ON ZERO-SUM SUBSEQUENCES OF RESTRICTED SIZE. IV

R. CHI, S. DING (Dalian), W. GAO (Tianjin),
A. GEROLDINGER and W. A. SCHMID (Graz)*

Abstract

For a finite abelian group G, we investigate the invariant $\mathbf{s}(G)$ (resp. the invariant $\mathrm{s}_{0}(G)$) which is defined as the smallest integer $l \in \mathbf{N}$ such that every sequence S in G of length $|S| \geqq l$ has a subsequence T with sum zero and length $|T|=\exp (G)($ resp. length $|T| \equiv 0 \bmod \exp (G))$.

1. Introduction

Let \mathbf{N} denote the set of positive integers and let $\mathbf{N}_{0}=\mathbf{N} \cup\{0\}$. For integers $a, b \in \mathbf{Z}$ set $[a, b]=\{x \in \mathbf{Z} \mid a \leqq x \leqq b\}$, and for $c \in \mathbf{N}$ let $\mathbf{N}_{\geqq c}=$ $\mathbf{N} \backslash[1, c-1]$. Let G be a finite abelian group with $\exp (G)=n \geqq 2$. Let $\mathbf{s}(G)$ (resp. $\mathrm{s}_{0}(G)$) denote the smallest integer $l \in \mathbf{N}$ such that every sequence S in G with length $|S| \geqq l$ contains a zero-sum subsequence T with length $|T|=n$ (resp. with length $|T| \equiv 0 \bmod n$).

The invariant $\mathrm{s}(G)$ was first studied for cyclic groups by Erdős, Ginzburg and Ziv. For every $n \in \mathbf{N}$ denote by C_{n} a cyclic group with n elements. In [3], Erdős et al proved that $\mathrm{s}\left(C_{n}\right)=2 n-1$. In 1983, A. Kemnitz conjectured that $\mathbf{s}\left(C_{p}^{2}\right)=4 p-3$ for every prime $p \in \mathbf{N}$. This conjecture is still open and a positive answer would imply immediately that $\mathrm{s}\left(C_{n}^{2}\right)=4 n-3$ for every $n \in \mathbf{N}$. The best result known so far states that $\mathrm{s}\left(C_{q} \oplus C_{q}\right) \leqq 4 q-2$ for every prime power $q \in \mathbf{N}$. For further results on $\mathbf{s}(G)$, also for groups with higher rank, we refer to [11], [1], [4], [14], [6], [7], [2].

The invariant $\mathrm{s}_{0}(G)$ was introduced recently in [9]. It was studied in groups of the form $G=C_{n} \oplus C_{n}$, and it turned out to be an important tool for a detailed investigation of sequences in $C_{n} \oplus C_{n}$. By definition, we have $\mathrm{s}_{0}(G) \leqq \mathrm{s}(G)$, and it is easy to see that equality holds for cyclic groups and

[^0]for elementary 2-groups, for which we have $s\left(C_{2}^{r}\right)=\mathrm{s}_{0}\left(C_{2}^{r}\right)=2^{r}+1$. The situation is different for groups G with rank two. We conjecture that $\mathrm{s}_{0}\left(C_{n}^{2}\right)$ $=3 n-2$ for all $n \geqq 2$. This conjecture holds true if n is either a product of at most two distinct prime powers or $\mathrm{s}\left(C_{p}^{2}\right)=4 p-3$ for all primes p dividing n (cf. [9, Theorem 3.7]).

The Davenport constant $\mathrm{D}(G)$ of G is defined as the smallest integer $l \in \mathbf{N}$ such that every sequence S in G with length $|S| \geqq l$ contains a zerosum subsequence. A simple argument shows that $3 n-2 \leqq \mathrm{~s}_{0}\left(C_{n}^{2}\right) \leqq \mathrm{D}\left(C_{n}^{3}\right)$ (see [9, Lemma 3.5]). It is well known that equality holds if n is a prime power. However, it is still unknown whether $\mathrm{D}\left(C_{n}^{3}\right)=3 n-2$ holds for every $n \in \mathbf{N}$.

The aim of this paper is to derive some unconditional results on $\mathrm{s}_{0}\left(C_{n}\right.$ $\oplus C_{n}$) (i.e., results which do not rest on any unproved assumptions on $\mathrm{s}(\cdot)$ or $D(\cdot))$. We formulate the main result.

THEOREM 1.1. Let $m, n \in \mathbf{N}_{\geqq 2}$ with $n \geqq \frac{m^{2}-m+1}{3}$. If $\mathrm{s}_{0}\left(C_{m}^{2}\right)=3 m-2$ and $\mathrm{D}\left(C_{n}^{3}\right)=3 n-2$, then $\mathrm{s}_{0}\left(C_{m n}^{2}\right)=3 m n-2$.

The following corollary is known for $l \in\{1,2\}$ (cf. [9, Theorem 3.7]).
Corollary 1.2. Let $n=\prod_{i=1}^{l} q_{i} \in \mathbf{N}_{\geqq 2}$ where $l \in \mathbf{N}$ and $q_{1}, \ldots, q_{l} \in \mathbf{N}$ are pairwise distinct prime powers. If $3 q_{i+1} \geqq q_{1}^{2} \cdot \ldots \cdot q_{i}^{2}-q_{1} \cdot \ldots \cdot q_{i}+1$ for every $i \in[2, l-1]$, then $\mathrm{s}_{0}\left(C_{n} \oplus C_{n}\right)=3 n-2$.

The proof of Theorem 1.1 rests on the recent result that $s\left(C_{q} \oplus C_{q}\right) \leqq$ $4 q-2$ for every prime power $q \in \mathbf{N}$ (see [5]) and a suitable multiplication formula giving an upper bound for $\mathrm{s}\left(C_{n} \oplus C_{n}\right)$ for every $n \in \mathbf{N}$, which may be of its own interest.

2. Preliminaries

Throughout, all abelian groups will be written additively and for $n \in \mathbf{N}$ let C_{n} denote a cyclic group with n elements. Let $\mathcal{F}(G)$ denote the (multiplicatively written) free abelian monoid with basis G. An element $S \in \mathcal{F}(G)$ is called a sequence in G and will be written in the form

$$
S=\prod_{g \in G} g^{\mathrm{v}_{g}(S)}=\prod_{i=1}^{l} g_{i} \in \mathcal{F}(G)
$$

A sequence $S^{\prime} \in \mathcal{F}(G)$ is called a subsequence of S, if there exists some $S^{\prime \prime} \in \mathcal{F}(G)$ such that $S=S^{\prime} \cdot S^{\prime \prime}$ (equivalently, $S^{\prime} \mid S$ or $\mathrm{v}_{g}\left(S^{\prime}\right) \leqq \mathrm{v}_{g}(S)$ for
every $g \in G$). If this holds, then $S^{\prime \prime}=S^{\prime-1} \cdot S$. Subsequences S_{1}, \ldots, S_{k} of S are said to be pairwise disjoint if their product $\prod_{i=1}^{k} S_{i}$ is a subsequence of S. For a sequence $T \in \mathcal{F}(G)$ we set

$$
\operatorname{gcd}(S, T)=\prod_{g \in G} g^{\min \left\{\mathrm{v}_{g}(S), \mathrm{v}_{g}(T)\right\}} \in \mathcal{F}(G) .
$$

As usual

$$
\sigma(S)=\sum_{g \in G} \mathrm{v}_{g}(S) g=\sum_{i=1}^{l} g_{i} \in G
$$

denotes the sum of S,

$$
|S|=\sum_{g \in G} \mathrm{v}_{g}(S)=l \in \mathbf{N}_{0}
$$

denotes the length of S and

$$
\Sigma(S)=\left\{\sum_{i \in I} g_{i} \mid \emptyset \neq I \subset[1, l]\right\} \subset G
$$

is the set of all possible subsums of S. Clearly, $|S|=0$ if and only if $S=1$ is the empty sequence. We say that the sequence S is

- zero-sumfree, if $0 \notin \Sigma(S)$,
- a zero-sum sequence (resp. has sum zero), if $\sigma(S)=0$,
- a minimal zero-sum sequence, if it is a non-empty zero-sum sequence and each proper subsequence is zero-sumfree.

For a finite abelian group H and a map $f: G \rightarrow H$, set $f(S)=\prod_{i=1}^{l} f\left(g_{i}\right)$ $\in \mathcal{F}(H)$. If f is a homomorphism, then $f(S)$ has sum zero if and only if $\sigma(S) \in \operatorname{ker}(f)$.

Suppose that $G=C_{n_{1}} \oplus \ldots \oplus C_{n_{r}}$ with $1<n_{1}|\cdots| n_{r}$. It is well known that
$1+\sum_{i=1}^{r}\left(n_{i}-1\right) \leqq \mathrm{D}(G)=\max \{|S| \mid S$ is a minimal zero-sum sequence in $G\}$
(e.g., $\left[8\right.$, Section 3]). If G is a p-group or $r \leqq 2$, then $1+\sum_{i=1}^{r}\left(n_{i}-1\right)=\mathrm{D}(G)$ (cf. [12] and [13]).

3. Proof of Theorem 1.1 and Corollary 1.2

We start with the announced multiplication formula, which generalizes an old result of Harborth (see [10, Hilfssatz 2]).

Proposition 3.1. Let G be a finite abelian group, $H<G$ a subgroup and $S \in \mathcal{F}(G)$ a sequence with length $|S| \geqq(\mathrm{s}(H)-1) \exp (G / H)+\mathrm{s}(G / H)$. Then S has a zero-sum subsequence with length $\exp (H) \exp (G / H)$. In particular, if $\exp (G)=\exp (H) \exp (G / H)$, then

$$
\mathrm{s}(G) \leqq(\mathrm{s}(H)-1) \exp (G / H)+\mathrm{s}(G / H) .
$$

Proof. Let $\varphi: G \rightarrow G / H$ denote the canonical epimorphism. Then S has pairwise disjoint subsequences $S_{1}, \ldots, S_{\mathbf{s}(H)}$ with length $\left|S_{i}\right|=\exp (G / H)$ such that $\varphi\left(S_{i}\right)$ has sum zero for every $i \in[1, \mathbf{s}(H)]$. Then the sequence

$$
\prod_{i=1}^{\mathrm{s}(H)} \sigma\left(S_{i}\right) \in \mathcal{F}(\operatorname{ker}(\varphi))
$$

contains a zero-sum subsequence S^{\prime} with length $\left|S^{\prime}\right|=\exp (H)$, say $S^{\prime}=$ $\prod_{i \in I} \sigma\left(S_{i}\right)$ where $I \subset[1, \mathbf{s}(H)]$ with $|I|=\exp (H)$. Thus $\prod_{i \in I} S_{i}$ is a zerosum subsequence of S with length $|I| \exp (G / H)=\exp (H) \exp (G / H)$.

Corollary 3.2. Let $n_{1}, n_{2} \in \mathbf{N}_{\geqq 2}$ with $n_{1} \mid n_{2}$ and $G=C_{n_{1}} \oplus C_{n_{2}}$.
(1) Let $l \in \mathbf{N}, q_{1}, \ldots, q_{l} \in \mathbf{N}_{\geqq 2}, n_{1}=\prod_{i=1}^{l} q_{i}$ and $a, b \in \mathbf{N}_{0}$ such that $\mathrm{s}\left(C_{q_{i}}^{2}\right) \leqq a q_{i}-b$ for every $i \in[1, l]$. Then

$$
\mathbf{s}(G) \leqq 2 n_{2}+(a-2) n_{1}-b+(a-b-1) \sum_{i=1}^{l-1} \prod_{j=1}^{i} q_{j} .
$$

(2) If $n_{1}=\prod_{i=1}^{l} q_{i}$ with pairwise distinct prime powers $q_{1} \leqq \ldots \leqq q_{l}$, then

$$
\mathbf{s}(G) \leqq 2 n_{1}+2 n_{2}-2+\sum_{i=1}^{l-1} \prod_{j=1}^{i} q_{j} .
$$

Proof. (1) Set $H=\left\{q_{1} g \mid g \in G\right\}$ whence $H \cong C_{\frac{n_{1}}{q_{1}}} \oplus C_{\frac{n_{2}}{q_{1}}}$ and $G / H \cong$ $C_{q_{1}} \oplus C_{q_{1}}$. We proceed by induction on l. If $l=1$, then the Theorem of Erdős-Ginzburg-Ziv and Proposition 3.1 imply that

$$
\mathrm{s}(G) \leqq\left(\mathrm{s}\left(C_{\frac{n_{2}}{q_{1}}}\right)-1\right) q_{1}+\mathrm{s}\left(C_{q_{1}} \oplus C_{q_{1}}\right)
$$

$$
\leqq\left(2 \frac{n_{2}}{q_{1}}-2\right) q_{1}+\left(a q_{1}-b\right)=2 n_{2}+(a-2) n_{1}-b
$$

If $l \geqq 2$, then induction hypothesis and Proposition 3.1 imply that

$$
\begin{gathered}
\mathrm{s}(G) \leqq\left(\mathrm{s}\left(C_{\frac{n_{1}}{q_{1}}} \oplus C_{\frac{n_{2}}{q_{1}}}\right)-1\right) q_{1}+\mathrm{s}\left(C_{q_{1}} \oplus C_{q_{1}}\right) \\
\leqq\left(2 \frac{n_{2}}{q_{1}}+(a-2) \frac{n_{1}}{q_{1}}-b+(a-b-1) \sum_{i=1}^{l-2} \prod_{j=1}^{i} q_{j+1}-1\right) q_{1}+\left(a q_{1}-b\right) \\
=2 n_{2}+(a-2) n_{1}-b+(a-b-1) \sum_{i=1}^{l-1} \prod_{j=1}^{i} q_{j} .
\end{gathered}
$$

(2) For every prime power $q \in \mathbf{N}$ we have $\mathrm{s}\left(C_{q}^{2}\right) \leqq 4 q-2$ by [5]. Thus the assertion follows from (1) with $a=4$ and $b=2$.

Proposition 3.3. Let $m \in \mathbf{N}_{\geqq 2}$ and $S \in \mathcal{F}\left(C_{m} \oplus C_{m}\right)$ with length $|S| \geqq 4 m-3$. If S contains some element g with multiplicity $\vee_{g}(S) \geqq$ $m-\left\lfloor\frac{m}{2}\right\rfloor-1$, then S contains a zero-sum subsequence with length m.

Proof. This is a special case of [7, Proposition 2.7].
Proof of Theorem 1.1. Let $m, n \in \mathbf{N}_{\geqq 2}$ with $n \geqq \frac{m^{2}-m+1}{3}$, $\mathrm{s}_{0}\left(C_{m}^{2}\right)$ $=3 m-2$ and $\mathrm{D}\left(C_{n}^{3}\right)=3 n-2$. Set $G=C_{m n} \oplus C_{m n}$ and show that $\mathrm{s}_{0}(G)$ $\leqq 3 m n-2$.

Let $S \in \mathcal{F}(G)$ be a sequence with length $|S|=3 m n-2, H=G \oplus\langle e\rangle \cong$ $C_{m n}^{3}$ a group containing G and let $f: G \rightarrow H$ be defined by $f(g)=g+e$ for every $g \in G$. Let $\varphi: H \rightarrow H$ denote the multiplication by n. Then $\operatorname{ker}(\varphi) \cong$ $C_{n}^{3}, \varphi(G) \cong C_{m}^{2}$ and $\varphi(H) \cong C_{m}^{3}$. If $U^{\prime} \in \mathcal{F}(G)$ with length $\left|U^{\prime}\right| \equiv 0 \bmod m$ such that $\varphi\left(U^{\prime}\right)$ has sum zero, then $\sigma\left(U^{\prime}\right) \in \operatorname{ker}(\varphi)$ and $\sigma\left(f\left(U^{\prime}\right)\right) \in \operatorname{ker}(\varphi)$. Obviously, it suffices to verify that $f(S)$ contains a zero-sum subsequence. We proceed in three steps.

1. For every $h^{\prime} \in \varphi(G)$ let

$$
S_{h^{\prime}}=\prod_{\substack{g \in G \\ \varphi(g)=h^{\prime}}} g^{\mathrm{v}_{g}(S)}
$$

and let $h \in \varphi(G)$ be such that $\left|S_{h}\right|=\max \left\{\left|S_{h^{\prime}}\right| \mid h^{\prime} \in \varphi(G)\right\}$. Since $3 n \geqq$ $m^{2}-m+1$, we obtain that

$$
\left|S_{h}\right| \geqq \frac{|S|}{|\varphi(G)|}=\frac{3 m n-2}{m^{2}} \geqq 2(m-\lfloor m / 2\rfloor-1)
$$

Let $U_{1}, \ldots, U_{l_{1}}$ be pairwise disjoint subsequences of $S_{h}^{-1} \cdot S$ with length $\left|U_{1}\right|=$ $\ldots=\left|U_{l_{1}}\right|=m$ such that $\varphi\left(U_{1}\right), \ldots, \varphi\left(U_{l_{1}}\right)$ have sum zero and $W=\left(\prod_{i=1}^{l_{1}} U_{i}\right.$ $\left.\cdot S_{h}\right)^{-1} \cdot S$ contains no subsequence U^{\prime} with length $\left|U^{\prime}\right|=m$ such that $\varphi\left(U^{\prime}\right)$ has sum zero. Then $S=U_{1} \cdot \ldots \cdot U_{l_{1}} \cdot S_{h} \cdot W$, and if $m=\prod_{i=1}^{l} q_{i}$ with pairwise distinct prime powers $q_{1} \leqq \ldots \leqq q_{l}$, then Corollary 3.2 implies that

$$
|W| \leqq 4 m-2+\sum_{i=1}^{l-1} \prod_{j=1}^{i} q_{j} \leqq 4 m-2+\lfloor m / 2\rfloor
$$

2. If $|W| \geqq 4 m-3-(m-\lfloor m / 2\rfloor-1)$, then by Proposition 3.3 there exists a subsequence $U_{l_{1}+1}$ of $S_{h} \cdot W$ with length $\left|U_{l_{1}+1}\right|=m$ such that $\varphi\left(U_{l_{1}+1}\right)$ has sum zero, $\left|\operatorname{gcd}\left(U_{l_{1}+1}, S_{h}\right)\right| \leqq(m-\lfloor m / 2\rfloor-1)$ and $\left|\operatorname{gcd}\left(U_{l_{1}+1}, W\right)\right|$ $\geqq\lfloor m / 2\rfloor+1$.

We iterate this argument: if $\left|\operatorname{gcd}\left(U_{l_{1}+1}, W\right)^{-1} \cdot W\right| \geqq 4 m-3-(m-$ $\lfloor m / 2\rfloor-1)$, then by Proposition 3.3 there exists a subsequence $U_{l_{1}+2}$ of $U_{l_{1}+1}^{-1} \cdot S_{h} \cdot W$ with length $\left|U_{l_{1}+2}\right|=m$ such that $\varphi\left(U_{l_{1}+2}\right)$ has sum zero, $\left|\operatorname{gcd}\left(U_{l_{1}+2}, S_{h}\right)\right| \leqq(m-\lfloor m / 2\rfloor-1)$ and $\left|\operatorname{gcd}\left(U_{l_{1}+2}, W\right)\right| \geqq\lfloor m / 2\rfloor+1$.

Since

$$
\begin{gathered}
|W|-2(\lfloor m / 2\rfloor+1) \leqq 4 m-2+\lfloor m / 2\rfloor-2(\lfloor m / 2\rfloor+1) \\
\leqq 4 m-4-(m-\lfloor m / 2\rfloor-1)
\end{gathered}
$$

there exist some $l_{2} \in[0,2]$ and pairwise disjoint subsequences $U_{l_{1}+1}, \ldots, U_{l_{1}+l_{2}}$ of $S_{h} \cdot W$ with length $\left|U_{l_{1}+1}\right|=\ldots=\left|U_{l_{1}+l_{2}}\right|=m$ such that $\varphi\left(U_{l_{1}+1}\right), \ldots$, $\varphi\left(U_{l_{1}+l_{2}}\right)$ have sum zero and
(*) $\quad\left|\operatorname{gcd}\left(U_{l_{1}+1} \cdot \ldots \cdot U_{l_{1}+l_{2}}, W\right)^{-1} \cdot W\right| \leqq 4 m-4-(m-\lfloor m / 2\rfloor-1)$.
3. Let $U_{l_{1}+l_{2}+1}, \ldots, U_{l_{1}+l_{2}+l_{3}}$ be pairwise disjoint subsequences of

$$
\operatorname{gcd}\left(S_{h}, U_{l_{1}+1} \cdot \ldots \cdot U_{l_{1}+l_{2}}\right)^{-1} \cdot S_{h}
$$

such that $\left|U_{l_{1}+l_{2}+1}\right|=\ldots=\left|U_{l_{1}+l_{2}+l_{3}}\right|=m$ and

$$
\left|\operatorname{gcd}\left(S_{h}, U_{l_{1}+1} \cdot \ldots \cdot U_{l_{1}+l_{2}}\right)^{-1} \cdot\left(U_{l_{1}+l_{2}+1} \cdot \ldots \cdot U_{l_{1}+l_{2}+l_{3}}\right)^{-1} \cdot S_{h}\right| \leqq m-1
$$

By construction of S_{h}, the sequence $\varphi\left(U_{l_{1}+l_{2}+i}\right)$ has sum zero for every $i \in\left[1, l_{3}\right]$. Thus we obtain that

$$
\left|\left(U_{l_{1}+1} \cdot \ldots \cdot U_{l_{1}+l_{2}+l_{3}}\right)^{-1} \cdot S_{h} \cdot W\right|
$$

$$
\leqq 4 m-4-(m-\lfloor m / 2\rfloor-1)+(m-1)=4 m-4+\lfloor m / 2\rfloor
$$

We distinguish two cases.
Case 1: $\left|\left(U_{l_{1}+1} \cdot \ldots \cdot U_{l_{1}+l_{2}+l_{3}}\right)^{-1} \cdot S_{h} \cdot W\right| \leqq 4 m-4$. Then it follows that

$$
\begin{aligned}
l_{1}+l_{2}+l_{3} & =\frac{\left|\left(\left(U_{l_{1}+1} \cdot \ldots \cdot U_{l_{1}+l_{2}+l_{3}}\right)^{-1} \cdot S_{h} \cdot W\right)^{-1} \cdot S\right|}{m} \\
& \geqq \frac{3 n m-2-(4 m-4)}{m}>3 n-4
\end{aligned}
$$

whence $l_{1}+l_{2}+l_{3} \geqq 3 n-3$. If $l_{1}+l_{2}+l_{3}=3 n-3$, then

$$
\left|\left(U_{l_{1}+1} \cdot \ldots \cdot U_{l_{1}+l_{2}+l_{3}}\right)^{-1} \cdot S_{h} \cdot W\right|=3 m-2
$$

and since $\mathrm{s}_{0}(\varphi(G))=3 m-2$, the sequence $\left(U_{l_{1}+1} \cdot \ldots \cdot U_{l_{1}+l_{2}+l_{3}}\right)^{-1} \cdot S_{h}$ - W contains a subsequence $U_{3 n-2}$ with length $\left|U_{3 n-2}\right| \equiv 0 \bmod m$ such that $\varphi\left(U_{3 n-2}\right)$ has sum zero. Thus S has pairwise disjoint subsequences $U_{1}, \ldots, U_{3 n-2}$ with length $\left|U_{i}\right| \equiv 0 \bmod m$ and such that $\varphi\left(U_{i}\right)$ has sum zero for every $i \in[1,3 n-2]$. Since $\prod_{i=1}^{3 n-2} \sigma\left(f\left(U_{i}\right)\right) \in \operatorname{ker}(\varphi) \cong C_{n}^{3}$ and $\mathrm{D}\left(C_{n}^{3}\right)$ $=3 n-2$, the sequence $\prod_{i=1}^{3 n-2} \sigma\left(f\left(U_{i}\right)\right)$ contains a zero-sum subsequence whence $\prod_{i=1}^{3 n-2} f\left(U_{i}\right)=f\left(\prod_{i=1}^{3 n-2} U_{i}\right)$ and $f(S)$ contain a zero-sum subsequence.

Case 2: $\left|\left(U_{l_{1}+1} \cdot \ldots \cdot U_{l_{1}+l_{2}+l_{3}}\right)^{-1} \cdot S_{h} \cdot W\right| \geqq 4 m-3$. Then $(*)$ implies that

$$
\left|\operatorname{gcd}\left(S_{h},\left(U_{l_{1}+1} \cdot \ldots \cdot U_{l_{1}+l_{2}+l_{3}}\right)^{-1} \cdot S_{h} \cdot W\right)\right| \geqq m-\lfloor m / 2\rfloor-1
$$

Therefore, by Proposition 3.3 , the sequence $\left(U_{l_{1}+1} \cdot \ldots \cdot U_{l_{1}+l_{2}+l_{3}}\right)^{-1} \cdot S_{h}$ - W has a subsequence $U_{l_{1}+l_{2}+l_{3}+1}$ with length $\left|U_{l_{1}+l_{2}+l_{3}+1}\right|=m$ such that $\varphi\left(U_{l_{1}+l_{2}+l_{3}+1}\right)$ has sum zero. Then

$$
\left|\left(U_{l_{1}+1} \cdot \ldots \cdot U_{l_{1}+l_{2}+l_{3}+1}\right)^{-1} \cdot S_{h} \cdot W\right| \leqq 4 m-4+\lfloor m / 2\rfloor-m<4 m-4
$$

and we continue as in Case 1.
Proof of Corollary 1.2. We proceed by induction on l. If $l \in[1,2]$, then the assertion follows from [9, Theorem 3.7]. Suppose that $l \geqq 3$ and that for $m=\prod_{i=1}^{l-1} q_{i}$ we have $\mathrm{s}_{0}\left(C_{m} \oplus C_{m}\right)=3 m-2$. Since $\mathrm{D}\left(C_{q_{l}}^{3}\right)=3 q_{l}-2$, the assertion follows from Theorem 1.1.

References

[1] N. Alon and M. Dubiner, Zero-sum sets of prescribed size, in: Combinatorics, Paul Erdös is Eighty, Vol. 1, J. Bolyai Math. Soc. (1993), pp. 33-50.
[2] C. Elsholtz, Lower bounds for multidimensional zero sums, Combinatorica, 24 (2004), 351-358.
[3] P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Research Council Israel, 10 (1961), 41-43.
[4] W. Gao, On zero-sum subsequences of restricted size, J. Number Theory, 61 (1996), 97-102.
[5] W. Gao, Note on a zero-sum problem, J. Combinatorial Th. Ser. A, 95 (2001), 387389.
[6] W. Gao, On zero sum subsequences of restricted size III, Ars Combinatoria 61 (2001), 65-72.
[7] W. Gao, On zero sum subsequences of restricted size II, Discrete Mathematics, 271 (2003), 51-59.
[8] W. Gao and A. Geroldinger, On long minimal zero sequences in finite abelian groups, Periodica Math. Hungar., 38 (1999), 179-211.
[9] W. Gao and A. Geroldinger, On zero-sum sequences in $\mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z} / n \mathbb{Z}$, Integers: Electronic Journal of Combinatorial Number Theory, 3:A8 (2003), 45pp.
[10] H. Harborth, Ein Extremalproblem für Gitterpunkte, J. Reine Angew. Math., 262 (1973), 356-360.
[11] A. Kemnitz, On a lattice point problem, Ars Combinatoria, 16 (1983), 151-160.
[12] J. E. Olson, A combinatorial problem on finite abelian groups I, J. Number Th., 1 (1969), 8-10.
[13] J. E. Olson, A combinatorial problem on finite abelian groups II, J. Number Th., 1 (1969), 195-199.
[14] L. Rónyai, On a conjecture of Kemnitz, Combinatorica, 20 (2000), 569-573.
(Received October 3, 2003)

INSTITUTE OF MATHEMATICS
DALIAN UNIVERSITY OF TECHNOLOGY
DALIAN 116024
P.R. CHINA

CENTER FOR COMBINATORICS
NANKAI UNIVERSITY
TIANJIN, 300071
P.R. CHINA

E-MAIL: WDGAO_1963@YAHOO.COM.CN
INSTITUT FÜR MATHEMATIK
KARL-FRANZENSUNIVERSITÄT
HEINRICHSTRASSE 36
8010 GRAZ, AUSTRIA
E-MAIL: ALFRED.GEROLDINGER@UNI-GRAZ.AT

[^0]: *This work has been supported partly by NSFC with Grant 10271080 and MOEC with Grant 02047.

 Key words and phrases: zero-sum sequence, finite abelian groups.
 2000 Mathematics Subject Classification: 11B50, 11B75, 20 K 01.

