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RWRE on Z: definitions

Let µ be a law on (0, 1).
Define an i.i.d. sequence ω = (ωx)x∈Z with law µ (“environment”).

ω0 ω1ω−1

1−ω−1

0 1 2 3−1−2−3
· · ·· · ·

ex.: µ = pδα + (1− p)δβ , µ = B(a, b) (Beta distribution)

(Given ω) Quenched law Pω of Markov chain of transition ω

(Random ω) Annealed law P of RWRE:

P(·) = E[Pω(·)] =

∫
Pω(·)dµ⊗Z(ω)

Under P, the RW “learns” about ω; transitions are reinforced.
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Potential – Transience and speed

0 1 2 3−1−2−3
ω

Define V by V(0) = 0 and ωx =
e−V(x)

e−V(x) + e−V(x−1) ,

e−V(x) = Cx,x+1

i.e. V(x) = log ρ1 + · · ·+ log ρx for x ≥ 0, where ρx =
1− ωx

ωx

Theorem (Solomon 1975){
Xn → +∞ iff E[log ρ0] < 0(⇔ V(x) −→

x→∞
−∞)

(Xn)n recurrent iff E[log ρ0] = 0

Assume E[log ρ0] < 0. P-a.s.,
Xn

n
→ v where

{
v > 0 if E[ρ0] < 1
v = 0 else.
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Fluctuations: KKS theorem

Hypotheses

(a) ∃κ > 0 such that E[ρκ0 ] = 1, and E[ρκ0 (log ρ0)+] <∞
(b) The law of log ρ0 is non-arithmetic.

Ex. For µ = B(a, b), κ = b− a.

Theorem (Kesten-Kozlov-Spitzer 1975)

Assume (a)-(b). Then, under P,

If 0 < κ < 1,
Xn

nκ
(law)−→

n
(AκSκ)−1/κ E[eitSκ ] = e−(−it)κ

If 1 < κ < 2,
Xn − vn

n1/κ

(law)−→
n
−v1+ 1

κAκSκ E[eitSκ ] = e(−it)κ

If κ > 2,
Xn − vn√

n
(law)−→

n
N (0, σ2)

where Aκ > 0 (Sκ is a totally asymmetric κ-stable r.v.)
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Main result

Theorem (Enriquez-Sabot-T.-Zindy 2010)

For 0 < κ < 2 (κ 6= 1),

Aκ = 2
(

πκ2

| sin(πκ)| (CK)2E[ρκ0 log ρ0]

)1/κ

where CK is Kesten’s renewal constant: P(R > t) ∼ CK t−κ with
R = 1 + ρ1 + ρ1ρ2 + · · · .

Description of the quenched behaviour for 0 < κ < 2
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Sample trajectory (0 < κ < 1)
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Sample trajectory (1 < κ < 2)
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General scheme of proof

Excursions of V: e0 = 0, en+1 = inf{k ≥ en|V(k) ≤ V(en)}.
V

τ(en) =
∑

k

(
τ(ek+1)− τ(ek)

)
=

(
small exc.

H < hn

)
+

(
high exc.
H ≥ hn

)
• There are very few large excursions (⇒ crossing times almost i.i.d.)

•
{

Crossings of small excursions is o(n1/κ) (0 < κ < 1)
Fluctuation of crossings of small excursions is o(n1/κ) (1 < κ < 2)
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Crossing time of a (high) excursion

Goal: estimate P(τ(e1) > t) as t→∞.

P(τ(e1) > t) = P(τ(e1) > t,H > log t − log log t) + o(t−κ)

Fi

V

H

0

S

e1

• M1,M2,H are almost independent on {H > h} with h large
• Property (Feller – Iglehart): P(eH > u) ∼ CIu−κ

Thus, P(τ(e1) > t) ∼ Ct−κ for some (rather explicit) C.
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Interlude on heavy-tailed distributions

Let T1,T2, . . . be i.i.d. r.v. ≥ 0 such that

P(Ti > t) ∼ Ct−κ.

Then, if 0 < κ < 1,
T1 + · · ·+ Tn

n1/κ

(law)−→
n

(C Γ(1− κ))1/κSκ

and, if 1 < κ < 2,
T1 + · · ·+ Tn − nE[Ti]

n1/κ

(law)−→
n

(−C Γ(1− κ))1/κSκ.
For κ > 2, CLT.

Heavy-tail phenomenon:

• #{1 ≤ i ≤ n : Ti ≥ εn1/κ} (law)−→
n
P(Cε−κ)

• (for 0 < κ < 1) E
[ ∑

1≤i≤n

Ti1{Ti<εn1/κ}

]
∼ Cε1−κn1/κ

⇒ Up to an error of order ε1−κ, T1+···+Tn
n1/κ is given by the P(Cε−κ) terms

larger than εn1/κ.
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Next steps of the proof of the main result (KKS)

Let hn = 1
κ log n− log log n (hence ehn = εnn1/κ, εn = 1

log n , cf. τ ' MeH)

τ(en) =
∑

k

(
τ(ek+1)− τ(ek)

)
=

(
small exc.

H < hn

)
+

(
high exc.
H ≥ hn

)

Neglect (fluctuations of) crossing times of small excursions

Ensure large excursions are way appart of each other w.h.p.

Neglect time spent “backtracking” far away to the left of a high
excursion before crossing it

Replace neglected parts by independent versions of them (which are
negligible as well)

⇒ Reduction to i.i.d. copies of τ(e1), hence the (annealed) limit theorem.
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Consequences of the quenched description
0 < κ < 1
τ(en) is mainly given by a few terms MeHe attached to deep valleys.
The time spent in-between is negligible in comparison to them.
⇒ Localization in a (random) deep valley. (cf. Enriquez-Sabot-Zindy)
1 < κ < 2
The fluctuations of τ(en) are mainly given by a few terms MeH(e− 1)
attached to deep valleys.
⇒ Practical interest (explicit confidence intervals,. . . )
The fluctuations of τ(en) are almost a sum of i.i.d. terms like MeH(e− 1)
(re-introducing independent small valleys).
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⇒ Limit theorem for the law of the quenched law of fluctuations
If T1,T2, . . . are i.i.d. with P(T > t) ∼ Ct−κ and 0 < κ < 2,{
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where ξ is a PPP of intensity λκt−(κ+1)dt.
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⇒ Limit theorem for the law of the quenched law of fluctuations
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where ξ is a PPP of intensity λκt−(κ+1)dt. And W1 is Wasserstein distance.
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