
Activated Random Walks with bias:
activity at low density

Laurent TOURNIER
Joint work with Leonardo ROLLA

LAGA (Université Paris 13)

Conference “Disordered models of mathematical physics”
Valparaíso, Chile — July 23, 2015

Laurent TOURNIER Activated Random Walks with a bias



Activated Random Walks (ARW) — Quick presentation

Dynamics: Particles evolve in continuous time on Zd, and can be either
active, in state A: move as (independent) random walks, at rate 1;
passive (sleeping), in state S: do not move.

Two kinds of mutations/interactions happen:
A→ S at rate λ : each particle gets asleep at rate λ (independently);
A+S→ 2A immediately: active particles awake the others on same site.

NB. Mutations A→ S are only effective when the particle A is alone
⇒ On each site, there is either nothing, one S, or any number of A particles.

Parameters:
jump distribution p(·) on Zd

sleeping rate λ ∈ (0,∞)

initial configuration of A particles (finite support, or i.i.d. in general).

Behaviors of interest:
fixation: in any finite box, activity vanishes eventually;
non-fixation: in any finite box, activity goes on forever.
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Motivations: 1. Phase transition

Let µ denote the initial density of particles (for i.i.d. initial configuration).
A phase transition is expected to happen: ∃µc(λ ) ∈ (0,1) s.t.

for µ < µc(λ ), a.s. fixation;
for µ > µc(λ ), a.s. non-fixation.

Or also: for µ ≥ 1 then a.s. fixation and, for µ < 1, ∃λc(µ) ∈ (0,∞) s.t.
for λ > λc(µ), a.s. fixation;
for λ < λc(µ), a.s. non-fixation.

λ

µO 1

Fixation

Non-fixation

Existence of µc and λc follow by monotonicity in Diaconis-Fulton coupling.
However, nontrivial bounds are the difficult part→ cf. Leo Rolla’s talk for
an overview of known results.
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Motivations: 2. Self-Organized Criticality (physics)

Ingredient of a toy example of self-organized criticality, i.e. a model that
displays “critical behavior” (polynomial decay of correlations,...)
spontaneously, without having to tune some parameter:
In a finite box,

Drop a new particle at random,
Stabilize the configuration by running the dynamics inside the box and
by freezing particles that exit,

and repeat.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

#
 p

a
rt

ic
le

s
 r

e
m

a
in

in
g

# particles dropped

↪→ Dynamics reach a stationary regime which, extended to infinite volume,
should satisfy SOC.
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Case of a biased random walk – Main result

Assume the jump distribution p(·) has a bias: for the simple random walk X
with jump distribution p(·), for some direction `, Xn · `→+∞,a.s..

For λ > 0, v ∈ Rd \{0}, if Tv is the time spent by X in {x ∈ Zd : x · v≤ 0},

let Fv(λ ) = E
[ 1
(1+λ )Tv

]
= P(a walk killed at rate λ in {x · v≤ 0} survives forever)

NB. If v · ` > 0, then 0 < Fv(λ )−→ 1 as λ → 0+.

Theorem (Taggi, 2014)

Assume d = 1. µ > 1−F1(λ )⇒ non-fixation a.s.

Assume d ≥ 2. µFv(λ )> P(η0(0) = 0)⇒ non-fixation a.s.

Theorem (Rolla-T., 2015)

Assume d ≥ 2. µ > 1−Fv(λ )⇒ non-fixation a.s.

↪→ for all d, for all µ < 1, non-fixation happens for small λ .
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Plan

Our proof is based on a mixed use of particle-wise and site-wise viewpoints.

1 Definition: particle-wise vs. site-wise
2 Definition: particle fixation vs. site fixation
3 A non-fixation condition (particle-wise + site-wise argument)
4 Proof of the result (site-wise argument)
5 Existence of the particle-wise construction.
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Site-wise vs. particle-wise

The site-wise viewpoint attaches randomness to sites: from finite initial
configuration, (“Diaconis-Fulton” construction)

each site contains a random stack of i.i.d. instructions (“jump to y”, or
“sleep”), and a Poisson clock;
when clock rings at a site, apply the top instruction to a particle there;
clock runs at speed proportional to number of particles present at the
site (as if each particle reads an instruction at rate 1).

↪→ we don’t distinguish particles at a site, and get ηt(x) ∈ {0,S,1,2, . . .}.
Crucial properties: abelianness and monotonicity.

The particle-wise viewpoint attaches randomness to particles:
each particle (x, i) (i-th particle starting at x) has a “life plan” (Xx,i

t )t≥0
(that is a continuous-time RW), and a Poisson clock with rate λ ;
particles move according to their life plan,
when the clock of a particle rings, if it is alone then its gets asleep, and
in this case its clock stops;
when a particle is awoken, its clock resumes ticking.

↪→ we get a whole family of paths (Yx,i
t )t≥0, which carries more information.

Properties: Not the above, but a control on the effect of adding one particle.
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Site fixation vs. particle fixation

Definition
Site fixation occurs when, at each site, there is eventually no active particle.
Particle fixation occurs when each particle is eventually sleeping.

Example of use. Assume particles fixate a.s., then

µ = E[# particles initially at 0]
= E[# sites where a particle initially at 0 settles]

= ∑
v
P(some particle initially at 0 settles at v)

= ∑
v
P(some particle initially at −v settles at 0)

= E[# particles settling at 0]≤ 1.

Theorem (Amir–Gurel-Gurevich, 2012)

Site fixation implies particle fixation. Thus, they are equivalent. And µc ≥ 1.

(for i.i.d. initial conditions, 0-1 laws hold for site and particle fixation)
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A non-fixation condition

• Direct technique for proving non-fixation: finding a strategy that makes
arbitrarily many particles visit precisely the site o.
• In fact, making a positive density of particles exit a box is sufficient.
Consider an ARW with i.i.d. initial configuration.
For n ∈ N, let Vn = {−n, . . . ,n}d, denote P[Vn] the law of the ARW restricted
to Vn (i.e. particles freeze outside), Mn the number of particles exiting Vn.

Proposition

limsupn
E[Vn ][Mn]

|Vn| > 0 ⇒ (particle) non-fixation, a.s.

Let Ṽn = Vn−logn. Then, if η0(x)≤ K a.s. (to simplify)

E[Mn]≤ µ|Vn \ Ṽn|+ ∑
x∈Ṽn,i∈N

P(i≤ η0(x), particle Yx,i exits Vn)

≤ o(|Vn|)+ |Ṽn|KP(particle Y0,1 reaches distance logn)

P(Y0,1 does not fixate) = limnP(Y0,1 reaches dist. logn)≥ limsupn
E[Mn]
|Vn|

 Why do we have E[Mn]≥ E[Vn][Mn]?
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A monotonicity lemma

Usual site-wise monotonicity: adding particles increases the number of used
instructions (topplings).

We need a variant to distinguish particles exiting Vn.
Let us color in Blue the particles that start in Vn, in Red the particles that
start outside Vn, and modify the site-wise construction as follows:

Blue and Red use independent stacks of instructions
(but active particles awaken any sleepy particle, hence an interaction)
When a Blue particle exits Vn, it becomes Red.

↪→ Colorblind dynamics still is ARW.
Then monotonicity extends, in two steps:
•With only Blue particles at the beginning, not freezing Red particles
outside of Vn anymore increases the number of used Blue instructions, and
thus Mn: (denoting the law of this process by PVn )

E[Vn][Mn]≤ EVn [Mn]

• Adding Red particles at the beginning still increases the number of used
Blue instructions, and thus Mn:

EVn [Mn]≤ E[Mn]
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Non-fixation for biased ARW on Zd

Let v ∈ Rd and assume µ > 1−Fv(λ ).
Consider ARW restricted to Vn (particles freeze outside), with site-wise
construction. Let us devise a toppling strategy that throws a positive
density of particles outside of Vn.

Preliminary step: levelling

Topple sites in Vn until all particles are either alone or outside Vn.

Label Vn = {x1, . . . ,xr} so that x1 · v≤ ·· · ≤ xr · v.

Main step

For i = 1, . . . ,r, if there is a particle in xi, then topple it, and topple it again,
and so on until either it exits Vn, falls asleep on xi +{x : x · v≤ 0} or reaches
an empty site in {xi+1, . . . ,xr}.

The probability of the middle case is lower than Fv(λ ), and otherwise the
number of particles outside Vn or in {xi+1, . . . ,xr} increases by 1. Hence,

E[Vn][Mn]≥ µ|Vn|− (1−Fv(λ ))|Vn|.
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Construction of the infinite-volume particle-wise process

How to prove existence of the ARW with infinite initial condition?
→ for the usual process (ηt(·))t≥0 on {0,S,1, . . .}Zd

, the standard theory
from particle systems adapt (cf. Liggett, and Andjel on Zero-Range-Process)
→ for the fully-labeled system of walks, no standard reference. Also, we
need to prove the existence of the previous particle-wise construction
specifically. Let us sketch a probabilistic proof of existence.

What do we need to prove? Consider the following:
• η0 a finite initial configuration,
• X = (X(x,i) ; x ∈ Zd, i ∈ N) a family of (putative) paths,
•P = (P(x,i) ; x ∈ Zd, i ∈ N) a family of PP (clocks).
Let η t(z;η0,X,P) = set of the labels “(x, i)” of the particles at z at time t.
Choose a sequence of finite subset Wn ↑ Zd.

For an infinite η0, the particle-wise construction of the ARW from
(η0,X,P) is well-defined if, for all z ∈ Zd, T > 0, w ∈ Zd, the sequence

η |[0,T](z;η0 ·1w+Wn ,X,P), n ∈ N,

is eventually constant, and its limit does not depend on w ∈ Zd.
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Influence of a particle

Given η0, X, P , the particle (x, i) has an influence on z ∈ Zd during [0, t] if
removing this particle changes the fully-labeled process η |[0,t]×{z}(η0,X,P).

To prove well-definedness at z, we have to ensure that, for a finite number of
n’s, some site in Wn+1 \Wn has an influence on z. The key is the following.

Lemma

Let Zx,i
t (η0,X,P) be the set of sites influenced by (x, i) before t.

There is a branching r.w. Z̃ on Zd such that, for any given finite config. π ,

Zx,i
t (π,X,P)⊂st. x+ Z̃t,

and E[|Z̃t|]≤ ect.

Theorem

Assume supxE[η0(x)]< ∞. Then the particle-wise ARW is a.s. well-defined.
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Conclusion

Extensions of parts of the proof, of possible independent interest:
The non-fixation condition naturally extends to amenable graphs
(assuming |∂Vn|= o(|Vn|), positive density of exits⇒ non-fixation).
The particle-wise construction extends to transitive graphs with a
unimodular subgroup of automorphisms that preserves the jump
distribution (needs mass transport principle).

Most striking open questions:
in the symmetric case, non-fixation for some µ < 1? (even when d = 1)
in the biased case, fixation for some µ > 0? (for symmetric case, see
Sidoravicius-Teixeira 2014)
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