Why Higher Structures?

Bruno VALLETTE

Université Sorbonne Paris Nord

Math+ Berlin Colloquium

January 27, 2023

Foreword

Yuri Ivanovich MANIN (1937-2023)

Foreword

Yuri Ivanovich MANIN (1937-2023)

Foreword

Yuri Ivanovich MANIN (1937-2023)

Foreword

Yuri Ivanovich MANIN (1937-2023)

"In the XXth century, any mathematical theory was built on set theory. In the XXIst century, any mathematical theory will be build on a homotopy theory."

Foreword

Yuri Ivanovich MANIN (1937-2023)

"In the XXth century, any mathematical theory was built on set theory. In the XXIst century, any mathematical theory will be build on a homotopy theory."

Classical structures

Homotopy theory

Higher structures

Foreword

Yuri Ivanovich MANIN (1937-2023)

"In the XXth century, any mathematical theory was built on set theory. In the XXIst century, any mathematical theory will be build on a homotopy theory."

Classical structures

Homotopy theory

Higher structures

LEADING GOALS:

Foreword

Yuri Ivanovich MANIN (1937-2023)

"In the XXth century, any mathematical theory was built on set theory. In the XXIst century, any mathematical theory will be build on a homotopy theory."

Classical structures

Homotopy theory

Higher structures

LEADING GOALS:

• Classification of topological spaces up to homotopy

Foreword

Yuri Ivanovich MANIN (1937-2023)

"In the XXth century, any mathematical theory was built on set theory. In the XXIst century, any mathematical theory will be build on a homotopy theory."

Classical structures

Homotopy theory

Higher structures

LEADING GOALS:

- Classification of topological spaces up to homotopy
- Quantise Poisson manifolds

Foreword

Yuri Ivanovich MANIN (1937-2023)

"In the XXth century, any mathematical theory was built on set theory. In the XXIst century, any mathematical theory will be build on a homotopy theory."

Classical structures

Homotopy theory

Higher structures

LEADING GOALS:

- Classification of topological spaces up to homotopy
- Quantise Poisson manifolds
- Fundamental theorem of deformation theory

Table of contents

Algebraic Topology in the XXth century

- Participation Provide Algebra=Higher Structures
- 3 Lie methods in Deformation Theory

Table of contents

Homotopy invariants Comparing invariants Classical algebraic structures

2 Homotopy+Algebra=Higher Structures

3 Lie methods in Deformation Theory

Homotopy invariants Comparing invariants Classical algebraic structures

Homotopy equivalence

Classification of topological spaces

Homotopy invariants Comparing invariants Classical algebraic structures

Homotopy equivalence

→ Classification of topological spaces

Homotopy invariants Comparing invariants Classical algebraic structures

Homotopy equivalence

→ Classification of topological spaces

STRONG EQUIVALENCE: up to homeomorphisms

Homotopy invariants Comparing invariants Classical algebraic structures

Homotopy equivalence

→ Classification of topological spaces

STRONG EQUIVALENCE: up to homeomorphisms no

Homotopy invariants Comparing invariants Classical algebraic structures

Homotopy equivalence

 \rightarrow Classification of topological spaces

- STRONG EQUIVALENCE: up to homeomorphisms no
- WEAK EQUIVALENCE: up to homotopy equivalence "continuous deformation without cutting"

Homotopy invariants Comparing invariants Classical algebraic structures

Homotopy equivalence

 \rightarrow Classification of topological spaces

- STRONG EQUIVALENCE: up to homeomorphisms no
- WEAK EQUIVALENCE: up to homotopy equivalence "continuous deformation without cutting" yes

Homotopy invariants Comparing invariants Classical algebraic structures

Homotopy equivalence

 \rightarrow Classification of topological spaces

- STRONG EQUIVALENCE: up to homeomorphisms no
- WEAK EQUIVALENCE: up to homotopy equivalence "continuous deformation without cutting" yes

METHOD: find a set of faithful algebraic invariants

Homotopy invariants Comparing invariants Classical algebraic structures

Homotopy equivalence

 \rightarrow Classification of topological spaces

- STRONG EQUIVALENCE: up to homeomorphisms no
- WEAK EQUIVALENCE: up to homotopy equivalence "continuous deformation without cutting" yes

METHOD: find a set of faithful algebraic invariants

• Betti numbers := number of holes:

Homotopy invariants Comparing invariants Classical algebraic structures

Homotopy equivalence

 \rightarrow Classification of topological spaces

- STRONG EQUIVALENCE: up to homeomorphisms no
- WEAK EQUIVALENCE: up to homotopy equivalence "continuous deformation without cutting" yes

METHOD: find a set of faithful algebraic invariants

Betti numbers := number of holes: homotopy invariant

Homotopy invariants Comparing invariants Classical algebraic structures

Homotopy equivalence

 \rightarrow Classification of topological spaces

- STRONG EQUIVALENCE: up to homeomorphisms no
- WEAK EQUIVALENCE: up to homotopy equivalence "continuous deformation without cutting" yes

METHOD: find a set of faithful algebraic invariants

 Betti numbers := number of holes: homotopy invariant
 → not faithful!

Homotopy invariants Comparing invariants Classical algebraic structures

Homotopy equivalence

 \rightarrow Classification of topological spaces

- STRONG EQUIVALENCE: up to homeomorphisms no
- WEAK EQUIVALENCE: up to homotopy equivalence "continuous deformation without cutting" yes

METHOD: find a set of faithful algebraic invariants

 Betti numbers := number of holes: homotopy invariant → not faithful!

 \rightarrow Amount of algebra used: \mathbb{N}

Homotopy invariants Comparing invariants Classical algebraic structures

Differential graded module

IDEA: Encode algebraically a cellular decomposition

Homotopy invariants

3

Differential graded module

IDEA: Encode algebraically a cellular decomposition $\mathbb{Z}\{\text{0-cells}\} \xleftarrow{d_0} \mathbb{Z}\{\text{1-cells}\} \xleftarrow{d_1} \mathbb{Z}\{\text{2-cells}\} \cdots \Bigg| d_n(c) \coloneqq \sum_{\substack{c' \in \partial(c) \\ \dim c' = n-1}}$ $\pm c'$

Homotopy invariants Comparing invariants Classical algebraic structures

3

Differential graded module

IDEA: Encode algebraically a cellular decomposition

 $\mathbb{Z}\{\text{0-cells}\} \xleftarrow{d_0} \mathbb{Z}\{\text{1-cells}\} \xleftarrow{d_1} \mathbb{Z}\{\text{2-cells}\} \cdots \boxed{d_n(c) \coloneqq \sum_{\substack{c' \in \partial(c) \\ \dim c' = n-1}} \pm c'}$

• Orientation \implies Signs $\implies d_{n-1} \circ d_n = 0$

Homotopy invariants Comparing invariants Classical algebraic structures

3

 $\pm c'$

Differential graded module

IDEA: Encode algebraically a cellular decomposition $\mathbb{Z}\{0\text{-cells}\} \xleftarrow{d_0} \mathbb{Z}\{1\text{-cells}\} \xleftarrow{d_1} \mathbb{Z}\{2\text{-cells}\} \cdots \boxed{d_n(c) \coloneqq \sum_{\substack{c' \in \partial(c) \\ \dim c' = n-}}}$

• Orientation \implies Signs \implies $d_{n-1} \circ d_n = 0$

 $\mathsf{Example:} \ \mathbb{Z}0 \oplus \cdots \oplus \mathbb{Z}3 \leftarrow \mathbb{Z}01 \oplus \cdots \oplus \mathbb{Z}23 \leftarrow \mathbb{Z}012 \leftarrow 0 \leftarrow \cdots$

Homotopy invariants Comparing invariants Classical algebraic structures

3

Differential graded module

IDEA: Encode algebraically a cellular decomposition

$$\mathbb{Z}\{\text{0-cells}\} \xleftarrow{d_0} \mathbb{Z}\{\text{1-cells}\} \xleftarrow{d_1} \mathbb{Z}\{\text{2-cells}\} \cdots \boxed{d_n(c) \coloneqq \sum_{\substack{c' \in \partial(c) \\ \dim c' = n-1}} \pm c'}$$

- Orientation \implies Signs $\implies d_{n-1} \circ d_n = 0$
- EXAMPLE: $\mathbb{Z}0 \oplus \cdots \oplus \mathbb{Z}3 \leftarrow \mathbb{Z}01 \oplus \cdots \oplus \mathbb{Z}23 \leftarrow \mathbb{Z}012 \leftarrow 0 \leftarrow \cdots$ $d_n(a_0 \cdots a_n) = \sum_{i=0}^n (-1)^i a_0 \dots \widehat{a_i} \dots a_n$

Homotopy invariants Comparing invariants Classical algebraic structures

Differential graded module

IDEA: Encode algebraically a cellular decomposition

$$\mathbb{Z}\{\text{0-cells}\} \xleftarrow{d_0} \mathbb{Z}\{\text{1-cells}\} \xleftarrow{d_1} \mathbb{Z}\{\text{2-cells}\} \cdots \boxed{d_n(c) \coloneqq \sum_{\substack{c' \in \partial(c) \\ \dim c' = n-1}} \pm c'}$$

- Orientation \implies Signs $\implies d_{n-1} \circ d_n = 0$
- EXAMPLE: $\mathbb{Z}0 \oplus \cdots \oplus \mathbb{Z}3 \leftarrow \mathbb{Z}01 \oplus \cdots \oplus \mathbb{Z}23 \leftarrow \mathbb{Z}012 \leftarrow 0 \leftarrow \cdots$ $d_n(a_0 \cdots a_n) = \sum_{i=0}^n (-1)^i a_0 \dots \widehat{a_i} \dots a_n$

Definition (differential graded module or chain complex)

$$(C_{\bullet} = \{C_n\}_{n \in \mathbb{N}}, d = \{d_n\}_{n \in \mathbb{N}})$$
 s.t. $d^2 = 0$

Homotopy invariants Comparing invariants Classical algebraic structures

Homology groups

Definition (Homology groups)

 $H_n(X,\mathbb{Z}) \coloneqq \ker d_{n-1} / \operatorname{im} d_n$

Homotopy invariants Comparing invariants Classical algebraic structures

Homology groups

Definition (Homology groups)

 $H_n(X,\mathbb{Z}) \coloneqq \ker d_{n-1} / \operatorname{im} d_n$

Example: $H_0(X, \mathbb{Z}) \cong \mathbb{Z}$, $H_1(X, \mathbb{Z}) \cong \mathbb{Z}^2$, $H_2(X, \mathbb{Z}) \cong 0$

Homotopy invariants Comparing invariants Classical algebraic structures

Homology groups

Definition (Homology groups)

 $H_n(X,\mathbb{Z}) := \ker d_{n-1} / \operatorname{im} d_n$

Example: $H_0(X, \mathbb{Z}) \cong \mathbb{Z}$, $H_1(X, \mathbb{Z}) \cong \mathbb{Z}^2$, $H_2(X, \mathbb{Z}) \cong 0$

PROPERTIES: dim H_0 = number of connected components

Homotopy invariants Comparing invariants Classical algebraic structures

Homology groups

Definition (Homology groups)

 $H_n(X,\mathbb{Z}) := \ker d_{n-1} / \operatorname{im} d_n$

Example: $H_0(X, \mathbb{Z}) \cong \mathbb{Z}$, $H_1(X, \mathbb{Z}) \cong \mathbb{Z}^2$, $H_2(X, \mathbb{Z}) \cong 0$

PROPERTIES: dim H_0 = number of connected components dim H_1 = number of holes

Homotopy invariants Comparing invariants Classical algebraic structures

Homology groups

Definition (Homology groups) $H_n(X, \mathbb{Z}) := \ker d_{n-1} / \operatorname{im} d_n$

EXAMPLE: $H_0(X, \mathbb{Z}) \cong \mathbb{Z}$, $H_1(X, \mathbb{Z}) \cong \mathbb{Z}^2$, $H_2(X, \mathbb{Z}) \cong 0$

PROPERTIES: dim H_0 = number of connected components dim H_1 = number of holes

Linear dual notion of cohomology groups

Homotopy invariants Comparing invariants Classical algebraic structures

Homology groups

Definition (Homology groups) $H_n(X, \mathbb{Z}) := \ker d_{n-1} / \operatorname{im} d_n$

Example: $H_0(X, \mathbb{Z}) \cong \mathbb{Z}$, $H_1(X, \mathbb{Z}) \cong \mathbb{Z}^2$, $H_2(X, \mathbb{Z}) \cong 0$

PROPERTIES: dim H_0 = number of connected components dim H_1 = number of holes

- Linear dual notion of cohomology groups
- "Equivalent" definitions: de Rham complex, singular homology

Homotopy invariants Comparing invariants Classical algebraic structures

Homology groups

Definition (Homology groups) $H_n(X, \mathbb{Z}) := \ker d_{n-1} / \operatorname{im} d_n$

Example: $H_0(X, \mathbb{Z}) \cong \mathbb{Z}$, $H_1(X, \mathbb{Z}) \cong \mathbb{Z}^2$, $H_2(X, \mathbb{Z}) \cong 0$

PROPERTIES: dim H_0 = number of connected components dim H_1 = number of holes

- Linear dual notion of cohomology groups
- "Equivalent" definitions: de Rham complex, singular homology

Proposition (Homotopy invariance)

$$X \sim Y \Longrightarrow H_n(X,\mathbb{Z}) \cong H_n(Y,\mathbb{Z}), \ \forall n \in \mathbb{N}$$
Homotopy invariants Comparing invariants Classical algebraic structures

Homology groups

Definition (Homology groups) $H_n(X, \mathbb{Z}) := \ker d_{n-1} / \operatorname{im} d_n$

Example: $H_0(X, \mathbb{Z}) \cong \mathbb{Z}$, $H_1(X, \mathbb{Z}) \cong \mathbb{Z}^2$, $H_2(X, \mathbb{Z}) \cong 0$

PROPERTIES: dim H_0 = number of connected components dim H_1 = number of holes

- Linear dual notion of cohomology groups
- "Equivalent" definitions: de Rham complex, singular homology

Proposition (Homotopy invariance)

$$X \sim Y \Longrightarrow H_n(X,\mathbb{Z}) \cong H_n(Y,\mathbb{Z}), \ \forall n \in \mathbb{N}$$

 \rightarrow not faithful!

Homotopy invariants Comparing invariants Classical algebraic structures

Homology groups

Definition (Homology groups) $H_n(X, \mathbb{Z}) := \ker d_{n-1} / \operatorname{im} d_n$

Example: $H_0(X, \mathbb{Z}) \cong \mathbb{Z}$, $H_1(X, \mathbb{Z}) \cong \mathbb{Z}^2$, $H_2(X, \mathbb{Z}) \cong 0$

PROPERTIES: dim H_0 = number of connected components dim H_1 = number of holes

- Linear dual notion of cohomology groups
- "Equivalent" definitions: de Rham complex, singular homology

Proposition (Homotopy invariance)

$$X \sim Y \Longrightarrow H_n(X,\mathbb{Z}) \cong H_n(Y,\mathbb{Z}), \ \forall n \in \mathbb{N}$$

 \rightarrow not faithful!

 \rightarrow Amount of algebra used: Linear algebra

Homotopy+Algebra=Higher Structures Lie methods in Deformation Theory Homotopy invariants Comparing invariants Classical algebraic structures

Homotopy invariants Comparing invariants Classical algebraic structures

Homotopy group

Definition (Loop space)

$$\Omega(X,x) \coloneqq ig\{ arphi \colon [0,1] o X \mid \ arphi ext{ continuous }, arphi(0) = arphi(1) = x ig\}$$

Homotopy invariants Comparing invariants Classical algebraic structures

Homotopy group

Definition (Loop space)

$$\Omega(X, x) \coloneqq \big\{ \varphi \colon [0, 1] \to X \mid \\ \varphi \text{ continuous }, \varphi(0) = \varphi(1) = x \big\}$$

Concatenation product: $arphi \star \psi(t) \coloneqq$

$$\left\{ \begin{array}{ll} \varphi(2t) \ , & \text{for } 0 \leqslant t \leqslant \frac{1}{2} \ , \\ \psi(2t-1) \ , & \text{for } \frac{1}{2} \leqslant t \leqslant 1 \ . \end{array} \right.$$

Homotopy invariants Comparing invariants Classical algebraic structures

Homotopy group

Definition (Loop space)

$$\Omega(X, x) \coloneqq \big\{ \varphi \colon [0, 1] \to X \mid \\ \varphi \text{ continuous }, \varphi(0) = \varphi(1) = x \big\}$$

Concatenation product: $arphi \star \psi(t) \coloneqq$

$$f) := \begin{cases} \varphi(2t) , & \text{for } 0 \leqslant t \leqslant \frac{1}{2} , \\ \psi(2t-1) , & \text{for } \frac{1}{2} \leqslant t \leqslant 1 . \end{cases}$$

 \rightarrow is \star associative?

Homotopy invariants Comparing invariants Classical algebraic structures

Homotopy invariants Comparing invariants Classical algebraic structures

Category theory

GOAL 1: encode how functorial these invariants are

Homotopy invariants Comparing invariants Classical algebraic structures

Category theory

GOAL 1: encode how functorial these invariants are

Homotopy invariants Comparing invariants Classical algebraic structures

Category theory

GOAL 1: encode how functorial these invariants are

Définition (Category [Eilenberg-MacLane, 1942])

OBJECTS+COMPOSABLE ARROWS: "monoid with many base points"

Homotopy invariants Comparing invariants Classical algebraic structures

Category theory

GOAL 1: encode how functorial these invariants are

Définition (Category [Eilenberg-MacLane, 1942])

OBJECTS+COMPOSABLE ARROWS:

"monoid with many base points"

EXAMPLE: Topological spaces+continuous maps

Homotopy invariants Comparing invariants Classical algebraic structures

Category theory

GOAL 1: encode how functorial these invariants are

Définition (Category [Eilenberg-MacLane, 1942])

OBJECTS+COMPOSABLE ARROWS:

"monoid with many base points"

EXAMPLE: Topological spaces+continuous maps

• GOAL 2: compare the invariants

Homotopy invariants Comparing invariants Classical algebraic structures

Category theory

GOAL 1: encode how functorial these invariants are

Définition (Category [Eilenberg-MacLane, 1942])

OBJECTS+COMPOSABLE ARROWS:

"monoid with many base points"

EXAMPLE: Topological spaces+continuous maps

• GOAL 2: compare the invariants

Theorem (Hurewicz)

$$\pi_1(X) \twoheadrightarrow \pi_1(X)/[\pi_1(X), \pi_1(X)] \cong H_1(X, \mathbb{Z})$$

Homotopy invariants Comparing invariants Classical algebraic structures

Category theory

• GOAL 1: encode how functorial these invariants are

Définition (Category [Eilenberg-MacLane, 1942])

OBJECTS+COMPOSABLE ARROWS:

"monoid with many base points"

EXAMPLE: Topological spaces+continuous maps

• GOAL 2: compare the invariants

Theorem (Hurewicz)

$$\pi_1(X) \twoheadrightarrow \pi_1(X)/[\pi_1(X),\pi_1(X)] \cong H_1(X,\mathbb{Z})$$

Top Group

 π_1

 \implies 2-category (higher structure)

The three Graces

Classical algebraic structures

10/34

Math+ Berlin Colloquium Why Higher Structures?

Homotopy+Algebra=Higher Structures Lie methods in Deformation Theory Homotopy invariants Comparing invariants Classical algebraic structures

The three Graces

Homotopy+Algebra=Higher Structures Lie methods in Deformation Theory Homotopy invariants Comparing invariants Classical algebraic structures

The three Graces

• skew-symmetrisation: [x, y] := xy - yx.

Homotopy+Algebra=Higher Structures Lie methods in Deformation Theory Homotopy invariants Comparing invariants Classical algebraic structures

The three Graces

• skew-symmetrisation: [x, y] := xy - yx.

Definition (Universal enveloping algebra)

$$\mathcal{U}\mathfrak{g}\coloneqq\mathsf{T}(\mathfrak{g})/(x\otimes y-y\otimes x-[x,y])$$

where $\mathsf{T}(\mathfrak{g})=\bigoplus_{n\in\mathbb{N}}\mathfrak{g}^{\otimes n}$: free associative algebra (nc polynomials)

Homotopy invariants Comparing invariants Classical algebraic structures

Classical algebraic structures

• $(C^{\bullet}_{sing}(X,\mathbb{Z}),\cup,\mathrm{d})$: singular cochains with the cup product

differential graded associative algebra

Homotopy invariants Comparing invariants Classical algebraic structures

Classical algebraic structures

• $(C^{\bullet}_{sing}(X,\mathbb{Z}),\cup,\mathrm{d})$: singular cochains with the cup product

differential graded associative algebra

• $(H^{\bullet}_{sing}(X,\mathbb{Z}),\overline{\cup})$: singular cohomology with the cup product

graded commutative algebra

Homotopy invariants Comparing invariants Classical algebraic structures

Classical algebraic structures

• $(C^{\bullet}_{sing}(X,\mathbb{Z}),\cup,\mathrm{d})$: singular cochains with the cup product

differential graded associative algebra

(H[•]_{sing}(X, ℤ), □): singular cohomology with the cup product

graded commutative algebra

FIRST HIGHER HOMOTOPY:
$$\cup_1 : C^{\bullet}_{sing}(X, \mathbb{Z})^{\otimes 2} \to C^{\bullet}_{sing}(X, \mathbb{Z})$$

 $\mathrm{d} \circ \cup_1 + \cup_1 \circ (\mathrm{d} \otimes \mathrm{id}) + \cup_1 \circ (\mathrm{id} \otimes \mathrm{d}) = \cup - \cup^{(12)}$

Homotopy invariants Comparing invariants Classical algebraic structures

Classical algebraic structures

• $(C^{\bullet}_{\mathsf{sing}}(X,\mathbb{Z}),\cup,\mathrm{d})$: singular cochains with the cup product

differential graded associative algebra

(H[•]_{sing}(X, ℤ), □): singular cohomology with the cup product

graded commutative algebra

FIRST HIGHER HOMOTOPY:
$$\cup_1 : C^{\bullet}_{sing}(X, \mathbb{Z})^{\otimes 2} \to C^{\bullet}_{sing}(X, \mathbb{Z})$$

 $\mathrm{d} \circ \cup_1 + \cup_1 \circ (\mathrm{d} \otimes \mathrm{id}) + \cup_1 \circ (\mathrm{id} \otimes \mathrm{d}) = \cup - \cup^{(12)}$

• $(\pi_{\bullet+1}(X), [,])$: homotopy groups with the Whitehead bracket

Homotopy invariants Comparing invariants Classical algebraic structures

Classical algebraic structures

• $(C^{\bullet}_{\mathsf{sing}}(X,\mathbb{Z}),\cup,\mathrm{d})$: singular cochains with the cup product

differential graded associative algebra

(H[•]_{sing}(X, ℤ), □): singular cohomology with the cup product

graded commutative algebra

FIRST HIGHER HOMOTOPY:
$$\cup_1 : C^{\bullet}_{sing}(X, \mathbb{Z})^{\otimes 2} \to C^{\bullet}_{sing}(X, \mathbb{Z})$$

 $\mathrm{d} \circ \cup_1 + \cup_1 \circ (\mathrm{d} \otimes \mathrm{id}) + \cup_1 \circ (\mathrm{id} \otimes \mathrm{d}) = \cup - \cup^{(12)}$

• $(\pi_{\bullet+1}(X), [,])$: homotopy groups with the Whitehead bracket

graded Lie algebra

Homotopy invariants Comparing invariants Classical algebraic structures

Classical algebraic structures

• $(C^{\bullet}_{\mathsf{sing}}(X,\mathbb{Z}),\cup,\mathrm{d})$: singular cochains with the cup product

differential graded associative algebra

(H[•]_{sing}(X, ℤ), □): singular cohomology with the cup product

graded commutative algebra

FIRST HIGHER HOMOTOPY:
$$\cup_1 : C^{\bullet}_{sing}(X, \mathbb{Z})^{\otimes 2} \to C^{\bullet}_{sing}(X, \mathbb{Z})$$

 $d \circ \cup_1 + \cup_1 \circ (d \otimes id) + \cup_1 \circ (id \otimes d) = \cup - \cup^{(12)}$

• $(\pi_{\bullet+1}(X), [,])$: homotopy groups with the Whitehead bracket

graded Lie algebra

homotopy invariant

Homotopy invariants Comparing invariants Classical algebraic structures

Classical algebraic structures

• $(C^{\bullet}_{\mathsf{sing}}(X,\mathbb{Z}),\cup,\mathrm{d})$: singular cochains with the cup product

differential graded associative algebra

(H[•]_{sing}(X, ℤ), □): singular cohomology with the cup product

graded commutative algebra

FIRST HIGHER HOMOTOPY:
$$\cup_1 : C^{\bullet}_{sing}(X, \mathbb{Z})^{\otimes 2} \to C^{\bullet}_{sing}(X, \mathbb{Z})$$

 $d \circ \cup_1 + \cup_1 \circ (d \otimes id) + \cup_1 \circ (id \otimes d) = \cup - \cup^{(12)}$

• $(\pi_{\bullet+1}(X), [,])$: homotopy groups with the Whitehead bracket

graded Lie algebra

homotopy invariant→ not faithful!

Homotopy invariants Comparing invariants Classical algebraic structures

Classical algebraic structures

• $(C^{\bullet}_{\mathsf{sing}}(X,\mathbb{Z}),\cup,\mathrm{d})$: singular cochains with the cup product

differential graded associative algebra

• $(H^{\bullet}_{sing}(X,\mathbb{Z}),\overline{\cup})$: singular cohomology with the cup product

graded commutative algebra

FIRST HIGHER HOMOTOPY:
$$\cup_1 : C^{\bullet}_{sing}(X, \mathbb{Z})^{\otimes 2} \to C^{\bullet}_{sing}(X, \mathbb{Z})$$

 $d \circ \cup_1 + \cup_1 \circ (d \otimes id) + \cup_1 \circ (id \otimes d) = \cup - \cup^{(12)}$

• $(\pi_{\bullet+1}(X), [,])$: homotopy groups with the Whitehead bracket

graded Lie algebra

homotopy invariant \rightarrow not faithful!

 \rightarrow Amount of algebra used: associative, commutative, Lie algebra

Table of contents

Multicomplexes Homotopy associative algebras Operadic calculus

2 Homotopy+Algebra=Higher Structures

3 Lie methods in Deformation Theory

Multicomplexes Homotopy associative algebras Operadic calculus

Transfer of structure

• SIMPLEST ALGEBRAIC STRUCTURE:

$$\Delta: {\it A}
ightarrow {\it A}$$
 , $\Delta^2 = 0$

Multicomplexes Homotopy associative algebras Operadic calculus

Transfer of structure

• SIMPLEST ALGEBRAIC STRUCTURE:

Proposition (Transfer of structure)

$$p: A \rightleftharpoons H: i, pi = \mathrm{id}_H, ip = \mathrm{id}_A$$
$$\implies \delta := p\Delta i, \delta^2 = 0$$

$$\Delta: {\it A}
ightarrow {\it A}$$
 , $\Delta^2 = 0$

Multicomplexes Homotopy associative algebras Operadic calculus

Transfer of structure

 $\implies \delta := p\Delta i , \delta^2 = 0$

• SIMPLEST ALGEBRAIC STRUCTURE:

$$\Delta: A o A$$
 , $\Delta^2 = 0$

Proposition (Transfer of structure) $p: A \rightleftharpoons H: i, pi = id_H, ip = id_A$

Proof.

$$\delta^{2} = p\Delta \underbrace{ip}_{=id_{A}} \Delta i = p \underbrace{\Delta^{2}}_{=0} i$$

$$= 0 \Box$$
Multicomplexes Homotopy associative algebras Operadic calculus

Transfer of structure

• SIMPLEST ALGEBRAIC STRUCTURE:
$$\Delta : A \to A, \quad \Delta^2 = 0$$

Proposition (Transfer of structure)
 $p: A \rightleftharpoons H: i, pi = id_H, ip = id_A$
 $\Rightarrow \delta := p\Delta i, \delta^2 = 0$
 $= 0$

ALGEBRAIC HOMOTOPY EQUIVALENCE: Deformation retract

Multicomplexes

Transfer of structure

SIMPLEST ALGEBRAIC STRUCTURE: Proof Proposition (Transfer of structure)

$$p: A \rightleftharpoons H: i, pi = \mathrm{id}_H, ip = \mathrm{id}_A$$
$$\implies \delta := p\Delta i, \delta^2 = 0$$

$$\Delta: {\it A}
ightarrow {\it A}$$
 , $\Delta^2 = 0$

$$\delta^{2} = p\Delta \underbrace{ip}_{=id_{A}} \Delta i = p \underbrace{\Delta^{2}}_{=0} i$$
$$= 0 \qquad \Box$$

ALGEBRAIC HOMOTOPY EQUIVALENCE: Deformation retract

$$h \bigcirc p \xleftarrow{p} \longleftrightarrow$$

Multicomplexes Homotopy associative algebras Operadic calculus

Transfer of structure

• SIMPLEST ALGEBRAIC STRUCTURE:

$$\Delta: {\pmb A} o {\pmb A}$$
 , $\Delta^2 = {\pmb 0}$

Proposition (Transfer of structure)

$$p: A \rightleftharpoons H: i, pi = \mathrm{id}_H, ip = \mathrm{id}_A$$
$$\implies \delta := p\Delta i, \delta^2 = 0$$

Proof.

$$\delta^{2} = p\Delta \underbrace{ip}_{=id_{A}} \Delta i = p \underbrace{\Delta^{2}}_{=0} i$$

$$= 0 \qquad \Box$$

ALGEBRAIC HOMOTOPY EQUIVALENCE: Deformation retract

$$h \bigcirc p \xleftarrow{i} O$$

$$h \stackrel{p}{\frown} (A, d_A) \xrightarrow[i]{p} (H, d_H)$$
$$id_A - ip = d_A h + h d_A$$

Multicomplexes Homotopy associative algebras Operadic calculus

Transfer of structure

• SIMPLEST ALGEBRAIC STRUCTURE:

$$\Delta: {\pmb A} o {\pmb A}$$
 , $\Delta^2 = {\pmb 0}$

Proposition (Transfer of structure)

$$p: A \rightleftharpoons H: i, pi = \mathrm{id}_H, ip = \mathrm{id}_A$$
$$\implies \delta := p\Delta i, \delta^2 = 0$$

Proof.

$$\delta^{2} = p\Delta \underbrace{ip}_{=id_{A}} \Delta i = p \underbrace{\Delta^{2}}_{=0} i$$

$$= 0 \qquad \Box$$

ALGEBRAIC HOMOTOPY EQUIVALENCE: Deformation retract

• TRANSFERRED STRUCTURE:

$$h \stackrel{p}{\frown} (A, d_A) \xrightarrow[i]{p} (H, d_H)$$
$$id_A - ip = d_A h + h d_A$$

$$\delta_1 := p \Delta i$$

Multicomplexes Homotopy associative algebras Operadic calculus

Transfer of structure

• SIMPLEST ALGEBRAIC STRUCTURE:

$$\Delta: {\pmb A} o {\pmb A}$$
 , $\Delta^2 = {\pmb 0}$

Proposition (Transfer of structure)

$$p: A \rightleftharpoons H: i, pi = \mathrm{id}_H, ip = \mathrm{id}_A$$
$$\implies \delta := p\Delta i, \delta^2 = 0$$

Proof.

$$\delta^{2} = p\Delta \underbrace{ip}_{=id_{A}} \Delta i = p \underbrace{\Delta^{2}}_{=0} i$$

$$= 0 \qquad \Box$$

ALGEBRAIC HOMOTOPY EQUIVALENCE: Deformation retract

$$h \stackrel{p}{\frown} (A, d_A) \xrightarrow[i]{p} (H, d_H)$$
$$id_A - ip = d_A h + hd_A \neq 0$$

• TRANSFERRED STRUCTURE: $\delta_1 := p \Delta i$

$$\rightarrow (\delta_1)^2 = p\Delta \underbrace{ip}_{\neq id_A} \neq \Delta ip \underbrace{\Delta^2}_{=0} i = 0$$

Multicomplexes Homotopy associative algebras Operadic calculus

Transfer of structure

• SIMPLEST ALGEBRAIC STRUCTURE:

$$\Delta: {\pmb A} o {\pmb A}$$
 , $\Delta^2 = {\pmb 0}$

Proposition (Transfer of structure)

$$p: A \rightleftharpoons H: i, pi = \mathrm{id}_H, ip = \mathrm{id}_A$$
$$\implies \delta := p\Delta i, \delta^2 = 0$$

Proof.

$$\delta^{2} = p\Delta \underbrace{ip}_{=id_{A}} \Delta i = p \underbrace{\Delta^{2}}_{=0} i$$

$$= 0 \qquad \Box$$

ALGEBRAIC HOMOTOPY EQUIVALENCE: Deformation retract

$$h \bigcirc p \xleftarrow{i} f$$

$$h \stackrel{r}{\bigcirc} (A, d_A) \xrightarrow[i]{p} (H, d_H)$$
$$id_A - ip = d_A h + hd_A \neq 0$$

• TRANSFERRED STRUCTURE: $\delta_1 := p \Delta i$ $(\delta_1)^2 \neq 0$

$$\rightarrow (\delta_1)^2 = p\Delta \underbrace{ip}_{\neq id_A} \neq \Delta ip \underbrace{\Delta^2}_{=0} i = 0$$

Multicomplexes Homotopy associative algebras Operadic calculus

Transfer of structure

• SIMPLEST ALGEBRAIC STRUCTURE:

$$\Delta: {\pmb A} o {\pmb A}$$
 , $\Delta^2 = {\pmb 0}$

Proposition (Transfer of structure)

$$p: A \rightleftharpoons H: i, pi = \mathrm{id}_H, ip = \mathrm{id}_A$$
$$\implies \delta := p\Delta i, \delta^2 = 0$$

Proof.

$$\delta^{2} = p\Delta \underbrace{ip}_{=id_{A}} \Delta i = p \underbrace{\Delta^{2}}_{=0} i$$

$$= 0 \qquad \Box$$

ALGEBRAIC HOMOTOPY EQUIVALENCE: Deformation retract

$$h \bigcirc p \xleftarrow{i} f$$

$$h \stackrel{r}{\bigcirc} (A, d_A) \xrightarrow[i]{p} (H, d_H)$$
$$id_A - ip = d_A h + hd_A \neq 0$$

• TRANSFERRED STRUCTURE: $\delta_1 := p \Delta i$ $(\delta_1)^2 \neq 0$

$$\rightarrow (\delta_1)^2 = p\Delta \underbrace{ip}_{\sim id_A} \sim \Delta ip \underbrace{\Delta^2}_{=0} i = 0$$

Multicomplexes Homotopy associative algebras Operadic calculus

First higher operations

• IDEA: introduce a higher operation

$$\delta_2 := p \Delta h \Delta i$$

Multicomplexes Homotopy associative algebras Operadic calculus

First higher operations

• IDEA: introduce a higher operation

$$\delta_2 := p \Delta h \Delta i$$

$$\implies \quad \partial(\delta_2) \coloneqq d_A \delta_2 + \delta_2 d_A = (\delta_1)^2$$

Multicomplexes Homotopy associative algebras Operadic calculus

First higher operations

• IDEA: introduce a higher operation

$$\delta_2 := p \Delta h \Delta i$$

$$\implies \quad |\partial(\delta_2) \coloneqq d_A \delta_2 + \delta_2 d_A = (\delta_1)^2$$

 $\leftrightarrow \delta_2$ is a homotopy for the relation $(\delta_1)^2 = 0$

Multicomplexes Homotopy associative algebras Operadic calculus

First higher operations

• IDEA: introduce a higher operation

$$\delta_2 := p \Delta h \Delta i$$

$$\implies \quad |\partial(\delta_2) \coloneqq d_A \delta_2 + \delta_2 d_A = (\delta_1)^2$$

 $\leftrightarrow \delta_2$ is a homotopy for the relation $(\delta_1)^2 = 0$

• QUESTION: strict relation $\delta_1 \delta_2 + \delta_2 \delta_1 = 0$?

Multicomplexes Homotopy associative algebras Operadic calculus

First higher operations

• IDEA: introduce a higher operation

$$\delta_2 := p \Delta h \Delta i$$

$$\implies \quad |\partial(\delta_2) \coloneqq d_A \delta_2 + \delta_2 d_A = (\delta_1)^2$$

 $\leftrightarrow \delta_2$ is a homotopy for the relation $(\delta_1)^2 = 0$

• QUESTION: strict relation $\delta_1 \delta_2 + \delta_2 \delta_1 = 0$? no $\neq 0$

Multicomplexes Homotopy associative algebras Operadic calculus

First higher operations

IDEA: introduce a higher operation

$$\delta_2 := p \Delta h \Delta i$$

$$\implies \quad |\partial(\delta_2) \coloneqq d_A \delta_2 + \delta_2 d_A = (\delta_1)^2$$

 $\leftrightarrow \delta_2$ is a homotopy for the relation $(\delta_1)^2 = 0$

- QUESTION: strict relation $\delta_1 \delta_2 + \delta_2 \delta_1 = 0$? no $\neq 0$
- IDEA: introduce an even higher operation

$$\delta_3 := p \Delta h \Delta h \Delta i$$

Multicomplexes Homotopy associative algebras Operadic calculus

First higher operations

IDEA: introduce a higher operation

$$\delta_2 := p \Delta h \Delta i$$

$$\implies \quad |\partial(\delta_2) \coloneqq d_A \delta_2 + \delta_2 d_A = (\delta_1)^2$$

 $\leftrightarrow \delta_2$ is a homotopy for the relation $(\delta_1)^2 = 0$

- QUESTION: strict relation $\delta_1 \delta_2 + \delta_2 \delta_1 = 0$? no $\neq 0$
- IDEA: introduce an even higher operation

$$\delta_3 := p \Delta h \Delta h \Delta i$$

$$\implies \quad \partial(\delta_3) = \delta_1 \delta_2 + \delta_2 \delta_1$$

Multicomplexes Homotopy associative algebras Operadic calculus

First higher operations

IDEA: introduce a higher operation

$$\delta_2 := p \Delta h \Delta i$$

$$\implies \quad |\partial(\delta_2) \coloneqq d_A \delta_2 + \delta_2 d_A = (\delta_1)^2$$

 $\leftrightarrow \delta_2$ is a homotopy for the relation $(\delta_1)^2 = 0$

- QUESTION: strict relation $\delta_1 \delta_2 + \delta_2 \delta_1 = 0$? no $\neq 0$
- IDEA: introduce an even higher operation

$$\delta_3 := p \Delta h \Delta h \Delta i$$

$$\implies \quad \partial(\delta_3) = \delta_1 \delta_2 + \delta_2 \delta_1$$

 $\leftrightarrow \delta_3$ is a homotopy for the relation $\delta_1 \delta_2 + \delta_2 \delta_1 = 0$

Multicomplexes Homotopy associative algebras Operadic calculus

Higher structure: multicomplex

Higher up, we consider:

$$\delta_n := p(\Delta h)^{n-1} \Delta i$$
, for $n \ge 1$

Multicomplexes Homotopy associative algebras Operadic calculus

Higher structure: multicomplex

Higher up, we consider:

$$\delta_n := p(\Delta h)^{n-1} \Delta i$$
, for $n \ge 1$

Proposition

$$\partial(\delta_n) = \sum_{k=1}^{n-1} \delta_k \delta_{n-k}$$
, for $n \ge 1$.

Multicomplexes Homotopy associative algebras Operadic calculus

Higher structure: multicomplex

Higher up, we consider:

$$\delta_n := p(\Delta h)^{n-1} \Delta i$$
, for $n \ge 1$

Proposition

$$\partial(\delta_n) = \sum_{k=1}^{n-1} \delta_k \delta_{n-k}$$
, for $n \ge 1$.

Definition (Multicomplex)

 $(H, \delta_0 := -d_H, \delta_1, \delta_2, ...)$ graded vector space *H* endowed with a family of linear operators of degree $|\delta_n| = 2n - 1$ satisfying

$$\sum_{k=0}^n \delta_k \delta_{n-k} = 0 \, \bigg| \, , \quad \text{for } n \ge 0 \; .$$

Multicomplexes Homotopy associative algebras Operadic calculus

Higher structure: multicomplex

Higher up, we consider:

$$\delta_n := p(\Delta h)^{n-1} \Delta i$$
, for $n \ge 1$

Proposition

$$\partial(\delta_n) = \sum_{k=1}^{n-1} \delta_k \delta_{n-k}$$
, for $n \ge 1$.

Definition (Multicomplex)

 $(H, \delta_0 := -d_H, \delta_1, \delta_2, ...)$ graded vector space *H* endowed with a family of linear operators of degree $|\delta_n| = 2n - 1$ satisfying

$$\sum_{k=0}^n \delta_k \delta_{n-k} = 0 \, \bigg| \, , \quad \text{for } n \ge 0 \; .$$

• MIXED COMPLEX OR BICOMPLEX: multicomplex s.t. $\delta_n = 0, n \ge 2$.

Multicomplexes Homotopy associative algebras Operadic calculus

Multicomplexes are homotopy stable

• Starting now from a multicomplex $(A, \Delta_0 = -d_A, \Delta_1, \Delta_2, ...)$

Multicomplexes Homotopy associative algebras Operadic calculus

Multicomplexes are homotopy stable

- Starting now from a multicomplex $(A, \Delta_0 = -d_A, \Delta_1, \Delta_2, ...)$
- Consider the transferred operators

$$\delta_n := \sum_{k_1 + \dots + k_l = n} p \Delta_{k_1} h \Delta_{k_2} h \dots h \Delta_{k_l} i \, \bigg|, \quad \text{for} \ n \ge 1$$

Multicomplexes Homotopy associative algebras Operadic calculus

Multicomplexes are homotopy stable

- Starting now from a multicomplex $(A, \Delta_0 = -d_A, \Delta_1, \Delta_2, ...)$
- Consider the transferred operators

$$\left| \delta_n := \sum_{k_1 + \dots + k_l = n} p \Delta_{k_1} h \Delta_{k_2} h \dots h \Delta_{k_l} i \right|, \quad \text{for} \ n \ge 1$$

Proposition

$$\partial(\delta_n) = \sum_{k=1}^{n-1} \delta_k \delta_{n-k} \quad in \operatorname{Hom}(A, A), \text{ for } n \ge 1$$

Multicomplexes Homotopy associative algebras Operadic calculus

Multicomplexes are homotopy stable

- Starting now from a multicomplex $(A, \Delta_0 = -d_A, \Delta_1, \Delta_2, ...)$
- Consider the transferred operators

$$\left| \delta_n := \sum_{k_1 + \dots + k_j = n} p \Delta_{k_1} h \Delta_{k_2} h \dots h \Delta_{k_j} i \right|, \text{ for } n \ge 1$$

Proposition

$$\partial(\delta_n) = \sum_{k=1}^{n-1} \delta_k \delta_{n-k} \quad in \operatorname{Hom}(A, A), \text{ for } n \ge 1$$

⇒ Again a multicomplex, no need of further higher structure

Multicomplexes Homotopy associative algebras Operadic calculus

Higher morphisms

 $\underbrace{(A, \Delta_0 = -d_A, \Delta_1, \Delta_2, \ldots)}_{i} \xleftarrow{i} \underbrace{(H, \delta_0 = -d_H, \delta_1, \delta_2, \ldots)}_{i}$

Original structure

Multicomplexes Homotopy associative algebras Operadic calculus

Higher morphisms

$$(\underline{A}, \Delta_0 = -d_A, \Delta_1, \Delta_2, \ldots) \xleftarrow{i} (\underline{H}, \delta_0 = -d_H, \delta_1, \delta_2, \ldots)$$

Original structure

• *i* chain map
$$\iff 4$$

$$\Delta_0 i = i\delta_0$$

Multicomplexes Homotopy associative algebras Operadic calculus

Higher morphisms

$$\underbrace{(A, \Delta_0 = -d_A, \Delta_1, \Delta_2, \ldots)}_{i} \leftarrow \underbrace{(H, \delta_0 = -d_H, \delta_1, \delta_2, \ldots)}_{i}$$

Original structure

- *i* chain map $\iff \Delta_0 i = i\delta_0$
- QUESTION: does *i* commute with the higher Δ 's and δ 's?

Multicomplexes Homotopy associative algebras Operadic calculus

Higher morphisms

$$\underbrace{(A, \Delta_0 = -d_A, \Delta_1, \Delta_2, \ldots)}_{i} \leftarrow \underbrace{(H, \delta_0 = -d_H, \delta_1, \delta_2, \ldots)}_{i}$$

Original structure

- *i* chain map $\iff \Delta_0 i = i\delta_0$
- QUESTION: does *i* commute with the higher Δ 's and δ 's?

$$i\delta_1 = \underbrace{ip}_{\sim_h \operatorname{id}_A} \Delta_1 i \neq \Delta_1 i$$
 in general!

Multicomplexes Homotopy associative algebras Operadic calculus

Higher morphisms

$$\underbrace{(A, \Delta_0 = -d_A, \Delta_1, \Delta_2, \ldots)}_{i} \xleftarrow{i} \underbrace{(H, \delta_0 = -d_H, \delta_1, \delta_2, \ldots)}_{i}$$

Original structure

Transferred structure

- *i* chain map $\iff \Delta_0 i = i\delta_0$
- QUESTION: does *i* commute with the higher Δ 's and δ 's?

$$i\delta_1 = \underbrace{ip}_{\sim_h \operatorname{id}_{\mathcal{A}}} \Delta_1 i \neq \Delta_1 i$$
 in general!

Definition (∞ -morphism)

 i_{∞} : $(H, \delta_0 = -d_H, \delta_1, \delta_2, \ldots) \rightsquigarrow (A, \Delta_0 = -d_A, \Delta_1, \Delta_2, \ldots)$ collection of maps $\{i_n \colon H \to A\}_{n \ge 0}$ satisfying

Multicomplexes Homotopy associative algebras Operadic calculus

Higher morphisms

$$\underbrace{(A, \Delta_0 = -d_A, \Delta_1, \Delta_2, \ldots)}_{i} \xleftarrow{i} \underbrace{(H, \delta_0 = -d_H, \delta_1, \delta_2, \ldots)}_{i}$$

Original structure

Transferred structure

- *i* chain map $\iff \Delta_0 i = i\delta_0$
- QUESTION: does *i* commute with the higher Δ 's and δ 's?

$$i\delta_1 = \underbrace{ip}_{\sim_h \operatorname{id}_{\mathcal{A}}} \Delta_1 i \neq \Delta_1 i$$
 in general!

Definition (∞ -morphism)

 i_{∞} : $(H, \delta_0 = -d_H, \delta_1, \delta_2, \ldots) \rightsquigarrow (A, \Delta_0 = -d_A, \Delta_1, \Delta_2, \ldots)$ collection of maps $\{i_n \colon H \to A\}_{n \ge 0}$ satisfying

$$\sum_{k=0}^{n} \Delta_{n-k} i_k = \sum_{k=0}^{n} i_k \delta_{n-k} , \quad \text{for } n \ge 0 .$$

Multicomplexes Homotopy associative algebras Operadic calculus

∞ -quasi-isomorphism

Definition (∞ -quasi-isomorphism)

∞ -morphism $i : H \xrightarrow{\sim} A$ s.t. $i_0 : H \xrightarrow{\sim} A$ homology isomorphism

Multicomplexes Homotopy associative algebras Operadic calculus

∞ -quasi-isomorphism

Definition (∞ -quasi-isomorphism)

 ∞ -morphism $i : H \xrightarrow{\sim} A$ s.t. $i_0 : H \xrightarrow{\sim} A$ homology isomorphism

Proposition

 ∞ -quasi-isomorphisms are (homotopy) invertible

Multicomplexes Homotopy associative algebras Operadic calculus

∞ -quasi-isomorphism

Definition (∞ -quasi-isomorphism)

 ∞ -morphism $i : H \xrightarrow{\sim} A$ s.t. $i_0 : H \xrightarrow{\sim} A$ homology isomorphism

Proposition

 ∞ -quasi-isomorphisms are (homotopy) invertible

→ Wrong for homology isomorphisms of mixed complexes: not invertible!

Multicomplexes Homotopy associative algebras Operadic calculus

∞ -quasi-isomorphism

Definition (∞ -quasi-isomorphism)

 ∞ -morphism $i : H \xrightarrow{\sim} A$ s.t. $i_0 : H \xrightarrow{\sim} A$ homology isomorphism

Proposition

 ∞ -quasi-isomorphisms are (homotopy) invertible

→ Wrong for homology isomorphisms of mixed complexes: not invertible!

Proof.

$$(1 - X)^{-1} = 1 + X + X^2 + X^3 + \cdots$$
 in $\mathbb{K}[[X]]$.

Homotopy Transfer Theorem for multicomplexes

Theorem (Homotopy Transfer Theorem [Lapin 2001])

Given any deformation retract

$$h \stackrel{p}{\frown} (A, d_A) \xrightarrow{p}_{i} (H, d_H) \quad id_A - ip = d_A h + h d_A$$

and any mixed complex (or multicomplex) structure on A, there exists a multicomplex structure on H such that i and p extend to ∞ -quasi-isomorphisms and such that h extends to an ∞ -homotopy.

Homotopy Transfer Theorem for multicomplexes

Theorem (Homotopy Transfer Theorem [Lapin 2001])

Given any deformation retract

$$h \stackrel{p}{\frown} (A, d_A) \xrightarrow{p}_{i} (H, d_H) \quad id_A - ip = d_A h + h d_A$$

and any mixed complex (or multicomplex) structure on A, there exists a multicomplex structure on H such that i and p extend to ∞ -quasi-isomorphisms and such that h extends to an ∞ -homotopy.

 \rightarrow explicit formulas & no loss of algebro-homotopic data

Homotopy Transfer Theorem for multicomplexes

Theorem (Homotopy Transfer Theorem [Lapin 2001])

Given any deformation retract

$$h \stackrel{p}{\frown} (A, d_A) \xrightarrow{p}_{i} (H, d_H) \quad id_A - ip = d_A h + h d_A$$

and any mixed complex (or multicomplex) structure on A, there exists a multicomplex structure on H such that i and p extend to ∞ -quasi-isomorphisms and such that h extends to an ∞ -homotopy.

 \rightarrow explicit formulas & no loss of algebro-homotopic data

• APPLICATION 1: spectral sequences
Homotopy Transfer Theorem for multicomplexes

Theorem (Homotopy Transfer Theorem [Lapin 2001])

Given any deformation retract

$$h \stackrel{p}{\frown} (A, d_A) \xrightarrow{p}_{i} (H, d_H) \qquad \text{id}_A - ip = d_A h + h d_A$$

and any mixed complex (or multicomplex) structure on A, there exists a multicomplex structure on H such that i and p extend to ∞ -quasi-isomorphisms and such that h extends to an ∞ -homotopy.

\rightarrow explicit formulas & no loss of algebro-homotopic data

- APPLICATION 1: spectral sequences
- APPLICATION 2: cyclic homology

Homotopy Transfer Theorem for multicomplexes

Theorem (Homotopy Transfer Theorem [Lapin 2001])

Given any deformation retract

$$h \stackrel{p}{\frown} (A, d_A) \xrightarrow{p}_{i} (H, d_H) \qquad \text{id}_A - ip = d_A h + h d_A$$

and any mixed complex (or multicomplex) structure on A, there exists a multicomplex structure on H such that i and p extend to ∞ -quasi-isomorphisms and such that h extends to an ∞ -homotopy.

\rightarrow explicit formulas & no loss of algebro-homotopic data

- APPLICATION 1: spectral sequences
- APPLICATION 2: cyclic homology (Connes' boundary map $B = \delta_2$, Chern characters $= i_{\infty}$)

Homotopy Transfer Theorem for multicomplexes

Theorem (Homotopy Transfer Theorem [Lapin 2001])

Given any deformation retract

$$h \stackrel{p}{\frown} (A, d_A) \xrightarrow{p}_{i} (H, d_H) \qquad \text{id}_A - ip = d_A h + h d_A$$

and any mixed complex (or multicomplex) structure on A, there exists a multicomplex structure on H such that i and p extend to ∞ -quasi-isomorphisms and such that h extends to an ∞ -homotopy.

\rightarrow explicit formulas & no loss of algebro-homotopic data

- APPLICATION 1: spectral sequences
- APPLICATION 2: cyclic homology (Connes' boundary map $B = \delta_2$, Chern characters = i_{∞})
- APPLICATION 3: optimal version of the $d\bar{d}$ -lemma

Multicomplexes Homotopy associative algebras Operadic calculus

Doors of hell or pandora's box?

Multicomplexes Homotopy associative algebras Operadic calculus

Doors of hell or pandora's box?

Multicomplexes Homotopy associative algebras Operadic calculus

Doors of hell or pandora's box?

Verse-nous ton poison pour qu'il nous réconforte ! Nous voulons, tant ce feu nous brûle le cerveau, Plonger au fond du gouffre, Enfer ou Ciel, qu'importe ? Au fond de l'Inconnu pour trouver du nouveau !

Le voyage, Charles Baudelaire (Les fleurs du mal, 1861)

Multicomplexes Homotopy associative algebras Operadic calculus

Transfer associative algebra structure

• Another algebraic structure: associative algebra $\
u = igvee$

Multicomplexes Homotopy associative algebras Operadic calculus

Transfer associative algebra structure

• ANOTHER ALGEBRAIC STRUCTURE: associative algebra $\nu =$

Proposition (Transfer of structure)

 $p : A \rightleftharpoons H : i, pi = id_H, ip = id_A \Longrightarrow \mu_2 := p \nu i^{\otimes 2} : associative$

Multicomplexes Homotopy associative algebras Operadic calculus

Transfer associative algebra structure

• ANOTHER ALGEBRAIC STRUCTURE: associative algebra $\nu =$

Proposition (Transfer of structure)

 $p : A \rightleftharpoons H : i, pi = id_H, ip = id_A \Longrightarrow \mu_2 := p \nu i^{\otimes 2} : associative$

$$\mu_2 = \bigvee := \bigvee_p^{i}$$

Multicomplexes Homotopy associative algebras Operadic calculus

Transfer associative algebra structure

• ANOTHER ALGEBRAIC STRUCTURE: associative algebra $\nu = 1$

Proposition (Transfer of structure)

$$p: A \rightleftharpoons H: i, pi = id_H, ip = id_A \Longrightarrow \mu_2 := p \nu i^{\otimes 2} : associative$$

Multicomplexes Homotopy associative algebras Operadic calculus

Transfer associative algebra structure

• ANOTHER ALGEBRAIC STRUCTURE: associative algebra $\nu = \mathbf{Y}$

Isomorphism \rightarrow Deformation retract:

$$h \stackrel{p}{\longleftarrow} (A, d_A) \xrightarrow{p}_{i} (H, d_H)$$
$$id_A - ip = d_A h + hd_A \neq 0$$

Multicomplexes Homotopy associative algebras Operadic calculus

Transfer associative algebra structure

• ANOTHER ALGEBRAIC STRUCTURE: associative algebra $\nu = \mathbf{Y}$

Isomorphism \rightarrow Deformation retract:

$$h \stackrel{p}{\longleftarrow} (A, d_A) \xrightarrow{p}_{i} (H, d_H)$$
$$id_A - ip = d_A h + hd_A \neq 0$$

Multicomplexes Homotopy associative algebras Operadic calculus

Transfer associative algebra structure

• ANOTHER ALGEBRAIC STRUCTURE: associative algebra $\nu = \mathbf{Y}$

Isomorphism \rightarrow Deformation retract:

$$h \stackrel{p}{\longleftarrow} (A, d_A) \xrightarrow{p}_{i} (H, d_H)$$
$$id_A - ip = d_A h + hd_A \neq 0$$

Multicomplexes Homotopy associative algebras Operadic calculus

Higher operations

• IDEA: introduce a higher operation $\mu_3: H^{\otimes 3} \to H$

Multicomplexes Homotopy associative algebras Operadic calculus

Higher operations

• IDEA: introduce a higher operation $\mu_3: H^{\otimes 3} \to H$

mesures the failure of associativity for $\mu_{\rm 2}$

Multicomplexes Homotopy associative algebras Operadic calculus

Higher operations

• IDEA: introduce a higher operation $\mu_3: H^{\otimes 3} \to H$

mesures the failure of associativity for $\mu_{\rm 2}$

in Hom $(H^{\otimes 3}, H)$

Multicomplexes Homotopy associative algebras Operadic calculus

Higher operations

• IDEA: introduce a higher operation $\mu_3: H^{\otimes 3} \to H$

mesures the failure of associativity for μ_2

in Hom $(H^{\otimes 3}, H)$

 $\leftrightarrow \mu_3$ is a homotopy for the associativity relation of μ_2 .

Multicomplexes Homotopy associative algebras Operadic calculus

Higher operations

• IDEA: introduce a higher operation $\mu_3: H^{\otimes 3} \to H$

mesures the failure of associativity for μ_2

in Hom $(H^{\otimes 3}, H)$

 $\leftrightarrow \mu_3$ is a homotopy for the associativity relation of μ_2 .

• Even higher operations: $\mu_n: H^{\otimes n} \to H, \ \forall n \ge 2$

Multicomplexes Homotopy associative algebras Operadic calculus

Higher structure: homotopy associative algebras

Proposition

Multicomplexes Homotopy associative algebras Operadic calculus

Higher structure: homotopy associative algebras

Proposition

Définition (A_{∞} -algebras [Stasheff, 1963])

$$(H, \mu_1 = d_H, \mu_2, \mu_3, \ldots)$$

 $\mu_n : H^{\otimes n} \to H$

Why Higher Structures?

Multicomplexes Homotopy associative algebras Operadic calculus

A_{∞} -algebras are homotopy stable

 \rightarrow Starting from an A_{∞} -algebra ($A, d_A, \nu_2, \nu_3, \ldots$):

Multicomplexes Homotopy associative algebras Operadic calculus

A_{∞} -algebras are homotopy stable

 \rightarrow Starting from an A_{∞} -algebra ($A, d_A, \nu_2, \nu_3, \ldots$):

Multicomplexes Homotopy associative algebras Operadic calculus

A_{∞} -algebras are homotopy stable

 \rightarrow Starting from an A_{∞} -algebra ($A, d_A, \nu_2, \nu_3, \ldots$):

Multicomplexes Homotopy associative algebras Operadic calculus

A_{∞} -algebras are homotopy stable

 \rightarrow Starting from an A_{∞} -algebra ($A, d_A, \nu_2, \nu_3, \ldots$):

 \implies Again an A_{∞} -algebra, no need of further higher structure

Multicomplexes Homotopy associative algebras Operadic calculus

Higher morphisms

 $(A, d_A, \nu_2, \nu_3, \ldots) \xleftarrow{} (H, d_H, \mu_2, \mu_3, \ldots)$

Original structure

Transferred structure

Multicomplexes Homotopy associative algebras Operadic calculus

Higher morphisms

$$\underbrace{(A, d_A, \nu_2, \nu_3, \ldots)}_{i} \xleftarrow{i} \underbrace{(H, d_H, \mu_2, \mu_3, \ldots)}_{i}$$

Original structure

Transferred structure

• *i* chain map $\iff d_A i = i d_H$

Multicomplexes Homotopy associative algebras Operadic calculus

Higher morphisms

$$\underbrace{(A, d_A, \nu_2, \nu_3, \ldots)}_{i} \xleftarrow{i} \underbrace{(H, d_H, \mu_2, \mu_3, \ldots)}_{i}$$

Original structure

Transferred structure

- *i* chain map $\iff d_A i = i d_H$
- QUESTION: Does i commutes with the higher ν's and μ's?

Multicomplexes Homotopy associative algebras Operadic calculus

Higher morphisms

$$\underbrace{(A, d_A, \nu_2, \nu_3, \ldots)}_{i} \xleftarrow{i} \underbrace{(H, d_H, \mu_2, \mu_3, \ldots)}_{i}$$

Original structure

Transferred structure

- *i* chain map $\iff d_A i = i d_H$
- QUESTION: Does *i* commutes with the higher ν 's and μ 's? \rightarrow not in general!

Multicomplexes Homotopy associative algebras Operadic calculus

Higher morphisms

$$(\underline{A, d_A, \nu_2, \nu_3, \ldots}) \xleftarrow{i} (\underline{H, d_H, \mu_2, \mu_3, \ldots})$$

Original structure

Transferred structure

- *i* chain map $\iff d_A i = i d_H$
- QUESTION: Does *i* commutes with the higher ν 's and μ 's? \rightarrow not in general!

Définition (A_{∞} -morphism)

 $(H, d_H, \{\mu_n\}_{n \geq 2}) \rightsquigarrow (A, d_A, \{\nu_n\}_{n \geq 2}): \text{ collection } \{f_n : H^{\otimes n} \to A\}_{n \geq 1}$

Multicomplexes Homotopy associative algebras Operadic calculus

Higher morphisms

$$(\underline{A}, d_A, \nu_2, \nu_3, \ldots) \xleftarrow{i} (\underline{H}, d_H, \mu_2, \mu_3, \ldots)$$

Original structure

Transferred structure

- *i* chain map $\iff d_A i = i d_H$
- QUESTION: Does *i* commutes with the higher ν 's and μ 's? \rightarrow not in general!

Définition (A_{∞} -morphism)

 $(H, d_H, \{\mu_n\}_{n \geq 2}) \rightsquigarrow (A, d_A, \{\nu_n\}_{n \geq 2}): \text{ collection } \{f_n : H^{\otimes n} \to A\}_{n \geq 1}$

Multicomplexes Homotopy associative algebras Operadic calculus

Homotopy Transfer Theorem for A_{∞} -algebras

 A_{∞} -QUASI-ISOMORPHISM: $i: H \xrightarrow{\sim} A$ s.t. $i_0: H \xrightarrow{\sim} A$ homology iso.

 A_{∞} -QUASI-ISOMORPHISM: $i: H \xrightarrow{\sim} A$ s.t. $i_0: H \xrightarrow{\sim} A$ homology iso.

Theorem (HTT for A_{∞} -algebras [Kadeshvili 1982])

Given a A_{∞} -algebra A and a deformation retract

$$h \stackrel{p}{\frown} (A, d_A) \xrightarrow{p}_{i} (H, d_H) \quad id_A - ip = d_A h + h d_A$$

there exists an A_{∞} -algebra structure on H such that i, p, and h extend to A_{∞} -quasi-isomorphisms and A_{∞} -homotopy respectively.

 A_{∞} -QUASI-ISOMORPHISM: $i: H \xrightarrow{\sim} A$ s.t. $i_0: H \xrightarrow{\sim} A$ homology iso.

Theorem (HTT for A_{∞} -algebras [Kadeshvili 1982])

Given a A_{∞} -algebra A and a deformation retract

$$h \stackrel{p}{\frown} (A, d_A) \xrightarrow{p}_{i} (H, d_H) \quad id_A - ip = d_A h + h d_A$$

there exists an A_{∞} -algebra structure on H such that i, p, and h extend to A_{∞} -quasi-isomorphisms and A_{∞} -homotopy respectively.

explicit formulas & no loss of algebro-homotopic data

 A_{∞} -QUASI-ISOMORPHISM: $i: H \xrightarrow{\sim} A$ s.t. $i_0: H \xrightarrow{\sim} A$ homology iso.

Theorem (HTT for A_{∞} -algebras [Kadeshvili 1982])

Given a A_{∞} -algebra A and a deformation retract

$$h \stackrel{p}{\frown} (A, d_A) \xrightarrow{p}_{i} (H, d_H) \quad id_A - ip = d_A h + h d_A$$

there exists an A_{∞} -algebra structure on H such that i, p, and h extend to A_{∞} -quasi-isomorphisms and A_{∞} -homotopy respectively.

explicit formulas & no loss of algebro-homotopic data

• APPLICATION 1: Massey products on $H^{\bullet}(X, \mathbb{K})$ \rightarrow Galois cohomology, elliptic curves, etc.

 A_{∞} -QUASI-ISOMORPHISM: $i: H \xrightarrow{\sim} A$ s.t. $i_0: H \xrightarrow{\sim} A$ homology iso.

Theorem (HTT for A_{∞} -algebras [Kadeshvili 1982])

Given a A_{∞} -algebra A and a deformation retract

$$h \stackrel{p}{\frown} (A, d_A) \xrightarrow{p}_{i} (H, d_H) \quad id_A - ip = d_A h + h d_A$$

there exists an A_{∞} -algebra structure on H such that i, p, and h extend to A_{∞} -quasi-isomorphisms and A_{∞} -homotopy respectively.

explicit formulas & no loss of algebro-homotopic data

- APPLICATION 1: Massey products on H[●](X, K)
 → Galois cohomology, elliptic curves, etc.
- APPLICATION 2 : A_{∞} -categories
 - \rightarrow Floer cohomology, mirror symmetry, etc.

Multicomplexes Homotopy associative algebras Operadic calculus

Operadic calculus [1994-now]

Multicomplexes Homotopy associative algebras Operadic calculus

Multicomplexes Homotopy associative algebras Operadic calculus

Multicomplexes Homotopy associative algebras Operadic calculus

- EXAMPLES: Lie_{∞} , Com_{∞} , $LieBi_{\infty}$, $Frobenius_{\infty}$, etc.
- Тнеовем: Homotopy transfer theorem

Multicomplexes Homotopy associative algebras Operadic calculus

- EXAMPLES: Lie_{∞} , Com_{∞} , $LieBi_{\infty}$, $Frobenius_{\infty}$, etc.
- THEOREM: Homotopy transfer theorem
- APPLICATIONS: Feynman diagrams, NC probability, etc.

Multicomplexes Homotopy associative algebras Operadic calculus

Operadic calculus [1994-now]

- EXAMPLES: Lie_{∞} , Com_{∞} , $LieBi_{\infty}$, $Frobenius_{\infty}$, etc.
- THEOREM: Homotopy transfer theorem
- APPLICATIONS: Feynman diagrams, NC probability, etc.

Theorem (Mandell [2005])

The homotopy type of a topological space X is faithfully detected by the E_{∞} -algebra structure on its singular cochains $C^{\bullet}_{sing}(X, \mathbb{Z})$.

Table of contents

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

- 2 Homotopy+Algebra=Higher Structures
- 3 Lie methods in Deformation Theory

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Classical Lie theory

• LIE 3rd THEOREM: Lie algebra $\mathfrak{g} \xrightarrow{\exp}$ Lie Group G

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Classical Lie theory

• LIE 3rd THEOREM: Lie algebra $\mathfrak{g} \xrightarrow{\exp}$ Lie Group G

Definition (Baker–Campbell-Hausdorff formula)

 $\operatorname{BCH}(x,y) \coloneqq \operatorname{\mathsf{ln}}(\exp(x).\exp(y)) \in \mathbb{K}\langle\langle x,y \rangle\rangle \cong \widehat{\operatorname{Ass}}(x,y)$

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Classical Lie theory

• LIE 3rd THEOREM: Lie algebra $\mathfrak{g} \xrightarrow{\exp}$ Lie Group G

Definition (Baker–Campbell-Hausdorff formula)

 $\operatorname{BCH}(x,y) \coloneqq \operatorname{\mathsf{ln}}(\exp(x).\exp(y)) \in \mathbb{K}\langle\langle x,y \rangle\rangle \cong \widehat{\operatorname{Ass}}(x,y)$

Theorem

• BCH
$$(x, y) = x + y + \frac{1}{2}[x, y] + \frac{1}{12}[x, [x, y]] + \frac{1}{12}[y, [x, y]] + \cdots$$

 $\in \widehat{Lie}(x, y) \subset \widehat{Ass}(x, y)$

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Classical Lie theory

• LIE 3rd THEOREM: Lie algebra $\mathfrak{g} \xrightarrow{\exp}$ Lie Group G

Definition (Baker–Campbell-Hausdorff formula)

 $\operatorname{BCH}(x,y) \coloneqq \operatorname{\mathsf{ln}}(\exp(x).\exp(y)) \in \mathbb{K}\langle\langle x,y \rangle\rangle \cong \widehat{\operatorname{Ass}}(x,y)$

Theorem

• BCH
$$(x, y) = x + y + \frac{1}{2}[x, y] + \frac{1}{12}[x, [x, y]] + \frac{1}{12}[y, [x, y]] + \cdots$$

 $\in \widehat{Lie}(x, y) \subset \widehat{Ass}(x, y)$

• $\operatorname{BCH}(\operatorname{BCH}(x, y), z) = \operatorname{BCH}(x, \operatorname{BCH}(y, z))$

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Classical Lie theory

• LIE 3rd THEOREM: Lie algebra $\mathfrak{g} \xrightarrow{\exp}$ Lie Group G

Definition (Baker–Campbell-Hausdorff formula)

 $\operatorname{BCH}(x,y) \coloneqq \operatorname{\mathsf{ln}}(\exp(x).\exp(y)) \in \mathbb{K}\langle\langle x,y \rangle\rangle \cong \widehat{\operatorname{Ass}}(x,y)$

Theorem

• BCH
$$(x, y) = x + y + \frac{1}{2}[x, y] + \frac{1}{12}[x, [x, y]] + \frac{1}{12}[y, [x, y]] + \cdots$$

 $\in \widehat{Lie}(x, y) \subset \widehat{Ass}(x, y)$

- $\operatorname{BCH}(\operatorname{BCH}(x, y), z) = \operatorname{BCH}(x, \operatorname{BCH}(y, z))$
- BCH(x, 0) = x = BCH(0, x)

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Classical Lie theory

• LIE 3rd THEOREM: Lie algebra $\mathfrak{g} \xrightarrow{\exp}$ Lie Group G

Definition (Baker–Campbell-Hausdorff formula)

 $\operatorname{BCH}(x,y) \coloneqq \operatorname{\mathsf{ln}}(\exp(x).\exp(y)) \in \mathbb{K}\langle\langle x,y \rangle\rangle \cong \widehat{\operatorname{Ass}}(x,y)$

Theorem

• BCH
$$(x, y) = x + y + \frac{1}{2}[x, y] + \frac{1}{12}[x, [x, y]] + \frac{1}{12}[y, [x, y]] + \cdots$$

 $\in \widehat{Lie}(x, y) \subset \widehat{Ass}(x, y)$

- BCH(BCH(x, y), z) = BCH(x, BCH(y, z))
- BCH(x, 0) = x = BCH(0, x)

Definition (Hausdorff group)

 $(\mathfrak{g}, [\,,])$ complete Lie algebra

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Classical Lie theory

• LIE 3rd THEOREM: Lie algebra $\mathfrak{g} \xrightarrow{\exp}$ Lie Group G

Definition (Baker–Campbell-Hausdorff formula)

 $\operatorname{BCH}(x,y) \coloneqq \operatorname{\mathsf{ln}}(\exp(x).\exp(y)) \in \mathbb{K}\langle\langle x,y \rangle\rangle \cong \widehat{\operatorname{Ass}}(x,y)$

Theorem

• BCH(x,y) =
$$x + y + \frac{1}{2}[x,y] + \frac{1}{12}[x,[x,y]] + \frac{1}{12}[y,[x,y]] + \cdots$$

 $\in \widehat{Lie}(x,y) \subset \widehat{Ass}(x,y)$

- $\operatorname{BCH}(\operatorname{BCH}(x, y), z) = \operatorname{BCH}(x, \operatorname{BCH}(y, z))$
- BCH(x, 0) = x = BCH(0, x)

Definition (Hausdorff group)

 $(\mathfrak{g}, [\,,])$ complete Lie algebra $\Longrightarrow G := (\mathfrak{g}, \operatorname{BCH}, 0)$ Hausdorff group

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Deformation theory

ightarrow Differential graded Lie algebra: ($\mathfrak{g}, [\, ,], \mathrm{d}$)

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Deformation theory

ightarrow Differential graded Lie algebra: ($\mathfrak{g}, [\, ,], \mathrm{d}$)

Definition (Maurer–Cartan elements)

$$\mathrm{MC}(\mathfrak{g}) \coloneqq \left\{ \alpha \in \mathfrak{g}_{-1} \mid \mathrm{d}\alpha + \frac{1}{2}[\alpha, \alpha] = \mathbf{0} \right\}$$

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Deformation theory

ightarrow Differential graded Lie algebra: ($\mathfrak{g}, [\, ,], \mathrm{d}$)

Definition (Maurer–Cartan elements)

$$\mathrm{MC}(\mathfrak{g}) \coloneqq \left\{ \alpha \in \mathfrak{g}_{-1} \mid \mathrm{d}\alpha + \frac{1}{2}[\alpha, \alpha] = \mathbf{0} \right\}$$

Proposition

The Hausdorff group G of \mathfrak{g}_0 acts on $\mathrm{MC}(\mathfrak{g})$

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Deformation theory

ightarrow Differential graded Lie algebra: $(\mathfrak{g}, [\, ,], \mathrm{d})$

Definition (Maurer–Cartan elements)

$$\mathrm{MC}(\mathfrak{g}) \coloneqq \left\{ \alpha \in \mathfrak{g}_{-1} \mid \mathrm{d}\alpha + \frac{1}{2}[\alpha, \alpha] = \mathbf{0} \right\}$$

Proposition

The Hausdorff group G of \mathfrak{g}_0 acts on $\mathrm{MC}(\mathfrak{g})$

→ PHILOSOPHY: "Any deformation problem over a field of characteristic 0 can be encoded by a dg Lie algebra."

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Deformation theory

ightarrow Differential graded Lie algebra: $(\mathfrak{g}, [\, ,], \mathrm{d})$

Definition (Maurer–Cartan elements)

$$\mathrm{MC}(\mathfrak{g}) \coloneqq \left\{ \alpha \in \mathfrak{g}_{-1} \mid \mathrm{d}\alpha + \frac{1}{2}[\alpha, \alpha] = \mathbf{0} \right\}$$

Proposition

The Hausdorff group G of \mathfrak{g}_0 acts on $\mathrm{MC}(\mathfrak{g})$

→ PHILOSOPHY: "Any deformation problem over a field of characteristic 0 can be encoded by a dg Lie algebra."

structures of type \mathcal{P} on a "space" $A \iff \operatorname{MC}(\mathfrak{g}_{\mathcal{P},A})$

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Deformation theory

ightarrow Differential graded Lie algebra: $(\mathfrak{g}, [\, ,], \mathrm{d})$

Definition (Maurer-Cartan elements)

$$\mathrm{MC}(\mathfrak{g}) \coloneqq \left\{ \alpha \in \mathfrak{g}_{-1} \mid \mathrm{d}\alpha + \frac{1}{2}[\alpha, \alpha] = \mathbf{0} \right\}$$

Proposition

The Hausdorff group G of \mathfrak{g}_0 acts on $\mathrm{MC}(\mathfrak{g})$

→ PHILOSOPHY: "Any deformation problem over a field of characteristic 0 can be encoded by a dg Lie algebra."

 $\begin{array}{ccc} \text{structures of type } \mathcal{P} \text{ on a "space" } \mathcal{A} & \longleftrightarrow & \operatorname{MC}(\mathfrak{g}_{\mathcal{P},\mathcal{A}}) \\ & \text{equivalence} & \longleftrightarrow & \mathcal{G} \end{array}$

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Deformation theory

 \rightarrow Differential graded Lie algebra: ($\mathfrak{g},[\,,],\mathrm{d})$

Definition (Maurer-Cartan elements)

$$\mathrm{MC}(\mathfrak{g}) \coloneqq \left\{ \alpha \in \mathfrak{g}_{-1} \mid \mathrm{d}\alpha + \frac{1}{2}[\alpha, \alpha] = \mathbf{0} \right\}$$

Proposition

The Hausdorff group G of \mathfrak{g}_0 acts on $\operatorname{MC}(\mathfrak{g})$

→ PHILOSOPHY: "Any deformation problem over a field of characteristic 0 can be encoded by a dg Lie algebra."

 $\begin{array}{ccc} \text{structures of type } \mathcal{P} \text{ on a "space" } \mathcal{A} & \longleftrightarrow & \operatorname{MC}(\mathfrak{g}_{\mathcal{P},\mathcal{A}}) \\ & \text{equivalence} & \longleftrightarrow & \mathcal{G} \end{array}$

(Hoch[•](A, A), [,]_{Gerst}): associative algebras / isomorphisms

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Deformation theory

ightarrow Differential graded Lie algebra: ($\mathfrak{g}, [\, ,], \mathrm{d}$)

Definition (Maurer-Cartan elements)

$$\mathrm{MC}(\mathfrak{g}) \coloneqq \left\{ \alpha \in \mathfrak{g}_{-1} \mid \mathrm{d}\alpha + \frac{1}{2}[\alpha, \alpha] = \mathbf{0} \right\}$$

Proposition

The Hausdorff group G of \mathfrak{g}_0 acts on $\operatorname{MC}(\mathfrak{g})$

→ PHILOSOPHY: "Any deformation problem over a field of characteristic 0 can be encoded by a dg Lie algebra."

 $\begin{array}{ccc} \text{structures of type } \mathcal{P} \text{ on a "space" } \mathcal{A} & \longleftrightarrow & \operatorname{MC}(\mathfrak{g}_{\mathcal{P},\mathcal{A}}) \\ & \text{equivalence} & \longleftrightarrow & \mathcal{G} \end{array}$

(*Hoch*•(*A*, *A*), [,]_{*Gerst*}): associative algebras / isomorphisms
 (Γ(Λ•*TM*), [,]_{*SN*}): Poisson structure / diffeomorphisms

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Deformation quantisation of Poisson manifolds

Theorem (Kontsevich [1997])

Any Poisson manifold (M, π) can be quantised: \exists associative product * on $C^{\infty}(M)[[\hbar]]$ s.t. $*_0 = \cdot$ and $*_1 = \{,\}$

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Deformation quantisation of Poisson manifolds

Theorem (Kontsevich [1997])

Any Poisson manifold (M, π) can be quantised: \exists associative product * on $C^{\infty}(M)[[\hbar]]$ s.t. $*_0 = \cdot$ and $*_1 = \{,\}$

Proof.

 The functor: dg nilpotent Lie algebra (𝔅, [,], d) → MC(𝔅)/G sends quasi-isomorphisms to bijections.

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Deformation quantisation of Poisson manifolds

Theorem (Kontsevich [1997])

Any Poisson manifold (M, π) can be quantised: \exists associative product * on $C^{\infty}(M)[[\hbar]]$ s.t. $*_0 = \cdot$ and $*_1 = \{,\}$

Proof.

- The functor: dg nilpotent Lie algebra (𝔅, [,], d) → MC(𝔅)/G sends quasi-isomorphisms to bijections.
- The Hochschild–Kostant–Rosenberg quasi-isomorphism $\Gamma(\Lambda^{\bullet}TM) \xrightarrow{\sim} Hoch^{\bullet}(C^{\infty}(M), C^{\infty}(M))$

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Deformation quantisation of Poisson manifolds

Theorem (Kontsevich [1997])

Any Poisson manifold (M, π) can be quantised: \exists associative product * on $C^{\infty}(M)[[\hbar]]$ s.t. $*_0 = \cdot$ and $*_1 = \{,\}$

Proof.

- The functor: dg nilpotent Lie algebra (g, [,], d) → MC(g)/G sends quasi-isomorphisms to bijections.
- The Hochschild–Kostant–Rosenberg quasi-isomorphism
 Γ(Λ[•]TM) → Hoch[•](C[∞](M), C[∞](M))
 (fails to respect to Lie brackets)

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Deformation quantisation of Poisson manifolds

Theorem (Kontsevich [1997])

Any Poisson manifold (M, π) can be quantised: \exists associative product * on $C^{\infty}(M)[[\hbar]]$ s.t. $*_0 = \cdot$ and $*_1 = \{,\}$

Proof.

- The functor: dg nilpotent Lie algebra (𝔅, [,], d) → MC(𝔅)/G sends quasi-isomorphisms to bijections.
- The Hochschild–Kostant–Rosenberg quasi-isomorphism

 $\Gamma(\Lambda^{\bullet} TM) \xrightarrow{\sim} Hoch^{\bullet}(C^{\infty}(M), C^{\infty}(M))$

(fails to respect to Lie brackets) extends to a Lie_{∞} -quasi-isomorphism.

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Deformation quantisation of Poisson manifolds

Theorem (Kontsevich [1997])

Any Poisson manifold (M, π) can be quantised: \exists associative product * on $C^{\infty}(M)[[\hbar]]$ s.t. $*_0 = \cdot$ and $*_1 = \{,\}$

Proof.

- The functor: dg nilpotent Lie algebra (𝔅, [,], d) → MC(𝔅)/G sends quasi-isomorphisms to bijections.
- The Hochschild–Kostant–Rosenberg quasi-isomorphism

 $\Gamma(\Lambda^{\bullet} TM) \xrightarrow{\sim} Hoch^{\bullet}(C^{\infty}(M), C^{\infty}(M))$

(fails to respect to Lie brackets) extends to a Lie_{∞} -quasi-isomorphism.

• \exists Lie_{∞}-quasi-isomorphism $\Leftrightarrow \exists$ zig-zag of quasi-isomorphisms

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Fundamental theorem of deformation theory

Definition (Deformation functor)	
----------------------------------	--

Given a dg Lie algebra $(\mathfrak{g}, [,], d)$:

Def _g :	Artin rings	\rightarrow	groupoids
	$\mathfrak{R}\cong\mathbb{K}\oplus\mathfrak{m}$	\mapsto	$(MC (\mathfrak{g} \otimes \mathfrak{m}), G)$

Fundamental theorem of deformation theory

Fundamental theorem of deformation theory

Definition (Formal moduli problem)

Given a dg Lie algebra $(\mathfrak{g}, [,], d)$:

 $\mathsf{Def}_{\mathfrak{g}} \colon \mathsf{dg} \mathsf{Artin rings} \to \infty \operatorname{-} \mathsf{groupoids} \mathsf{s.t.} [...]$

 $\mathfrak{R} \cong \mathbb{K} \oplus \mathfrak{m} \quad \mapsto \quad (\mathrm{MC}_{\bullet}(\mathfrak{g} \otimes \mathfrak{m}), G)$

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Fundamental theorem of deformation theory

Definition (Formal moduli problem)

Given a dg Lie algebra (\mathfrak{g} , [,], d):

 $\begin{array}{rcl} \mathsf{Def}_{\mathfrak{g}} \colon \overset{}{\mathsf{dg}} \mathsf{Artin rings} & \to & \infty\text{- groupoids} & \mathsf{s.t.} \ [...] \\ \mathfrak{R} \cong \mathbb{K} \oplus \mathfrak{m} & \mapsto & (\mathrm{MC}_{\bullet}(\mathfrak{g} \otimes \mathfrak{m}), \mathbf{\textit{G}}) \end{array}$

• HEURISTIC: ∞ -groupoid \leftrightarrow topological space \leftrightarrow Kan complex

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Fundamental theorem of deformation theory

Definition (Formal moduli problem)

Given a dg Lie algebra (\mathfrak{g} , [,],d):

 $\begin{array}{rcl} \mathsf{Def}_{\mathfrak{g}} \colon \overset{}{\mathsf{dg}} \mathsf{Artin rings} & \to & \infty\text{- groupoids} & \mathsf{s.t.} \ [...] \\ \mathfrak{R} \cong \mathbb{K} \oplus \mathfrak{m} & \mapsto & (\mathrm{MC}_{\bullet}(\mathfrak{g} \otimes \mathfrak{m}), \mathbf{\textit{G}}) \end{array}$

• HEURISTIC: ∞ -groupoid \leftrightarrow topological space \leftrightarrow Kan complex

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Fundamental theorem of deformation theory

Definition (Formal moduli problem)

Given a dg Lie algebra (\mathfrak{g} , [,], d):

- $\begin{array}{rcl} \mathsf{Def}_{\mathfrak{g}} \colon & \mathsf{dg} \ \mathsf{Artin} \ \mathsf{rings} & \to & \infty\text{-} \ \mathsf{groupoids} & \mathsf{s.t.} \ [...] \\ & \mathfrak{R} \cong \mathbb{K} \oplus \mathfrak{m} & \mapsto & (\mathrm{MC}_{\bullet}(\mathfrak{g} \otimes \mathfrak{m}), G) \end{array}$
- HEURISTIC: ∞ -groupoid \leftrightarrow topological space \leftrightarrow Kan complex

Theorem ([Pridham-Lurie 2010])

char $\mathbb{K} = \mathbf{0} \Longrightarrow$ equivalence of ∞ -categories:

Formal moduli problems $\stackrel{\cong}{\longleftrightarrow}$ dg Lie algebras

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Inventory "à la Prevert"

« [...] une douzaine d'huîtres un citron un pain un rayon de soleil une lame de fond six musiciens [...] » Inventaire (Paroles, 1946)

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Inventory "à la Prevert"

« [...] une douzaine d'huîtres un citron un pain un rayon de soleil une lame de fond six musiciens [...] » Inventaire (Paroles, 1946)

 Higher Lie theory= higher BCH formulas [Robert-Nicoud–Vallette 2020]

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Inventory "à la Prevert"

« [...] une douzaine d'huîtres un citron un pain un rayon de soleil une lame de fond six musiciens [...] » Inventaire (Paroles, 1946)

- Higher Lie theory= higher BCH formulas [Robert-Nicoud–Vallette 2020]
- Tensor product of A_{∞} -algebras/categories PROOF: diagonal of operadic polytopes [Masuda–Thomas–Tonks–Vallette 2021]

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Inventory "à la Prevert"

« [...] une douzaine d'huîtres un citron un pain un rayon de soleil une lame de fond six musiciens [...] » Inventaire (Paroles, 1946)

- Higher Lie theory= higher BCH formulas [Robert-Nicoud–Vallette 2020]
- Tensor product of A_∞-algebras/categories PROOF: diagonal of operadic polytopes [Masuda–Thomas–Tonks–Vallette 2021]
- The enveloping algebra \mathcal{U} detects isomorphisms [Campos–Petersen–Robert-Nicoud–Wierstra 2019]

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Inventory "à la Prevert"

« [...] une douzaine d'huîtres un citron un pain un rayon de soleil une lame de fond six musiciens [...] » Inventaire (Paroles, 1946)

- Higher Lie theory= higher BCH formulas [Robert-Nicoud–Vallette 2020]
- Tensor product of A_∞-algebras/categories PROOF: diagonal of operadic polytopes [Masuda–Thomas–Tonks–Vallette 2021]
- The enveloping algebra \mathcal{U} detects isomorphisms [Campos–Petersen–Robert-Nicoud–Wierstra 2019]
- Purity of the mixed Hodge structure on Brown's moduli spaces M_{0,n} ⊂ M^δ_{0,n} ⊂ M
 _{0,n}
 [Dupont–Vallette 2017]

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Inventory "à la Prevert"

« [...] une douzaine d'huîtres un citron un pain un rayon de soleil une lame de fond six musiciens [...] » Inventaire (Paroles, 1946)

- Higher Lie theory= higher BCH formulas [Robert-Nicoud–Vallette 2020]
- Tensor product of A_∞-algebras/categories PROOF: diagonal of operadic polytopes [Masuda–Thomas–Tonks–Vallette 2021]
- The enveloping algebra \mathcal{U} detects isomorphisms [Campos–Petersen–Robert-Nicoud–Wierstra 2019]
- Purity of the mixed Hodge structure on Brown's moduli spaces M_{0,n} ⊂ M^δ_{0,n} ⊂ M
 _{0,n}
 [Dupont–Vallette 2017]
- Unification of the Grothendieck–Teichmüller group and the Givental group [Dotsenko–Shadrin–Vallette–Vaintrob 2020]

References

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Jean-Louis Loday Bruno Vallette

References

Derived deformation theory Quantisation of Poisson manifolds Fundamental theorem of deformation theory

Math+ Berlin Colloquium Why Higher Structures?

References

Fundamental theorem of deformation theory

Math+ Berlin Colloguium

Why Higher Structures?