Phase transition in 3-speed ballistic annihilation

Laurent Tournier (LAGA, Université Paris 13)
Joint work with John Haslegrave and Vladas Sidoravicius

Probability seminar
NYU Shanghai — May 14, 2019
universite PARIS 13Sketch of proofAbout "universality"

Ballistic annihilation model, from physics literature (1990's)

Let $V_{n}, n \in \mathbb{Z}$ be i.i.d. random variables, with distribution μ on \mathbb{R}.
From each location $x_{n}, n \in \mathbb{Z}$, of a point process on \mathbb{R}, a particle starts moving at constant speed V_{n}. When two particles collide, they annihilate.

\rightarrow Speed of decay of density of particles?
\rightarrow If μ has atoms, are there surviving particles?

Two-speed model

From each integer, a particle is released with random speed ± 1. They annihilate upon collision.

Simple combinatorics. Density $c(t)=\mathbb{P}($ return time of SRW $>2 t) \sim c t^{-1 / 2}$ Description of "flocks of particles" : Belitzky-Ferrari '95

Two-speed model

From each integer, a particle is released with random speed ± 1. They annihilate upon collision.

Simple combinatorics. Density $c(t)=\mathbb{P}($ return time of SRW $>2 t) \sim c t^{-1 / 2}$
Description of "flocks of particles" : Belitzky-Ferrari '95

Three-speed model (Ben-Naim-Redner-Leyvraz '93, Piasecki '95)

From each location of a Poisson point process, a particle starts with random speed among $-1,0,+1$, with symmetric distribution. Annihilation upon collision.

Combinatorics become very intricate : no simple rule to check survival, long range dependences in both directions, dependence in interdistances, no monotonicity...

Velocities are sampled according to $\mu=\frac{1-p}{2} \delta_{-1}+p \delta_{0}+\frac{1-p}{2} \delta_{+1}$.
Simulations for $p=0.24, p=0.25, p=0.26$:

Velocities are sampled according to $\mu=\frac{1-p}{2} \delta_{-1}+p \delta_{0}+\frac{1-p}{2} \delta_{+1}$.
Simulations for $p=0.24, p=0.25, p=0.26$:

Transition at $p_{c}=\frac{1}{4}$ "computed" by Piasecki et al. '95, and asymptotics for densities.

Plan of the talk - Part 2

(2) ResultsSketch of proofAbout "universality"

Consider the ballistic annihilation model, where

- interdistances have an atomless distribution,
- velocities are $\begin{cases}-1 & \text { with probability }(1-p) / 2 \\ 0 & \text { with probability } p \\ +1 & \text { with probability }(1-p) / 2 .\end{cases}$

Define $\theta(p)=\mathbb{P}$ (the particle at 0 survives indefinitely).

Theorem (Haslegrave-Sidoravicius-T. ' 18+)

The model undergoes a phase transition at $p_{c}=\frac{1}{4}: \theta(p)>0 \Leftrightarrow p>1 / 4$. Moreover,

$$
\text { for all } p>\frac{1}{4}, \quad \theta(p)=(2 \sqrt{p}-1)^{2}
$$

Denote by $c_{0}(t)$ the density of stationary particles present at time t.
Denote by $c_{+}(t)$ the density of $(+1)$-particles present at time t.
Assume further that interdistances are exponentially integrable, with unit expectation.

Theorem (Haslegrave-Sidoravicius-T. ' 19+)

We have the following asymptotics, as $t \rightarrow \infty$: for some $c=c(p)>0$,

$$
c_{0}(t)= \begin{cases}\left(\frac{2 p}{\pi(1-4 p)}+o(1)\right) t^{-1} & \text { if } p<1 / 4 \\ \left(\frac{2^{2 / 3}}{4 \Gamma(2 / 3)^{2}}+o(1)\right) t^{-2 / 3} & \text { if } p=1 / 4 \\ (2 \sqrt{p}-1)^{2}+o\left(e^{-c t}\right) & \text { if } p>1 / 4\end{cases}
$$

and

$$
c_{+}(t)= \begin{cases}\left(\frac{1}{\sqrt{\pi}} \sqrt{1-4 p}+o(1)\right) t^{-1 / 2} & \text { if } p<1 / 4 \\ \left(\frac{2^{2 / 3}}{8 \Gamma(2 / 3)^{2}}+\frac{3}{8 \Gamma(1 / 3)}+o(1)\right) t^{-2 / 3} & \text { if } p=1 / 4 \\ o\left(e^{-c t}\right) & \text { if } p>1 / 4\end{cases}
$$

(4) About "universality"

Let us prove the first theorem : $p_{c}=\frac{1}{4}$ and $\theta(p)=(2 \sqrt{p}-1)_{+}^{2}$.
A few remarks :

- by symmetry and independence, it suffices to consider the system on $(0,+\infty)$ and to evaluate $q=\mathbb{P}_{(0, \infty)}(0 \leftarrow \overleftarrow{\boldsymbol{\sigma}})$; then we have $\theta(p)=p(1-q)^{2}$.
- a (-1)-particle is never caught by a particle on its right. Therefore, for all $k \in \mathbb{N}$, the event $\mathbb{P}_{(0, \infty)}\left(0 \leftarrow \overleftarrow{\iota}_{k}\right)$ only depends on the finite system of the first k particles.
- the distribution of the system is invariant under mirroring the piece of configuration between particles k and l (for any $k<l$)
- a (+1)-particle almost surely collides with another particle : if not, then (by ergodicity) almost surely infinitely many would survive forever in the process on \mathbb{R}; but by symmetry the same holds for (-1)-particles...

Proof - Identities in pictures

$$
1-q=p(1-q)+p q(1-q)+\alpha(1-q)+p q(1-q)
$$

If $q \neq 1$, $1^{\text {st }}$ equation gives α. Inject into $2^{\text {nd }}$, use $q \neq 1$. Get $q=\frac{1}{\sqrt{p}}-1$.

Consequences

\rightsquigarrow Either $q=1$ or $q=\frac{1}{\sqrt{p}}-1$.
If $p \leq \frac{1}{4}$, then necessarily $q=1$. Also, clearly $q=0$ at $p=1$.

Consequences

\rightsquigarrow Either $q=1$ or $q=\frac{1}{\sqrt{p}}-1$.
If $p \leq \frac{1}{4}$, then necessarily $q=1$. Also, clearly $q=0$ at $p=1$.
What else? Needs a priori regularity on q.
\rightsquigarrow Either $q=1$ or $q=\frac{1}{\sqrt{p}}-1$.
If $p \leq \frac{1}{4}$, then necessarily $q=1$. Also, clearly $q=0$ at $p=1$.
What else? Needs a priori regularity on q.

- q is lower semi-continuous : $\mathbb{P}\left(\exists i<k, 0 \leftarrow \overleftarrow{\iota}_{i}\right) \nearrow q$ In particular,

$$
\left\{p>\frac{1}{4}: q=1\right\}=\left\{p>\frac{1}{4}: q>\frac{1}{\sqrt{p}}-1\right\} \text { is open }
$$

\rightsquigarrow Either $q=1$ or $q=\frac{1}{\sqrt{p}}-1$.
If $p \leq \frac{1}{4}$, then necessarily $q=1$. Also, clearly $q=0$ at $p=1$.
What else? Needs a priori regularity on q.

- q is lower semi-continuous : $\mathbb{P}\left(\exists i<k, 0 \leftarrow \overleftarrow{\epsilon}_{i}\right) \nearrow q$ In particular,

$$
\left\{p>\frac{1}{4}: q=1\right\}=\left\{p>\frac{1}{4}: q>\frac{1}{\sqrt{p}}-1\right\} \text { is open }
$$

- we can also (less directly, and not monotonically) approximate the super-critical phase by finite conditions " $\varphi_{k}>0$ " and get

$$
\left\{p>\frac{1}{4}: q<1\right\}=\bigcup_{k}\left\{p>\frac{1}{4}: \varphi_{k}(p)>0\right\} \text { is open }
$$

\rightsquigarrow Either $q=1$ or $q=\frac{1}{\sqrt{p}}-1$.

$$
\text { If } p \leq \frac{1}{4} \text {, then necessarily } q=1 . \text { Also, clearly } q=0 \text { at } p=1
$$

What else? Needs a priori regularity on q.

- q is lower semi-continuous : $\mathbb{P}\left(\exists i<k, 0 \leftarrow \overleftarrow{\varsigma}_{i}\right) \nearrow q$ In particular,

$$
\left\{p>\frac{1}{4}: q=1\right\}=\left\{p>\frac{1}{4}: q>\frac{1}{\sqrt{p}}-1\right\} \text { is open }
$$

- we can also (less directly, and not monotonically) approximate the super-critical phase by finite conditions " $\varphi_{k}>0$ " and get

$$
\left\{p>\frac{1}{4}: q<1\right\}=\bigcup_{k}\left\{p>\frac{1}{4}: \varphi_{k}(p)>0\right\} \text { is open }
$$

- These together imply by connectedness that the supercritical phase covers the whole interval $\left(\frac{1}{4}, 1\right]$. QED.

Explore the configuration from left to right, one particle at a time.
Count +1 (resp. -1) for each "fresh" \uparrow (resp. \nwarrow)

Explore the configuration from left to right, one particle at a time.
Count +1 (resp. -1) for each "fresh" \uparrow (resp. \nwarrow)

Explore the configuration from left to right, one particle at a time.
Count +1 (resp. -1) for each "fresh" \uparrow (resp. \nwarrow)

Explore the configuration from left to right, one particle at a time.
Count +1 (resp. -1) for each "fresh" \uparrow (resp. \nwarrow)

Explore the configuration from left to right, one particle at a time.
Count +1 (resp. -1) for each "fresh" \uparrow (resp. \nwarrow)

Explore the configuration from left to right, one particle at a time.
Count +1 (resp. -1) for each "fresh" \uparrow (resp. \nwarrow)

Explore the configuration from left to right, one particle at a time.
Count +1 (resp. -1) for each "fresh" \uparrow (resp. \nwarrow)

Explore the configuration from left to right, one particle at a time.
Count +1 (resp. -1) for each "fresh" \uparrow (resp. \nwarrow)

Explore the configuration from left to right, one particle at a time.
Count +1 (resp. -1) for each "fresh" \uparrow (resp. \nwarrow)

Effective characterization of the survival phase

Explore the configuration from left to right, one particle at a time.
Count +1 (resp. -1) for each "fresh" \uparrow (resp. \nwarrow)

Explore the configuration from left to right, one particle at a time.
Count +1 (resp. -1) for each "fresh" \uparrow (resp. \nwarrow)

As long as \uparrow outnumber $\nwarrow, 0$ is not hit. Thus, $p>\frac{1}{3}$ implies $q<1$.

Explore the configuration from left to right, one particle at a time.
Count +1 (resp. -1) for each "fresh" \uparrow (resp. \nwarrow)

As long as \uparrow outnumber $\nwarrow, 0$ is not hit. Thus, $p>\frac{1}{3}$ implies $q<1$. More generally,
Explore the configuration from left to right, k particles at a time.
First "resolve" the inner interactions of these k particles, then explore until the first "fresh" site in an analogous sense, and repeat.
As long as

$$
\varphi_{k}=\mathbb{E}[\#(\text { surviving } \uparrow \text { in } k \text { particles })-\#(\text { surviving } \nwarrow \text { in } k \text { particles })]>0,
$$

0 has positive chance not to be hit : $q<1$.

Explore the configuration from left to right, one particle at a time.
Count +1 (resp. -1) for each "fresh" \uparrow (resp. \nwarrow)

As long as \uparrow outnumber $\nwarrow, 0$ is not hit. Thus, $p>\frac{1}{3}$ implies $q<1$.
More generally,
Explore the configuration from left to right, k particles at a time.
First "resolve" the inner interactions of these k particles, then explore until the first "fresh" site in an analogous sense, and repeat.
As long as

$$
\varphi_{k}=\mathbb{E}[\#(\text { surviving } \uparrow \text { in } k \text { particles })-\#(\text { surviving } \nwarrow \text { in } k \text { particles })]>0,
$$

0 has positive chance not to be hit : $q<1$.
\rightarrow In fact, this is equivalent : $q<1 \Leftrightarrow \exists k, \varphi_{k}>0$.

Plan of the talk - Part 4

(4) About "universality"

Let us denote by m the distribution of interdistances in the initial configuration.

- The proof, hence the result, doesn't depend on m, besides being atomless
- Yet,

The model genuinely depends on m : not only probabilities of configurations can vary, but even some configurations are possible or not, depending on m.

(consider exponential distribution, vs. uniform distribution on [1,2])
\rightsquigarrow no possible coupling between models for different choices of m
\rightarrow Even though the law of the pairing does depend on m, sub/supercriticality doesn't!

A stronger universality property holds true.
Denote by A the index (in \mathbb{N}) of the first particle hitting 0 on $(0, \infty)$, if there is any, and let $A=\infty$ otherwise.

Theorem (Haslegrave-Sidoravicius-T. ' 19+)

The distribution of A does not depend on m (provided m is atomless).
It can even be "computed" : for $0 \leq p \leq 1$, for $x \in[-1,1]$, the generating series

$$
f_{p}(x)=\mathbb{E}\left[x^{A} \mathbf{1}_{\{A<\infty\}}\right]=\sum_{n=1}^{\infty} \mathbb{P}(A=n) x^{n}
$$

satisfies

$$
\begin{equation*}
p x f_{p}(x)^{4}-(1+2 p) x f_{p}(x)^{2}+2 f_{p}(x)-(1-p) x=0 \tag{1}
\end{equation*}
$$

NB. Since $q=\mathbb{P}_{(0, \infty)}(A<\infty)=f_{p}(1)$ we recover a polynomial equation for q.

A stronger universality property holds true.
Denote by A the index (in \mathbb{N}) of the first particle hitting 0 on $(0, \infty)$, if there is any, and let $A=\infty$ otherwise.

Theorem (Haslegrave-Sidoravicius-T. ' 19+)

The distribution of A does not depend on m (provided m is atomless).
It can even be "computed" : for $0 \leq p \leq 1$, for $x \in[-1,1]$, the generating series

$$
f_{p}(x)=\mathbb{E}\left[x^{A} \mathbf{1}_{\{A<\infty\}}\right]=\sum_{n=1}^{\infty} \mathbb{P}(A=n) x^{n}
$$

satisfies

$$
\begin{equation*}
p x f_{p}(x)^{4}-(1+2 p) x f_{p}(x)^{2}+2 f_{p}(x)-(1-p) x=0 \tag{1}
\end{equation*}
$$

NB. Since $q=\mathbb{P}_{(0, \infty)}(A<\infty)=f_{p}(1)$ we recover a polynomial equation for q.
In particular, we can extend f analytically to the whole plane \mathbb{C} except for slits; and we can then find asymptotics for $\mathbb{P}(A=n)$ as $n \rightarrow \infty$ by singularity analysis.

Main theorem (from Flajolet \& Sedgewick's Analytic Combinatorics)

Let f be a holomorphic function on the unit disk. Assume that 1 is the unique singularity of f on the unit circle. Assume furthermore that f can be extended analytically to a Δ-domain :

For $\alpha \in \mathbb{R} \backslash\{0,1,2,3, \ldots\}, C \in \mathbb{C}^{*}$,

$$
f(z)-f(1) \underset{\substack{\sim \rightarrow 1 \\ z \in \Delta}}{\sim} C(1-z)^{\alpha} \quad \Rightarrow \quad\left[z^{n}\right] f(z) \underset{n \rightarrow \infty}{\sim} \frac{C}{\Gamma(-\alpha)} n^{-(\alpha+1)}
$$

Main theorem (from Flajolet \& Sedgewick's Analytic Combinatorics)

Let f be a holomorphic function on the unit disk. Assume that 1 is the unique singularity of f on the unit circle. Assume furthermore that f can be extended analytically to a Δ-domain :

For $\alpha \in \mathbb{R} \backslash\{0,1,2,3, \ldots\}, C \in \mathbb{C}^{*}$,

$$
f(z)-f(1) \underset{\substack{z \rightarrow 1 \\ z \in \Delta}}{\sim} C(1-z)^{\alpha} \quad \Rightarrow \quad\left[z^{n}\right] f(z) \underset{n \rightarrow \infty}{\sim} \frac{C}{\Gamma(-\alpha)} n^{-(\alpha+1)}
$$

In our case,

- We need to find the singularities of f_{p};
- Existence of analytic extension follows standarly (monodromy theorem).

Main theorem (from Flajolet \& Sedgewick's Analytic Combinatorics)

Let f be a holomorphic function on the unit disk. Assume that 1 is the unique singularity of f on the unit circle. Assume furthermore that f can be extended analytically to a Δ-domain :

For $\alpha \in \mathbb{R} \backslash\{0,1,2,3, \ldots\}, C \in \mathbb{C}^{*}$,

$$
f(z)-f(1) \underset{\substack{z \rightarrow 1 \\ z \in \Delta}}{\sim} C(1-z)^{\alpha} \quad \Rightarrow \quad\left[z^{n}\right] f(z) \underset{n \rightarrow \infty}{\sim} \frac{C}{\Gamma(-\alpha)} n^{-(\alpha+1)}
$$

In our case,

- We need to find the singularities of f_{p};
- Existence of analytic extension follows standarly (monodromy theorem).

The implicit equation $F(z, f(z))=0$ actually defines a multivalued analytic function $\mathfrak{f}(z)$, or an analytic function on the algebraic Riemann surface $\{F(\cdot, \cdot)=0\}$. One easily finds singularities of \mathfrak{f}; but are they singularities of f ?

\mathfrak{f} has singularities at $(z, w)=(0, \infty),(\pm 1, \pm 1)$ and $(\pm R, \pm W)$ where $R=\sqrt{\frac{3 p}{1-p}}$.

- if $p<1 / 4$, then $R<1: f$ is smooth at R. Thus ± 1 are singularities of f;
- if $p>1 / 4$, then $R>1$, and $f(1)=q<1$ (first theorem) so 1 is not a singularity of f. Thus $\pm R$ are singularities of f.
\rightsquigarrow Standard computations then give the asymptotics for $\mathbb{P}(A=n)$.

\mathfrak{f} has singularities at $(z, w)=(0, \infty),(\pm 1, \pm 1)$ and $(\pm R, \pm W)$ where $R=\sqrt{\frac{3 p}{1-p}}$.
- if $p<1 / 4$, then $R<1: f$ is smooth at R. Thus ± 1 are singularities of f;
- if $p>1 / 4$, then $R>1$, and $f(1)=q<1$ (first theorem) so 1 is not a singularity of f. Thus $\pm R$ are singularities of f.
\rightsquigarrow Standard computations then give the asymptotics for $\mathbb{P}(A=n)$.
NB. Asymptotics for densities need an extra approximation (indices \rightarrow distances).

Concluding remarks

- One can deduce that certain other quantities are universal.

Concluding remarks

- One can deduce that certain other quantities are universal. For instance, in the supercritical regime, the skyline process is (shapes and number of vertices).

Concluding remarks

- One can deduce that certain other quantities are universal. For instance, in the supercritical regime, the skyline process is (shapes and number of vertices).

- One can deduce that certain other quantities are universal. For instance, in the supercritical regime, the skyline process is (shapes and number of vertices).

- For distributions with atoms, triple collisions may happen.
- Assume they resolve by total annihilation. The arguments still go through, but identities involve $\sigma(p)=\mathbb{P}$ (triple collision at 0), apparently not explicit. If $m=\delta_{1}$, extinction holds for $p<0.2347$ and survival for $p>0.2405$.
- One can deduce that certain other quantities are universal. For instance, in the supercritical regime, the skyline process is (shapes and number of vertices).

- For distributions with atoms, triple collisions may happen.
- Assume they resolve by total annihilation. The arguments still go through, but identities involve $\sigma(p)=\mathbb{P}$ (triple collision at 0), apparently not explicit. If $m=\delta_{1}$, extinction holds for $p<0.2347$ and survival for $p>0.2405$.
- Assume triple collisions resolve uniformly at random among ± 1. Then the model still observes universality, and in particular changes phase at $1 / 4$.
- One can deduce that certain other quantities are universal. For instance, in the supercritical regime, the skyline process is (shapes and number of vertices).

- For distributions with atoms, triple collisions may happen.
- Assume they resolve by total annihilation. The arguments still go through, but identities involve $\sigma(p)=\mathbb{P}$ (triple collision at 0), apparently not explicit. If $m=\delta_{1}$, extinction holds for $p<0.2347$ and survival for $p>0.2405$.
- Assume triple collisions resolve uniformly at random among ± 1. Then the model still observes universality, and in particular changes phase at $1 / 4$.
- If distribution of speed is not symmetric (but still takes 3 values), then some of the analysis carries over (with adaptations) but involves too many unknowns to get uniqueness of phase transition; still gives extinction below $1 / 4$. Results due to Junge-Lyu ' 18.

