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“In the XXth century, any mathematical theory was built on set
theory. In the XXIst century, any mathematical theory will be build
on a homotopy theory.”

Classical structures
Homotopy theory−−−−−−−−−−→ Higher structures

LEADING GOALS:
Classification of topological spaces up to homotopy
Quantise Poisson manifolds
Fundamental theorem of deformation theory

2 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Foreword

Yuri Ivanovich MANIN (1937-2023)

“In the XXth century, any mathematical theory was built on set
theory. In the XXIst century, any mathematical theory will be build
on a homotopy theory.”

Classical structures
Homotopy theory−−−−−−−−−−→ Higher structures

LEADING GOALS:
Classification of topological spaces up to homotopy
Quantise Poisson manifolds
Fundamental theorem of deformation theory

2 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Foreword

Yuri Ivanovich MANIN (1937-2023)

“In the XXth century, any mathematical theory was built on set
theory. In the XXIst century, any mathematical theory will be build
on a homotopy theory.”

Classical structures
Homotopy theory−−−−−−−−−−→ Higher structures

LEADING GOALS:
Classification of topological spaces up to homotopy
Quantise Poisson manifolds
Fundamental theorem of deformation theory

2 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Foreword

Yuri Ivanovich MANIN (1937-2023)

“In the XXth century, any mathematical theory was built on set
theory. In the XXIst century, any mathematical theory will be build
on a homotopy theory.”

Classical structures
Homotopy theory−−−−−−−−−−→ Higher structures

LEADING GOALS:
Classification of topological spaces up to homotopy
Quantise Poisson manifolds
Fundamental theorem of deformation theory

2 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Foreword

Yuri Ivanovich MANIN (1937-2023)

“In the XXth century, any mathematical theory was built on set
theory. In the XXIst century, any mathematical theory will be build
on a homotopy theory.”

Classical structures
Homotopy theory−−−−−−−−−−→ Higher structures

LEADING GOALS:
Classification of topological spaces up to homotopy
Quantise Poisson manifolds
Fundamental theorem of deformation theory

2 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Foreword

Yuri Ivanovich MANIN (1937-2023)

“In the XXth century, any mathematical theory was built on set
theory. In the XXIst century, any mathematical theory will be build
on a homotopy theory.”

Classical structures
Homotopy theory−−−−−−−−−−→ Higher structures

LEADING GOALS:

Classification of topological spaces up to homotopy
Quantise Poisson manifolds
Fundamental theorem of deformation theory

2 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Foreword

Yuri Ivanovich MANIN (1937-2023)

“In the XXth century, any mathematical theory was built on set
theory. In the XXIst century, any mathematical theory will be build
on a homotopy theory.”

Classical structures
Homotopy theory−−−−−−−−−−→ Higher structures

LEADING GOALS:
Classification of topological spaces up to homotopy

Quantise Poisson manifolds
Fundamental theorem of deformation theory

2 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Foreword

Yuri Ivanovich MANIN (1937-2023)

“In the XXth century, any mathematical theory was built on set
theory. In the XXIst century, any mathematical theory will be build
on a homotopy theory.”

Classical structures
Homotopy theory−−−−−−−−−−→ Higher structures

LEADING GOALS:
Classification of topological spaces up to homotopy
Quantise Poisson manifolds

Fundamental theorem of deformation theory

2 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Foreword

Yuri Ivanovich MANIN (1937-2023)

“In the XXth century, any mathematical theory was built on set
theory. In the XXIst century, any mathematical theory will be build
on a homotopy theory.”

Classical structures
Homotopy theory−−−−−−−−−−→ Higher structures

LEADING GOALS:
Classification of topological spaces up to homotopy
Quantise Poisson manifolds
Fundamental theorem of deformation theory

2 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Table of contents

1 Algebraic Topology in the XXth century

2 Homotopy+Algebra=Higher Structures

3 Lie methods in Deformation Theory

3 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Homotopy invariants
Comparing invariants
Classical algebraic structures

Table of contents

1 Algebraic Topology in the XXth century

2 Homotopy+Algebra=Higher Structures

3 Lie methods in Deformation Theory

4 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Homotopy invariants
Comparing invariants
Classical algebraic structures

Homotopy equivalence

→ Classification of topological spaces

STRONG EQUIVALENCE: up to homeomorphisms no
WEAK EQUIVALENCE: up to homotopy equivalence

“continuous deformation without cutting” yes

METHOD: find a set of faithful algebraic invariants

Betti numbers := number of holes: homotopy invariant
→ not faithful!

→ Amount of algebra used: N
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Differential graded module

IDEA: Encode algebraically a cellular decomposition
•0

•1

•
2

• 3

Z{0-cells} d0←− Z{1-cells} d1←− Z{2-cells} · · · dn(c) :=
∑

c′∈∂(c)
dim c′=n−1

± c′

Orientation =⇒ Signs =⇒ dn−1 ◦ dn = 0

EXAMPLE: Z0⊕ · · · ⊕ Z3← Z01⊕ · · · ⊕ Z23← Z012← 0← · · ·
dn(a0 · · · an) =

∑n
i=0(−1)ia0 . . . âi . . . an

Definition (differential graded module or chain complex)

(C• = {Cn}n∈N,d = {dn}n∈N) s.t. d2 = 0
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Homotopy invariants
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Homology groups

Definition (Homology groups)

Hn(X ,Z) := ker dn−1/ im dn

PROPERTIES: dim H0 = number of connected components
dim H1 = number of holes

Linear dual notion of cohomology groups
“Equivalent” definitions: de Rham complex, singular homology

Proposition (Homotopy invariance)

X ∼ Y =⇒ Hn(X ,Z) ∼= Hn(Y ,Z), ∀n ∈ N
→ not faithful!

→ Amount of algebra used: Linear algebra
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Homotopy group

Definition (Loop space)

Ω(X , x) :=
{
ϕ : [0,1]→ X |

ϕ continuous , ϕ(0) = ϕ(1) = x
}

 

CONCATENATION PRODUCT: ϕ ? ψ(t) :=

{
ϕ(2t) , for 0 6 t 6 1

2 ,

ψ(2t − 1) , for 1
2 6 t 6 1 .

→ is ? associative?
no: (ϕ ? ψ) ? ω 6=ϕ ? (ψ ? ω)

but: (ϕ ? ψ) ? ω∼ϕ ? (ψ ? ω)

0

0

1

1

1
4

1
2

1
2

3
4

0

1

ϕ ψ ω

Definition (Fundamental group)

π1(X , x) := (Ω(X , x)/ ∼, ?̄)

homotopy invariant
→ not faithful!

→ Amount of algebra used: Group

8 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Homotopy invariants
Comparing invariants
Classical algebraic structures

Homotopy group

Definition (Loop space)

Ω(X , x) :=
{
ϕ : [0,1]→ X |

ϕ continuous , ϕ(0) = ϕ(1) = x
}

 

CONCATENATION PRODUCT: ϕ ? ψ(t) :=

{
ϕ(2t) , for 0 6 t 6 1

2 ,

ψ(2t − 1) , for 1
2 6 t 6 1 .

→ is ? associative?
no: (ϕ ? ψ) ? ω 6=ϕ ? (ψ ? ω)

but: (ϕ ? ψ) ? ω∼ϕ ? (ψ ? ω)

0

0

1

1

1
4

1
2

1
2

3
4

0

1

ϕ ψ ω

Definition (Fundamental group)

π1(X , x) := (Ω(X , x)/ ∼, ?̄)

homotopy invariant
→ not faithful!

→ Amount of algebra used: Group

8 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Homotopy invariants
Comparing invariants
Classical algebraic structures

Homotopy group

Definition (Loop space)

Ω(X , x) :=
{
ϕ : [0,1]→ X |

ϕ continuous , ϕ(0) = ϕ(1) = x
}

 

CONCATENATION PRODUCT: ϕ ? ψ(t) :=

{
ϕ(2t) , for 0 6 t 6 1

2 ,

ψ(2t − 1) , for 1
2 6 t 6 1 .

→ is ? associative?
no: (ϕ ? ψ) ? ω 6=ϕ ? (ψ ? ω)

but: (ϕ ? ψ) ? ω∼ϕ ? (ψ ? ω)

0

0

1

1

1
4

1
2

1
2

3
4

0

1

ϕ ψ ω

Definition (Fundamental group)

π1(X , x) := (Ω(X , x)/ ∼, ?̄)

homotopy invariant
→ not faithful!

→ Amount of algebra used: Group

8 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Homotopy invariants
Comparing invariants
Classical algebraic structures

Homotopy group

Definition (Loop space)

Ω(X , x) :=
{
ϕ : [0,1]→ X |

ϕ continuous , ϕ(0) = ϕ(1) = x
}

 

CONCATENATION PRODUCT: ϕ ? ψ(t) :=

{
ϕ(2t) , for 0 6 t 6 1

2 ,

ψ(2t − 1) , for 1
2 6 t 6 1 .

→ is ? associative?

no: (ϕ ? ψ) ? ω 6=ϕ ? (ψ ? ω)

but: (ϕ ? ψ) ? ω∼ϕ ? (ψ ? ω)

0

0

1

1

1
4

1
2

1
2

3
4

0

1

ϕ ψ ω

Definition (Fundamental group)

π1(X , x) := (Ω(X , x)/ ∼, ?̄)

homotopy invariant
→ not faithful!

→ Amount of algebra used: Group

8 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Homotopy invariants
Comparing invariants
Classical algebraic structures

Homotopy group

Definition (Loop space)

Ω(X , x) :=
{
ϕ : [0,1]→ X |

ϕ continuous , ϕ(0) = ϕ(1) = x
}

 

CONCATENATION PRODUCT: ϕ ? ψ(t) :=

{
ϕ(2t) , for 0 6 t 6 1

2 ,

ψ(2t − 1) , for 1
2 6 t 6 1 .

→ is ? associative?

no: (ϕ ? ψ) ? ω 6=ϕ ? (ψ ? ω)

but: (ϕ ? ψ) ? ω∼ϕ ? (ψ ? ω)

0

0

1

1

1
4

1
2

1
2

3
4

0

1

ϕ ψ ω

Definition (Fundamental group)

π1(X , x) := (Ω(X , x)/ ∼, ?̄)

homotopy invariant
→ not faithful!

→ Amount of algebra used: Group

8 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Homotopy invariants
Comparing invariants
Classical algebraic structures

Homotopy group

Definition (Loop space)

Ω(X , x) :=
{
ϕ : [0,1]→ X |

ϕ continuous , ϕ(0) = ϕ(1) = x
}

 

CONCATENATION PRODUCT: ϕ ? ψ(t) :=

{
ϕ(2t) , for 0 6 t 6 1

2 ,

ψ(2t − 1) , for 1
2 6 t 6 1 .

→ is ? associative?
no: (ϕ ? ψ) ? ω 6=ϕ ? (ψ ? ω)

but: (ϕ ? ψ) ? ω∼ϕ ? (ψ ? ω)

0

0

1

1

1
4

1
2

1
2

3
4

0

1

ϕ ψ ω

Definition (Fundamental group)

π1(X , x) := (Ω(X , x)/ ∼, ?̄)

homotopy invariant
→ not faithful!

→ Amount of algebra used: Group

8 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Homotopy invariants
Comparing invariants
Classical algebraic structures

Homotopy group

Definition (Loop space)

Ω(X , x) :=
{
ϕ : [0,1]→ X |

ϕ continuous , ϕ(0) = ϕ(1) = x
}

 

CONCATENATION PRODUCT: ϕ ? ψ(t) :=

{
ϕ(2t) , for 0 6 t 6 1

2 ,

ψ(2t − 1) , for 1
2 6 t 6 1 .

→ is ? associative?
no: (ϕ ? ψ) ? ω 6=ϕ ? (ψ ? ω)

but: (ϕ ? ψ) ? ω∼ϕ ? (ψ ? ω)

0

0

1

1

1
4

1
2

1
2

3
4

0

1

ϕ ψ ω

Definition (Fundamental group)

π1(X , x) := (Ω(X , x)/ ∼, ?̄)

homotopy invariant
→ not faithful!

→ Amount of algebra used: Group

8 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Homotopy invariants
Comparing invariants
Classical algebraic structures

Homotopy group

Definition (Loop space)

Ω(X , x) :=
{
ϕ : [0,1]→ X |

ϕ continuous , ϕ(0) = ϕ(1) = x
}

 

CONCATENATION PRODUCT: ϕ ? ψ(t) :=

{
ϕ(2t) , for 0 6 t 6 1

2 ,

ψ(2t − 1) , for 1
2 6 t 6 1 .

→ is ? associative?
no: (ϕ ? ψ) ? ω 6=ϕ ? (ψ ? ω)

but: (ϕ ? ψ) ? ω∼ϕ ? (ψ ? ω)

0

0

1

1

1
4

1
2

1
2

3
4

0

1

ϕ ψ ω

Definition (Fundamental group)

π1(X , x) := (Ω(X , x)/ ∼, ?̄)

homotopy invariant
→ not faithful!

→ Amount of algebra used: Group

8 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Homotopy invariants
Comparing invariants
Classical algebraic structures

Homotopy group

Definition (Loop space)

Ω(X , x) :=
{
ϕ : [0,1]→ X |

ϕ continuous , ϕ(0) = ϕ(1) = x
}

 

CONCATENATION PRODUCT: ϕ ? ψ(t) :=

{
ϕ(2t) , for 0 6 t 6 1

2 ,

ψ(2t − 1) , for 1
2 6 t 6 1 .

→ is ? associative?
no: (ϕ ? ψ) ? ω 6=ϕ ? (ψ ? ω)

but: (ϕ ? ψ) ? ω∼ϕ ? (ψ ? ω)

0

0

1

1

1
4

1
2

1
2

3
4

0

1

ϕ ψ ω

Definition (Fundamental group)

π1(X , x) := (Ω(X , x)/ ∼, ?̄)

homotopy invariant

→ not faithful!

→ Amount of algebra used: Group

8 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Homotopy invariants
Comparing invariants
Classical algebraic structures

Homotopy group

Definition (Loop space)

Ω(X , x) :=
{
ϕ : [0,1]→ X |

ϕ continuous , ϕ(0) = ϕ(1) = x
}

 

CONCATENATION PRODUCT: ϕ ? ψ(t) :=

{
ϕ(2t) , for 0 6 t 6 1

2 ,

ψ(2t − 1) , for 1
2 6 t 6 1 .

→ is ? associative?
no: (ϕ ? ψ) ? ω 6=ϕ ? (ψ ? ω)

but: (ϕ ? ψ) ? ω∼ϕ ? (ψ ? ω)

0

0

1

1

1
4

1
2

1
2

3
4

0

1

ϕ ψ ω

Definition (Fundamental group)

π1(X , x) := (Ω(X , x)/ ∼, ?̄)

homotopy invariant
→ not faithful!

→ Amount of algebra used: Group

8 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Homotopy invariants
Comparing invariants
Classical algebraic structures

Homotopy group

Definition (Loop space)

Ω(X , x) :=
{
ϕ : [0,1]→ X |

ϕ continuous , ϕ(0) = ϕ(1) = x
}

 

CONCATENATION PRODUCT: ϕ ? ψ(t) :=

{
ϕ(2t) , for 0 6 t 6 1

2 ,

ψ(2t − 1) , for 1
2 6 t 6 1 .

→ is ? associative?
no: (ϕ ? ψ) ? ω 6=ϕ ? (ψ ? ω)

but: (ϕ ? ψ) ? ω∼ϕ ? (ψ ? ω)

0

0

1

1

1
4

1
2

1
2

3
4

0

1

ϕ ψ ω

Definition (Fundamental group)

π1(X , x) := (Ω(X , x)/ ∼, ?̄)

homotopy invariant
→ not faithful!

→ Amount of algebra used: Group
8 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Homotopy invariants
Comparing invariants
Classical algebraic structures

Category theory
GOAL 1: encode how functorial these invariants are

X Hn(X ,Z)

Y Hn(Y ,Z)

f continuous Hn(f ) morphism

Définition (Category [Eilenberg–MacLane, 1942])

OBJECTS+COMPOSABLE ARROWS:
“monoid with many base points”

EXAMPLE: Topological spaces+continuous maps

•
��

�� ��

•oo
oo

yy

•%%

FF

•

FF

YY

GOAL 2: compare the invariants

Theorem (Hurewicz)

π1(X )� π1(X )/[π1(X ), π1(X )] ∼= H1(X ,Z)

=⇒ 2-category (higher structure)

Top Group

π1

H1
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Lie methods in Deformation Theory

Homotopy invariants
Comparing invariants
Classical algebraic structures

The three Graces

skew-symmetrisation: [x , y ] := xy − yx .

Definition (Universal enveloping algebra)

Ug := T(g)/(x ⊗ y − y ⊗ x − [x , y ])

where T(g) =
⊕

n∈N g⊗n : free associative algebra (nc polynomials)
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Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Homotopy invariants
Comparing invariants
Classical algebraic structures

Classical algebraic structures(
C•sing(X ,Z),∪, d

)
: singular cochains with the cup product

differential graded associative algebra

(
H•sing(X ,Z),∪

)
: singular cohomology with the cup product

graded commutative algebra

FIRST HIGHER HOMOTOPY: ∪1 : C•sing(X ,Z)⊗2 → C•sing(X ,Z)

d ◦ ∪1 + ∪1 ◦ (d⊗ id) + ∪1 ◦ (id⊗ d) = ∪ − ∪(12)(
π•+1(X ), [ , ]

)
: homotopy groups with the Whitehead bracket

graded Lie algebra

homotopy invariant→ not faithful!

→ Amount of algebra used: associative, commutative, Lie algebra
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SIMPLEST ALGEBRAIC STRUCTURE: ∆ : A→ A , ∆2 = 0

Proposition (Transfer of structure)

p : A // H : ioo , pi = idH , ip = idA

=⇒ δ := p∆i , δ2 = 0

Proof.
δ2 = p∆ ip︸︷︷︸

=idA

∆i = p ∆2︸︷︷︸
=0

i

= 0

ALGEBRAIC HOMOTOPY EQUIVALENCE: Deformation retract

h !!
p //

i
oo

(A,dA)h
&& p //

(H,dH)
i

oo

idA − ip = dAh + hdA

6= 0

TRANSFERRED STRUCTURE: δ1 := p∆i (δ1)2 6= 0

→ (δ1)2 = p∆ ip︸︷︷︸∆ip ∆2︸︷︷︸
=0

i = 0
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Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Multicomplexes
Homotopy associative algebras
Operadic calculus

First higher operations

IDEA: introduce a higher operation δ2 := p∆h∆i

=⇒ ∂
(
δ2
)

:= dAδ2 + δ2dA = (δ1)2

↔ δ2 is a homotopy for the relation (δ1)2 = 0

QUESTION: strict relation δ1δ2 + δ2δ1 = 0? no 6= 0

IDEA: introduce an even higher operation δ3 := p∆h∆h∆i

=⇒ ∂
(
δ3
)

= δ1δ2 + δ2δ1

↔ δ3 is a homotopy for the relation δ1δ2 + δ2δ1 = 0
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Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory
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Higher structure: multicomplex

Higher up, we consider: δn := p(∆h)n−1∆i , for n ≥ 1

Proposition

∂
(
δn
)

=
n−1∑
k=1

δkδn−k , for n ≥ 1 .

Definition (Multicomplex)

(H, δ0 := −dH , δ1, δ2, . . .) graded vector space H endowed with a
family of linear operators of degree |δn| = 2n − 1 satisfying

n∑
k=0

δkδn−k = 0 , for n ≥ 0 .

MIXED COMPLEX OR BICOMPLEX: multicomplex s.t. δn = 0, n ≥ 2.
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Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Multicomplexes
Homotopy associative algebras
Operadic calculus

Multicomplexes are homotopy stable

Starting now from a multicomplex (A,∆0 = −dA,∆1,∆2, . . .)

Consider the transferred operators

δn :=
∑

k1+···+kl=n

p∆k1h∆k2h . . . h∆kl i , for n ≥ 1

Proposition

∂
(
δn
)

=
n−1∑
k=1

δkδn−k in Hom(A,A), for n ≥ 1

=⇒ Again a multicomplex, no need of further higher structure

16 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Multicomplexes
Homotopy associative algebras
Operadic calculus

Multicomplexes are homotopy stable

Starting now from a multicomplex (A,∆0 = −dA,∆1,∆2, . . .)

Consider the transferred operators

δn :=
∑

k1+···+kl=n

p∆k1h∆k2h . . . h∆kl i , for n ≥ 1

Proposition

∂
(
δn
)

=
n−1∑
k=1

δkδn−k in Hom(A,A), for n ≥ 1

=⇒ Again a multicomplex, no need of further higher structure

16 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Multicomplexes
Homotopy associative algebras
Operadic calculus

Multicomplexes are homotopy stable

Starting now from a multicomplex (A,∆0 = −dA,∆1,∆2, . . .)

Consider the transferred operators

δn :=
∑

k1+···+kl=n

p∆k1h∆k2h . . . h∆kl i , for n ≥ 1

Proposition

∂
(
δn
)

=
n−1∑
k=1

δkδn−k in Hom(A,A), for n ≥ 1

=⇒ Again a multicomplex, no need of further higher structure

16 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Multicomplexes
Homotopy associative algebras
Operadic calculus

Multicomplexes are homotopy stable

Starting now from a multicomplex (A,∆0 = −dA,∆1,∆2, . . .)

Consider the transferred operators

δn :=
∑

k1+···+kl=n

p∆k1h∆k2h . . . h∆kl i , for n ≥ 1

Proposition

∂
(
δn
)

=
n−1∑
k=1

δkδn−k in Hom(A,A), for n ≥ 1

=⇒ Again a multicomplex, no need of further higher structure

16 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Multicomplexes
Homotopy associative algebras
Operadic calculus

Higher morphisms

(A,∆0 = −dA,∆1,∆2, . . .)︸ ︷︷ ︸
Original structure

i←− (H, δ0 = −dH , δ1, δ2, . . .)︸ ︷︷ ︸
Transferred structure

i chain map ⇐⇒ ∆0i = iδ0

QUESTION: does i commute with the higher ∆’s and δ’s?

iδ1 = ip︸︷︷︸
∼h idA

∆1i 6= ∆1i in general!

Definition (∞-morphism)

i∞ : (H, δ0 = −dH , δ1, δ2, . . .) (A,∆0 = −dA,∆1,∆2, . . .)
collection of maps {in : H → A}n≥0 satisfying

n∑
k=0

∆n−k ik =
n∑

k=0

ikδn−k , for n ≥ 0 .
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QUESTION: does i commute with the higher ∆’s and δ’s?

iδ1 = ip︸︷︷︸
∼h idA

∆1i 6= ∆1i in general!

Definition (∞-morphism)

i∞ : (H, δ0 = −dH , δ1, δ2, . . .) (A,∆0 = −dA,∆1,∆2, . . .)
collection of maps {in : H → A}n≥0 satisfying

n∑
k=0

∆n−k ik =
n∑

k=0

ikδn−k , for n ≥ 0 .
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∞-quasi-isomorphism

Definition (∞-quasi-isomorphism)

∞-morphism i : H ∼
 A s.t. i0 : H ∼−→ A homology isomorphism

Proposition
∞-quasi-isomorphisms are (homotopy) invertible

→Wrong for homology isomorphisms of mixed complexes:
not invertible!

Proof.

(1− X )−1 = 1 + X + X 2 + X 3 + · · · in K[[X ]].
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Homotopy Transfer Theorem for multicomplexes

Theorem (Homotopy Transfer Theorem [Lapin 2001])
Given any deformation retract

(A,dA)h
&& p //

(H,dH)
i

oo idA − ip = dAh + hdA

and any mixed complex (or multicomplex) structure on A, there
exists a multicomplex structure on H such that i and p extend to
∞-quasi-isomorphisms and such that h extends to an∞-homotopy.

−→ explicit formulas & no loss of algebro-homotopic data

APPLICATION 1: spectral sequences
APPLICATION 2: cyclic homology (Connes’ boundary map
B= δ2, Chern characters = i∞)
APPLICATION 3: optimal version of the dd̄-lemma
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Doors of hell or pandora’s box?

Verse-nous ton poison pour qu’il nous réconforte !

Nous voulons, tant ce feu nous brûle le cerveau,

Plonger au fond du gouffre, Enfer ou Ciel, qu’importe ?

Au fond de l’Inconnu pour trouver du nouveau !

Le voyage, Charles Baudelaire (Les fleurs du mal, 1861)
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Transfer associative algebra structure

ANOTHER ALGEBRAIC STRUCTURE: associative algebra ν =

2 BRUNO VALLETTE

This text does not pretend to be exhaustive, nor to serve as a faithful reference to the existing literature. Its
only aim is to give a gentle introduction to the ideas of this field of mathematics. We would like to share
here one point of view on the subject, from “student to student”. It includes many figures and exercises to
help the learning reader in its journey. To ease the reading, we skipped many technical details, which can
be found in the book [LV10].

CONVENTION. In this text, a chain complex (V, d) is usually a graded module V := {Vn}n2Z equipped
with a degree�1 map d (homological convention), which squares to zero. For the simplicity of the presen-
tation, we always work over a field K of characteristic 0, even if some exposed results admit generalizations
beyond that case.

1. WHEN ALGEBRA MEETS HOMOTOPY

In this section, we treat the mother example of higher algebras: A1-algebras. We show how this notion
appears naturally when one tries to transfer the structure of an associative algebra through homotopy data.
We provide an elementary but extensive study of its homotopy properties (Homotopy Transfer Theorem,
A1-morphism, Massey products and homotopy category).

1.1. Homotopy data and algebraic data. Let us first consider the following homotopy data of chain
complexes:

(A, dA)h
%%

p
// (H, dH)

i
oo

IdA � ip = dAh + hdA ,

where i and p are morphisms of chain complexes and where h is a degree +1 map. It is called a homotopy
retract, when the map i is a quasi-isomorphism, i.e. when it realizes an isomorphism in homology. If
moreover pi = IdH , then it is called a deformation retract.

EXERCISE 1. Since we work over a field, show that any quasi-isomorphism i extends to a homotopy
retract. (Such a statement holds over Z when all the Z-modules are free.)
Hint. Use the same kind of decomposition of chain complexes with their homology groups as in Sec-
tion 1.4.

Independently, let us consider the following algebraic data of an associative algebra structure on A:

⌫ : A⌦2 ! A, such that ⌫(⌫(a, b), c) = ⌫(a, ⌫(b, c)), 8a, b, c 2 A .

By simplicity, we choose to depict these composites by the following graphically composition schemes:

where we forget about the input variables since they are generic. Actually, we consider a differential graded
associative algebra structure on (A, dA), dga algebra for short, on A. This means that the differential dA

of A is a derivation for the product ⌫:

(In this section, we do not require that the associative algebra has a unit.)

Proposition (Transfer of structure)

p : A // H : ioo , pi = idH , ip = idA =⇒ µ2 := p ν i⊗2 : associative

µ2 =

not associative!

i i

p

i i

p

6=∼h

i i

i

p

=

i i

i

p

6=∼h

i i

p

i i

p
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Transfer associative algebra structure

ANOTHER ALGEBRAIC STRUCTURE: associative algebra ν =

2 BRUNO VALLETTE

This text does not pretend to be exhaustive, nor to serve as a faithful reference to the existing literature. Its
only aim is to give a gentle introduction to the ideas of this field of mathematics. We would like to share
here one point of view on the subject, from “student to student”. It includes many figures and exercises to
help the learning reader in its journey. To ease the reading, we skipped many technical details, which can
be found in the book [LV10].

CONVENTION. In this text, a chain complex (V, d) is usually a graded module V := {Vn}n2Z equipped
with a degree�1 map d (homological convention), which squares to zero. For the simplicity of the presen-
tation, we always work over a field K of characteristic 0, even if some exposed results admit generalizations
beyond that case.

1. WHEN ALGEBRA MEETS HOMOTOPY

In this section, we treat the mother example of higher algebras: A1-algebras. We show how this notion
appears naturally when one tries to transfer the structure of an associative algebra through homotopy data.
We provide an elementary but extensive study of its homotopy properties (Homotopy Transfer Theorem,
A1-morphism, Massey products and homotopy category).

1.1. Homotopy data and algebraic data. Let us first consider the following homotopy data of chain
complexes:

(A, dA)h
%%

p
// (H, dH)

i
oo

IdA � ip = dAh + hdA ,

where i and p are morphisms of chain complexes and where h is a degree +1 map. It is called a homotopy
retract, when the map i is a quasi-isomorphism, i.e. when it realizes an isomorphism in homology. If
moreover pi = IdH , then it is called a deformation retract.

EXERCISE 1. Since we work over a field, show that any quasi-isomorphism i extends to a homotopy
retract. (Such a statement holds over Z when all the Z-modules are free.)
Hint. Use the same kind of decomposition of chain complexes with their homology groups as in Sec-
tion 1.4.

Independently, let us consider the following algebraic data of an associative algebra structure on A:

⌫ : A⌦2 ! A, such that ⌫(⌫(a, b), c) = ⌫(a, ⌫(b, c)), 8a, b, c 2 A .

By simplicity, we choose to depict these composites by the following graphically composition schemes:

where we forget about the input variables since they are generic. Actually, we consider a differential graded
associative algebra structure on (A, dA), dga algebra for short, on A. This means that the differential dA

of A is a derivation for the product ⌫:

(In this section, we do not require that the associative algebra has a unit.)Isomorphism→ Deformation retract: (A,dA)h
&& p //

(H,dH)
i

oo

idA − ip = dAh + hdA 6= 0

µ2 =
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Algebraic Topology in the XXth century
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Multicomplexes
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Higher operations
IDEA: introduce a higher operation µ3 : H⊗3 → H

mesures the failure of
associativity for µ2

in Hom(H⊗3,H)

↔ µ3 is a homotopy for the associativity relation of µ2.

Even higher operations:
µn : H⊗n → H, ∀n > 2
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Higher structure: homotopy associative algebras

Proposition

The operations {µn}n≥2 satisfy

Définition (A∞-algebras [Stasheff, 1963])

(H, µ1 = dH , µ2, µ3, . . .)

µn : H⊗n → H
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A∞-algebras are homotopy stable

→ Starting from an A∞-algebra (A,dA, ν2, ν3, . . .):

Consider µn =

Proposition

=⇒ Again an A∞-algebra, no need of further higher structure
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Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Multicomplexes
Homotopy associative algebras
Operadic calculus

Higher morphisms

(A,dA, ν2, ν3, . . .)︸ ︷︷ ︸
Original structure

i←− (H,dH , µ2, µ3, . . .)︸ ︷︷ ︸
Transferred structure

i chain map ⇐⇒ dAi = idH

QUESTION: Does i commutes with the higher ν’s and µ’s?
→ not in general!

Définition (A∞-morphism)

(H,dH , {µn}n≥2) (A, dA, {νn}n≥2): collection {fn : H⊗n → A}n≥1
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Homotopy Transfer Theorem for A∞-algebras

A∞-QUASI-ISOMORPHISM: i : H ∼
 A s.t. i0 : H ∼−→ A homology iso.

Theorem (HTT for A∞-algebras [Kadeshvili 1982])

Given a A∞-algebra A and a deformation retract

(A,dA)h
&& p //

(H,dH)
i

oo idA − ip = dAh + hdA

there exists an A∞-algebra structure on H such that i, p, and h
extend to A∞-quasi-isomorphisms and A∞-homotopy respectively.

−→ explicit formulas & no loss of algebro-homotopic data

APPLICATION 1: Massey products on H•(X ,K)
→ Galois cohomology, elliptic curves, etc.
APPLICATION 2 : A∞-categories
→ Floer cohomology, mirror symmetry, etc.
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Operadic calculus [1994-now]
an operad P

��

P∞: quasi-free resolution (cofibrant)

��

∼oo

category of algebras
of type P

⊂ // category of P∞-algebra =
category of homotopy P-algebras

Ass = T
( )

/
(

−
)

︸ ︷︷ ︸
quotient

∼←− A∞ :=
(
T
(
• ⊕ • ⊕ · · ·

)
,d
)

︸ ︷︷ ︸
quasi−free

.

EXAMPLES: Lie∞, Com∞, LieBi∞, Frobenius∞, etc.
THEOREM: Homotopy transfer theorem
APPLICATIONS: Feynman diagrams, NC probability, etc.

Theorem (Mandell [2005])
The homotopy type of a topological space X is faithfully detected
by the E∞-algebra structure on its singular cochains C•sing(X ,Z).
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Derived deformation theory
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Fundamental theorem of deformation theory

Classical Lie theory

LIE 3rd THEOREM: Lie algebra g
exp−−→ Lie Group G

Definition (Baker–Campbell-Hausdorff formula)

BCH(x , y) := ln (exp(x).exp(y)) ∈ K〈〈x , y〉〉 ∼= Âss(x , y)

Theorem

BCH(x , y) = x + y + 1
2 [x , y ] + 1

12 [x , [x , y ]] + 1
12 [y , [x , y ]] + · · ·

∈ L̂ie(x , y) ⊂ Âss(x , y)

BCH(BCH(x , y), z) = BCH(x ,BCH(y , z))

BCH(x ,0) = x = BCH(0, x)

Definition (Hausdorff group)

(g, [ , ]) complete Lie algebra =⇒ G := (g,BCH,0) Hausdorff group
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BCH(BCH(x , y), z) = BCH(x ,BCH(y , z))

BCH(x ,0) = x = BCH(0, x)

Definition (Hausdorff group)

(g, [ , ]) complete Lie algebra =⇒ G := (g,BCH,0) Hausdorff group

29 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Derived deformation theory
Quantisation of Poisson manifolds
Fundamental theorem of deformation theory

Deformation theory

→ DIFFERENTIAL GRADED LIE ALGEBRA: (g, [ , ], d)

Definition (Maurer–Cartan elements)

MC(g) :=
{
α ∈ g−1 | dα + 1

2 [α, α] = 0
}

Proposition

The Hausdorff group G of g0 acts on MC(g)

→ PHILOSOPHY: “Any deformation problem over a field of
characteristic 0 can be encoded by a dg Lie algebra.”

structures of type P on a “space” A ←→ MC(gP,A)
equivalence ←→ G

(Hoch•(A,A), [ , ]Gerst ): associative algebras / isomorphisms
(Γ(Λ•TM), [ , ]SN) : Poisson structure / diffeomorphisms

30 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Derived deformation theory
Quantisation of Poisson manifolds
Fundamental theorem of deformation theory

Deformation theory

→ DIFFERENTIAL GRADED LIE ALGEBRA: (g, [ , ], d)

Definition (Maurer–Cartan elements)

MC(g) :=
{
α ∈ g−1 | dα + 1

2 [α, α] = 0
}

Proposition

The Hausdorff group G of g0 acts on MC(g)

→ PHILOSOPHY: “Any deformation problem over a field of
characteristic 0 can be encoded by a dg Lie algebra.”

structures of type P on a “space” A ←→ MC(gP,A)
equivalence ←→ G

(Hoch•(A,A), [ , ]Gerst ): associative algebras / isomorphisms
(Γ(Λ•TM), [ , ]SN) : Poisson structure / diffeomorphisms

30 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Derived deformation theory
Quantisation of Poisson manifolds
Fundamental theorem of deformation theory

Deformation theory

→ DIFFERENTIAL GRADED LIE ALGEBRA: (g, [ , ], d)

Definition (Maurer–Cartan elements)

MC(g) :=
{
α ∈ g−1 | dα + 1

2 [α, α] = 0
}

Proposition

The Hausdorff group G of g0 acts on MC(g)

→ PHILOSOPHY: “Any deformation problem over a field of
characteristic 0 can be encoded by a dg Lie algebra.”

structures of type P on a “space” A ←→ MC(gP,A)
equivalence ←→ G

(Hoch•(A,A), [ , ]Gerst ): associative algebras / isomorphisms
(Γ(Λ•TM), [ , ]SN) : Poisson structure / diffeomorphisms

30 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Derived deformation theory
Quantisation of Poisson manifolds
Fundamental theorem of deformation theory

Deformation theory

→ DIFFERENTIAL GRADED LIE ALGEBRA: (g, [ , ], d)

Definition (Maurer–Cartan elements)

MC(g) :=
{
α ∈ g−1 | dα + 1

2 [α, α] = 0
}

Proposition

The Hausdorff group G of g0 acts on MC(g)

→ PHILOSOPHY: “Any deformation problem over a field of
characteristic 0 can be encoded by a dg Lie algebra.”

structures of type P on a “space” A ←→ MC(gP,A)
equivalence ←→ G

(Hoch•(A,A), [ , ]Gerst ): associative algebras / isomorphisms
(Γ(Λ•TM), [ , ]SN) : Poisson structure / diffeomorphisms

30 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Derived deformation theory
Quantisation of Poisson manifolds
Fundamental theorem of deformation theory

Deformation theory

→ DIFFERENTIAL GRADED LIE ALGEBRA: (g, [ , ], d)

Definition (Maurer–Cartan elements)

MC(g) :=
{
α ∈ g−1 | dα + 1

2 [α, α] = 0
}

Proposition

The Hausdorff group G of g0 acts on MC(g)

→ PHILOSOPHY: “Any deformation problem over a field of
characteristic 0 can be encoded by a dg Lie algebra.”

structures of type P on a “space” A ←→ MC(gP,A)

equivalence ←→ G

(Hoch•(A,A), [ , ]Gerst ): associative algebras / isomorphisms
(Γ(Λ•TM), [ , ]SN) : Poisson structure / diffeomorphisms

30 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Derived deformation theory
Quantisation of Poisson manifolds
Fundamental theorem of deformation theory

Deformation theory

→ DIFFERENTIAL GRADED LIE ALGEBRA: (g, [ , ], d)

Definition (Maurer–Cartan elements)

MC(g) :=
{
α ∈ g−1 | dα + 1

2 [α, α] = 0
}

Proposition

The Hausdorff group G of g0 acts on MC(g)

→ PHILOSOPHY: “Any deformation problem over a field of
characteristic 0 can be encoded by a dg Lie algebra.”

structures of type P on a “space” A ←→ MC(gP,A)
equivalence ←→ G

(Hoch•(A,A), [ , ]Gerst ): associative algebras / isomorphisms
(Γ(Λ•TM), [ , ]SN) : Poisson structure / diffeomorphisms

30 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Derived deformation theory
Quantisation of Poisson manifolds
Fundamental theorem of deformation theory

Deformation theory

→ DIFFERENTIAL GRADED LIE ALGEBRA: (g, [ , ], d)

Definition (Maurer–Cartan elements)

MC(g) :=
{
α ∈ g−1 | dα + 1

2 [α, α] = 0
}

Proposition

The Hausdorff group G of g0 acts on MC(g)

→ PHILOSOPHY: “Any deformation problem over a field of
characteristic 0 can be encoded by a dg Lie algebra.”

structures of type P on a “space” A ←→ MC(gP,A)
equivalence ←→ G

(Hoch•(A,A), [ , ]Gerst ): associative algebras / isomorphisms

(Γ(Λ•TM), [ , ]SN) : Poisson structure / diffeomorphisms

30 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Derived deformation theory
Quantisation of Poisson manifolds
Fundamental theorem of deformation theory

Deformation theory

→ DIFFERENTIAL GRADED LIE ALGEBRA: (g, [ , ], d)

Definition (Maurer–Cartan elements)

MC(g) :=
{
α ∈ g−1 | dα + 1

2 [α, α] = 0
}

Proposition

The Hausdorff group G of g0 acts on MC(g)

→ PHILOSOPHY: “Any deformation problem over a field of
characteristic 0 can be encoded by a dg Lie algebra.”

structures of type P on a “space” A ←→ MC(gP,A)
equivalence ←→ G

(Hoch•(A,A), [ , ]Gerst ): associative algebras / isomorphisms
(Γ(Λ•TM), [ , ]SN) : Poisson structure / diffeomorphisms

30 / 34 Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Derived deformation theory
Quantisation of Poisson manifolds
Fundamental theorem of deformation theory

Deformation quantisation of Poisson manifolds

Theorem (Kontsevich [1997])

Any Poisson manifold (M, π) can be quantised:
∃ associative product ∗ on C∞(M)[[~]] s.t. ∗0 = · and ∗1 = { , }

Proof.
The functor: dg nilpotent Lie algebra (g, [ , ], d) 7→ MC(g)/G
sends quasi-isomorphisms to bijections.
The Hochschild–Kostant–Rosenberg quasi-isomorphism

Γ(Λ•TM)
∼−→ Hoch•(C∞(M),C∞(M))

(fails to respect to Lie brackets)
extends to a Lie∞-quasi-isomorphism.
∃ Lie∞-quasi-isomorphism⇔ ∃ zig-zag of quasi-isomorphisms
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Fundamental theorem of deformation theory

Definition (Deformation functor)

Given a dg Lie algebra (g, [ , ], d):

Defg :

dg

Artin rings →

∞-

groupoids

s.t. [...]

R ∼= K⊕m 7→ (MC

•

(g⊗m),G)

HEURISTIC: ∞-groupoid↔ topological space↔ Kan complex
 

Theorem ([Pridham–Lurie 2010])
charK = 0 =⇒ equivalence of∞-categories:

Formal moduli problems
∼=←→ dg Lie algebras
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PROOF: diagonal of operadic polytopes
[Masuda–Thomas–Tonks–Vallette 2021]

The enveloping algebra U detects isomorphisms
[Campos–Petersen–Robert-Nicoud–Wierstra 2019]

Purity of the mixed Hodge structure on Brown’s
moduli spacesM0,n ⊂Mδ

0,n ⊂M0,n
[Dupont–Vallette 2017]

Unification of the Grothendieck–Teichmüller group
and the Givental group
[Dotsenko–Shadrin–Vallette–Vaintrob 2020]

THE DIAGONAL OF THE ASSOCIAHEDRA 15

Under the cellular chain functor, we recover the classical di�erential graded non-symmetric operad
A1 encoding homotopy associative algebras [20], see also [12, Chapter 9]. To understand the induced
diagonal on the di�erential graded level, we need the following magical formula describing its cellular
structure.

4. T�� ������� �������

Theorem 2 (Magical formula). For any Loday realization of the associahedra, the approximation of the
diagonal satis�es

Im4n =
[

topFbotG
dimF+dimG=n�2

F ⇥ G .

⇥ ⇥

⇥

⇥

⇥ ⇥

F����� 7. The polytopal subdivision � (F4) of K4.

The pairs of faces appearing on the right-hand side of the magical formula are called matching pairs.
In other words, the tight coherent subdivision Fn = {(F,G) | top F  bot G, dim F + dim G = n � 2},
made up of matching pairs, gives a polytopal subdivision of the associahedra under �. Applying
the cellular chain functor, we recover the di�erential graded diagonal given in [17, 13]. Notice that
neither the pointwise version nor the cellular version of the diagonal map 4n can be coassociative
by [13, Theorem 13].

4.1. First step: Im4n ⇢ S
F ⇥G. We prove this property more generally for any product P B K!1

⇥
· · ·⇥K!k

of Loday realizations of the associahedra. Recall that P ⇢ RN , where N B n1 + · · ·+ nk � k,
and d B dim P = n1+ · · ·+nk�2k. The set V(P) of vertices of P coincides with PBTn1

⇥ · · ·⇥PBTnk .
By Proposition 2, any vector ~v = (v1, v2, . . . , vN ) satisfying

v1 > · · · > vn1�1 , vn1
> · · · > vn1+n2�2 , . . . , vn1+· · ·+nk�1�k+2 > · · · > vN

makes (P,~v) into a positively oriented polytope with 1-skeleton isomorphic to the product of Tamari
lattices.

Brown’s moduli spaces of curves and the gravity operad 2833

Figure 4: The combinatorial structure of Mı
0;5

The stratum corresponding to the corolla is the open stratum M0;S . For d D fcg 2

Diss1.S; ı/ a dissection consisting of only one chord, we get a divisor

Mı.fcg/ä Mı0
0;E0

⇥ Mı1
0;E1

inside Mı
0;S . These divisors are the irreducible components of @Mı

0;S .

Example 3.4 (1) We have Mı
0;3 D f⇤g.

(2) If we write M0;4 D P
1.C/nf1; 0; 1g and SM0;4 D P

1.C/, then we have Mı
0;4 D

P
1.C/ n f1g. The divisor at infinity @Mı

0;4 D f0; 1g has two irreducible components,
all isomorphic to a product Mı

0;3 ⇥ Mı
0;3 , indexed by the two dissection of a 4–gon

with one chord.

(3) Figure 4 shows the combinatorial structure of Mı
0;5 inside SM0;5 . The curves

in dashed lines are the complement SM0;5 n Mı
0;5 . The five curves in straight lines

are the five irreducible components of the divisor at infinity @Mı
0;5 , indexed by the

five dissection of a 5–gon with one chord. They bound a pentagon (shaded). The five
different intersection points of these components are indexed by the five dissections of
a 5–gon with two chords.

Remark 3.5 The stratification of Mı
0;n has the same combinatorial structure as the

natural stratification of an associahedron Kn of dimension n � 3. More precisely,
there is a natural smooth embedding of Kn inside Mı

0;n which is compatible with
these stratifications (the shaded pentagon in Figure 4). This is the same as Devadoss’s
realization of the associahedron [9, Definition 3.2.1]. In that sense, Brown’s moduli
spaces Mı

0;n are algebro-geometric analogs of associahedra.

The dihedral decomposition morphisms

ÅdW Grav.S; ı/! Grav.d/

Geometry & Topology, Volume 21 (2017)
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The dihedral decomposition morphisms

ÅdW Grav.S; ı/! Grav.d/
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Inventory “à la Prevert”
« [...] une douzaine d’huîtres un citron un pain un rayon de soleil une
lame de fond six musiciens [...] » Inventaire (Paroles, 1946)

Higher Lie theory= higher BCH formulas
[Robert-Nicoud–Vallette 2020]

Tensor product of A∞-algebras/categories
PROOF: diagonal of operadic polytopes
[Masuda–Thomas–Tonks–Vallette 2021]

The enveloping algebra U detects isomorphisms
[Campos–Petersen–Robert-Nicoud–Wierstra 2019]

Purity of the mixed Hodge structure on Brown’s
moduli spacesM0,n ⊂Mδ

0,n ⊂M0,n
[Dupont–Vallette 2017]

Unification of the Grothendieck–Teichmüller group
and the Givental group
[Dotsenko–Shadrin–Vallette–Vaintrob 2020]

THE DIAGONAL OF THE ASSOCIAHEDRA 15

Under the cellular chain functor, we recover the classical di�erential graded non-symmetric operad
A1 encoding homotopy associative algebras [20], see also [12, Chapter 9]. To understand the induced
diagonal on the di�erential graded level, we need the following magical formula describing its cellular
structure.

4. T�� ������� �������

Theorem 2 (Magical formula). For any Loday realization of the associahedra, the approximation of the
diagonal satis�es

Im4n =
[

topFbotG
dimF+dimG=n�2

F ⇥ G .

⇥ ⇥

⇥

⇥

⇥ ⇥

F����� 7. The polytopal subdivision � (F4) of K4.

The pairs of faces appearing on the right-hand side of the magical formula are called matching pairs.
In other words, the tight coherent subdivision Fn = {(F,G) | top F  bot G, dim F + dim G = n � 2},
made up of matching pairs, gives a polytopal subdivision of the associahedra under �. Applying
the cellular chain functor, we recover the di�erential graded diagonal given in [17, 13]. Notice that
neither the pointwise version nor the cellular version of the diagonal map 4n can be coassociative
by [13, Theorem 13].

4.1. First step: Im4n ⇢ S
F ⇥G. We prove this property more generally for any product P B K!1

⇥
· · ·⇥K!k

of Loday realizations of the associahedra. Recall that P ⇢ RN , where N B n1 + · · ·+ nk � k,
and d B dim P = n1+ · · ·+nk�2k. The set V(P) of vertices of P coincides with PBTn1

⇥ · · ·⇥PBTnk .
By Proposition 2, any vector ~v = (v1, v2, . . . , vN ) satisfying

v1 > · · · > vn1�1 , vn1
> · · · > vn1+n2�2 , . . . , vn1+· · ·+nk�1�k+2 > · · · > vN

makes (P,~v) into a positively oriented polytope with 1-skeleton isomorphic to the product of Tamari
lattices.
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Figure 4: The combinatorial structure of Mı
0;5
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0;E1
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Example 3.4 (1) We have Mı
0;3 D f⇤g.

(2) If we write M0;4 D P
1.C/nf1; 0; 1g and SM0;4 D P
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Remark 3.5 The stratification of Mı
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natural stratification of an associahedron Kn of dimension n � 3. More precisely,
there is a natural smooth embedding of Kn inside Mı

0;n which is compatible with
these stratifications (the shaded pentagon in Figure 4). This is the same as Devadoss’s
realization of the associahedron [9, Definition 3.2.1]. In that sense, Brown’s moduli
spaces Mı

0;n are algebro-geometric analogs of associahedra.

The dihedral decomposition morphisms
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