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1 Introduction

In this paper we give proofs of the existence of companion forms in the elliptic
modular case. We study two situations. The first concerns modulo p classical
cusp eigenforms in weight k ∈ [2, p − 1]; there, our proof is based on the
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modulo p étale-crystalline comparison theorem, in the spirit of the approaches
of [14], [11] and [4] (instead of the original one [17]). The second concerns
p-adic overconvergent forms in weight k = 1. In this case the proof is based on
a deformation theory argument, as in the paper of Buzzard-Taylor [7] and its
generalization [8], both devoted to the study of Artin’s conjecture in degree
2. Our approach of the first part differs from the previous ones by its use of
integral and rigid structures of the dual BGG complex which clarify in our
opinion some calculations of [11] and [4]. Let us recall that we already used
this tool in an essential way in another situation, in [27]. This work is a
translation in the elliptic modular case of a work in progress in the genus two
Siegel modular case, where we establish similar results in the course of the
study of Yoshida’s conjecture ([34] and [32]).

This paper was written in part during a visit at RIMS in Kyōto and at
Hokkaido University, where the excellent conditions of work were appreciated.

2 Modular forms with p-small weight k ≥ 2 and co-
homology

Let N ≥ 1 and Γ1(N) = {γ =
(

a b
c d

)
∈ SL2(Z); d ≡ 1, c ≡ 0 (mod N)}.

Let f be a fixed cusp eigenform of level group Γ1(N) with N ≥ 1 prime
to p, of weight k ≥ 2 and character ε : (Z/NZ)× → C×. We shall write in the
sequel k = n + 2 with n ≥ 0. Let p be a prime which does not divide N and
such that k < p that is, k − 1 = n + 1 < p − 1. We fix an algebraic closure
Qp of Qp; we endow it with the p-adic valuation ordp such that ordp(p) = 1.
We fix an embedding ιp of the field Q of algebraic complex numbers into Qp.
We assume that f is ordinary with respect to this embedding; this means that
f |Tp = ap · f and ordp(ιp(ap)) = 0. Let us put ap = α + β with αβ = pk−1ε(p)
and ordp(ιp(α)) = 0.

Let ρf : Gal(Q/Q) → 2(Qp) be the p-adic Galois representation associated
to (f, p). Let us fix a p-adic discrete valuation subring O ⊂ Qp containing the
Hecke eigenvalues of f and over which the representation ρf is defined. Let
χ : Gal(Q/Q) → Z×p resp. ω : Gal(Q/Q) → F×p , be the p-adic, resp. modulo p
cyclotomic character.

Recall that P. Deligne in a letter to Serre (May 28th, 1974) proved that
the assumption of ordinarity of f at ιp implies that the restriction of ρf to a
decomposition group Dp at p has a special form. For any γ ∈ O×, we define
ξ(γ) : Dp → O× to be the unramified character sending a geometric Frobenius
at p to γ. Then,
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ρf |Dp ∼
(

ξ(α) ∗
0 ξ( β

pk−1 )χ1−k

)

Let $ be a uniformizing parameter of O and F = O/($) its residue
field. We assume throughout this paper that the residual representation
ρf : Gal(Q/Q) → GL2(F) is irreducible. The first part of the paper (Sec-
tions 2,3,4) is devoted to the proof of the following Theorem, due to Gross
[17].

Theorem 1 If ρf is tamely ramified, and if k < p − 1, then there exists an
ordinary cusp eigenform g of level Γ1(N) and weight k′ = p+1−k with Hecke
eigenvalues bn, such that for any n ≥ 1, prime to pN , we have an ≡ nk−1bn

(mod p), where p is the prime of Z determined by ιp.
If k = p− 1, the same conclusion holds except that the ordinary cusp form

g of weight k′ = 2 may have level N or Np, in which case we can replace it
by a form of weight p + 1 and level N .

This can be reformulated as a confirmation of the (now proved) Serre’s
Residual Modularity Conjecture as follows. Indeed, by Deligne’s formula
above, we have

ρf |Dp ∼
(

ξ(α) ∗
0 ξ( β

pk−1 )ω1−k

)

with the upper right shoulder being zero; consider the Galois representation
ρ = ρf⊗ωk−1; it is odd, continuous, irreducible and its restriction to the inertia
subgroup Ip is conjugated to

ρ|Ip ∼
(

1 ∗
0 ω1−k′

)

(with ∗ = 0 and k′ = p + 1− k ∈ [2, p− 1]), so its Fontaine-Serre’s weights are
0 and k′ − 1; it must therefore come from a ιp-ordinary cusp eigenform g of
level N prime to p, and weight k′ < p:

ρf ⊗ ωk−1 = ρg.

Comparing the traces on Frobenius elements at ` 6 |Np, and using Brauer-
Nesbitt theorem, we see that this statement is equivalent to Gross theorem as
stated above: an ≡ bnnk−1 (mod p) for all n’s prime to Np.
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2.1 Integral modular forms

We briefly recall some classical definitions. More details can be found in [24],
[18], [19] and [20]. Let X be the modular curve defined over Z[ 1

N ] which clas-
sifies elliptic curves endowed with a point of order exactly N . If N > 4, it is
a fine moduli scheme. We assume this for the moment. Then, it is a geomet-
rically connected smooth quasiprojective scheme endowed with a universal
elliptic curve f : E → X. Let X be the arithmetic smooth compactifica-
tion over Z[ 1

N ] of X obtained by adding the relative divisor C = Cusps of
cusps ( see [24]); the divisor C is finite flat over Z[ 1

N ]. This compactifica-
tion is endowed with a universal one dimensional semi-abelian group scheme
(the neutral connected component of the universal generalized elliptic curve)
f : G → X with a section of order exactly N . Let e be the zero section of f .
The sheaf of relative differentials ω = e∗ΩG/X is locally free of rank one. Let
π : Tω → X be the Gm-torsor given by Tω = IsomX(OX , ω). The OX -Module
π∗OTω is a representation of the group scheme Gm; any such representation
is totally decomposed by the characters of the torus X∗(Gm) = Z; for any
k ∈ Z, let χk : t 7→ tk be the corresponding character of Gm. Then we have
π∗OTω =

⊕
k∈Z π∗OTω [χ−k]. Let us put ωk = π∗OTω [χ−k]; it is an invertible

sheaf; we define the subsheaf ωk = ωk(−Cusps). For any Z[ 1
N ]-algebra R, we

define the modules of arithmetic modular resp. cuspidal forms by

Mk(Γ, R) = H0(X ×R, ωk) and Sk(Γ, R) = H0(X ×R, ωk).

2.2 Hodge filtration and Gauss-Manin connection

We recall definitions by stressing the fact that they are valid over the ring
Z[ 1

N ], hence over any Z[ 1
N ]-algebra.

Let f : E → X be the Kuga-Sato compactification of E → X; the relative
surface E is regular and the smooth locus of f is G ⊂ E; moreover, the inverse
image D = f

−1(C) = E\E is a divisor with normal crossings in E. Let H =
R1f∗Ω•E/X

(dlog D/C). It is a rank two locally free OX -sheaf together with
a two-step filtration -the Hodge filtration, and a log-connection -the Gauss-
Manin connection, ∇ : H → H ⊗ ΩX(dlog C). Let us recall the definition of
this filtration and this log-connection.

First, the Hodge filtration is simply given by the short exact sequence

0 → f∗Ω
1
E/X

(dlog D/C) → R1f∗Ω
•
E/X

(dlog D/C) → R1f∗OE → 0

that is, Fili = H if i ≤ 0, Fil1 = f∗Ω1
E/X

(dlog D/C), and Fili = 0 if
i > 1. Note that a trivial calculation in local charts at cusps shows that
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f∗Ω1
E/X

(dlog D/C) = e∗ΩG/X = ω. Then by Serre duality, we have R1f∗OE
∼=

ω−1, hence, gr0H = ω−1 and gr1H = ω.
The Gauss-Manin connection is defined as follows. Consider the short

exact sequence

0 → f
∗Ω1

X
(dlog C) → Ω1

E
(dlog D) → Ω1

E/X
(dlog D/C) → 0

It gives rise to a filtration of the log-de Rham complex Ω•
E
(dlog D) by

Fili = Im (f∗Ωi
X

(dlog C)⊗ Ω•−i
E

(dlog D) → Ω•
E
(dlog D)) for i = 0, 1, 2.

The associated graded pieces are

gri = f
∗Ωi

X
(dlog C)⊗ Ω•−i

E/X
(dlog D/C)

(i = 0, 1).
In particular we have a short exact sequence of complexes

0 → f
∗Ω1

X
(dlog C)⊗Ω•−1

E/X
(dlog D/C) → Ω•

E
(dlog D) → Ω•

E/X
(dlog D/C) → 0

The log-connection ∇ is defined as the connecting morphism associated to
Rf∗ applied to this short exact sequence; it reads:

R1f∗Ω
•
E/X

(dlog D/C) → R2f∗(Ω
•−1
E/X

(dlog D/C)⊗ f
∗Ω1

X
(dlog C))

that is,
∇ : H → H⊗ Ω1

X
(dlog C)

The locally free sheaf Hn = SymnH of rank n + 1 inherits a ”tensor prod-
uct” Hodge filtration (Filin)i and a ”tensor product” log-connection ∇n; the
filtration (Filin) (= i = 0, . . . n + 1) is given by FilinHn =

∑
k1,...,kn

Filk1H ⊗
. . .⊗ FilknH the sum being taken over all n-uples of integers kj ’s, equal to 0,
1 or 2, such that k1 + . . . + kn = i. It follows easily from the definition that
griHn = ω−n+2i for i = 0, . . . , n, and griHn = 0 otherwise. Similarly, the
log-connection ∇n : Hn → Hn ⊗ Ω1

X
(dlog C) is given by ∇n(v1 ⊗ . . . ⊗ vn) =∑n

i=1 v1⊗ . . .⊗∇(vi)⊗ . . .⊗ vn. It obviously satisfies Griffiths transversality:
∇n(Filin) ⊂ Fili−1

n . We denote by H(n) the de Rham complex ∇n : Hn →
Hn ⊗ Ω1

X
(dlog C) concentrated in degrees n and n + 1. It is filtered by the

absolute Hodge filtration Filabs
i (i = 0, . . . , n + 2) defined as the convolution

of the ”filtration bête” on OX → ΩX(dlog C) with Fil•n, namely:

Filabs
iH(n) : Filin → Fili−1

n ⊗ ΩX(dlog C)
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for i = 0, . . . , n + 1 and Filabs
n+2H(n) = 0. Hence, it gives rise to a sequence

of complexes grabs
iH(n) (with differential grabs

i∇n):

grabs
0 : ω−n → 0

grabs
1 : ω−n+2 → ω−n ⊗ ΩX(dlog C)

...
grabs

i : ω−n+2i → ω−n+2i−2 ⊗ ΩX(dlog C)
...

grabs
n : ωn → ωn−2 ⊗ ΩX(dlog C)

grabs
n+1 : 0 → ωn ⊗ ΩX(dlog C)

We then remark that for i = 1, . . . , n, the differential gri∇n of the i-th
complex grabs

iH(n) is an isomorphism. More precisely, the construction of
the Kodaira-Spencer homomorphism KS : ω → ω−1 ⊗ Ω1

X
(dlog C) from the

Gauss-Manin connection shows that grabs
i∇n = Idω−n+2i−1 ⊗KS. Since KS

is an isomorphism, the same holds for gri∇n.
Let us make these data explicit.
Recall the situation for n = 0. For each Z[ 1

N ]-affine neighborhood V of the
divisor C of cusps in X, we consider the affine covering (X, V ) of X; we form
the Cech bicomplex :

OX(X ∩ V ) d→ Ω1
X

(X ∩ V )
↑ ↑

OX(X)⊕OX(V ) d→ Ω1
X

(X)⊕ Ω1
X

(dlog C)(V )

The associated total complex (in degrees 0, 1, 2) calculates H1
log−dR(X).

Similarly, for n > 0, the total complex (in degrees n, n+1, n+2) associated
to the Cech bicomplex

Hn(X ∩ V ) ∇n→ Hn ⊗ Ω1
X

(X ∩ V )
↑ ↑

Hn(X)⊕Hn(V ) ∇n→ Hn ⊗ Ω1
X

(X)⊕Hn ⊗ Ω1
X

(dlog C)(V )

calculates the Z[ 1
N ]-module H•

log−dR(X,Hn). This cohomology module is
filtered by the total Hodge filtration on the complex H(n) defined by the
subcomplexes (concentrated in degrees n and n + 1) FiliH(n) = FiliHn ⊕
Fili−1Hn ⊗ Ω1

X
(dlog C) for i = 0, . . . , n + 1; moreover, for i = 1, . . . , n,

griH(n) = ω−n+2i ⊕ ω−n+2i−2 ⊗ Ω1
X

(dlog C), while gr0H(n) = ω−n ⊕ 0 and
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grn+1H(n) = 0⊕ωn⊗Ω1
X

(dlog C) We can now determine the spectral sequence
associated to this filtration

Ei,j
1 = H i+j(X, griH(n)) ⇒ H i+j−n

log−dR(X,Hn)

The determination above of gri∇n leads to the

Corollary 2.1 We have a natural short exact sequence of Z[ 1
N ]-modules

0 → En+1,0
1 → H1

log−dR(X,Hn) → E0,n+1
1 → 0

where En+1,0
1 = H0(X, ωn+2) and E0,n+1

1 = H1(X,ω−n). Here natural means
compatible to algebraic correspondences.

Proof: Indeed, since gri∇n are isomorphisms for i = 0, . . . , n, we notice that
Ei,j

1 = 0 unless i = 0 and j = n + 1 or i = n + 1 and j = 0, in which case
En+1,0

1 = H1(X, grn+1H(n)) = H0(X, ωn ⊗ Ω1
X

(dlog C)) = H0(X, ωn+2) by
Kodaira-Spencer isomorphism. Similarly, E0,n+1

1 = H1(X, gr0H(n)) which is
equal to H1(X,ω−n).

3 de Rham cohomology and dual BGG complex

Let p be a prime number not dividing 2N and such that n + 1 < p − 1. We
fix as base ring the Z[ 1

N ]-algebra Zp. In this section all modules and sheaves
of modules are Zp-modules. We recall how to compute the Hodge filtration
on Hn and on H1

log−dR(X,Hn) in group-theoretic terms, via the dual BGG
complex.

3.1 Relative Koszul and BGG complexes

For any affine Zp-group scheme H = SpecA, let h be its Lie algebra, Uh its
universal enveloping algebra, and U(H) its distribution algebra ([21] Chapter
7, or [12] II.1.12). Let J be the kernel of the counit character A → Zp; recall
that U(H) =

⋃
k Uk(H) where Uk(H) = HomZp(A/Jk+1,Zp). The product

(of convolution) of two distributions µ, ν : A → Zp is the composition of
their tensor product µ ⊗ ν : A ⊗ A → Zp with the comultiplication c : A →
A⊗A. Since U1(H) = HomZp(A/J2,Zp) = Zp⊕h, there is a canonical filtered
algebras homomorphism U(h) → U(H); it is an isomorphism over a field
of characteristic zero, hence induces an injective Zp-algebra homomorphism
Uh ↪→ U(H) Its reduction modulo p, however, is not injective: over a field of
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characteristic p, the kernel is the ideal Uh[p] generated by p-th powers (see [21]
II.1.12). This implies therefore that for any k < p, the injection Ukh ↪→ Uk(H)
is actually an isomorphism.

For any representation V of H defined over Zp, the natural action of Uh on
V extends naturally to U(H). Namely, consider the comorphism cV : A(V ) →
A ⊗Zp A(V ) of the action H × V → V and for any µ ∈ U(H), let us form
(µ⊗ Id) ◦ cV ; this is the comorphism of the action of µ on V .

Recall also the Invariance Theorem ([12] II.4.6) that the ring of left-
invariant differential operators on H is isomorphic to U(H).

If H is a split Chevalley group over Zp, one can give a rather explicit
description of the inclusions Uh ⊂ U(H) ⊂ Uh ⊗ Qp. Namely, let B =
(Zi,Hj , Xk) be a Chevalley basis of h (with Zi central, Hj semisimple and
Xk nilpotent) then, U(H) is generated by the divided powers Xn

k
n! , and the di-

vided difference products
(

Zi

n

)
and

(
Hj

n

)
for all n ≥ 0 (see [21], II.1.12

and [9] or [3] Chapt.VIII,Sect.12).
Consider the Zp-group scheme G = GL2; let T be its standard torus, con-

sisting of diagonal matrices, and B its standard Borel, consisting of upper
triangular matrices in G. Let V be the standard two dimensional represen-
tation of G and Vn = SymnV ; under the assumption n < p, this module can
be called unambiguously the irreducible Zp-representation of highest weight n
(see [29] Sect. 1.9, Lemma. Let g, b resp. t be the Zp-Lie algebra of G, B
resp. of T . For any Zp-representations Y of G and Y ′ of B, recall the Garland-
Lepowsky ”tensor identity” (see [15] Prop.1.7 and [29] Sect.2.2). It provides a
canonical isomorphism of Ug-modules (and similarly of U(G)-modules):

(TI1) (Ug⊗Ub Y ′)⊗Zp Y ∼= Ug⊗Ub (Y ′ ⊗Zp Y |b)
resp.

(TI2) (U(G)⊗U(B) Y ′)⊗Zp Y ∼= U(G)⊗U(B) (Y ′ ⊗Zp Y |b)
where Y |b denotes the b-module restriction of the action of g on Y to b.
Consider the natural morphism g/b → Ug⊗UbZp which sends X to X⊗1,

where X ∈ g is any lifting of X ∈ g/b. It gives rise to a resolution by
(relative) Verma modules of the trivial representation Zp, called the relative
Koszul resolution (see [1] or [29] Sect.2.2).

0 → Ug⊗Ub g/b
d0→ Ug⊗Ub Zp

d−1→ Zp → 0

where d−1 is induced by the augmentation character Ug → Zp.
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By tensoring by a representation Y and applying the isomorphisms (TI1),
one obtains a resolution of the g-representation Y (relative Koszul complex):

Ug⊗Ub (g/b⊗Zp Y |b) d0→ Ug⊗Ub Y |b
with the maps d0(ξ ⊗X ⊗ v) = ξX ⊗ v − ξ ⊗Xv and d−1(ξ ⊗ v) = ξv.
For purpose of coherence with the Hodge filtration later, we consider this

complex as placed in degree −(n + 1) and −n.
Replacing Uh by U(H) for H = G,B, and using (TI2) instead of (TI1),

we get another relative Koszul complex. We shift it by n, so that it is now
concentrated in degrees −1 − n and −n. The resulting complex is denoted
S(G,B, Y ):

S(G,B, Y ) U(G)⊗U(B) (g/b⊗ Y |b) → U(G)⊗U(B) Y

of generalized relative Verma Zp-modules (in the terminology of [29] Sect.4.1).
Since we deal with G = GL2, so that G/B is one-dimensional, it turns out
that this complex is actually a resolution of the G-representation Y (by gen-
eralized relative Verma modules), although it is not so for higher dimensional
Chevalley groups.

Let (X−, X+,H, Z) be the standard basis of the Lie algebra g of G, with

X− =
(

0 0
1 0

)
, X+ =

(
0 1
0 0

)
, H =

(
1 0
0 −1

)
and Z =

(
1 0
0 1

)
; let

S =
(

0 1
1 0

)
and W = {1, S}; note that ad(S)(H) = −H; finally, let Z be

the center of U(G); as mentioned previously, it is generated by
(

Z
n

)
(n ≥ 0)

and the center Z ′ of U(G′) (distribution algebra of the derived group G′ of
G);

Consider the (arithmetic) Harish-Chandra isomorphism

γo : Z ′⊗Qp
∼= Qp[H]W = Qp[

1
2
H2+H], z = P (H)+y.X+ 7→ γo(z) = P (H),

where the action of the symmetry S ∈ W is by H 7→ −2−H. The image by
γo of the Casimir element C = X+X− + X−X+ + 1

2H2 is 1
2H2 + H.

Recall that the infinitesimal character of a Verma module M over Zp or
of a g-irreducible Zp-representation Y is the character of Z giving its action
on M resp. Y .

By the very definition of the Harish-Chandra isomorphism, the infinites-
imal character χ(n;c) of M(n;c) = U(G) ⊗U(B) Zpwn,c for wn,c a vector such
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that Hwn,c = nwn,c, Zwn,c = cwn,c and X+wn,c = 0, (n, c ∈ Z), is given by
χ(n;c)(C) = 1

2n2 + n, χ(n;c)(Z) = c.
Moreover, the Verma modules M(n;c) and M(n′;c) have the same infinitesi-

mal character if and only if c′ = c and n′ = n or n′ = −2−n; in particular, the
infinitesimal character χY : Z → Zp of an irreducible representation (Y, ρY ) of
G is uniquely determined by the pair of eigenvalues (ρY (H); ρY (Z)) of (H, Z)
on a highest weight vector w ∈ Y : if ρY (H) = n and ρY (Z) = c, then
χY (C) = 1

2n2 + n (and χY (Z) = c).
Let us describe explicitely the subcomplex of S(G,B, V ∨

n ) on which Z acts
by the infinitesimal character of V ∨

n (up to semisimplification). Via the descrip-
tion above, the infinitesimal character of Vn is given by the pair (n;n) hence
that of V ∨

n is described by (n;−n). On the other hand, for any pair of integers
(m, c) ∈ Z2 such that c ≡ m (mod 2), let W(m;c) be the one-dimensional

representation of T given by the character diag(t1, t2) 7→ tm1 (t1t2)
c−m

2 . Recall
that HomU(G)(U(G)⊗U(B) W(m;c),U(G)⊗U(B) W(m′;c′)) does not vanish if and
only if c = c′ and m = m′ or m = −m′−2, in which cases it is free of rank one
(see for instance [16]). For m′ = n and m = −n− 2, a basis of this module is
provided by ξ⊗ 1 7→ ξXn+1

− ⊗ 1. Indeed, for any choice of a basis wk of W(k;c),
the map w−n−2 7→ Xn+1

− ⊗wn is B-linear To see this, one applies the formulae
in Ug: HXk− = Xk−H−2kXk− and X+Xk− = Xk−X+ +kXk−1

− H−k(k−1)Xk−1
−

in order to get H ·(Xn+1
− ⊗wn) = −(n+2)Xn+1

− ⊗wn and X+ ·(Xn+1
− ⊗wn) = 0.

The complex S(G,B, V ∨
n ) is filtered by complexes of Verma modules; let

S(G,B, V ∨
n )χ(n;−n)

be the subcomplex cut by the infinitesimal character χ(n;−n)

of V ∨
n . It is given by the last line of the diagram below. Note that it consists in

U(G)-simple generalized Verma modules. Since n < p, we get a direct factor
subcomplex (see [29] Sect.2.7, Corollary).

((U(G)⊗U(B) g/b)⊗Zp Y )χ(n;−n)
→ ((U(G)⊗U(B) Zp)⊗Zp Y )χ(n;−n)

|| ||
((U(G)⊗U(B) W(−2;0))⊗Zp Y )χ(n;−n)

((U(G)⊗U(B) Zp)⊗Zp W(n;−n))χ(n;−n)

|| ||
U(G)⊗U(B) W(−n−2;−n) → U(G)⊗U(B) W(n;−n)

where the equality of U(G)-modules

((U(G)⊗U(B) W(−2;0))⊗Zp V ∨
n )χ(n;−n)

= U(G)⊗U(B) W(−n−2;−n)

follows from the formula, valid for any b-representation T :

(U(G)⊗U(B) T )χ(n;−n)
= U(G)⊗U(B) Tχ(n;−n)

,
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together with the fact that only the last term of the filtration by b-
submodules of W(−2;0)⊗Zp V ∨

n corresponds to an action of Z by the character
χ(n;−n).

Similar remark for the equality

(U(G)⊗U(B) V ∨
n )χ(n;−n)

= U(G)⊗U(B) W(n;−n)

Moreover, the bottom horizontal arrow is an injection given by ξ ⊗ w 7→
ξXn+1

− ⊗ w.

Definition 3.1 The BGG complex BGG(V ∨
n ) is the filtered subcomplex of

S(G,B, V ∨
n ) given by:

BGG(V ∨
n ) : U(G)⊗U(B) W(−n−2;−n) → U(G)⊗U(B) W(n;−n)

placed in degrees −n and −(n + 1).

Comments:
Its differential, which is of order n+1 is given by ξ⊗w−n−2 7→ ξXn+1

− ⊗wn.
Note that as a b-representation, V ∨

n admits W(n;−n) as a subrepresentation by
sending wn to vn so we get

i0 : Ug⊗Ub W(n;−n) ↪→ Ug⊗Ub V ∨
n , 1⊗ wn 7→ 1⊗ vn.

However, g/b⊗V ∨
n does not admit W(−n−2;−n) as b-subrepresentation. This

apparent paradox is solved as follows. In fact, Ug⊗Ub g/b⊗V ∨
n admits several

copies of W(−n−2;−n) as t-subrepresentations, namely the lines generated by
the vectors Xi− ⊗ X− ⊗ Xn−i

− vn (for i = 0, . . . , n) but a simple calculation
shows that it admits only one copy of W(−n−2;−n) as b-submodule, namely the
line generated by

n∑

i=0

Xi
− ⊗X− ⊗Xn−i

− vn

The meaning of this statement is that this vector is the unique linear combi-
nation of the Xi−⊗X−⊗Xn−i

− vn’s annihilated by X+. In particular, we have
a morphism of Ug-modules

i1 : Ug⊗Ub W(−n−2;−n) ↪→ Ug⊗Ub g/b⊗ V ∨
n

given by 1⊗ w−n−2 7→ −∑n
i=1 Xi− ⊗X− ⊗Xn−i

− vn.
The inclusion of the BGG complex as a subcomplex of the relative Koszul

complex is given by (i1, i0). Indeed one checks easily that

i0(Xn+1
− ⊗ wn) = d0(i1(1⊗ w−n−2)).

11



We define the increasing H-filtration FilHi (i = 0, 1, . . . , n+2) on S(G,B, V ∨
n )

by putting FilHi to be the submodule in

U(G)⊗U(B) (g/b⊗Zp V ∨
n )⊕ U(G)⊗U(B) V ∨

n

induced from U(B) to U(G) of the B-submodules sum of the H-eigenspaces
corresponding to eigenvalues ≥ n + 2− 2i:

FilHi : U(G)⊗U(B) (g/b⊗Zp V ∨
n )≥n+2−2i → U(G)⊗U(B) (V ∨

n )≥n+2−2i

For i 6= 1, n + 2, its i-th graded complex grH
i is given by an isomorphism

grH
i : U(G)⊗U(B) W(n−2i;−n)

∼= U(G)⊗U(B) W(n−2i;−n)

while
grH

1 : 0 → U(G)⊗U(B) W(n;−n)

and
grH

n+2 : U(G)⊗U(B) W(−n−2;−n) → 0

Moreover, this filtration induces the following very simple filtration on
BGG(V ∨

n ):
FilH0 BGG = 0, FilH1 BGG : 0 → U(G) ⊗U(B) W(n;−n) and FilHn+2BGG =

BGG(V ∨
n ).

For this filtration, we have the same graded pieces as above

grH
1 BGG : 0 → U(G)⊗U(B) W(n;−n)

and
grH

n+2BGG : U(G)⊗U(B) W(−n−2;−n) → 0

Note that the differential is zero for each of these complexes.
We shall relate this filtration to the Hodge filtration in the following sec-

tion.

3.2 (log-)de Rham and dual BGG complexes

On Z2
p (column vectors), there is a standard symplectic pairing given by the

determinant, preserved by the special linear group G′, and a standard filtra-
tion, preserved by B; similarly, on the sheaf H defined in Sect.2.2, there is
the Poincaré symplectic pairing and the Hodge filtration. Let us consider the
Zp-scheme TH = IsomX,sympl,fil(O2

X
,H), where the index ”sympl” and ”fil”

refers to isomorphisms compatible both to the symplectic pairings and the
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filtrations; note that on the target module, we view these data via the identi-
fication O2

X
= Z2

p ⊗OX (see [27] Sect.5.2 for more details).
Let us put B′ = B∩G′; the morphism TH → X defines a right B′-torsor. it

is related to the (right)Gm-torsor Tω that we defined in Sect.2.1. Namely, there
is a forgetful morphism TH → Tω obtained by restricting a filtered isomorphism
to the Fil1 of the standard filtration of O2

X
(taking values in ω ⊂ H).

The torsor TH allows us to define a covariant sheafification functors FZp

from the category of finite free Zp-representations of B′ to the category FF
of finite locally free OX -modules with filtration.

Note that we should consider representations of B, that is, we should
include the action of the center, but we shall omit it for simplicity, so that we
write Wm instead of W(m;c), by forgetting about the central character.

For any object W of RepZp(B
′), we define FZp(W ) as the sheaf of sections

of the bundle

TH
B′× W → X

Actually, in the sequel, we’ll also consider the contravariant version of FZp :

F∨
Zp

= HomOX
(−,OX) ◦ FZp

which is exact on the full subcategory of B′-representations which are finite
free over Zp. For such a representation W , we thus have

F∨
Zp

(W ) = HomOX
(FZp(W ),OX).

Remark: Denoting by T the Levi quotient of B, and by Gm the ”semisimple”
subtorus of T , so that B′/N = Gm, we see that if W is a Gm-module, then
the forgetful morphism above induces a vector bundle isomorphism

(CompTors) TH
B′× W ∼= Tω

Gm× W.

We see immediately that FZp(Zp) = OX and more generally for any n ∈ Z,
FZp(Wn) = ωn, so that F∨

Zp
(Wn) = ω−n. This can be viewed from the

definition since it is obvious that FZp(W1) = ω; it can also be checked over
C: the pull-back of Tω to the upper half plane P is given by P ×C× with left
action of the discrete group Γ given by the automorphic factor j(γ, z), hence
Wn is sent to ωn.

By the Kodaira-Spencer isomorphism, this implies that FZp(g/b) = TX(−log C)
namely, the subsheaf of the tangent bundle consisting of sections which, near
the cusps, are multiple of q d

dq ; it is also the dual sheaf of ΩX(dlog C).
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For n < p, the Zp-representation Vn of G is defined unambiguously and we
have by definition F∨

Zp
(V ∨

n ) = Hn.

We want to extend the functor FZp to the category of induced modules
M(V ) = Ug ⊗Ub V , resp. M(V ) = U(G) ⊗U(B) V (V a b-module of weights
0 ≤ ` < p),

by the same formula

FZp(M(V )) = TH
B× Ug⊗Ub V

resp.

FZp(M(V )) = TH
B× U(G)⊗U(B) V

it will take values in the category of finite modules over the ring DX of log C-
differential operators, resp. D̃X of log C-divided power differential operators,
on X (see [13] p.217 and [27] Sect.4.2).

For this, we need to recall some algebra.
Let G = SpecA, hence A = OG; consider the diagram of short exact

sequences
0 → I → A⊗Zp A

m→ A → 0
↓ ↓ ↓

0 → J → A
ε→ Zp → 0

where m denotes the multiplication, ε the counit morphism and the vertical
maps are 1⊗ f − f ⊗ 1− 7→ f − ε(f), resp. ε⊗ Id, resp.ε.

Recall that U(G) is the union of the submodules Uk(G) = HomZp(A/Jk+1,Zp).
The left A-module D of differential operators on G is the union of Dk =

HomA((A ⊗ A)/Ik+1, A), where the left-A-module structure on A ⊗ A is by
multiplication on the first factor. We have therefore a natural map Φ : U(G) →
D given by Φ(ξ)(f ⊗ g) = fξ(g) The image of Φ is precisely the subring of
left-invariant differential operators: η ∈ D such that for the left translation by
any g ∈ G, L∗g ◦ η = η ◦ (L∗g ⊗ Id).

Similarly, let us compute U(G)⊗U(B) Zp as a left B-module.
Let JB be the kernel of the map OB → Zp of evaluation at 1. The big

cell N− ×B of G is the open set of matrices
(

a11 a12

a21 a22

)
such that a11 6= 0.

Hence, the restriction to this cell induces an inclusion with Zp-flat cokernel
OG ↪→ OG[ 1

a11
] = ON− ⊗OB. Therefore OG ∩ (1⊗ JB) is Zp-direct factor in

OG and we have a commutative diagram
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0 → Hom((ON− ⊗ JB)<0,Zp) → Hom(ON− ⊗ JB,Zp) → Hom(OG ∩ (ON− ⊗ JB),Zp)
↓ ↓ ↓

0 → Hom((ON− ⊗OB)<0,Zp) → Hom(ON− ⊗OB,Zp) → Hom(OG,Zp)
↓ ↓ ↓
0 → Hom(ON− ⊗ 1,Zp) = Hom(ON− ,Zp)

where the upper line of vertical arrows are injections, and the lower are sur-
jections. We wrote (ON− ⊗OB)<0 for the Zp-submodule of ON− ⊗OB where
the discrete valuation orda11 at a11 is strictly negative. The exactness of the
horizontal lines, resp. vertical lines come from the Zp-linear decomposition
ON−⊗OB = OG⊕(ON−⊗OB)<0 resp. ON−⊗OB = (ON−⊗JB)⊕(ON−⊗1)
from which it follows that (ON− ⊗ JB)<0 = (ON− ⊗OB)<0.

Thus, U(G) ⊗U(B) Zp =
⋃

k Hom(ON−/J k+1
N− ,Zp). Note that we have the

following Zp-linear decomposition:

Hom(ON−/J k+1
N− ,Zp) =

⊕

`≤k

Zp
1
`!

X
`
−

where X− denotes the linear form sending f ∈ ON− to the value at 0 ∈ Ga of
its derivative, once one uses the 1-parameter group U−α : Ga → N− sending

x to
(

1 0
x 1

)
to identify Ga to N−. One can then describe explicitely the

left action of B by the formulas HX
k
− = −2kX

k
−, X+X

k
− = −k(k − 1)Xk

−.

By what precedes, the product TH×Hom(ON−/J k+1
N− ,Zp) identifies to the

bundle of left B-invariant log C-PD differential operators of order ≤ k over

TH. Hence, the contracted product TH
B′× Hom(ON−/J k+1

N− ,Zp) identifies to
the bundle of log C-PD differential operators of order ≤ k on X.

Once this is fixed, one can determine the image of M(Zp) and M(g/q) As
left OX -Module, we have

FZp(M(Zp)) =
⊕

k

1
k!

TX(−dlog C)⊗k = D̃X

and similarly

FZp(M(g/b)) = D̃X ⊗OX
TX(−dlog C).

More generally, for any Zp-finite free B-module W (with fixed central ac-
tion), put FZp(W ) = W; then

15



FZp(M(W )) = D̃X ⊗OX
W.

Remark: The ringsDX , DX and D̃X areOX -bimodules, but notOX -algebras
(non-commutativity of the functions with the differential operators).

Lemma 3.2 1) FZp(M(Zp)) = DX , FZp(M(Zp)) = D̃X and

FZp(M(g/b)) = DX⊗OX
TX(−dlog C), FZp(M(g/b)) = D̃X⊗OX

TX(−dlog C),

2) The image by F∨
Zp

of the relative Koszul resolution of Zp: M(g/b) →
M(Zp) yields the log-de Rham complex OX

d→ ΩX(dlog C).
3) For any n ∈ [0, p[, the image by F∨

Zp
= HomOX

(−,OX) of the relative
Koszul resolution of V ∨

n : M(g/b ⊗ V ∨
n ) → M(V ∨

n ) yields the log-de Rham
complex H(n) for Hn with its Gauss-Manin log-connection ∇n:

Hn
∇n→ Hn ⊗OX

ΩX(dlog C)

Proof: 1) is already proved. For 2) and 3), let us briefly recall how from a
morphism of degree 1

(∗) DX ⊗OX
W1 → DX ⊗X W0

gives rise to a (log-)connection W∨
0 →W∨

1 ⊗X ΩX(dlog C).
Let DX,i, i = 0 resp. 1, be the module of log C-differential operators of

degree 0, resp. at most 1. Since the morphism (∗) has degree 1, it preserves
DX,1. We have OX = DX,0 while DX,1 inserts in a short exact sequence of
OX -modules

0 → TX(−dlog C) a→ DX,1
b→ OX → 0

By composing with the inclusion a⊗ IdW and the projection b⊗ IdW , the
map (∗) gives rise to

TX(−dlog C)⊗W1 →W0

whose dual provides the desired log-connection.
Let us apply this to the image by FZp of M(g/b ⊗ V ∨

n ) → M(V ∨
n ). The

morphism is given, for ξ ∈ Ug, Y ∈ g/b and v∨ ∈ V ∨
n , by ξ ⊗ Y ⊗ v∨ 7→

ξY ⊗v∨−ξ⊗Y v∨ hence it is degree 1, and after dualizing we find a morphism

δ : Hn → Hn ⊗OX
ΩX(dlog C)
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given for f ∈ OX and v ∈ Hn by fv 7→ (Y ⊗ v∨ 7→ Y f · 〈v, v∨〉 − f〈Y v, v∨〉),
in this formula we recognize the Gauss-Manin connection ∇n as desired.QED.

We can also define a similar functor FZ/pZ for the categories of Z/pZ-
representations resp. Z/pZ-generalized Verma modules. By construction, we
have

FZ/pZ(W/pW ) = FZp(W )⊗ Z/pZ, andFZ/pZ(M/pM) = FZp(M)⊗ Z/pZ.

It sends S(G,B, V ∨
n ) to the logarithmic de Rham complex on X.

Let K•(n) = (K0
n → K1

n) be the subcomplex of H(n) defined as the image
of the complex BGG(G,B, V ∨

n ) by F∨
Zp

(resp.FZ/pZ). The complex K•(n) is
called the dual BGG complex.

One has K0
n = ω−n and K1

n = ωn+2 with a differential induced by ∇n. By
Definition 3.1, this differential is dual to w−n−2 7→ Xn+1

− ⊗ wn. If we want to
take into account the determinant character, we put ωs(t) = Ws;s+2t; then,
the exact formula for the dual BGG complex is

(∗∗) K•n : ω−n(n + 1) → ωn+2

This is important for the future action of the Hecke operators on the complex.

Theorem 2 The complex K•(n) is a direct factor filtered subcomplex of H•(n)
which is quasi-isomorphic to H•(n).

The Hodge filtration on H•(n) induces on K•(n) the filtration

Fil0 : ω−n → ωn+2

Filn+1 : 0 → ωn+2

Filn+2 : 0 → 0

The proof is given for more general groups in [27] Theorem 6 Sect.5.4.
This is where one needs to introduce the divided power versions of the Koszul
resp. BGG complexes (that is to replace Ug by U(G)), and also to introduce
a functor, called the L functor, sending DX to D̃X , and the logarithmic de
Rham complex to its divided power analogue in order to transform the log de
Rham complex and the BGG dual complex into résolutions.

3.3 The ordinary locus

We use the notations of Section 2.1. Let X ⊗ Z/pZ be the modulo p modular
curve and G → X ⊗ Z/pZ the reduction modulo p of the semi-abelian curve,
neutral component of the universal generalized elliptic curve. Let G[p]0 be the
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neutral component of the quasi-finite group scheme G[p] of p-torsion in G. It is
a finite flat group scheme over X ⊗Z/pZ . The ordinary locus S of X ⊗Z/pZ
is the largest subscheme over which G[p]0 is of multiplicative type.

The multiplication by p on G factors through the relative Frobenius mor-
phism F : G → G(p), where G(p) denotes the pull-back of G by the absolute
Frobenius on X ⊗Z/pZ. Let V (the Verschiebung morphism) be the quotient
morphism V : G(p) → G. Recall that for any line bundle L on X⊗Z/pZ, there
is a canonical isomorphism L(p) ∼= L⊗p The Hasse invariant H is the modulo p
modular form of weight p− 1 defined as the morphism V ∗ : ω → ω(p) deduced
from V . By definition of S, this is the locus where V is étale, that is, where H
does not vanish. Hence S is open. It is non-empty hence dense, by existence
of the Tate curve. Since ω is ample on X ⊗ Z/pZ, the open subscheme S is
affine.

3.4 Frobenius and Up

Let X0(p) be the (compactified) modular curve classifying p-isogenies (E →
E′) over X over Zp (see [24]). Note that by definition of X, an auxiliary Γ1(N)-
level structure (N ≥ 4) with p prime to N , is present but not mentioned in
the sequel. We have two degeneracy maps π1 sending (E → E′) to E and π2

sending (E → E′) to E′. An algebraic correspondence (π1, π2, α) acting on
the pair (X,F) for a sheaf F on X is determined by (π1, π2) and a morphism
α : π∗2F → π∗1F For F = Hn, the correspondence Tp acts on H•

dR(X,Hn) by

π1,∗◦α∗◦π∗2 where α : π∗2Hn → π∗1Hn is defined by Symn

(
p 0
0 1

)
: V ∨

n → V ∨
n .

Let us consider the ”Frobenius” subcorrespondence φ obtained by restricting
this diagram to the ordinary locus S of X ⊗ Z/pZ and by restricting π1 and
π2 to the multiplicative type part X

m of π−1
1 (S) (one knows that the ordinary

locus of X0(p) is the disjoint union of two components: X
m where the kernel

of the isogeny is of multiplicative type, and X
e, where it is étale). This

subcorrespondence is of degree p and is actually a purely inseparable morphism
because π2 is purely inseparable of degree p while π1 is an isomorphism X

m ∼=
S.

Let X (̂p) be the formal scheme completion along the special fiber of XZp

and S∞ be its open formal subscheme with underlying scheme S. Let H the
canonical subgroup H ⊂ G lifting the kernel of Frobenius in the universal
(semi-)elliptic curve G → S∞ (see Sect.2.1 for the notations); the Frobenius
morphism φ lifts as a morphism φ : S∞ → S∞: φ(x) = y if and only if Ey =
Ex/Hx; this morphism is finite and flat. It extends to the Igusa tower T∞,∞ →
S∞ as a finite flat endomorphism, so we can form φ∗ as an endomorphism of the

18



p-adic algebra V (N) of p-adic modular forms; it leaves stable its submodules
H0(S∞, ωk) for any k ∈ Z.

We define Up as 1
pφ∗. The q-expansion principle together with the formula∑

n≥1 an(f |Up)qn =
∑

n≥1 anp(f)qn implies that Up preserves integrality hence
preserves V (N) and its submodules H0(S∞, ωk) for any k ∈ Z.

If f is a classical form of level Γ1(Np), it can be viewed as a p-adic modular
form of level prime to p as usual (see Hida [18]). Then, the definition above
of Up is compatible with the definition of this operator on classical forms.

Finally, let us recall that we defined in Sect.2 an integral version of the
Eichler-Shimura morphism for k = n + 2 ≥ 2:

H0(X,ωk) ↪→ H1
log−dR(X,Hn)

Here, we view both modules over Zp. By functoriality, this morphism is Hecke-
equivariant for all Tn’s (n prime to N) including Tp. Moreover in the restriction
morphism

Res : H0(XZp , ω
k) → H0(S∞, ωk),

Res(f |Tp) is congruent to Res(f)|Up mod. p because k ≥ 2.

4 Comparison Theorem and companion forms in p-
small weight k ≥ 2

Let f be our weight k new form of level N . Recall that we fixed a p-adic
embedding Q ↪→ Qp; let K ⊂ Qp be a finite extension of Qp, with ring of
integers O containing the eigenvalues of f such that the Galois representation
ρf is defined over O; let F = O/($) be its residue field. let Vf be the rank 2
free O-module of this representation. Recall its cohomological definition. For
A = Qp,Zp,K,O,F, let Vn(A) = SymmnA2 viewed as a representation of G
over A and H1(A) = H1

et(X⊗SpecQ, Vn(A)); it is a Gal(Q/Q)-representation
defined over A. Let Vf (K) be the 2-dimensional vector space cut by the
idempotent 1f associated to f in the Hecke algebra of level N and weight
k (which acts faithfully on H1(K)). Then, define Vf as Vf (K) ∩ H1(O).
By definition, it is a direct factor in H1(O). Under the assumptions that
(p, N) = 1 and n+1 < p−1, we know that H i(O) is torsion-free for i = 0, 1, 2.
This implies that H1(O)/$H1(O) ∼= H1(F) and that Vf ↪→ H1(O) induces
an injection V f = Vf/$Vf ↪→ H1(F).
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4.1 The integral comparison theorem

Under the assumption n + 1 < p − 1, Falting’s log-crys comparison theorem
states that, for A = Qp,Zp,Fp, the contravariant Fontaine-Laffaille functor
D sends the restriction to Dp = Gal(Qp/Qp) of H1(A) to the log-crystalline
cohomology module H1

lc(A) = H1
log−crys(X/A,H(n)), viewed as a φ-filtered

A-module. Moreover, as a filtered A-module, H1
log−cr(X/A,H(n)) coincides

with H1
log−dR(X/A,H(n)). Moreover, by this functor, the Dp-submodule Vf ,

resp. V f , of H1(O) resp. H1(O), is sent to the φ-filtered submodule Mf resp.
Mf of H1

lc(O) = H1
lc(Zp)⊗O resp. H1

lc(F) = H1
lc(Fp)⊗ F.

The Hodge filtration on H1
lc(A) has been determined in Sect. 2 using the

quasi-isomorphism between the de Rham and the dual BGG complex. We
found H1

lc(A) = H1
log−cr(X/A,H(n)) = H1

log−cr(X/A,K(n)), so Fil0 = . . . =
Filn = H1

lc(A), Filn+1 = Im
(
H0(XA, ωn+2) → H1

lc(A)
)

and Filn+2 = 0.
Since Mf is a sub-filtered module of H1

lc(O), we see that Filn+1Mf is O-
free of rank one, generated by the image [f ] of the differential form ωf =
(2iπ)n+2f(z)dvn+2 defined over O (as usual in this notation, the variable z is
the uniformizing variable of the complex modular curve and v is the uniformiz-
ing of the elliptic curve above z). By Scholl’s theorem [30], the (O-linear) crys-
talline Frobenius φ on Mf is annihilated by (X−α)(X−β) ∈ O[X]. Moreover,
it induces two maps φ0 : Fil0(Mf ) → Mf and φn+1 : Filn+1(Mf ) → Mf the
latter being induced by p−(n+1)φ|Filn+1. Recall that the weak admissibility
condition on Mf reads

Mf = φ0(Fil0(Mf )) + φn+1(Filn+1(Mf ))

Moreover, as explained in Perrin-Riou’s paper [28], on the filtered module
side, the ordinarity of the representation Vf at p is equivalent to the following
compatibility between the Hodge filtration Fil•(Mf ) and the slope filtration.
Recall that the steps of the slope filtration Fil•φ are defined by Filiφ(Mf ) is
the sum of the φ-eigenspaces where the slope is ≥ i. In this 2-dimensional
situation, let (e1, e2) an O-basis of Mf made of φ-eigenvectors: φ(e1) = αe1

and φ(e2) = βe2; then, the compatibility reads simply as

Mf = Filn+1(Mf )⊕O · e1

Moreover the decomposability assumption of V f translates as the decompos-
ability of Mf , that is,

Filn+1(Mf ) = F · e2

Under this assumption, we see that [f ] ∈ Filn+1(Mf ) happens to be an eigen-
vector for φn+1, with eigenvalue the reduction modulo $ of β

pn+1 . That is,
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φn+1([f ])− β
pn+1 [f ] = 0 in H1

lc(F). In order to exploit this formula we need to
introduce the ordinary locus of XFp .

4.2 Dual BGG and companion forms

Recall that the invertible sheaf ω on XZp is relatively ample. Let H be the
Hasse invariant on XFp ; it is a non zero global section of ωp−1; therefore, the
locus S where it does not vanish is a non-empty affine open subset of XFp

. It is called the ordinary locus because its geometric points correspond to
(generalized) elliptic curves which are ordinary. Since it is affine, we have

- H i(S,F) = 0 for every i > 0 and for any coherent sheaf F on S, and
- H i(S,F•) = H i(F•(V )) for any complex F• of coherent sheaves.
Applying this to the dual BGG complex, we find that

H1(S,H(n)) = H1(S,K(n)) = ωn+2(S)/∇n(ω−n(S)).

Moreover, the Frobenius morphism φS on S induces an automorphism of
H0(S, ωm) for any m, in such a way that the short exact sequence

Ex(S) 0 → H0(S, ω−n) → H0(S, ωn+2) → H1(S,H(n)) → 0

is φ-equivariant. Let H0(]S[, ωm) be the rigid cohomology of the affinoid tube
]S[.

Hence, the differential form η = φ
pk−1 (ωf ) − β

pk−1 ωf ∈ H0(S, ωk) maps to
[η] = 0 in H1(S,H(n)). By exactness of Ex(S), there exists ω′ ∈ H0(S, ω−n(n+
1)) such that η = ∇n(ω′) (here, we mention the twist by n + 1, because it be-
comes important in what follows).

A priori, ω′ is only defined over S. Let us first assume it is eigen for Up

with a p-adic unit eigenvalue; this assumption is motivated by a formula of
Coleman whose proof is recalled in [4] Sect.3, φ = pk−1 < p > U∗

p on ]S[, so
φ

pk−1 (ωf ) − β
pk−1 ωf = (unit) · ωf−αf(pz); the form f − αf(pz) is eigen for Up

with eigenvalue β. Since pk−1d ◦ Up = Up ◦ d (for the BGG dual differential

d), we would find ω′|Up = β
pk−1 · ω′ if we could divide by pk−1 (that is, in

characteristic zero), and ω′ would be ordinary. Thus, by Jochnowitz’s lemma
(or Hida Theory [20]), the form H · ω′ ∈ H0(S, ωp−1−n), being of weight
k′ = p + 1 − k ≥ 2 and ordinary, would extend to the whole curve XF.
Moreover, by Hida Theory [20], it would even be associated to the reduction
modulo p, say g, of a characteristic zero ordinary cusp eigenform g of weight
k′: ∇n(ωg) = ω′.
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However, this argument does not go through because we are in character-
istic p so that the ordinarity does not seem to follow from the information
above. However, let us prove that ω′H does extend to the whole curve XF.
Let t ≥ 1 be the order of pole of the meromorphic fomr ω′ along the super-
singular divisor Z ⊂ X. We need to see that t ≤ 1. The endomorphism φ

pk−1

of H0(V, ωk) maps H0(X, ωk) to H0(X,ωpk); therefore, by the q-expansion
principle applied to H0(X,ωpk), we have the following equality of forms in
H0(X,ωpk):

ω
(p)
f − δ1H

kωf = Hkdω′

where ω
(p)
f = φ

pk−1 ωf . The left-hand side has no pole along Z. By a calculation
of Katz [23], the operator d increases the order of pole at a supersingular point
x by k − 1: if ordx(ω′) = t, ordx(dω′) = t + k − 1. By a theorem of Igusa,
ordx(H) = 1, hence the right hand side has a pole of order at x equal to
t− 1. We must therefore have t ≤ 1. That is, ω′H extends to the whole curve
modulo p.

On the other hand, ω′ belongs to the localization H0(V, ω−n(n + 1))m;
since H ≡ 1 (mod p), the multiplcation by H commutes to Hecke operators
outside Np, so that ω′H belongs to the localization H0(X, ωp−1−n(n + 1))m.
This artinian module is non zero, hence its socle (that is, the part annihilated
by m) is also non zero. In other words, we can assume that Hω′ is eigen for
the twisted action of the Hecke algebra.

Recall that for any prime ` different from p, we do have `k−1d◦T` = T` ◦d.
Therefore, after untwisting, we see that the eigenvalues of Hω′ are the charac-
teristic p numbers b` = a`

`k−1 . By Deligne-Serre’s lemma, this eigensystem lifts
to characteristic zero so that there exists an eigenform g of weight p + 1 − k
and a prime p above p in the field of coefficients of g, so that the eigenvalues
B` of g satisfy

B` ≡ a`

`k−1
(mod p) for all ` 6= p.

We conclude by irreducibility of ρf that the Galois representation ρf ⊗ ωk−1

is modular:
ρf ⊗ ωk−1 = ρg

5 Overconvergent companion forms in weight 1

In their work on the degree 2 Artin-Langlands conjecture, Buzzard and Taylor
for their construction of a weight one cusp eigenform f realizing a given degree
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two Artin representation, made the assumption that this representation is
residually modular. More precisely, they proved the following

Theorem 3 Let p ≥ 5 and let O be a discrete valuation ring with uniformizing
parameter $ which is finite and flat over Zp; let ρ : Gal (Q,Q) → GL2(O) be
a continuous representation such that

• ρ is unramified outside a finite set of primes

• ρ (mod $) is modular and absolutely irreducible

• ρ is unramified at p and ρ(Frobp) has eigenvalues α and β which are
distinct modulo $,

then, there exists a modular form of weight one and an embedding i : Q(f) ↪→
O such that ρf = ρ. In particular, ρ has finite image and L(ρ, s) = L(f, s) is
entire.

Their method of proof consists in using these assumptions to construct two
distinct Hida families; the authors then specialize these two families in weight
one Then, they proceed to glue the overconvergent weight one eigenforms thus
obtains, to construct the sought for classical eigenform f .

In the subsequent section, we explain how in the construction of the two
families and their specialization in weight one as overconvergent forms, we
may avoid the assumption of unramifiedness at p and the use of weight 2 and,
sometimes, the use of a level divisible by p, by allowing a higher weight k ∈
[2, p[. We don’t discuss the deepest problem, namely, the analytic continuation
of these overconvergent forms.

5.1 Galois deformations and modularity

Let p ≥ 5 be a prime; let f be a cusp eigenform of level N prime to p, character
εf ; assume that f is p-ordinary and of weight k ∈ [2, p[. LetO be the ring of
integers of a p-adic field containing the eigenvalues of f such that ap(f) = α+β
with α ∈ O× and αβ = pk−1εf (p); let $ a uniformizing parameter of O and
κ = O/($) its residue field.

Assume that the residual representation ρf splits at p:

ρf |Dp = ξ(α)⊕ ξ(
β

pk−1
)ω1−k

Let us consider the deformation problem over local artinian O-algebras
with residue field κ, which send such an algebra A to the set of strict conjugacy
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classes of Galois representations ρ : Gal (Q/Q) → GL2(A) deforming ρf :
Gal (Q/Q) → GL2(κ) such that

• ρ is unramified outside Np,

• ρ is ordinary at p; moreover, its restriction to Dp is of the form

ρ|Dp ∼
(

ξ(αρ) ∗
0 ∗

)

with αρ ≡ α (mod mA)

This deformation problem is prorepresentable over a universal deformation
ring Runiv

α . By a theorem of Diamond (in weight 2) and R. Ramakrishna’s
thesis (for generalization to higher weights k ∈ [2, p[), Runiv

α is a ”natural”
quotient of Hida’s universal ordinary Hecke algebra h0(N) with auxiliary level
N ; by ”natural”, we mean, as on p.911 of [7], that the quotient map sends
T` resp. S` to ρuniv(Frob`) resp. det ρuniv(Frob`) for ` prime to Np, resp.
U` to 0 for ` dividing N , and sends Up to αuniv ∈ (Runiv

α )×, where all the
Frobeniuses are geometric and where αuniv is the scalar by which Frobp acts on
the unramified line H0(Ip, ρ

univ). This theorem is actually a direct application
of the Taylor-Wiles method (using Ramakrishna’s thesis) if one assumes that
the deformations are minimal at primes ` dividing N (see Taylor-Wiles, or see
[32]). In particular, the representation ρf provides the classical eigenform of
weight k and level Np: f ‘α,k = f − βf(pz) which satisfies fα,k|Up = αfα,k.

But, more interestingly, given an Artin representation ρ : Gal (Q/Q) →
GL2(O) such that

ρ|Dp ∼
(

ξ(αρ) 0
0 ξ(βρ)ω1−k

)

and ρ = ρf , there exists a character λα : h0(N) → O which factors through
Runiv, say, as λα : Runiv → O and such that ρuniv

α ⊗Runiv
α ,λα

O = ρ. This
provides by Hida theory a p-adic cusp eigenform fα of weight 1, such that
fα|Up = αρ · fα. This form being p-ordinary is overconvergent (as explained
in [?] Lemma 1, Sect.2), hence defines a section of the sheaf ω on an affinoid
neighborhood of the rigid ordinary locus ]S[ in X

rig.
On the other hand, by the theorem on companion forms proven above,

there exists a p-ordinary cusp eigenform g of level N and weight k′ = p+1−k
in [2, p[, such that ρ⊗ ω1−k = ρg.

Let us consider the deformation problem which sends a local O-algebra
A as before to the set of strict conjugacy classes of Galois representations
ρ : Gal (Q/Q) → GL2(A) deforming ρg : Gal (Q/Q) → GL2(κ) such that
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• ρ is unramified outside Np,

• ρ is ordinary at p and its restriction to Dp is of the form

ρ|Dp ∼
(

ξ(βρ) ∗
0 ∗

)

with βρ ≡ β
pk−1 (mod mA)

The representation ρ⊗ ωk−1 provides such a deformation of ρg. The uni-
versal deformation ring Runiv

β is again a ”natural” quotient of h0(N). This is
defined by the same condition for T`, S`, U` for ` 6= p, but at p the condition
is that Up maps to βuniv ∈ (Runiv

β )× such that βuniv ≡ β
pk−1 (mod muniv

β ).
Again, this implies there exists a character of O-algebras λβ : h0(N) → O

which factors through Runiv
β , say, as as λβ : Runiv

β → O, such that ρuniv
β ⊗Runiv

β ,λβ

O = ρ. This character gives rise to a p-adic cusp eigenform fβ with eigenvalues
λβ(T`) for ` prime to Np and such that fβ|Up = βρfβ.

Thus, we have proven:

Proposition 5.1 Given a degree two odd Artin representation ρ : Gal (Q/Q) →
GL2(O) finitely ramified, such that

ρ|Dp ∼
(

ξ(αρ) 0
0 ξ(βρ)ω1−k

)

and which is residually irreducible and such that ρ = ρf for a cusp eigenform
of level N prime to p and weight k ∈ [2, p[, there exist two p-adic overconver-
gent cusp eigenforms fαρ and fβρ of weight 1 and auxiliary level N such that
fαρ |Up = αρ · fαρ, resp. fβρ |Up = βρ · fβρ.

This result has been recently generalized to the GSp(4,Q)-case in [32]
and [33] when one replaces degree two odd Artin representations by degree
four symplectic p-adic representations ρA,p associated to irreducible abelian
surfaces over Q. The proof follows the same plan as the GL2(Q)-case: one
constructs a companion form g to a p-ordinary cusp eigenform f of level N
prime to p and p-small weight (k1, k2) (that is, k1 ≥ k2 ≥ 3 and k1 + k2 − 3 <
p − 1), under the assumption that its residual representation ρf ”partially
splits” at p. Then, one considers two deformation problems consisting in p-
ordinary symplectic rank four representations deforming ρf resp. ρg. Then,
we use a result of the type R = T generalizing Diamond’s theorem, but only
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in the minimal deformation case. Its specialization associated to ρA,p resp.
ρA,p ⊗ ωk2−2 yields the two overconvergent p-adic cusp eigenforms fαA resp.
fβA

of weight (2, 2) analogue to those in the proposition above.
However, the next point in the Artin case, treated in [7] and [8], is to make

use of these forms to produce a classical cusp eigenform f1 of level N or Np
such that ρf1 = ρ. In the GSp(4,Q)-case, this question remains open.
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Bourbaki, Exposé 219, 1960-1961.

[10] Robert F. Coleman: Classical and overconvergent modular forms, Inv.
Math. 124, 215-241 (1996).

26



[11] Robert F. Coleman, F. Voloch: Companion forms and Kodaira-Spencer
theory, Inv. Math. 110, 263-281 (1992).

[12] M. Demazure, P. Gabriel: Groupes algébriques, tome 1, Masson et Cie,
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