Asymptotic direction of oriented-edge reinforced random walks

Laurent Tournier

LAGA (Université Paris 13)

Workshop "Random networks and environments", Istanbul
July 16, 2012

Oriented-edge reinforced random walk (OERRW)

Directed graph $G=(V, E)$. Notation: $e=(\underline{e}, \bar{e}) \in E$
Let initial weights $\alpha_{e}>0$ be given for $e \in E$ (oriented edges).
The oriented-edge reinforced random walk is defined by the following:

- probability transitions across edges are proportional to their weights;
- the weight of an (oriented) edge increases by 1 after the traversal.

In other words, for all n, if $\underline{e}=X_{n}$,

$$
P^{(\alpha)}\left(\left(X_{n}, X_{n+1}\right)=e \mid X_{0}, \ldots, X_{n}\right)=\frac{\alpha_{e}+N_{e}^{(n)}}{\sum_{\underline{f}=X_{n}}\left(\alpha_{f}+N_{f}^{(n)}\right)},
$$

where $N_{f}^{(n)}$ is the number of traversals of edge f before time n.

Oriented-edge reinforced random walk (OERRW)

Directed graph $G=(V, E)$. Notation: $e=(\underline{e}, \bar{e}) \in E$
Let initial weights $\alpha_{e}>0$ be given for $e \in E$ (oriented edges).
The oriented-edge reinforced random walk is defined by the following:

- probability transitions across edges are proportional to their weights;
- the weight of an (oriented) edge increases by 1 after the traversal.

In other words, for all n, if $\underline{e}=X_{n}$,

$$
P^{(\alpha)}\left(\left(X_{n}, X_{n+1}\right)=e \mid X_{0}, \ldots, X_{n}\right)=\frac{\alpha_{e}+N_{e}^{(n)}}{\sum_{\underline{f}=X_{n}}\left(\alpha_{f}+N_{f}^{(n)}\right)},
$$

where $N_{f}^{(n)}$ is the number of traversals of edge f before time n.
On \mathbb{Z}^{d}, we assume translation-invariance of the weights:

$$
\alpha_{\left(x, x \pm \vec{e}_{i}\right)}=\alpha_{ \pm i}>0
$$

Oriented-edge reinforced random walk (OERRW)

Directed graph $G=(V, E)$. Notation: $e=(\underline{e}, \bar{e}) \in E$
Let initial weights $\alpha_{e}>0$ be given for $e \in E$ (oriented edges).
The oriented-edge reinforced random walk is defined by the following:

- probability transitions across edges are proportional to their weights;
- the weight of an (oriented) edge increases by 1 after the traversal.

In other words, for all n, if $\underline{e}=X_{n}$,

$$
P^{(\alpha)}\left(\left(X_{n}, X_{n+1}\right)=e \mid X_{0}, \ldots, X_{n}\right)=\frac{\alpha_{e}+N_{e}^{(n)}}{\sum_{\underline{f}=X_{n}}\left(\alpha_{f}+N_{f}^{(n)}\right)}
$$

where $N_{f}^{(n)}$ is the number of traversals of edge f before time n.
On \mathbb{Z}^{d}, we assume translation-invariance of the weights:

$$
\alpha_{\left(x, x \pm \vec{e}_{i}\right)}=\alpha_{ \pm i}>0
$$

NB: for non-oriented edges (and translation-invariant weights), positive recurrence for small weights (on \mathbb{Z}^{d}) was proved very recently by Sabot-Tarrès and Angel-Crawford-Kozma, independently.

OERRW and RWRE

Remark

For the OERRW, the successive choices of edges used to exit each vertex are given by independent Polya urns.

Two representations of a Polya urn (cf. De Finetti's theorem):

Initially:

$\alpha_{1}, \ldots, \alpha_{r}$ balls of color $1, \ldots, r$.
Then:
Reinforced urn (chosen color +1 ball).
Proportions of colors converge a.s. to

$$
p=\left(p_{1}, \ldots, p_{r}\right) \sim \mathscr{D}\left(\alpha_{1}, \ldots, \alpha_{r}\right) .
$$

Initially:

Proportions p_{1}, \ldots, p_{r} of balls of color
$1, \ldots, r$, where

$$
p=\left(p_{1}, \ldots, p_{r}\right) \sim \mathscr{D}\left(\alpha_{1}, \ldots, \alpha_{r}\right) .
$$

Then:

I.i.d. draws according to p.

Dirichlet distribution:

$$
\mathscr{D}\left(\left(\alpha_{i}\right)_{i \in I}\right)=\frac{1}{Z} \prod_{i \in I} x_{i}^{\alpha_{i}-1} d \lambda(x)
$$

(λ is Lebesgue measure on a simplex of probabilities)

OERRW and RWRE

Remark

For the OERRW, the successive choices of edges used to exit each vertex are given by independent Polya urns.

Two representations of a Polya urn (cf. De Finetti's theorem):

Initially:

$\alpha_{1}, \ldots, \alpha_{r}$ balls of color $1, \ldots, r$.
Then:
Reinforced urn (chosen color +1 ball).
Proportions of colors converge a.s. to

$$
p=\left(p_{1}, \ldots, p_{r}\right) \sim \mathscr{D}\left(\alpha_{1}, \ldots, \alpha_{r}\right)
$$

Initially:

Proportions p_{1}, \ldots, p_{r} of balls of color $1, \ldots, r$, where

$$
p=\left(p_{1}, \ldots, p_{r}\right) \sim \mathscr{D}\left(\alpha_{1}, \ldots, \alpha_{r}\right)
$$

Then:
I.i.d. draws according to p.

The OERRW with initial weights $\left(\alpha_{e}\right)_{e \in E}$ has same law as a random walk in a random environment given by independent Dirichlet random variables $\omega_{(x, \cdot)}, x \in V$.

$$
P_{o}^{(\alpha)}(\cdot)=\int P_{o, \omega}(\cdot) \mathrm{d} \mathbb{P}^{(\alpha)}(\omega)
$$

OERRW and RWRE

Remark

For the OERRW, the successive choices of edges used to exit each vertex are given by independent Polya urns.

Two representations of a Polya urn (cf. De Finetti's theorem):

Initially:

$\alpha_{1}, \ldots, \alpha_{r}$ balls of color $1, \ldots, r$.

Then:

Reinforced urn (chosen color +1 ball).
Proportions of colors converge a.s. to

$$
p=\left(p_{1}, \ldots, p_{r}\right) \sim \mathscr{D}\left(\alpha_{1}, \ldots, \alpha_{r}\right)
$$

Initially:

Proportions p_{1}, \ldots, p_{r} of balls of color $1, \ldots, r$, where

$$
p=\left(p_{1}, \ldots, p_{r}\right) \sim \mathscr{D}\left(\alpha_{1}, \ldots, \alpha_{r}\right)
$$

Then:
I.i.d. draws according to p.

The OERRW with initial weights $\left(\alpha_{e}\right)_{e \in E}$ has same law as a random walk in a random environment given by independent Dirichlet random variables $\omega_{(x, \cdot)}, x \in V$.

$$
P_{o}^{(\alpha)}(\cdot)=\int P_{o, \omega}(\cdot) \mathrm{d} \mathbb{P}^{(\alpha)}(\omega)
$$

\Rightarrow on \mathbb{Z}, behaviour of OERRW known in details (via RWRE)

Previous results on \mathbb{Z}^{d}

$d \geq 1$ E.S. 06

Ballisticity condition
$\max _{i}\left|\alpha_{i}-\alpha_{-i}\right|>1 \Rightarrow \frac{X_{n}}{n} \rightarrow \vec{v} \neq \overrightarrow{0} \quad \frac{\text { Kalikow }}{\text { criterion }}$ Integ. by parts
E. : Enriquez
S. : Sabot

Previous results on \mathbb{Z}^{d}

E. : Enriquez
S. : Sabot
T. : Tournier

$$
\kappa=\min _{\emptyset \neq B \subset E_{U}} \sum_{e \in \partial B} \alpha_{e}=2 \sum_{i}\left(\alpha_{i}+\alpha_{-i}\right)-\max _{i}\left(\alpha_{i}+\alpha_{-i}\right)
$$

Previous results on \mathbb{Z}^{d}

Time reversal

Finite directed graph $G=(V, E)$, weights $\alpha=\left(\alpha_{e}\right)_{e \in E}$.
Reversed graph: $\breve{G}=(V, \breve{E})$ made of reversed edges $\check{e}=(\bar{e}, \underline{e})$, endowed with weight $\check{\alpha}_{e}=\alpha_{\check{e}}$ for $e \in \check{E}$.
Reversed environment: for $e \in E, \quad \breve{\omega}_{\check{e}}=\frac{\pi(e)}{\pi(\bar{e})} \omega_{e}$
(π : invariant probability for ω)
For $x \in V$, denote

$$
\alpha_{x}=\sum_{\underline{e}=x} \alpha_{e}
$$

Property

Assume $\operatorname{div}(\alpha)=0$: for all $x \in V, \alpha_{x}=\check{\alpha}_{x}$. Then,

$$
\omega \sim \mathbb{P}^{(\alpha)} \Rightarrow \check{\omega} \sim \mathbb{P}^{(\check{\alpha})}
$$

Then, for all cycle σ in G going through o,

$$
P_{o}^{(\alpha)}\left(\left(X_{n}\right)_{n} \text { follows } \sigma\right)=P_{o}^{(\check{\alpha})}\left(\left(X_{n}\right)_{n} \text { follows } \check{\sigma}\right) .
$$

Time reversal

Finite directed graph $G=(V, E)$, weights $\alpha=\left(\alpha_{e}\right)_{e \in E}$.
Reversed graph: $\breve{G}=(V, \check{E})$ made of reversed edges $\check{e}=(\bar{e}, \underline{e})$, endowed with weight $\check{\alpha}_{e}=\alpha_{\check{e}}$ for $e \in \check{E}$. Reversed environment: $\check{\omega}_{\check{e}}=\frac{\pi(e)}{\pi(\bar{e})} \omega_{e}$
For $x \in V$, denote

$$
\alpha_{x}=\sum_{\underline{e}=x} \alpha_{e}
$$

Property

Assume $\operatorname{div}(\alpha)=0$: for all $x \in V, \alpha_{x}=\check{\alpha}_{x}$. Then,

$$
\omega \sim \mathbb{P}^{(\alpha)} \Rightarrow \check{\omega} \sim \mathbb{P}^{(\check{\alpha})}
$$

Then, for all cycle σ in G going through o,

$$
P_{o}^{(\alpha)}\left(\left(X_{n}\right)_{n} \text { follows } \sigma\right)=P_{o}^{(\check{\alpha})}\left(\left(X_{n}\right)_{n} \text { follows } \check{\sigma}\right)
$$

Proof:

$$
P_{o}^{(\alpha)}(\sigma)=\frac{\prod_{e \in E} \alpha_{e}\left(\alpha_{e}+1\right) \cdots\left(\alpha_{e}+N_{e}(\sigma)-1\right)}{\prod_{x \in V} \alpha_{x}\left(\alpha_{x}+1\right) \cdots\left(\alpha_{x}+N_{x}(\sigma)-1\right)}
$$

and $\alpha_{e}=\check{\alpha}_{\check{e}}, \alpha_{x}=\check{\alpha}_{x}, N_{e}(\sigma)=N_{\check{e}}(\check{\sigma}), N_{x}(\sigma)=N_{x}(\check{\sigma})$.

Directional transience

Recall the mean drift

$$
\vec{\Delta}=E_{o}^{(\alpha)}\left[X_{1}\right]=\frac{1}{\sum_{i}\left(\alpha_{i}+\alpha_{-i}\right)} \sum_{i=1}^{d}\left(\alpha_{i}-\alpha_{-i}\right) \vec{e}_{i} .
$$

Proposition

For any direction $\vec{u} \in \mathbb{Z}^{d}$ such that $\vec{u} \cdot \vec{\Delta}>0$,

$$
P^{(\alpha)}\left(X_{n} \cdot \vec{u} \rightarrow+\infty\right)>0 .
$$

NB: Result actually holds for non nearest-neighbour walks with finite range. (Hence for the triangular lattice for instance)

Corollary

We got: $\vec{u} \in \mathbb{Q}^{d}, \vec{u} \cdot \vec{\Delta}>0 \Rightarrow P_{o}^{(\alpha)}\left(X_{n} \cdot \vec{u} \rightarrow+\infty\right) \geq P_{\mu}^{(\alpha)}\left(\forall \mathrm{n}, X_{n} \cdot \vec{u} \geq 0\right)>c$

Corollary

Assume $\vec{\Delta} \neq \overrightarrow{0}$.

- $P^{(\alpha)}$-a.s., $\vec{u} \cdot \vec{\Delta}>0 \Rightarrow X_{n} \cdot \vec{u} \rightarrow+\infty$.
- $(d=2)$ 0-1 law of Zerner-Merkl(01): for elliptic RWRE, $P\left(A_{\ell}\right) \in\{0,1\}$ where

$$
A_{\ell}=\left\{X_{n} \cdot \ell \underset{n}{\longrightarrow}+\infty\right\}
$$

- ($d \geq 3$) 0-1 law of Bouchet (12): for Dirichlet RWRE, $P\left(A_{\ell}\right) \in\{0,1\}$.

Corollary

We got: $\vec{u} \in \mathbb{Q}^{d}, \vec{u} \cdot \vec{\Delta}>0 \Rightarrow P_{o}^{(\alpha)}\left(X_{n} \cdot \vec{u} \rightarrow+\infty\right) \geq P_{\mu}^{(\alpha)}\left(\forall \mathrm{n}, X_{n} \cdot \vec{u} \geq 0\right)>c$

Corollary

Assume $\vec{\Delta} \neq \overrightarrow{0}$.

- $P^{(\alpha)}$-a.s., $\vec{u} \cdot \vec{\Delta}>0 \Rightarrow X_{n} \cdot \vec{u} \rightarrow+\infty$.
- $P^{(\alpha)}$-a.s., $\frac{X_{n}}{\left\|X_{n}\right\|} \xrightarrow[n]{\longrightarrow} \vec{v}=\frac{\vec{\Delta}}{\|\vec{\Delta}\|}$.
- $(d=2)$ 0-1 law of Zerner-Merkl(01): for elliptic RWRE, $P\left(A_{\ell}\right) \in\{0,1\}$ where

$$
A_{\ell}=\left\{X_{n} \cdot \ell \underset{n}{\longrightarrow}+\infty\right\}
$$

- ($d \geq 3$) 0-1 law of Bouchet (12): for Dirichlet RWRE, $P\left(A_{\ell}\right) \in\{0,1\}$.
- (any d) Result of Simenhaus (06): for elliptic RWRE,

$$
P\left(A_{\ell}\right)=1 \text { for every } \ell \text { in an open set } \Rightarrow \frac{X_{n}}{\left\|X_{n}\right\|} \underset{n}{\longrightarrow} \vec{v}
$$

where \vec{v} is deterministic.

- (any d) Result of Drewitz-Ramírez (09): for elliptic RWRE,

$$
P\left(A_{\ell}\right)>0 \text { for every } \ell \text { in an open set } \Rightarrow \frac{X_{n}}{\left\|X_{n}\right\|} \xrightarrow[n]{\longrightarrow}\left(\mathbf{1}_{A}-\mathbf{1}_{A^{c}}\right) \vec{V}
$$

Corollary

We got: $\vec{u} \in \mathbb{Q}^{d}, \vec{u} \cdot \vec{\Delta}>0 \Rightarrow P_{o}^{(\alpha)}\left(X_{n} \cdot \vec{u} \rightarrow+\infty\right) \geq P_{\mu}^{(\alpha)}\left(\forall \mathrm{n}, X_{n} \cdot \vec{u} \geq 0\right)>c$

Corollary

Assume $\vec{\Delta} \neq \overrightarrow{0}$.

- $P^{(\alpha)}$-a.s., $\vec{u} \cdot \vec{\Delta}>0 \Rightarrow X_{n} \cdot \vec{u} \rightarrow+\infty$.
- $P^{(\alpha)}$-a.s., $\frac{X_{n}}{\left\|X_{n}\right\|} \xrightarrow[n]{\longrightarrow} \vec{v}=\frac{\vec{\Delta}}{\|\vec{\Delta}\|}$.
- $(d=2)$ 0-1 law of Zerner-Merkl(01): for elliptic RWRE, $P\left(A_{\ell}\right) \in\{0,1\}$ where

$$
A_{\ell}=\left\{X_{n} \cdot \ell \underset{n}{\longrightarrow}+\infty\right\}
$$

- ($d \geq 3$) 0-1 law of Bouchet (12): for Dirichlet RWRE, $P\left(A_{\ell}\right) \in\{0,1\}$.
- (any d) Result of Simenhaus (06): for elliptic RWRE,

$$
P\left(A_{\ell}\right)=1 \text { for every } \ell \text { in an open set } \Rightarrow \frac{X_{n}}{\left\|X_{n}\right\|} \underset{n}{\longrightarrow} \vec{v}
$$

where \vec{v} is deterministic.

- (any d) Result of Drewitz-Ramírez (09): for elliptic RWRE,

$$
P\left(A_{\ell}\right)>0 \text { for every } \ell \text { in an open set } \Rightarrow \frac{X_{n}}{\left\|X_{n}\right\|} \underset{n}{\longrightarrow}\left(\mathbf{1}_{A}-\mathbf{1}_{A^{c}}\right) \vec{V}
$$

Asymptotic direction (renewal time)

$$
\xrightarrow{\ell}=\vec{e}_{1}
$$

${ }^{\bullet} \mathrm{O}$

Asymptotic direction (renewal time)

$\xrightarrow{\ell}=\vec{e}_{1}$
\therefore

Asymptotic direction (renewal time)

Asymptotic direction (renewal structure)

Asymptotic direction (renewal structure)

Asymptotic direction (renewal structure)

Asymptotic direction (renewal structure)

Expected density of points in $\left\{X_{\tau_{k}} \cdot \vec{e}_{1}: k \geq 1\right\} \subset \mathbb{N}$:

$$
E\left[\frac{1}{N} \#\left\{k \leq N: \exists i, X_{\tau_{i}} \cdot \vec{e}_{1}=k\right\}\right]
$$

Asymptotic direction (renewal structure)

Expected density of points in $\left\{X_{\tau_{k}} \cdot \vec{e}_{1}: k \geq 1\right\} \subset \mathbb{N}$:

$$
E\left[\frac{1}{N} \#\left\{k \leq N: \exists i, X_{\tau_{i}} \cdot \vec{e}_{1}=k\right\}\right]
$$

- equals $P\left(T_{C}=\infty\right)$, by linearity of expectation;

Asymptotic direction (renewal structure)

Expected density of points in $\left\{X_{\tau_{k}} \cdot \vec{e}_{1}: k \geq 1\right\} \subset \mathbb{N}$:

$$
E\left[\frac{1}{N} \#\left\{k \leq N: \exists i, X_{\tau_{i}} \cdot \vec{e}_{1}=k\right\}\right]
$$

- equals $P\left(T_{C}=\infty\right)$, by linearity of expectation;
- tends to $\frac{1}{E\left[\left(X_{\tau_{2}}-X_{\tau_{1}}\right) \cdot \cdot \vec{e}_{1}\right]}$, by LLN.

Hence $E\left[\left(X_{\tau_{2}}-X_{\tau_{1}}\right) \cdot \vec{e}_{1}\right]=\frac{1}{P\left(T_{C}=\infty\right)}<\infty$. And thus $E\left[\left\|X_{\tau_{2}}-X_{\tau_{1}}\right\|\right]<\infty$.

Asymptotic direction (renewal structure)

Expected density of points in $\left\{X_{\tau_{k}} \cdot \vec{e}_{1}: k \geq 1\right\} \subset \mathbb{N}$:

$$
E\left[\frac{1}{N} \#\left\{k \leq N: \exists i, X_{\tau_{i}} \cdot \vec{e}_{1}=k\right\}\right]
$$

- equals $P\left(T_{C}=\infty\right)$, by linearity of expectation;
- tends to $\frac{1}{E\left[\left(X_{\tau_{2}}-X_{\tau_{1}}\right) \cdot \vec{e}_{1}\right]}$, by LLN.

Hence $E\left[\left(X_{\tau_{2}}-X_{\tau_{1}}\right) \cdot \vec{e}_{1}\right]=\frac{1}{P\left(T_{C}=\infty\right)}<\infty$. And thus $E\left[\left\|X_{\tau_{2}}-X_{\tau_{1}}\right\|\right]<\infty$.
Law of large numbers: $\frac{X_{\tau_{k}}}{k} \rightarrow v \neq 0$, hence $\frac{X_{\tau_{k}}}{\left\|X_{\tau_{k}}\right\|} \rightarrow \frac{v}{\|v\|}$. And $\frac{X_{n}}{\left\|X_{n}\right\|} \rightarrow \frac{v}{\|v\|}$.

Conclusion - Open questions

- ($d \geq 2, \kappa \leq 1$) Limit law? $\left(\left\|X_{n}\right\| \simeq n^{\kappa}\right)$
- $(d \geq 2, \kappa>1)$ Central limit theorem?
- $(d=2, \vec{\Delta} \neq 0)$ Optimal criterion of ballisticity? $(\kappa>1$?)
- $(d=2, \vec{\Delta}=0)$ Recurrence?

Transience if $d \geq 3$

Theorem (Sabot)

If $d \geq 3$,

$$
\left|X_{n}\right| \rightarrow+\infty \quad P^{(\alpha)} \text {-a.s. }
$$

Transience if $d \geq 3$

Theorem (Sabot)

If $d \geq 3$,

$$
\left|X_{n}\right| \rightarrow+\infty \quad P^{(\alpha)} \text {-a.s. }
$$

Transience if $d \geq 3$

Theorem (Sabot)

If $d \geq 3$,

$$
\left|X_{n}\right| \rightarrow+\infty \quad P^{(\alpha)} \text {-a.s. }
$$

Transience if $d \geq 3$

0-1 law for transience

For any random walk in elliptic random environment on \mathbb{Z}^{d},

$$
P\left(\left|X_{n}\right| \rightarrow \infty\right) \in\{0,1\}
$$

Proof: ergodicity.

Conclusion - Open questions

- ($d \geq 2, \kappa \leq 1$) Limit law? $\left(\left\|X_{n}\right\| \simeq n^{\kappa}\right)$
- $(d \geq 2, \kappa>1)$ Central limit theorem?
- $(d=2, \vec{\Delta} \neq 0)$ Optimal criterion of ballisticity? $(\kappa>1$?)
- $(d=2, \vec{\Delta}=0)$ Recurrence?

