Annealed and quenched fluctuations of transient random walks in random environment on $\ensuremath{\mathbb{Z}}$

Laurent Tournier

UMPA, ENS Lyon - IMPA, Rio de Janeiro

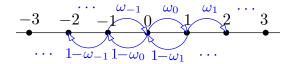
Joint work with N. Enriquez, C. Sabot and O. Zindy

June 16, 2011. LaPietra Week in Probability, Florence

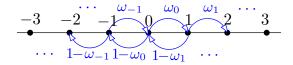
Let μ be a law on (0, 1). Define an i.i.d. sequence $\omega = (\omega_x)_{x \in \mathbb{Z}}$ with law μ ("environment").



Let μ be a law on (0, 1). Define an i.i.d. sequence $\omega = (\omega_x)_{x \in \mathbb{Z}}$ with law μ ("environment").

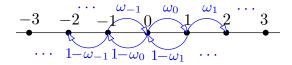


Let μ be a law on (0, 1). Define an i.i.d. sequence $\omega = (\omega_x)_{x \in \mathbb{Z}}$ with law μ ("environment").



ex.: $\mu = p\delta_{\alpha} + (1-p)\delta_{\beta}, \qquad \mu = B(a,b)$ (Beta distribution)

Let μ be a law on (0, 1). Define an i.i.d. sequence $\omega = (\omega_x)_{x \in \mathbb{Z}}$ with law μ ("environment").

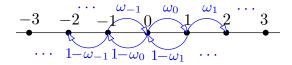


ex.: $\mu = p\delta_{\alpha} + (1-p)\delta_{\beta}, \qquad \mu = B(a,b)$ (Beta distribution)

(Given ω) Quenched law P_{ω} of Markov chain of transition ω (Random ω) Annealed law \mathbb{P} of RWRE:

$$\mathbb{P}(\cdot) = E[P_{\omega}(\cdot)] = \int P_{\omega}(\cdot) d\mu^{\otimes \mathbb{Z}}(\omega)$$

Let μ be a law on (0, 1). Define an i.i.d. sequence $\omega = (\omega_x)_{x \in \mathbb{Z}}$ with law μ ("environment").

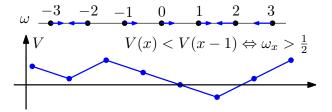


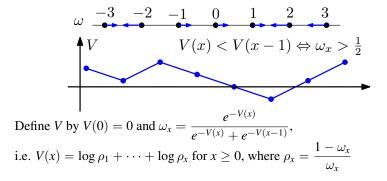
ex.: $\mu = p\delta_{\alpha} + (1-p)\delta_{\beta}, \qquad \mu = B(a,b)$ (Beta distribution)

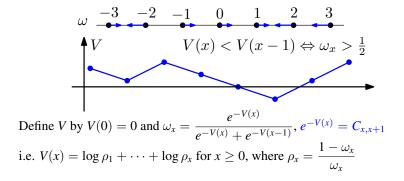
(Given ω) Quenched law P_{ω} of Markov chain of transition ω (Random ω) Annealed law \mathbb{P} of RWRE:

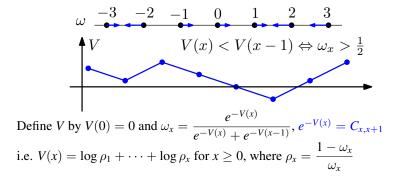
$$\mathbb{P}(\cdot) = E[P_{\omega}(\cdot)] = \int P_{\omega}(\cdot) d\mu^{\otimes \mathbb{Z}}(\omega)$$

Under \mathbb{P} , the RW "learns" about ω ; transitions are *reinforced*.



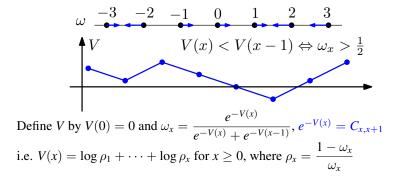






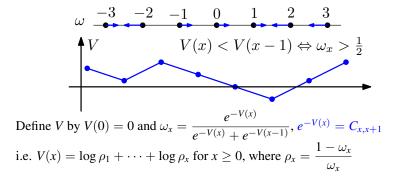
Theorem (Solomon 1975)

•
$$\mathbb{P}$$
-a.s.,
$$\begin{cases} X_n \to +\infty & \text{iff } \mathrm{E}[\log \rho_0] < 0 (\Leftrightarrow \mathrm{V}(\mathrm{x}) \underset{\mathrm{x} \to \infty}{\longrightarrow} -\infty) \\ (X_n)_n \text{ recurrent } \text{ iff } \mathrm{E}[\log \rho_0] = 0 \end{cases}$$



Theorem (Solomon 1975)

•
$$P_{\omega}$$
-a.s.
for P-a.e. ω ,
$$\begin{cases} X_n \to +\infty & \text{iff } \mathbb{E}[\log \rho_0] < 0 (\Leftrightarrow \mathbb{V}(x) \xrightarrow[x \to \infty]{} -\infty) \\ (X_n)_n \text{ recurrent iff } \mathbb{E}[\log \rho_0] = 0 \end{cases}$$



Theorem (Solomon 1975)

•
$$P_{\omega}$$
-a.s.
for P-a.e. ω ,
$$\begin{cases} X_n \to +\infty & \text{iff } \mathbb{E}[\log \rho_0] < 0 \iff \mathbb{V}(\mathbf{x}) \xrightarrow[\mathbf{x} \to \infty]{} \\ (X_n)_n \text{ recurrent iff } \mathbb{E}[\log \rho_0] = 0 \end{cases}$$

• Assume
$$E[\log \rho_0] < 0$$
. \mathbb{P} -a.s., $\frac{X_n}{n} \to v$ where $\begin{cases} v > 0 & \text{if } E[\rho_0] < 1 \\ v = 0 & \text{else.} \end{cases}$

Fluctuations: KKS theorem

Hypotheses

(a) $\exists \kappa > 0$ such that $E[\rho_0^{\kappa}] = 1$, and $E[\rho_0^{\kappa}(\log \rho_0)_+] < \infty$ (b) The law of log ρ_0 is non-arithmetic.

Ex. For $\mu = B(a, b)$, $\kappa = b - a$.

Theorem (Kesten-Kozlov-Spitzer 1975)

Assume (a)-(b). Then, under \mathbb{P} ,

• If
$$0 < \kappa < 1$$
, $\frac{X_n}{n^{\kappa}} \xrightarrow[n]{(\text{law})} (A_{\kappa} S_{\kappa})^{-1/\kappa} \qquad E[e^{it S_{\kappa}}] = e^{-(-it)^{\kappa}}$

• If
$$1 < \kappa < 2$$
, $\frac{X_n - \nu n}{n^{1/\kappa}} \stackrel{\text{(law)}}{\longrightarrow} -\nu^{1+\frac{1}{\kappa}} A_{\kappa} S_{\kappa}$

$$E[\mathrm{e}^{it\mathcal{S}_{\kappa}}]=\mathrm{e}^{(-it)^{\kappa}}$$

• If
$$\kappa > 2$$
, $\frac{X_n - \nu n}{\sqrt{n}} \xrightarrow[n]{(\text{law})} \mathcal{N}(0, \sigma^2)$

where $A_{\kappa} > 0$ (S_{κ} is a totally asymmetric κ -stable r.v.)

Fluctuations: KKS theorem

Hypotheses

(a) $\exists \kappa > 0$ such that $E[e^{\kappa \log \rho_0}] = 1$, and $E[\rho_0^{\kappa}(\log \rho_0)_+] < \infty$ (b) The law of $\log \rho_0$ is non-arithmetic.

Ex. For $\mu = B(a, b)$, $\kappa = b - a$.

Theorem (Kesten-Kozlov-Spitzer 1975)

Assume (a)-(b). Then, under \mathbb{P} ,

• If
$$0 < \kappa < 1$$
, $\frac{X_n}{n^{\kappa}} \xrightarrow[n]{(\text{law})} (A_{\kappa} S_{\kappa})^{-1/\kappa} \qquad E[e^{it S_{\kappa}}] = e^{-(-it)^{\kappa}}$

• If
$$1 < \kappa < 2$$
, $\frac{X_n - \nu n}{n^{1/\kappa}} \stackrel{\text{(law)}}{\longrightarrow} -\nu^{1+\frac{1}{\kappa}} A_{\kappa} \mathcal{S}_{\kappa}$

• If
$$\kappa > 2$$
, $\frac{X_n - \nu n}{\sqrt{n}} \xrightarrow[n]{(\text{law})} \mathcal{N}(0, \sigma^2)$

where $A_{\kappa} > 0$ (S_{κ} is a totally asymmetric κ -stable r.v.)

 $E[\mathrm{e}^{it\mathcal{S}_{\kappa}}] = \mathrm{e}^{(-it)^{\kappa}}$

Fluctuations: KKS theorem

Hypotheses

(a) $\exists \kappa > 0$ such that $E[e^{\kappa \log \rho_0}] = 1$, and $E[\rho_0^{\kappa}(\log \rho_0)_+] < \infty$ (b) The law of $\log \rho_0$ is non-arithmetic.

Ex. For $\mu = B(a, b)$, $\kappa = b - a$.

Theorem (Kesten-Kozlov-Spitzer 1975)

Assume (a)-(b). Then, under \mathbb{P} , (let $\tau(x) = \inf\{n : X_n = x\}$) • If $0 < \kappa < 1$, $\frac{X_n}{n^{\kappa}} \stackrel{(law)}{\longrightarrow} (A_{\kappa}S_{\kappa})^{-1/\kappa}$ • If $1 < \kappa < 2$, $\frac{X_n - vn}{n^{1/\kappa}} \stackrel{(law)}{\longrightarrow} -v^{1+\frac{1}{\kappa}}A_{\kappa}S_{\kappa}$ • If $\kappa > 2$, $\frac{X_n - vn}{\sqrt{n}} \stackrel{(law)}{\longrightarrow} \mathcal{N}(0, \sigma^2)$ • $\frac{\tau(x) - \frac{x}{v}}{\sqrt{x}} \stackrel{(law)}{\longrightarrow} \mathcal{N}(0, \sigma'^2)$

where $A_{\kappa} > 0$ (S_{κ} is a totally asymmetric κ -stable r.v.)

Theorem (Enriquez-Sabot-T.-Zindy 2010)

• For $0 < \kappa < 2$ ($\kappa \neq 1$),

$$A_{\kappa} = 2\left(\frac{\pi\kappa^2}{|\sin(\pi\kappa)|}(C_K)^2 E[\rho_0^{\kappa}\log\rho_0]\right)^{1/\kappa}$$

where C_K is Kesten's renewal constant: $P(R > t) \sim C_K t^{-\kappa}$ with $R = 1 + \rho_1 + \rho_1 \rho_2 + \cdots$.

Theorem (Enriquez-Sabot-T.-Zindy 2010)

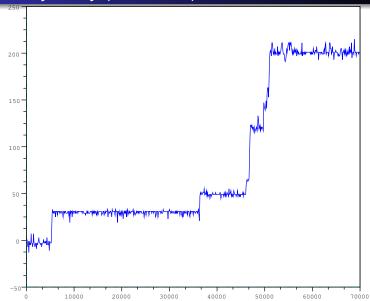
• For $0 < \kappa < 2$ ($\kappa \neq 1$),

$$A_{\kappa} = 2\left(\frac{\pi\kappa^2}{|\sin(\pi\kappa)|}(C_K)^2 E[\rho_0^{\kappa}\log\rho_0]\right)^{1/\kappa}$$

where C_K is Kesten's renewal constant: $P(R > t) \sim C_K t^{-\kappa}$ with $R = 1 + \rho_1 + \rho_1 \rho_2 + \cdots$.

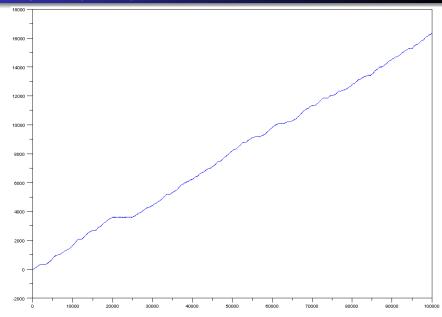
• Description of the *quenched* behaviour for $0 < \kappa < 2$

Sample trajectory ($0 < \kappa < 1$)



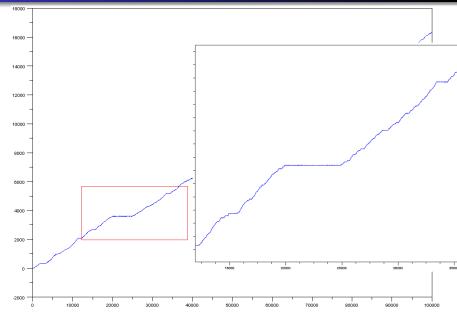
Laurent Tournier Annealed and quenched fluctuations of RWRE on $\ensuremath{\mathbb{Z}}$

Sample trajectory ($1 < \kappa < 2$)



Laurent Tournier Annealed and quenched fluctuations of RWRE on $\ensuremath{\mathbb{Z}}$

Sample trajectory (1 < κ < 2)



Laurent Tournier Annealed and quenched fluctuations of RWRE on $\ensuremath{\mathbb{Z}}$

General scheme of proof

Excursions of *V*: $e_0 = 0$, $e_{n+1} = \inf\{k \ge e_n | V(k) \le V(e_n)\}$.

Laurent Tournier Annealed and quenched fluctuations of RWRE on \mathbb{Z}

General scheme of proof

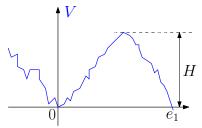
Excursions of V: $e_0 = 0, e_{n+1} = \inf\{k \ge e_n | V(k) \le V(e_n)\}.$

General scheme of proof

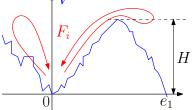
Excursions of V: $e_0 = 0$, $e_{n+1} = \inf\{k \ge e_n | V(k) \le V(e_n)\}$. $H_k = \max_{e_k \le x < e_{k+1}} V(x) - V(e_k)$ $\tau(e_n) = \sum_{\mathbf{r}} \left(\tau(e_{k+1}) - \tau(e_k) \right)$ $= \begin{pmatrix} \text{small exc.} \\ H < h_{r} \end{pmatrix} + \begin{pmatrix} \text{high exc.} \\ H > h_{r} \end{pmatrix}$

There are very few large excursions (⇒ crossing times almost i.i.d.)
 Crossings of small excursions is o(n^{1/κ}) (0 < κ < 1)
 Fluctuation of crossings of small excursions is o(n^{1/κ}) (1 < κ < 2)

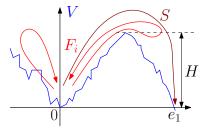
Goal: estimate $\mathbb{P}(\tau(e_1) > t)$ as $t \to \infty$. $\mathbb{P}(\tau(e_1) > t) = \mathbb{P}(\tau(e_1) > t, H > \log t - \log \log t) + o(t^{-\kappa})$



Goal: estimate $\mathbb{P}(\tau(e_1) > t)$ as $t \to \infty$. $\mathbb{P}(\tau(e_1) > t) = \mathbb{P}(\tau(e_1) > t, H > \log t - \log \log t) + o(t^{-\kappa})$ $\tau(e_1) = F_1 + \dots + F_N$

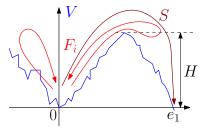


Goal: estimate $\mathbb{P}(\tau(e_1) > t)$ as $t \to \infty$. $\mathbb{P}(\tau(e_1) > t) = \mathbb{P}(\tau(e_1) > t, H > \log t - \log \log t) + o(t^{-\kappa})$



 $\tau(e_1) = F_1 + \cdots + F_N + S$

Goal: estimate $\mathbb{P}(\tau(e_1) > t)$ as $t \to \infty$. $\mathbb{P}(\tau(e_1) > t) = \mathbb{P}(\tau(e_1) > t, H > \log t - \log \log t) + o(t^{-\kappa})$



$$au(e_1) = F_1 + \dots + F_N + S$$

 $\simeq E_{\omega}[F]N$

Goal: estimate $\mathbb{P}(\tau(e_1) > t)$ as $t \to \infty$. $\mathbb{P}(\tau(e_1) > t) = \mathbb{P}(\tau(e_1) > t, H > \log t - \log \log t) + o(t^{-\kappa})$ $\tau(e_1) = F_1 + \dots + F_N + S$ $\simeq E_{\omega}[F]N$ $\simeq E_{\omega}[F]E_{\omega}[N]\mathbf{e}$ H $\mathbf{e} \sim \mathcal{E}(\mathbf{1}),$

Goal: estimate $\mathbb{P}(\tau(e_1) > t)$ as $t \to \infty$. $\mathbb{P}(\tau(e_1) > t) = \mathbb{P}(\tau(e_1) > t, H > \log t - \log \log t) + o(t^{-\kappa})$ $\tau(e_1) = F_1 + \dots + F_N + S$ $\tau(e_1) = F_1 + \dots + F_N + S$ $\simeq E_{\omega}[F]N$ $\simeq E_{\omega}[F]E_{\omega}[N]\mathbf{e}$ H $\simeq M_1M_2e^H\mathbf{e}$

 $\begin{array}{c|c} V & & \\ \hline M_1 & \\ \hline 0 & T_H & e_1 \end{array} \begin{array}{c} \mathbf{e} \sim \mathcal{E}(\mathbf{1}), \\ M_1 = \sum_{-\infty}^{T_H} e^{-V(x)}, M_2 = \sum_{0}^{\infty} e^{V(x) - H} \end{array}$

*M*₁, *M*₂, *H* are almost independent on {*H* > *h*} with *h* large
Property (Feller – Iglehart): *P*(*e^H* > *u*) ~ *C*₁*u*^{-κ}

Thus, $\mathbb{P}(\tau(e_1) > t) \sim Ct^{-\kappa}$ for some (rather explicit) *C*.

Interlude on heavy-tailed distributions

Let T_1, T_2, \ldots be i.i.d. r.v. ≥ 0 such that

 $P(T_i > t) \sim Ct^{-\kappa}.$

Then, if
$$0 < \kappa < 1$$
, $\frac{T_1 + \dots + T_n}{n^{1/\kappa}} \stackrel{(law)}{\longrightarrow} (C \Gamma(1-\kappa))^{1/\kappa} S_{\kappa}$
and, if $1 < \kappa < 2$, $\frac{T_1 + \dots + T_n - nE[T_i]}{n^{1/\kappa}} \stackrel{(law)}{\longrightarrow} (-C \Gamma(1-\kappa))^{1/\kappa} S_{\kappa}$.
For $\kappa > 2$, CLT.

Heavy-tail phenomenon:

• #{1 ≤ i ≤ n :
$$T_i \ge \varepsilon n^{1/\kappa}$$
} $\frac{(law)}{n} \mathcal{P}(C\varepsilon^{-\kappa})$
• (for 0 < κ < 1) $E\left[\sum_{1\le i\le n} T_i \mathbf{1}_{\{T_i < \varepsilon n^{1/\kappa}\}}\right] \sim C\varepsilon^{1-\kappa} n^{1/\kappa}$

 $\Rightarrow \text{ Up to an error of order } \varepsilon^{1-\kappa}, \frac{T_1+\cdots+T_n}{n^{1/\kappa}} \text{ is given by the } \mathcal{P}(C\varepsilon^{-\kappa}) \text{ terms } \text{ larger than } \varepsilon n^{1/\kappa}.$

Interlude on heavy-tailed distributions

Let T_1, T_2, \ldots be i.i.d. r.v. ≥ 0 such that

$$P(T_i > t) \sim Ct^{-\kappa}.$$

Then, if
$$0 < \kappa < 1$$
, $\frac{T_1 + \dots + T_n}{n^{1/\kappa}} \frac{(law)}{n} (C \Gamma(1-\kappa))^{1/\kappa} S_{\kappa}$
and, if $1 < \kappa < 2$, $\frac{T_1 + \dots + T_n - nE[T_i]}{n^{1/\kappa}} \frac{(law)}{n} (-C \Gamma(1-\kappa))^{1/\kappa} S_{\kappa}$.
For $\kappa > 2$, CLT.

Heavy-tail phenomenon:

• #{
$$1 \le i \le n : T_i \ge \varepsilon n^{1/\kappa}$$
} $\frac{(law)}{n} \mathcal{P}(C\varepsilon^{-\kappa})$
• (for $1 < \kappa < 2$) $\operatorname{Var}\left(\sum_{1 \le i \le n} T_i \mathbf{1}_{\{T_i < \varepsilon n^{1/\kappa}\}}\right) \sim C\varepsilon^{2-\kappa} n^{2/\kappa}$

 $\Rightarrow \text{ Up to an error of order } \varepsilon^{1-\kappa/2}, \frac{T_1+\cdots+T_n-nE[T_i]}{n^{1/\kappa}} \text{ is given by the (centered)} \\ \mathcal{P}(C\varepsilon^{-\kappa}) \text{ terms larger than } \varepsilon n^{1/\kappa}.$

Next steps of the proof of the main result (KKS)

Let
$$h_n = \frac{1}{\kappa} \log n - \log \log n$$
 (hence $e^{h_n} = \varepsilon_n n^{1/\kappa}$, $\varepsilon_n = \frac{1}{\log n}$, cf. $\tau \simeq M e^H$)

$$\tau(e_n) = \sum_k \left(\tau(e_{k+1}) - \tau(e_k) \right) = \begin{pmatrix} \text{small exc.} \\ H < h_n \end{pmatrix} + \begin{pmatrix} \text{high exc.} \\ H \ge h_n \end{pmatrix}$$

- Neglect (fluctuations of) crossing times of small excursions
- Ensure large excursions are way appart of each other w.h.p.
- Neglect time spent "backtracking" far away to the left of a high excursion before crossing it

Next steps of the proof of the main result (KKS)

Let
$$h_n = \frac{1}{\kappa} \log n - \log \log n$$
 (hence $e^{h_n} = \varepsilon_n n^{1/\kappa}$, $\varepsilon_n = \frac{1}{\log n}$, cf. $\tau \simeq M e^H$)

$$\tau(e_n) = \sum_k \left(\tau(e_{k+1}) - \tau(e_k) \right) = \begin{pmatrix} \text{small exc.} \\ H < h_n \end{pmatrix} + \begin{pmatrix} \text{high exc.} \\ H \ge h_n \end{pmatrix}$$

- Neglect (fluctuations of) crossing times of small excursions
- Ensure large excursions are way appart of each other w.h.p.
- Neglect time spent "backtracking" far away to the left of a high excursion before crossing it
- Replace neglected parts by independent versions of them (which are negligible as well)
- \Rightarrow Reduction to i.i.d. copies of $\tau(e_1)$, hence the (annealed) limit theorem.

Consequences of the quenched description

$0 < \kappa < 1$

 $\tau(e_n)$ is mainly given by a few terms $Me^H \mathbf{e}$ attached to deep valleys. The time spent in-between is negligible in comparison to them.

\Rightarrow Localization in a (random) deep valley. (cf. Enriquez-Sabot-Zindy) $1 < \kappa < 2$

The fluctuations of $\tau(e_n)$ are mainly given by a few terms $Me^H(\mathbf{e}-1)$ attached to deep valleys.

 \Rightarrow **Practical interest** (explicit confidence intervals,...) The fluctuations of $\tau(e_n)$ are almost a sum of i.i.d. terms like $Me^H(\mathbf{e}-1)$ (re-introducing independent small valleys).

$$\mathcal{L}\left(\frac{\tau(e_n) - E_{\omega}[\tau(e_n)]}{n^{1/\kappa}}\bigg|\omega\right) \simeq \mathcal{L}\left(\sum_{i=1}^n \frac{\widehat{M}_i e^{\widehat{H}_i}}{n^{1/\kappa}} (\mathbf{e}_i - 1)\bigg|\widehat{M}, \widehat{H}\right)$$

 \Rightarrow Limit theorem for the law of the quenched law of fluctuations If T_1, T_2, \ldots are i.i.d. with $P(T > t) \sim Ct^{-\kappa}$ and $0 < \kappa < 2$,

$$\left\{\frac{T_i}{n^{1/\kappa}} \middle| 1 \le i \le n\right\} \stackrel{(law)}{\longrightarrow} \{\xi_i | i \ge 1\}$$

where ξ is a PPP of intensity $\lambda \kappa t^{-(\kappa+1)} dt$.

Consequences of the quenched description

$0 < \kappa < 1$

 $\tau(e_n)$ is mainly given by a few terms $Me^H \mathbf{e}$ attached to deep valleys. The time spent in-between is negligible in comparison to them.

\Rightarrow Localization in a (random) deep valley. (cf. Enriquez-Sabot-Zindy) $1 < \kappa < 2$

The fluctuations of $\tau(e_n)$ are mainly given by a few terms $Me^H(\mathbf{e}-1)$ attached to deep valleys.

 $\Rightarrow \mathbf{Practical interest} \text{ (explicit confidence intervals,...)}$ The fluctuations of $\tau(e_n)$ are almost a sum of i.i.d. terms like $Me^H(\mathbf{e}-1)$ (re-introducing independent small valleys).

$$\mathcal{L}\left(\frac{\tau(e_n) - E_{\omega}[\tau(e_n)]}{n^{1/\kappa}}\bigg|\omega\right) \simeq \mathcal{L}\left(\sum_{i=1}^n \frac{\widehat{M}_i e^{\widehat{H}_i}}{n^{1/\kappa}} (\mathbf{e}_i - 1)\bigg|\widehat{M}, \widehat{H}\right)$$

 \Rightarrow Limit theorem for the law of the quenched law of fluctuations

$$\mathcal{L}\left(\frac{\tau(e_n) - E_{\omega}[\tau(e_n)]}{n^{1/\kappa}}\bigg|\omega\right) \stackrel{(law, W_1)}{\xrightarrow[]{}{\longrightarrow}} \mathcal{L}\left(\sum_{i=1}^{\infty} \xi_i(\mathbf{e}_i - 1)\bigg|\xi\right)$$

where ξ is a PPP of intensity $\lambda \kappa t^{-(\kappa+1)} dt$. And W_1 is Wasserstein distance.