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Introduction — Ballistic annihilation

Ballistic annihilation model, from physics literature (1990’s)

Let V,,, n € Z be i.i.d. random variables, with distribution ¢ on R.
From each location x,,, n € Z, of a point process on R, a particle starts moving at
constant speed V,,. When two particles collide, they annihilate.

Time

A Space

— Speed of decay of density of particles ?
— If u has atoms, are there surviving particles ?
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Introduction — Discrete cases

Two-speed model

From each integer, a particle is released with random speed +1. They annihilate upon
collision.

Time

Space

Simple combinatorics. Density ¢(z) = P(return time of SRW > 21) ~ ¢z~ 1/2
Description of “flocks of particles” : Belitzky—Ferrari *95
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Introduction — Discrete cases

Two-speed model

From each integer, a particle is released with random speed 1. They annihilate upon
collision.

Simple combinatorics. Density ¢(z) = P(return time of SRW > 21) ~ ¢z~ 1/2
Description of “flocks of particles” : Belitzky—Ferrari *95

Three-speed model (Ben-Naim—Redner—Leyvraz *93, Piasecki "95)

From each location of a Poisson point process, a particle starts with random speed
among —1,0,+1, with symmetric distribution. Annihilation upon collision.

Time

A Space

ccrxgToxy 0 Ty TpX3e -

Combinatorics become very intricate : no simple rule to check survival, long range
dependences in both directions, dependence in interdistances, no monotonicity...
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Introduction — Three-speed ballistic annihilation

Velocities are sampled according to g = 1%”5_1 +pdy + 1%"’5“.

Simulations for p =0.24,p =0.25,p =0.26 :

010090 TN 1 b2y AP GNP SISO DR ORI 1 P
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Introduction — Three-speed ballistic annihilation

Velocities are sampled according to g = 1%”5_1 +pdy + 1%"’5“.

Simulations for p =0.24,p =0.25,p =0.26 :

010090 TN 1 b2y AP GNP SISO DR ORI 1 P

Transition at p, = i “computed” by Piasecki et al. 95, and asymptotics for densities.
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Consider the ballistic annihilation model, where
@ interdistances have an atomless distribution,
—1  with probability (1 —p)/2
@ velocities are ¢ 0 with probability p
+1  with probability (1 —p)/2.
Define 8(p) = P(the particle at O survives indefinitely).

Theorem (Haslegrave-Sidoravicius-T. ’18+)

The model undergoes a phase transition at p, = % :0(p)>0&p>1/4
Moreover,

for all p > %, 6(p)=(2\p—1)%

0
0.25 0.5 0.75
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Results — continued

Denote by co(#) the density of stationary particles present at time .
Denote by ¢ (¢) the density of (+1)-particles present at time .
Assume further that interdistances are exponentially integrable, with unit expectation.

Theorem (Haslegrave-Sidoravicius-T. ’19+)

]
1
|
=

We have the following asymptotics, as t — oo : for some ¢ = c(p) >

(ﬁ +o(1))t' ifp<1/4,
co(t) = (4r(2/3)2 +o(1)) 123 ifp=1/4,
Qyp—172+o(e™) ifp>1/4,
and
(fﬁ-%O( ))fl/2 ifp<1/4,
c+(0) =1 (s + s +o() ¥ ifp=1/4,
o(e™) ifp>1/4.
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Proof — First remarks

Let us prove the first theorem : p, = % and 6(p) = (2/p— 1)3.

A few remarks :

@ by symmetry and independence, it suffices to consider the system on (0, 4-)
and to evaluate g = PP( ., (0 <— @) ; then we have 6(p) = p(1 — q)%.

@ a (—1)-particle is never caught by a particle on its right. Therefore, for all k € N,
the event P .. (0 <+ @) only depends on the finite system of the first k particles.

o the distribution of the system is invariant under mirroring the piece of
configuration between particles k and [ (for any k < [)

@ a (+1)-particle almost surely collides with another particle : if not, then (by

ergodicity) almost surely infinitely many would survive forever in the process
on R; but by symmetry the same holds for (—1)-particles...
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Proof — Identities in pictures

or iooor :ooor
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Proof — Identities in pictures

or

or iooor ‘

1 Ty T T

l—q = pl—q) +pel—q) + a(l—=q) + pe(l —q)
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Proof — Identities in pictures

or

or iooor ‘

_ . or I\\ or Il \01 Il/]\

¢ = =+ p + ag A+ pd

If g # 1 |, 1%t equation gives a. Inject into 2™, use g # 1. Get| g = Lp -1
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Consequences

WEitherqzlorqzﬁfl.

Ifp < 1 then necessarily g = 1. Also, clearly g =0atp = 1.

What else ?

Bl
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Consequences

WEitherqzlorqzﬁfl.

Ifp < 1 then necessarily g = 1. Also, clearly g =0atp = 1.

What else ? Needs a priori regularity on g.

Bl
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Consequences

WEitherqzlorqzﬁfl.

Ifp < 1 then necessarily g = 1. Also, clearly g =0atp = 1.

What else ? Needs a priori regularity on g.

94
@ ¢ is lower semi-continuous : P(Ji < k, 0+ 9;) ¢
1 In particular,
N
> tig=l={p>1tig> 1 1y
—:1q=1}= - — — 1} is open
p 4 q p 4 q N p
1
0 1
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Consequences

WEitherqzlorqzﬁfl.

Ifp < l, then necessarily ¢ = 1. Also, clearly g =0 atp = 1.
What else ? Needs a priori regularity on g.

@ ¢ is lower semi-continuous : P(Ji < k, 0+ 9;) ¢
1 In particular,

Bl

1 1 1 .
{p>1:q:1}:{p>Z:q>——l}1s0pen

N

@ we can also (less directly, and not monotonically)
approximate the super-critical phase by finite conditions
“@r > 0” and get

1 1 .
‘ {P>Z16]<1}:U{P>Zl(Pk(P)>0}ISOPCH
k
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Consequences

WEitherqzlorqzﬁfl.

Ifp < 1 then necessarily g = 1. Also, clearly g =0atp = 1.

What else ? Needs a priori regularity on g.

oL
@ ¢ is lower semi-continuous : P(Ji < k, 0+ 9;) ¢
1 In particular,
VP
> tig=l={p>1tig> 1 1y
—iq=1}= - — — 1} is open
p 4 q p 4 q N P
1
@ we can also (less directly, and not monotonically)
approximate the super-critical phase by finite conditions
“@r > 0” and get
1 1 .
0 ‘ {P>Z16]<1}:U{P>Zl(Pk(P)>0}ISOPCH
1 1 k

@ These together imply by connectedness that the
supercritical phase covers the whole interval (%, 1]. QED.
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Effective characterization of the survival phase

Explore the configuration from left to right, one particle at a time.
Count +1 (resp. —1) for each “fresh” | (resp. \)

Laurent TOURNIER Phase transition in 3-speed ballistic annihilation



Effective characterization of the survival phase

Explore the configuration from left to right, one particle at a time.
Count +1 (resp. —1) for each “fresh” | (resp. \)

Laurent TOURNIER Phase transition in 3-speed ballistic annihilation



Effective characterization of the survival phase

Explore the configuration from left to right, one particle at a time.
Count +1 (resp. —1) for each “fresh” | (resp. \)

Laurent TOURNIER Phase transition in 3-speed ballistic annihilation



Effective characterization of the survival phase

Explore the configuration from left to right, one particle at a time.
Count +1 (resp. —1) for each “fresh” | (resp. \)

A

N_ first annihilator (left-to-right)
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Effective characterization of the survival phase

Explore the configuration from left to right, one particle at a time.
Count +1 (resp. —1) for each “fresh” | (resp. \)

-1 -1
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Effective characterization of the survival phase

Explore the configuration from left to right, one particle at a time.
Count +1 (resp. —1) for each “fresh” | (resp. \)

—1 —1 -1 -1

Laurent TOURNIER Phase transition in 3-speed ballistic annihilation



Effective characterization of the survival phase

Explore the configuration from left to right, one particle at a time.
Count +1 (resp. —1) for each “fresh” | (resp. \)

I\AI\\ N = ’\\\r\

—1 —1 -1 -1

As long as 7 outnumber ™\, 0 is not hit. Thus, p > % implies g < 1.
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Effective characterization of the survival phase

Explore the configuration from left to right, one particle at a time.
Count +1 (resp. —1) for each “fresh” | (resp. \)

I\AI\\ N = ’\\\r\

—1 —1 -1 -1

As long as 7 outnumber ™\, 0 is not hit. Thus, p > % implies g < 1.

More generally,

Explore the configuration from left to right, k particles at a time.

First “resolve” the inner interactions of these k particles, then explore until the first
“fresh” site in an analogous sense, and repeat.

As long as

¢ = E[#(surviving 1 in k particles) — #(surviving ~_in k particles)] > 0,

0 has positive chance not to be hit : g < 1.
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Effective characterization of the survival phase

Explore the configuration from left to right, one particle at a time.
Count +1 (resp. —1) for each “fresh” | (resp. \)

I\AI\\ N = ’\\\r\

—1 —1 -1 -1

As long as 7 outnumber ™\, 0 is not hit. Thus, p > % implies g < 1.

More generally,

Explore the configuration from left to right, k particles at a time.

First “resolve” the inner interactions of these k particles, then explore until the first
“fresh” site in an analogous sense, and repeat.

As long as

¢ = E[#(surviving 1 in k particles) — #(surviving ~_in k particles)] > 0,

0 has positive chance not to be hit : g < 1.
— In fact, this is equivalent : ¢ < 1 < Jk, ¢ > 0.
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On the distribution of interdistances

Let us denote by m the distribution of interdistances in the initial configuration.

@ The proof, hence the result, doesn’t depend on m, besides being atomless
o Yet,

The model genuinely depends on 7 : not only probabilities of configurations can
vary, but even some configurations are possible or not, depending on m.

(consider exponential distribution, vs. uniform distribution on [1,2])
~ no possible coupling between models for different choices of m

— Even though the law of the pairing does depend on m, sub/supercriticality doesn’t!
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A universal distribution (given p)

A stronger universality property holds true.
Denote by A the index (in N) of the first particle hitting 0 on (0, ), if there is any,
and let A = oo otherwise.

Theorem (Haslegrave-Sidoravicius-T. *19+)

The distribution of A does not depend on m (provided m is atomless).

It can even be “computed” : for 0 < p < 1, for x € [—1, 1], the generating series

50 = El L cmy] = E P4 ="

n=1

satisfies

Pafy(x)* — (14 20)xfy (¥)% + 26 (1) — (1 p)x = 0. ()

NB. Since g =P (g ..\ (A < ) = f,(1) we recover a polynomial equation for g.
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A universal distribution (given p)

A stronger universality property holds true.
Denote by A the index (in N) of the first particle hitting 0 on (0, ), if there is any,
and let A = oo otherwise.

Theorem (Haslegrave-Sidoravicius-T. *19+)

The distribution of A does not depend on m (provided m is atomless).

It can even be “computed” : for 0 < p < 1, for x € [—1, 1], the generating series

50 = El L cmy] = E P4 ="

n=1

satisfies

Pafy(x)* — (14 20)xfy (¥)% + 26 (1) — (1 p)x = 0. ()

NB. Since g =P (g ..\ (A < ) = f,(1) we recover a polynomial equation for g.

In particular, we can extend f analytically to the whole plane C except for slits ; and
we can then find asymptotics for P(A = n) as n — oo by singularity analysis.
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Singularity analysis

Main theorem (from Flajolet & Sedgewick’s Analytic Combinatorics)

Let f be a holomorphic function on the unit disk. Assume that 1 is the unique
singularity of f on the unit circle. Assume furthermore that f can be extended
analytically to a A-domain :

For ¢ € R\ {0,1,2,3,...}, C € C¥,

fO-F1) ~ C1-2" = EUE) 5 g
ZEA
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Singularity analysis

Main theorem (from Flajolet & Sedgewick’s Analytic Combinatorics)

Let f be a holomorphic function on the unit disk. Assume that 1 is the unique
singularity of f on the unit circle. Assume furthermore that f can be extended
analytically to a A-domain :

For ¢ € R\ {0,1,2,3,...}, C € C¥,

fO-F1) ~ C1-2" = EUE) 5 g
ZEA

In our case,
@ We need to find the singularities of f, ;

@ Existence of analytic extension follows standarly (monodromy theorem).
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Singularity analysis

Main theorem (from Flajolet & Sedgewick’s Analytic Combinatorics)

Let f be a holomorphic function on the unit disk. Assume that 1 is the unique
singularity of f on the unit circle. Assume furthermore that f can be extended
analytically to a A-domain :

For ¢ € R\ {0,1,2,3,...}, C € C¥,

fO-F1) ~ C1-2" = EUE) 5 g
ZEA

In our case,
@ We need to find the singularities of f, ;
@ Existence of analytic extension follows standarly (monodromy theorem).

The implicit equation F(z,f(z)) = 0 actually defines a multivalued analytic function
f(z), or an analytic function on the algebraic Riemann surface {F(,-) = 0}.
One easily finds singularities of {; but are they singularities of f ?
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Looking for the singularities of f

b

f has singularities at (z,w) = (0,00), (£1,£1) and (xR, +W) where R = ffp.

e if p<1/4,then R < 1:f is smooth at R. Thus +1 are singularities of f';
o ifp>1/4,thenR > 1,and f(1) = g < 1 (first theorem) so 1 is not a singularity
of f. Thus £R are singularities of f.

~~ Standard computations then give the asymptotics for P(A = n).
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Looking for the singularities of f

b

f has singularities at (z,w) = (0,00), (£1,£1) and (xR, +W) where R = ffp.

e if p<1/4,then R < 1:f is smooth at R. Thus +1 are singularities of f';
o ifp>1/4,thenR > 1,and f(1) = g < 1 (first theorem) so 1 is not a singularity
of f. Thus £R are singularities of f.

~~ Standard computations then give the asymptotics for P(A = n).
NB. Asymptotics for densities need an extra approximation (indices — distances).
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Concluding remarks

@ One can deduce that certain other quantities are universal. For instance, in the
supercritical regime, the skyline process is (shapes and number of vertices).

/I[XINMQ@ ‘1\5 g

[e——

AP

# of particles
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Concluding remarks

@ One can deduce that certain other quantities are universal. For instance, in the
supercritical regime, the skyline process is (shapes and number of vertices).

/I[XINMQ@ ‘1\5 g

[e——

AP

# of particles

o For distributions with atoms, triple collisions may happen.

o Assume they resolve by total annihilation. The arguments still go through, but
identities involve ¢ (p) = P(triple collision at 0), apparently not explicit.
If m = &y, extinction holds for p < 0.2347 and survival for p > 0.2405.
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Concluding remarks

@ One can deduce that certain other quantities are universal. For instance, in the
supercritical regime, the skyline process is (shapes and number of vertices).

/I[XINMQ@ ‘1\5 g

[e——

AP

(e ——
# of particles

o For distributions with atoms, triple collisions may happen.

o Assume they resolve by total annihilation. The arguments still go through, but
identities involve ¢ (p) = P(triple collision at 0), apparently not explicit.
If m = &y, extinction holds for p < 0.2347 and survival for p > 0.2405.

o Assume triple collisions resolve uniformly at random among +1. Then the model
still observes universality, and in particular changes phase at 1/4.
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Concluding remarks

@ One can deduce that certain other quantities are universal. For instance, in the
supercritical regime, the skyline process is (shapes and number of vertices).

/I[XINMQ@ ‘1\5 g

[e——

AP

# of particles

o For distributions with atoms, triple collisions may happen.

o Assume they resolve by total annihilation. The arguments still go through, but
identities involve ¢ (p) = P(triple collision at 0), apparently not explicit.
If m = &y, extinction holds for p < 0.2347 and survival for p > 0.2405.

o Assume triple collisions resolve uniformly at random among +1. Then the model
still observes universality, and in particular changes phase at 1/4.

o If distribution of speed is not symmetric (but still takes 3 values), then some of
the analysis carries over (with adaptations) but involves too many unknowns to
get uniqueness of phase transition ; still gives extinction below 1/4. Results due
to Junge—Lyu *18.
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