ON ZERO-SUM SUBSEQUENCES OF RESTRICTED SIZE. IV

R. CHI, S. DING (Dalian), W. GAO (Tianjin), A. GEROLDINGER and W. A. SCHMID (Graz)^{*}

Abstract. For a finite abelian group G, we investigate the invariant s(G) (resp. the invariant $s_0(G)$) which is defined as the smallest integer $l \in \mathbf{N}$ such that every sequence S in G of length $|S| \ge l$ has a subsequence T with sum zero and length $|T| = \exp(G)$ (resp. length $|T| \equiv 0 \mod \exp(G)$).

1. Introduction

Let **N** denote the set of positive integers and let $\mathbf{N}_0 = \mathbf{N} \cup \{0\}$. For integers $a, b \in \mathbf{Z}$ set $[a, b] = \{x \in \mathbf{Z} \mid a \leq x \leq b\}$, and for $c \in \mathbf{N}$ let $\mathbf{N}_{\geq c} =$ $\mathbf{N} \setminus [1, c-1]$. Let *G* be a finite abelian group with $\exp(G) = n \geq 2$. Let $\mathbf{s}(G)$ (resp. $\mathbf{s}_0(G)$) denote the smallest integer $l \in \mathbf{N}$ such that every sequence *S* in *G* with length $|S| \geq l$ contains a zero-sum subsequence *T* with length |T| = n(resp. with length $|T| \equiv 0 \mod n$).

The invariant $\mathbf{s}(G)$ was first studied for cyclic groups by Erdős, Ginzburg and Ziv. For every $n \in \mathbf{N}$ denote by C_n a cyclic group with n elements. In [3], Erdős et al proved that $\mathbf{s}(C_n) = 2n - 1$. In 1983, A. Kemnitz conjectured that $\mathbf{s}(C_p^2) = 4p - 3$ for every prime $p \in \mathbf{N}$. This conjecture is still open and a positive answer would imply immediately that $\mathbf{s}(C_n^2) = 4n - 3$ for every $n \in \mathbf{N}$. The best result known so far states that $\mathbf{s}(C_q \oplus C_q) \leq 4q - 2$ for every prime power $q \in \mathbf{N}$. For further results on $\mathbf{s}(G)$, also for groups with higher rank, we refer to [11], [1], [4], [14], [6], [7], [2].

The invariant $\mathbf{s}_0(G)$ was introduced recently in [9]. It was studied in groups of the form $G = C_n \oplus C_n$, and it turned out to be an important tool for a detailed investigation of sequences in $C_n \oplus C_n$. By definition, we have $\mathbf{s}_0(G) \leq \mathbf{s}(G)$, and it is easy to see that equality holds for cyclic groups and

 $^{^{*}\}mathrm{This}$ work has been supported partly by NSFC with Grant 10271080 and MOEC with Grant 02047.

 $Key\ words\ and\ phrases:$ zero-sum sequence, finite abelian groups.

²⁰⁰⁰ Mathematics Subject Classification: 11B50, 11B75, 20K01.

^{0236-5294/\$ 20.00 © 2005} Akadémiai Kiadó, Budapest

for elementary 2-groups, for which we have $\mathbf{s}(C_2^r) = \mathbf{s}_0(C_2^r) = 2^r + 1$. The situation is different for groups G with rank two. We conjecture that $\mathbf{s}_0(C_n^2) = 3n - 2$ for all $n \ge 2$. This conjecture holds true if n is either a product of at most two distinct prime powers or $\mathbf{s}(C_p^2) = 4p - 3$ for all primes p dividing n (cf. [9, Theorem 3.7]).

The Davenport constant D(G) of G is defined as the smallest integer $l \in \mathbf{N}$ such that every sequence S in G with length $|S| \ge l$ contains a zerosum subsequence. A simple argument shows that $3n - 2 \le \mathfrak{s}_0(C_n^2) \le D(C_n^3)$ (see [9, Lemma 3.5]). It is well known that equality holds if n is a prime power. However, it is still unknown whether $D(C_n^3) = 3n - 2$ holds for every $n \in \mathbf{N}$.

The aim of this paper is to derive some unconditional results on $s_0(C_n \oplus C_n)$ (i.e., results which do not rest on any unproved assumptions on $s(\cdot)$ or $D(\cdot)$). We formulate the main result.

THEOREM 1.1. Let $m, n \in \mathbb{N}_{\geq 2}$ with $n \geq \frac{m^2 - m + 1}{3}$. If $s_0(C_m^2) = 3m - 2$ and $\mathsf{D}(C_n^3) = 3n - 2$, then $s_0(C_{mn}^2) = 3mn - 2$.

The following corollary is known for $l \in \{1, 2\}$ (cf. [9, Theorem 3.7]).

COROLLARY 1.2. Let $n = \prod_{i=1}^{l} q_i \in \mathbf{N}_{\geq 2}$ where $l \in \mathbf{N}$ and $q_1, \ldots, q_l \in \mathbf{N}$ are pairwise distinct prime powers. If $3q_{i+1} \geq q_1^2 \cdot \ldots \cdot q_i^2 - q_1 \cdot \ldots \cdot q_i + 1$ for every $i \in [2, l-1]$, then $\mathbf{s}_0(C_n \oplus C_n) = 3n - 2$.

The proof of Theorem 1.1 rests on the recent result that $\mathbf{s}(C_q \oplus C_q) \leq 4q-2$ for every prime power $q \in \mathbf{N}$ (see [5]) and a suitable multiplication formula giving an upper bound for $\mathbf{s}(C_n \oplus C_n)$ for every $n \in \mathbf{N}$, which may be of its own interest.

2. Preliminaries

Throughout, all abelian groups will be written additively and for $n \in \mathbf{N}$ let C_n denote a cyclic group with n elements. Let $\mathcal{F}(G)$ denote the (multiplicatively written) free abelian monoid with basis G. An element $S \in \mathcal{F}(G)$ is called a *sequence in* G and will be written in the form

$$S = \prod_{g \in G} g^{\mathsf{v}_g(S)} = \prod_{i=1}^l g_i \in \mathcal{F}(G).$$

A sequence $S' \in \mathcal{F}(G)$ is called a *subsequence of* S, if there exists some $S'' \in \mathcal{F}(G)$ such that $S = S' \cdot S''$ (equivalently, $S' \mid S$ or $\mathsf{v}_q(S') \leq \mathsf{v}_q(S)$ for

every $g \in G$). If this holds, then $S'' = {S'}^{-1} \cdot S$. Subsequences S_1, \ldots, S_k of S are said to be *pairwise disjoint* if their product $\prod_{i=1}^k S_i$ is a subsequence of S. For a sequence $T \in \mathcal{F}(G)$ we set

$$gcd(S,T) = \prod_{g \in G} g^{\min\{\mathsf{v}_g(S),\mathsf{v}_g(T)\}} \in \mathcal{F}(G).$$

As usual

r

$$\sigma(S) = \sum_{g \in G} \mathsf{v}_g(S)g = \sum_{i=1}^l g_i \in G$$

denotes the sum of S,

$$|S| = \sum_{g \in G} \mathsf{v}_g(S) = l \in \mathbf{N}_0$$

denotes the length of S and

$$\Sigma(S) = \left\{ \sum_{i \in I} g_i \mid \emptyset \neq I \subset [1, l] \right\} \subset G$$

is the set of all possible subsums of S. Clearly, |S| = 0 if and only if S = 1 is the empty sequence. We say that the sequence S is

- zero-sumfree, if $0 \notin \Sigma(S)$,
- a zero-sum sequence (resp. has sum zero), if $\sigma(S) = 0$,

• a minimal zero-sum sequence, if it is a non-empty zero-sum sequence and each proper subsequence is zero-sumfree.

For a finite abelian group H and a map $f: G \to H$, set $f(S) = \prod_{i=1}^{l} f(g_i) \in \mathcal{F}(H)$. If f is a homomorphism, then f(S) has sum zero if and only if $\sigma(S) \in \ker(f)$.

Suppose that $G = C_{n_1} \oplus \ldots \oplus C_{n_r}$ with $1 < n_1 | \cdots | n_r$. It is well known that

$$1 + \sum_{i=1}^{n} (n_i - 1) \leq \mathsf{D}(G) = \max\left\{ |S| | S \text{ is a minimal zero-sum sequence in } G \right\}$$

(e.g., [8, Section 3]). If G is a p-group or $r \leq 2$, then $1 + \sum_{i=1}^{r} (n_i - 1) = \mathsf{D}(G)$ (cf. [12] and [13]).

3. Proof of Theorem 1.1 and Corollary 1.2

We start with the announced multiplication formula, which generalizes an old result of Harborth (see [10, Hilfssatz 2]).

PROPOSITION 3.1. Let G be a finite abelian group, H < G a subgroup and $S \in \mathcal{F}(G)$ a sequence with length $|S| \ge (\mathfrak{s}(H) - 1) \exp(G/H) + \mathfrak{s}(G/H)$. Then S has a zero-sum subsequence with length $\exp(H) \exp(G/H)$. In particular, if $\exp(G) = \exp(H) \exp(G/H)$, then

$$\mathsf{s}(G) \leq (\mathsf{s}(H) - 1) \exp(G/H) + \mathsf{s}(G/H).$$

PROOF. Let $\varphi: G \to G/H$ denote the canonical epimorphism. Then S has pairwise disjoint subsequences $S_1, \ldots, S_{\mathsf{s}(H)}$ with length $|S_i| = \exp(G/H)$ such that $\varphi(S_i)$ has sum zero for every $i \in [1, \mathsf{s}(H)]$. Then the sequence

$$\prod_{i=1}^{\mathsf{s}(H)} \sigma(S_i) \in \mathcal{F}\big(\ker\left(\varphi\right)\big)$$

contains a zero-sum subsequence S' with length $|S'| = \exp(H)$, say $S' = \prod_{i \in I} \sigma(S_i)$ where $I \subset [1, \mathbf{s}(H)]$ with $|I| = \exp(H)$. Thus $\prod_{i \in I} S_i$ is a zero-sum subsequence of S with length $|I| \exp(G/H) = \exp(H) \exp(G/H)$. \Box

COROLLARY 3.2. Let $n_1, n_2 \in \mathbb{N}_{\geq 2}$ with $n_1 \mid n_2$ and $G = C_{n_1} \oplus C_{n_2}$.

(1) Let $l \in \mathbf{N}, q_1, \ldots, q_l \in \mathbf{N}_{\geq 2}$, $n_1 = \prod_{i=1}^l q_i$ and $a, b \in \mathbf{N}_0$ such that $\mathbf{s}(C_{a_i}^2) \leq aq_i - b$ for every $i \in [1, l]$. Then

$$\mathsf{s}(G) \leq 2n_2 + (a-2)n_1 - b + (a-b-1)\sum_{i=1}^{l-1} \prod_{j=1}^i q_j$$

(2) If $n_1 = \prod_{i=1}^{l} q_i$ with pairwise distinct prime powers $q_1 \leq \ldots \leq q_l$, then

$$\mathsf{s}(G) \leq 2n_1 + 2n_2 - 2 + \sum_{i=1}^{l-1} \prod_{j=1}^{i} q_j.$$

PROOF. (1) Set $H = \{q_1g \mid g \in G\}$ whence $H \cong C_{\frac{n_1}{q_1}} \oplus C_{\frac{n_2}{q_1}}$ and $G/H \cong C_{q_1} \oplus C_{q_1}$. We proceed by induction on l. If l = 1, then the Theorem of Erdős–Ginzburg–Ziv and Proposition 3.1 imply that

$$\mathsf{s}(G) \leqq \left(\mathsf{s}\left(C_{\frac{n_2}{q_1}}\right) - 1\right) q_1 + \mathsf{s}(C_{q_1} \oplus C_{q_1})$$

$$\leq \left(2\frac{n_2}{q_1} - 2\right)q_1 + (aq_1 - b) = 2n_2 + (a - 2)n_1 - b.$$

If $l \geq 2$, then induction hypothesis and Proposition 3.1 imply that

$$\mathbf{s}(G) \leq \left(\mathbf{s}\left(C_{\frac{n_1}{q_1}} \oplus C_{\frac{n_2}{q_1}}\right) - 1\right) q_1 + \mathbf{s}(C_{q_1} \oplus C_{q_1})$$
$$\leq \left(2\frac{n_2}{q_1} + (a-2)\frac{n_1}{q_1} - b + (a-b-1)\sum_{i=1}^{l-2}\prod_{j=1}^i q_{j+1} - 1\right) q_1 + (aq_1 - b)$$
$$= 2n_2 + (a-2)n_1 - b + (a-b-1)\sum_{i=1}^{l-1}\prod_{j=1}^i q_j.$$

(2) For every prime power $q \in \mathbf{N}$ we have $\mathsf{s}(C_q^2) \leq 4q - 2$ by [5]. Thus the assertion follows from (1) with a = 4 and b = 2. \Box

PROPOSITION 3.3. Let $m \in \mathbb{N}_{\geq 2}$ and $S \in \mathcal{F}(C_m \oplus C_m)$ with length $|S| \geq 4m - 3$. If S contains some element g with multiplicity $\mathsf{v}_g(S) \geq m - \left\lfloor \frac{m}{2} \right\rfloor - 1$, then S contains a zero-sum subsequence with length m.

PROOF. This is a special case of [7, Proposition 2.7].

PROOF OF THEOREM 1.1. Let $m, n \in \mathbb{N}_{\geq 2}$ with $n \geq \frac{m^2 - m + 1}{3}$, $\mathfrak{s}_0(C_m^2) = 3m - 2$ and $\mathsf{D}(C_n^3) = 3n - 2$. Set $G = C_{mn} \oplus C_{mn}$ and show that $\mathfrak{s}_0(G) \leq 3mn - 2$.

Let $S \in \mathcal{F}(G)$ be a sequence with length |S| = 3mn - 2, $H = G \oplus \langle e \rangle \cong C_{mn}^3$ a group containing G and let $f: G \to H$ be defined by f(g) = g + e for every $g \in G$. Let $\varphi: H \to H$ denote the multiplication by n. Then ker $(\varphi) \cong C_n^3$, $\varphi(G) \cong C_m^2$ and $\varphi(H) \cong C_m^3$. If $U' \in \mathcal{F}(G)$ with length $|U'| \equiv 0 \mod m$ such that $\varphi(U')$ has sum zero, then $\sigma(U') \in \ker(\varphi)$ and $\sigma(f(U')) \in \ker(\varphi)$. Obviously, it suffices to verify that f(S) contains a zero-sum subsequence. We proceed in three steps.

1. For every $h' \in \varphi(G)$ let

$$S_{h'} = \prod_{\substack{g \in G \\ \varphi(g) = h'}} g^{\mathsf{v}_g(S)},$$

and let $h \in \varphi(G)$ be such that $|S_h| = \max\{|S_{h'}| \mid h' \in \varphi(G)\}$. Since $3n \ge m^2 - m + 1$, we obtain that

$$|S_h| \ge \frac{|S|}{|\varphi(G)|} = \frac{3mn-2}{m^2} \ge 2(m-\lfloor m/2 \rfloor - 1).$$

Let U_1, \ldots, U_{l_1} be pairwise disjoint subsequences of $S_h^{-1} \cdot S$ with length $|U_1| =$ $\dots = |U_{l_1}| = m$ such that $\varphi(U_1), \dots, \varphi(U_{l_1})$ have sum zero and $W = \left(\prod_{i=1}^{l_1} U_i\right)$ $(S_h)^{-1} \cdot S$ contains no subsequence U' with length |U'| = m such that $\varphi(U')$ has sum zero. Then $S = U_1 \cdot \ldots \cdot U_{l_1} \cdot S_h \cdot W$, and if $m = \prod_{i=1}^l q_i$ with pairwise distinct prime powers $q_1 \leq \ldots \leq q_l$, then Corollary 3.2 implies that

$$|W| \leq 4m - 2 + \sum_{i=1}^{l-1} \prod_{j=1}^{i} q_j \leq 4m - 2 + \lfloor m/2 \rfloor.$$

2. If $|W| \ge 4m - 3 - (m - |m/2| - 1)$, then by Proposition 3.3 there exists a subsequence U_{l_1+1} of $S_h \cdot W$ with length $|U_{l_1+1}| = m$ such that $\varphi(U_{l_1+1})$ has sum zero, $\left| \gcd\left(U_{l_{1}+1}, S_{h}\right) \right| \leq (m - \lfloor m/2 \rfloor - 1)$ and $\left| \gcd\left(U_{l_{1}+1}, W\right) \right|$ $\geq \lfloor m/2 \rfloor + 1.$

We iterate this argument: if $|\gcd(U_{l_1+1}, W)^{-1} \cdot W| \ge 4m - 3 - (m - 3)$ $\lfloor m/2 \rfloor - 1$, then by Proposition 3.3 there exists a subsequence U_{l_1+2} of $U_{l_1+1}^{-1} \cdot S_h \cdot W$ with length $|U_{l_1+2}| = m$ such that $\varphi(U_{l_1+2})$ has sum zero, $\left| \operatorname{gcd} \left(U_{l_1+2}, S_h \right) \right| \leq \left(m - \lfloor m/2 \rfloor - 1 \right) \text{ and } \left| \operatorname{gcd} \left(U_{l_1+2}, W \right) \right| \geq \lfloor m/2 \rfloor + 1.$

Since

$$|W| - 2(\lfloor m/2 \rfloor + 1) \leq 4m - 2 + \lfloor m/2 \rfloor - 2(\lfloor m/2 \rfloor + 1)$$
$$\leq 4m - 4 - (m - \lfloor m/2 \rfloor - 1),$$

there exist some $l_2 \in [0, 2]$ and pairwise disjoint subsequences $U_{l_1+1}, \ldots, U_{l_1+l_2}$ of $S_h \cdot W$ with length $|U_{l_1+1}| = \ldots = |U_{l_1+l_2}| = m$ such that $\varphi(U_{l_1+1}), \ldots, \varphi(U_{l_1+1})$ $\varphi(U_{l_1+l_2})$ have sum zero and

(*)
$$|\operatorname{gcd} (U_{l_1+1} \cdot \ldots \cdot U_{l_1+l_2}, W)^{-1} \cdot W| \leq 4m - 4 - (m - \lfloor m/2 \rfloor - 1).$$

3. Let $U_{l_1+l_2+1}, \ldots, U_{l_1+l_2+l_3}$ be pairwise disjoint subsequences of

$$gcd (S_h, U_{l_1+1} \cdot \ldots \cdot U_{l_1+l_2})^{-1} \cdot S_h$$

such that $|U_{l_1+l_2+1}| = \ldots = |U_{l_1+l_2+l_3}| = m$ and

$$\left| \gcd \left(S_h, U_{l_1+1} \cdot \ldots \cdot U_{l_1+l_2} \right)^{-1} \cdot \left(U_{l_1+l_2+1} \cdot \ldots \cdot U_{l_1+l_2+l_3} \right)^{-1} \cdot S_h \right| \leq m - 1.$$

By construction of S_h , the sequence $\varphi(U_{l_1+l_2+i})$ has sum zero for every $i \in [1, l_3]$. Thus we obtain that

$$|(U_{l_1+1} \cdot \ldots \cdot U_{l_1+l_2+l_3})^{-1} \cdot S_h \cdot W|$$

$$\leq 4m - 4 - \left(m - \lfloor m/2 \rfloor - 1\right) + (m - 1) = 4m - 4 + \lfloor m/2 \rfloor.$$

We distinguish two cases.

Case 1: $|(U_{l_1+1}\cdot\ldots\cdot U_{l_1+l_2+l_3})^{-1}\cdot S_h\cdot W| \leq 4m-4$. Then it follows that

$$l_1 + l_2 + l_3 = \frac{\left| \left((U_{l_1+1} \cdot \ldots \cdot U_{l_1+l_2+l_3})^{-1} \cdot S_h \cdot W \right)^{-1} \cdot S \right|}{m}$$
$$\geq \frac{3nm - 2 - (4m - 4)}{m} > 3n - 4$$

whence $l_1 + l_2 + l_3 \ge 3n - 3$. If $l_1 + l_2 + l_3 = 3n - 3$, then

$$|(U_{l_1+1}\cdot\ldots\cdot U_{l_1+l_2+l_3})^{-1}\cdot S_h\cdot W| = 3m-2,$$

and since $s_0(\varphi(G)) = 3m - 2$, the sequence $(U_{l_1+1} \cdot \ldots \cdot U_{l_1+l_2+l_3})^{-1} \cdot S_h \cdot W$ contains a subsequence U_{3n-2} with length $|U_{3n-2}| \equiv 0 \mod m$ such that $\varphi(U_{3n-2})$ has sum zero. Thus S has pairwise disjoint subsequences U_1, \ldots, U_{3n-2} with length $|U_i| \equiv 0 \mod m$ and such that $\varphi(U_i)$ has sum zero for every $i \in [1, 3n - 2]$. Since $\prod_{i=1}^{3n-2} \sigma(f(U_i)) \in \ker(\varphi) \cong C_n^3$ and $\mathsf{D}(C_n^3) = 3n - 2$, the sequence $\prod_{i=1}^{3n-2} \sigma(f(U_i))$ contains a zero-sum subsequence whence $\prod_{i=1}^{3n-2} f(U_i) = f(\prod_{i=1}^{3n-2} U_i)$ and f(S) contain a zero-sum subsequence.

Case 2: $|(U_{l_1+1} \cdot \ldots \cdot U_{l_1+l_2+l_3})^{-1} \cdot S_h \cdot W| \ge 4m - 3$. Then (*) implies that

$$\left| \operatorname{gcd} \left(S_h, (U_{l_1+1} \cdot \ldots \cdot U_{l_1+l_2+l_3})^{-1} \cdot S_h \cdot W \right) \right| \geq m - \lfloor m/2 \rfloor - 1.$$

Therefore, by Proposition 3.3, the sequence $(U_{l_1+1} \cdot \ldots \cdot U_{l_1+l_2+l_3})^{-1} \cdot S_h \cdot W$ has a subsequence $U_{l_1+l_2+l_3+1}$ with length $|U_{l_1+l_2+l_3+1}| = m$ such that $\varphi(U_{l_1+l_2+l_3+1})$ has sum zero. Then

$$|(U_{l_1+1} \cdot \ldots \cdot U_{l_1+l_2+l_3+1})^{-1} \cdot S_h \cdot W| \le 4m - 4 + \lfloor m/2 \rfloor - m < 4m - 4$$

and we continue as in Case 1. \Box

PROOF OF COROLLARY 1.2. We proceed by induction on l. If $l \in [1, 2]$, then the assertion follows from [9, Theorem 3.7]. Suppose that $l \ge 3$ and that for $m = \prod_{i=1}^{l-1} q_i$ we have $s_0(C_m \oplus C_m) = 3m - 2$. Since $\mathsf{D}(C_{q_l}^3) = 3q_l - 2$, the assertion follows from Theorem 1.1. \Box

344~ r. Chi, S. Ding, W. Gao, A. Geroldinger and W. A. Schmid: on zero-sum \ldots

References

- N. Alon and M. Dubiner, Zero-sum sets of prescribed size, in: Combinatorics, Paul Erdős is Eighty, Vol. 1, J. Bolyai Math. Soc. (1993), pp. 33–50.
- [2] C. Elsholtz, Lower bounds for multidimensional zero sums, *Combinatorica*, **24** (2004), 351–358.
- [3] P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Research Council Israel, 10 (1961), 41–43.
- [4] W. Gao, On zero-sum subsequences of restricted size, J. Number Theory, 61 (1996), 97–102.
- [5] W. Gao, Note on a zero-sum problem, J. Combinatorial Th. Ser. A, 95 (2001), 387– 389.
- [6] W. Gao, On zero sum subsequences of restricted size III, Ars Combinatoria **61** (2001), 65–72.
- [7] W. Gao, On zero sum subsequences of restricted size II, Discrete Mathematics, 271 (2003), 51–59.
- [8] W. Gao and A. Geroldinger, On long minimal zero sequences in finite abelian groups, *Periodica Math. Hungar.*, 38 (1999), 179–211.
- [9] W. Gao and A. Geroldinger, On zero-sum sequences in Z/nZ ⊕ Z/nZ, Integers: Electronic Journal of Combinatorial Number Theory, 3:A8 (2003), 45pp.
- [10] H. Harborth, Ein Extremalproblem f
 ür Gitterpunkte, J. Reine Angew. Math., 262 (1973), 356–360.
- [11] A. Kemnitz, On a lattice point problem, Ars Combinatoria, 16 (1983), 151–160.
- [12] J. E. Olson, A combinatorial problem on finite abelian groups I, J. Number Th., 1 (1969), 8–10.
- [13] J. E. Olson, A combinatorial problem on finite abelian groups II, J. Number Th., 1 (1969), 195–199.
- [14] L. Rónyai, On a conjecture of Kemnitz, Combinatorica, 20 (2000), 569–573.

(Received October 3, 2003)

INSTITUTE OF MATHEMATICS DALIAN UNIVERSITY OF TECHNOLOGY DALIAN 116024 P.R. CHINA

CENTER FOR COMBINATORICS NANKAI UNIVERSITY TIANJIN, 300071 P.R. CHINA E-MAIL: WDGAO.1963@YAHOO.COM.CN

INSTITUT FÜR MATHEMATIK KARL-FRANZENSUNIVERSITÄT HEINRICHSTRASSE 36 8010 GRAZ, AUSTRIA E-MAIL: ALFRED.GEROLDINGER@UNI-GRAZ.AT