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Abstract
Let (G, +) be a finite abelian group. Then, s(G) and η(G) denote

the smallest integer ` such that each sequence over G of length at least
` has a subsequence whose terms sum to 0 and whose length is equal to
and at most, resp., the exponent of the group. For groups of rank two,
we study the inverse problems associated to these constants, i.e., we
investigate the structure of sequences of length s(G)− 1 and η(G)− 1
that do not have such a subsequence. On the one hand, we show that
the structure of these sequences is in general richer than expected. On
the other hand, assuming a well-supported conjecture on this problem
for groups of the form Cm ⊕ Cm, we give a complete characterization
of all these sequences for general finite abelian groups of rank two.
In combination with partial results towards this conjecture, we get
unconditional characterizations in special cases.

1 Introduction

The investigation of the following type of problem was initiated in the 1960’s
by the work of P. Erdős, A. Ginzburg, and A. Ziv [8]. Let G be an additive
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finite abelian group. Determine the smallest integer ` such that each sequence
over G of length at least ` has a subsequence the sum of whose terms equals
0 ∈ G and that fulfills some additional property; in particular, restrictions
on the length of the subsequence were considered (see Section 2 for a more
formal definition).

In the present paper, we are specifically interested in the constants s(G)
and η(G) that arise when imposing the condition that the subsequence has
length equal to the exponent of the group and length at most the exponent
of the group, respectively. Together, with the constant ZS(G) (subsequence
of length equal to the order of the group) and the Davenport constant D(G)
(no restriction on the length of the subsequence, besides the trivial one that
the length is not zero, to exclude the empty sequence) these are the most
classical constants of this form. The constant s(G) is a generalization (to
general groups) of the original problem consider for cyclic groups in [8], first
investigated in detail by H. Harborth [18]. The constant η(G) was first
investigated by P. van Emde Boas [30] and J.E. Olson [21], as a key-tool in
the investigation of the Davenport constant for groups of rank two. Parallel to
the direct problem of determining the value of these constants, the associated
inverse problems, i.e., the problem of determining the structure of the longest
sequences that do not have a subsequence of the above mentioned type,
received considerable attention as well.

We refer to the recent paper of Y. Edel et al. [7] for a detailed exposition of
the history and applications of these two constants, among others in discrete
geometry and non-unique factorization theory. For various results on these
constants and other related problems see the survey articles [4, 13] and the
monograph [17], in particular Chapter 5.

Here, these inverse problems for general finite abelian groups of rank two
are investigated. We give a short summary of the present state of knowledge
on these invariants (in general), to illustrate that to consider this problem
for groups of rank two is a natural choice. The direct problems for groups
of rank at most two are solved (cf. Theorem 4.1 and the references there).
Moreover, for cyclic groups, answers to the inverse problems are well-known
(cf. Theorem 4.2), yet the refined problem of determining the structure of
shorter sequences without subsequences of the respective form received con-
siderable attention in the recent literature. We refer to, e.g., [31, 25, 26, 20, 2]
for results of this form; note that for cyclic groups—and only in this case—
the inverse problem associated to η(G) is, for immediate reasons, identical to
the one associated to D(G) (for recent investigations on the inverse problem
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associated to the Davenport constant for groups of rank two see [23, 14, 27]).
Whereas, for groups of rank at least three, both the direct and the inverse
problem are in general wide open (see, e.g., [1, 7, 6, 28] for partial results
and bounds), as is the problem of determining the Davenport constant (see,
e.g., [3] for a recent contribution).

For groups of the form C2
m, there is a well-known and well-supported

conjecture regarding the answers to the inverse problems (see Section 3 for
details). Yet, for general groups of rank two the situation was unclear. Some
examples of extremal sequences have been established (see, e.g., [17, Propo-
sition 5.7.8] and [7], in particular Lemma 3.2 and the remarks after Lemma
2.3, for constructions valid for more general groups as well). Our inves-
tigations show that these constructions are not exhaustive in an essential
way; some expansion on the known constructions are immediate—the goal
in the just mentioned work was not to give a complete list of examples—yet
beyond these immediate modifications we exhibit aspects that were not no-
ticed before. In particular for the problem associated to s(G), the structure of
sequences can be richer than expected. More specifically, it was conjectured
(see [13, Conjecture 7.1]) that, for G a finite abelian group, each sequence S
over G of length |S| = s(G)− 1 that has no zero-sum subsequence of length
equal to exp(G) contains some element exp(G)− 1 times. Our investigations
yield an example showing that groups of rank two in general do not have this
property (cf. Corollary 3.3).

Moreover, and this is the main part of the present work, we reduce the
problem of solving the inverse problems for general finite abelian groups of
rank two to the respective inverse problems for groups of the form C2

m. As-
suming that the above mentioned conjecture for the groups C2

m holds true,
we get a complete solution for rank two groups (see Theorem 3.1). And, in
combination with partial results towards this conjecture, we obtain uncondi-
tional results in special cases (see Corollary 3.2). In fact, due to a very recent
result of Ch. Reiher [23], the result regarding the inverse problem associated
to η(G) becomes unconditional.

2 Preliminaries

We recall some notation and terminology (following [13] and [17]).
We denote by Z the set of integers, and by N and N0 the positive and non-

negative integers, respectively. We denote by [a, b] = {z ∈ Z : a ≤ z ≤ b} the
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interval of integers. For k ∈ Z and m ∈ N, we denote by [k]m the smallest
non-negative integer that is congruent to k modulo m.

Let (G, +) denote a finite abelian group; throughout, we use additive
notation for abelian groups. For a subset G0 ⊂ G, we denote by 〈G0〉 the
subgroup generated by G0. We say that elements e1, . . . , er ∈ G \ {0} are
independent if

∑r
i=1 miei = 0 with mi ∈ Z implies that miei = 0 for each

i ∈ [1, r]. We say that a subset of G is a basis if it generates G and its
elements are independent. For n ∈ N, we denote by Cn a cyclic group of
order n. For each finite abelian group G, there exist uniquely determined
1 < n1 | · · · | nr such that G ∼= Cn1 ⊕ · · · ⊕ Cnr ; then r is the rank of G and
exp(G) = nr the exponent of G.

We denote by F(G) the, multiplicatively written, free abelian monoid
over G, that is, the monoid of all formal commutative products

S =
∏
g∈G

gvg(S)

with vg(S) ∈ N0. An element S ∈ F(G) is called a sequence over G; strictly
speaking, this is not a finite sequence in the usual sense—as the ordering
of the terms is disregarded—yet for the questions considered in our context
the ordering is irrelevant anyway, while this formal framework has several
advantages. We refer to vg(S) as the multiplicity of g in S. Moreover,
σ(S) =

∑
g∈G vg(S)g ∈ G is called the sum of S, |S| =

∑
g∈G vg(S) ∈ N0 the

length of S, and {g ∈ G : vg(S) > 0} ⊂ G the support of S. We say that a
sequence S (over G) is short if |S| ∈ [1, exp(G)].

We denote the unit element of F(G) by 1 and call it the empty sequence.
If T ∈ F(G) and T | S (in F(G)), then we call T a subsequence of S.
Moreover, we denote by T−1S the unique sequence R with RT = S. The
sequence S is called zero-sum free, if σ(T ) 6= 0 for each 1 6= T | S.

Having more notation at hand, we restate the definition of the invariants
mentioned in the introduction in a more formal way, and mentioned a fourth
one which we need in one of our arguments. For a finite abelian group G, let
` ∈ N be minimal with the property that each S ∈ F(G) with |S| ≥ ` has a
subsequence T | S such that σ(T ) = 0 and

• |T | = exp(G); ` is denoted by s(G).

• |T | ∈ [1, exp(G)]; ` is denoted by η(G).

• |T | ≥ 1; ` is denoted by D(G).
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• |T | = k exp(G) for some k ∈ N; ` is denoted by sexp(G)N(G).

For each map f : G → G′ between finite abelian groups, there exists
a unique extension to a monoid homomorphism F(G) → F(G′), which we
denote by f as well. And, if f is group homomorphism, then σ(f(S)) =
f(σ(S)) for each S ∈ F(G). Moreover, for h ∈ G and S ∈ F(G), let
sh : G → G denote the map defined via g 7→ g + h, and let h + S denote
sh(S).

3 Main result and Discussion

As mentioned in the Introduction, we reduce the inverse problem for general
groups of rank two to the inverse problem for groups of the form C2

m for
which these problems are well-understood.

We recall two related key-notions for C2
m. Let m ∈ N. The group G = C2

m

is said to have

• Property C if each S ∈ F(G) of length |S| = η(G) − 1 that has no
short zero-sum subsequence equals T exp(G)−1 for some T ∈ F(G).

• Property D if each S ∈ F(G) of length |S| = s(G)−1 that has no zero-
sum subsequence of length exp(G) equals T exp(G)−1 for some T ∈ F(G).

Property C was first formulated and investigated by P. van Emde Boas [30];
to be precise, he considered a slightly weaker yet essentially equivalent prop-
erty (cf. [10, Lemma 4.7] for details). And, Property D was introduced by
W.D. Gao [9]. It is well-known that if C2

m has Property D, than it has
Property C (see [12, Lemma 3.3]).

It is conjectured that for each m ∈ N the group C2
m has Property D

and (thus) Property C (see the two just mentioned papers and, e.g., [13,
Conjecture 7.2]). And, very recently Ch. Reiher [23] proved that C2

m has
Property C for each m ∈ N.

We recall some partial results on Property D. By a result of W.D. Gao [9],
the property is multiplicative, i.e., if for m,n ∈ N both C2

m and C2
n have

Property D so does C2
mn; and an analogous assertion is known for Property

C (also see [15, Theorem 3.2] for a version of this result for arbitrary rank),
reducing the problem of establishing this property for C2

m to the case where
m is prime. Moreover, it is known to hold true for small m, namely, for
m ≤ 10 (see [9, 29]).
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We formulate our main result. In combination with the above mentioned
results it yields unconditional answers to the inverse problems in certain
cases, cf. Corollary 3.2 for a formal statement; indeed, by Ch. Reiher’s result
[23] the part regarding η(G) holds unconditionally (yet, to highlight the
parallelity of the two assertions and to reflect the actual content of this
paper, we formulate the result in this way).

Theorem 3.1. Let G be a finite abelian group of rank two, say, G ∼= Cm ⊕
Cmn with m, n ∈ N and m ≥ 2. Let {e1, e2} be a basis of G with ord e2 = mn,
and let {g1, g2} be a generating set of G with ord g2 = mn.

1. The following sequences have length η(G) − 1 and no short zero-sum
susbequence.

(a) em−1
1 esm−1

2 (−xe1+e2)
(n+1−s)m−1 with gcd{x, m} = 1 and s ∈ [1, n].

(b) gm−1
1 gmn−1

2 (−g1 + g2)
m−1.

If C2
m has Property C, then each sequence S ∈ F(G) with |S| = η(G)−1

and no short zero-sum subsequence is of this form (for some basis or
generating set, resp., with the above properties).

2. The following sequences have length s(G) − 1 and no zero-sum subse-
quence of length exp(G).

(a) gtm−1(e1+g)(n+1−t)m−1(e2+g)sm−1(−xe1+e2+g)(n+1−s)m−1 where
gcd{x, m} = 1, s, t ∈ [1, n], and g ∈ G.

(b) gmn−1(g1 + g)m−1(g2 + g)mn−1(−g1 + g2 + g)m−1 where g ∈ G.

If C2
m has Property D, then each sequence S ∈ F(G) with |S| = s(G)−1

and no zero-sum subsequence of length exp(G) is of this form (for some
basis or generating set, resp., with the above properties).

We point out that to avoid technicalities Theorem 3.1 is formulated in
such a way that neither the examples of sequences are mutually exclusive
(e.g., we additionally could impose the condition x ≤ m/2, cf. Lemma 4.4)
nor cover all representations of sequences with respect to “natural” bases or
generating sets (e.g., the sequence em−1

1 em−1
2 (−xe1 + xe2)

m−1 over C2
m with

gcd{x, m} = 1 has no short zero-sum subsequence and at first might seem
to be of a different type, yet by considering it with respect to the basis
{−xe1 +xe2, e1} it is readily seen that it is covered by our result). Moreover,
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we note that (b), in both cases, is redundant for n = 1, since then there are
no generating sets with two elements that are not a basis. Yet, also in this
case, the assertion of our result is more precise than what is immediate by
assuming Properties C and D, respectively.

We end this section by stating, in a formal way, two points that we
informally mentioned before.

The following result summarizes the present state of knowledge regarding
a full and unconditional solution of the inverse problems associated to η(G)
and s(G) for groups of rank two.

Corollary 3.2. Let G be a finite abelian group of rank two, say, G ∼= Cm ⊕
Cmn with m,n ∈ N and m ≥ 2. Let S ∈ F(G).

1. The sequences S has length η(G)−1 and no short zero-sum subsequence
if and only if

• there exist a basis {e1, e2} of G with ord e2 = mn, x ∈ N with
gcd{x, m} = 1, and s ∈ [1, n] such that S = em−1

1 esm−1
2 (−xe1 +

e2)
(n+1−s)m−1, or

• there exists a generating set {g1, g2} of G with ord g2 = mn such
that S = gm−1

1 gmn−1
2 (−g1 + g2)

m−1.

2. Suppose m is not divisible by a prime strictly greater than 7. The
sequences S has length s(G)− 1 and no zero-sum subsequence of length
exp(G) if and only if

• there exist a basis {e1, e2} of G with ord e2 = mn, x ∈ N with
gcd{x, m} = 1, s, t ∈ [1, n], and g ∈ G such that S = gtm−1(e1 +
g)(n+1−t)m−1(e2 + g)sm−1(−xe1 + e2 + g)(n+1−s)m−1, or

• there exists a generating set {g1, g2} of G with ord g2 = mn and
g ∈ G such that S = gmn−1(g1+g)m−1(g2+g)mn−1(−g1+g2+g)m−1.

Proof. 1. By [23] we know that each m ∈ N has Property C (recall that
Property C is implied by Property B, see [11, Theorem 10.7], and that
Property C is multiplicative, see [9]). Thus, the condition in Theorem 3.1.1
is fulfilled and the claim follows.
2. By [9] and [29] we know that if m has no prime divisor strictly greater than
7, then m has Poperty D. Thus, the condition in Theorem 3.1.2 is fulfilled
and the claim follows.
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Moreover, as a consequence of Theorem 3.1.2, we get that, for groups
of rank two, the structure of sequences of length s(G) − 1 without zero-
sum subsequence of length exp(G) can be more complicated than expected,
though (provided Property D holds) for groups of rank two only slighly so.
In particular, we can answer (negatively) [13, Conjecture 7.1].

Corollary 3.3. Let G = Cm ⊕ Cmn with m ≥ 2 and n ≥ 3. There exists a
sequence S ∈ F(G) of length s(G) − 1 that has no zero-sum subsequence of
length exp(G) yet vg(S) < exp(G)− 1 for each g ∈ G.

Proof. Clear, by Theorem 3.1.2.a with s, t ∈ [2, n− 1].

4 Proof of Theorem 3.1

In this section we prove Theorem 3.1. First, we recall and establish some
auxiliary results and then turn to the actual details of the proof.

4.1 Auxiliary results

In the following theorem, we recall the answers to the direct problems for
groups of rank at most two; in part, they are classical, yet the results on s(G)
and sexp(G)N(G) for groups of rank two were obtained only fairly recently (see
[17, Theorem 5.8.3] building on crucial contributions by [22, 24], and [13,
Theorem 6.5], respectively).

Theorem 4.1. Let m, n ∈ N and G = Cm⊕Cmn. Then D(G) = m+mn−1,
η(G) = 2m+mn−2, sexp(G)N(G) = m+2mn−2, and s(G) = 2m+2mn−3.

For cyclic groups, solutions to the inverse problems are well-known and
as discussed in the Introduction meanwhile refined results—valid for shorter
sequences—are known (cf., e.g., [13, Theorems 4.3 and 7.5] for results con-
taining the result below and detailed references).

Theorem 4.2. Let n ∈ N and S ∈ F(Cn).

1. Suppose |S| = η(Cn) − 1 = D(Cn) − 1. Then S has no (short) non-
empty zero-sum subsequence if and only if S = en−1 for some e ∈ Cn

with 〈e〉 = Cn.
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2. Suppose |S| = s(Cn)−1. Then S has no zero-sum subsequence of length
n if and only if S = gn−1(g + e)n−1 for g, e ∈ Cn with 〈e〉 = Cn.

In the following lemma, we collect some facts that we use and are essen-
tially known (cf. [7, Lemma 2.2] and [16, Theorem 2]).

Lemma 4.3. Let G be a finite abelian group, g ∈ G, and S ∈ F(G). Fur-
thermore, let n ∈ N such that exp(G) | n.

1. S has a zero-sum subsequence of length n if and only if g + S has a
zero-sum subsequence of length n.

2. If S has no short zero-sum subsequence, then, for v ∈ [0, exp(G) − 1],
gv(g + S) has no zero-sum subsequence of length exp(G).

3. If vg(S) ≥ b(exp(G) − 1)/2c and S has no zero-sum subsequences of
length exp(G), then S has a subsequence T of length at least |S| −
exp(G) + 1 such that (−g) + T has no short zero-sum subsequence.

The following lemma, which for prime m can be found in [30, Section 5],
is needed in the proof of Theorem 3.1.1; it gives information on the sequence
T appearing in the formulation of Property C.

Lemma 4.4. Let m ∈ N with m ≥ 2. Let Tm−1 ∈ F(C2
m) be a sequence of

length 3m−3 that has no short zero-sum subsequence. Then T = f1f2(−xf1+
f2) for a basis {f1, f2} of C2

m and some x ∈ [1, m − 1] with gcd{x, m} = 1;
moreover, x ≤ m/2. In particular, for each f ∈ supp(T ), the sequence
(f−1T )m−1 is zero-sum free.

Proof. Obviously | supp(T )| = 3. By [15, Lemma 4.4], the sequence Tm−1 has
a minimal zero-sum subsequence U of length 2m−1. By [19, Theorem 1] and
[12, Proposition 4.1.2], we know that U = em−1

1

∏m
i=1(aie1+e2) for some basis

{e1, e2} of C2
m. Thus, T = e1(ae1 +e2)(be1 +e2) with distinct a, b ∈ [0, m−1],

say a > b. Obviously both {e1, ae1 + e2} and {e1, be1 + e2} are a basis of C2
m,

and by [19, Corollary 1], {be1 + e2, ae1 + e2} is a basis as well, which implies
that gcd{a− b, m} = 1. Furthermore, be1 + e2 = −(a− b)e1 + (ae1 + e2) and
ae1+e2 = −(m+b−a)e1+(be1+e2). Since 0 ≤ min{a−b, (m+b−a)} ≤ m/2,
the claim follows. The “in particular”-statement is a direct consequence of
the explicit description.

The following technical result is needed in the proof of Theorem 3.1.2.
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Lemma 4.5. Let m ∈ N with m ≥ 2. Let Tm−1 ∈ F(C2
m) be a sequence of

length 4m− 4 that has no zero-sum subsequence of length m. Then for each
f ∈ supp(T ), the sequence (f−1T )m−1 has no zero-sum subsequence of length
2m.

Proof. Let f ∈ supp(T ). By Lemma 4.3, the sequence (−f +(f−1T )m−1) has
no short zero-sum subsequence. By Theorem 4.1, each zero-sum sequence
over C2

m of length 2m is not minimal, implying it is the product of two
non-empty zero-sum sequences, and at least one of them is short. Thus,
(−f + (f−1T )m−1) has no zero-sum subsequence of length 2m, which by
Lemma 4.3 implies that (f−1T )m−1 has no zero-sum subsequence of length
2m.

4.2 Details of the proof

First, we briefly indicate that the listed sequences indeed have the claimed
properties.

Then, we solve the inverse problem associated to η(G) conditional on
Property C, and do likewise for the one associated to s(G) conditional on
Property D.

4.2.1 Establishing the properties of the sequences

In both cases, the statements regarding the length of the sequences are im-
mediate by Theorem 4.1.

Let S be a sequence as in the formulation of the respective result.
(1) We have to show that S has no short zero-sum subsequence. Let 1 6= T | S
be a zero-sum subsequence. Suppose S is of the form given in (a). It is clear
that ve2(T ) + v−xe1+e2(T ) is not 0 and divisible by ord e2 = mn; thus, it is
equal to mn. This implies that m - v−xe1+e2(T ). Consequently, ve1(T ) 6= 0
and |T | > mn. Now, suppose S is of the form given in (b). Since ag1 /∈ 〈g2〉
for |a| ∈ [1, m−1], we have vg1(T ) = v−g1+g2(T ). Thus, v−g1+g2(T )+vg2(T ) is
divisible by ord g2 = mn. So, we have v−g1+g2(T ) 6= 0 and |T | > mn. Thus,
S has no short zero-sum subsequence.
(2) By Lemma 4.3 we may assume that g = 0. If S is of the form given
in (b), then we know by (1) that the sequence gm−1

1 gmn−1
2 (−g1 + g2)

m−1

has no short zero-sum subsequence. Similarly, if S is of the form given in
(a), we note that by the argument in (1), each zero-sum subsequence T
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of S with ve2(T ) + v−xe1+e2(T ) > 0 is not short. Since neither 0mn−1 nor

0tm−1e
(n+1−t)m−1
1 has a zero-sum subsequence of length mn, it follows in both

cases that S has no zero-sum subsequence of length mn.

4.2.2 Proof of Theorem 3.1.1

We start with some observations.
The case n = 1 is an immediate consequence of Lemma 4.4.
We thus assume n ≥ 2, that is G ∼= Cm ⊕ Cmn with m ≥ 2 and n ≥ 2.

Furthermore, let H = {mg : g ∈ G} ∼= Cn and let ϕ : G → G/H be the
canonical map; we have G/H ∼= C2

m. We apply the Inductive Method, as in
[11, Section 8], with the exact sequence

0 → H ↪→ G
ϕ→ G/H → 0,

partly using arguments similar to those in [9] and [15].
Now, let S ∈ F(G) be a sequence of length η(G) − 1 with no short

zero-sum subsequence. We have to show that S is of the claimed form.
We start our argument by showing that | supp(S)| = 3 and already obtain

a somewhat more precise result on S in the process of doing so (see (4.1)).
Since η(G/H) = 3m − 2 and |S| = (n − 1)m + 3m − 3, we know that there
exist subsequences S1, . . . , Sn−1 of S such that

∏n−1
i=1 Si | S and each ϕ(Si)

is a short zero-sum sequence over G/H, i.e., σ(ϕ(Si)) = 0 and |ϕ(Si)| ≤ m.
Let R ∈ F(G) such that S = R

∏n−1
i=1 Si. If σ(S1) . . . σ(Sn−1) has a (short)

zero-sum subsequence, say σ(
∏

i∈I σ(Si)) = 0 for some ∅ 6= I ⊂ [1, n − 1],
then σ(

∏
i∈I Si) = 0 and |

∏
i∈I Si| ≤ |I|m ≤ mn, a contradiction. Thus,

this sequences has no zero-sum subsequence and consequently by Theorem
4.2 σ(S1) = · · · = σ(Sn−1) = e where 〈e〉 = H. Moreover, by the above
reasoning it follows that ϕ(R) does not have a short zero-sum subsequence.
Thus, |R| ≤ 3m − 3 and it follows that |Si| = m for each i ∈ [1, n − 1] and
|R| = 3m − 3. Since C2

m has Property C, ϕ(R) = Tm−1 for some sequences
T ∈ F(G/H) with |T | = 3.

We show that supp(ϕ(S)) = supp(ϕ(R)); more precisely, we show that
each ϕ(Si) is equal to fm for some f ∈ supp(T ). Assume this is not the
case, say ϕ(S1) is not of this form. We show that ϕ(S1R) is divisible by
the product of two short zero-sum sequences, which by the above argument
yields a contradiction.

First, assume f | ϕ(S1) for some f ∈ supp(T ). Then fm | ϕ(S1R)
and f−mϕ(S1R) = (f−1ϕ(S1))(f

−1T )m−1. Since by assumption ϕ(S1) 6=
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fm, it follows that | supp(f−1ϕ(S1))| ≥ 2. Thus, f−mϕ(S1R) contains an
element with multiplicity at least m or its support contains at least 4 distinct
elements; in both cases, in the latter using the fact that its length is 3m− 3
and C2

m has Property C, it has a short zero-sum subsequence.
Second, assume supp(ϕ(S1)) ∩ supp(ϕ(R)) = ∅. Let f ′ | ϕ(S1). The

sequence f ′ϕ(R) has a short zero-sum subsequence U . We know that f ′ | U
and thus, since f ′ /∈ supp(T ), we have fm−1 - U for each f ∈ supp(T ).
Therefore, supp(U−1f ′ϕ(R)) = supp(ϕ(R)) and | supp(U−1ϕ(S1R))| ≥ 4.
This implies the existence of a short zero-sum subsequence of U−1ϕ(S1R).

Now, we show that |ϕ−1(f) ∩ supp(S)| = 1 for each f ∈ supp(ϕ(S)).
Assume not. Let g, g′ ∈ supp(S) be distinct elements such that ϕ(g) =
ϕ(g′) = f .

First, suppose f ∈ supp(ϕ(
∏n−1

i=1 Si)). We may assume that g′ | R and,
say, g | S1. We have σ(S1) = e. Let S ′

1 = g−1g′S1 and R′ = g′−1gR. As
above, we know that σ(S ′

1) σ(S2) . . . σ(Sn−1) has no zero-sum subsequence.
Thus, it follows that σ(S ′

1) = e (for n = 2 this is the only generating element
of H). Yet, σ(S ′

1) = σ(S1) + g′ − g 6= σ(S1), a contradiction.
Second, suppose g, g′ ∈ supp(R). This implies m ≥ 3. The sequence

g−1R has a subsequence V such that ϕ(V ) is a minimal zero-sum sequence,
thus in particular |V | ≤ 2m − 1. Since (f−1T )m−1, for f ∈ supp(T ), is
zero-sum free (see Lemma 4.4), we have supp(ϕ(V )) = supp(ϕ(R)) and thus
we may assume that g′ | V . If σ(U) 6= e, then σ(S1) . . . σ(Sn−1) σ(U) has a
zero-sum subsequence of length at most n− 1, yielding a zero-sum sequence
of S of length at most (n− 2)m + 2m− 1 ≤ mn, a contradiction. Thus, we
have σ(V ) = e. Yet, the same is true for σ(g′−1gV ), a contradiction.

So, we know that
S = gs1m−1

1 gs2m−1
2 gs3m−1

3 (4.1)

with si ∈ [1, n] and s1 + s2 + s3 = n + 2, in particular | supp(S)| = 3.
We recall that by Lemma 4.4 supp(ϕ(S)) = supp(ϕ(R)) = {f1, f2,−xf1+

f2} for a basis f1, f2 and some x ∈ [1, m] with gcd(x, m) = 1 and x ≤ m/2.
Say, ϕ(gi) = fi for i ∈ [1, 2]. We note that if si ≥ 2, then mgi = σ(gm

i ) = e,
in particular ord gi = mn.

For a ∈ [1, m − 1], let Ra = g
[xa]m
1 gm−a

2 ga
3 . Then ϕ(Ra) is a zero-sum

subsequence of ϕ(R) of length at most 2m− 1. Thus, as above, we conclude
σ(Ra) = e for each a ∈ [1, m− 1].

Considering a = 1 we have

xg1 + (m− 1)g2 + g3 = e (4.2)
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and considering a = m− 1 we have

(m− x)g1 + g2 + (m− 1)g3 = e. (4.3)

Now, we assume m ≥ 3 and complete the argument. At the end we
consider m = 2. Considering a = 2, we get

2xg1 + (m− 2)g2 + 2g3 = e. (4.4)

Thus, considering the difference of (4.4) and (4.2) we get

xg1 − g2 + g3 = 0. (4.5)

Moreover, considering the difference of (4.4) and two times (4.2) we get
mg2 = e, in particular ord g2 = mn, and combining this with the sum of
(4.2) and (4.3) we get mg1 + mg3 = e. Note that {gi, g2} for i ∈ {1, 3} is a
generating set of G, since bgi /∈ 〈g2〉 for b ∈ [1, m− 1].

First, suppose x 6= 1. Then 1 ≤ dm/xe < m. Let r = [dm/xex]m =
dm/xex−m. Considering a = dm/xe, we get

rg1 + (m− dm/xe)g2 + dm/xeg3 = e (4.6)

and thus rg1 − dm/xeg2 + dm/xeg3 = 0 and (dm/xex − m)g1 − dm/xeg2 +
dm/xeg3 = 0. Using (4.5), we get mg1 = 0 and thus s1 = 1. Moreover, it
follows that {g1, g2} is a basis of G and by (4.5) the sequence is of the form
given in (a).

Second, suppose x = 1. If s1 = s3 = 1, the sequence is of the form given
in (b), since by (4.5) g3 = −g1 + g2. If s3 ≥ 2, then mg3 = e and mg1 = 0,
implying that {g1, g2} is a basis of G, completing the argument. Similarly,
if s1 ≥ 2, then mg1 = e and mg3 = 0. Now, {g3, g2} is a basis of G and
g1 = −g3 + g2, again completing the argument.

Finally, we suppose m = 2. Then x = 1 and g1 + g2 + g3 = e. Let
{i, j, k} = {1, 2, 3} such that si ≥ 2. Then 2gi = e and −gi + gj + gk = 0.
If sj ≥ 2, then 2gj = e, and 2gk = 0. It follows that {gk, gi} is a basis of G
and gj = −gk + gi. If sj = sk = 1, we have gj = −gk + gi and {gk, gi} is a
generating set. This completes the proof of part 1.

4.2.3 Proof of Theorem 3.1.2

As for part 1, the case n = 1 is immediate, by Lemma 4.3 and part 1. We
thus assume again n ≥ 2, and use the same exact sequence as in the proof of
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part 1. Also, other parts of the argument are similar to the one for part 1,
we keep those parts brief.

Let S ∈ F(G) be a sequence of length s(G) − 1 with no zero-sum sub-
sequence of length exp(G). Again, we start by considering supp(S), this
time showing that | supp(S)| = 4. Since s(G/H) = 4m − 3 and |S| =
(2n − 2)m + 4m − 4. We know that there exist subsequences S1, . . . , S2n−2

such that
∏n−1

i=1 Si | S and each ϕ(Si) is a zero-sum sequence of length m.
Let R ∈ F(G) such that S = R

∏2n−2
i=1 Si. We note that σ(S1) . . . σ(S2n−2)

has no zero-sum subsequence of length n. Thus, by Theorem 4.2 we know
that it is equal to (e′(e′ + e))n−1 where 〈e〉 = H, say σ(Si) = (e′ + e) for
i ∈ [1, n− 1].

Moreover, ϕ(R) has no zero-sum subsequence of length m. Since |R| =
4m − 4 and C2

m has Property D, ϕ(R) = Tm−1 for some T ∈ F(G/H).
Analogously to the proof of Theorem 3.1.1, using that C2

m has Property D,
it can be seen that if, for some i ∈ [1, 2n − 2], ϕ(Si) /∈ {fm : f ∈ supp(T )},
then ϕ(RSi) is divisible by the product of two zero-sum sequences of length
m, yielding a contradiction. Thus, supp(ϕ(S)) = supp(ϕ(R)) and each ϕ(Si)
is equal to fm for some f ∈ supp(T ).

Now, we show that |ϕ−1(f) ∩ supp(S)| = 1 for each f ∈ supp(ϕ(S)).
Assume not. If f ∈ supp(ϕ(

∏2n−2
i=1 Si)), then this can be seen similarly

to the proof of Theorem 3.1.1. Suppose g, g′ ∈ supp(R) are distinct but
ϕ(g) = ϕ(g′) = f . This implies m ≥ 3. The sequence g−1R has a subsequence
U of length 2m such that σ(ϕ(U)) = 0; this follows by Theorem 4.1, since
in view of smN(C2

m) = 3m− 2, we get a sequence of length m or 2m, and by
assumption it cannot have length m. By Lemma 4.5, we may assume that it
contains g′. We show that σ(U) = 2e′ + e. Assume not, say σ(U) = 2e′ − ae
with a ∈ [0, n − 2]. We consider US1 . . . SaSn . . . S2n−a−3. The sum of this
sequence is (2e′ − ae) + a(e′ + e) + (n − a − 2)e′ = 0 and its length is
2m + am + (n− a− 2)m = mn, a contradiction. Yet, by the same argument
σ(g′−1gU) = 2e′ + e, a contradiction.

Thus, we know S = gs0m−1hs1m−1
1 hs2m−1

2 hs3m−1
3 with si ∈ [1, n] and s0 +

s1 + s2 + s3 = 2n + 2.
Without restriction we assume that s0 is maximal. We have s0m − 1 ≥

m(n + 1)/2− 1 ≥ b(mn− 1)/2c. Thus, by Lemma 4.3, (S − g) = 0s0m−1RT
where T is a sequence of length mn + 2m− 3 with no short zero-sum subse-
quence. By Theorem 3.1.1 we know all possible structures of T . It remains
to determine s0 and R. If T = gm−1

1 gmn−1
2 (−g1 + g2)

m−1 for some generating
set {g1, g2}, we get, since s0 is maximal, that s0 = n and consequently R = 1,
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implying that S is of the form given in (b).
Thus, it remains to consider T = em−1

1 ekm−1
2 (−xe1 + e2)

(n−k)m−1 for a
basis {e1, e2}. We note that if ve2(RT ) + v−xe1+e2(RT ) ≥ mn + m− 1, then
bve2(RT )/mc+ bv−xe1+e2(RT )/mc ≥ n. Yet, if this is the case, then RT has
a zero-sum subsequence of length mn, implying that (g+RT ) | S has a zero-
sum subsequences of length mn. Consequently ve2(RT ) + v−xe1+e2(RT ) ≤
mn + m − 2 and thus R = e

(n−s0)m
1 , implying that S is of the form given in

(a). This completes the proof of part 2.
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