = D(G). First, we assert that h(U) = 2 and, then, derive statement (b) as a
direct consequence.
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Since h(U) < exp(G) = 3, it su�ces to show h(U) > 1. Assume not. We pick some e1 2 supp(U) � G�.
Let G = he1i �K, where K �= C3 � C3 is a subgroup, and let � : G ! K denote the projection (with
respect to this direct sum decomposition). We set V = e�11 U . We observe that �(�(V )) = 0.

We note that for each proper and nontrivial subsequence S jV with �(�(S)) = 0, we have that e1�(S)
is zero-sum free, that is

(5.9) �(S) = e1:

In particular, we have max L(�(V )) � 2 and, in combination with h(U) = 1, we have 0 - �(V ).
We assert that h(�(V )) = 2. First, assume h(�(V )) � 3. This means that V has a subsequence

S0 =
Q3

i=1(aie1 + g) with g 2 K and, since h(V ) = 1, we have fa1e1; a2e1; a3e1g = f0; e1; 2e1g and
�(S0) = 0, a contradiction. Second, assume h(�(V )) = 1. Then, since j supp(�(V ))j = 6 and jK�j = 8,
there exist g; h 2 K such that (�g)g(�h)h j�(V ), a contradiction to max L(�(V )) = 2.

So, let g1g2 jV with �(g1) = �(g2), and denote this element by e2. Further, let e3 2 K such that
G = he1; e2; e3i and let �0 : G ! he3i denote the projection (with respect to this basis). If there exists
a subsequence T j (g1g2)

�1V with �(�(T )) = �e2, then �(g1T ) and �(g2T ) are distinct elements of he1i,
a contradiction to (5.9). So, �e2 =2 �(�((g1g2)

�1V )), which in view of h(�(V )) < 3 and 0 - �(V ),
implies that supp(�((g1g2)

�1V ))\he2i = ;. Since �(�0((g1g2)
�1V )) = 0, it follows that �0((g1g2)

�1V ) =
e23(�e3)

2. Let V = g1g2h1h2f1f2 such that �0(hi) = e3 and �0(fi) = �e3 for i 2 [1; 2]. We note that
�(h1+f1)�(h2+f2) = 0e2, the only sequence of length two over he2i that has sum e2 yet does not have �e2
as a subsum. Likewise, �(h1+f2)�(h2+f1) = 0e2. Thus �(h1+f1) = �(h1+f2) or �(h1+f1) = �(h2+f1)
that is �(f1) = �(f2) or �(h1) = �(h2). By symmetry, we may assume �(h1) = �(h2). Let j 2 [1; 2] such
that �(h1+ fj) = e2. Then �(hifjg1g2) 2 he1i for i 2 [1; 2], yet �(h1fjg1g2) 6= �(h2fjg1g2), as h1 and h2
are distinct by the assumption h(U) = 1. This contradicts (5.9) and completes the argument.

It remains to obtain the more explicit characterization of U . Let U = e21W for some suitable e1 2 G�,
and let K and � as above. Similarly to (5.9), we see that �(W ) is a minimal zero-sum sequence over

K �= C2
3 . Since �(W ) has length 5 = D(C2

3 ), it follows that �(W ) = e22
Q3

j=1(bje2 + e3) for independent

(e2; e3) and bj 2 [0; 2] with
P3

j=1 bj � 1 (mod 3) (cf., e.g., [19, Example 5.8.8]). Since �(W ) = e1, the
claim follows. �

Proof of Proposition 5.5. Let G = C3 � C3 � C3. Recall that D(G) = 7 (see the comments by (2.1)).
Thus it su�ces to prove k(G) � 4, since then combing with Proposition 4.1.3 and Corollary 4.3 yields

4 � k(G) = c(G) � 4 :

Suppose by contradiction that k(G) � 5. Consider a counter example U; V 2 A(G) with max L(UV ) >
4 and L(UV ) \ [3; 4] = ; such that jU j + jV j is maximal. Since max L(UV ) � 5 and thus by Lemma
5.1 minfjU j; jV jg � 5, and since maxfjU j; jV jg � D(G) = 7, we know jU j + jV j 2 [10; 14]. Let w =
W1 � : : : �Wt 2 Z(UV ), where t � 5 and Wi 2 A(G) for i 2 [1; t], be a factorization of UV of length at
least 5.

Note that, for some j 2 [1; t], say j = 1, we must have W1 = (�g)g, where g 2 G�, since otherwise

jwj � b
jUV j

3
c � b

14

3
c = 4 ;

a contradiction. Since g(�g) divides neither U nor V , we may assume that U = gU 0 and V = (�g)V 0,
where U 0; V 0 2 F(G) are both zero-sum free.

CASE 1: We have g =2 �(U 0) or �g =2 �(V 0), say g =2 �(U 0).
Then, since �2g = g and U = gU 0 2 A(G), we have (�g)2U 0 2 A(G). Since W1 = (�g)g, then letting

W 0
1 = g�1W1(�g)

2 = (�g)3 and W 0
i = Wi for i 2 [2; t], we see that w0 = W 0

1 � : : : � W
0
t 2 Z(G) is a
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factorization of ((�g)2U 0)V with jw0j = t = jwj � 5. As a consequence, max L((�g)2U 0V ) � 5, whence
the maximality of jU j+ jV j ensures that ((�g)2U 0)V has a factorization

z = A1 � : : : �Ar 2 Z
�
(�g)2U 0V

�
with r 2 [3; 4], where Ai 2 A(G) for i 2 [1; r]. Note, since �gjV , that v�g((�g)

2U 0V ) � 3.
If (�g)2jAj for some j 2 [1; r], then, letting A0

j = Aj(�g)
�2g and A0

i = Ai for i 6= j, gives a
factorization z0 = A0

1 � : : : � A
0
r 2 Z(G) of UV with r 2 [3; 4] and A0

i 2 A(G) for i 2 [1; r], contradicting
that L(UV ) \ [3; 4] = ;. Therefore we may assume

(5.10) v�g(Ai) � 1 for all i 2 [1; r]:

As a result, since v�g((�g)
2U 0V ) � 3, we see that at least three Ai contain �g, say w.l.o.g. A1, A2 and

A3 with

(5.11) jA1j � jA2j � jA3j:

For i; j 2 [1; 3] distinct, we set

Bi;j = (�g)�2AiAjg 2 B(G) :

Note that there is no 2-term zero-sum subsequence of Bi;j which contains g as otherwise v�g(AiAj) � 3,
contradicting (5.10). Consequently,

(5.12) max L(Bi;j) � 1 + b
jBi;j j � 3

2
c :

CASE 1.1: r = 3.
Suppose jAij + jAj j = 9 for distinct i; j 2 [1; 3]. Then jBi;j j = 8 > D(G), whence min L(Bi;j) � 2,

while (5.12) implies max L(Bi;j) � 3; thus letting zB 2 Z(Bi;j) be any factorization of Bi;j , we see that
z0 = zBAk 2 Z(UV ), where fi; j; kg = f1; 2; 3g, is a factorization of UV with jzj 2 [3; 4], contradicting
L(UV ) \ [3; 4] = ;. So we may instead assume

(5.13) jAij+ jAj j 6= 9 for all distinct i; j 2 [1; 3]:

Suppose �g 2 �((�g)�1Ai) for some i 2 [1; 3]. Then, since �((�g)�1Ai) = g = �2g, we can write

Ai = (�g)S1S2

with S1; S2 2 F(G) and �(S1) = �(S2) = �g. Let fi; j; kg = f1; 2; 3g and fx; yg = f1; 2g. Lemma 5.1
implies gSx 2 A(G) and

(5.14) (�g)�1AjSy 2 B(G) with max L
�
(�g)�1AjSy

�
� minfj(�g)�1Aj j; jSyjg :

Noting that
�
(�g)�1AjSy

��
gSx

�
Ak = UV and letting zB 2 Z

�
(�g)�1AjSy)

�
be any factorization of

(�g)�1AjSy, we see that the factorization z0 = zB
�
gSx

�
Ak 2 Z(UV ) will contradict L(UV ) \ [3; 4] = ;

unless jzB j � 3. Thus (5.14) implies jSyj � 3 and j(�g)�1Aj j � 3. Since y 2 f1; 2g and j 2 f1; 2; 3g n fig
are arbitrary, this implies �rst that jS1j; jS2j � 3, whence jAij � 7, and second that jAj j; jAkj � 4 for
j; k 6= i. Combining these estimates, we �nd that 15 � jA1j+ jA2j+ jA3j = j((�g)2U 0)V j � 2D(G) = 14;
a contradiction. So we conclude that

(5.15) �g =2 �((�g)�1Ai) for all i 2 [1; 3] :

Suppose jA2j � 4. Let zB 2 Z(B1;3) be a factorization of B1;3 =
�
(�g)�1A1

��
(�g)�1A3g

�
. In view of

(5.15), we see that (�g)�1A3g is zero-sum free, whence Lemma 5.1 and (5.11) imply jzB j � j(�g)�1A1j <
jA2j � 4. Thus z0 = zBA2 2 Z(UV ) is a factorization of UV with jz0j � 4, whence L(UV ) \ [3; 4] = ;
implies jz0j = 2 and jzB j = 1, that is, B1;3 2 A(G) is an atom. Consequently, g�1B1;3 = (�g)�2A1A3 is
zero-sum free. Hence, noting that

UV ((�g)g)�1 =
�
(�g)�2A1A3

��
(�g)�1A2

�
:
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we see that Lemma 5.1 implies

max L
�
UV ((�g)g)�1)

�
� j(�g)�1A2j < jA2j � 4 :

which contradicts that W
�
(�g)g

��1
= W2 � : : : � Wt 2 Z

�
UV ((�g)g)�1)

�
is a factorization of length

t� 1 = jW j � 1 � 4. So we can instead assume jA2j � 5.
Observe that

(5.16) supp((�g)�1Ai) \ hgi = ; for i 2 [1; 3];

since otherwise v�g(Ai) � 2 or vg(UV ) � 2|the �rst contradicts (5.10), while the the second contradicts
the supposition of CASE 1 that g =2 �(U 0) as g - V . From (5.16), we see that jA1j � 3, which, combined
with 5 � jA2j � jA3j and jA1j+ jA2j+ jA3j = j((�g)2U 0)V j � 2D(G) = 14, implies that

(jA1j; jA2j; jA3j) 2 f(3; 5; 5); (3; 5; 6); (4; 5; 5)g:

Thus, in view of (5.13), we conclude that jA1j = 3 and jA2j = jA3j = 5.
Since jB1;j j = 7, for j 2 f2; 3g, it follows from (5.12) that

(5.17) B1;j 2 A(G) for j 2 f2; 3g

is an atom as otherwise z0 = zBAk 2 Z(UV ), where zB 2 Z(B1;j) and f1; j; kg = f1; 2; 3g, will contradict
L(UV ) \ [3; 4] = ;. Since jB2;3j = 9 > D(G), it follows from (5.12) that z0 = zBA1 2 Z(UV ), for some
zB 2 Z(B2;3), will contradict L(UV ) \ [3; 4] = ; unless all zB 2 Z(B2;3) have jzB j = 4. Consequently,
since there is no 2-term zero-sum containing g in B2;3 = (�g)�2A2A3g (recall the argument used to prove
(5.12)), we conclude that A2A3 = (�g)Xa(�g)(�X)b for some X = x1x2x3 2 F(G) and a; b 2 G with

a+ b = �g:

Thus, in view of (5.15), we �nd that w.l.o.g.

A2 = (�g)Xa and A3 = (�g)(�X)b:

If a = b, then 2a = a+ b = �g implies a = g, in contradiction to (5.16). Therefore a 6= b.
Let

A1 = (�g)Y with Y = y1y2 2 F(G):

In view of (5.17), (5.16) and Lemma 5.7, we see that there are terms a0 2 supp(Y Xa) = supp(B1;2g
�1)

and b0 2 supp(Y (�X)b) = supp(B1;3g
�1) with

va0(Y Xa) � 2 and vb0(Y (�X)b) � 2:

If y1 = y2, then 2y1 = y1 + y2 = g (in view of A1 = (�g)y1y2), in contradiction to (5.16); if xi = xj for
i and j distinct, then x2i (�xi)

2jX(�X), so that x2i (�xi)
2jUV is subsequence of 4 terms all from hxii,

whence Lemma 5.2 implies UV has a factorization of length 3, contradicting L(UV ) \ [3; 4] = ;; and if
yi = xj or yi = �xj for some i 2 [1; 2] and j 2 [1; 3], then the 2-term zero-sum yi(�xj) or yixi divides
B1;3 or B1;2, respectively, contradicting (5.17). Consequently, va0(Y Xa) � 2 and vb0(Y (�X)b) � 2
force a0 = a and b0 = b. Moreover, since a 6= b, we have abjXY (�X). Since a + b = �g, we have
a2b2(�g) 2 B(G). However, noting that there is no 2-term zero-sum subsequence of the length 5 zero-
sum a2b2(�g), we actually have C = a2b2(�g) 2 A(G). Note that UV = g(�g)Y X(�X)ab and CjUV
(in view of abjXY (�X)). Let zB 2 Z(UV C�1). Since jUV C�1j = jA1j + jA2j + jA3j � 1 � jCj = 7, we
have jzB j � 3, while clearly UV C�1 contains some 2-term zero-sum subsequence from X(�X), so that
jzB j � 2. As a result, the factorization z0 = zBC 2 Z(UV ) contradicts that L(UV )\ [3; 4] = ;, completing
the subcase.
CASE 1.2: r = 4.

If �g 2 supp(A4) as well, then we may w.l.o.g. assume jA1j � jA2j � jA3j � jA4j, in which case
j(�g)2U 0V j = jA1j + jA2j + jA3j + jA4j � 2D(G) = 14 implies jB1;2j � 5. Thus z0 = zBA3A4 2 Z(UV ),
where zB 2 Z(B1;2), contradicts L(UV ) \ [3; 4] = ; in view of (5.12). Therefore we may assume �g =2
supp(A4). Consequently, in view of (5.10) and the de�nition of the Ai, we �nd that �g =2 supp(V 0).



THE CATENARY DEGREE OF KRULL MONOIDS I 21

Since jA4j � 2, we see that j(�g)2U 0V j = jA1j+jA2j+jA3j+jA4j � 2D(G) = 14 implies jB1;2j � 7, with
equality only possible if j(�g)2U 0V j = 14. However, if jB1;2j � 6, then z0 = zBA3A4 2 Z(UV ), where
zB 2 Z(B1;2), contradicts L(UV ) \ [3; 4] = ; in view of (5.12). Therefore we indeed see that jB1;2j = 7
and j(�g)2U 0V j = 14. As a result, since (�g)2U 0 2 A(G) implies jU j + 1 = j(�g)2U 0j � D(G) = 7, and
since jV j � D(G) = 7 as well, it follows that jV j = 7 and jU j = 6.

Since jV j = 7 = D(G), it follows that �g 2 �(V 0) = G�. Thus, since �(V 0) = g = 2(�g), we see that
we can write V 0 = S1S2 with S1; S2 2 F(G) and �(S1) = �(S2) = �g, and w.l.o.g. assume jS1j � jS2j.
Then, since jV 0j = 6 and �g =2 supp(V 0), we infer that 2 � jS1j � 3.

But now consider g�1U(�g)S1 2 B(G) and ((�g)S1)
�1V g 2 B(G). By Lemma 5.1,�

((�g)S1)
�1V

�
g 2 A(G)

is an atom. Let
zB 2 Z

�
g�1U(�g)S1

�
:

Since jg�1U(�g)S1j = jU j + jS1j � jU j + 2 = 8 > D(G), we have jzB j � 2. Since g =2 �(U 0) = �(g�1U)
by the supposition of CASE 1, Lemma 5.1 implies jzB j < j(�g)S1j � 4. Thus z0 =

�
((�g)S1)

�1V
�
zB 2

Z(UV ) has jz0j 2 [3; 4], contradicting L(UV ) \ [3; 4] = ; and completing CASE 1.

CASE 2: We have g 2 �(U 0) and �g 2 �(V 0).
Then, since �(U 0) = �g = 2g and �(V 0) = g = 2(�g), we can write U 0 = S1S2 and V 0 = T1T2 with

S1; S2; T1; T2 2 F(G), �(S1) = �(S2) = g and �(T1) = �(T2) = �g. Let i 2 f1; 2g and j 2 f1; 2g.
Note that

gT3�j 2 A(G) and (�g)S3�i 2 A(G)

by Lemma 5.1. Also, SiTj 2 B(G) and, for zB 2 Z(SiTj), Lemma 5.1 implies

(5.18) jzB j � minfjSij; jTj jg :

Now z0 = (gT3�j)
�
(�g)S3�i

�
zB 2 Z(UV ) will contradict L(UV ) \ [3; 4] = ; unless jzB j � 3, in which

case (5.18) implies jSij � 3 and jTj j � 3. Since i and j were arbitrary, this implies jSij; jTj j � 3 for all
i; j 2 f1; 2g. Hence, since jU j = 1 + jS1j + jS2j � D(G) = 7, we see that jS1j = jS2j = 3, and likewise
jT1j = jT2j = 3. Thus we must have jzB j = 3 for all choices of i; j 2 f1; 2g, which is only possible if
Si = �Tj for all choices of i; j 2 f1; 2g. However, this implies U = �V and, moreover, that v�x(Ti) � 1
for i 2 [1; 2] and x 2 supp(S1S2). Consequently, letting x 2 supp(S1S2), we see that v�x(V ) � 2, whence
U = �V implies vx(U) � 2. Thus x2(�x)2 jUV is a subsequence of 4 terms all from hxi, whence Lemma
5.2 implies UV has a factorization of length 3, contradicting L(UV ) \ [3; 4] = ; and completing CASE 2
and the proof. �
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