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Lattice Hamiltonian with off-diagonal disorder in dimension 1

Set u = {u(n)}n∈Z ∈ `2(Z), we define

(Hωu)(n) = ωn(u(n)− u(n + 1)) + ωn−1(u(n)− u(n − 1))

{ωn}n∈Z : non-negative i.i.d. random variables with a bounded compactly
supported density ρ;

essRan ωn = [α0, β0] ∀n ∈ Z where α0, β0 > 0.

A few facts:

Non random spectrum: ω−a.s., σ(Hω) = Σ := [0, 4β0].

Integrated density of states N(E): ω−a.s.,

N(E) := lim|Λ|→+∞
#{e.v.s of Hω(Λ) smaller than E}

|Λ| ∀E

where Hω(Λ) is Hω restricted on a “cube”Λ ⊂ Z with periodic
boundary conditions.

Density of states ν(E): N(E) has a derivative ν(E) called the density of states
of Hω.
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Two crucial inequalities

Wegner estimate (W):

P(dist(E , σ(Hω(Λ))) 6 ε) ≤ 2‖sρ(s)‖∞
E − ε ε|Λ|

for all cubes Λ ⊂ Z and 0 < ε < E .

Minami estimate (M):

P (#{σ (Hω (Λ)) ∩ J} > 2) 6 C(|J||Λ|)2/2a2

for all J = [a, b] ⊂ (0,+∞), and Λ ⊂ Z.
Remark: (W) et (M) do not hold at 0 (the bottom of the spectrum Σ).
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Localized regime

Localized regime: the region in Σ where Hω is pure point and the
corresponding eigenfunctions decay exponentially at infinity.

Theorem [Aizemann, Schenker, Friedrich & Hundertmark]
(Loc): Let Λ = [−L, L] be a interval in Z and I be in the localized regime.
Then, there exists ν > 0 such that, for any p > 0, there exists q > 0 and
L0 > 0 such that, for L > L0, with probability larger than 1− L−p, if

1 ϕn,ω is a normalized eigenvector of Hω(Λ) associated to an eigenvalue
En,ω ∈ I ,

2 xn,ω ∈ Λ is a maximum of x 7→ |ϕn,ω(x)| in Λ,

then, for x ∈ ΛL, one has

|ϕn,ω(x)| 6 Lqe−ν|x−xn,ω|

The point xn,ω is called a localization center for ϕn,ω or En,ω.
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Local level statistics

Let Λ = [−L, L] be a cube in Z and E a positive energy in the localized regime.
Assume that E1(ω,Λ) 6 E2(ω,Λ) 6 · · · 6 E|Λ|(ω,Λ) are eigenvalues of Hω(Λ).

Renormalized level at E :

ξn(E , ω,Λ) = |Λ|ν(E)(En(ω,Λ)− E)

Point process:

Σ(ξ,E , ω,Λ) =
∑|Λ|

n=1 δξn (E , ω,Λ)(ξ)

Theorem [Germinet-Klopp’12, Miao’11]

Pick E > 0 in the localized regime s.t. ν(E) > 0.

Then, as |Λ| → +∞,Σ(ξ,E , ω,Λ) ⇀ Poisson point process on R with
intensity 1.
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Local level statistics (next)

Consider two limits of Σ(ξ,E , ω,Λ),Σ(ξ,E ′, ω,Λ) with E 6= E ′.

Are they independent? That is, as |Λ| → +∞, do two above point
processes converge weakly to two independent Poisson point processes?

Yes for Anderson model:

Theorem (For Anderson model, [Klopp ’11])

Let E 6= E ′ be two positive energies in the localized regime s.t.
ν(E) > 0, ν(E ′) > 0.
Then, for U+ ⊂ R and U− ⊂ R two compact intervals and {k+, k−} ∈ N2,
one has

P
{

#{j ; ξj (E , ω,Λ) ∈ U+} = k+

#{j ; ξj (E ′, ω,Λ) ∈ U−} = k−

}
−−−→
Λ→Z

e−|U+| |U+|k+

k+!
e−|U−| |U−|

k−

k−!

The key point to prove the above theorem is a so-called decorrelation
estimates.
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Recent results

Decorrelation estimate for the lattice Hamiltonian with off-diagonal disorder:

Theorem [P.’13]

Pick α ∈ (0, 1) and E 6= E ′ > 0 in the localized regime.

For ` ≈ Lα, we have

P
({

σ(Hω(Λ`)) ∩ (E + L−1(−1, 1)) 6= ∅
σ(Hω(Λ`)) ∩ (E ′ + L−1(−1, 1)) 6= ∅

})
6 o

(
`

L

)

Asymptotic independence:

Theorem [P.’13]

Pick n > 2. Assume that {Ej}16j6n are in the localized regime s.t. Ej > 0,
Ej 6= Ek ∀j 6= k and ν(Ej ) > 0 for all 1 ≤ j ≤ n.

Then, when |Λ| → +∞, processes {Σ(ξ,Ej , ω,Λ)}1≤j≤n converge weakly
to independent Poisson processes.
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Key lemma to prove decorrelation estimates

Key lemma

Pick Λ = [−L, L] ∈ Z, E 6= E ′ > 0 in the localized regime and
β ∈ (1/2, 1).

Denote by P∗ the prob. of the following event (called (∗)):
There exists two simple eigenvalues of Hω(Λ), say E(ω),E ′(ω) s.t.

|E(ω)− E |+ |E ′(ω)− E ′| 6 e−Lβ

and

‖∇ωE(ω)− c2∇ωE ′(ω)‖1 6 e−Lβ , c > 0

Then,

P∗ 6 e−cL2β
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Proof of the key lemma

Let u := u(ω) and v := v(ω) be normalized eigenvectors associated to E(ω)
and E ′(ω).

∂ωnE(ω) = (u(n)− u(n + 1))2 =: |Tu(n)|2 for n ∈ Λ

where T : `2(Λ) −→ `2(Λ) is defined by

Tu(n) = u(n)− u(n + 1) avec u ∈ `2(Λ)

Hence, if ω ∈ (∗), we have

e−Lβ >
∑

n |Tu(n)− cTv(n)||Tu(n) + cTv(n)|

Therefore, there exists a partition Λ = P ∪Q, P ∩Q = ∅ s.t.

for n ∈ P, |Tu(n)− cTv(n)| 6 e−Lβ/2,

for n ∈ Q, |Tu(n) + cTv(n)| 6 e−Lβ/2.
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Proof of the key lemma (next)

"Lower bound": J ⊂ Λ of length O(Lβ) s.t.

|u(n)|2 + |u(n + 1)|2 > e−Lβ/2 for n ∈ J

Decomposition:
P ∩ J = ∪Pj et Q∩ J = ∪Qj

where Pj and Qj are intervals in Z.
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Three steps to complete the proof of the key lemma

First step: Any Pj or Qj can not contain more than four points.

Second step: From 4 consecutive points of J, we can form a 10× 10 system
of linear equations.

AU = b with ‖b‖ ≤ c0e−Lβ/2 and ‖U‖ ≥ e−Lβ/4

where A is a 10× 10 matrix and
U := (u(n − 2), . . . , u(n + 2), v(n − 2), . . . , v(n + 2))t .

Observation:

| detA| ≤ Me−Lβ/4 where M depends α0, β0,E and E ′

Third step: A reduction lemma + an explicit computation yield restrictions
on random variables ωn.
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End of the proof

Restrictions on r.v.’s {ωn}n∈Λ :

(i)
∣∣∣∣ωn +

E ′ − E
4

∣∣∣∣ 6 Ce−Lβ/8,

(ii)
∣∣∣∣ωn−1 +

E ′ − E
4

∣∣∣∣ 6 Ce−Lβ/8,

(iii)
∣∣∣∣ωn−1ωn −

(E + E ′)2

4

∣∣∣∣ 6 Ce−Lβ/4.

To sum up,

R.v.’s {ωj}j∈Λ satisfy at least cLβ cond. de types (i)-(iii).

ωn are i.i.d. with a common bounded density + (i)-(iii) =⇒ For a given P
and Q, the event (∗) happens with a prob. at most e−cL2β

.

Hence,

P∗ 6 2Le−cL2β
6 e−c̃L2β

which completes the proof of the key lemma.



Lattice Hamiltonian Inequalities Localized regime Local statistics Results Key lemma Proof References

End of the proof

Restrictions on r.v.’s {ωn}n∈Λ :

(i)
∣∣∣∣ωn +

E ′ − E
4

∣∣∣∣ 6 Ce−Lβ/8,

(ii)
∣∣∣∣ωn−1 +

E ′ − E
4

∣∣∣∣ 6 Ce−Lβ/8,

(iii)
∣∣∣∣ωn−1ωn −

(E + E ′)2

4

∣∣∣∣ 6 Ce−Lβ/4.

To sum up,

R.v.’s {ωj}j∈Λ satisfy at least cLβ cond. de types (i)-(iii).

ωn are i.i.d. with a common bounded density + (i)-(iii) =⇒ For a given P
and Q, the event (∗) happens with a prob. at most e−cL2β

.

Hence,

P∗ 6 2Le−cL2β
6 e−c̃L2β

which completes the proof of the key lemma.



Lattice Hamiltonian Inequalities Localized regime Local statistics Results Key lemma Proof References

End of the proof

Restrictions on r.v.’s {ωn}n∈Λ :

(i)
∣∣∣∣ωn +

E ′ − E
4

∣∣∣∣ 6 Ce−Lβ/8,

(ii)
∣∣∣∣ωn−1 +

E ′ − E
4

∣∣∣∣ 6 Ce−Lβ/8,

(iii)
∣∣∣∣ωn−1ωn −

(E + E ′)2

4

∣∣∣∣ 6 Ce−Lβ/4.

To sum up,

R.v.’s {ωj}j∈Λ satisfy at least cLβ cond. de types (i)-(iii).

ωn are i.i.d. with a common bounded density + (i)-(iii) =⇒ For a given P
and Q, the event (∗) happens with a prob. at most e−cL2β

.

Hence,

P∗ 6 2Le−cL2β
6 e−c̃L2β

which completes the proof of the key lemma.



Lattice Hamiltonian Inequalities Localized regime Local statistics Results Key lemma Proof References

End of the proof

Restrictions on r.v.’s {ωn}n∈Λ :

(i)
∣∣∣∣ωn +

E ′ − E
4

∣∣∣∣ 6 Ce−Lβ/8,

(ii)
∣∣∣∣ωn−1 +

E ′ − E
4

∣∣∣∣ 6 Ce−Lβ/8,

(iii)
∣∣∣∣ωn−1ωn −

(E + E ′)2

4

∣∣∣∣ 6 Ce−Lβ/4.

To sum up,

R.v.’s {ωj}j∈Λ satisfy at least cLβ cond. de types (i)-(iii).

ωn are i.i.d. with a common bounded density + (i)-(iii) =⇒ For a given P
and Q, the event (∗) happens with a prob. at most e−cL2β

.

Hence,

P∗ 6 2Le−cL2β
6 e−c̃L2β

which completes the proof of the key lemma.



Lattice Hamiltonian Inequalities Localized regime Local statistics Results Key lemma Proof References

References

[1] Michael Aizenman, Jeffrey H.Schenker, Roland M. Friedrich, and Dirk
Hundertmark. Finite-volume fractional-moment criteria for Anderson
localization, Comm. Math. Phys., 224(1):219-253, 2001. Dedicated to Joel
L. Lebowitz.

[2] Dong Miao, Eigenvalue statistics for lattice Hamiltonian of off-diagonal
disorder , J. Stat. Phys (2011), 143: 509–522 DOI
10.1007/s10955-011-0190-2.

[3] Frédéric Klopp, Decorrelation estimates for the eigenvalues of the discrete
Anderson model in the localized regime, Comm. Math. Phys. Vol. 303, pp.
233-260 (2011).

[4] Trinh Tuan Phong, Decorrelation estimates for a 1D tight-binding model in
the localized regime, 31p., Annales Henri Poincaré,
http://link.springer.com/article/10.1007%2Fs00023-013-0250-z



Lattice Hamiltonian Inequalities Localized regime Local statistics Results Key lemma Proof References

THANKS FOR YOUR ATTENTION !


	Lattice Hamiltonian with off-diagonal disorder in dimension 1
	Two crucial inequalities
	Localized regime
	Local level statistics
	Recent results
	Key lemma to prove decorrelation estimates
	Proof of the key lemma
	References

