

Decorrelation estimates for a 1D random model in the localized regime

Trinh Tuan Phong

Laboratoire Analyse, Géométrie & Applications Université Paris 13

03 July 2013

Young seminar, IHP, Paris Variational and Spectral Methods in Quantum Mechanics

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Lattice Hamiltonian with off-diagonal disorder in dimension 1

Set $u = \{u(n)\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$, we define

$$(H_{\omega}u)(n) = \omega_n(u(n) - u(n+1)) + \omega_{n-1}(u(n) - u(n-1))$$

 $\{\omega_n\}_{n\in\mathbb{Z}}$: non-negative i.i.d. random variables with a bounded compactly supported density ρ ;

essRan $\omega_n = [\alpha_0, \beta_0] \quad \forall n \in \mathbb{Z} \text{ where } \alpha_0, \beta_0 >$

A few facts:

Non random spectrum: ω -a.s., $\sigma(H_{\omega}) = \Sigma := [0, 4\beta_0]$. Integrated density of states N(E): ω -a.s.,

$$N(E) := \lim_{|\Lambda| \to +\infty} \frac{\#\{\text{e.v.s of } H_{\omega}(\Lambda) \text{ smaller than } E\}}{|\Lambda|} \quad \forall E$$

where $H_{\omega}(\Lambda)$ is H_{ω} restricted on a "cube" $\Lambda \subset \mathbb{Z}$ with periodic boundary conditions.

Density of states $\nu(E)$: N(E) has a derivative $\nu(E)$ called the density of states of H_{ω} .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

References

Lattice Hamiltonian with off-diagonal disorder in dimension 1

Set $u = \{u(n)\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$, we define

$$(H_{\omega}u)(n) = \omega_n(u(n) - u(n+1)) + \omega_{n-1}(u(n) - u(n-1))$$

$$\begin{split} \{\omega_n\}_{n\in\mathbb{Z}}: & \text{non-negative i.i.d. random variables with a bounded compactly} \\ & \text{supported density } \rho; \\ & \text{essRan } \omega_n = [\alpha_0, \beta_0] \quad \forall n\in\mathbb{Z} \text{ where } \alpha_0, \beta_0 > 0. \end{split}$$

A few facts:

Non random spectrum: ω -a.s., $\sigma(H_{\omega}) = \Sigma := [0, 4\beta_0]$. Integrated density of states N(E): ω -a.s.,

$$N(E) := \lim_{|\Lambda| \to +\infty} \frac{\#\{\text{e.v.s of } H_{\omega}(\Lambda) \text{ smaller than } E\}}{|\Lambda|} \quad \forall E$$

where $H_{\omega}(\Lambda)$ is H_{ω} restricted on a "cube" $\Lambda \subset \mathbb{Z}$ with periodic boundary conditions.

Density of states $\nu(E)$: N(E) has a derivative $\nu(E)$ called the density of states of H_{ω} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Lattice Hamiltonian with off-diagonal disorder in dimension 1

Set $u = \{u(n)\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$, we define

$$(H_{\omega}u)(n) = \omega_n(u(n) - u(n+1)) + \omega_{n-1}(u(n) - u(n-1))$$

$$\begin{split} \{\omega_n\}_{n\in\mathbb{Z}}: & \text{non-negative i.i.d. random variables with a bounded compactly} \\ & \text{supported density } \rho; \\ & \text{essRan } \omega_n = [\alpha_0, \beta_0] \quad \forall n\in\mathbb{Z} \text{ where } \alpha_0, \beta_0 > 0. \end{split}$$

A few facts:

Non random spectrum: ω -a.s., $\sigma(H_{\omega}) = \Sigma := [0, 4\beta_0]$.

$$N(E) := \lim_{|\Lambda| \to +\infty} \frac{\#\{\text{e.v.s of } H_{\omega}(\Lambda) \text{ smaller than } E\}}{|\Lambda|} \quad \forall E$$

where $H_{\omega}(\Lambda)$ is H_{ω} restricted on a "cube" $\Lambda \subset \mathbb{Z}$ with periodic boundary conditions.

Density of states $\nu(E)$: N(E) has a derivative $\nu(E)$ called the density of states of H_{ω} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lattice Hamiltonian with off-diagonal disorder in dimension 1

Set $u = \{u(n)\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$, we define

$$(H_{\omega}u)(n) = \omega_n(u(n) - u(n+1)) + \omega_{n-1}(u(n) - u(n-1))$$

$$\begin{split} \{\omega_n\}_{n\in\mathbb{Z}}: & \text{non-negative i.i.d. random variables with a bounded compactly} \\ & \text{supported density } \rho; \\ & \text{essRan } \omega_n = [\alpha_0,\beta_0] \quad \forall n\in\mathbb{Z} \text{ where } \alpha_0,\beta_0 > 0. \end{split}$$

A few facts:

Non random spectrum: ω -a.s., $\sigma(H_{\omega}) = \Sigma := [0, 4\beta_0]$.

Integrated density of states N(E): ω -a.s.,

$$N(E) := \lim_{|\Lambda| \to +\infty} \frac{\#\{\text{e.v.s of } H_{\omega}(\Lambda) \text{ smaller than } E\}}{|\Lambda|} \quad \forall E$$

where $H_{\omega}(\Lambda)$ is H_{ω} restricted on a "cube" $\Lambda \subset \mathbb{Z}$ with periodic boundary conditions.

Density of states $\nu(E)$: N(E) has a derivative $\nu(E)$ called the density of states of H_{ω} .

Lattice Hamiltonian with off-diagonal disorder in dimension 1

Set $u = \{u(n)\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$, we define

$$(H_{\omega}u)(n) = \omega_n(u(n) - u(n+1)) + \omega_{n-1}(u(n) - u(n-1))$$

$$\begin{split} \{\omega_n\}_{n\in\mathbb{Z}}: & \text{non-negative i.i.d. random variables with a bounded compactly} \\ & \text{supported density } \rho; \\ & \text{essRan } \omega_n = [\alpha_0, \beta_0] \quad \forall n\in\mathbb{Z} \text{ where } \alpha_0, \beta_0 > 0. \end{split}$$

A few facts:

Non random spectrum: ω -a.s., $\sigma(H_{\omega}) = \Sigma := [0, 4\beta_0]$. Integrated density of states N(E): ω -a.s.,

$$N(E) := \lim_{|\Lambda| \to +\infty} \frac{\#\{\text{e.v.s of } H_{\omega}(\Lambda) \text{ smaller than } E\}}{|\Lambda|} \quad \forall E$$

where $H_{\omega}(\Lambda)$ is H_{ω} restricted on a "cube" $\Lambda \subset \mathbb{Z}$ with periodic boundary conditions.

Density of states $\nu(E)$: N(E) has a derivative $\nu(E)$ called the density of states of H_{ω} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Lattice Hamiltonian with off-diagonal disorder in dimension 1

Set $u = \{u(n)\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$, we define

$$(H_{\omega}u)(n) = \omega_n(u(n) - u(n+1)) + \omega_{n-1}(u(n) - u(n-1))$$

$$\begin{split} \{\omega_n\}_{n\in\mathbb{Z}}: & \text{non-negative i.i.d. random variables with a bounded compactly} \\ & \text{supported density } \rho; \\ & \text{essRan } \omega_n = [\alpha_0, \beta_0] \quad \forall n\in\mathbb{Z} \text{ where } \alpha_0, \beta_0 > 0. \end{split}$$

A few facts:

Non random spectrum: ω -a.s., $\sigma(H_{\omega}) = \Sigma := [0, 4\beta_0]$. Integrated density of states N(E): ω -a.s.,

$$N(E) := \lim_{|\Lambda| \to +\infty} \frac{\#\{\text{e.v.s of } H_{\omega}(\Lambda) \text{ smaller than } E\}}{|\Lambda|} \quad \forall E$$

where $H_{\omega}(\Lambda)$ is H_{ω} restricted on a "cube" $\Lambda \subset \mathbb{Z}$ with periodic boundary conditions.

Density of states $\nu(E)$: N(E) has a derivative $\nu(E)$ called the density of states of H_{ω} .

Inequalities

Localized regime

Local statistics

istics Results Ke

Key lemma Proof I

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

References

Two crucial inequalities

Wegner estimate (W):

$$\mathbb{P}(\mathsf{dist}(\mathsf{E}, \sigma(\mathsf{H}_{\omega}(\Lambda))) \leqslant \epsilon) \leq \frac{2\|s\rho(s)\|_{\infty}}{\mathsf{E} - \epsilon}\epsilon|\Lambda|$$

for all cubes $\Lambda \subset \mathbb{Z}$ and $0 < \epsilon < E$.

Minami estimate (M):

 $\mathbb{P}\left(\#\{\sigma\left(H_{\omega}\left(\Lambda\right)\right)\cap J\}\geqslant 2\right)\leqslant C(|J||\Lambda|)^{2}/2a^{2}$

for all $J = [a, b] \subset (0, +\infty)$, and $\Lambda \subset \mathbb{Z}$.

Remark

k: (W) et (M) do not hold at 0 (the bottom of the spectrum Σ).

Inequalities

Localized regime

Local statistics

Results

Kev lemma

- 日本 - 4 日本 - 4 日本 - 日本

References

Two crucial inequalities

Wegner estimate (W):

$$\mathbb{P}(\mathsf{dist}(\mathsf{E}, \sigma(\mathsf{H}_{\omega}(\Lambda))) \leqslant \epsilon) \leq \frac{2\|\mathsf{s}\rho(\mathsf{s})\|_{\infty}}{\mathsf{E} - \epsilon}\epsilon|\Lambda|$$

for all cubes $\Lambda \subset \mathbb{Z}$ and $0 < \epsilon < E$.

Minami estimate (M):

 $\mathbb{P}\left(\#\{\sigma\left(H_{\omega}\left(\Lambda\right)\right)\cap J\}\geqslant 2\right)\leqslant C(|J||\Lambda|)^{2}/2a^{2}$

for all $J = [a, b] \subset (0, +\infty)$, and $\Lambda \subset \mathbb{Z}$.

Inequalities

Localized regime

Local statistics

Results Kev lemma

- 日本 - 4 日本 - 4 日本 - 日本

References

Two crucial inequalities

Wegner estimate (W):

$$\mathbb{P}(\mathsf{dist}(\mathsf{E}, \sigma(\mathsf{H}_{\omega}(\Lambda))) \leqslant \epsilon) \leq \frac{2\|\mathsf{s}\rho(\mathsf{s})\|_{\infty}}{\mathsf{E} - \epsilon}\epsilon|\Lambda|$$

for all cubes $\Lambda \subset \mathbb{Z}$ and $0 < \epsilon < E$.

Minami estimate (M):

 $\mathbb{P}\left(\#\{\sigma\left(H_{\omega}\left(\Lambda\right)\right)\cap J\} \geqslant 2\right) \leqslant C(|J||\Lambda|)^{2}/2a^{2}$

for all $J = [a, b] \subset (0, +\infty)$, and $\Lambda \subset \mathbb{Z}$.

Remark:

(W) et (M) do not hold at 0 (the bottom of the spectrum Σ).

Localized regime

Local statistics

Results Key lemma Proof References

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Localized regime

Localized regime: the region in Σ where H_{ω} is pure point and the corresponding eigenfunctions decay exponentially at infinity.

Theorem [Aizemann, Schenker, Friedrich & Hundertmark]

(Loc): Let $\Lambda = [-L, L]$ be a interval in \mathbb{Z} and I be in the localized regime. Then, there exists $\nu > 0$ such that, for any p > 0, there exists q > 0 and $L_0 > 0$ such that, for $L \ge L_0$, with probability larger than $1 - L^{-p}$, if

- I $\varphi_{n,\omega}$ is a normalized eigenvector of $H_{\omega}(\Lambda)$ associated to an eigenvalue $E_{n,\omega} \in I$,
- **2** $x_{n,\omega} \in \Lambda$ is a maximum of $x \mapsto |\varphi_{n,\omega}(x)|$ in Λ ,

then, for $x \in \Lambda_L$, one has

$$|\varphi_{n,\omega}(x)| \leqslant L^q e^{-\nu|x-x_{n,\omega}|}$$

The point $x_{n,\omega}$ is called a localization center for $\varphi_{n,\omega}$ or $E_{n,\omega}$.

Inequalities

Localized regime

Local statistics

Results Key lemma

oof References

ション ふゆ く 山 マ チャット しょうくしゃ

Localized regime

Localized regime: the region in Σ where H_{ω} is pure point and the corresponding eigenfunctions decay exponentially at infinity.

Theorem [Aizemann, Schenker, Friedrich & Hundertmark]

(Loc): Let $\Lambda = [-L, L]$ be a interval in \mathbb{Z} and I be in the localized regime. Then, there exists $\nu > 0$ such that, for any p > 0, there exists q > 0 and $L_0 > 0$ such that, for $L \ge L_0$, with probability larger than $1 - L^{-p}$, if

- $\varphi_{n,\omega}$ is a normalized eigenvector of $H_{\omega}(\Lambda)$ associated to an eigenvalue $E_{n,\omega} \in I$,
- 2 $x_{n,\omega} \in \Lambda$ is a maximum of $x \mapsto |\varphi_{n,\omega}(x)|$ in Λ ,

then, for $x \in \Lambda_L$, one has

$$|\varphi_{n,\omega}(x)| \leqslant L^q e^{-\nu|x-x_{n,\omega}|}$$

The point $x_{n,\omega}$ is called a localization center for $\varphi_{n,\omega}$ or $E_{n,\omega}$.

Localized regime

Local statistics

Results Key lemma Proof

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

References

Local level statistics

Let $\Lambda = [-L, L]$ be a cube in \mathbb{Z} and E a positive energy in the localized regime. Assume that $E_1(\omega, \Lambda) \leq E_2(\omega, \Lambda) \leq \cdots \leq E_{|\Lambda|}(\omega, \Lambda)$ are eigenvalues of $H_{\omega}(\Lambda)$.

Renormalized level at E:

$$\xi_n(E,\omega,\Lambda) = |\Lambda|\nu(E)(E_n(\omega,\Lambda) - E)$$

Point process:

$$\Sigma(\xi, E, \omega, \Lambda) = \sum_{n=1}^{|\Lambda|} \delta_{\xi_n}(E, \omega, \Lambda)(\xi)$$

- Pick E > 0 in the localized regime s.t. $\nu(E) > 0$.
- Then, as $|\Lambda| \to +\infty, \Sigma(\xi, E, \omega, \Lambda) \to$ Poisson point process on \mathbb{R} with intensity 1.

Localized regime

Local statistics

Results Key lemma Proof

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

of References

Local level statistics

Let $\Lambda = [-L, L]$ be a cube in \mathbb{Z} and E a positive energy in the localized regime. Assume that $E_1(\omega, \Lambda) \leq E_2(\omega, \Lambda) \leq \cdots \leq E_{|\Lambda|}(\omega, \Lambda)$ are eigenvalues of $H_{\omega}(\Lambda)$. Renormalized level at E:

$$\xi_n(E,\omega,\Lambda) = |\Lambda|\nu(E)(E_n(\omega,\Lambda) - E)$$

Point process:

$$\Sigma(\xi, E, \omega, \Lambda) = \sum_{n=1}^{|\Lambda|} \delta_{\xi_n}(E, \omega, \Lambda)(\xi)$$

- Pick E > 0 in the localized regime s.t. $\nu(E) > 0$.
- Then, as $|\Lambda| \to +\infty, \Sigma(\xi, E, \omega, \Lambda) \to$ Poisson point process on \mathbb{R} with intensity 1.

Localized regime

Local statistics

Results Key lemma Proo

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

f References

Local level statistics

Let $\Lambda = [-L, L]$ be a cube in \mathbb{Z} and E a positive energy in the localized regime. Assume that $E_1(\omega, \Lambda) \leq E_2(\omega, \Lambda) \leq \cdots \leq E_{|\Lambda|}(\omega, \Lambda)$ are eigenvalues of $H_{\omega}(\Lambda)$. Renormalized level at E:

$$\xi_n(E,\omega,\Lambda) = |\Lambda|\nu(E)(E_n(\omega,\Lambda) - E)$$

Point process:

$$\Sigma(\xi, E, \omega, \Lambda) = \sum_{n=1}^{|\Lambda|} \delta_{\xi_n}(E, \omega, \Lambda)(\xi)$$

- Pick E > 0 in the localized regime s.t. $\nu(E) > 0$.
- Then, as $|\Lambda| \to +\infty, \Sigma(\xi, E, \omega, \Lambda) \to$ Poisson point process on \mathbb{R} with intensity 1.

Localized regime

Local statistics

Results Key lemma Proof

ション ふゆ アメリア メリア しょうくの

References

Local level statistics

Let $\Lambda = [-L, L]$ be a cube in \mathbb{Z} and E a positive energy in the localized regime. Assume that $E_1(\omega, \Lambda) \leq E_2(\omega, \Lambda) \leq \cdots \leq E_{|\Lambda|}(\omega, \Lambda)$ are eigenvalues of $H_{\omega}(\Lambda)$. Renormalized level at E:

$$\xi_n(E,\omega,\Lambda) = |\Lambda|\nu(E)(E_n(\omega,\Lambda) - E)$$

Point process:

$$\Sigma(\xi, E, \omega, \Lambda) = \sum_{n=1}^{|\Lambda|} \delta_{\xi_n}(E, \omega, \Lambda)(\xi)$$

- Pick E > 0 in the localized regime s.t. $\nu(E) > 0$.
- Then, as $|\Lambda| \to +\infty, \Sigma(\xi, E, \omega, \Lambda) \rightharpoonup$ Poisson point process on \mathbb{R} with intensity 1.

Results

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Local level statistics (next)

Consider two limits of $\Sigma(\xi, E, \omega, \Lambda), \Sigma(\xi, E', \omega, \Lambda)$ with $E \neq E'$.

- Are they independent? That is, as $|\Lambda| \to +\infty$, do two above point processes converge weakly to two independent Poisson point processes?
- Yes for Anderson model:

Theorem (For Anderson model, [Klopp '11])

- Let $E \neq E'$ be two positive energies in the localized regime s.t. $\nu(E) > 0, \ \nu(E') > 0.$
- Then, for $U_+ \subset \mathbb{R}$ and $U_- \subset \mathbb{R}$ two compact intervals and $\{k_+, k_-\} \in \mathbb{N}^2$, one has

$$\mathbb{P}\left\{\begin{array}{l} \#\{j;\xi_{j}(E,\omega,\Lambda)\in U_{+}\} &= k_{+}\\ \#\{j;\xi_{j}(E',\omega,\Lambda)\in U_{-}\} &= k_{-}\end{array}\right\} \xrightarrow[\Lambda\to\mathbb{Z}]{} e^{-|U_{+}|} \frac{|U_{+}|^{k_{+}}}{k_{+}!}e^{-|U_{-}|} \frac{|U_{-}|^{k_{-}}}{k_{-}!}$$

The key point to prove the above theorem is a so-called decorrelation estimates.

Local level statistics (next)

Consider two limits of $\Sigma(\xi, E, \omega, \Lambda), \Sigma(\xi, E', \omega, \Lambda)$ with $E \neq E'$.

- Are they independent? That is, as $|\Lambda| \to +\infty$, do two above point processes converge weakly to two independent Poisson point processes?
- Yes for Anderson model:

<u>Theorem</u> (For Anderson model, [Klopp '11])

- Let $E \neq E'$ be two positive energies in the localized regime s.t. $\nu(E) > 0, \ \nu(E') > 0.$
- Then, for $U_+ \subset \mathbb{R}$ and $U_- \subset \mathbb{R}$ two compact intervals and $\{k_+, k_-\} \in \mathbb{N}^2$, one has

$$\mathbb{P}\left\{\begin{array}{l} \#\{j;\xi_{j}(E,\omega,\Lambda)\in U_{+}\} &= k_{+}\\ \#\{j;\xi_{j}(E',\omega,\Lambda)\in U_{-}\} &= k_{-}\end{array}\right\} \xrightarrow[\Lambda\to\mathbb{Z}]{} e^{-|U_{+}|} \frac{|U_{+}|^{k_{+}}}{k_{+}!}e^{-|U_{-}|} \frac{|U_{-}|^{k_{-}}}{k_{-}!}$$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

The key point to prove the above theorem is a so-called decorrelation estimates.

Local level statistics (next)

Consider two limits of $\Sigma(\xi, E, \omega, \Lambda), \Sigma(\xi, E', \omega, \Lambda)$ with $E \neq E'$.

- Are they independent? That is, as $|\Lambda| \to +\infty$, do two above point processes converge weakly to two independent Poisson point processes?
- Yes for Anderson model:

Theorem (For Anderson model, [Klopp '11])

- Let $E \neq E'$ be two positive energies in the localized regime s.t. $\nu(E) > 0, \ \nu(E') > 0.$
- Then, for $U_+ \subset \mathbb{R}$ and $U_- \subset \mathbb{R}$ two compact intervals and $\{k_+, k_-\} \in \mathbb{N}^2$, one has

$$\mathbb{P}\left\{\begin{array}{l} \#\{j;\xi_j(E,\omega,\Lambda)\in U_+\} &=k_+\\ \#\{j;\xi_j(E',\omega,\Lambda)\in U_-\} &=k_- \end{array}\right\} \xrightarrow[\Lambda\to\mathbb{Z}]{} e^{-|U_+|}\frac{|U_+|^{k_+}}{k_+!}e^{-|U_-|}\frac{|U_-|^{k_-}}{k_-!}$$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

The key point to prove the above theorem is a so-called decorrelation estimates.

Local level statistics (next)

Consider two limits of $\Sigma(\xi, E, \omega, \Lambda), \Sigma(\xi, E', \omega, \Lambda)$ with $E \neq E'$.

- Are they independent? That is, as $|\Lambda| \to +\infty$, do two above point processes converge weakly to two independent Poisson point processes?
- Yes for Anderson model:

Theorem (For Anderson model, [Klopp '11])

• Let $E \neq E'$ be two positive energies in the localized regime s.t. $\nu(E) > 0, \ \nu(E') > 0.$

Then, for $U_+ \subset \mathbb{R}$ and $U_- \subset \mathbb{R}$ two compact intervals and $\{k_+, k_-\} \in \mathbb{N}^2$, one has

$$\mathbb{P}\left\{\begin{array}{l} \#\{j;\xi_{j}(E,\omega,\Lambda)\in U_{+}\} &=k_{+}\\ \#\{j;\xi_{j}(E',\omega,\Lambda)\in U_{-}\} &=k_{-}\end{array}\right\} \xrightarrow[\Lambda\to\mathbb{Z}]{} e^{-|U_{+}|}\frac{|U_{+}|^{k_{+}}}{k_{+}!}e^{-|U_{-}|}\frac{|U_{-}|^{k_{-}}}{k_{-}!}$$

ション ふゆ アメリア メリア しょうくの

The key point to prove the above theorem is a so-called decorrelation estimates.

Decorrelation estimate for the lattice Hamiltonian with off-diagonal disorder: <u>Theorem</u> [P.'13]

- Pick $\alpha \in (0,1)$ and $E \neq E' > 0$ in the localized regime.
- For $\ell \approx L^{\alpha}$, we have

$$\mathbb{P}\left(\begin{cases} \sigma(H_{\omega}(\Lambda_{\ell})) \cap (E + L^{-1}(-1, 1)) \neq \emptyset \\ \sigma(H_{\omega}(\Lambda_{\ell})) \cap (E' + L^{-1}(-1, 1)) \neq \emptyset \end{cases} \right\} \leqslant o\left(\frac{\ell}{L}\right)$$

Asymptotic independence:

- Pick $n \ge 2$. Assume that $\{E_j\}_{1 \le j \le n}$ are in the localized regime s.t. $E_j > 0$, $E_j \ne E_k \ \forall j \ne k$ and $\nu(E_j) > 0$ for all $1 \le j \le n$.
- Then, when $|\Lambda| \to +\infty$, processes $\{\Sigma(\xi, E_j, \omega, \Lambda)\}_{1 \le j \le n}$ converge weakly to independent Poisson processes.

Decorrelation estimate for the lattice Hamiltonian with off-diagonal disorder: <u>Theorem</u> [P.'13]

- Pick $\alpha \in (0, 1)$ and $E \neq E' > 0$ in the localized regime.
- For $\ell \approx L^{\alpha}$, we have

$$\mathbb{P}\left(\left\{\begin{matrix}\sigma(H_{\omega}(\Lambda_{\ell}))\cap(E+L^{-1}(-1,1))\neq\emptyset\\\sigma(H_{\omega}(\Lambda_{\ell}))\cap(E'+L^{-1}(-1,1))\neq\emptyset\end{matrix}\right\}\right)\leqslant o\left(\frac{\ell}{L}\right)$$

Asymptotic independence:

- Pick $n \ge 2$. Assume that $\{E_j\}_{1 \le j \le n}$ are in the localized regime s.t. $E_j > 0$, $E_j \ne E_k \ \forall j \ne k$ and $\nu(E_j) > 0$ for all $1 \le j \le n$.
- Then, when $|\Lambda| \to +\infty$, processes $\{\Sigma(\xi, E_j, \omega, \Lambda)\}_{1 \le j \le n}$ converge weakly to independent Poisson processes.

Decorrelation estimate for the lattice Hamiltonian with off-diagonal disorder: <u>Theorem</u> [P.'13]

- Pick $\alpha \in (0, 1)$ and $E \neq E' > 0$ in the localized regime.
- For $\ell \approx L^{\alpha}$, we have

$$\mathbb{P}\left(\left\{\begin{matrix}\sigma(H_{\omega}(\Lambda_{\ell}))\cap(E+L^{-1}(-1,1))\neq\emptyset\\\sigma(H_{\omega}(\Lambda_{\ell}))\cap(E'+L^{-1}(-1,1))\neq\emptyset\end{matrix}\right\}\right)\leqslant o\left(\frac{\ell}{L}\right)$$

Asymptotic independence:

- Pick $n \ge 2$. Assume that $\{E_j\}_{1 \le j \le n}$ are in the localized regime s.t. $E_j > 0$, $E_j \ne E_k \ \forall j \ne k$ and $\nu(E_j) > 0$ for all $1 \le j \le n$.
- Then, when $|\Lambda| \to +\infty$, processes $\{\Sigma(\xi, E_j, \omega, \Lambda)\}_{1 \le j \le n}$ converge weakly to independent Poisson processes.

Decorrelation estimate for the lattice Hamiltonian with off-diagonal disorder: <u>Theorem</u> [P.'13]

- Pick $\alpha \in (0, 1)$ and $E \neq E' > 0$ in the localized regime.
- For $\ell \approx L^{\alpha}$, we have

$$\mathbb{P}\left(\left\{\begin{matrix}\sigma(H_{\omega}(\Lambda_{\ell}))\cap(E+L^{-1}(-1,1))\neq\emptyset\\\sigma(H_{\omega}(\Lambda_{\ell}))\cap(E'+L^{-1}(-1,1))\neq\emptyset\end{matrix}\right\}\right)\leqslant o\left(\frac{\ell}{L}\right)$$

Asymptotic independence:

- Pick $n \ge 2$. Assume that $\{E_j\}_{1 \le j \le n}$ are in the localized regime s.t. $E_j > 0$, $E_j \ne E_k \ \forall j \ne k$ and $\nu(E_j) > 0$ for all $1 \le j \le n$.
- Then, when $|\Lambda| \to +\infty$, processes $\{\Sigma(\xi, E_j, \omega, \Lambda)\}_{1 \le j \le n}$ converge weakly to independent Poisson processes.

nequalities

Localized regime

Local statistics R

Results Key lemma

イロト 不得下 不良下 不良下

3

Proof References

Key lemma to prove decorrelation estimates

Key lemma

- Pick $\Lambda = [-L, L] \in \mathbb{Z}$, $E \neq E' > 0$ in the localized regime and $\beta \in (1/2, 1)$.
- Denote by P^{*} the prob. of the following event (called (*)): There exists two simple eigenvalues of H_ω(Λ), say E(ω), E'(ω) s.t.

$$|E(\omega) - E| + |E'(\omega) - E'| \leqslant e^{-L^{\beta}}$$

and

$$\|
abla_\omega E(\omega) - c^2
abla_\omega E'(\omega)\|_1 \leqslant e^{-L^eta}, \ c>0$$

Then,

$$\mathbb{P}^* \leqslant e^{-cL^{2eta}}$$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Proof of the key lemma

Let $u := u(\omega)$ and $v := v(\omega)$ be normalized eigenvectors associated to $E(\omega)$ and $E'(\omega)$.

$$\partial_{\omega_n} E(\omega) = (u(n) - u(n+1))^2 =: |Tu(n)|^2 \text{ for } n \in \Lambda$$

where $T: \ell^2(\Lambda) \longrightarrow \ell^2(\Lambda)$ is defined by

$$Tu(n) = u(n) - u(n+1)$$
 avec $u \in \ell^2(\Lambda)$

Hence, if $\omega \in (*)$, we have

$$e^{-L^{\beta}} \ge \sum_{n} |Tu(n) - cTv(n)||Tu(n) + cTv(n)|$$

Therefore, there exists a partition $\Lambda = \mathcal{P} \cup \mathcal{Q}$, $\mathcal{P} \cap \mathcal{Q} = \emptyset$ s.t.

■ for $n \in \mathcal{P}$, $|Tu(n) - cTv(n)| \leq e^{-L^{\beta}/2}$, ■ for $n \in \mathcal{Q}$, $|Tu(n) + cTv(n)| \leq e^{-L^{\beta}/2}$.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Proof of the key lemma

Let $u := u(\omega)$ and $v := v(\omega)$ be normalized eigenvectors associated to $E(\omega)$ and $E'(\omega)$.

$$\partial_{\omega_n} E(\omega) = (u(n) - u(n+1))^2 =: |Tu(n)|^2 \text{ for } n \in \Lambda$$

where $\mathcal{T}:\ell^2(\Lambda)\longrightarrow\ell^2(\Lambda)$ is defined by

$$\mathit{Tu}(\mathit{n}) = \mathit{u}(\mathit{n}) - \mathit{u}(\mathit{n}+1)$$
 avec $\mathit{u} \in \ell^2(\Lambda)$

Hence, if $\omega \in (*)$, we have

$$e^{-L^{\beta}} \ge \sum_{n} |Tu(n) - cTv(n)||Tu(n) + cTv(n)|$$

Therefore, there exists a partition $\Lambda = \mathcal{P} \cup \mathcal{Q}, \ \mathcal{P} \cap \mathcal{Q} = \emptyset$ s.t.

- for $n \in \mathcal{P}$, $|Tu(n) cTv(n)| \leq e^{-L^{\beta}/2}$,
- for $n \in \mathcal{Q}$, $|Tu(n) + cTv(n)| \leq e^{-L^{\beta}/2}$.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Proof of the key lemma

Let $u := u(\omega)$ and $v := v(\omega)$ be normalized eigenvectors associated to $E(\omega)$ and $E'(\omega)$.

$$\partial_{\omega_n} E(\omega) = (u(n) - u(n+1))^2 =: |Tu(n)|^2 \text{ for } n \in \Lambda$$

where $\mathcal{T}:\ell^2(\Lambda)\longrightarrow\ell^2(\Lambda)$ is defined by

$$\mathit{Tu}(n) = \mathit{u}(n) - \mathit{u}(n+1)$$
 avec $\mathit{u} \in \ell^2(\Lambda)$

Hence, if $\omega \in (*)$, we have

$$e^{-L^{\beta}} \ge \sum_{n} |Tu(n) - cTv(n)||Tu(n) + cTv(n)|$$

Therefore, there exists a partition $\Lambda = \mathcal{P} \cup \mathcal{Q}, \ \mathcal{P} \cap \mathcal{Q} = \emptyset$ s.t.

• for
$$n \in \mathcal{P}$$
, $|Tu(n) - cTv(n)| \leq e^{-L^{\beta}/2}$

• for $n \in \mathcal{Q}$, $|Tu(n) + cTv(n)| \leq e^{-L^{\beta}/2}$.

Proof

ション ふゆ アメリア メリア しょうくの

Proof of the key lemma

Let $u := u(\omega)$ and $v := v(\omega)$ be normalized eigenvectors associated to $E(\omega)$ and $E'(\omega)$.

$$\partial_{\omega_n} E(\omega) = (u(n) - u(n+1))^2 =: |Tu(n)|^2 \text{ for } n \in \Lambda$$

where $\mathcal{T}:\ell^2(\Lambda)\longrightarrow\ell^2(\Lambda)$ is defined by

$$\mathit{Tu}(n) = \mathit{u}(n) - \mathit{u}(n+1)$$
 avec $\mathit{u} \in \ell^2(\Lambda)$

Hence, if $\omega \in$ (*), we have

$$e^{-L^{\beta}} \ge \sum_{n} |Tu(n) - cTv(n)||Tu(n) + cTv(n)|$$

Therefore, there exists a partition $\Lambda=\mathcal{P}\cup\mathcal{Q},\,\mathcal{P}\cap\mathcal{Q}=\emptyset$ s.t.

■ for
$$n \in \mathcal{P}$$
, $|Tu(n) - cTv(n)| \leq e^{-L^{\beta}/2}$,
■ for $n \in \mathcal{Q}$, $|Tu(n) + cTv(n)| \leq e^{-L^{\beta}/2}$.

Localized regime

Local statistics

cs Results Keylemma **Proof** I

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

References

Proof of the key lemma (next)

"Lower bound": $J \subset \Lambda$ of length $O(L^{\beta})$ s.t.

$$|u(n)|^2+|u(n+1)|^2\geqslant e^{-L^eta/2}$$
 for $n\in J$

Decomposition:

$$\mathcal{P} \cap J = \cup \mathcal{P}_j$$
 et $\mathcal{Q} \cap J = \cup \mathcal{Q}_j$

where \mathcal{P}_i and \mathcal{Q}_i are intervals in \mathbb{Z} .

Localized regime Local statistics

Proof References Results Key lemma

Proof of the key lemma (next)

"Lower bound": $J \subset \Lambda$ of length $O(L^{\beta})$ s.t.

$$|u(n)|^2+|u(n+1)|^2\geqslant e^{-L^eta/2}$$
 for $n\in J$

Decomposition:

$$\mathcal{P} \cap J = \cup \mathcal{P}_j$$
 et $\mathcal{Q} \cap J = \cup \mathcal{Q}_j$

where \mathcal{P}_i and \mathcal{Q}_i are intervals in \mathbb{Z} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Three steps to complete the proof of the key lemma

First step: Any \mathcal{P}_i or \mathcal{Q}_i can not contain more than four points.

$$AU=b$$
 with $\|b\|\leq c_0e^{-L^eta/2}$ and $\|U\|\geq e^{-L^eta/4}$

where A is a
$$10 \times 10$$
 matrix and
 $U := (u(n-2), \dots, u(n+2), v(n-2), \dots, v(n+2))^t.$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Three steps to complete the proof of the key lemma

First step: Any \mathcal{P}_j or \mathcal{Q}_j can not contain more than four points.

Second step: From 4 consecutive points of J, we can form a 10×10 system of linear equations.

$$AU=b$$
 with $\|b\|\leq c_0e^{-L^eta/2}$ and $\|U\|\geq e^{-L^eta/4}$

where A is a 10
$$\times$$
 10 matrix and
 $U := (u(n-2), \ldots, u(n+2), v(n-2), \ldots, v(n+2))^t.$

Observation:

 $|\det A| \leq M e^{-L^{eta}/4}$ where M depends $lpha_0, eta_0, E$ and E'

Third step: A reduction lemma + an explicit computation yield restrictions on random variables ω_n .

Localized regime

Proof References

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Three steps to complete the proof of the key lemma

First step: Any \mathcal{P}_j or \mathcal{Q}_j can not contain more than four points.

Second step: From 4 consecutive points of J, we can form a 10×10 system of linear equations.

$$AU = b$$
 with $\|b\| \leq c_0 e^{-L^eta/2}$ and $\|U\| \geq e^{-L^eta/4}$

where A is a
$$10 \times 10$$
 matrix and
 $U := (u(n-2), \dots, u(n+2), v(n-2), \dots, v(n+2))^t$.

Observation:

 $||\det A| \leq Me^{-L^eta/4}$ where M depends $lpha_{0}, eta_{0}, E$ and E'

Third step: A reduction lemma + an explicit computation yield restrictions on random variables ω_n .

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Three steps to complete the proof of the key lemma

First step: Any \mathcal{P}_j or \mathcal{Q}_j can not contain more than four points.

Second step: From 4 consecutive points of J, we can form a 10×10 system of linear equations.

$$AU=b$$
 with $\|b\|\leq c_0e^{-L^eta/2}$ and $\|U\|\geq e^{-L^eta/4}$

where A is a
$$10 \times 10$$
 matrix and
 $U := (u(n-2), \dots, u(n+2), v(n-2), \dots, v(n+2))^t$.

Observation:

 $|\det A| \leq M e^{-L^{eta}/4}$ where M depends $lpha_{0}, eta_{0}, E$ and E'

Third step: A reduction lemma + an explicit computation yield restrictions on random variables ω_n .

nequalities

Localized regime

Local statistics

Results K

Key lemma Proof

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

32

References

End of the proof

Restrictions on r.v.'s $\{\omega_n\}_{n\in\Lambda}$:

(i)
$$\left|\omega_{n} + \frac{E' - E}{4}\right| \leq Ce^{-L^{\beta}/8},$$

(ii) $\left|\omega_{n-1} + \frac{E' - E}{4}\right| \leq Ce^{-L^{\beta}/8},$
(iii) $\left|\omega_{n-1}\omega_{n} - \frac{(E + E')^{2}}{4}\right| \leq Ce^{-L^{\beta}/4}$

To sum up

- R.v.'s $\{\omega_j\}_{j \in \Lambda}$ satisfy at least cL^{β} cond. de types (i)-(iii).
- ω_n are i.i.d. with a common bounded density + (i)-(iii) \Longrightarrow For a given \mathcal{P} and \mathcal{Q} , the event (*) happens with a prob. at most $e^{-cL^{2\beta}}$.

Hence,

$$\mathbb{P}^* \leqslant 2^L e^{-cL^{2\beta}} \leqslant e^{-\widetilde{c}L^{2\beta}}$$

Inequalities

Localized regime

Local statistics

Results K

Key lemma Proof

References

End of the proof

Restrictions on r.v.'s $\{\omega_n\}_{n \in \Lambda}$: (i) $\left|\omega_n + \frac{E' - E}{4}\right| \leq Ce^{-L^{\beta}/8}$, (ii) $\left|\omega_{n-1} + \frac{E' - E}{4}\right| \leq Ce^{-L^{\beta}/8}$,

(iii)
$$\left|\omega_{n-1}\omega_n - \frac{(E+E')^2}{4}\right| \leqslant Ce^{-L^{\beta}/4}.$$

To sum up,

■ R.v.'s $\{\omega_j\}_{j \in \Lambda}$ satisfy at least cL^{β} cond. de types (i)-(iii).

• ω_n are i.i.d. with a common bounded density + (i)-(iii) \Longrightarrow For a given \mathcal{P} and \mathcal{Q} , the event (*) happens with a prob. at most $e^{-cL^{2\beta}}$.

Hence,

$$\mathbb{P}^* \leqslant 2^L e^{-cL^{2\beta}} \leqslant e^{-\widetilde{c}L^{2\beta}}$$

Inequalities

Localized regime

Local statistics I

Results K

Key lemma Proof

ション ふゆ アメリア メリア しょうくの

References

End of the proof

Restrictions on r.v.'s $\{\omega_n\}_{n \in \Lambda}$:

(i)
$$\left|\omega_{n} + \frac{E' - E}{4}\right| \leq Ce^{-L^{\beta}/8},$$

(ii) $\left|\omega_{n-1} + \frac{E' - E}{4}\right| \leq Ce^{-L^{\beta}/8},$
(iii) $\left|\omega_{n-1}\omega_{n} - \frac{(E + E')^{2}}{4}\right| \leq Ce^{-L^{\beta}/4}$

To sum up,

- **R.v.**'s $\{\omega_j\}_{j \in \Lambda}$ satisfy at least cL^{β} cond. de types (i)-(iii).
- ω_n are i.i.d. with a common bounded density + (i)-(iii) \Longrightarrow For a given \mathcal{P} and \mathcal{Q} , the event (*) happens with a prob. at most $e^{-cL^{2\beta}}$.

Hence,

$$\mathbb{P}^* \leqslant 2^L e^{-cL^{2\beta}} \leqslant e^{-\widetilde{c}L^{2\beta}}$$

Inequalities

Localized regime

Local statistics I

Results K

Key lemma Proof

ション ふゆ アメリア メリア しょうくの

References

End of the proof

Restrictions on r.v.'s $\{\omega_n\}_{n\in\Lambda}$:

(i)
$$\left| \omega_n + \frac{E' - E}{4} \right| \leq C e^{-L^{\beta}/8},$$

(ii) $\left| \omega_{n-1} + \frac{E' - E}{4} \right| \leq C e^{-L^{\beta}/8},$
(iii) $\left| \omega_{n-1}\omega_n - \frac{(E + E')^2}{4} \right| \leq C e^{-L^{\beta}/4}$

To sum up,

- R.v.'s $\{\omega_j\}_{j \in \Lambda}$ satisfy at least cL^{β} cond. de types (i)-(iii).
- ω_n are i.i.d. with a common bounded density + (i)-(iii) \Longrightarrow For a given \mathcal{P} and \mathcal{Q} , the event (*) happens with a prob. at most $e^{-cL^{2\beta}}$.

Hence,

$$\mathbb{P}^* \leqslant 2^L e^{-cL^{2\beta}} \leqslant e^{-\widetilde{c}L^{2\beta}}$$

- Michael Aizenman, Jeffrey H.Schenker, Roland M. Friedrich, and Dirk Hundertmark. *Finite-volume fractional-moment criteria for Anderson localization*, Comm. Math. Phys., 224(1):219-253, 2001. Dedicated to Joel L. Lebowitz.
- [2] Dong Miao, Eigenvalue statistics for lattice Hamiltonian of off-diagonal disorder, J. Stat. Phys (2011), 143: 509–522 DOI 10.1007/s10955-011-0190-2.
- [3] Frédéric Klopp, Decorrelation estimates for the eigenvalues of the discrete Anderson model in the localized regime, Comm. Math. Phys. Vol. 303, pp. 233-260 (2011).
- [4] Trinh Tuan Phong, Decorrelation estimates for a 1D tight-binding model in the localized regime, 31p., Annales Henri Poincaré, http://link.springer.com/article/10.1007%2Fs00023-013-0250-z

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Inequalities Localized regime Local statistics Results Key lemma Proof

References

THANKS FOR YOUR ATTENTION !