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Brown’s moduli spaces of curves and the gravity operad

CLÉMENT DUPONT

BRUNO VALLETTE

This paper is built on the following observation: the purity of the mixed Hodge
structure on the cohomology of Brown’s moduli spaces is essentially equivalent to
the freeness of the dihedral operad underlying the gravity operad. We prove these two
facts by relying on both the geometric and the algebraic aspects of the problem: the
complete geometric description of the cohomology of Brown’s moduli spaces and the
coradical filtration of cofree cooperads. This gives a conceptual proof of an identity of
Bergström and Brown which expresses the Betti numbers of Brown’s moduli spaces
via the inversion of a generating series. This also generalizes the Salvatore–Tauraso
theorem on the nonsymmetric Lie operad.

14H10; 14C30, 18D50

Introduction

The moduli space of genus zero smooth curves with n marked points, denoted by M0;n ,
is a classical object in algebraic geometry, as well as its Deligne–Mumford–Knudsen
compactification SM0;n , which parametrizes stable genus zero curves with n marked
points. In [5], Brown introduced a “partial compactification”

M0;n �Mı
0;n �

SM0;n

in order to prove a conjecture of Goncharov and Manin [17] on the relation between
certain period integrals on SM0;n and multiple zeta values.

The homology groups of the moduli spaces M0;n , as well as those of the compactified
moduli spaces SM0;n , assemble to form two operads, respectively called the gravity and
hypercommutative operads by Getzler. These two operads are Koszul dual in the sense
of the Koszul duality of operads; see Getzler [14] and Ginzburg and Kapranov [16].
As pointed out by Getzler, this is very much related to the purity of the mixed Hodge
structures on the cohomology groups under consideration. This implies that the expo-
nential generating series encoding the Betti numbers of M0;n and SM0;n are inverse to
one another.

A similar identity was conjectured by Bergström and Brown in [4]: the ordinary
generating series encoding the Betti numbers of the moduli spaces M0;n and Mı

0;n
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should be inverse to one another. More precisely, it is showed how such a relation
can be derived from a more conceptual fact: the purity of the mixed Hodge structure
on the cohomology groups of Brown’s moduli spaces. This is the first result of the
present paper.

Theorem A For every integers k and n, the mixed Hodge structure on the cohomology
group H k.Mı

0;n/ is pure Tate of weight 2k .

This theorem has the following straightforward consequences:

� the cohomology algebra of Brown’s moduli space Mı
0;n embeds into that of the

moduli space M0;n (Corollary 4.18);

� there is a recursive formula for the Betti numbers of Mı
0;n , conjectured in

Bergström and Brown [4] (Corollary 4.19);
� Brown’s moduli spaces Mı

0;n are formal topological spaces in the sense of
rational homotopy theory (Corollary 4.20).

It turns out that the purity of the mixed Hodge structure of Theorem A can be equiva-
lently interpreted in the following operadic terms.

Theorem B The dihedral gravity operad is free. Its space of generators in arity n and
degree k is (noncanonically) isomorphic to the homology group HkCn�3.Mı

0;n/.

We introduce here the new notion of a dihedral operad, which faithfully takes into
account the dihedral symmetry of Brown’s moduli spaces. Such a notion forgets
almost all the symmetry properties of a cyclic operad, except for the dihedral structure.
Theorem B can also be viewed as a kind of nonsymmetric analog of the Koszul duality
between the gravity and the hypercommutative operad, since a free operad is Koszul,
its dual being a nilpotent operad. We prove it by introducing a combinatorial filtration
on the cohomology groups of the spaces M0;n , and identifying it with the coradical
filtration of the dihedral gravity cooperad.

The problem of studying whether the nonsymmetric operad underlying a given operad is
free is not new. In [26], Salvatore and Tauraso proved that the nonsymmetric operad un-
derlying the operad of Lie algebras is free. This result is actually the top dimensional part
of Theorem B. Thus, the geometric methods developed throughout this paper provide us
with a new proof of (a dihedral enhancement of) the theorem of Salvatore and Tauraso.

Note that in the preprint [2] (which appeared on the arXiv one day after the present
article), Alm and Petersen give independent proofs of Theorem A and Theorem B. Their
proofs rely on an explicit basis for the gravity cooperad, and a construction of Brown’s
moduli spaces in terms of blow-ups and deletions. The freeness of the (nonsymmetric)
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gravity operad has been used by Alm in [1] to study an exotic A1–structure on
Batalin–Vilkovisky algebras.

Layout The first section deals with the various combinatorial objects and notions of
operads used in this text. In the second section, we introduce the moduli spaces of
curves M0;n and SM0;n , as well as the notion of mixed Hodge structure. The study of
Brown’s moduli spaces Mı

0;n and the dihedral gravity cooperad fills the third section.
The fourth section contains the proofs of Theorems A and B and their corollaries.

Conventions Throughout the paper, the field of coefficients is the field Q of rational
numbers. For a topological space X , we simply denote by H�.X / and H �.X / the
(co)homology groups of X with rational coefficients. We work with graded vector
spaces and switch between the homological convention (with degrees as subscripts)
and the cohomological convention (with degrees as superscripts), the two conventions
being linear dual to one another.
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and where Vallette came during several visits) and the University Nice Sophia Antipolis
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SAT grant.

1 Freeness criteria for dihedral cooperads

The purpose of this first section is to recall the various notions of operads (classical,
cyclic, nonsymmetric, cyclic nonsymmetric) and to introduce a new one (dihedral
operad) which suits the geometry of Brown’s moduli spaces. We first describe the
combinatorial objects (trees and polygon dissections) involved in the proof of the
results of the paper. In the end of this section, we prove two freeness criteria for
dihedral cooperads: one based on their cobar construction and the other based on their
coradical filtration.

1.1 Dissections of polygons and trees

Definition 1.1 (structured sets) Let S be a finite set of cardinality n.
� A basepoint � on S is a map �W f�g! S . A pair .S; �/ is called a pointed set.
� A total order ! on S is a bijection between S and the set f1; : : : ; ng. There

are n! total orders on S . A pair .S; !/ is called a totally ordered set. By
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convention, we view a totally ordered set as a pointed set, the basepoint being
the maximal element.

� A cyclic structure  on S is an identification of S with the edges of an oriented
n–gon, modulo rotations. There are n!=n D .n� 1/! cyclic structures on S .
A pair .S;  / is called a cyclic set.

� A dihedral structure ı on S is an identification of S with the edges of an
unoriented n–gon, modulo dihedral symmetries. There are n!=.2n/D 1

2
.n� 1/!

dihedral structures on S . A pair .S; ı/ is called a dihedral set.

In the sequel, we will identify a dihedral set .S; ı/ with an unoriented polygon with
its edges decorated by S in the dihedral order prescribed by ı .

Definition 1.2 (chords and dissections) Let .S; ı/ be a dihedral set.
� A chord of .S; ı/ is an unordered pair of nonconsecutive vertices of the under-

lying unoriented polygon.
� A dissection d of .S; ı/ is a (possibly empty) set of noncrossing chords. The

refinement of dissections endows them with a poset structure:

d6 d0 if d� d0;

in which the smallest element is the empty dissection. We denote by Diss.S; ı/

the poset of dissections of .S; ı/, and by Dissk.S; ı/ the subset consisting of
dissections with k chords.

For a dissection d2Diss.S; ı/, we denote by P .d/ the set of subpolygons that it defines;
see Figure 1. If d is in Dissk.S; ı/, then P .d/ has cardinality kC 1. A subpolygon
p 2 P .d/ corresponds to a dihedral set that we denote by .E.p/; ı.p//, where E.p/

consists of edges and chords of the polygon .S; ı/.

Definition 1.3 (trees) A tree is a finite graph with no cycle. The contraction of
internal edges endows trees with a poset structure: we set t 6 t0 if the tree t can be
obtained from the tree t0 by contracting some internal edges. If the number of external
vertices is fixed, the minimal element of this poset is the only tree with zero internal
edge, called a corolla. By looking at the possible structures on the set of external
vertices of a tree, we get different posets:
� the poset Tree.S/ of trees with external vertices labeled by S ;
� the poset RTree.S; �/ of rooted trees with external vertices labeled by S , the

root being labeled by the basepoint � ;
� the poset PRTree.S; !/ of planar rooted trees with external vertices labeled by

S in the total order ! , the root being labeled by the maximal element;
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Figure 1: A dissection dD fc1; c2; c3g , with the set of subpolygons P .d/D fp0;p1;p2;p3g

� the poset PTree.S;  / of planar trees with external vertices labeled by S in the
cyclic order  ;

� the poset DTree.S; ı/ of dihedral trees (trees embedded in an unoriented plane)
with external vertices labeled by S in the dihedral order ı .

All these posets are graded by the number of internal edges of the trees.

For a tree t, we denote its set of vertices by V .t/. For each vertex v 2 V .t/, we
denote its set of adjacent edges by E.v/. Notice that if t is a rooted tree then we get
a pointed set .E.v/; �.v//; if t is a planar rooted tree then we get a totally ordered
set .E.v/; !.v//; if t is a planar tree then we get a cyclic set .E.v/;  .v//; if t is
a dihedral tree then we get a dihedral set .E.v/; ı.v//. We refer the reader to [22,
Section C.4] for more details on the notions related to trees.

Lemma 1.4 The graded poset Diss.S; ı/ of dissections of a polygon .S; ı/ and
the graded poset DTree.S; ı/ of dihedral trees labeled by the dihedral set .S; ı/ are
isomorphic.

Proof Let us describe the isomorphism Diss.S; ı/!DTree.S; ı/. Given a dissection
d2Diss.S; ı/, one considers its “dual graph” t: each subpolygon p2P .d/ gives rise to
a vertex v 2V .t/ of the tree t and each edge of this polygon gives rise to an edge of the
tree; see Figure 2. The tree t is naturally a dihedral tree, and it is straightforward to check
that this defines a bijection between Diss.S; ı/ and DTree.S; ı/. Under this bijection,
removing a chord from the dissection corresponds to contracting internal edges of trees;
hence we get an isomorphism of posets, which respects the grading by construction.

1.2 Dihedral operads

In this section, we recall the classical notions of operads, and we introduce a new one,
the notion of dihedral operad, which suits the geometrical problem studied here. We
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Figure 2: The isomorphism between polygon dissections and dihedral trees

work in the general setting of an abelian symmetric monoidal category .A;˝/ such
that the monoidal product preserves coproducts. In the next section and later on, we
will specify the category A to be the category of graded mixed Hodge structures.

Definition 1.5 (categories of structured sets) We consider the following categories
of structured sets:

� The category Bij of finite sets S and bijections.

� The category Bij� of pointed sets .S; �/ and bijections respecting the basepoint.

� The category Ord� of totally ordered sets .S; !/ and bijections respecting the
total order.

� The category Cyc of cyclic sets .S;  / and bijections respecting the cyclic order.

� The category Dih of dihedral sets .S; ı/ and bijections respecting the dihedral
structure.

The forgetful functors between the various categories of structured sets assemble as a
commutative diagram

Dih

��

Cycoo Ord�oo

��

Bij Bij�oo

where the functor Ord�! Bij� picks the maximal element as basepoint.

In each case, we consider the category of functors from these categories to the cate-
gory A, for instance MW Bij!A, that we respectively call the category of Bij–modules,
Bij�–modules, Ord�–modules, Cyc–modules and Dih–modules. We denote them
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respectively by Bij-Mod, Bij�-Mod, Ord�-Mod, Cyc-Mod and Dih-Mod. We then get
a commutative diagram of forgetful functors:

Dih-Mod // Cyc-Mod // Ord�-Mod

Bij-Mod //

OO

Bij�-Mod

OO

In the next definition we are using tensor products labeled by sets; see [22, Sec-
tion 5.1.14] for more details on this notion.

Definition 1.6 (monads of trees) We consider the following monads of trees.

� The monad T W Bij-Mod! Bij-Mod is defined via trees:

TM.S/ WD
M

t2Tree.S/

� O
v2V .t/

M.E.v//

�
:

� The monad RT W Bij�-Mod! Bij�-Mod is defined via rooted trees:

RTM.S; �/ WD
M

t2RTree.S;�/

� O
v2V .t/

M.E.v/; �.v//

�
:

� The monad PRT W Ord�-Mod! Ord�-Mod is defined via planar rooted trees:

PRTM.S; !/ WD
M

t2PRTree.S;!/

� O
v2V .t/

M.E.v/; !.v//

�
:

� The monad PT W Cyc-Mod! Cyc-Mod is defined via planar trees:

PTM.S;  / WD
M

t2PTree.S; /

� O
v2V .t/

M.E.v/;  .v//

�
:

� The monad DT W Dih-Mod! Dih-Mod is defined via dihedral trees:

DTM.S; ı/ WD
M

t2DTree.S;ı/

� O
v2V .t/

M.E.v/; ı.v//

�
:

The composition law of these monads, eg T ıT !T , is given by substitution of trees,
and the unit, eg 1! T , is given by the inclusion into the direct summand indexed by
corollas. See [22, Section 5.6.1] for more details.

Remark 1.7 In the above commutative diagram, the horizontal forgetful functors
commute with the respective monads: the forgetful functor Dih-Mod ! Cyc-Mod

commutes with DT and PT ; the forgetful functor Cyc-Mod! Ord�-Mod commutes
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with PT and PRT ; the forgetful functor Bij-Mod! Bij�-Mod commutes with T
and RT . There is no corresponding statement for the vertical forgetful functors.

Definition 1.8 (types of operads) An operad (resp. a cyclic operad, a nonsymmetric
operad, a nonsymmetric cyclic operad and a dihedral operad) is an algebra over the
monad RT of rooted trees (resp. the monad T of trees, the monad PRT of planar
rooted trees, the monad PT of planar trees and the monad DT of dihedral trees).

Remark 1.9 In the rest of this article, we will always assume that all finite sets S have
cardinality n> 3. This is more convenient for our geometric purposes, since the moduli
spaces M0;S and SM0;S are only defined for those sets, and also to avoid speaking of
polygons with two sides. The operads that we manipulate are then nonunital operads.

The aforementioned diagram of categories gives rise to the following forgetful functors
between the categories of operads:

Dih-Op // ns-Cyc-Op // ns-Op

Cyc-Op //

OO

Op

OO

Remark 1.10 In view of Remark 1.7, the free dihedral operad, the free nonsymmetric
cyclic operad and the free nonsymmetric operad on a given Dih–module have the same
underlying nonsymmetric operad.

1.3 Dihedral cooperads

By dualizing Definitions 1.6 and 1.8, one defines comonads of trees and the correspond-
ing notions of cooperads. For more details, we refer the reader to [22, Section 5.8.8]. For
instance, the comonad of trees is defined by the endofunctor T c W Bij-Mod! Bij-Mod

defined by
T cM.S/ WD

M
t2Tree.S/

M.t/;

where we have set
M.t/ WD

O
v2V .t/

M.E.v//:

A cyclic cooperad consists of a Bij–module C along with decomposition morphisms

�tW C.S/! C.t/;
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for any tree t2Tree.S/, satisfying some coassociativity conditions. For the convenience
of the reader, we make the definition explicit in the case of dihedral cooperads, switching
from dihedral trees to polygon dissections; see Lemma 1.4.

A Dih–module M assigns to every dihedral set .S; ı/ an object M.S; ı/, and to
every dihedral bijection .S; ı/' .S 0; ı0/ an isomorphism M.S; ı/'M.S 0; ı0/. We
introduce the notation, for a dissection d 2 Diss.S; ı/,

M.d/ WD
O

p2P.d/

M.E.p/; ı.p//:

Definition 1.11 (comonad of dissections) The comonad of dissections, denoted
by DT c, consists of the endofunctor DT c

W Dih-Mod! Dih-Mod defined by

DT cM.S; ı/ WD
M

d2Diss.S;ı/

M.d/:

Its law DT c
! DT c

ıDT c sends the direct summand indexed by a dissection d to
the direct summands indexed by all subdissections of d. The counit DT c

! 1 is the
projection on the direct summand indexed by empty dissections.

Definition 1.12 (dihedral cooperad) A dihedral cooperad is a coalgebra over the
comonad of dissections.

The data of a dihedral cooperad is equivalent to a collection of decomposition morphisms

�dW C.S; ı/! C.d/;

for any dihedral tree d 2 Diss.S; ı/, satisfying some coassociativity conditions. The
first nontrivial decomposition morphisms correspond to dissections with one chord;
such decomposition morphisms are called infinitesimal and their iterations can generate
any decomposition morphism.

1.4 Cobar construction and cofree dihedral cooperads

In this subsection and in the next one, we assume that the underlying symmetric
monoidal category A consists of graded objects, like chain complexes for instance. We
use the cohomological convention for cooperads. In this case, one can consider the
desuspension s�1C of any dihedral module C defined by the formula s�1C.S; ı/� WD
C.S; ı/�C1 . (Alternatively, one can view the element s�1 as a dimension-one element of
the category A concentrated in cohomological degree �1. In this case, the desuspension
coincide with the tensor product with the element s�1 .)

Definition 1.13 (cobar construction) The cobar construction �C WD .DT .s�1C/; d/
of a dihedral cooperad C is the free dihedral operad generated by s�1C equipped with
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the unique derivation d which extends the infinitesimal decomposition morphisms of C .
The signs induced by the desuspension force the derivation d to square to zero, which
makes the cobar construction into a differential graded dihedral operad.

Remark 1.14 As usual [22, Section 6.5.2], if the underlying dihedral module C
carries an internal differential, one takes it into account in the definition of the cobar
construction. This will not be the case in the sequel.

The underlying cochain complex of the cobar construction looks like

0! s�1C.S; ı/!
M

d2Diss1.S;ı/

s�1C.d/!
M

d2Diss2.S;ı/

s�1C.d/! � � � :

One can read whether a dihedral cooperad is cofree on its cobar construction as follows.

Proposition 1.15 Let C be a dihedral cooperad. The following are equivalent:

(i) the dihedral cooperad C is cofree;

(ii) for every dihedral set .S; ı/, the cobar construction of C induces a long exact
sequence

(1) s�1C.S; ı/!
M

d2Diss1.S;ı/

s�1C.d/!
M

d2Diss2.S;ı/

s�1C.d/! � � � :

In such a situation, the space of cogenerators of C is (noncanonically) isomorphic to
the space of indecomposables

X .S; ı/D ker
�
C.S; ı/!

M
d2Diss1.S;ı/

C.d/
�
:

More precisely, any choice of splitting for the inclusion of Dih–modules X ,! C leads
to an isomorphism

C
Š
�!DT c.X /:

Proof The long sequence (1) is exact if and only if the long sequence

(2) 0! s�1X .S; ı/! s�1C.S; ı/!
M

d2Diss1.S;ı/

s�1C.d/!
M

d2Diss2.S;ı/

s�1C.d/!� � �

is exact.

(i) D) (ii) Suppose that the dihedral cooperad C ŠDT c.X / is cofree on a dihedral
module X . Since the sequence (2) is the analog of the bar-cobar resolution [22,
Theorem 6.6.5] for the nilpotent dihedral operad s�1X , one proves that this sequence
is exact by the same kind of arguments.
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(ii) D) (i) Let us assume that the long sequence (2) is exact. We choose a splitting
C� X for the inclusions X ,! C in the category of Dih–modules. This defines a
morphism of dihedral cooperads C ! DT c.X /. Let us prove, by induction on the
arity n> 3 of a dihedral set .S; ı/, that the morphism C.S; ı/!DT c.X /.S; ı/ is an
isomorphism. The case nD 3 is obvious and initiates the induction. Suppose that the
property holds up to n� 1. We prove that it holds for n as follows. The preceding
point shows that the long sequence (2) associated to the dihedral cooperad DT c.X / is
exact. The induction hypothesis provides us with the commutative diagram

0

��

0

��

s�1X .S; ı/

��

Š
// s�1X .S; ı/

��

s�1C.S; ı/

��

// s�1DT c.X /.S; ı/

��L
d2Diss1.S;ı/

s�1C.d/

��

Š
//

L
d2Diss1.S;ı/

s�1DT c.X /.d/

��L
d2Diss2.S;ı/

s�1C.d/

��

Š
//

L
d2Diss2.S;ı/

s�1DT c.X /.d/

��

:::
:::

where the columns are exact and nearly all the horizontal maps are isomorphisms.
A diagram chase (the 5–lemma) completes the proof.

Proposition 1.16 Let C be a dihedral cooperad. Then the following statements are
equivalent:

(i) The dihedral cooperad C is cofree.

(ii) The nonsymmetric cyclic cooperad underlying C is cofree.

(iii) The nonsymmetric cooperad underlying C is cofree.

Proof The same proof shows that Proposition 1.15 is valid in the category of nonsym-
metric cyclic cooperads (resp. nonsymmetric cooperads), replacing the dihedral cobar
construction by the nonsymmetric cyclic cobar construction (resp. the nonsymmetric
cobar construction). By Remark 1.10, these three cobar constructions have the same
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underlying nonsymmetric operad, which is the nonsymmetric cobar construction of the
nonsymmetric cooperad underlying C . In particular, they have the same underlying
chain complex, and the claim follows.

1.5 The coradical filtration and a freeness criterion

To understand the behavior of a dihedral cooperad with respect to the freeness property,
one can consider its coradical filtration. This is the direct generalization of the same
notion on the level of coalgebras [24, Appendix B] and on the level of cooperads [22,
Section 5.8.4].

Definition 1.17 (coradical filtration) Let C be a dihedral cooperad. The coradical
filtration, defined by

FkC.S; ı/ WD
\

d2DisskC1.S;ı/

ker.�d/;

for k > 0, is an increasing filtration of the Dih–module C :

0D F�1C � F0C � F1C � � � � � C:

The next proposition gives a way to recognize coradical filtrations of cofree dihedral
cooperads. Let us make the following convention: if we are given an increasing filtration
� � � �Rk�1C �RkC � � � � of a Dih–module C , then we extend this filtration, in the
natural way, to all objects C.d/ for a dissection d as follows. If the dissection d dissects
.S; ı/ into polygons p0;p1; : : : ;pk , then we set

RrC.d/ WD
X

i0C���CikDr

Ri0
C.p0/˝ � � �˝Rik

C.pk/:

Proposition 1.18 Let C be a dihedral cooperad. Assume that the underlying Dih–
module is equipped with an increasing filtration

0DR�1C �R0C �R1C � � � � � C

which is finite in every arity n and such that the following properties are satisfied:

(a) for every dissection d 2 Dissk.S; ı/ of cardinality k and every integer r , the
decomposition map �d sends RrC.S; ı/ to Rr�kC.S; ı/;

(b) for every integer r , the iterated decomposition map

(3) grR
r C.S; ı/

L
�d

����!

M
d2Dissr .S;ı/

R0C.d/

is an isomorphism.
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Then the dihedral cooperad C is cofree and the filtration R is its coradical filtra-
tion. More precisely, any choice of splitting of the inclusion R0C ,! C induces an
isomorphism

C
Š
�!DT c.R0C/:

Proof Let us choose a splitting � W C� R0C for the inclusions R0C ,! C in the
category of Dih–modules. By the universal property of the cofree dihedral cooperads,
this induces a morphism of dihedral cooperads ‚W C ! DT c.R0C/. The coradical
filtration on the cofree dihedral cooperad DT c.R0C/ is given by

FkDT c.R0C/.S; ı/D
M
r6k

d2Dissr .S;ı/

R0C.d/:

For any dissection d2Dissk.S; ı/ and k > r , the first assumption implies that we have
�d.RrC.S; ı//D 0. Therefore, the morphism ‚ is compatible with the filtrations R

and it induces a morphism of graded dihedral modules

grR
r ‚W grR

r C.S; ı/! grR
r DT c.R0C/D

M
d2Dissr .S;ı/

R0C.d/;

which is nothing but the iterated decomposition map (3). So it is an isomorphism by the
second assumption. Finally, the morphism of dihedral cooperads ‚ is an isomorphism
and the proposition is proved.

2 Moduli spaces of genus zero curves and
the cyclic gravity operad

In this section, we begin by recalling the definitions of the moduli space of genus zero
curves with marked points and its Deligne–Mumford–Knudsen compactification. We
recall the definition of residues along normal crossing divisors in the context of mixed
Hodge theory. This produces the cyclic gravity operad structure on the cohomology of
the moduli spaces of curves.

2.1 Normal crossing divisors and stratifications

We introduce some vocabulary and notations on normal crossing divisors and the
stratifications that they induce on complex algebraic varieties.

2.1.1 The local setting Let xX be a small neighborhood of 0 in Cn and let us define a
divisor @ xX Dfz1 � � � zr D 0g in xX for some fixed integer r . Its irreducible components
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are the (intersections with xX of the) coordinate hyperplanes fzi D 0g for i D 1; : : : ; r .
This induces a stratification

(4) xX D
G

I�f1;:::;rg

X.I/;

where X.I/ is the locally closed subset of xX defined by the conditions: zi D 0 for
i 2 I and zi ¤ 0 for i 2 f1; : : : ; rg n I . Notice that

I � I 0 () xX .I/� xX .I 0/:

The codimension of X.I/ is equal to the cardinality of I , and its closure xX .I/ is
defined by the vanishing of the coordinates zi , i 2 I . In other words, the closure xX .I/
is the union of the strata X.I 0/ for I 0 � I :

xX .I/D
G

I 0�I

X.I 0/:

For a given set I � f1; : : : ; rg, the complement @ xX .I/ WD xX .I/ nX.I/ is defined by
the equation

Q
i2f1;:::;rgnI zi D 0.

2.1.2 The global setting Let xX be a smooth (not necessarily compact) complex
algebraic variety and let @ xX be a normal crossing divisor inside xX . This means that
around every point of xX , there is a system of coordinates .z1; : : : ; zn/, where n is
the complex dimension of xX , such that @ xX is defined by an equation of the form
z1 � � � zr D 0 for some integer r that depends on the point.

This induces a global stratification

(5) xX D
G

s2Strat

X.s/

that is constructed as (4) in every local chart. For every s in the indexing set Strat, the
stratum X.s/ is a connected locally closed subset of xX . Let xX .s/ denote its closure.
The indexing set Strat for the strata is actually endowed with a poset structure defined by

s6 s0 () xX .s/� xX .s0/:

In other words, the closure xX .s/ of X.s/ is the union of the strata X.s0/ for s0 > s:

xX .s/D
G
s0>s

X.s0/:

For an integer k , we write Stratk for the indexing set of strata of codimension k ,
making Strat into a graded poset. The set Strat0 only has one element corresponding
to the open stratum X D xX n@ xX . The closures xX .s/, for s2 Strat1 , are the irreducible
components of the normal crossing divisor @ xX .
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For a given stratum X.s/, the complement @ xX .s/ WD xX .s/nX.s/ is a normal crossing
divisor inside xX .s/.

2.2 The moduli spaces M0;S and SM0;S

We introduce the moduli spaces of genus zero curves M0;S and SM0;S . We refer the
reader to [20; 18; 14; 17] for more details.

2.2.1 The open moduli spaces M0;S Let S be a finite set of cardinality n > 3.
The moduli space of genus zero curves with S –marked points is the quotient of the
configuration space of points labeled by S on the Riemann sphere P1.C/ by the
automorphisms of P1.C/. It is denoted by

M0;S WD
˚
.zs/s2S 2 P1.C/S j zs ¤ zs0 for all s ¤ s0

	
=PGL2.C/;

where an element g 2 PGL2.C/ acts diagonally by g:.zs/s2S D .g:zs/s2S .

Every bijection S ' S 0 induces an isomorphism M0;S 'M0;S 0 . If S D f1; : : : ; ng

then M0;S is simply denoted by M0;n .

The action of PGL2.C/ on P1.C/ is strictly tritransitive: for every triple .a; b; c/ of
pairwise distinct points on P1.C/, there exists a unique element g 2 PGL2.C/ such
that .g:a;g:b;g:c/D .1; 0; 1/. By fixing an identification

.z1; : : : ; zn/D .1; 0; t1; : : : ; tn�3; 1/;

we can thus get rid of the quotient by PGL2.C/ and obtain an isomorphism

(6) M0;n '
˚
.t1; : : : ; tn�3/ 2Cn�3

j ti ¤ 0; 1 for all i; and ti ¤ tj for all i ¤ j
	
:

This description makes it clear that M0;S is a smooth and affine complex algebraic
variety of dimension n� 3.

2.2.2 The compactified moduli spaces SM0;S Let S be a finite set of cardinality
n> 3, and let

M0;S � SM0;S

be the Deligne–Mumford–Knudsen compactification of M0;S . Every bijection S 'S 0

induces an isomorphism SM0;S ' SM0;S 0 . If S D f1; : : : ; ng, then SM0;S is simply
denoted by SM0;n .

The compactified moduli space SM0;S is a smooth projective complex algebraic variety,
and the complement @ SM0;S WD SM0;S nM0;S is a simple normal crossing divisor. The
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corresponding stratification (5) is indexed by the graded poset of S –trees:

(7) SM0;S D

G
t2Tree.S/

M.t/:

The codimension of a stratum M.t/ is equal to the number of internal edges of the
tree t. If we denote by SM.t/ the closure of a stratum M.t/ in SM0;S , then we have

SM.t/� SM.t0/ () t6 t0;

where the order 6 on trees is the one defined in Definition 1.3. The closure SM.t/ is
thus the union of the strata M.t0/ for t0 > t.

For a tree t 2 Tree.S/, we have compatible product decompositions

(8) M.t/Š
Y
v2V .t/

M0;E.v/ and SM.t/Š
Y
v2V .t/

SM0;E.v/:

The stratum corresponding to the corolla is the open stratum M0;S . For t 2 Tree1.S/

a tree with only one internal edge, we get a divisor

SM.t/Š SM0;E0
� SM0;E1

inside SM0;S . These divisors are the irreducible components of @ SM0;S .

Example 2.1 (1) We have M0;3 D SM0;3 D f�g.

(2) If we write M0;4DP1.C/nf1; 0; 1g as in (6), then we have SM0;4DP1.C/. The
divisor at infinity @ SM0;4D f1; 0; 1g has three irreducible components, all isomorphic
to a product SM0;3 � SM0;3 , indexed by the three 4–trees with one internal edge.

(3) If we write M0;5 D .P
1.C/ n f1; 0; 1g/2 n ft1 D t2g as in (6), then SM0;5 can be

realized as the blow-up of P1.C/2 along the three points .0; 0/, .1; 1/ and .1;1/;
see Figure 3. The divisor at infinity @ SM0;5 has ten irreducible components: the three
exceptional divisors and the strict transforms of the lines t1 D 0; 1;1, t2 D 0; 1;1

and t1 D t2 . They are all isomorphic to a product SM0;3 � SM0;4 and are indexed by
the ten 5–trees with one internal edge. The fifteen different intersection points of these
components are indexed by the fifteen 5–trees with two internal edges.

2.3 The category of mixed Hodge structures

We recall some useful facts on the category of mixed Hodge structures. The main
references are the original articles by Deligne [6; 7; 8] and the book [23].
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Figure 3: The combinatorial structure of SM0;5

Definition 2.2 (pure Hodge structures) A pure Hodge structure of weight w is the
data of
� a finite-dimensional Q–vector space H ;
� a finite decreasing filtration, the Hodge filtration, F �HC of the complexification

HC WDH ˝Q C ,

such that for every integer p , we have

HC D FpHC˚Fw�pC1HC:

A morphism of pure Hodge structures is a morphism of Q–vector spaces that is
compatible with the Hodge filtration.

Definition 2.3 (mixed Hodge structures) A mixed Hodge structure is the data of
� a finite-dimensional Q–vector space H ;
� a finite increasing filtration, the weight filtration, W�H of H ;
� a finite decreasing filtration, the Hodge filtration, F �HC of the complexifica-

tion HC ,

such that for every integer w , the Hodge filtration induces a pure Hodge structure of
weight w on grW

w H WDWwH=Ww�1H . A morphism of mixed Hodge structures is a
morphism of Q–vector spaces that is compatible with the weight and Hodge filtrations.

A pure Hodge structure of weight w is thus nothing but a mixed Hodge structure whose
weight filtration is concentrated in weight w .

A very important remark is that morphisms of mixed Hodge structures are strictly
compatible with the weight and Hodge filtrations. This implies that mixed Hodge
structures form an abelian category. One easily defines on it a compatible structure of
a symmetric monoidal category.

Geometry & Topology, Volume 21 (2017)



2828 Clément Dupont and Bruno Vallette

Another consequence of this strictness property is the following lemma, used in practice
to prove degeneration of spectral sequences, like in Proposition 3.10.

Lemma 2.4 Let f W H !H 0 be a morphism of mixed Hodge structures. If H is pure
of weight w and H 0 is pure of weight w0 with w ¤ w0 , then f D 0.

The pure Tate structure of weight 2k , denoted by Q.�k/, is the only pure Hodge
structure of weight 2k and dimension 1; its Hodge filtration is concentrated in degree k .
They satisfy Q.�k/˝Q.�l/ŠQ.�k � l/ and Q.�k/_ ŠQ.k/. A mixed Hodge
structure is said to be pure Tate of weight 2k if it is isomorphic to a direct sum
Q.�k/˚d for a certain integer d .

If H is a mixed Hodge structure and k is an integer, we denote by H.�k/ the Tate
twist of H consisting in shifting the weight filtration by 2k and the Hodge filtration
by k . It is equal to the tensor product of H by Q.�k/.

The importance of mixed Hodge structures in the study of the topology of complex
algebraic varieties is explained by the following fundamental theorem of Deligne.

Theorem 2.5 [8, Proposition 8.2.2] Let X be a complex algebraic variety. For every
integer k , the cohomology group H k.X / is endowed with a functorial mixed Hodge
structure.

2.4 Logarithmic forms and residues

We recall the notion of logarithmic form along a normal crossing divisor and that of a
residue. We refer the reader to [7, 3.1] for more details.

2.4.1 The local setting We work in the local setting of Section 2.1.1. We say that a
meromorphic differential form on xX has logarithmic poles along @ xX , or that it is a
logarithmic form on . xX ; @ xX /, if it can be written as a linear combination of forms of
the type

dzi1

zi1

^ � � � ^
dzis

zis

^ �;

with 16 i1 < � � �< is 6 r and where � a holomorphic form on xX . Logarithmic forms
are closed under the exterior derivative on forms.

Any logarithmic form on . xX ; @ xX / can be written as

! D
dz1

z1

^˛Cˇ;
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where ˛ and ˇ are forms with logarithmic poles along fz2 � � � zr D 0g. We define the
residue of ! on xX .1/D fz1 D 0g to be the restriction

(9) Res.!/ WD 2� i ˛
j xX .1/:

It is a well-defined logarithmic form on . xX .1/; @ xX .1//. The residue operation lowers
the degree of the forms by 1 and anticommutes with the exterior derivative: d ıResC
Res ı d D 0.

More generally, for sets I � I 0 � f1; : : : ; rg with jI 0j D jI j C 1, we get residue
operations ResI

I 0 from logarithmic forms on . xX .I/; @ xX .I// to logarithmic forms on
. xX .I 0/; @ xX .I 0//.

2.4.2 The global setting We work in the global setting of Section 2.1.2. By gluing
together the local definitions of the previous paragraph, one defines on each closure xX .s/
a complex of sheaves of logarithmic forms on . xX .s/; @ xX .s//:

��xX .s/
.log @ xX .s//:

If jsW X.s/ ,! xX .s/ denotes the natural open immersion, we have a quasi-isomorphism
.js/�CX .s/ ' ��xX .s/.log @ xX .s//, which induces isomorphisms between cohomol-
ogy groups:

(10) H k.X.s/;C/ŠHk
�
xX .s/;��xX .s/.log @ xX .s//

�
:

For elements s6 s0 in Strat with js0j D jsjC 1, we denote the corresponding closed
immersion by i ss0 W

xX .s0/ ,! xX .s/. By applying the local construction of the previous
paragraph in every local chart, we get a residue morphism

(11) Resss0 W �
�

xX .s/
.log @ xX .s//! .i ss0/��

��1
xX .s0/

.log @ xX .s0//;

which anticommutes with the exterior derivative on forms. In view of (10), this induces
a residue morphism between cohomology groups:

Resss0 W H
�.X.s/;C/!H ��1.X.s0/;C/:

This residue morphism is actually defined over Q and it is compatible with the mixed
Hodge structures if we add the right Tate twist, giving rise to residue morphisms

(12) Resss0 W H
�.X.s//!H ��1.X.s0//.�1/:

2.5 The cyclic gravity cooperad

Following Getzler, we use the residue morphisms of the previous paragraph to define
the cyclic gravity cooperad in the category of graded mixed Hodge structures. Let S
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be a finite set of cardinality n> 3, and let us choose an S –tree t 2 Tree1.S/ with one
internal edge. Let us denote by v0 and v1 its two vertices, and by E0 WDE.v0/ and
E1 WDE.v1/ the corresponding sets of adjacent edges. The stratum indexed by t in
the moduli space M0;S is

M.t/ŠM0;E0
�M0;E1

:

For integers a and b , we thus get residue morphisms

(13) �tW H
aCb�1.M0;S /.�1/!H a�1.M0;E0

/.�1/˝H b�1.M0;E1
/.�1/:

They are obtained from (12) by using the Künneth formula, adding a Tate twist .�1/ and
multiplying by the Koszul sign .�1/a�1 , which reflects the cohomological degree shift.
Let us define the Bij–module C in the category of graded mixed Hodge structures by

C.S/ WDH ��1.M0;S /.�1/:

Associated to any set V , one considers the one-dimensional vector space det.V / WDV
v2V Qv . The signed residue morphisms (13) are not quite the decomposition mor-

phisms of a cyclic cooperad. Instead, they give rise to decomposition morphisms

(14) �tW C.S/! det.V .t//˝ C.t/

for any S –tree t 2 Tree.S/, that satisfy analogs of the axioms a cyclic cooperad, but
with different signs. Such an algebraic structure on C is actually called an anticyclic
cooperad; see [15, 2.10]. Note that in (13) the choice of an ordering V .t/D fv0; v1g

gives a trivialization det.V .t//'Q of the determinant. The following definition was
introduced by Getzler [13; 14].

Definition 2.6 (cyclic gravity cooperad) The cyclic gravity cooperad is the cyclic
suspension [15, 2.10] of the anticyclic cooperad C :

Grav.S/ WD det.S/˝H �Cn�3.M0;S /.�1/

for any finite set S of cardinality n> 3. It forms a cyclic cooperad in the category of
graded mixed Hodge structures, which is concentrated in nonpositive cohomological
degree �.n� 3/6 � 6 0. The decomposition morphisms

�tW Grav.S/! Grav.t/

for the cyclic gravity cooperad are given by signed residues.

Getzler showed [13, Theorem 4.5] that the cyclic gravity operad, linear dual to the
cyclic gravity cooperad, is generated by one element in each cyclic arity n> 3, and
he also gave a presentation for the operadic ideal of relations. More specifically, the
generator in cyclic arity n is the natural generator of the space H0.M0;n/.1/, which
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lies in homological degree �.n�3/, and the relations are generalizations of the Jacobi
identity for Lie algebras. In particular, the generator of cyclic arity 3 satisfies the Jacobi
identity, and one gets the following theorem.

Theorem 2.7 [14, 3.8] The degree-zero suboperad of the cyclic gravity operad is iso-
morphic to the cyclic Lie operad. In particular, we get an isomorphism of Bij–modules

Lie.S/Š det.S/˝Hn�3.M0;S /.1/:

3 Brown’s moduli spaces and the dihedral gravity cooperad

In this section, we introduce Brown’s moduli spaces as a partial compactification of the
moduli spaces of genus zero curves. Forgetting many of the symmetries of the gravity
operad, one obtains the dihedral gravity operad. We conclude with the proof of the
equivalence between the purity of the mixed Hodge structure on the cohomology of
Brown’s moduli spaces and the cofreeness of the dihedral gravity cooperad.

3.1 Brown’s moduli spaces Mı
0;S

Let S be a finite set of cardinality n> 3 and let ı be a dihedral structure on S . Brown
defined [5, Section 2] a space Mı

0;S that fits between the moduli space M0;S and its
compactification SM0;S with open immersions:

M0;S �Mı
0;S �

SM0;S :

Recall that DTree.S; ı/ � Tree.S/ denotes the set of S –trees that have a dihedral
embedding compatible with ı .

Definition 3.1 (Brown’s moduli space Mı
0;S ) Brown’s moduli space Mı

0;S is the
subspace of SM0;S defined as the union of strata indexed by the trees underlying
dihedral trees:

Mı
0;S WD

G
t2DTree.S;ı/

M.t/:

For t and t0 two S –trees such that t6 t0 , we have t0 2DTree.S; ı/D) t2DTree.S; ı/;
thus, Brown’s moduli space Mı

0;S is an open subvariety of SM0;S . In other words,
it is the complement in SM0;S of the union of the closed subvarieties SM.t/ for t 2

Tree.S/ nDTree.S; ı/; in this description, it is actually enough to delete the divisors
SM.t/ for trees t with one internal edge.

Every dihedral bijection .S; ı/ ' .S 0; ı0/ induces an isomorphism Mı
0;S 'Mı0

0;S 0 .
If we consider S D f1; : : : ; ng with its standard dihedral structure ı , then Mı

0;S is
simply denoted by Mı

0;n .
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Theorem 3.2 [5, Theorem 2.21] Brown’s moduli space Mı
0;S is a smooth and affine

complex algebraic variety, and the complement @Mı
0;S WDMı

0;S nM0;S is a normal
crossing divisor.

With our definition of Brown’s moduli spaces, the only nontrivial statement in the
above theorem is the fact that Mı

0;S is affine. Brown’s original definition is via an
explicit presentation of the ring of functions of Mı

0;S . The equivalence of the two
definitions can be found in [5, Section 2.6].

3.2 The dihedral gravity cooperad

Definition 3.3 (the dihedral gravity operad) The dihedral gravity cooperad, still
denoted by Grav , is the dihedral cooperad in the category of graded mixed Hodge
structures underlying the cyclic gravity cooperad. In other words, it is obtained by
applying the forgetful functor Cyc-Op! Dih-Op of Section 1.2 to the cyclic gravity
operad. Recall that its underling dihedral module is given by

Grav.S; ı/ WD det.S/˝H �Cn�3.M0;S /.�1/:

For the convenience of the reader and for future use, we restate its definition in the
dihedral setting by using the bijection between graded posets of Lemma 1.4:

DTree.S; ı/Š Diss.S; ı/; t$ d:

We may then write

(15) Mı
0;S D

G
d2Diss.S;ı/

M.d/:

The codimension of a stratum M.d/ is the number of chords in the dissection d. If we
denote by Mı.d/ the closure of a stratum M.d/ in Mı

0;S , then we have

Mı.d/�Mı.d0/ () d6 d0;

where the order 6 on dissections is the one defined in Section 1.1. The closure Mı.d/

is thus the union of the strata M.d0/ for d0 > d.

For a dissection d 2 Diss.S; ı/, we have the product decompositions

M.d/Š
Y

p2P.d/

M0;E.p/ and Mı.d/Š
Y

p2P.d/

Mı.p/
0;E.p/

;

which are compatible with the product decompositions (8).
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Figure 4: The combinatorial structure of Mı
0;5

The stratum corresponding to the corolla is the open stratum M0;S . For d D fcg 2

Diss1.S; ı/ a dissection consisting of only one chord, we get a divisor

Mı.fcg/ŠMı0
0;E0
�Mı1

0;E1

inside Mı
0;S . These divisors are the irreducible components of @Mı

0;S .

Example 3.4 (1) We have Mı
0;3 D f�g.

(2) If we write M0;4DP1.C/nf1; 0; 1g and SM0;4DP1.C/, then we have Mı
0;4D

P1.C/ n f1g. The divisor at infinity @Mı
0;4 D f0; 1g has two irreducible components,

all isomorphic to a product Mı
0;3 �Mı

0;3 , indexed by the two dissection of a 4–gon
with one chord.

(3) Figure 4 shows the combinatorial structure of Mı
0;5 inside SM0;5 . The curves

in dashed lines are the complement SM0;5 nMı
0;5 . The five curves in straight lines

are the five irreducible components of the divisor at infinity @Mı
0;5 , indexed by the

five dissection of a 5–gon with one chord. They bound a pentagon (shaded). The five
different intersection points of these components are indexed by the five dissections of
a 5–gon with two chords.

Remark 3.5 The stratification of Mı
0;n has the same combinatorial structure as the

natural stratification of an associahedron Kn of dimension n � 3. More precisely,
there is a natural smooth embedding of Kn inside Mı

0;n which is compatible with
these stratifications (the shaded pentagon in Figure 4). This is the same as Devadoss’s
realization of the associahedron [9, Definition 3.2.1]. In that sense, Brown’s moduli
spaces Mı

0;n are algebro-geometric analogs of associahedra.

The dihedral decomposition morphisms

�dW Grav.S; ı/! Grav.d/
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may be computed as (signed) residues of logarithmic forms on .Mı
0;S ; @Mı

0;S /. This is
particularly interesting since Mı

0;S is affine (Theorem 3.2) and we can thus use global
logarithmic forms. We will give explicit formulas for these dihedral decomposition
morphisms in Proposition 4.4.

3.3 The residue spectral sequence

In the global setting of Section 2.1.2, we prove the existence of a residue spectral
sequence which computes the cohomology of the ambient space xX in terms of the
cohomology of the strata X.s/ and the residue morphisms. In the next paragraph, we
will apply this spectral sequence to the dihedral gravity cooperad.

Proposition 3.6 Let xX be a smooth (not necessarily compact) complex algebraic
variety and let @ xX be a normal crossing divisor inside xX , inducing a stratification

xX D
G

s2Strat

X.s/:

There exists a first quadrant spectral sequence in the category of mixed Hodge structures:

E
p;q
1
D

M
s2Stratp

H q�p.X.s//.�p/ H) H pCq. xX /;

where the differential d1W E
p;q
1
!E

pC1;q
1

is the sum of the residue morphisms (12)

Resss0 W H
q�p.X.s//.�p/!H q�p�1.X.s0//.�p� 1/

for s 2 Stratp and s0 2 StratpC1 such that s6 s0 .

Proof We first forget about mixed Hodge structures and prove the existence of the
spectral sequence for the cohomology over C . Let us denote by isW xX .s/ ,! xX the
natural closed immersions. Let us write

Kp;q
D

M
s2Stratp

.is/��
q�p
xX .s/

.log @ xX .s//:

We give the collection of the Kp;q the structure of a double complex of sheaves on xX .
The horizontal differential d 0W Kp;q! KpC1;q is induced by the residues

.is/��
q�p
xX .s/

.log @ xX .s//! .is0/��
q�p�1
xX .s0/

.log @ xX .s0//

for s2 Stratp and s0 2 StratpC1 such that s6 s0 . The vertical differential d 00W Kp;q!

Kp;qC1 is induced by the exterior derivative on differential forms. One checks that we
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have d 0 ıd 0D 0, d 00 ıd 00D 0 and d 0 ıd 00Cd 00 ıd 0D 0. We denote the corresponding
total complex by

Kn
D

M
pCqDn

Kp;q:

Using local coordinates on xX , it is easy to check that we have a long exact sequence

(16) 0!��xX
! K0;�

! K1;�
! K2;�

! � � � ;

which induces a quasi-isomorphism ��xX ' K� . The holomorphic Poincaré lemma
implies that we have a quasi-isomorphism C xX '�

�
xX ; hence we get an isomorphism

H q. xX ;C/ŠHq. xX ;K�/:

Now, the hypercohomology spectral sequence for the double complex K�;� filtered by
the columns is exactly

E
p;q
1
D

M
s2Stratp

Hq
�
xX .s/;�

��p
xX .s/

.log @ xX .s//
�
H) H pCq. xX ;C/:

Taking into account the isomorphisms Hq
�
xX .s/;���p

xX .s/.log @ xX .s//
�
'H q�p.X.s/;C/,

one gets the desired spectral sequence.

In order to prove that this spectral sequence is defined over Q, it is convenient to
work in the category of perverse sheaves. We let usW X.s/ ,! xX denote the natural
locally closed immersions. We replace (16) by the following long exact sequence in the
category of perverse sheaves on xX , where d denotes the complex dimension of xX :

0!Q xX Œd �!u�QX Œd �!
M

s2Strat1

.us/�QX .s/Œd�1�!
M

s2Strat2

.us/�QX .s/Œd�2�!� � � :

Taking the hypercohomology spectral sequence and shifting all the degrees by d gives
the result.

The proof via perverse sheaves can be copied in the category of mixed Hodge mod-
ules [25] (see [23, Section 14]), which proves the compatibility with mixed Hodge
structures.

3.4 Purity and freeness

We start with a classical theorem on the cohomology of the moduli spaces M0;S .

Theorem 3.7 For every integer k and every set S , the cohomology group H k.M0;S /

is pure Tate of weight 2k .
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Proof Since the moduli space M0;S is a complement of a union of hyperplanes in
the affine space Cn�3 by (6), this is a consequence of a general result on complements
of hyperplane arrangements [21; 27; 19]. See also Getzler’s proof [14, Lemma 3.12]
which only uses Arnol’d’s result [3].

The residue spectral sequence of the previous paragraph now allows us to compute
the cohomology of Brown’s moduli spaces Mı

0;S in term of the cohomology of the
spaces M0;S .

Proposition 3.8 There exists a first quadrant spectral sequence in the category of
mixed Hodge structures:

(17) E
p;q
1
D

M
d2Dissp.S;ı/

H q�p.M.d//.�p/ H) H pCq.Mı
0;S /;

where the differential d1W E
p;q
1
!E

pC1;q
1

is the sum of the residue morphisms

Resdd0 W H
q�p.M.d//.�p/!H q�p�1.M.d0//.�p� 1/

for d 2 Dissp.S; ı/ and d0 2 DisspC1.S; ı/ such that d6 d0 .

Proof This is a direct application of Proposition 3.6 to the case xX DMı
0;S with the

stratification (15).

The qth row of the first page E1 of the spectral sequence (17) looks like

(18) 0!H q.M0;S /!
M

d2Diss1.S;ı/

H q�1.M.d//.�1/

!

M
d2Diss2.S;ı/

H q�2.M.d//.�2/! � � � :

Proposition 3.9 The direct sum of the rows E
�;q
1

of the first page of the spectral
sequence (17) is, up to a Tate twist .�1/, the dihedral cobar construction of the
(desuspension of the) dihedral gravity cooperad.

Proof After twisting by .�1/, the direct sum of the complexes (18) can be written as

0! s�1C.S; ı/!
M

d2Diss1.S;ı/

s�1C.d/!
M

d2Diss2.S;ı/

s�1C.d/! � � � ;

where the arrows are (signed) infinitesimal decomposition morphisms. We leave it to
the reader to check that the sign conventions are consistent.

We now turn to the degeneration of this spectral sequence.
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Proposition 3.10 The spectral sequence (17) degenerates at the second page E2 ; that
is, E1 DE2 .

Proof As a consequence of Theorem 3.7 and the Künneth formula, H q�p.M.d//

is pure Tate of weight 2.q � p/ for every dissection d 2 Dissp.S; ı/, and hence
H q�p.M.d//.�p/ is pure Tate of weight 2.q � p/C 2p D 2q . The differential
dr W E

p;q
r ! E

pCr;q�rC1
r thus maps a pure Hodge structure of weight 2q to a pure

Hodge structure of weight 2.q� r C 1/, and is zero for r > 2 by Lemma 2.4.

In the next proposition, we prove the equivalence between two statements: a geometric
statement (i), namely the purity of the Hodge structure on the cohomology of Brown’s
moduli spaces, and an algebraic statement (ii), namely the freeness of the dihedral grav-
ity cooperad. In the next section, we will prove the algebraic statement (ii) and derive
the geometric statement (i). We nevertheless state this proposition as an equivalence to
convince the reader that the mathematical content of the two statements is essentially
the same.

Theorem 3.11 The following statements are equivalent:

(i) for every integer k and every dihedral set .S; ı/, the cohomology group
H k.Mı

0;S / is pure Tate of weight 2k ;

(ii) the dihedral gravity cooperad is cofree.

When they are true, there is a (noncanonical ) isomorphism between the dihedral gravity
cooperad and the cofree dihedral cooperad on the dihedral module:

.S; ı/ 7! det.S/˝H �Cn�3.Mı
0;S /.�1/:

Proof Let us denote by A the filtration on the cohomology of Mı
0;S that is induced

by the spectral sequence (17). It is a filtration by mixed Hodge substructures. By
Proposition 3.10, we get at the second page:

E
p;q
2
D grp

A
H pCq.Mı

0;S /:

By the proof of Proposition 3.10, the space E
p;q
2

is pure Tate of weight 2q . Thus,
(i) is equivalent to the fact that for every .S; ı/, the spectral sequence (17) satisfies
E

p;q
2
D 0 for p > 0. This is the same as requesting that each row E

�;q
1

is exact except
possibly at � D 0. According to Proposition 3.9 and Proposition 1.15, this is equivalent
to (ii), and we have proved the equivalence between statements (i) and (ii). Assuming
them, we see that H k.Mı

0;S /DE
0;k
2

is the kernel of the map

H k.M0;S /

L
�d

����!

M
d2Diss1.S;ı/

H k�1.M.d//.�1/;
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hence the result about the cogenerators of the dihedral gravity cooperad, after a degree
shift and an operadic suspension.

Remark 3.12 We can also apply the residue spectral sequence to the case xX D SM0;S ,
with the stratification (7). We then get a spectral sequence in the category of mixed
Hodge structures:

E
p;q
1
D

M
t2Treep.S/

H q�p.M.t//.�p/ H) H pCq. SM0;S /;

which degenerates at the second page E2 . It is a classical fact that the odd cohomology
groups of SM0;S are zero, and that for every k , H 2k. SM0;S / is pure Tate of weight 2k .
Thus, the degeneration of the spectral sequence gives rise to a long exact sequence

0!H k.M0;S /!
M

t2Tree1.S/

H k�1.M.t//.�1/! � � �

!

M
t2Treek.S/

H 0.M.t//.�k/!H 2k. SM0;S /! 0:

After dualizing and performing an operadic suspension, this long exact sequence gives
a quasi-isomorphism from the cyclic hypercommutative operad S 7!H�. SM0;S / to the
cyclic bar construction of the cyclic gravity operad. Under the bar-cobar adjunction, this
corresponds to Getzler’s quasi-isomorphism [14, Theorem 4.6], which proves the Koszul
duality between the cyclic hypercommutative operad and the cyclic gravity operad.

4 The dihedral gravity cooperad is cofree

We prove that the dihedral gravity cooperad is cofree by using explicit formulas
describing the cohomology of the moduli spaces M0;S . The main point consist in
showing that the filtration given by residual chords is the coradical filtration of the
dihedral gravity cooperad. We then derive geometric consequences for Brown’s moduli
spaces Mı

0;S and a new proof of a theorem of Salvatore–Tauraso.

4.1 Conventions

In this section, we will work with explicit formulas for the decomposition morphisms
in the dihedral gravity cooperad. For reasons of signs, it is easier to work with its
desuspension C , whose underlying Dih–module is given by

C.S; ı/DH ��1.M0;S /.�1/:

We use the notation C.S; ı/ instead of C.S/ because we will use a spanning set and a
filtration for this space that depend on the choice of a dihedral structure.
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For d 2 Dissk.S; ı/ a dissection of cardinality r , we will always choose an ordering
P .d/Dfp0; : : : ;pkg and write Ei WDE.pi/ for the set of edges of the subpolygons pi ,
ıi WD ı.pi/ for the induced dihedral orders. The ordering of P .d/ gives a trivialization
det.P .d//'Q and hence we can simply write

�dW C.S; ı/! C.d/D C.E0; ı0/˝ � � �˝ C.Ek ; ık/

for the dihedral decompositions (14).

4.2 Cohomology of the moduli spaces M0;S

Let S be a finite set of cardinality n> 3 and let ı be a dihedral structure on S . We
first recall Brown’s presentation of the cohomology algebra of the moduli space M0;S ,
which is well suited for computing residues on Mı

0;S . For any chord c of .S; ı/, there
exists a global holomorphic function uc 2O.Mı

0;S / such that the divisor Mı.fcg/ is
defined by the vanishing of uc :

Mı.fcg/D fuc D 0g:

We then define the following closed logarithmic differential 1–form on M0;S :

!c WD
1

2� i

duc

uc
:

We denote by the same symbol !c its class in H 1.M0;S /.

Proposition 4.1 [5, Proposition 6.2] The cohomology algebra H �.M0;S / is gener-
ated by the classes !c . In other words, C.S; ı/ is spanned by monomials !c1

^� � �^!ck

for some chords c1; : : : ; ck of .S; ı/.

Note that every differential form !c1
^� � �^!ck

is a logarithmic form on .Mı
0;S ;@Mı

0;S /.

Remark 4.2 It is convenient to represent a monomial !c1
^ � � � ^!ck

, up to a sign,
by the picture of the set of chords fc1; : : : ; ckg, as in Figure 5, where the chords are
pictured in dashed lines.

Remark 4.3 The ideal of relations between the classes !c in H �.M0;S / can be
described in pure combinatorial terms with sets of chords that cross completely; see [5,
Proposition 6.2]. Surprisingly enough, this will not play any role in the sequel.

The decomposition morphisms of the dihedral gravity cooperad are easily computed in
terms of the symbols !c . They are completely determined by the infinitesimal ones
which correspond to dissections made up of one chord.
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Figure 5: A monomial (up to a sign) in H 6.M0;10/

Proposition 4.4 Let c be a chord which dissects .S; ı/ into two polygons p0 and p1 .
The corresponding dihedral decomposition morphism

�fcgW C.S; ı/! C.E0; ı0/˝ C.E1; ı1/

is given by

(1) �fcg.!c1
^ � � � ^!ck

/D 0 if c 62 fc1; : : : ; ckg;

(2) �fcg.!c ^!c1
^ � � � ^!ck

/D 0 if c crosses some chord ci for i D 1; : : : ; k ;

(3) �fcg.X0^!c ^X1/DX0˝X1 if Xi is a monomial formed with chords in pi ,
i D 0; 1.

Proof (1) This is because the differential form !c1
^ � � � ^!ck

has no pole along
Mı.fcg/ if c 62 fc1; : : : ; ckg.

(2) By definition of the residue morphisms, �fcg.!c ^!c1
^ � � � ^!ck

/ is, up to a
sign, the restriction of the differential form !c1

^ � � � ^!ck
on Mı.fcg/. If c crosses

some chord ci for i D 1; : : : ; k , then the proof of [5, Lemma 2.6] implies that !ci
is

zero when restricted to Mı.fcg/, hence the result.

(3) Let us denote by a � 1 and b � 1 the respective degrees of X0 and X1 , so
that they respectively live in degree a and b in C . Then we get X0 ^ !c ^X1 D

.�1/a�1!c^X0^X1 , whose residue on Mı.fcg/ is the restriction of .�1/a�1X0^X1

on Mı.fcg/. Note that the sign .�1/a�1 is canceled by the Koszul sign in the definition
(13) of �fcg . By the proof of [5, Lemma 2.6], the pullback morphism O.Mı

0;S /!

O.Mı0
0;E0

/˝O.Mı1
0;E1

/ is given by uc0
7! uc0

˝1 and uc1
7! 1˝uc1

for ci a chord
in pi for i D 0; 1. The result follows.

Remark 4.5 The formula of Proposition 4.4 (3), is easy to represent pictorially: if c

is a chord that is not crossed by any other, applying �fcg has the effect of cutting the
polygon along c into two parts; see Figure 6.
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c
� �fcg // ˝

Figure 6: The dihedral decomposition �fcgW C.10; ı/ ! C.6; ı/˝ C.6; ı/
applied to a monomial

4.3 The residual filtration

Definition 4.6 (residual chord) Let fc1; : : : ; ckg be a set of chords of a polygon
.S; ı/. We say that ci is a residual chord in fc1; : : : ; ckg if ci is not crossed by any cj

for j ¤ i .

Definition 4.7 (residual filtration) For every integer r , we denote by

RrC.S; ı/� C.S; ı/

the subspace spanned by monomials !c1
^ � � � ^!ck

with at most r residual chords in
fc1; : : : ; ckg. This gives a finite filtration

0DR�1C.S; ı/�R0C.S; ı/�R1C.S; ı/� � � � � C.S; ı/

called the residual filtration.

Lemma 4.8 For a dissection d 2 Dissk.S; ı/ of .S; ı/ of cardinality k , the dihedral
decomposition

�dW C.S; ı/! C.d/D C.E0; ı0/˝ � � �˝ C.Ek ; ık/

sends RrC.S; ı/ to Rr�kC.d/.

Proof Since any decomposition map can be obtained by iterating infinitesimal decom-
position maps, it is enough to do the case k D 1, which follows from Proposition 4.4:
applying �fcg to a monomial either gives zero or erases a residual chord from the
monomial.

Example 4.9 In Figure 6, the left-hand side lives in R2C.10; ı/ and the right-hand
side lives in R0C.6; ı/˝R1C.6; ı/.
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Theorem 4.10 For every integer r and every dihedral set .S; ı/, the morphism

ˆW grR
r C.S; ı/

L
�d

����!

M
d2Dissr .S;ı/

R0C.d/

is an isomorphism.

We postpone the proof of this theorem to Section 4.6, after we have introduced a
technical tool.

4.4 The forgetful maps

Let S be a finite set and S 0 � S be a subset. This inclusion gives rises to a forgetful
morphism

f WM0;S !M0;S 0

and hence a pullback in cohomology

(19) f �W H �.M0;S 0/!H �.M0;S /;

which is a map of graded algebras. Now suppose that we are given a dihedral structure ı
on S and let ı0 be the induced dihedral structure on S 0 . We view .S 0; ı0/ as the
decorated polygon obtained by contracting the sides of .S; ı/ that are not in S 0 . For
a chord c of .S; ı/ and a chord c0 of .S 0; ı0/, we write c  c0 if this contraction
transforms c into c0 .

Lemma 4.11 (1) The pullback morphism f � is given, for c0 a chord of .S 0; ı0/, by

f �.!c0/D
X

c c0

!c :

(2) The pullback morphism f � is compatible with the residual filtration R.

Proof (1) At the level of global functions, the pullback O.M0;S 0/!O.M0;S / is
computed in [5, Lemma 2.9], and is given by

uc0 7!

Y
c c0

uc :

The result then follows from taking the logarithmic derivative.

(2) According to .1/, the pullback of a monomial is given by

f �.!c0
1
^ � � � ^!c0

k
/D

X
fci c0

i
g

!c1
^ � � � ^!ck

:

By construction, every set fc1; : : : ; ckg contains at most as many residual chords as
fc0

1
; : : : ; c0

k
g, hence the result.
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c1

c2

c3

sc2

sc1

sc3

Figure 7: An inscribed polygon and a possible choice of matching sides

4.5 A technical lemma

Let us fix a polygon .S; ı/. Let .E; ıE/ be an inscribed polygon inside .S; ı/, that is, a
polygon whose sides are either sides of .S; ı/ or chords of .S; ı/; see Figure 7. We let
Esides �E and Echords �E denote the set of sides of .E; ıE/ which are respectively
sides of .S; ı/ and chords of .S; ı/. In such a situation, we have a partition

S nEsides D
G

c2Echords

Sc

into components Sc delimited by c , that are outside of the inscribed polygon .E; ıE/,
and connected with respect to the dihedral order ı .

For every chord c 2Echords , let us choose a matching side sc 2 Sc , and write

S 0 WDEsides t fsc ; c 2Echordsg � S:

We let ı0 be the dihedral structure on S 0 induced by ı . Identifying a chord c and the
matching side sc gives rise to natural dihedral isomorphism .E; ıE/Š .S

0; ı0/.

Example 4.12 In Figure 7, the inscribed polygon is shaded with EchordsDfc1; c2; c3g

and a possible choice of matching sides sc1
, sc2

, sc3
.

The construction of the previous paragraph gives rise to a pullback morphism (19) that
we denote by

(20)  W C.E; ıE/Š C.S 0; ı0/! C.S; ı/:

Lemma 4.13 Let X 2 C.E; ıE/ be a monomial formed with chords of .E; ıE/, and
let us denote by the same letter X the corresponding monomial viewed in C.S; ı/.
Then  .X /�X can be written as a sum of monomials !c1

^� � �^!ck
for which some

chord ci crosses a chord in Echords .
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c1
sc1

�
v1

c�v2

�v3 � w

Figure 8: Illustration of the proof of Lemma 4.13

Proof It is enough to do the proof for a monomial X D!c . We do the proof in the case
where Echords only contains one element c1 corresponding to a side sc1

2S , the general
case being similar. The formula for  .!c/ is given in Lemma 4.11. If c and c1 do not
have a vertex in common, then  .!c/D !c . Else, let us denote by v1 the common
vertex of c and w the other vertex. We use the notation c D v1w . We then have

 .!c/D
X
v

!vw;

where the sum ranges over the vertices v 2 Sc1
that are between v1 and the first vertex

of sc1
. For such vertices v , the chord vw crosses c1 except if v D v1 . The claim

follows.

Example 4.14 Figure 8 illustrates the proof of Lemma 4.13: the inscribed polygon
.E; ıE/ is shaded. We have  .!v1w/D !v1wC!v2wC!v3w .

4.6 Proof of the main result

We now have all the tools to prove Theorem 4.10.

Proof of Theorem 4.10 To prove this theorem, we will construct the inverse mor-
phism ‰ . To this aim, let us make some ordering conventions to make the signs explicit.
For a dissection d 2 Dissr .S; ı/, we will choose compatible orderings

(21) dD fc1; : : : ; cr g and P .d/D fp0; : : : ;pr g

that obey the following constraint. Let zt be the tree obtained by removing the leaves
(external vertices) of the tree t corresponding to d. The chords ci label the edges of zt,
and the polygons pi label the vertices of zt. We choose the orderings (21) such that
for every j D 1; : : : ; r � 1, deleting the edges labeled by ci for i D 1; : : : ; j only
disconnects the vertices pi for i D 0; : : : ; j � 1.
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An element of grR
r C.S; ı/ can be represented as a sum of elements

X0 ^!c1
^X1 ^!c2

^ � � � ^!cr
^Xr ;

for some dissection dDfc1; : : : ; cr g 2Dissr .S; ı/, with Xi 2R0C.Ei ; ıi/. According
to the constraint we put on the orderings (21), the image of such an element by ˆ is

(22) �d.X0 ^!c1
^X1 ^!c2

^ � � � ^!cr
^Xr /DX0˝ � � �˝Xr

by repeated applications of Proposition 4.4.

For every i D 0; : : : ; r , we let

 i W C.Ei ; ıi/! C.S; ı/

denote the pullback map (20) defined in the previous paragraph, corresponding to the
inscribed polygon pi D .Ei ; ıi/ and any choice of matching sides sc for c 2 .Ei/chords .

Let us recall that we have

R0C.d/DR0C.E0; ı0/˝ � � �˝R0C.Er ; ır /:

We then define
‰dW R0C.d/! grR

r C.S; ı/

by the formula

‰d.X0˝ � � �˝Xr / WD  0.X0/^!c1
^ 1.X1/^!c2

^ � � � ^!cr
^ r .Xr /:

Let us first prove that ‰d is well defined. According to Lemma 4.11, each map  i sends
R0C.Ei ; ıi/ to R0C.S; ı/; hence the term  0.X0/^ � � � ^ r .Xr / is in R0C.S; ı/.
Since the cardinality of d is r , multiplying by !c1

^ � � � ^ !cr
gives an element of

RrC.S; ı/.

With the same abuse of notation as in Lemma 4.13, we claim that we have

(23) ‰d.X0˝� � �˝Xr /DX0^!c1
^X1^!c2

^� � �^!cr
^Xr mod Rr�1C.S; ı/:

We do the proof of this equality in the case r D 1 and dD fcg a chord, the general
case being similar and left to the reader. Let us choose monomials X0 2R0C.E0; ı0/

and X1 2R0C.E1; ı1/ with zero residual chord. We want to prove the equality

‰fcg.X0˝X1/DX0 ^!c ^X1 mod R0C.S; ı/:

According to Lemma 4.13, we may write

 1.X0/DX0C

X
i0

X
.i0/
0

and  1.X1/DX1C

X
i1

X
.i1/
1

;
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where each monomial X
.i0/
0

and X
.i1/
1

has zero residual chord and contains a symbol !c0

with c0 crossing c . We can then write the difference ‰fcg.X0˝X1/�X0^!c^X1 asX
i0

X
.i0/
0
^!c ^X1C

X
i1

X0 ^!c ^X
.i1/
1
C

X
i0;i1

X
.i0/
0
^!c ^X

.i1/
1

:

All the monomials appearing in the above expression have zero residual chord, hence
the result. Equations (22) and (23) imply that ‰ is the inverse for ˆ.

Theorem 4.15 The dihedral gravity cooperad is cofree. More precisely, it is (non-
canonically) isomorphic to the cofree dihedral cooperad on the dihedral module:

.S; ı/ 7! det.S/˝H �Cn�3.Mı
0;S /.�1/:

Proof It is a consequence of Proposition 1.18, using Lemma 4.8 and Theorem 4.10,
which imply, after operadic suspension, the corresponding statements for the dihedral
gravity cooperad. The last statement follows from the last statement of Theorem 3.11.

Remark 4.16 In [10], Dotsenko built a general a criterion to prove the freeness of the
nonsymmetric operad underlying an operad in terms of Gröbner bases [11]. It would be
interesting to know whether this criterion can give an alternate proof of Theorem 4.15.

4.7 Consequences for Brown’s moduli spaces

We gather here some consequences of Theorem 4.15 on the geometry of the moduli
spaces Mı

0;S .

Corollary 4.17 For every integer k and every dihedral set .S; ı/, the cohomology
group H k.Mı

0;S / is pure Tate of weight 2k .

Proof This follows from Theorem 4.15 and Theorem 3.11.

Corollary 4.18 For every integer k and every dihedral set .S; ı/, the natural map
H k.Mı

0;S /!H k.M0;S / is injective and fits into a long exact sequence

(24) 0!H k.Mı
0;S /!H k.M0;S /

!

M
d2Diss1.S;ı/

H k�1.M.d//.�1/!
M

d2Diss2.S;ı/

H k�2.M.d//.�1/! � � � :

Proof By Theorem 4.15 and the proof of Theorem 3.11, we get an injective map
H k.Mı

0;S / ! E
0;k
1
D H k.M0;S /. By the construction of the residue spectral

sequence, this map is indeed the one induced in cohomology by the inclusion
M0;S ,!Mı

0;S .
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We note that the image of the natural map H ��1.Mı
0;S /.�1/ ,! C.S; ı/ is exactly the

subspace R0C.S; ı/.
Let us recall that the Betti numbers of the spaces M0;n are given by the Poincaré
polynomials

n�3X
kD0

bk.M0;n/x
k
D

n�2Y
jD2

.x� j /:

By taking the Euler characteristic of the exact sequence (24), one may thus derive a
formula for the Betti numbers of the spaces Mı

0;n as follows.

Corollary 4.19 [4] The generating series

f .x; t/D x�
X
n>3

� n�3X
kD0

.�1/k bk.M0;n/ t
n�3�k

�
xn�1;

f ı.x; t/D xC
X
n>3

� n�3X
kD0

.�1/k bk.Mı
0;n/ t

n�3�k

�
xn�1

are inverse one to another: f .f ı.x; t/; t/D f ı.f .x; t/; t/D x .

We note that in [4, Section 3], the injectivity statement of Corollary 4.18 is used but
not proved.

Corollary 4.20 For every dihedral set .S; ı/, Brown’s moduli space Mı
0;S is a formal

topological space.

Proof It is a consequence of Corollary 4.17 and [12, Theorem 2.5]. A more di-
rect proof goes as follows. Recall that Mı

0;S is a smooth affine complex vari-
ety. We denote by ��.Mı

0;S / the complex of global holomorphic differential forms
on Mı

0;S , and by ��.Mı
0;S ; log @Mı

0;S / the complex of global holomorphic loga-
rithmic differential forms on Mı

0;S along @Mı
0;S . Let us recall that the morphism

H �.M0;S /!�
�.Mı

0;S ; log @Mı
0;S / which maps the class of !c to !c is well defined

and is a quasi-isomorphism. We consider the commutative diagram

0 // H �.Mı
0;S /

// H �.M0;S / //

��

L
d2Diss.S;ı/

H ��1.M.d//.�1/

��

0 // ��.Mı
0;S /

// ��.Mı
0;S ; log @Mı

0;S /
//

L
d2Diss.S;ı/

���1.Mı.d/; log @Mı.d//

where all arrows are morphisms of cochain complexes and where the vertical arrows
are quasi-isomorphisms. The first row is exact by Corollary 4.18; the exactness of
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the second row follows from the fact that a logarithmic differential form on Mı
0;S

along @Mı
0;S is regular on Mı

0;S if and only if its residue along each Mı.d/ is zero.
Completing the diagram gives the following quasi-isomorphism, hence the result:

H �.Mı
0;S /!��.Mı

0;S /:

4.8 The dihedral Lie operad is free

As a corollary of Theorem 4.15 and in view of Theorem 2.7, we get a geometric
proof of a dihedral enhancement of the theorem of Salvatore and Tauraso about the
nonsymmetric Lie operad [26].

Corollary 4.21 The dihedral Lie operad is free. More precisely, it is (noncanonically)
isomorphic to the free dihedral operad on the dihedral module:

.S; ı/ 7! det.S/˝Hn�3.Mı
0;S /.1/:

Remark 4.22 The equality between the top Betti number of Mı
0;n and the number of

generators of the nonsymmetric Lie operad in arity n in [26] was already noticed in [4].
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