Activated Random Walks with bias: activity at low density

Laurent Tournier
Joint work with Leonardo Rolla

LAGA (Université Paris 13)

Conference "Disordered models of mathematical physics" Valparaíso, Chile - July 23, 2015

Activated Random Walks (ARW) — Quick presentation

Dynamics: Particles evolve in continuous time on \mathbb{Z}^{d}, and can be either

- active, in state A: move as (independent) random walks, at rate 1 ;
- passive (sleeping), in state \mathbf{S} : do not move.

Two kinds of mutations/interactions happen:

- $A \rightarrow S$ at rate λ : each particle gets asleep at rate λ (independently);
- $A+S \rightarrow 2 A$ immediately: active particles awake the others on same site.

NB. Mutations $A \rightarrow S$ are only effective when the particle A is alone
\Rightarrow On each site, there is either nothing, one S, or any number of A particles.

Parameters:

- jump distribution $p(\cdot)$ on \mathbb{Z}^{d}
- sleeping rate $\lambda \in(0, \infty)$
- initial configuration of A particles (finite support, or i.i.d. in general).

Behaviors of interest:

- fixation: in any finite box, activity vanishes eventually;
- non-fixation: in any finite box, activity goes on forever.

Motivations: 1. Phase transition

Let μ denote the initial density of particles (for i.i.d. initial configuration).
A phase transition is expected to happen: $\exists \mu_{c}(\lambda) \in(0,1)$ s.t.

- for $\mu<\mu_{c}(\lambda)$, a.s. fixation;
- for $\mu>\mu_{c}(\lambda)$, a.s. non-fixation.

Or also: for $\mu \geq 1$ then a.s. fixation and, for $\mu<1, \exists \lambda_{c}(\mu) \in(0, \infty)$ s.t.

- for $\lambda>\lambda_{c}(\mu)$, a.s. fixation;
- for $\lambda<\lambda_{c}(\mu)$, a.s. non-fixation.

Existence of μ_{c} and λ_{c} follow by monotonicity in Diaconis-Fulton coupling. However, nontrivial bounds are the difficult part \rightarrow cf. Leo Rolla's talk for an overview of known results.

Motivations: 2. Self-Organized Criticality (physics)

Ingredient of a toy example of self-organized criticality, i.e. a model that displays "critical behavior" (polynomial decay of correlations,...) spontaneously, without having to tune some parameter:
In a finite box,

- Drop a new particle at random,
- Stabilize the configuration by running the dynamics inside the box and by freezing particles that exit, and repeat.

\hookrightarrow Dynamics reach a stationary regime which, extended to infinite volume, should satisfy SOC.

Case of a biased random walk - Main result

Assume the jump distribution $p(\cdot)$ has a bias: for the simple random walk X with jump distribution $p(\cdot)$, for some direction $\ell, X_{n} \cdot \ell \rightarrow+\infty$, a.s..

For $\lambda>0, v \in \mathbb{R}^{d} \backslash\{0\}$, if T_{v} is the time spent by X in $\left\{x \in \mathbb{Z}^{d}: x \cdot v \leq 0\right\}$, let $\quad F_{v}(\lambda)=E\left[\frac{1}{(1+\lambda)^{T_{v}}}\right]$
$=P($ a walk killed at rate λ in $\{x \cdot v \leq 0\}$ survives forever $)$
NB. If $\boldsymbol{v} \cdot \ell>0$, then $0<F_{\boldsymbol{v}}(\lambda) \longrightarrow 1$ as $\lambda \rightarrow 0^{+}$.

Theorem (Taggi, 2014)

- Assume $d=1 . \mu>1-F_{1}(\lambda) \Rightarrow$ non-fixation a.s.
- Assume $d \geq$ 2. $\mu F_{v}(\lambda)>\mathbb{P}\left(\eta_{0}(0)=0\right) \Rightarrow$ non-fixation a.s.

Theorem (Rolla-T., 2015)

- Assume $d \geq 2 . \mu>1-F_{v}(\lambda) \Rightarrow$ non-fixation a.s.
\hookrightarrow for all d, for all $\mu<1$, non-fixation happens for small λ.

Our proof is based on a mixed use of particle-wise and site-wise viewpoints.
(1) Definition: particle-wise vs. site-wise
(3) Definition: particle fixation vs. site fixation

- A non-fixation condition (particle-wise + site-wise argument)
- Proof of the result (site-wise argument)
(0) Existence of the particle-wise construction.

Site-wise vs. particle-wise

The site-wise viewpoint attaches randomness to sites: from finite initial configuration, ("Diaconis-Fulton" construction)

- each site contains a random stack of i.i.d. instructions ("jump to y ", or "sleep"), and a Poisson clock;
- when clock rings at a site, apply the top instruction to a particle there;
- clock runs at speed proportional to number of particles present at the site (as if each particle reads an instruction at rate 1).
\hookrightarrow we don't distinguish particles at a site, and get $\eta_{t}(x) \in\{0, S, 1,2, \ldots\}$. Crucial properties: abelianness and monotonicity.

The particle-wise viewpoint attaches randomness to particles:

- each particle $(x, i)(i$-th particle starting at $x)$ has a "life plan" $\left(X_{t}^{x, i}\right)_{t \geq 0}$ (that is a continuous-time RW), and a Poisson clock with rate λ;
- particles move according to their life plan,
- when the clock of a particle rings, if it is alone then its gets asleep, and in this case its clock stops;
- when a particle is awoken, its clock resumes ticking.
\hookrightarrow we get a whole family of paths $\left(Y_{t}^{x, i}\right)_{t \geq 0}$, which carries more information.
Properties: Not the above, but a control on the effect of adding one particle.

Site fixation vs. particle fixation

Definition

Site fixation occurs when, at each site, there is eventually no active particle. Particle fixation occurs when each particle is eventually sleeping.

Site fixation vs. particle fixation

Definition

Site fixation occurs when, at each site, there is eventually no active particle. Particle fixation occurs when each particle is eventually sleeping.

Example of use. Assume particles fixate a.s., then

$$
\begin{aligned}
\mu & =\mathbb{E}[\# \text { particles initially at } 0] \\
& =\mathbb{E}[\# \text { sites where a particle initially at } 0 \text { settles }] \\
& =\sum_{v} \mathbb{P}(\text { some particle initially at } 0 \text { settles at } v) \\
& =\sum_{v} \mathbb{P}(\text { some particle initially at }-v \text { settles at } 0) \\
& =\mathbb{E}[\# \text { particles settling at } 0] \leq 1
\end{aligned}
$$

Site fixation vs. particle fixation

Definition

Site fixation occurs when, at each site, there is eventually no active particle. Particle fixation occurs when each particle is eventually sleeping.

Example of use. Assume particles fixate a.s., then

$$
\begin{aligned}
\mu & =\mathbb{E}[\# \text { particles initially at } 0] \\
& =\mathbb{E}[\# \text { sites where a particle initially at } 0 \text { settles }] \\
& =\sum_{v} \mathbb{P}(\text { some particle initially at } 0 \text { settles at } v) \\
& =\sum_{v} \mathbb{P}(\text { some particle initially at }-v \text { settles at } 0) \\
& =\mathbb{E}[\# \text { particles settling at } 0] \leq 1 .
\end{aligned}
$$

Theorem (Amir-Gurel-Gurevich, 2012)

Site fixation implies particle fixation. Thus, they are equivalent. And $\mu_{c} \geq 1$.
(for i.i.d. initial conditions, 0-1 laws hold for site and particle fixation)

A non-fixation condition

- Direct technique for proving non-fixation: finding a strategy that makes arbitrarily many particles visit precisely the site o.
- In fact, making a positive density of particles exit a box is sufficient. Consider an ARW with i.i.d. initial configuration. For $n \in \mathbb{N}$, let $V_{n}=\{-n, \ldots, n\}^{d}$, denote $\mathbb{P}_{\left[V_{n}\right]}$ the law of the ARW restricted to V_{n} (i.e. particles freeze outside), M_{n} the number of particles exiting V_{n}.

Proposition

$$
\limsup _{n} \frac{\mathbb{E}_{\left[V_{n}\right]}\left[M_{n}\right]}{\left|V_{n}\right|}>0 \quad \Rightarrow \quad \text { (particle) non-fixation, a.s. }
$$

A non-fixation condition

- Direct technique for proving non-fixation: finding a strategy that makes arbitrarily many particles visit precisely the site o.
- In fact, making a positive density of particles exit a box is sufficient.

Consider an ARW with i.i.d. initial configuration.
For $n \in \mathbb{N}$, let $V_{n}=\{-n, \ldots, n\}^{d}$, denote $\mathbb{P}_{\left[V_{n}\right]}$ the law of the ARW restricted to V_{n} (i.e. particles freeze outside), M_{n} the number of particles exiting V_{n}.

Proposition

$$
\limsup _{n} \frac{\mathbb{E}_{\left[V_{n}\right]}\left[M_{n}\right]}{\left|V_{n}\right|}>0 \quad \Rightarrow \quad \text { (particle) non-fixation, a.s. }
$$

Let $\widetilde{V}_{n}=V_{n-\log n}$. Then, if $\eta_{0}(x) \leq K$ a.s. (to simplify)

$$
\begin{aligned}
\mathbb{E}\left[M_{n}\right] & \leq \mu\left|V_{n} \backslash \widetilde{V}_{n}\right|+\sum_{x \in \widetilde{V}_{n}, i \in \mathbb{N}} \mathbb{P}\left(i \leq \eta_{0}(x), \text { particle } Y^{x, i} \text { exits } V_{n}\right) \\
& \leq o\left(\left|V_{n}\right|\right)+\left|\widetilde{V}_{n}\right| K \mathbb{P}\left(\text { particle } Y^{0,1} \text { reaches distance } \log n\right)
\end{aligned}
$$

$\mathbb{P}\left(Y^{0,1}\right.$ does not fixate $)=\lim _{n} \mathbb{P}\left(Y^{0,1}\right.$ reaches dist. $\left.\log n\right) \geq \limsup \sin _{n} \frac{\mathbb{E}\left[M_{n}\right]}{\left|V_{n}\right|}$

A non-fixation condition

- Direct technique for proving non-fixation: finding a strategy that makes arbitrarily many particles visit precisely the site o.
- In fact, making a positive density of particles exit a box is sufficient.

Consider an ARW with i.i.d. initial configuration.
For $n \in \mathbb{N}$, let $V_{n}=\{-n, \ldots, n\}^{d}$, denote $\mathbb{P}_{\left[V_{n}\right]}$ the law of the ARW restricted to V_{n} (i.e. particles freeze outside), M_{n} the number of particles exiting V_{n}.

Proposition

$$
\limsup \sup _{n} \frac{\mathbb{E}_{\left[V_{n}\right]}\left[M_{n}\right]}{\left|V_{n}\right|}>0 \quad \Rightarrow \quad \text { (particle) non-fixation, a.s. }
$$

Let $\widetilde{V}_{n}=V_{n-\log n}$. Then, if $\eta_{0}(x) \leq K$ a.s. (to simplify)

$$
\begin{aligned}
\mathbb{E}\left[M_{n}\right] & \leq \mu\left|V_{n} \backslash \widetilde{V}_{n}\right|+\sum_{x \in \widetilde{V}_{n}, i \in \mathbb{N}} \mathbb{P}\left(i \leq \eta_{0}(x), \text { particle } Y^{x, i} \text { exits } V_{n}\right) \\
& \leq o\left(\left|V_{n}\right|\right)+\left|\widetilde{V}_{n}\right| K \mathbb{P}\left(\text { particle } Y^{0,1} \text { reaches distance } \log n\right)
\end{aligned}
$$

$\mathbb{P}\left(Y^{0,1}\right.$ does not fixate $)=\lim _{n} \mathbb{P}\left(Y^{0,1}\right.$ reaches dist. $\left.\log n\right) \geq \limsup \sin _{n} \frac{\mathbb{E}\left[M_{n}\right]}{\left|V_{n}\right|}$
\rightsquigarrow Why do we have $\mathbb{E}\left[M_{n}\right] \geq \mathbb{E}_{\left[V_{n}\right]}\left[M_{n}\right]$?

A monotonicity lemma

Usual site-wise monotonicity: adding particles increases the number of used instructions (topplings).

A monotonicity lemma

Usual site-wise monotonicity: adding particles increases the number of used instructions (topplings). We need a variant to distinguish particles exiting V_{n}. Let us color in Blue the particles that start in V_{n}, in Red the particles that start outside V_{n}, and modify the site-wise construction as follows:

- Blue and Red use independent stacks of instructions (but active particles awaken any sleepy particle, hence an interaction)
- When a Blue particle exits V_{n}, it becomes Red.
\hookrightarrow Colorblind dynamics still is ARW.

A monotonicity lemma

Usual site-wise monotonicity: adding particles increases the number of used instructions (topplings). We need a variant to distinguish particles exiting V_{n}. Let us color in Blue the particles that start in V_{n}, in Red the particles that start outside V_{n}, and modify the site-wise construction as follows:

- Blue and Red use independent stacks of instructions
(but active particles awaken any sleepy particle, hence an interaction)
- When a Blue particle exits V_{n}, it becomes Red.
\hookrightarrow Colorblind dynamics still is ARW.
Then monotonicity extends, in two steps:
- With only Blue particles at the beginning, not freezing Red particles outside of V_{n} anymore increases the number of used Blue instructions, and thus M_{n} : (denoting the law of this process by $\mathbb{P}_{V_{n}}$)

$$
\mathbb{E}_{\left[V_{n}\right]}\left[M_{n}\right] \leq \mathbb{E}_{V_{n}}\left[M_{n}\right]
$$

- Adding Red particles at the beginning still increases the number of used Blue instructions, and thus M_{n} :

$$
\mathbb{E}_{V_{n}}\left[M_{n}\right] \leq \mathbb{E}\left[M_{n}\right]
$$

Non-fixation for biased ARW on \mathbb{Z}^{d}

Let $\boldsymbol{v} \in \mathbb{R}^{d}$ and assume $\mu>1-F_{\boldsymbol{v}}(\lambda)$.
Consider ARW restricted to V_{n} (particles freeze outside), with site-wise construction. Let us devise a toppling strategy that throws a positive density of particles outside of V_{n}.

Preliminary step: levelling
Topple sites in V_{n} until all particles are either alone or outside V_{n}.

Non-fixation for biased ARW on \mathbb{Z}^{d}

Let $\boldsymbol{v} \in \mathbb{R}^{d}$ and assume $\mu>1-F_{v}(\lambda)$.
Consider ARW restricted to V_{n} (particles freeze outside), with site-wise construction. Let us devise a toppling strategy that throws a positive density of particles outside of V_{n}.

Preliminary step: levelling

Topple sites in V_{n} until all particles are either alone or outside V_{n}.
Label $V_{n}=\left\{x_{1}, \ldots, x_{r}\right\}$ so that $x_{1} \cdot \boldsymbol{v} \leq \cdots \leq x_{r} \cdot \boldsymbol{v}$.

Main step

For $i=1, \ldots, r$, if there is a particle in x_{i}, then topple it, and topple it again, and so on until either it exits V_{n}, falls asleep on $x_{i}+\{x: x \cdot v \leq 0\}$ or reaches an empty site in $\left\{x_{i+1}, \ldots, x_{r}\right\}$.

Non-fixation for biased ARW on \mathbb{Z}^{d}

Let $\boldsymbol{v} \in \mathbb{R}^{d}$ and assume $\mu>1-F_{\boldsymbol{v}}(\lambda)$.
Consider ARW restricted to V_{n} (particles freeze outside), with site-wise construction. Let us devise a toppling strategy that throws a positive density of particles outside of V_{n}.

Preliminary step: levelling

Topple sites in V_{n} until all particles are either alone or outside V_{n}.
Label $V_{n}=\left\{x_{1}, \ldots, x_{r}\right\}$ so that $x_{1} \cdot \boldsymbol{v} \leq \cdots \leq x_{r} \cdot \boldsymbol{v}$.

Main step

For $i=1, \ldots, r$, if there is a particle in x_{i}, then topple it, and topple it again, and so on until either it exits V_{n}, falls asleep on $x_{i}+\{x: x \cdot v \leq 0\}$ or reaches an empty site in $\left\{x_{i+1}, \ldots, x_{r}\right\}$.

The probability of the middle case is lower than $F_{v}(\lambda)$, and otherwise the number of particles outside V_{n} or in $\left\{x_{i+1}, \ldots, x_{r}\right\}$ increases by 1 . Hence,

$$
\mathbb{E}_{\left[V_{n}\right]}\left[M_{n}\right] \geq \mu\left|V_{n}\right|-\left(1-F_{\boldsymbol{v}}(\lambda)\right)\left|V_{n}\right|
$$

Construction of the infinite-volume particle-wise process

How to prove existence of the ARW with infinite initial condition? \rightarrow for the usual process $\left(\eta_{t}(\cdot)\right)_{t \geq 0}$ on $\{0, S, 1, \ldots\}^{\mathbb{Z}^{d}}$, the standard theory from particle systems adapt (cf. Liggett, and Andjel on Zero-Range-Process) \rightarrow for the fully-labeled system of walks, no standard reference. Also, we need to prove the existence of the previous particle-wise construction specifically. Let us sketch a probabilistic proof of existence.

Construction of the infinite-volume particle-wise process

How to prove existence of the ARW with infinite initial condition? \rightarrow for the usual process $\left(\eta_{t}(\cdot)\right)_{t \geq 0}$ on $\{0, S, 1, \ldots\}^{\mathbb{Z}^{d}}$, the standard theory from particle systems adapt (cf. Liggett, and Andjel on Zero-Range-Process) \rightarrow for the fully-labeled system of walks, no standard reference. Also, we need to prove the existence of the previous particle-wise construction specifically. Let us sketch a probabilistic proof of existence.
What do we need to prove? Consider the following:

- η_{0} a finite initial configuration,
- $X=\left(X^{(x, i)} ; x \in \mathbb{Z}^{d}, i \in \mathbb{N}\right)$ a family of (putative) paths,
- $\mathscr{P}=\left(\mathscr{P}^{(x, i)} ; x \in \mathbb{Z}^{d}, i \in \mathbb{N}\right)$ a family of PP (clocks).

Let $\bar{\eta}_{t}\left(z ; \eta_{0}, X, \mathscr{P}\right)=$ set of the labels " (x, i) " of the particles at z at time t. Choose a sequence of finite subset $W_{n} \uparrow \mathbb{Z}^{d}$.

For an infinite η_{0}, the particle-wise construction of the ARW from $\left(\eta_{0}, X, \mathscr{P}\right)$ is well-defined if, for all $z \in \mathbb{Z}^{d}, T>0, w \in \mathbb{Z}^{d}$, the sequence

$$
\bar{\eta}_{\mid[0, T]}\left(z ; \eta_{0} \cdot \mathbf{1}_{w+W_{n}}, X, \mathscr{P}\right), \quad n \in \mathbb{N}
$$

is eventually constant, and its limit does not depend on $w \in \mathbb{Z}^{d}$.

Influence of a particle

Given η_{0}, X, \mathscr{P}, the particle (x, i) has an influence on $z \in \mathbb{Z}^{d}$ during $[0, t]$ if removing this particle changes the fully-labeled process $\bar{\eta}_{|0, t| \times\{ \}\}}\left(\eta_{0}, X, \mathscr{P}\right)$.

To prove well-definedness at z, we have to ensure that, for a finite number of n 's, some site in $W_{n+1} \backslash W_{n}$ has an influence on z. The key is the following.

Lemma

Let $Z_{t}^{\chi, i}\left(\eta_{0}, X, \mathscr{P}\right)$ be the set of sites influenced by (x, i) before t. There is a branching r.w. \widetilde{Z} on \mathbb{Z}^{d} such that, for any given finite config. π,

$$
Z_{t}^{x, i}(\pi, X, \mathscr{P}) \subset_{\text {st. }} x+\widetilde{Z}_{t}
$$

and $E\left[\left|\widetilde{Z}_{t}\right|\right] \leq e^{c t}$.

Theorem

Assume $\sup _{x} \mathbb{E}\left[\eta_{0}(x)\right]<\infty$. Then the particle-wise ARW is a.s. well-defined.

Conclusion

Extensions of parts of the proof, of possible independent interest:

- The non-fixation condition naturally extends to amenable graphs (assuming $\left|\partial V_{n}\right|=o\left(\left|V_{n}\right|\right)$, positive density of exits \Rightarrow non-fixation).
- The particle-wise construction extends to transitive graphs with a unimodular subgroup of automorphisms that preserves the jump distribution (needs mass transport principle).

Most striking open questions:

- in the symmetric case, non-fixation for some $\mu<1$? (even when $d=1$)
- in the biased case, fixation for some $\mu>0$? (for symmetric case, see Sidoravicius-Teixeira 2014)

