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Abstract. The investigation of the counting function of the set of inte-
gral elements, in an algebraic number field, with factorizations of at most
k different lengths gives rise to a combinatorial constant depending only
on the class group of the number field and the integer k. In this paper
the value of these constants, in case the class group in an elementary
p-group, is estimated and under additional conditions determined. In
particular, it is proved that for elementary 2-groups these constants are
equivalent to constants that are investigated in extremal graph theory.

1. Introduction

In this paper we investigate a class of invariants of finite abelian groups,
arising from investigations of the asymptotic behavior of counting functions.

Let K be a number field and OK its ring of integers. For a ∈ OK let L(a)
denote its set of lengths, i.e., the set of n ∈ N0 such that a = u1 · . . . · un
with atoms (irreducibles) u1, . . . , un ∈ OK . Let k be a positive integer. The
counting function

Gk(x) = |{(a) | N(a) ≤ x and |L(a)| ≤ k}|

was initially considered in [13] and in the sequel by various authors (cf. [15,
Chapter 9] and [17] for a recent result and further references). Note that
this counting function is only interesting if G, the ideal class group of K,
has at least three elements, since otherwise OK is half-factorial, as proved
in [1].

In [8] it was shown, applying and generalizing results obtained in [12, 21,
22], that

Gk(x) ∼ Cx(log x)−1+
µ(G)
|G| (log log x)ψk(G),

where C is a positive constant, µ(G) denotes the maximal cardinality of
a half-factorial subset of G and ψk(G) depends on the structure of half-
factorial subsets with maximal cardinality of G (cf. Section 2 in particular
Definition 2.1). In particular, µ(G) and ψk(G) depend just on G and k and
not the number field itself.
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In this paper we will investigate ψk(G). All our considerations will be
carried out in the block monoid over G, a finite abelian group with |G| ≥ 3,
without making further use of the number field itself. The notion of block
monoids was introduced in [14] to study combinatorial problems arising from
the investigations of Gk(x) and other counting functions and is meanwhile
a main tool for investigations of non-unique factorization in Krull monoids
(cf. the references given in Section 2).

Not too much is known on the value of ψk(G), in terms of invariants of G
such as the rank or the exponent. In [21, 22] the value of ψk(G) is obtained
for |G| ∈ {3, 4} and in [18] it was proved, motivated by investigations on
the error term of Gk(x) in [17], that ψk(G) > 0 for k ≥ 2 and ψ1(G) >
0 for various types of groups. Moreover, in [22, P 1247] the problem to
investigate whether (ψk(G))∞k=1 is an arithmetic progression is posed. Note
that B(k,G), as defined in [22], is not identical with ψk(G); however, they
are closely related and the present statement is equivalent to [22, P 1247]
(cf. the considerations following Theorem 5.7 and [18, Introduction]).

In this paper we obtain good bounds for ψk(G) in case G is an elemen-
tary p-group, and under additional conditions even the precise value. More
specifically, in Theorem 4.5 we determine ψ1(G) for elementary p-groups
with p ≥ 3 and even rank and we determine ψk(G) for k > 1 under the ad-

ditional condition that p ≥ r(G)
2

. In particular, this result shows that in this
case (ψk(G))∞k=1 is an arithmetic progression (cf. Corollary 4.6). The case of
odd rank, which we treat in Subsection 4.2, seems to be more complicated
and we just obtain lower bounds. For elementary 2-groups we show that
the problem of determining ψk(G) is equivalent to a problem concerning
edge disjoint cycles in graphs and we use this equivalence and results on
the graph theoretic problem to prove ψ1(G) = r(G) − 1 and to determine
ψk(G) up to a constant that is independent of G (cf. Theorem 5.7). In
particular, we show that these results imply that (ψk(G))∞k=1 is not always
an arithmetic progression. However, in the cases we consider, it seems it is
at least eventually an arithmetic progression.

In our investigations we apply results on the structure of half-factorial
sets with maximal cardinality in G; such results are known for elementary
p-groups, but so far only for very few other groups (cf. [7] for various results
on half-factorial sets).

2. Preliminaries

Let Z denote the integers, N the positive integers, N0 the non-negative
integers and P the prime numbers. For m,n ∈ Z let [m,n] = {z ∈ Z | m ≤
z ≤ n} and let Cn denote a cyclic group with order n.

We summarize some notions and results concerning block monoids, for a
detailed description and proofs we refer to the survey articles [3, 10]. Let G
be a finite abelian group and G0 ⊂ G some subset. Then r(G) denotes the
rank of G, 〈G0〉 denotes the group generated by G0 and F(G0) denotes the,
multiplicatively written, free abelian monoid with basis G0. An element
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S =
∏l

i=1 gi =
∏

g∈G g
vg(S) ∈ F(G0) with l ∈ N0 and gi ∈ G0 respectively

vg(S) ∈ N0 is called a sequence in G (the identity element of F(G0) is
denoted by 1).

If T |S (in F(G0)), then T is called a subsequence of S and T−1S denotes

its co-divisor. Further |S| = l is called the length, k(S) =
∑l

i=1
1

ord(gi)
the

cross number and σ(S) =
∑l

i=1 gi the sum of S.
A sequences S is called zero-sum sequence (a block), if σ(S) = 0 and it

is called zero-sumfree, if σ(T ) 6= 0 for all subsequences 1 6= T |S.
The set B(G0) ⊂ F(G0) of zero-sum sequences in G0 is called the block

monoid over G0. It is atomic (in fact it is a Krull monoid) and its atoms
A(G0) are the minimal zero-sum sequences, i.e., zero-sum sequences such
that every proper subsequence is zero-sumfree. Davenport’s constant, D(G),
is defined as the maximal length of an atom in G. We only use the result
that D(Cp) = p and D(C2

p) = 2p − 1 where Cp denotes a cyclic group with
p ∈ P elements (cf. [6, 16]).

Let B ∈ B(G0) and B =
∏n

i=1 Ui with Ui ∈ A(G0) a factorization of B
into atoms. Then n is called the length of the factorization and L(B) =
{n | n has a factorization of lengths n} is called the set of lengths of B. For
k ∈ N0 we set Gk(G) = {B ∈ B(G)

∣∣ |L(B)| ≤ k}. Note that L(1) = {0}
and G0(G) = ∅.

A subset G0 ⊂ G is called half-factorial, if B(G0) is a half-factorial
monoid, i.e., |L(B)| = 1 for every B ∈ B(G0), and µ(G) = max{|G0|

∣∣
G0 ⊂ G half-factorial} denotes the maximal cardinality of a half-factorial
subset of G. A set G0 is half-factorial if and only if k(A) = 1 for each
A ∈ A(G) (cf. [20, 21, 23]).

Let G0 ⊂ G and S ∈ F(G \G0). Then

Ω(G0, S) = SF(G0) ∩ B(G)

= {B ∈ B(G) | vg(B) = vg(S) for each g ∈ G \G0}.
Next we recall the central definition of this paper (cf. [8]).

Definition 2.1. Let k ∈ N and G be a finite abelian group with |G| ≥ 3.
Then

ψk(G) = max{|S|
∣∣ G0 ⊂ G half-factorial with |G0| = µ(G) and

S ∈ F(G \G0) with ∅ 6= Ω(G0, S) ⊂ Gk(G)}.

Throughout, let G denote a finite ablian group with |G| ≥ 3.

3. Some Basic Results

In this section we quote and establish some basic results on ψk(G) and
Ω(G0, S). Parts of the results were initially obtained in [9, 21], however
implicitly or in different notation. Proofs for all mentioned results can be
found in [18, Section 4].

Let G0 ⊂ G be a half-factorial subset with maximal cardinality. It follows
immediately from the definition that Ω(G0, S) · Ω(G0, S

′) ⊂ Ω(G0, SS
′)
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for S, S ′ ∈ F(G \ G0). Moreover, |L(BB′)| ≥ |L(B)| + |L(B′)| − 1 for
B,B′ ∈ B(G) and therefore Ω(G0, S) 6⊂ Gk(G) and Ω(G0, S

′) 6⊂ Gl(G)
implies Ω(G0, SS

′) 6⊂ Gk+l(G) for k, l ∈ N0. This allows us to carry out
investigations for special types of sequences and to transfer the obtained
results to the general case. Of particular interest are sequences of length
1, i.e., elements of the group. It is easy to see that Ω(G0, g) ∩ A(G) 6= ∅
for every g ∈ 〈G0〉 \ G0. Moreover, if k = |k(Ω(G0, g) ∩ A(G))|, then
Ω(G0, g) ⊂ Gk(G) and there exists some B ∈ Ω(G0, g) with |L(B)| = k (cf.
[18, Lemma 4.1]).

Lemma 3.1. Let k ∈ N and G = G′⊕G′′ with |G′|, |G′′| ≥ 2. Let G′
0 ⊂ G′,

G′′
0 ⊂ G′′, S ′ ∈ F(G′ \G′

0) and S ′′ ∈ F(G′′ \G′′
0). Further let G0 = G′

0 ∪G′′
0

and S = S ′S ′′ ∈ F(G \G0).

(1) Ω(G′
0, S

′) · Ω(G′′
0, S

′′) = Ω(G0, S).
(2) If Ω(G′

0, S
′) ⊂ Gk(G′) and Ω(G′′

0, S
′′) ⊂ Gl(G′′) with k, l ∈ N0, then

Ω(G0, S) ⊂ Gkl(G).
(3) Suppose G′

0 and G′′
0 are half-factorial, g′ ∈ G′

0\{0}, g′′ ∈ G′′
0\{0} and

g = g′ + g′′. If ∅ 6= Ω(G0, S) ⊂ Gk(G), then ∅ 6= Ω(G0, gS) ⊂ Gk(G).
(4) Suppose µ(G) = µ(G′) + µ(G′′)− 1. Then

(a) ψk(G) ≥ 1.
(b) ψk(G) ≥ ψk(G

′) + 1, if |G′| ≥ 3.
(c) ψk(G) ≥ ψk(G

′) + ψ1(G
′′) + 1, if |G′|, |G′′| ≥ 3.

Proof. 1. and 2. Clearly, Ω(G′
0, S

′) · Ω(G′′
0, S

′′) ⊂ Ω(G0, S). Let B ∈
Ω(G0, S). By definition of G0 and S we have vg(B) = 0 for every g ∈
G \ (G′ ∪ G′′). Thus B = B′B′′ with B′ ∈ F(G′) and B′′ ∈ F(G′′). Since
G = G′ ⊕G′′, it follows that B′ and B′′ are zero-sum sequences. Moreover,
every factorization of B into atoms is the product of a factorization of
B′ and a factorization of B′′. Thus L(B) = L(B′) + L(B′′) and |L(B)| ≤
|L(B′)| · |L(B′′)|.

3. Note that g /∈ G′ ∪G′′. Let C ′ ∈ Ω(G0, S). Then

C = gg′(ord(g′)−1)g′′(ord(g′′)−1)C ′ ∈ Ω(G0, gS).

Thus it remains to prove the statement concerning the lengths of factoriza-
tions.

Let B ∈ Ω(G0, gS) and let B′ = g−1g′g′′B ∈ Ω(G0, S). We assert that
1 + L(B) ⊂ L(B′). Since |L(B′)| ≤ k, this proves the statement.

Let B =
∏n

i=1 Ui a factorization into atoms. Without restriction let g|U1.
Since S ′ ∈ F(G′) and G′

0 ⊂ G′ respectively S ′′ ∈ F(G′′) and G′′
0 ⊂ G′′,

we have U1 = (g′ + g′′)F ′F ′′ with zero-sumfree sequences F ′ ∈ F(G′) and
F ′′ ∈ F(G′′). Thus σ(F ′) = −g′, σ(F ′′) = −g′′ and (g′ + g′′)−1g′g′′U1 =
(g′F ′)(g′′F ′′) (cf. [18, Lemma 4.2]). Since g′F ′ and g′′F ′′ are atoms, we get
that (g′F ′)(g′′F ′′)

∏n
i=2 Ui is a factorization of B′ into atoms and 1 + n ∈

L(B′).
4. Suppose G′

0 and G′′
0 are half-factorial with |G′

0| = µ(G′) and |G′′
0| =

µ(G′′). We have |G0| = µ(G). Since µ(G′), µ(G′′) ≥ 2 there exist g′ ∈
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G′
0\{0} and g′′ ∈ G′′

0 \{0}. We set g = g′+g′′. We note that ∅ 6= Ω(G0, 1) ⊂
G1(G) and apply (3) with S = 1. This implies ∅ 6= Ω(G0, g) ⊂ G1(G), which
proves (a).

If |G′| ≥ 3, then suppose there exists a sequence S ′ ∈ F(G′ \ G′
0) with

∅ 6= Ω(G′
0, S

′) ⊂ Gk(G′) and |S ′| = ψk(G
′). Since ∅ 6= Ω(G′′

0, 1) ⊂ G1(G
′′) we

apply (1) with S ′′ = 1 and obtain ∅ 6= Ω(G0, S
′) ⊂ Gk(G). Applying (3) we

obtain ∅ 6= Ω(G0, gS
′) ⊂ Gk(G). Thus ψk(G) ≥ |gS ′| = 1 + ψk(G

′), which
proves (b).

If in addition |G′′| ≥ 3, then suppose there exists a sequence S ′′ ∈ F(G′′ \
G′′

0) with ∅ 6= Ω(G′′
0, S

′′) ⊂ G1(G
′′) and |S ′′| = ψ1(G

′′). Again by (1) and (3)
we obtain ∅ 6= Ω(G0, gS

′S ′′) ⊂ Gm(G), which proves (c). �

In [9, Proposition 5] it was proved that if G = G′ ⊕ G′′, then µ(G) ≥
µ(G′)+µ(G′′)−1. Moreover, there are known examples were equality holds
as well as examples were equality does not hold (cf. the results quoted in
Section 4). Thus µ(G) = µ(G′) + µ(G′′) − 1 is a non-trivial condition. In
particular, the statement of Lemma 3.1.4 is not true without this condition
as Theorem 4.5 and Proposition 4.9 will show.

Lemma 3.2. Let k, l ∈ N. If each half-factorial set G0 ⊂ G with |G0| =
µ(G) generates G, then

ψk+l(G) ≤ ψk(G) + ψl(G) + 1.

Proof. Assume to the contrary, ψk+l(G) ≥ ψk(G) + ψl(G) + 2. Let G0 ⊂ G
half-factorial with |G0| = µ(G) and S ∈ F(G\G0) such that ∅ 6= Ω(G0, S) ⊂
Gk+l(G) and |S| = ψk+l(G). By assumption there exist S ′, S ′′ ∈ F(G \G0)
such that S = S ′S ′′, |S ′| > ψk(G) and |S ′′| > ψl(G). Since 〈G0〉 = G, there
exist blocks B′ ∈ Ω(G0, S

′) and B′′ ∈ Ω(G0, S
′′) such that |L(B′)| > k and

|L(B′′)| > l. Thus B = B′B′′ ∈ Ω(G0, S) and |L(B)| ≥ |L(B′)| + |L(B′′)| −
1 ≥ k + 1 + l + 1− 1 > k + l, a contradiction. �

In this paper we only deal with groups G where every half-factorial subset
of maximal cardinality generates G, namely with elementary p-groups and
cyclic groups with prime power order (in [7, Proposition 3.5] it is proved
that this holds true for elementary and cyclic groups). Thus for the groups
we consider the condition in Lemma 3.2 is always fulfilled and moreover
we always have Ω(G0, S) 6= ∅, if G0 ⊂ G is half-factorial with maximal
cardinality and S ∈ F(G \G0).

4. ψk(G) for Elementary p-groups

4.1. Groups with Even Rank. For elementary p-groups with even rank
the value of µ(G) and the structure of half-factorial sets with maximal
cardinality are known. We use this to investigate ψk(G) for these groups.

Proposition 4.1 ([9, 19]). Let G be an elementary p-group with even rank
r(G) = 2r. Then µ(G) = 1 + rp and G0 ⊂ G is half-factorial with |G0| =
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µ(G) if and only if there exists a basis {e1, e′1, . . . , er, e′r} of G such that

G0 = {0} ∪
r⋃
i=1

{jei + e′i | j ∈ [0, p− 1]}.

Proof. The result on µ(G) and the ‘if’-part were proved in [9, Theorem 8],
the ‘only if’-part in [19, Theorem 3.1]. Note that in both papers the sets
are described in a different basis, namely {e1 + e′1, e

′
1, . . . , er + e′r, e

′
r}. �

For our purpose it is particularly interesting that for a given group all half-
factorial subsets of maximal cardinality are equal up to automorphisms of
the group. Thus it suffices to investigate Ω(G0, ·) for one fixed half-factorial
set G0 ⊂ G with maximal cardinality.

Note that for p = 2 the description of the half-factorial sets is not natural,
since for p = 2 the setG0\{0} is independent. In Section 5 we will separately
investigate elementary 2-groups (not necessarily with even rank). Thus
whenever it is convenient we will assume p 6= 2.

Throughout the whole subsection we will use the following notations. Let
G be an elementary p-group with rank r(G) = 2r and {e1, e′1, . . . , er, e′r} ⊂ G
a basis of G. Further let

G0 = {0} ∪
r⋃
i=1

{jei + e′i | j ∈ [0, p− 1]},

a half-factorial set with |G0| = µ(G). For i ∈ [1, r] let πi denote the projec-
tion on 〈ei〉, π′i the projection on 〈e′i〉 andGi

0 = (πi+π
′
i)(G0) = {0}∪{jei+e′i |

j ∈ [0, p− 1]}.
We start with a technical lemma on cross numbers of certain atoms. It is

of interest, since the number of different values of the cross numbers of the
atoms in Ω(G0, g) determines the maximal cardinality of the sets of lengths
of the blocks in Ω(G0, g) (cf. Section 3 and [18, Lemma 4.3]).

Lemma 4.2. Let g =
∑r

i=1 aiei + bie
′
i /∈ G0 with ai, bi ∈ [0, p − 1] and

A ∈ Ω(G0, g) ∩ A(G). Then

k(A) =
1

p
+ |I1|

p− 1

p
+ |I2|+ |I3| −

cg
p

+mA

where I1 = {i ∈ [1, r] | bi = 1}, I2 = {i ∈ [1, r] | bi = 0 and ai 6= 0},
I3 = {i ∈ [1, r] | bi /∈ [0, 1]}, cg =

∑
i∈I3 bi and mA ∈ [0, |I3|]. Moreover,

|k(Ω(G0, g) ∩ A(G))| = 1 + |{i ∈ [1, r] | bi /∈ [0, 1]}|.

Proof. Let B ∈ Ω(G0, g). Then B = g0v
∏r

i=1 Si with uniquely determined
v ∈ N0 and Si ∈ F(Gi

0 \ {0}) for each i ∈ [1, r]. We note that B ∈ A(G) if
and only if v = 0 and (aiei + bie

′
i)Si is an atom for each i ∈ [1, r]. Thus it

suffices to investigate each component separately.
For each i ∈ [1, r] let gi = (πi + π′i)(g) = aiei + bie

′
i and Fi ∈ F(Gi

0)
such that A = g

∏r
i=1 Fi. Then giFi is an atom for each i ∈ [1, r]. If

bi = 1 or ai = bi = 0, then {gi} ∪ Gi
0 is half-factorial. Consequently,
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k(giFi) = 1 and k(Fi) = p−1
p

if bi = 1 respectively k(Fi) = 0 if ai = bi = 0.

If bi = 0 and ai 6= 0, then Fi 6= 1 and |Fi|e′i = 0. Since Fi is zero-sumfree
and D(C2

p) = 2p − 1, it follows that |Fi| < 2p − 1 and therefore |Fi| = p
respectively k(Fi) = 1.

Suppose bi /∈ [0, 1]. Since (bi + |Fi|)e′i = 0 and |Fi| ∈ [1, 2p − 2], we get
that |Fi| ∈ {p− b1, 2p− b1}.

Let I1, I2, I3 and cg as in the formulation of the lemma and I4 = {i ∈ I3 |
k(Fi) = 2p− bi}.

Then

k(A) =
1

ord(g)
+

r∑
i=1

k(Fi) =
1

p
+ |I1|

p− 1

p
+ |I2|+ |I3| −

cg
p

+ |I4|

and clearly |I4| ∈ [0, |I3|], which proves the first part of the lemma and
implies immediately that |k(Ω(G0, g)∩A(G))| ≤ 1+|{i ∈ [1, r] | bi /∈ [0, 1]}|.

To prove the remaining part, it suffices to verify that for each i ∈ I3 there
are sequences F ′

i , F
′′
i ∈ F(Gi

0) such that giF
′
i , giF

′′
i ∈ A(G), k(F ′

i ) = p − bi
and k(F ′′

i ) = 2p− bi. The sequences F ′
i = (−aiei + e′i)e

′p−bi−1
i and

F ′′
i =

{
(ei + e′i)

p−bi+1((−bi + 1)ei + e′i)
p−1 if ai = 0

e′p−bi+1
i (aiei + e′i)

p−1 if ai 6= 0

have these properties. �

In the following lemma we derive a lower bound for ψk(G). In Theorem
4.5 we will see that equality holds in several cases.

Lemma 4.3. Let k ∈ N. Then ψk(G) ≥ (k − 1 + r)p− 1.

Proof. We proceed by induction on r. Let r = 1. We set S = ekp−1
1 and show

that Ω(G0, S) ⊂ Gk(G). We start with an investigation of the cross numbers
of the atoms in {e1} ∪G0. For ease of notation we omit the subscript 1.

Let A ∈ A({e}∪G0). If ve(A) ∈ {0, p}, then k(A) = 1. Suppose A = evF
with v ∈ [1, p − 1] and F ∈ F(G0). Clearly, F 6= 1 and F is zero-sumfree,
thus 1 ≤ |F | ≤ 2p− 2 as in Lemma 4.2. Since |F |e′ = 0, we obtain |F | = p

and k(A) = 1 + ve(A)
p

.

Let B ∈ Ω(G0, S) and B = (ep)m
∏l

i=1 Ui a factorization into atoms where
ve(Ui) < p for each i ∈ [1, l]. Clearly, m ∈ [0, k − 1]. It follows that

k(B) = m+
l∑

i=1

p+ ve(Ui)

p
= m+ l +

ve(B)− pm

p
= l +

kp− 1

p
.

Thus l = k(B) − k + 1
p

is determined by B, L(B) ⊂ l + [0, k − 1] and

|L(B)| ≤ k.
Let r ≥ 2 and G = G′ ⊕ G′′ with r(G′) = 2(r − 1) and r(G′′) = 2. By

induction hypothesis we have ψk(G
′) ≥ (k−1+r−1)p−1 and ψ1(G

′′) ≥ p−1.
By Lemma 3.1.4 we get ψk(G) ≥ (k − 1 + r − 1)p − 1 + p − 1 + 1 =
(k − 1 + r)p− 1. �
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Next we prove a proposition that will be needed to establish an upper
bound for ψk(G). By

∑r
i=1G

i
0 we denote, as usual, the set of elements∑r

i=1 gi with gi ∈ Gi
0 for each i ∈ [1, r].

Proposition 4.4. Let p ≥ 3. Then Ω(G0, S) 6⊂ G1(G) for each of the
following choices of S ∈ F(G \G0):

(1) Let S = g with g ∈ G \ (〈e1, . . . , er〉+
∑r

i=1G
i
0).

(2) Let S ∈ F((〈e1, . . . , er〉 +
∑r

i=1G
i
0) \

∑r
i=1G

i
0) such that (πm +

π′m)(S) ∈ A(〈em〉 \ {0}) for some m ∈ [1, r].
(3) Let S = gh with g, h ∈ 〈e1, . . . , er〉 +

∑r
i=1G

i
0 such that π′j(g) =

π′j(h) = e′j and π′m(g) = π′m(h) = e′m for distinct j,m ∈ [1, r].

(4) Let S =
∏s

j=1 gj ∈ F(〈e1, . . . , er〉 +
∑r

i=1G
i
0) with s ≥ 3 and Ij =

{i ∈ [1, r] | π′i(gj) = e′i} such that for every J ⊂ [1, s] with |J | ≥ 2

|
⋂
j∈J

Ij| =

{
1 if J = {j, j′} and j − j′ ≡ ±1 mod s

0 otherwise
.

Proof. 1. By Lemma 4.2 we have

|k(Ω(G0, g) ∩ A(G))| > 1,

since {g =
∑r

i=1 aiei + bie
′
i | bi ∈ [0, 1]} = 〈e1, . . . , er〉 +

∑r
i=1G

i
0. This

implies Ω(G0, S) 6⊂ G1(G).

2. Let S =
∏l

j=1 gj. We have that for each j ∈ [1, l] there exists some

atom Aj ∈ Ω(G0, gj). By Lemma 4.2 respectively its proof we get Aj =
gjFjF

′
j with Fj ∈ F(Gm

0 ), F ′
j ∈ F(G0 \Gm

0 ) and |Fj| = p, since π′m(gj) = 0

and πm(gj) 6= 0. We consider the block B =
∏l

j=1Aj ∈ Ω(G0, S). Clearly,

we have l ∈ L(B). Since σ((πm + π′m)(S)) = 0, we have σ(
∏l

j=1 Fj) = 0.

Since Fj ∈ F(Gm
0 ) and Gm

0 is half-factorial, we obtain {l} = L(
∏l

j=1 Fj).

Consequently, B = (
∏l

j=1 Fj)(
∏l

j=1 gjF
′
j) and l + L(

∏l
j=1 gjF

′
j) ⊂ L(B).

Clearly,
∏l

j=1 gjF
′
j 6= 1 and thus L(

∏l
j=1 gjF

′
j) 6= {0}, which implies |L(B)| >

1.
3. Suppose there exist A,A′ ∈ Ω(G0, S) ∩ A(G) with k(A) 6= k(A′).

Then there exists some B ∈ Ω(G0, S) such that A|B and A′|B, for example
S−1AA′T with T ∈ F(G0) and σ(T ) = σ(S). This implies

{1 + k(B)− k(A), 1 + k(B)− k(A′)} ⊂ L(B)

and thus |L(B)| ≥ 2. Consequently, it suffices to show that there exist
atoms A,A′ ∈ Ω(G0, S) with k(A) 6= k(A′).

Without restriction let j = 1 and m = 2. We have g = a1e1 + e′1 + a2e2 +
e′2 + g1 and h = a′1e1 + e′1 + a′2e2 + e′2 + h1 with a1, a2, a

′
1, a

′
2 ∈ [0, p− 1] and

h1, g1 ∈ 〈e3, . . . , e′r〉.
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Let F2 = (−(a2 + a′2)e2 + e′2)e
′p−3
2 and F ∈ F(G0) zero-sumfree with

σ(F ) = −g1 − h1. Further let F1 = (−(a1 + a′1)e1 + e′1)e
′p−3
1 and

F ′
1 =

{
(e1 + e′1)

p−1(−e1 + e′1)
p−1 if a1 + a′1 ≡ 0 mod p

e′p−1
1 ((a1 + a′1)e1 + e′1)

p−1 if a1 + a′1 6≡ 0 mod p.

Then A = ghFF2F1 and A′ = ghFF2F
′
1 are atoms, elements of Ω(G0, S)

and k(A) 6= k(A′).
This construction is similar to the one used in Lemma 4.2. Note that

(a1e1 +e′1)(a
′
1e1 +e′1)F

′
1 is not an atom but the product of two atoms, where

(a1e1 + e′1) divides the one and (a′1e1 + e′1) the other. However, due to the
choice of F2, we have that A′ can not be factorized into two atoms, where
g divides the one and h the other.

4. Let {i1} = Is ∩ I1 and {ij} = Ij−1 ∩ Ij for each j ∈ [2, s]. Clearly,
|{i1, . . . , is}| = s and without restriction we assume ij = j for each j ∈ [1, s].
Similarly to the construction in the proof of (3) we assert that there exist
A,A′ ∈ Ω(G0, S) ∩A(G) with k(A) 6= k(A′). For j ∈ [1, s] let cj ∈ [0, p− 1]

such that cjej = −πj(σ(S)) and Fj = (cjej + e′j)e
′p−3
j . Further let

F ′
1 =

{
(e1 + e′1)

p−1(−e1 + e′1)
p−1 if c1 = 0

e′p−1
1 (−c1e1 + e′1)

p−1 if c1 6= 0

and F ∈ F(G0) be zero-sumfree with σ(F ) = −
∑r

m=s+1(πm + π′m)(σ(S)).
Note that F ∈ F(〈es+1, . . . , e

′
r〉). We verify that

A = F1SF
l∏

j=2

Fj and A′ = F ′
1SF

l∏
j=2

Fj

are atoms in Ω(G0, S) with different cross numbers. That k(A) 6= k(A′) is
obvious and that σ(A) = σ(A′) = 0 can be checked easily, thus by construc-
tion A,A′ ∈ Ω(G0, S). It remains to show that A,A′ are atoms. We do
this just for A′, since for A be can argue analogous. Suppose A′ = B1B2

with B1, B2 ∈ B(G) \ {1}. Without restriction let g1|B1. Since π′2(g1) = e′2
and π′2(g) 6= 0 if and only if g|g1g2F2, we have g1g2F2|B1. The same way,
since π′3(g2) = e′3, we obtain g2g3F3|B1. Repeating this construction, respec-
tively by an easy inductive argument, we get gj|B1 for each j ∈ [1, s] and
thus

∏s
j=1 gj|B1. Consequently, B2|F

∏s
j=1 Fj. By construction F

∏s
j=1 Fj

is zero-sumfree, a contradiction. �

Note that (1), (2), and (3), (3) with a slightly different proof, hold for
p = 2 as well. Moreover, in Lemma 5.4 we obtain a result similar to (4) for
elementary 2-groups.

Theorem 4.5. Let p ≥ 3, k ∈ N and G be an elementary p-group with even
rank r(G) = 2r. Then

(k − 1 + r)p− 1 ≤ ψk(G) ≤ rp− 1 + (k − 1) max{p, r}.
In particular, ψ1(G) = rp− 1 and if p ≥ r, then ψk(G) = (k − 1 + r)p− 1.
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Proof. The lower bound was obtained in Lemma 4.3. It suffices to show
ψk(G) ≤ rp − 1 + (k − 1) max{p, r}, since the other statements follow im-
mediately. We will prove that (for G0 ⊂ G half-factorial with |G0| = µ(G))
if S ∈ F(G\G0) with |S| ≥ rp+(k−1) max{p, r}, then Ω(G0, S) 6⊂ Gk(G).

We proceed by induction on k.
Let k = 1 and S =

∏l
i=1 gi ∈ F(G \ G0) with l ≥ rp. We need to show

that Ω(G0, S) 6⊂ G1(G). Since it will be needed in the sequel of the proof,
we prove a slightly more general statement. We show that there exists a
subsequence R|S with |R| ≤ max{p, r} such that Ω(G0, R) 6⊂ G1(G).

This is done in four steps. In each step we use the according part of
Proposition 4.4.
Step 1: Suppose there exists some g|S with g ∈ G\(〈e1, . . . , er〉+

∑r
i=1G

i
0).

Then we have by Proposition 4.4.1 that Ω(G0, g) 6⊂ G1(G). We set R = g
and are done. Thus we assume without restriction S ∈ F(〈e1, . . . , er〉 +∑r

i=1G
i
0).

Step 2: Let S ′|S denote the subsequence consisting of the elements g|S for
which there exists some jg ∈ [1, r] with (πjg + π′jg)(g) ∈ 〈ej〉 \ {0}. Suppose

|S ′| ≥ r(p− 1) + 1. Then there exists some m ∈ [1, r] and a sequence S ′′|S ′
with |S ′′| ≥ p such that (πm+π′m)(S ′′) ∈ F(〈em〉\{0}). Since |S ′′| ≥ |〈em〉|,
we get that there exists some A|S ′′ with (πm + π′m)(A) ∈ A(〈em〉 \ {0}).
By Proposition 4.4.2 this implies Ω(G0, A) 6⊂ G1(G). Since |A| ≤ p, we set
R = A. We assume that |S ′| ≤ r(p− 1) respectively |S ′−1S| ≥ r.
Step 3: Let T = S ′−1S and for each g|T let Ig = {i ∈ [1, r] | π′i(g) = e′i}.
It follows that |Ig| ≥ 2 for each g|T . Suppose there exists some h ∈ G
with gh|T such that |Ig ∩ Ih| ≥ 2. Then we have by Proposition 4.4.3
that Ω(G0, gh) 6⊂ G1(G) and we set R = gh. Thus we assume if gh|T ,
then |Ig ∩ Ih| ≤ 1. Note that this is only possible if r ≥ 3. Thus in case
r ≤ 2 the statement would be proved already. Moreover, it follows that T
is squarefree, i.e., vg(T ) ≤ 1 for each g ∈ G.
Step 4: We assert that there exists a subsequence T ′ = (

∏s
j=1 g

′
j)|T with

r ≥ s ≥ 3 such that the sets I ′j = Ig′j fulfill the conditions of Proposition

4.4.4, i.e., for every J ⊂ [1, s] with |J | ≥ 2

|
⋂
j∈J

I ′j| =

{
1 if J = {j, j′} and j − j′ ≡ ±1 mod s

0 otherwise
.

Then we have Ω(G0, T
′) 6⊂ G1(G) and we set R = T ′.

We prove by induction on r that a sequence T with |T | = r ≥ 3, where
|Ig ∩ Ih| ≤ 1 and |Ig| ≥ 2 for each gh|T , has a subsequence with the claimed
properties. For ease of notation we will write Ij instead of Igj

.
Let r = 3. Since |Ig ∩ Ih| ≤ 1 and |Ig| ≥ 2 for gh|T , it follows that

|Ig| < 3 for each g|T and |T | = 3. Thus T = g1g2g3 and {I1, I2, I3} =
{{1, 2}, {2, 3}, {1, 3}}. We set T ′ = T and numerate the elements in a
suitable way.
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Let r > 3. For j ∈ [1, r] let Tj|T denote the subsequence of the elements
g|T with j ∈ Ig.

Case 1: There exists some j ∈ [1, r] such that |Tj| ≤ 1. Without restric-
tion let j = r. We apply the induction hypothesis to the sequence T−1

r T
and obtain that there exists a subsequence T ′|T−1

r T with |T ′| ≤ r − 1 and
the claimed properties.

Case 2: |Tj| ≥ 2 for each j ∈ [1, r]. We define the sequence T ′|T by a
recursive construction. Let j0 = 1, g1|Tj0 and j1 ∈ I1 \ {j0}. Let i ≥ 1 and
suppose gm and jm are constructed for m ∈ [1, i]. Then let gi+1|g−1

i Tji . If

Ii+1 ∩
⋃i
m=1 Im = {ji}, then let ji+1 ∈ Ii \ {ji} and we proceed with the

construction.
If |Ii+1 ∩

⋃i
m=1 Im| ≥ 2, then let m′ = max{m ∈ [0, i− 1] | Im ∩ Ii+1 6= ∅}

and we set T ′ =
∏i+1

j=m′ gj. Note that |
⋃i
m=1 Im| ≥ i+ 1. Thus if i = r − 1,

then we would have
⋃i
m=1 Im = [1, r] and the construction would stop.

Changing the indexset by setting g′j = gj+1−m′ , we obtain the sequence T ′

as claimed. This proves the statement for k = 1.
Let k ≥ 2 and suppose the statement holds for k′ < k. Let S =

∏l
i=1 gi ∈

F(G \ G0) with l ≥ rp − 1 + (k − 1) max{p, r}. Clearly, l ≥ rp − 1 and
we have that there exists a subsequence R|S such that Ω(G0, R) 6⊂ G1(G)
and |R| ≤ max{p, r}. Since |R−1S| ≥ rp − 1 + (k − 2) max{p, r}, we
get by induction hypothesis that Ω(G0, R

−1S) 6⊂ Gk−1(G). This implies
Ω(G0, S) 6⊂ Gk(G). �

Parts of the proof, in particular in Step 4, just depend on the system of
sets (the hypergraph) ([1, r], (Ig)g|T ). Thus the proof could be shortened
by using results on hypergraphs (cf. for example [5] in particular 2.1). As
mentioned in the Introduction we can solve the problem [22, P 1247] in the
following special case.

Corollary 4.6. Let p ≥ 3 and G be an elementary p-group with even rank
r(G) = 2r. If p ≥ r, then (ψk(G))∞k=1 is an arithmetic progression.

4.2. Groups with Odd Rank. In this section we investigate elementary
p-groups with odd rank. The results we obtain are much weaker than the
ones for groups with even rank, and we mainly establish lower bounds. We
start with the investigation of groups with rank 1 and consider the more
general situation of cyclic groups with prime power order.

The following characterization result on half-factorial sets in cyclic groups
with prime power order was proved by various authors in slightly different
formulations cf. [7, Corollary 5.4] for a proof and detailed references.

Proposition 4.7. Let G be cyclic with |G| = pm for some p ∈ P and m ∈ N.
Then µ(G) = m + 1 and G0 ⊂ G is half-factorial with |G0| = µ(G) if and
only if G0 = {pig | i ∈ [0,m]} for some g ∈ G with ord(g) = pm.

We apply this characterization to obtain a technical result and first lower
bounds.
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Proposition 4.8. Let G be cyclic with |G| = pm for some p ∈ P and m ∈ N.

(1) Let G0 = {pie | i ∈ [0,m]} with e ∈ G and ord(e) = pm. Further
let g = ae ∈ G \ G0 with a ∈ [2, pm − 1] such that p - a. If l ∈ N0

with l(a − 1) < pm, then ∅ 6= Ω(G0, g
l) ⊂ G1(G). In particular,

L(C) = {k(C) + l a−1
pm } for each C ∈ Ω(G0, g

l).

(2) If p ≥ 3, then ψ1(G) ≥ pm − 1.
(3) If p = 2, then ψ1(G) ≥ 2m−1 − 1.

Proof. 1. By Proposition 4.7 we know that G0 is half-factorial and |G0| =
µ(G). Clearly, 〈G0〉 = G and thus Ω(G0, S) 6= ∅ for every S ∈ F(G \ G0).
Let l ∈ N0 such that l(a− 1) < pm.

We first prove the following statement on cross numbers of certain atoms:

If A ∈ A(G0 ∪ {g}) with vg(A) = v ≤ l, then k(A) = 1 − v(a−1)
pm . Let

A ∈ A(G0 ∪ {g}) with vg(A) = v ≤ l. By [11, Lemma 2] we know that
k(A′) ≤ 1 for every A′ ∈ A(G). Let B = g−veavA ∈ B(G0). Since G0 is half-
factorial, we know k(B) ∈ N. Thus we have 1 ≤ k(B) = k(A) + v a−1

pm < 2,

consequently k(B) = 1 and k(A) = 1− v(a−1)
pm .

Let C ∈ Ω(G0, g
l) and C =

∏n
i=1 Ui be a factorization with Ui ∈ A(G)

and vg(A) = vi for each i ∈ [1, n]. Then

k(C) =
n∑
i=1

k(Ui) =
n∑
i=1

(
1− vi(a− 1)

pm

)
= n− vg(C)

a− 1

pm

and n = k(C) + l a−1
pm is determined by C. Consequently, L(C) = {k(C) +

l a−1
pm } and Ω(G0, g

l) ⊂ G1(G).

2. and 3. Note that if p = 2, then m ≥ 2, since by our general assumption
|G| ≥ 3. Let G0 ⊂ G half-factorial with |G0| = µ(G). By Proposition 4.7 we
know that G0 fulfills the conditions of (1). For p ≥ 3, we set g = 2e. Since
(pm − 1)(2 − 1) < pm, we obtain by Proposition 4.8 that ψ1(G) ≥ pm − 1.
For p = 2, we set g = 3e. Since (2m−1 − 1)(3 − 1) < 2m, we obtain
ψ1(G) ≥ 2m−1 − 1. �

This lower bound is in general not sharp as the following result shows.
However, for pm = 4 and pm = 3 equality holds. As already mentioned in
the Introduction, this was initially obtained in [21, 22]. For pm = 3 we state
this result (cf. [21, Corollary 2]) in the first part of the following lemma.

Proposition 4.9. Let |G| ∈ P and k ∈ N.

(1) If |G| = 3, then ψk(G) = 3k − 1.
(2) If |G| ≥ 5, then ψk(G) ≥ pk − 1 + p−1

2
.

Proof. Let G0 ⊂ G half-factorial with |G0| = µ(G) = 2. Then G0 = {0, e}
with some e ∈ G \ {0}.

1. Let |G| = 3. We note thatA(G) = {0, e(2e), e3, (2e)3}. Since (2e)3e3 =
((2e)e)3, we have Ω(G0, (2e)

3) 6⊂ G1(G) and consequently ψ1(G) < 3. Using
Lemma 3.2 we obtain ψk(G) ≤ (k − 1)(ψ1(G) + 1) + ψ1(G) ≤ 3k − 1.
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It remains to show that Ω(G0, (2e)
3k−1) ⊂ Gk(G). Let B ∈ B(G) and

B =
n′∏
i=1

Vi = ((2e)e)m
n∏
i=1

Ui

where Ui 6= (2e)e for each i ∈ [1, n]. Since k(B) = m2
3

+ n, we have that
n is determined by m and k(B). Moreover, m ≡ v2e(B) mod 3. Thus for
C ∈ Ω(G0, (2e)

3k−1) there are at most k possible values for m. This implies
|L(C)| ≤ k.

2. Let |G| ≥ 5 and S = (2e)kp−1(−2e)
p−1
2 . We show ∅ 6= Ω(G0, S) ⊂

Gk(G).
Note that if A ∈ A({0, e, 2e,−2e}) with 0 < v−2e(A) ≤ p−1

2
, then A =

(−2e)2e or A = (−2e)e2. Let C ∈ Ω(G0, S) and

C =
n′∏
i=1

Vi = ((2e)p)m
n∏
i=1

Ui

with Ui 6= (2e)p for each i ∈ [1, r] be a factorization into atoms. Clearly,
m ∈ [0, k − 1]. We assert that n is determined by m and C. This implies,
since there are at most k possible values for m, that |L(C)| ≤ k.

Since v−2e(C) = p−1
2

, there exists some subset I ⊂ [1, n] with |I| = p−1
2

such that Ui ∈ {(−2e)2e, (−2e)e2} for each i ∈ I. Let l = |{i ∈ I | Ui =
(−2e)e2}| ∈ [0, p−1

2
]. Then we have

C ′ = ((2e)p)m
∏

i∈[1,n]\I

Ui ∈ Ω(G0, (2e)
kp−p+ p−1

2
+l).

We have, cf. proof of Proposition 4.8, k(Ui) = 1 − v2e(Ui)
p

for each i ∈
[1, n] \ I. Thus

k(C ′) = m+
∑

i∈[1,n]\I

(
1− v2e(Ui)

p

)
= m+ n− p− 1

2
− v2e(C

′)

p

= m+ n− p− 1

2
− (k − 1)− p− 1 + 2l

2p
.

Since k(C ′) = k(C)−
∑

i∈I k(Ui) = k(C)− p−1
2

2
p
− l 1

p
, we obtain

k(C) = m+ n− p− 1

2
+ k − 1 +

3(p− 1)

2p
.

Thus n just depends on m and k(C). �

Next we combine the results on cyclic groups with the ones on elementary
p-groups with even rank to establish lower bounds for elementary p-groups
with odd rank. Again we neglect p = 2, since we will treat elementary
2-groups in the following section.

In [9, Theorem 8] it was proved that if G is an elementary p-group with
odd rank r(G) = 2r+1, then 2+rp ≤ µ(G) ≤ 1+rp+bp

2
c. For p ∈ {2, 3} this
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implies µ(G) = 2+rp and for p ∈ {5, 7} this was proved in [19, Theorem 3.2].
Note that if G = G′⊕G′′ and µ(G) = 2+rp, then µ(G) = µ(G′)+µ(G′′)−1.

Corollary 4.10. Let r ∈ N0, k ∈ N and G an elementary p-groups with
r(G) = 2r + 1.

(1) If p = 3, then ψk(G) ≥ 3(k + r)− 1.
(2) If p ≥ 5 and µ(G) = 2 + rp, then ψk(G) ≥ p(k + r)− 1 + p−1

2
.

Proof. Let p ∈ P. For r = 0 the result is just Lemma 4.9. Let r ≥ 1 and
G = G′⊕G′′ with r(G′) = 2r and r(G′′) = 1. Since µ(G) = µ(G′)+µ(G′′)−1,
we can apply Lemma 3.1.4. We apply the lower bounds obtained in Lemma
4.3 for ψk(G

′) and in Lemma 4.9 for ψ1(G
′′) and the statement follows. �

Remark 4.11. Similarly as in [18, Theorem 7.1] we can obtain that for

every p ∈ P there exists some rp ∈ N such that ψk(G) ≥ (k−1+ (r−rp)

2
)p−1

for every elementary p-group G with r(G) ≥ rp.

5. ψk(G) for Elementary 2-groups

Until the end of this section let G denote an elementary 2-group with
rank r(G) = r ≥ 2. In [14, Problem II] it was proved that µ(G) = r + 1
and that G0 ⊂ G is half-factorial if and only if G0 \ {0} is independent.
Thus again all half-factorial subsets with maximal cardinality are equal up
to automorphisms. Throughout the whole section let {e1, . . . , er} ⊂ G be a
basis and G0 = {0, e1, . . . , er}, a half-factorial set with |G0| = µ(G). Further
let πi denote the projection on 〈ei〉 for each i ∈ [1, r].

We start with the following short lemma that provides a first lower bound.

Lemma 5.1. Let k ∈ N. Then ψk(G) ≥ 2(k − 1) + r − 1.

Proof. If r is even, then this is just Lemma 4.3. Suppose r is odd and let
G = G′⊕G′′ with |G′′| = 2. Then ψk(G) ≥ ψk(G

′)+1 ≥ 2(k−1)+r−2+1
by Lemma 3.1.4 and Lemma 4.3. �

As mentioned in the Introduction we will apply notions and results of ex-
tremal graph theory to determine ψk(G) (in terms of constants introduced
there). We will show (cf. Theorem 5.7) that to determine ψk(G) is equiva-
lent to determining the maximal number of edges in a graph on r vertices
not containing k edge disjoint cycles. We use the convention that a graph
may have multiple edges but no loops. Apart from that our terminology
concerning (multi)graphs will follow [2].

We define for each S ∈ F(G\G0) an associated graph with vertex set [1, r].
In general this graph is not uniquely determined. Conversely, we define
for each graph with vertex set [1, r] its (uniquely determined) associated
sequence S ∈ F(G \G0).

Definition 5.2. Let l ∈ N.

(1) Let S =
∏l

i=1 gi ∈ F(G \ G0). For i ∈ [1, l] let Ii = {j ∈ [1, r] |
πj(gi) = ej} and let Ei ⊂ Ii be some subset with |Ei| = 2. The
graph ([1, r], (Ei)i∈[1,l]) is called an associated graph of S.
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(2) Let ([1, r], (Ei)i∈[1,l]) be a graph. For i ∈ [1, l] let gi =
∑

j∈Ei
ej.

Then S =
∏l

i=1 gi ∈ F(G \ G0) is called the associated sequence of
([1, r], (Ei)i∈[1,l]).

Example 5.3. Let S = (e1 + e2)
2(k−1)

∏r−1
i=1 (ei + ei+1). The sequence S is

an example of a sequence with |S| = 2(k−1)+r−1 and Ω(G0, S) ⊂ Gk(G).
Its associated graph, in this special case it is uniquely determined, is a path
where one edge is a multiple edge with multiplicity 2k − 1. Note that this
graph contains exactly k − 1 edge disjoint cycles.

In the following two lemmata we prove that the number of edge disjoint
cycles in an associated graphs of S and sets of lengths of B ∈ Ω(G0, S) are
closely related.

Lemma 5.4. Let k ∈ N , S =
∏l

i=1 gi ∈ F(G \ G0) and ([1, r], (Ei)i∈[1,l])
an associated graph that contains k edge disjoint cycles. Then Ω(G0, S) 6⊂
Gk(G).

Proof. Let Ii = {j ∈ [1, r] | πj(gi) = ej} for each i ∈ [1, l]. Then Ai =

gi
∏

j∈Ii ej ∈ A(G) and B =
∏l

i=1Ai ∈ Ω(G0, S). It suffices to show B /∈
Gk(G).

We proceed by induction on k. Let k = 1 and let C ⊂ [1, l] such that
(Ei)i∈C are the edges of a cycle and VC ⊂ [1, r] the set of vertices occurring
in this cycle. We consider B′ =

∏
i∈C Ai and obtain B′ = (

∏
i∈VC

e2i )B
′′

with B′′ ∈ B(G)\{1}. Since |C| = |VC |, we have L(B′) ≥ 2 and B /∈ G1(G).
Let k ≥ 2 and suppose the statement holds for 1 ≤ k′ < k. Again let

C ⊂ [1, l] such that (Ei)i∈C are the edges of a cycle and ([1, r], (Ei)i∈[1,l]\C)
has k − 1 edge disjoint cycles. We have B = B′B′′ with B′ =

∏
i∈C Ai

and B′′ =
∏

i∈[1,l]\C Ai. By induction hypothesis we get B′ /∈ G1(G) and

B′′ /∈ Gk−1(G). Thus we obtain B /∈ Gk(G). �

Lemma 5.5. Let ([1, r], (Ei)i∈[1,l]) be a graph that does not contain k edge
disjoint cycles and S its associated sequence. Then Ω(G0, S) ⊂ Gk(G).

Proof. By definition we have g = ei + ej for distinct i, j ∈ [1, r] for every
g|S, i.e., S ∈ F((G0 + G0) \ G0). Thus Ω(G0, S) ⊂ B(G0 + G0). We start
with an investigation of A(G0 +G0). Let A ∈ A(G0 +G0) \ {0}.

1. Suppose vei
(A) = 0 for every i ∈ [1, r], i.e., A|S. We assert that the

according edges are the edges of a cycle. Let g1 = ej0 + ej1|A. There exists
some g2|g−1

1 A such that g2 = ej1 + ej2 . If j2 ∈ {j0, j1}, equivalently j2 = j0,
then σ(g1g2) = 0 and A = g1g2. Otherwise we proceed with a recursive
construction. Let i ≥ 2 and gi = eji−1

+ eji such that ji /∈ {j0, . . . , ji−1}.
Then there exists some gi+1|(

∏i
j=1 gj)

−1A such that gi+1 = eji + eji+1
. If

ji+1 ∈ {j0, . . . , ji}, say ji+1 = jm, then σ(
∏i+1

j=m+1 gj) = 0. Thus it follows

m = 0 and A =
∏i+1

j=1 gj. For i = r − 1 we would have {j0, . . . , ji} = [1, r]

and thus ji+1 ∈ {j0, . . . , ji}. Thus A =
∏s

j=1 gj for some s ∈ [2, r] and the

associated edges are the edges of a cycle with vertices {j0, . . . , js−1}.
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2. Suppose ej0|A for some j0 ∈ [1, r]. We set g0 = ej0 . If ej0|(g−1
0 A), we

set g1 = ej0 and it follows that A = g0g1 = e2j0 . Otherwise there exists some

j1 /∈ {j0} such that g1 = (ej0 + ej1)|(g−1
0 A) and we proceed with a recursive

construction. Let i ≥ 1 and gi = eji−1
+ eji such that ji /∈ {j0, . . . , ji−1}.

If eji|(
∏i

j=0 gj)
−1A, we set gi+1 = eji and it follows that A =

∏i+1
j=0 gj.

Otherwise there exists some gi+1|(
∏i

j=0 gj)
−1A such that gi+1 = eji + eji+1

.

It follows that ji+1 /∈ {j0, . . . , ji}, since otherwise A would have a proper
zero-sum subsequence (cf. 1. for a detailed argument). Similarly to 1., if

i = r− 1 we have {j0, . . . , ji} = [1, r] and thus necessarily eji|(
∏i

j=0 gj)
−1A.

Thus A =
∏s

j=0 gj for some s ∈ [2, r]. In particular, A =
∏s

j=0 gj =

ej0ejs−1

∏s−1
j=1 gj and the edges associated to gj for j ∈ [1, s−1] are the edges

of a path from j0 to js−1.
We summarize these results. Let A ∈ A(G0 +G0). If A /∈ A((G0 +G0) \

G0), then k(A) = 1 + 1
2

∑
g∈G\G0

vg(A). If A ∈ A((G0 + G0) \ G0), then

k(A) = 1
2

∑
g∈G\G0

vg(A) and the associated edges are the edges of a cycle
in the associated graph.

Let B ∈ Ω(G0, S) and B =
∏n

i=1 Ui be a factorization of B into atoms.
Further let m = |{i | Ui ∈ A((G0 + G0) \ G0)}|. Recall that each of these
m atoms is associated to a cycle and thus m ∈ [0, k − 1]. We have

k(B) =
n∑
i=1

k(Ui) = n−m+
1

2

n∑
i=1

∑
g∈G\G0

vg(Ui) = n−m+
|S|
2
.

This implies L(B) ⊂ k(B)− |S|
2

+ [0, k− 1] and thus Ω(G0, S) ⊂ Gk(G). �

The following constants are investigated in extremal graph theory (cf. [2,
Chapter III.3] for detailed references and proofs of the results we mention).

Definition 5.6. Let k, n ∈ N.

(1) p(k) denotes the smallest integer l with the property: every graph
with v vertices, for some v ∈ N, and v + l edges contains at least k
edge disjoint cycles.

(2) p(k, n) denotes the smallest integer l with the property: every graph
with n vertices and n + l edges contains at least k edge disjoint
cycles.

By definition p(k, n) ≤ p(k) and p(k, n) ≤ p(k + 1, n). Moreover, there
exists some nk ∈ N such that p(k, n) = p(k) if n ≥ nk. It is well known that
there exists a graph not containing a cycle with n vertices and n− 1 edges,
i.e., p(k, n) ≥ 0.

For p(·) the following is known:

• p(k) + 4 ≤ p(k + 1).
• p(1) = 0, p(2) = 4, p(3) = 10, and p(4) = 18.
• 1

2
k log2 k < p(k) ≤ 2k(log2 k + log2 log2 k + 2) if k ≥ 2.

The following theorem summarizes the results of Lemma 5.4 and 5.5.
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Theorem 5.7. Let k ∈ N and G and elementary 2-group with rank r. Then
ψk(G) = r − 1 + p(k, r). In particular,

(1) ψ1(G) = r − 1.
(2) 2(k − 1) + r − 1 ≤ ψk(G) ≤ r − 1 + p(k).
(3) ψk(G) = r − 1 + p(k) if r ≥ rk for some rk ∈ N.

Proof. Let S ∈ F(G \ G0) with |S| ≥ r + p(k, r). By definition every
associated graph of S contains k edge disjoint cycles. By Lemma 5.4 this
implies ψk(G) < r + p(k, r).

Conversely, by definition of p(k, r) there exists a graph with r vertices and
r − 1 + p(k, r) edges that does not contain k edge disjoint vertices. Let S
denote the associated sequence. By Lemma 5.5 we have Ω(G0, S) ⊂ Gk(G)
and ψk(G) ≥ |S| = r − 1 + p(k, r).

The additional statements follow, since p(1) = 0, p(k, r) ≥ 2(k − 1) (also
cf. Lemma 5.1), p(k, r) ≤ p(k), and p(k, r) = p(k) for sufficiently large
r. �

Theorem 5.7 and p(k)+4 ≤ p(k+1) imply that the lower bound in Lemma
5.1 is in general not sharp. For example, the graph K3,3, the complete
bipartite graph, is a graph with 6 vertices and 6 + p(2) − 1 = 9 edges not
containing 2 edge disjoint cycles. Thus it follows ψ2(G) = r+ 3 > 2 + r− 1
for r ≥ 6. However, if r ∈ [2, 3], then p(k, r) = 2(k − 1) and thus ψk(G) =
2(k− 1)+ r− 1, i.e., equality holds in Lemma 5.1 (for r = 2 cf. [22, Section
3]).

Moreover, the results on p(·) show that (ψk(G))∞k=1 is not an arithmetic
progression if G is an elementary 2-group with sufficiently large rank. In
order to be able to give an example of a number field with a class group
having this property, we point out that p(1, 4) = 0, p(2, 4) = 3, where
the complete graph K4 serves as example, and p(3, 4) = 5. Thus if G is
an elementary 2-group with rank 4, then (ψk(G))∞k=1 is not an arithmetic
progression. Note that if ψk(G) > ψk−1(G), then it follows that the maxi-
mum in the definition of ψk(G) is realized by a block with |L(B)| = k (also
cf. [8, Lemma 3]) and therefore in this case ψk(G) = B(k,G) respectively
ψk(G) = ψk(G) with ψk(G) as in [8]. Using the KANT database ([4]) we
find that the class group of Q(

√
−1365) is isomorphic to C4

2 .

Remark 5.8. For elementary p-groups with even rank 2r, where p ≥ 3,
one can apply similar ideas as for p = 2 and obtain an alternative and
thus an improved upper bound for ψk(G). In particular, these bounds yield
ψk(G) ≤ (k− 1 + r)p− 1 + p(k), which implies that for each k ∈ N the gap
between lower and improved upper bound does not exceed p(k), whence is
independent of G. However, for arbitrary p it seems that we cannot improve
the lower bound in the way it was done for p = 2.
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[22] J. Śliwa. Remarks on factorizations in algebraic number fields. Colloq.
Math., 46: 123 – 130, 1982.

[23] A. Zaks. Half factorial domains. Bull. Amer. Math. Soc., 82: 721 – 723,
1976.

Added note

Recently, A. Plagne and the author proved that µ(C2r+1
p ) = 2 + rp for

p ∈ P and r ∈ N0. Thus, the condition in Corollary 4.10.2 is in fact always
fulfilled.
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