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This is a survery talk of the paper [AF15] of Ayala and Francis, whose main
result is an axiomatic characterization of factorization homology for topological
manifolds (see Theorem 36 and Corollary 37 in §4). The first three sections mostly
include definitions and constructions, while the last section contains a formulation
and a proof of the main result.

1. Manifolds with tangent structures

Definition 1. Let Dn = {x ∈ Rn||x| < 1} be the open n-dimensional disc and
Dn

+ := [0, 1)×Dn−1 the half-disc. By an n-manifold we will mean a (not necessarily
compact) Hausdorff second countable space M which is locally homeomorphic at
every point x ∈ M to either Dn or Dn

+. The boundary ∂M ⊆ M is the subspace
containing those points with local neighborhoods Dn

+. We will say that M is open
if ∂M = ∅.

A map ι : N −→ M between n-manifolds is said to be an open embedding if
it is injective and sends open subsets to open subsets. Note if ι : N −→ M is an
open embedding then ι−1(∂M) = ∂N . The set Emb(M,N) of all open embeddings

can topologized using the compact-open topology. We will denote by Mfld∂
n the

∞-category whose objects are the n-manifolds and whose mapping spaces are the
spaces of open embeddings. We will denote by Mfldn ⊆Mfld∂

n the full subcategory
spanned by the open n-manifolds. We recall from the previous talk that both these
∞-categories carry natural symmetric monoidal structures, which are given each
time by disjoint union.

Let Top(n) be the topological group of self homeomorphisms of Dn. The natural
map Top(n) −→ MapMfldn

(Dn,Dn) induces a map BTop(n) −→ Mfldn, where
BTop(n) is the classifying ∞-groupoid of Top(n). Consider the composed functor

(1) Mfldn −→ Fun(Mfldop
n ,Spaces) −→ Fun(BTop(n)op,Spaces) ' Spaces/BTop

where the first functor is the Yoneda embedding. Given an open n-manifold M ∈
Mfld we will denote by p : |M | −→ BTop(n) the image of M under (1). We will
refer to |M | as the underlying space of M , and the Top(n) bundle classified
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by p the tangent bundle of M . We note that |M | can be identified with the
homotopy quotient of Emb(Dn,M) by the action of Top(n), and one can show that

the evaluation at 0 map induces a homotopy equivalent |M | '−→M .

Remark 2. A classical theorem of Kister and Mazur asserts that the map Top(n) −→
MapMfldn

(Dn,Dn) is in fact an equivalence. We may hence consider the tangent
bundle of M as capturing exactly the information on M ∈ Mfldn “seen” by the
object Dn.

Definition 3. Let B be a space equipped with a map ϕ : B −→ BTop(n) and let
M be an open n-manifold. A B-framing of M is a lift of the form

B

��
|M |

::t
t

t
t

t p // BTop(n)

in the ∞-category of spaces. We will denote by MfldB
n the ∞-category of open

B-framed n-manifolds, that is the ∞-category which sits in the Cartesian square

MfldB
n

//

��

Mfldn

��
Spaces/B // Spaces/BTop(n)

Remark 4. Using the equivalence |M | ' M we may identify the data of a B-
framing on M with the data of a continuous map f : M −→ B together with an
identification TM ∼= f∗Eϕ, where Eϕ −→ B is the Top(n)-bundle classifying by
ϕ : B −→ BTop(n).

Example 5. When ϕ : B −→ BTop(n) is an equivalence the notion of a B-framing
is vacuous. On the other extreme, when B ' ∗ the notion of a B-framing coincides
with a trivilization of the tangent bundle.

Example 6. When ϕ : B −→ BTop(n) is the universal covering of BTop(n) a
B-framing is the same as an orientation. Similarly, when B is the 2-connected
covering of Top(n) a B-framing is a topological spin structure.

Example 7. By smoothing theory, when n 6= 5 the data of a smooth structure
on M is equivalent to the data of a framing with respect to the map BO(n) −→
BTop(n), and the data of a piecewise linear structure is equivalent to the data of
a framing with respect to the map BPL(n) −→ BTop(n).

Example 8. If N is an open n-manifold then we can take B = |N | with the
map ϕ : |N | −→ BTop(n) classifying the tangent bundle. In this case we will
simplify notation and write N -framing instead of |N |-framing. If M is another
open n-manifold then the data of an N -framing on M is equivalent to the data of a

continuous map f : M −→ N together with an identification TM
∼=−→ f∗TN . For

example, any open immersion M −→ N (i.e., a continuous map which is locally
a homeomorphism) gives an N -framing on M , although not every N -framing is
obtained this way (e.g., the R1-framing of S1 cannot be obtained by an immersion
of S1 in R1). Note however that by the Yoneda lemma every N -framing on Dn is
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equivalent to one which comes from an immersion, and even an embedding, of Dn

in N .

It what follows it will be useful to have a notion of a framing for n-manifolds
with possibly non-empty boundary. Consider the full subcategory D ⊆ Mfld∂

n

spanned by the objects Dn and Dn
+. As mentioned in Remark 2 the E1-monoid

Emb(Dn,Dn) is canonically equivalent to Top(n), and one can similarly show that
the action of Top(n − 1) on Dn

+ = [0, 1) × Dn−1 via its action on the right coordi-
nate induces an equivalence Top(n− 1) ↪→ Emb(Dn

+,Dn
+). Furthermore, the space

Emb(Dn
+,Dn) is empty and the space Emb(Dn,Dn

+) is the same as Emb(Dn,Dn
+ \

∂Dn
+) ' Emb(Dn,Dn) ' Top(n), while the action of Emb(Dn

+,Dn
+) on Emb(Dn,Dn

+)
is by the embedding Top(n − 1) ↪→ Top(n) induced by the identification Dn ∼=
D1 × Dn−1. We may hence identify functors Dop −→ Spaces with tuples (X,Y, f)
where X is a Top(n − 1)-space, Y is a Top(n)-space and f : X −→ Y is a
Top(n− 1)-equivariant map. Using the identification of Top(k)-spaces with spaces
over BTop(k) we may finally identify the ∞-category Fun(Dop,Spaces) with the

slice category Spaces
[1]
/BTop(n−1)→BTop(n), where Spaces[1] = Fun([1],Spaces) is the

arrow category of spaces. We hence obtain a natural composed functor

Mfld∂
n −→ Fun((Mfld∂

n)op,Spaces) −→ Fun(Dop,Spaces) ' Spaces
[1]
/BTop(n−1)→BTop(n) .

Given an n-manifold M we will write its image in Spaces
[1]
/BTop(n−1)→BTop(n) as a

diagram of the form

(2) ∂|M |

��

// |M |

��
BTop(n− 1) // BTop(n)

We will refer to |M | as the underlying space of M and to ∂|M | as the underlying
boundary of M . We note that indeed |M | is weakly equivalent to M and ∂|M | is
weakly equivalent to ∂M . We consider (2) as describing the tangent bundle of the
open n-manifold M \ ∂M together with its identification with R⊕T (∂M) near the
boundary.

We will usually write a general object in Spaces
[1]
/BTop(n−1)→BTop(n) as [∂B → B],

where ∂B is simply meant as suggestive terminology (it is just a space with a map
to B), and the structure map to [BTop(n−1)→ BTop(n)] will usually be omitted.
We will refer to such an object as a boundary tangent structure of dimension
n (when ∂B = ∅ we will simply say tangent structures). Given a boundary
tangent structure [∂B → B] and an n-manifold M , a [∂B → B]-framing on M is
a diagram of the form

∂|M |

��

// |M |

��
∂B //

��

B

��
BTop(n− 1) // BTop(n)
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where the external rectangle is (2). More precisely, we define the ∞-category

Mfld[∂B→B]
n of [∂B → B]-framed n-manifolds as the fiber product

Mfld[∂B→B]
n

//

��

Mfld∂
n

��
Spaces

[1]
/∂B→B

// Spaces
[1]
/BTop(n−1)→BTop(n)

Remark 9. If ∂B = ∅ then any [∂B → B]-framed n-manifold is open, and so

Mfld[∅→B]
n ' MfldB

n for every B −→ BTop(n). In particular, we may consider the
restriction to open n-manifold as a particular case of framing.

Example 10. If N is an n-manifold then we can take [∂B → B] = [∂|N | →
|N |] equipped with its natural map to BTop(n − 1) → BTop(n). In this case we
will simplify notation and write the corresponding boundary tangent structure as
[∂N → N ]. Similarly to Example 8, if U is either Dn or Dn

+, then the data of
an [∂N → N ]-framing on U is essentially equivalent to the data of an embedding
U ↪→ N .

2. Disk algebras and manifold ∂-bundles

For a boundary tangent structure [∂B → B], we let Disk[∂B→B]
n ⊆ Mfld[∂B→B]

n

denote the full symmetric monoidal subcategory spanned by those [∂B → B]-
framed n-manifolds which are homeomorphic to finite disjoint union of Dn and Dn

+.

When ∂B = ∅ we will also denote Disk[∂B→B]
n by DiskB

n .

Definition 11. Given a symmetric monoidal∞-category C and a boundary tangent
structure [∂B → B], a [∂B → B]-disk algebra in C is a symmetric monoidal
functor

Disk[∂B→B]
n −→ C.

When ∂B = ∅ we will also refer to such a functor as a B-disk algebra.

Example 12. When [∂B → B] = [∅ → ∗] the symmetric monoidal ∞-category

DiskB
n is the enveloping category of the En-operad. Consequently, in this case a

[∂B → B]-disk algebra is an En-algebra in the usual sense. More generally, since
Top(n) acts on the ∞-operad En the map ϕ : B −→ BTop(n) determines a B-
indexed family of En-operads b 7→ En(b). The notion of a B-disk algebra can then
be identified with the notion of a ϕ-twisted B-indexed family of En-algebras (i.e.,
for each b we have a En(b)-algebra, depending coherently on b ∈ B).

Example 13. The symmetric monoidal ∞-category Disk∗→∗n is equivalent to the
enveloping category of the n’th Swiss-cheese operad. Consequently, we may identify
[∗ → ∗]-disk algebras in C with a pair (R,S) where R is an En-algebra and S is an
En−1-algebra over R. More generally, for a boundary tangent structure f : ∂B −→
B of dimension n, we may consider [∂B → B]-algebras as pairs ({Rb}b∈B , {Sb}c∈∂B)
where Rb is an En(b)-algebra and Sc is an En−1(c)-algebras over En(f(c)) (this
makes sense since the structure maps of the boundary tangent structure specify a
coherent collection of equivalences En(f(c)) ' E1 ⊗ En−1(c)).

Example 14. Let n = 1 and [∂B → B] = [∂I → I], where I = [0, 1] is the
unit interval (considered as a 1-manifold with boundary, see Example 10). In this



FACTORIZATION HOMOLOGY 5

case there is, up to equivalence, a single [∂I → I]-framed version of the open

1-disk, which we shall denote by (0, 1) ∈ Disk
[∂I→I]
1 , and two non-equivalent

[∂I → I]-framed versions of the half-disk, which we shall denote by [0, 1), (1, 0] ∈
Disk

[∂I→I]
1 (here we use the suggestive notation to imply that the [∂I → I]-framing

on (0, 1), [0, 1) and (0, 1] is given by their inclusion in I = [0, 1]). Unwinding
the definitions, we see that in this case the corresponding notion of a disk al-

gebra F : Disk
[∂I→I]
1 −→ C is equivalent to the data of a triple (A,M0,M1) =

(F((0, 1)),F([0, 1)),F((0, 1])), where A is an associative algebra object in C, M0 is
a right A-module in C1C/ and M1 is a left A-module in C1C/.

A particular case of interest is when the boundary tangent structure [∂B → B]
is of the form [∂N → N ] for some n-manifold N (e.g., the case of Example 14).
Recall (see Example 10) that the notion of an [∂N → N ]-framing on an n-manifold
U which is either the disk or the half-disk is equivalent to that of an embedding

U ↪→ N . We may consequently try to construct a more rigid model for Disk[∂N→N ]
n

by considering the actual poset of these subsets. Better yet, we may consider them
as a colored operad. More precisely, let D(N) denote the operad whose colors
are the open subsets U ⊆ N which are homeomorphic to either Dn or Dn

+, and such
that

Mul(U1, ..., Un;V ) =

{
∗ Ui ∩ Uj = ∅, Ui ⊆ V,∀i, j
∅ otherwise

Consider the enveloping symmetric monoidal category Env(D(N)). Explicitly, the
objects of Env(D(N)) are tuples {Ui}i∈I of open subsets of N indexed by a finite
set I, and the maps {Ui}i∈I −→ {Vj}j∈J are given by maps f : I −→ J such that
for each j ∈ J the collection {Ui}i∈f−1(j) is pairwise disjoint and contained in Vj .
The association {Ui}i∈I 7→

∐
i∈I Ui determines a symmetric monoidal functor

(3) Env(D(N)) −→ Disk[∂N→N ]
n

Let us denote by IN the collection of those maps in Env(D(N)) whose image in

Disk[∂N→N ]
n is an equivalence. A direct inspection shows that IN consists of exactly

those maps {Ui}i∈I −→ {Vj}j∈J whose associated f : I −→ J is an isomorphism
and such that for each i ∈ J the inclusion Ui ⊆ Vf(i) is an isotopy equivalence.

We then have the following lemma:

Lemma 15 ([AF15],[HA]). The map (3) exhibits Disk[∂N→N ]
n as the symmetric

monoidal localization of Env(D(N)) with respect to IM .

The main point of Lemma 15 is that we may identify the notion of a |∂N →
N ]-disk algebra with that of a D(N)-algebra in which certain 1-ary operations
act by equivalences. Our main interest in this idea is for the following geometric
construction, which can be used to construct many examples of disk algebras.

Suppose first that N is an open k-manifold and E is an n-manifold, possibly
with boundary. Then we have the notion of a manifold bundle map from E to
N , which is, by definition a map p : E −→ N such that for every open embedding
ι : Dk ↪→ N the pullback ι∗E := E×NDk −→ Dk admits a trivialization of the form
τ : ι∗E ∼= P×Dk with P an (n−k)-manifold (here by trivialization we simply mean
that τ commutes with the respective projections to Dk). In this case the association

[ι : Dk ↪→ N ] 7→ E ×N Dk determines a D(N)-algebra object in Mfld∂
n, which we

shall call [p−1]. The local triviality of E now implies that all the 1-ary operations
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act on [p−1] by equivalences, and so Lemma 15 tells us that [p−1] descends to an

essentially unique N -disk algebra object in Mfld∂
n.

We would like to have a similar story when N is a k-manifold which is not
necessarily open (i.e., can have a boundary).

Definition 16. Let N be an k-manifold. By a manifold ∂-bundle over N we
shall mean a map E −→ N with E an n-manifold and such that the following
conditions hold:

(1) For every open embedding ι : Dk ↪→ N the pullback ι∗E −→ Dk admits a
trivialization of the form ι∗E ∼= P × Dk with P a (n− k)-manifold.

(2) For every open embedding ι : Dk
+ = [0, 1) × Dk−1 ↪→ N the pullback ι∗E −→

[0, 1)× Dk−1 admits an identification of the form

ι∗E

%%LL
LLL

LLL
LL

∼= // P × Dk−1

(f,Id)wwooo
ooo

ooo
oo

[0, 1)× Dk−1

where P is an (n− k+ 1)-manifold equipped with a continuous map f : P −→
[0, 1).

In this case we will also say that p : E −→ N is a ∂-bundle map.

Remark 17. If E −→ N is a manifold ∂-bundle then E×N (N \ ∂N) −→ (N \ ∂N)
is a manifold bundle in the usual sense. Furthermore, if ι : ∂N × [0, 1) ↪→ N is
a tubular neighborhood of the boundary of N then the composed map ι∗E −→
∂N × [0, 1) −→ ∂N is a manifold bundle as well.

Example 18. If N is 1-dimensional then the boundary of N is 0-dimensional. In
this case condition (2) of Definition 16 is vacuous, and so p : E −→ N is a ∂-bundle
map if and only if it restricts to a bundle map over the interior of N .

Remark 19. If we consider fiber bundles over N as analogous to locally constant
sheaves, then the notion of a ∂-bundle can be considered as analogous to sheaves
on N which are constructible with respect to the stratification ∂N ⊆ N .

Example 20. It is worthwhile to spell out what do ∂-manifold bundles over the
unit interval I look like. Let M be a n-manifold and P an (n−1)-manifold. We will
say that an open embedding ι : (0, 1)× P ↪→M is a right P -collar if ι([ε, 1)× P )
is closed in M for every ε ∈ (0, 1). Similarly, we will say that ι is a left P -collar
if ι((0, ε]× P ) is closed in M for every ε ∈ (0, 1).

If M0,M1 are two n-manifolds, ι0 : (0, 1) × P ↪→ M0 a right P -collar and ι1 :
(0, 1)×P ↪→M1 a left P -collar then the topological space M := M0

∐
(0,1)×P M1 is

again an n-manifold which contains M0 and M1 as submanifolds. Following [AF15]
we will refer to M as the collar gluing of M0 and M1 along (0, 1) × P . In this
case, M admits a natural ∂-bundle map M −→ [0, 1] which extends the projection
(0, 1)×P −→ (0, 1) and maps M0 \ Im(ι0) and M1 \ Im(ι1) to 0 and 1, respectively.

On the other hand, if p : M −→ [0, 1] is any ∂-bundle then by definition p|(0,1) :
(0, 1) ×I M −→ (0, 1) splits as a product (0, 1) ×I M ∼= (0, 1) × P . If we now set
M0 = p−1[0, 1) and M1 = p−1(0, 1] then the embedding (0, 1)× P ↪→M0 is a right
collar, the embedding (0, 1)× P ↪→M1 is a left collar and M ∼= M0

∐
(0,1)×P M1 is

a collar gluing of M0 and M1 along (0, 1)× P .
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We shall now explain how the notion of a ∂-bundle can be used to construct
[∂N → N ]-disk algebras. Suppose that p : E −→ N is a manifold ∂-bundle and
that E is equipped with a [∂B → B]-framing for some boundary tangent structure
[∂B → B]. Then the association [ι : U ↪→ N ] 7→ U×NE for U ∼= Dn,Dn

+ determines

a D(N)-algebra object [p−1] in Mfld[∂B→B]
n . The local models of Definition 16 imply

that the 1-ary operations coming from inclusions of open sub-disks of N and from
inclusion of sub half-disks of N act on [p−1] by equivalences, and so Lemma 15 tells
us that [p−1] descends to an essentially unique [∂N → N ]-disk algebra object in

Mfld[∂B→B]
n .

If C is a presentably symmetric monoidal ∞-category and F : Mfld[∂B→B]
n −→ C

is a symmetric monoidal functor then the composed functor p∗F := F ◦ [p−1] :

Disk[∂N→N ]
n −→ C gives an [∂N → N ]-algebra in C. This construction can be used

to produce a variety of interesting examples of disk algebras. We will also make
use of it in order to formulate the Fubini property of factorization homology in §3
and to define the property of being a homology theory for manifolds in §4.

3. Factorization homology

Let [∂B → B] ∈ Spaces/BTop(n−1)→BTop(n) be a boundary tangent structure.

Given a [∂B → B]-framed n-manifold M , let us denote by

Disk
[∂B→B]
n/M = Disk[∂B→B]

n ×
Mfld

[∂B→B]
n

(Mfld[∂B→B]
n )/M

the associated comma ∞-category. We now arrive to the main definition of this
talk:

Definition 21. Let C be a presentably symmetric monoidal∞-category. Let M be

a [∂B → B]-framed manifold and A : Disk[∂B→B]
n −→ C a [∂B → B]-disk algebra

in C. We define the factorization homology
∫
M
A of M with coefficients in A as

the colimit ∫
M

A := colim
Disk

[∂B→B]

n/M

π∗A ∈ C.

where π : Disk
[∂B→B]
n/M −→ Disk[∂B→B]

n is the canonical projection.

Example 22 ([AF15, Corllary 3.12]). Let I be the unit interval. Recall (see
Example 14) that a [∂I → I]-disk algebra in C is given by a triple (A,M0,M1)
where A is an associative algebra object in C, M0 is a right A-module in C1C/ and
M1 is a left A-module in C1C/. In this case we have a natural equivalence∫

M

(A,M0,M1) 'M0 ⊗A M1

Our next goal is to discuss the Fubini property of factorization homology. Let
[∂B → B] be a boundary tangent structure and let A be a [∂B → B]-disk algebra.
Let M be a [∂B → B]-framed n-manifold and N a k-manifold. Given a ∂-bundle

map p : M −→ N , let us denote by p∗A : Disk
[∂N→N ]
k −→ C the composed functor

Disk
[∂N→N ]
k

[p−1]−→ Mfld[∂B→B]
n

∫
(−)

A
−→ C

where [p−1] is the [∂N → N ]-disk algebra object in Mfld[∂B→B]
n associated to

p : M −→ N as in §2.
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Proposition 23 (The Fubini property, [AF15, Proposition 3.23]). In the above
setting the natural map ∫

N

p∗A −→
∫
M

A

is an equivalence.

Remark 24. Let [∂B → B] be a tangent structure and A : Disk[∂B→B]
n −→ C a

[∂B → B]-disk algebra in C. By the pointwise definition of left Kan extension we

see that the functor
∫

(−)
A : Mfld[∂B→B]

n −→ C is the left Kan extension of A :

Disk[∂B→B]
n −→ C along the inclusion Disk[∂B→B]

n ↪→ Mfld[∂B→B]
n . Furthermore,

Proposition 23 applied to N = {0, 1} shows that
∫

(−)
A is symmetric monoidal.

These two statements can in fact be combined: one can show that
∫

(−)
A is the

symmetric monoidal left Kan extension of A. In other words, it is initial in the

∞-category of symmetric monoidal functors F : Mfld[∂B→B]
n −→ C equipped with

a symmetric monoidal transformation A ⇒ F|
Disk

[∂B→B]
n

(see [AF15, Proposition

3.7]).

Example 25. The Fubini property can help us to decipher what is the factorization
homology along the circle. We first note that the notion of an S1-disk algebra
object in C is equivalent to that of a pair (A, τ) where A is an associative algebra
A and τ : A −→ A is an automorphism (associated to the monodromy along
the circle). The projection p : S1 −→ D1 on x-axis is a ∂-bundle map and the
[∂D1 → D1]-disk algebra p∗(A, τ) can be identified with the triple (Aop⊗A,A0, A1)
where A0 is a copy of A considered as a right Aop ⊗ A-module in the usual way
and A1 is a copy of A considered as a left Aop ⊗ A-module via the equivalence
(Id⊗τ) : Aop ⊗ A −→ Aop ⊗ A. By the Fubini property and Example 22 we then
have that ∫

S1

(A, τ) '
∫
D1

p∗(A, τ) ' A⊗Aop⊗A A

is the τ -twisted Hochshild homology of A.

4. Homology theories for open manifolds

In this section we will focus attention on open n-manifolds, i.e., those which do
not have boundary. Following [AF15], our goal to consider homology theories
on suitably framed open n-manifolds. For this we will need to isolate a particular
full subcategory of Mfldn spanned by manifolds which can be built in finitely many
steps by gluing discs of various dimensions. This gluing is defined via the notion of
a collar gluing spelled out in Example 20.

Let Sk−1 denote the standard (k − 1)-sphere (where S−1 = ∅ by convention), so
that we have a canonical right Sk−1-collar (0, 1) × Sk−1 ↪→ Dk embedded as the
complement of {0} ⊂ Dk. Let M0 be an open n-manifold. If ι : (0, 1) × Sk−1 ×
Dn−k ↪→M0 is a left [Sk−1 × Dn−k]-collar then we will say that

M = Dk × Dn−k
∐

(0,1)×Sk−1×Dn−k

M0

is obtained from M0 by adding an open handle of index k.

Definition 26. Let M be an open n-manifold. We will say that M is of finite type
if it can be obtained from ∅ by adding finitely many open handles. We will denote
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by Mfldfin
n ⊆ Mfldn the full subcategory spanned by open n-manifolds of finite

type. Similarly, if ϕ : B −→ BTop(n) is a tangent structure then we will denote by

MfldB,fin
n := MfldB

n ×Mfldn
Mfldfin

n . We note that the inclusion MfldB,fin
n ⊆MfldB

n is
fully faithful and its essential image is spanned by those B-framed open n-manifolds
which are of finite type.

Example 27. Adding to M0 an open handle of index 0 is simply taking the co-
product M = M0

∐
Dn. In particular, the n-disk Dn is an n-manifold of finite

type.

Example 28. Sk × Dn−k is obtained from Dk × Dn−k ∼= Dn by adding a single
open handle of index k. In particular, Sk × Dn−k is an n-manifold of finite type.

Warning 29. The notion of an open handle is closely related, but not identical
to, the notion of a handle studied in classical geometric topology, which is usually
applied only to compact manifolds. However, if M is a compact manifold with a
finite handle decomposition in the classical sense, then the interior of M is of finite
type in the sense of Definition 26. In particular, any closed manifold of dimension
6= 4 is of finite type and every closed piecewise linear 4-manifold is of finite type.
We do not know if there exist closed non-piecewise linear 4-manifolds that are of
finite type.

Definition 30. We will say that a manifold ∂-bundle p : M −→ N is open if
M is open, and we will say that p has finite type if for every U ⊆ N which is
homeomorphic to either Dk or Dk

+ the fiber product M ×N U has finite type.

Now let C be a presentably symmetric monoidal ∞-category and let ϕ : B −→
BTop(n) be a tangent structure. In this section we will describe a certain class of

symmetric monoidal functors MfldB,fin
n −→ C which are called homology theories

in [AF15]. The defining property of these functors is that they satisfy ⊗-excision,
a term we shall now define.

Definition 31. Let F : MfldB,fin
n −→ C be a symmetric monoidal functor. We will

say that F satisfies ⊗-excision if for every open finite type ∂-bundle p : M −→ I
the induced map ∫

I

p∗F −→ F(M)

is an equivalence, where p∗F is the composed functor Disk
[∂I→I]
1

[p−1]−→ MfldB,fin
n

F−→
C as above.

Remark 32. In light of Example 22 and Example 20 we may also (somewhat in-
formally) phrase the ⊗-excision property as saying that for every collar gluing
M = M0

∐
(0,1)×P M1 of finite type open n-manifolds the induced map

F(M0)⊗F((0,1)×P ) F(M1) −→ F(M)

is an equivalence.

Definition 33. Let ϕ : B −→ BTop(n) be a tangent structure and C a presentably
symmetric monoidal ∞-category. A B-framed homology theory is a symmetric
monoidal functor F : MfldB,fin

n −→ C which satisfies ⊗-excision. We will denote by

H(MfldB,fin
n ,C) ⊆ Fun⊗(MfldB,fin

n ,C) the full subcategory spanned by the B-framed
homology theories.
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Example 34. Let ϕ : B −→ BTop(n) be a boundary tangent structure and let A

be a B-disk algebra. Then
∫

(−)
: MfldB,fin

n −→ C is a B-framed homology theory.

This follows immediately from Proposition 23 and Remark 24.

Remark 35. If F : MfldB,fin
n −→ C is a symmetric monoidal functor then F|DiskB

n

is by definition a B-disk algebra object. Remark 24 then furnishes a symmetric
monoidal natural transformation∫

(−)

F|DiskB
n
⇒ F(−)

of symmetric monoidal functors MfldB,fin
n −→ C.

We now come to the main result of this talk.

Theorem 36 ([AF15]). Let F : MfldB,fin
n −→ C be a homology theory for manifolds

and let A = F|DiskB
n

be the associated B-disk algebra in C. Then the natural map

(4)

∫
M

A −→ F(M)

of Remark 35 is an equivalence for every B-framed n-manifold M of finite type.

Proof. We prove by double induction on the open handle decomposition of M . For
integers 0 ≤ k,m let us say that an open manifold M has type (k,m) if it can be
obtained from ∅ by adding finitely many handles of index ≤ k out of which at most
m handles are of index exactly k. We first note that an open n-manifold is of type
(0, 1) if and only if it is the n-disk, and the map (4) is an equivalence in this case
by definition.

Now suppose we have proven that (4) is an equivalence for every B-framed
manifold of type (k,m) where either k > 0 or k = 0 and m ≥ 1, and let M be a
B-framed manifold of type (k,m+1). Then by definition there exists an n-manifold
M0 of type (k,m) and a left [Sk−1 × Dn−k]-collar ι : (0, 1) × Sk−1 × Dn−k ↪→ M0

such that

M := Dk × Dn−k
∐

(0,1)×Sk−1×Dn−k

M0.

In this case the B-framing on M restricts to B-framings on M0, (0, 1)×Sk−1×Dn−k

and Dk × Dn−k, so that we can consider all of them as B-framed sub-manifolds of
M . Let p : M −→ [0, 1] be the manifold ∂-bundle of Example 20, which is open
and of finite type by construction (see Example 28 and Example 27), and consider
the diagram

(5)
∫
I
p∗A //

'
��

∫
I
p∗F

'
��∫

M
A // F(M)

in which the vertical maps are equivalences since F and
∫

(−)
A are homology theo-

ries. To show that the bottom horizontal map is an equivalence it will hence suffice
to show that the top vertical map is an equivalence. We now observe that if U ⊆ I is
an open subset homeomorphic to either D1 or D1

+ then p−1(U) is an open manifold

which is homeomorphic to either M0, Dk×Dn−k ∼= Dn or (0, 1)×Sk−1×Dn−k, which
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are manifolds of types (k,m), (k − 1, 2) and (0, 1), respectively By the induction
hypothesis the map ∫

U

p∗A −→ F(U)

is an equivalence for every such U ⊆ I, and so the top vertical map of (5) is an
equivalence, as desired. We may hence conclude that (4) is an equivalence for every
manifold of type (k,m+1). By induction on m we now get that (4) is an equivalence
for every manifold of type (k,m′) for m′ ≥ 0, and hence for every manifold of type
(k + 1, 0). By induction on k we now get that (4) is an equivalence for any open
n-manifold of finite type, as desired. �

Corollary 37 ([AF15, Theorem 3.24]). Restriction along DiskB
n ↪→ MfldB,fin

n de-
termines an equivalence

H(MfldB,fin
n ,C)

'−→ AlgDiskB
n

(C)

between B-framed homology theories with values in C and B-disk algebras in C.
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