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ON ZERO-SUM SUBSEQUENCES OF
RESTRICTED SIZE. IV

R. CHI, S. DING (Dalian), W. GAO (Tianjin),

A. GEROLDINGER and W. A. SCHMID (Graz)∗

Abstract. For a finite abelian group G, we investigate the invariant s(G)
(resp. the invariant s0(G)) which is defined as the smallest integer l ∈ N such that

every sequence S in G of length |S| = l has a subsequence T with sum zero and

length |T | = exp (G) (resp. length |T | ≡ 0 mod exp (G)).

1. Introduction

Let N denote the set of positive integers and let N0 = N ∪ {0}. For
integers a, b ∈ Z set [a, b] = {x ∈ Z | a 5 x 5 b}, and for c ∈ N let N=c =
N \ [1, c− 1]. Let G be a finite abelian group with exp (G) = n = 2. Let s(G)
(resp. s0(G)) denote the smallest integer l ∈ N such that every sequence S in
G with length |S| = l contains a zero-sum subsequence T with length |T | = n
(resp. with length |T | ≡ 0 mod n).

The invariant s(G) was first studied for cyclic groups by Erdős, Ginzburg
and Ziv. For every n ∈ N denote by Cn a cyclic group with n elements. In
[3], Erdős et al proved that s(Cn) = 2n− 1. In 1983, A. Kemnitz conjectured
that s(C2

p) = 4p− 3 for every prime p ∈ N. This conjecture is still open and
a positive answer would imply immediately that s(C2

n) = 4n− 3 for every
n ∈ N. The best result known so far states that s(Cq ⊕ Cq) 5 4q − 2 for
every prime power q ∈ N. For further results on s(G), also for groups with
higher rank, we refer to [11], [1], [4], [14], [6], [7], [2].

The invariant s0(G) was introduced recently in [9]. It was studied in
groups of the form G = Cn ⊕ Cn, and it turned out to be an important tool
for a detailed investigation of sequences in Cn ⊕ Cn. By definition, we have
s0(G) 5 s(G), and it is easy to see that equality holds for cyclic groups and
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for elementary 2-groups, for which we have s(Cr
2) = s0(Cr

2) = 2r + 1. The
situation is different for groups G with rank two. We conjecture that s0(C2

n)
= 3n− 2 for all n = 2. This conjecture holds true if n is either a product of
at most two distinct prime powers or s(C2

p) = 4p− 3 for all primes p dividing
n (cf. [9, Theorem 3.7]).

The Davenport constant D(G) of G is defined as the smallest integer
l ∈ N such that every sequence S in G with length |S| = l contains a zero-
sum subsequence. A simple argument shows that 3n− 2 5 s0(C2

n) 5 D(C3
n)

(see [9, Lemma 3.5]). It is well known that equality holds if n is a prime
power. However, it is still unknown whether D(C3

n) = 3n− 2 holds for every
n ∈ N.

The aim of this paper is to derive some unconditional results on s0(Cn

⊕ Cn) (i.e., results which do not rest on any unproved assumptions on s(·)
or D(·)). We formulate the main result.

Theorem 1.1. Let m, n ∈ N=2 with n = m2−m+1
3 . If s0(C2

m) = 3m− 2
and D(C3

n) = 3n− 2, then s0(C2
mn) = 3mn− 2.

The following corollary is known for l ∈ {1, 2} (cf. [9, Theorem 3.7]).

Corollary 1.2. Let n =
∏l

i=1 qi ∈ N=2 where l ∈ N and q1, . . . , ql ∈ N
are pairwise distinct prime powers. If 3qi+1 = q2

1 · . . . · q2
i − q1 · . . . · qi + 1 for

every i ∈ [2, l − 1], then s0(Cn ⊕ Cn) = 3n− 2.

The proof of Theorem 1.1 rests on the recent result that s(Cq ⊕ Cq) 5
4q − 2 for every prime power q ∈ N (see [5]) and a suitable multiplication
formula giving an upper bound for s(Cn ⊕ Cn) for every n ∈ N, which may
be of its own interest.

2. Preliminaries

Throughout, all abelian groups will be written additively and for n ∈ N
let Cn denote a cyclic group with n elements. Let F(G) denote the (multi-
plicatively written) free abelian monoid with basis G. An element S ∈ F(G)
is called a sequence in G and will be written in the form

S =
∏
g∈G

gvg(S) =
l∏

i=1

gi ∈ F(G).

A sequence S′ ∈ F(G) is called a subsequence of S, if there exists some
S′′ ∈ F(G) such that S = S′ · S′′ (equivalently, S′ | S or vg(S′) 5 vg(S) for
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every g ∈ G). If this holds, then S′′ = S′−1 · S. Subsequences S1, . . . , Sk of
S are said to be pairwise disjoint if their product

∏k
i=1 Si is a subsequence

of S. For a sequence T ∈ F(G) we set

gcd (S, T ) =
∏
g∈G

gmin{vg(S),vg(T )} ∈ F(G).

As usual

σ(S) =
∑
g∈G

vg(S)g =
l∑

i=1

gi ∈ G

denotes the sum of S,

|S| =
∑
g∈G

vg(S) = l ∈ N0

denotes the length of S and

Σ(S) =
{ ∑

i∈I

gi | ∅ 6= I ⊂ [1, l]
}
⊂ G

is the set of all possible subsums of S. Clearly, |S| = 0 if and only if S = 1
is the empty sequence. We say that the sequence S is

• zero-sumfree, if 0 6∈ Σ(S),
• a zero-sum sequence (resp. has sum zero), if σ(S) = 0,
• a minimal zero-sum sequence, if it is a non-empty zero-sum sequence

and each proper subsequence is zero-sumfree.
For a finite abelian group H and a map f : G → H, set f(S) =

∏l
i=1 f(gi)

∈ F(H). If f is a homomorphism, then f(S) has sum zero if and only if
σ(S) ∈ ker (f).

Suppose that G = Cn1 ⊕ . . .⊕Cnr with 1 < n1 | · · · | nr. It is well known
that

1+
r∑

i=1

(ni−1) 5 D(G) = max
{
|S| |S is a minimal zero-sum sequence in G

}
(e.g., [8, Section 3]). If G is a p-group or r 5 2, then 1+

∑r
i=1(ni−1) = D(G)

(cf. [12] and [13]).
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3. Proof of Theorem 1.1 and Corollary 1.2

We start with the announced multiplication formula, which generalizes
an old result of Harborth (see [10, Hilfssatz 2]).

Proposition 3.1. Let G be a finite abelian group, H < G a subgroup
and S ∈ F(G) a sequence with length |S| =

(
s(H)− 1

)
exp (G/H)+ s(G/H).

Then S has a zero-sum subsequence with length exp (H) exp (G/H). In par-
ticular, if exp (G) = exp(H) exp (G/H), then

s(G) 5
(
s(H)− 1

)
exp (G/H) + s(G/H).

Proof. Let ϕ : G → G/H denote the canonical epimorphism. Then S
has pairwise disjoint subsequences S1, . . . , Ss(H) with length |Si| = exp(G/H)
such that ϕ(Si) has sum zero for every i ∈

[
1, s(H)

]
. Then the sequence

s(H)∏
i=1

σ(Si) ∈ F
(

ker (ϕ)
)

contains a zero-sum subsequence S′ with length |S′| = exp (H), say S′ =∏
i∈I σ(Si) where I ⊂

[
1, s(H)

]
with |I| = exp (H). Thus

∏
i∈I Si is a zero-

sum subsequence of S with length |I| exp (G/H) = exp (H) exp (G/H). �

Corollary 3.2. Let n1, n2 ∈ N=2 with n1 | n2 and G = Cn1 ⊕ Cn2.

(1) Let l ∈ N, q1, . . . , ql ∈ N=2, n1 =
∏l

i=1 qi and a, b ∈ N0 such that
s(C2

qi
) 5 aqi − b for every i ∈ [1, l]. Then

s(G) 5 2n2 + (a− 2)n1 − b + (a− b− 1)
l−1∑
i=1

i∏
j=1

qj .

(2) If n1 =
∏l

i=1 qi with pairwise distinct prime powers q1 5 . . . 5 ql, then

s(G) 5 2n1 + 2n2 − 2 +
l−1∑
i=1

i∏
j=1

qj .

Proof. (1) Set H = {q1g | g ∈ G} whence H ∼= Cn1
q1

⊕ Cn2
q1

and G/H ∼=
Cq1 ⊕ Cq1 . We proceed by induction on l. If l = 1, then the Theorem of
Erdős–Ginzburg–Ziv and Proposition 3.1 imply that

s(G) 5
(
s
(
Cn2

q1

)
− 1

)
q1 + s(Cq1 ⊕ Cq1)
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5

(
2
n2

q1
− 2

)
q1 + (aq1 − b) = 2n2 + (a− 2)n1 − b.

If l = 2, then induction hypothesis and Proposition 3.1 imply that

s(G) 5
(
s
(
Cn1

q1

⊕ Cn2
q1

)
− 1

)
q1 + s(Cq1 ⊕ Cq1)

5

(
2
n2

q1
+ (a− 2)

n1

q1
− b + (a− b− 1)

l−2∑
i=1

i∏
j=1

qj+1 − 1
)

q1 + (aq1 − b)

= 2n2 + (a− 2)n1 − b + (a− b− 1)
l−1∑
i=1

i∏
j=1

qj .

(2) For every prime power q ∈ N we have s(C2
q ) 5 4q − 2 by [5]. Thus

the assertion follows from (1) with a = 4 and b = 2. �

Proposition 3.3. Let m ∈ N=2 and S ∈ F(Cm ⊕ Cm) with length
|S| = 4m− 3. If S contains some element g with multiplicity vg(S) =
m− bm

2 c− 1, then S contains a zero-sum subsequence with length m.

Proof. This is a special case of [7, Proposition 2.7]. �

Proof of Theorem 1.1. Let m,n ∈ N=2 with n = m2−m+1
3 , s0(C2

m)
= 3m− 2 and D(C3

n) = 3n− 2. Set G = Cmn ⊕ Cmn and show that s0(G)
5 3mn− 2.

Let S ∈ F(G) be a sequence with length |S| = 3mn− 2, H = G⊕ 〈e〉 ∼=
C3

mn a group containing G and let f : G → H be defined by f(g) = g + e for
every g ∈ G. Let ϕ : H → H denote the multiplication by n. Then ker (ϕ) ∼=
C3

n, ϕ(G) ∼= C2
m and ϕ(H) ∼= C3

m. If U ′ ∈ F(G) with length |U ′| ≡ 0 mod m

such that ϕ(U ′) has sum zero, then σ(U ′) ∈ ker (ϕ) and σ
(
f(U ′)

)
∈ ker (ϕ).

Obviously, it suffices to verify that f(S) contains a zero-sum subsequence.
We proceed in three steps.

1. For every h′ ∈ ϕ(G) let

Sh′ =
∏
g∈G

ϕ(g)=h′

gvg(S),

and let h ∈ ϕ(G) be such that |Sh| = max
{
|Sh′ | | h′ ∈ ϕ(G)

}
. Since 3n =

m2 −m + 1, we obtain that

|Sh| =
|S|∣∣ϕ(G)

∣∣ =
3mn− 2

m2
= 2

(
m− bm/2c − 1

)
.
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Let U1, . . . , Ul1 be pairwise disjoint subsequences of S−1
h ·S with length |U1| =

. . . = |Ul1 | = m such that ϕ(U1), . . . , ϕ(Ul1) have sum zero and W = (
∏l1

i=1 Ui

· Sh)
−1 · S contains no subsequence U ′ with length |U ′| = m such that ϕ(U ′)

has sum zero. Then S = U1 · . . . ·Ul1 ·Sh ·W , and if m =
∏l

i=1 qi with pairwise
distinct prime powers q1 5 . . . 5 ql, then Corollary 3.2 implies that

|W | 5 4m− 2 +
l−1∑
i=1

i∏
j=1

qj 5 4m− 2 + bm/2c.

2. If |W | = 4m− 3−
(
m−bm/2c− 1

)
, then by Proposition 3.3 there ex-

ists a subsequence Ul1+1 of Sh ·W with length |Ul1+1| = m such that ϕ(Ul1+1)
has sum zero,

∣∣gcd (Ul1+1, Sh)
∣∣ 5

(
m− bm/2c − 1

)
and

∣∣gcd (Ul1+1,W )
∣∣

= bm/2c+ 1.

We iterate this argument: if
∣∣gcd (Ul1+1,W )−1 ·W

∣∣ = 4m− 3−
(
m−

bm/2c − 1
)
, then by Proposition 3.3 there exists a subsequence Ul1+2 of

U−1
l1+1 · Sh ·W with length |Ul1+2| = m such that ϕ(Ul1+2) has sum zero,∣∣gcd (Ul1+2, Sh)

∣∣ 5
(
m− bm/2c − 1

)
and

∣∣gcd (Ul1+2,W )
∣∣ = bm/2c+ 1.

Since

|W | − 2
(
bm/2c+ 1

)
5 4m− 2 + bm/2c − 2

(
bm/2c+ 1

)
5 4m− 4−

(
m− bm/2c − 1

)
,

there exist some l2 ∈ [0,2] and pairwise disjoint subsequences Ul1+1, . . . ,Ul1+l2

of Sh ·W with length |Ul1+1| = . . . = |Ul1+l2 | = m such that ϕ(Ul1+1), . . . ,
ϕ(Ul1+l2) have sum zero and

(∗)
∣∣gcd (Ul1+1 · . . . · Ul1+l2 ,W )−1 ·W

∣∣ 5 4m− 4−
(
m− bm/2c − 1

)
.

3. Let Ul1+l2+1, . . . , Ul1+l2+l3 be pairwise disjoint subsequences of

gcd (Sh, Ul1+1 · . . . · Ul1+l2)
−1 · Sh

such that |Ul1+l2+1| = . . . = |Ul1+l2+l3 | = m and∣∣gcd (Sh, Ul1+1 · . . . · Ul1+l2)
−1 · (Ul1+l2+1 · . . . · Ul1+l2+l3)

−1 · Sh

∣∣ 5 m− 1.

By construction of Sh, the sequence ϕ(Ul1+l2+i) has sum zero for every
i ∈ [1, l3]. Thus we obtain that∣∣(Ul1+1 · . . . · Ul1+l2+l3)

−1 · Sh ·W
∣∣
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5 4m− 4−
(
m− bm/2c − 1

)
+ (m− 1) = 4m− 4 + bm/2c.

We distinguish two cases.

Case 1:
∣∣(Ul1+1 · . . . · Ul1+l2+l3)

−1 · Sh ·W
∣∣ 5 4m− 4. Then it follows

that

l1 + l2 + l3 =
|
(
(Ul1+1 · . . . · Ul1+l2+l3)

−1 · Sh ·W
)−1 · S|

m

=
3nm− 2− (4m− 4)

m
> 3n− 4

whence l1 + l2 + l3 = 3n− 3. If l1 + l2 + l3 = 3n− 3, then∣∣(Ul1+1 · . . . · Ul1+l2+l3)
−1 · Sh ·W

∣∣ = 3m− 2,

and since s0
(
ϕ(G)

)
= 3m− 2, the sequence (Ul1+1 · . . . · Ul1+l2+l3)

−1 · Sh

·W contains a subsequence U3n−2 with length |U3n−2| ≡ 0 mod m such
that ϕ(U3n−2) has sum zero. Thus S has pairwise disjoint subsequences
U1, . . . , U3n−2 with length |Ui| ≡ 0 mod m and such that ϕ(Ui) has sum zero
for every i ∈ [1, 3n− 2]. Since

∏3n−2
i=1 σ

(
f(Ui)

)
∈ ker (ϕ) ∼= C3

n and D(C3
n)

= 3n− 2, the sequence
∏3n−2

i=1 σ
(
f(Ui)

)
contains a zero-sum subsequence

whence
∏3n−2

i=1 f(Ui) = f(
∏3n−2

i=1 Ui) and f(S) contain a zero-sum subse-
quence.

Case 2:
∣∣(Ul1+1 · . . . · Ul1+l2+l3)

−1 · Sh ·W
∣∣ = 4m− 3. Then (∗) implies

that ∣∣gcd
(
Sh, (Ul1+1 · . . . · Ul1+l2+l3)

−1 · Sh ·W
)
| = m− bm/2c − 1.

Therefore, by Proposition 3.3, the sequence (Ul1+1 · . . . · Ul1+l2+l3)
−1 · Sh

·W has a subsequence Ul1+l2+l3+1 with length |Ul1+l2+l3+1| = m such that
ϕ(Ul1+l2+l3+1) has sum zero. Then∣∣(Ul1+1 · . . . · Ul1+l2+l3+1)

−1 · Sh ·W
∣∣ 5 4m− 4 + bm/2c −m < 4m− 4

and we continue as in Case 1. �

Proof of Corollary 1.2. We proceed by induction on l. If l ∈ [1, 2],
then the assertion follows from [9, Theorem 3.7]. Suppose that l = 3 and that
for m =

∏l−1
i=1 qi we have s0(Cm ⊕Cm) = 3m− 2. Since D(C3

ql
) = 3ql − 2, the

assertion follows from Theorem 1.1. �
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