Why Higher Structures?

Bruno VALLETTE

Université Sorbonne Paris Nord

Math+ Berlin Colloquium

January 27, 2023

Foreword

Yuri Ivanovich MANIN (1937-2023)

Foreword

Yuri Ivanovich MANIN (1937-2023)

Foreword

> Yuri Ivanovich MANIN (1937-2023)

Foreword

"In the XXth century, any mathematical theory was built on set theory. In the XXIst century, any mathematical theory will be build on a homotopy theory."

Foreword

"In the XXth century, any mathematical theory was built on set theory. In the XXIst century, any mathematical theory will be build on a homotopy theory."

Classical structures $\xrightarrow{\text { Homotopy theory }}$ Higher structures

Foreword

"In the XXth century, any mathematical theory was built on set theory. In the XXIst century, any mathematical theory will be build on a homotopy theory."

Classical structures $\xrightarrow{\text { Homotopy theory }}$ Higher structures LEADING GOALS:

Foreword

"In the XXth century, any mathematical theory was built on set theory. In the XXIst century, any mathematical theory will be build on a homotopy theory."

Classical structures $\xrightarrow{\text { Homotopy theory }}$ Higher structures

LEADING GOALS:

- Classification of topological spaces up to homotopy

Foreword

"In the XXth century, any mathematical theory was built on set theory. In the XXIst century, any mathematical theory will be build on a homotopy theory."

Classical structures $\xrightarrow{\text { Homotopy theory }}$ Higher structures

LEADING GOALS:

- Classification of topological spaces up to homotopy
- Quantise Poisson manifolds

Foreword

"In the XXth century, any mathematical theory was built on set theory. In the XXIst century, any mathematical theory will be build on a homotopy theory."

Classical structures $\xrightarrow{\text { Homotopy theory }}$ Higher structures

LEADING GOALS:

- Classification of topological spaces up to homotopy
- Quantise Poisson manifolds
- Fundamental theorem of deformation theory

Table of contents

(1) Algebraic Topology in the $X X$ th century
(2) Homotopy+Algebra=Higher Structures

3 Lie methods in Deformation Theory

Table of contents

(1) Algebraic Topology in the $X X$ th century

2 Homotopy+Algebra=Higher Structures

3 Lie methods in Deformation Theory

Homotopy equivalence

\rightarrow Classification of topological spaces

Homotopy equivalence

\rightarrow Classification of topological spaces

Homotopy equivalence

\rightarrow Classification of topological spaces

- strong equivalence: up to homeomorphisms

Homotopy equivalence

\rightarrow Classification of topological spaces

- strong equivalence: up to homeomorphisms no

Homotopy equivalence

\rightarrow Classification of topological spaces

- strong equivalence: up to homeomorphisms no
- WEAK EQUIVALENCE: up to homotopy equivalence "continuous deformation without cutting"

Homotopy equivalence

\rightarrow Classification of topological spaces

- strong equivalence: up to homeomorphisms no
- WEAK EQUIVALENCE: up to homotopy equivalence "continuous deformation without cutting" yes

Homotopy equivalence

\rightarrow Classification of topological spaces

- strong equivalence: up to homeomorphisms no
- wEAK EQUIVALENCE: up to homotopy equivalence "continuous deformation without cutting" yes

Method: find a set of faithful algebraic invariants

Homotopy equivalence

\rightarrow Classification of topological spaces

- strong equivalence: up to homeomorphisms no
- weak equivalence: up to homotopy equivalence "continuous deformation without cutting" yes

Method: find a set of faithful algebraic invariants

- Betti numbers $:=$ number of holes:

Homotopy equivalence

\rightarrow Classification of topological spaces

- strong equivalence: up to homeomorphisms no
- weak equivalence: up to homotopy equivalence "continuous deformation without cutting" yes

Method: find a set of faithful algebraic invariants

- Betti numbers := number of holes: homotopy invariant

Homotopy equivalence

\rightarrow Classification of topological spaces

- strong equivalence: up to homeomorphisms no
- WEAK EQUIVALENCE: up to homotopy equivalence "continuous deformation without cutting" yes

Method: find a set of faithful algebraic invariants

- Betti numbers $:=$ number of holes: homotopy invariant \rightarrow not faithful!

Homotopy equivalence

\rightarrow Classification of topological spaces

- strong equivalence: up to homeomorphisms no
- WEAK EQUIVALENCE: up to homotopy equivalence "continuous deformation without cutting" yes

Method: find a set of faithful algebraic invariants

- Betti numbers $:=$ number of holes: homotopy invariant \rightarrow not faithful!
\rightarrow Amount of algebra used: \mathbb{N}

Differential graded module

IDEA: Encode algebraically a cellular decomposition

Differential graded module

IDEA: Encode algebraically a cellular decomposition

$\mathbb{Z}\{0$-cells $\} \stackrel{d_{0}}{\longleftrightarrow} \mathbb{Z}\{$ 1-cells $\} \stackrel{d_{1}}{\leftarrow} \mathbb{Z}\{$ 2-cells $\} \cdots \quad d_{n}(c):=\sum_{\substack{\boldsymbol{d}^{\prime} \in \partial(c) \\ \operatorname{dim} c^{\prime}=n-1}} \pm c^{\prime}$

Differential graded module

IDEA: Encode algebraically a cellular decomposition

$\mathbb{Z}\{0$-cells $\} \stackrel{d_{0}}{\longleftrightarrow} \mathbb{Z}\{1$-cells $\} \stackrel{d_{1}}{\longleftrightarrow} \mathbb{Z}\{2$-cells $\} \cdots \quad d_{n}(c):=\sum_{\begin{array}{c}c^{\prime} \in \partial(c) \\ \operatorname{dim}^{\prime} c^{\prime}=n-1\end{array}} \pm c^{\prime}$

- Orientation \Longrightarrow Signs $\Longrightarrow d_{n-1} \circ d_{n}=0$

Differential graded module

IDEA: Encode algebraically a cellular decomposition

$\mathbb{Z}\{0$-cells $\} \stackrel{d_{0}}{\longleftrightarrow} \mathbb{Z}\{1$-cells $\} \stackrel{d_{1}}{\leftarrow} \mathbb{Z}\{$ 2-cells $\} \cdots d_{n}(c):=\sum_{\begin{array}{c}c^{\prime} \in(c) \\ \operatorname{dim}^{\prime} c^{\prime}=n-1\end{array}} \pm c^{\prime}$

- Orientation \Longrightarrow Signs $\Longrightarrow d_{n-1} \circ d_{n}=0$

EXAMPLE: $\mathbb{Z} 0 \oplus \cdots \oplus \mathbb{Z} 3 \leftarrow \mathbb{Z} 01 \oplus \cdots \oplus \mathbb{Z} 23 \leftarrow \mathbb{Z} 012 \leftarrow 0 \leftarrow \cdots$

Differential graded module

IDEA: Encode algebraically a cellular decomposition

$\mathbb{Z}\{0$-cells $\} \stackrel{d_{0}}{\longleftrightarrow} \mathbb{Z}\{1$-cells $\} \stackrel{d_{1}}{\leftarrow} \mathbb{Z}\{2$-cells $\} \cdots \quad d_{n}(c):=\sum_{\substack{c^{\prime} \in \partial(c) \\ \operatorname{dim} c^{\prime}=n-1}} \pm c^{\prime}$

- Orientation \Longrightarrow Signs $\Longrightarrow d_{n-1} \circ d_{n}=0$

EXAMPLE: $\mathbb{Z} 0 \oplus \cdots \oplus \mathbb{Z} 3 \leftarrow \mathbb{Z} 01 \oplus \cdots \oplus \mathbb{Z} 23 \leftarrow \mathbb{Z} 012 \leftarrow 0 \leftarrow \cdots$

$$
d_{n}\left(a_{0} \cdots a_{n}\right)=\sum_{i=0}^{n}(-1)^{i} a_{0} \ldots \widehat{a}_{i} \ldots a_{n}
$$

Differential graded module

IDEA: Encode algebraically a cellular decomposition

$\mathbb{Z}\{0$-cells $\} \stackrel{d_{0}}{\leftarrow} \mathbb{Z}\{1$-cells $\} \stackrel{d_{1}}{\longleftrightarrow} \mathbb{Z}\{2$-cells $\} \cdots$

$$
d_{n}(c):=\sum_{\substack{c^{\prime} \in \partial(c) \\ \operatorname{dim} c^{\prime}=n-1}} \pm c^{\prime}
$$

- Orientation \Longrightarrow Signs $\Longrightarrow d_{n-1} \circ d_{n}=0$

EXAMPLE: $\mathbb{Z} 0 \oplus \cdots \oplus \mathbb{Z} 3 \leftarrow \mathbb{Z} 01 \oplus \cdots \oplus \mathbb{Z} 23 \leftarrow \mathbb{Z} 012 \leftarrow 0 \leftarrow \cdots$

$$
d_{n}\left(a_{0} \cdots a_{n}\right)=\sum_{i=0}^{n}(-1)^{i} a_{0} \ldots \widehat{a}_{i} \ldots a_{n}
$$

Definition (differential graded module or chain complex)
(C. $=\left\{C_{n}\right\}_{n \in \mathbb{N}}, d=\left\{d_{n}\right\}_{n \in \mathbb{N}}$) s.t. $d^{2}=0$

Homology groups

Definition (Homology groups)

$$
H_{n}(X, \mathbb{Z}):=\operatorname{ker} d_{n-1} / \operatorname{im} d_{n}
$$

Homology groups

Definition (Homology groups)
 $H_{n}(X, \mathbb{Z}):=\operatorname{ker} d_{n-1} / \operatorname{im~}_{n}$

Example: $H_{0}(X, \mathbb{Z}) \cong \mathbb{Z}$, $H_{1}(X, \mathbb{Z}) \cong \mathbb{Z}^{2}, H_{2}(X, \mathbb{Z}) \cong 0$

Homology groups

Definition (Homology groups)
 $H_{n}(X, \mathbb{Z}):=\operatorname{ker} d_{n-1} / \operatorname{im~}_{n}$

$$
\begin{aligned}
& \operatorname{EXAMPLE}: H_{0}(X, \mathbb{Z}) \cong \mathbb{Z} \\
& H_{1}(X, \mathbb{Z}) \cong \mathbb{Z}^{2}, H_{2}(X, \mathbb{Z}) \cong 0
\end{aligned}
$$

Properties: dim $H_{0}=$ number of connected components

Homology groups

Definition (Homology groups)
 $H_{n}(X, \mathbb{Z}):=\operatorname{ker} d_{n-1} / \operatorname{im~}_{n}$

$$
\begin{aligned}
& \text { Example: } H_{0}(X, \mathbb{Z}) \cong \mathbb{Z}, \\
& H_{1}(X, \mathbb{Z}) \cong \mathbb{Z}^{2}, H_{2}(X, \mathbb{Z}) \cong 0
\end{aligned}
$$

Properties: $\operatorname{dim} H_{0}=$ number of connected components $\operatorname{dim} H_{1}=$ number of holes

Homology groups

Definition (Homology groups)

$H_{n}(X, \mathbb{Z}):=\operatorname{ker} d_{n-1} / \operatorname{im} d_{n}$

$$
\begin{aligned}
& \operatorname{EXAMPLE}: H_{0}(X, \mathbb{Z}) \cong \mathbb{Z} \\
& H_{1}(X, \mathbb{Z}) \cong \mathbb{Z}^{2}, H_{2}(X, \mathbb{Z}) \cong 0
\end{aligned}
$$

Properties: $\operatorname{dim} H_{0}=$ number of connected components $\operatorname{dim} H_{1}=$ number of holes

- Linear dual notion of cohomology groups

Homology groups

Definition (Homology groups)

$H_{n}(X, \mathbb{Z}):=\operatorname{ker} d_{n-1} / \operatorname{im} d_{n}$

$$
\begin{aligned}
& \operatorname{EXAMPLE}: H_{0}(X, \mathbb{Z}) \cong \mathbb{Z} \\
& H_{1}(X, \mathbb{Z}) \cong \mathbb{Z}^{2}, H_{2}(X, \mathbb{Z}) \cong 0
\end{aligned}
$$

Properties: dim $H_{0}=$ number of connected components $\operatorname{dim} H_{1}=$ number of holes

- Linear dual notion of cohomology groups
- "Equivalent" definitions: de Rham complex, singular homology

Homotopy invariants

Homology groups

Definition (Homology groups)

$H_{n}(X, \mathbb{Z}):=\operatorname{ker} d_{n-1} / \operatorname{im} d_{n}$

Example: $H_{0}(X, \mathbb{Z}) \cong \mathbb{Z}$,
$H_{1}(X, \mathbb{Z}) \cong \mathbb{Z}^{2}, H_{2}(X, \mathbb{Z}) \cong 0$

Properties: $\operatorname{dim} H_{0}=$ number of connected components $\operatorname{dim} H_{1}=$ number of holes

- Linear dual notion of cohomology groups
- "Equivalent" definitions: de Rham complex, singular homology

Proposition (Homotopy invariance)

$X \sim Y \Longrightarrow H_{n}(X, \mathbb{Z}) \cong H_{n}(Y, \mathbb{Z}), \forall n \in \mathbb{N}$

Homotopy invariants

Homology groups

Definition (Homology groups)

$H_{n}(X, \mathbb{Z}):=\operatorname{ker} d_{n-1} / \operatorname{im} d_{n}$

Example: $H_{0}(X, \mathbb{Z}) \cong \mathbb{Z}$,
$H_{1}(X, \mathbb{Z}) \cong \mathbb{Z}^{2}, H_{2}(X, \mathbb{Z}) \cong 0$

Properties: $\operatorname{dim} H_{0}=$ number of connected components $\operatorname{dim} H_{1}=$ number of holes

- Linear dual notion of cohomology groups
- "Equivalent" definitions: de Rham complex, singular homology

Proposition (Homotopy invariance)

\rightarrow not faithful!
$X \sim Y \Longrightarrow H_{n}(X, \mathbb{Z}) \cong H_{n}(Y, \mathbb{Z}), \forall n \in \mathbb{N}$

Homology groups

Definition (Homology groups)
$H_{n}(X, \mathbb{Z}):=\operatorname{ker} d_{n-1} / \operatorname{im} d_{n}$

Example: $H_{0}(X, \mathbb{Z}) \cong \mathbb{Z}$,
$H_{1}(X, \mathbb{Z}) \cong \mathbb{Z}^{2}, H_{2}(X, \mathbb{Z}) \cong 0$

Properties: $\operatorname{dim} H_{0}=$ number of connected components $\operatorname{dim} H_{1}=$ number of holes

- Linear dual notion of cohomology groups
- "Equivalent" definitions: de Rham complex, singular homology

Proposition (Homotopy invariance)

\rightarrow not faithful!
$X \sim Y \Longrightarrow H_{n}(X, \mathbb{Z}) \cong H_{n}(Y, \mathbb{Z}), \forall n \in \mathbb{N}$
\rightarrow Amount of algebra used: Linear algebra

Algebraic Topology in the XXth century
Homotopy+Algebra=Higher Structures
Lie methods in Deformation Theory

Homotopy invariants
Comparing invariants
Classical algebraic structures

Homotopy group

Homotopy group

Definition (Loop space)

$\Omega(X, x):=\{\varphi:[0,1] \rightarrow X$ φ continuous,$\varphi(0)=\varphi(1)=x\}$

Homotopy group

Definition (Loop space)

$\Omega(X, x):=\{\varphi:[0,1] \rightarrow X \mid$ φ continuous , $\varphi(0)=\varphi(1)=x\}$

CONCATENATION PRODUCT: $\varphi \star \psi(t):= \begin{cases}\varphi(2 t), & \text { for } 0 \leqslant t \leqslant \frac{1}{2}, \\ \psi(2 t-1), & \text { for } \frac{1}{2} \leqslant t \leqslant 1 .\end{cases}$

Homotopy group

Definition (Loop space)

$\Omega(X, x):=\{\varphi:[0,1] \rightarrow X$
φ continuous,$\varphi(0)=\varphi(1)=x\}$

CONCATENATION PRODUCT: $\varphi \star \psi(t):= \begin{cases}\varphi(2 t), & \text { for } 0 \leqslant t \leqslant \frac{1}{2}, \\ \psi(2 t-1), & \text { for } \frac{1}{2} \leqslant t \leqslant 1 .\end{cases}$
\rightarrow is \star associative?

Homotopy group

Definition (Loop space)

$\Omega(X, x):=\{\varphi:[0,1] \rightarrow X$
φ continuous,$\varphi(0)=\varphi(1)=x\}$

CONCATENATION PRODUCT: $\varphi \star \psi(t):= \begin{cases}\varphi(2 t), & \text { for } 0 \leqslant t \leqslant \frac{1}{2}, \\ \psi(2 t-1), & \text { for } \frac{1}{2} \leqslant t \leqslant 1 . \\ 0 \quad \frac{1}{4} \quad \frac{1}{2}\end{cases}$
\rightarrow is \star associative?

Homotopy group

Definition (Loop space)

$\Omega(X, x):=\{\varphi:[0,1] \rightarrow X$
φ continuous,$\varphi(0)=\varphi(1)=x\}$

CONCATENATION PRODUCT: $\varphi \star \psi(t):= \begin{cases}\varphi(2 t), & \text { for } 0 \leqslant t \leqslant \frac{1}{2}, \\ \psi(2 t-1), & \text { for } \frac{1}{2} \leqslant t \leqslant 1 . \\ 0 \quad \frac{1}{4} \quad \frac{1}{2}\end{cases}$
\rightarrow is \star associative?
no: $(\varphi \star \psi) \star \omega \neq \varphi \star(\psi \star \omega)$

Homotopy group

Definition (Loop space)

$\Omega(X, x):=\{\varphi:[0,1] \rightarrow X \mid$
φ continuous,$\varphi(0)=\varphi(1)=x\}$

CONCATENATION PRODUCT: $\varphi \star \psi(t):= \begin{cases}\varphi(2 t), & \text { for } 0 \leqslant t \leqslant \frac{1}{2}, \\ \psi(2 t-1), & \text { for } \frac{1}{2} \leqslant t \leqslant 1 . \\ 0 \quad \frac{1}{4} \quad \frac{1}{2}\end{cases}$
\rightarrow is \star associative?
no: $(\varphi \star \psi) \star \omega \neq \varphi \star(\psi \star \omega)$
but: $(\varphi \star \psi) \star \omega \sim \varphi \star(\psi \star \omega)$

Homotopy group

Definition (Loop space)

$\Omega(X, x):=\{\varphi:[0,1] \rightarrow X$
φ continuous, $\varphi(0)=\varphi(1)=x\}$

CONCATENATION PRODUCT: $\varphi \star \psi(t):= \begin{cases}\varphi(2 t), & \text { for } 0 \leqslant t \leqslant \frac{1}{2}, \\ \psi(2 t-1), & \text { for } \frac{1}{2} \leqslant t \leqslant 1 . \\ 0 \quad \frac{1}{4} \quad \frac{1}{2}\end{cases}$
\rightarrow is \star associative?
no: $(\varphi \star \psi) \star \omega \neq \varphi \star(\psi \star \omega)$
but: $(\varphi \star \psi) \star \omega \sim \varphi \star(\psi \star \omega)$

Definition (Fundamental group)
$\pi_{1}(X, x):=(\Omega(X, x) / \sim, \bar{\star})$

Homotopy group

Definition (Loop space)

$\Omega(X, x):=\{\varphi:[0,1] \rightarrow X$
φ continuous, $\varphi(0)=\varphi(1)=x\}$

CONCATENATION PRODUCT: $\varphi \star \psi(t):= \begin{cases}\varphi(2 t), & \text { for } 0 \leqslant t \leqslant \frac{1}{2}, \\ \psi(2 t-1), & \text { for } \frac{1}{2} \leqslant t \leqslant 1 . \\ 0 \quad \frac{1}{4} \quad \frac{1}{2}\end{cases}$
\rightarrow is \star associative?
no: $(\varphi \star \psi) \star \omega \neq \varphi \star(\psi \star \omega)$
but: $(\varphi \star \psi) \star \omega \sim \varphi \star(\psi \star \omega)$
Definition (Fundamental group)
homotopy invariant
$\pi_{1}(X, x):=(\Omega(X, x) / \sim, \bar{\star})$

Homotopy group

Definition (Loop space)

$\Omega(X, x):=\{\varphi:[0,1] \rightarrow X$
φ continuous, $\varphi(0)=\varphi(1)=x\}$

CONCATENATION PRODUCT: $\varphi \star \psi(t):= \begin{cases}\varphi(2 t), & \text { for } 0 \leqslant t \leqslant \frac{1}{2}, \\ \psi(2 t-1), & \text { for } \frac{1}{2} \leqslant t \leqslant 1 . \\ 0 \quad \frac{1}{4} \quad \frac{1}{2}\end{cases}$
\rightarrow is \star associative?
no: $(\varphi \star \psi) \star \omega \neq \varphi \star(\psi \star \omega)$
but: $(\varphi \star \psi) \star \omega \sim \varphi \star(\psi \star \omega)$
Definition (Fundamental group)
$\pi_{1}(X, x):=(\Omega(X, x) / \sim, \bar{\star})$

homotopy invariant \rightarrow not faithful!

Homotopy group

Definition (Loop space)

$\Omega(X, x):=\{\varphi:[0,1] \rightarrow X$
φ continuous, $\varphi(0)=\varphi(1)=x\}$

CONCATENATION PRODUCT: $\varphi \star \psi(t):= \begin{cases}\varphi(2 t), & \text { for } 0 \leqslant t \leqslant \frac{1}{2}, \\ \psi(2 t-1), & \text { for } \frac{1}{2} \leqslant t \leqslant 1 . \\ 0 \quad \frac{1}{4} \quad \frac{1}{2}\end{cases}$
\rightarrow is \star associative?
no: $(\varphi \star \psi) \star \omega \neq \varphi \star(\psi \star \omega)$
but: $(\varphi \star \psi) \star \omega \sim \varphi \star(\psi \star \omega)$
Definition (Fundamental group)
$\pi_{1}(X, x):=(\Omega(X, x) / \sim, \bar{\star})$

homotopy invariant \rightarrow not faithful!

Category theory

- Goal 1: encode how functorial these invariants are

Category theory

- Goal 1: encode how functorial these invariants are

X	
f continuous	
$\underset{\mathrm{Y}}{\downarrow}$	$H_{n}(X, \mathbb{Z})$
$H_{n}(Y, \mathbb{Z})$	

Category theory

- Goal 1: encode how functorial these invariants are

$$
\begin{aligned}
& \mathrm{X} H_{n}(X, \mathbb{Z}) \\
& f \text { continuous } \\
& \underset{\mathrm{Y}}{\downarrow} \underset{H_{n}(Y, \mathbb{Z})}{\downarrow} H_{n}(f) \text { morphism }
\end{aligned}
$$

Définition (Category [Eilenberg-MacLane, 1942])

OBJECTS+COMPOSABLE ARROWS: "monoid with many base points"

Category theory

- Goal 1: encode how functorial these invariants are

$$
\begin{aligned}
& \mathrm{X} H_{n}(X, \mathbb{Z}) \\
& f \text { continuous } \\
& \underset{\mathrm{Y}}{\downarrow} \underset{H_{n}(Y, \mathbb{Z})}{\downarrow} H_{n}(f) \text { morphism }
\end{aligned}
$$

Définition (Category [Eilenberg-MacLane, 1942])

OBJECTS+COMPOSABLE ARROWS: "monoid with many base points"
EXAMPLE: Topological spaces+continuous maps

Category theory

- Goal 1: encode how functorial these invariants are

$$
\begin{aligned}
& \mathrm{X} H_{n}(X, \mathbb{Z}) \\
& f \text { continuous } \\
& \underset{\mathrm{Y}}{\downarrow} \underset{H_{n}(Y, \mathbb{Z})}{\downarrow} H_{n}(f) \text { morphism }
\end{aligned}
$$

Définition (Category [Eilenberg-MacLane, 1942])

OBJECTS+COMPOSABLE ARROWS: "monoid with many base points"
EXAMPLE: Topological spaces+continuous maps

- Goal 2: compare the invariants

Category theory

- Goal 1: encode how functorial these invariants are

$$
\begin{aligned}
& \mathrm{X} \quad H_{n}(X, \mathbb{Z}) \\
& f \text { continuous } \downarrow \longrightarrow \not H_{n}(f) \text { morphism } \\
& \mathrm{Y} \quad H_{n}(Y, \mathbb{Z})
\end{aligned}
$$

Définition (Category [Eilenberg-MacLane, 1942])

OBJECTS+COMPOSABLE ARROWS: "monoid with many base points"
EXAMPLE: Topological spaces+continuous maps

- Goal 2: compare the invariants

Theorem (Hurewicz)
$\pi_{1}(X) \rightarrow \pi_{1}(X) /\left[\pi_{1}(X), \pi_{1}(X)\right] \cong H_{1}(X, \mathbb{Z})$

Category theory

- Goal 1: encode how functorial these invariants are

$$
\begin{aligned}
& \mathrm{X} \quad H_{n}(X, \mathbb{Z}) \\
& f \text { continuous } \downarrow \longrightarrow \not H_{n}(f) \text { morphism } \\
& \mathrm{Y} \quad H_{n}(Y, \mathbb{Z})
\end{aligned}
$$

Définition (Category [Eilenberg-MacLane, 1942])

OBJECTS+COMPOSABLE ARROWS: "monoid with many base points"
EXAMPLE: Topological spaces+continuous maps

- Goal 2: compare the invariants

Theorem (Hurewicz)
$\pi_{1}(X) \rightarrow \pi_{1}(X) /\left[\pi_{1}(X), \pi_{1}(X)\right] \cong H_{1}(X, \mathbb{Z})$

\Longrightarrow 2-category (higher structure)

Algebraic Topology in the XXth century Homotopy+Algebra=Higher Structures Lie methods in Deformation Theory

The three Graces

The three Graces

The three Graces

- skew-symmetrisation: $[x, y]:=x y-y x$.

The three Graces

- skew-symmetrisation: $[x, y]:=x y-y x$.

Definition (Universal enveloping algebra)

$$
\mathcal{U} \mathfrak{g}:=\mathrm{T}(\mathfrak{g}) /(x \otimes y-y \otimes x-[x, y])
$$

where $T(\mathfrak{g})=\bigoplus_{n \in \mathbb{N}} \mathfrak{g}^{\otimes n}$: free associative algebra (nc polynomials)

Classical algebraic structures

- $\left(C_{\text {sing }}^{\bullet}(X, \mathbb{Z}), \cup, \mathrm{d}\right)$: singular cochains with the cup product
differential graded associative algebra

Classical algebraic structures

- $\left(C_{\text {sing }}^{\bullet}(X, \mathbb{Z}), \cup, \mathrm{d}\right)$: singular cochains with the cup product

differential graded associative algebra

- $\left(H_{\text {sing }}^{\bullet}(X, \mathbb{Z}), \bar{\cup}\right)$: singular cohomology with the cup product
graded commutative algebra

Classical algebraic structures

- $\left(C_{\text {sing }}^{\bullet}(X, \mathbb{Z}), \cup, \mathrm{d}\right)$: singular cochains with the cup product

differential graded associative algebra

- $\left(H_{\text {sing }}^{\bullet}(X, \mathbb{Z}), \bar{\cup}\right)$: singular cohomology with the cup product

graded commutative algebra

FIRST HIGHER HOMOTOPY: $\cup_{1}: C_{\text {sing }}^{\bullet}(X, \mathbb{Z})^{\otimes 2} \rightarrow C_{\text {sing }}^{\bullet}(X, \mathbb{Z})$

$$
\mathrm{d} \circ \cup_{1}+\cup_{1} \circ(\mathrm{~d} \otimes \mathrm{id})+\cup_{1} \circ(\mathrm{id} \otimes \mathrm{~d})=\cup-\cup^{(12)}
$$

Classical algebraic structures

- $\left(C_{\text {sing }}^{\bullet}(X, \mathbb{Z}), \cup, \mathrm{d}\right)$: singular cochains with the cup product

differential graded associative algebra

- $\left(H_{\text {sing }}^{\bullet}(X, \mathbb{Z}), \bar{\cup}\right)$: singular cohomology with the cup product

graded commutative algebra

FIRST HIGHER HOMOTOPY: $\cup_{1}: C_{\text {sing }}^{\bullet}(X, \mathbb{Z})^{\otimes 2} \rightarrow C_{\text {sing }}^{\bullet}(X, \mathbb{Z})$

$$
\mathrm{d} \circ \cup_{1}+\cup_{1} \circ(\mathrm{~d} \otimes \mathrm{id})+\cup_{1} \circ(\mathrm{id} \otimes \mathrm{~d})=\cup-\cup^{(12)}
$$

- $\left(\pi_{\bullet+1}(X),[],\right)$: homotopy groups with the Whitehead bracket

Classical algebraic structures

- $\left(C_{\text {sing }}^{\bullet}(X, \mathbb{Z}), \cup, \mathrm{d}\right)$: singular cochains with the cup product

differential graded associative algebra

- $\left(H_{\text {sing }}^{\bullet}(X, \mathbb{Z}), \bar{\cup}\right)$: singular cohomology with the cup product

graded commutative algebra

FIRST HIGHER HOMOTOPY: $\cup_{1}: C_{\text {sing }}^{\bullet}(X, \mathbb{Z})^{\otimes 2} \rightarrow C_{\text {sing }}^{\bullet}(X, \mathbb{Z})$

$$
\mathrm{d} \circ \cup_{1}+\cup_{1} \circ(\mathrm{~d} \otimes \mathrm{id})+\cup_{1} \circ(\mathrm{id} \otimes \mathrm{~d})=\cup-\cup^{(12)}
$$

- $\left(\pi_{\bullet+1}(X),[],\right)$: homotopy groups with the Whitehead bracket
graded Lie algebra

Classical algebraic structures

- $\left(C_{\text {sing }}^{\bullet}(X, \mathbb{Z}), \cup, \mathrm{d}\right)$: singular cochains with the cup product

differential graded associative algebra

- $\left(H_{\text {sing }}^{\bullet}(X, \mathbb{Z}), \bar{\cup}\right)$: singular cohomology with the cup product

graded commutative algebra

FIRST HIGHER HOMOTOPY: $\cup_{1}: C_{\text {sing }}^{\bullet}(X, \mathbb{Z})^{\otimes 2} \rightarrow C_{\text {sing }}^{\bullet}(X, \mathbb{Z})$

$$
\mathrm{d} \circ \cup_{1}+\cup_{1} \circ(\mathrm{~d} \otimes \mathrm{id})+\cup_{1} \circ(\mathrm{id} \otimes \mathrm{~d})=\cup-\cup^{(12)}
$$

- $\left(\pi_{\bullet+1}(X),[],\right)$: homotopy groups with the Whitehead bracket
graded Lie algebra
homotopy invariant

Classical algebraic structures

- $\left(C_{\text {sing }}^{\bullet}(X, \mathbb{Z}), \cup, \mathrm{d}\right)$: singular cochains with the cup product

differential graded associative algebra

- $\left(H_{\text {sing }}^{\bullet}(X, \mathbb{Z}), \bar{\cup}\right)$: singular cohomology with the cup product

graded commutative algebra

FIRST HIGHER HOMOTOPY: $\cup_{1}: C_{\text {sing }}^{\bullet}(X, \mathbb{Z})^{\otimes 2} \rightarrow C_{\text {sing }}^{\bullet}(X, \mathbb{Z})$

$$
\mathrm{d} \circ \cup_{1}+\cup_{1} \circ(\mathrm{~d} \otimes \mathrm{id})+\cup_{1} \circ(\mathrm{id} \otimes \mathrm{~d})=\cup-\cup^{(12)}
$$

- $\left(\pi_{\bullet+1}(X),[],\right)$: homotopy groups with the Whitehead bracket

> graded Lie algebra
homotopy invariant \rightarrow not faithful!

Classical algebraic structures

- $\left(C_{\text {sing }}^{\bullet}(X, \mathbb{Z}), \cup, \mathrm{d}\right)$: singular cochains with the cup product

differential graded associative algebra

- $\left(H_{\text {sing }}^{\bullet}(X, \mathbb{Z}), \bar{\cup}\right)$: singular cohomology with the cup product

graded commutative algebra

FIRST HIGHER HOMOTOPY: $\cup_{1}: C_{\text {sing }}^{\bullet}(X, \mathbb{Z})^{\otimes 2} \rightarrow C_{\text {sing }}^{\bullet}(X, \mathbb{Z})$

$$
\mathrm{d} \circ \cup_{1}+\cup_{1} \circ(\mathrm{~d} \otimes \mathrm{id})+\cup_{1} \circ(\mathrm{id} \otimes \mathrm{~d})=\cup-\cup^{(12)}
$$

- $\left(\pi_{\bullet+1}(X),[],\right)$: homotopy groups with the Whitehead bracket
graded Lie algebra
homotopy invariant \rightarrow not faithful!
\rightarrow Amount of algebra used: associative, commutative, Lie algebra

Table of contents

(1) Algebraic Topology in the $X X$ th century

(2) Homotopy+Algebra=Higher Structures

3 Lie methods in Deformation Theory

Transfer of structure

- Simplest algebraic structure:

$$
\Delta: A \rightarrow A, \quad \Delta^{2}=0
$$

Transfer of structure

- Simplest algebraic structure:

$$
\Delta: A \rightarrow A, \quad \Delta^{2}=0
$$

Proposition (Transfer of structure)
 $p: A \rightleftarrows H: i, p i=\mathrm{id}_{H}, i p=\mathrm{id}_{A}$
 $\Longrightarrow \delta:=p \Delta i, \delta^{2}=0$

Transfer of structure

- Simplest algebraic structure:

$$
\Delta: A \rightarrow A, \quad \Delta^{2}=0
$$

Proposition (Transfer of structure)

$p: A \rightleftarrows H: i, p i=\mathrm{id}_{H}, i p=\mathrm{id}_{A}$
$\Longrightarrow \delta:=p \Delta i, \delta^{2}=0$

Proof.

$$
\delta^{2}=p \Delta \underbrace{i p}_{=i d_{A}} \Delta i=p \underbrace{\Delta^{2}}_{=0} i
$$

$$
=0
$$

Transfer of structure

- Simplest algebraic structure:

$$
\Delta: A \rightarrow A, \quad \Delta^{2}=0
$$

Proposition (Transfer of structure)

$p: A \rightleftarrows H: i, p i=\mathrm{id}_{H}, i p=\mathrm{id}_{A}$
$\Longrightarrow \delta:=p \Delta i, \delta^{2}=0$

Proof.

$$
\begin{aligned}
\delta^{2} & =p \Delta \underbrace{i p}_{=i d_{A}} \Delta i=p \underbrace{\Delta^{2}}_{=0} i \\
& =0
\end{aligned}
$$

- Algebraic homotopy equivalence: Deformation retract

Transfer of structure

- Simplest algebraic structure:

$$
\Delta: A \rightarrow A, \quad \Delta^{2}=0
$$

Proposition (Transfer of structure)

$p: A \rightleftarrows H: i, p i=\mathrm{id}_{H}, i p=\mathrm{id}_{A}$
$\Longrightarrow \delta:=p \Delta i, \delta^{2}=0$

Proof.

$$
\begin{aligned}
\delta^{2} & =p \Delta \underbrace{i p}_{=i d_{A}} \Delta i=p \underbrace{\Delta^{2}}_{=0} i \\
& =0
\end{aligned}
$$

- Algebraic homotopy equivalence: Deformation retract

Transfer of structure

- Simplest algebraic structure:

$$
\Delta: A \rightarrow A, \quad \Delta^{2}=0
$$

Proposition (Transfer of structure)

$p: A \rightleftarrows H: i, p i=\mathrm{id}_{H}, i p=\mathrm{id}_{A}$
$\Longrightarrow \delta:=p \Delta i, \delta^{2}=0$

Proof.

$$
\begin{aligned}
\delta^{2} & =p \Delta \underbrace{i p}_{=i \mathrm{i}_{A}} \Delta i=p \underbrace{\Delta^{2}}_{=0} i \\
& =0
\end{aligned}
$$

- Algebraic homotopy equivalence: Deformation retract

Transfer of structure

- Simplest algebraic structure:

$$
\Delta: A \rightarrow A, \quad \Delta^{2}=0
$$

Proposition (Transfer of structure)
$p: A \rightleftarrows H: i, p i=\mathrm{id}_{H}, i p=\mathrm{id}_{A}$
$\Longrightarrow \delta:=p \Delta i, \delta^{2}=0$

Proof.

$$
\begin{aligned}
\delta^{2} & =p \Delta \underbrace{i p}_{=\mathrm{id}_{A}} \Delta i=p \underbrace{\Delta^{2}}_{=0} i \\
& =0
\end{aligned}
$$

- Algebraic homotopy equivalence: Deformation retract

$$
\begin{aligned}
& { }_{h}^{C}\left(A, d_{A}\right) \stackrel{p}{\underset{i}{\rightleftarrows}}\left(H, d_{H}\right) \\
& {i d_{A}-i p=d_{A} h+h d_{A}}^{\stackrel{1}{4}}
\end{aligned}
$$

- Transferred structure: $\quad \delta_{1}:=p \Delta i$

Transfer of structure

- Simplest algebraic structure:

$$
\Delta: A \rightarrow A, \quad \Delta^{2}=0
$$

Proposition (Transfer of structure)
$p: A \rightleftarrows H: i, p i=\mathrm{id}_{H}, i p=\mathrm{id}_{A}$
$\Longrightarrow \delta:=p \Delta i, \delta^{2}=0$

$$
\delta:=p \Delta i, \delta^{2}=0
$$

Proof.

$$
\begin{aligned}
\delta^{2} & =p \Delta \underbrace{i p}_{=\mathrm{id}_{A}} \Delta i=p \underbrace{\Delta^{2}}_{=0} i \\
& =0
\end{aligned}
$$

- Algebraic homotopy equivalence: Deformation retract

$$
\begin{aligned}
& { }_{h}\left(A, d_{A}\right) \stackrel{p}{\rightleftarrows}\left(H, d_{H}\right) \\
& {i d_{A}-i p=d_{A} h+h d_{A} \neq 0}_{\rightleftarrows}^{\rightleftarrows}
\end{aligned}
$$

- Transferred structure: $\delta_{1}:=p \Delta i$

$$
\rightarrow\left(\delta_{1}\right)^{2}=p \Delta \underbrace{i p}_{\neq \mathrm{id}_{A}} \neq \Delta i p \underbrace{\Delta^{2}}_{=0} i=0
$$

Transfer of structure

- Simplest algebraic structure:

$$
\Delta: A \rightarrow A, \quad \Delta^{2}=0
$$

Proposition (Transfer of structure)
$p: A \rightleftarrows H: i, p i=\mathrm{id}_{H}, i p=\mathrm{id}_{A}$
$\Longrightarrow \delta:=p \Delta i, \delta^{2}=0$

$$
\delta:=p \Delta i, \delta^{2}=0
$$

Proof.

$$
\begin{aligned}
\delta^{2} & =p \Delta \underbrace{i p}_{=i d_{A}} \Delta i=p \underbrace{\Delta^{2}}_{=0} i \\
& =0
\end{aligned}
$$

- Algebraic homotopy equivalence: Deformation retract

$$
\begin{aligned}
& { }_{h}\left(A, d_{A}\right) \stackrel{p}{\rightleftarrows}\left(H, d_{H}\right) \\
& {i d_{A}-i p=d_{A} h+h d_{A} \neq 0}_{\rightleftarrows}^{\rightleftarrows}
\end{aligned}
$$

- Transferred structure:

$$
\begin{aligned}
& \delta_{1}:= \\
& i=0
\end{aligned}
$$

$$
\left(\delta_{1}\right)^{2} \neq 0
$$

$$
\rightarrow\left(\delta_{1}\right)^{2}=p \Delta \underbrace{i p}_{\neq \mathrm{id}_{A}} \neq \Delta i p \underbrace{\Delta^{2}}_{=0} i=0
$$

Transfer of structure

- Simplest algebraic structure:

$$
\Delta: A \rightarrow A, \quad \Delta^{2}=0
$$

Proposition (Transfer of structure)
$p: A \rightleftarrows H: i, p i=\mathrm{id}_{H}, i p=\mathrm{id}_{A}$
$\Longrightarrow \delta:=p \Delta i, \delta^{2}=0$

$$
\delta:=p \Delta i, \delta^{2}=0
$$

Proof.

$$
\begin{aligned}
\delta^{2} & =p \Delta \underbrace{i p}_{=i d_{A}} \Delta i=p \underbrace{\Delta^{2}}_{=0} i \\
& =0
\end{aligned}
$$

- Algebraic homotopy equivalence: Deformation retract

$$
\begin{aligned}
& { }_{h}\left(A, d_{A}\right) \stackrel{p}{\rightleftarrows}\left(H, d_{H}\right) \\
& {i d_{A}-i p=d_{A} h+h d_{A} \neq 0}_{\rightleftarrows}^{\rightleftarrows}
\end{aligned}
$$

- Transferred structure:

$$
\begin{aligned}
& \delta_{1}:= \\
& i=0
\end{aligned}
$$

$$
\left(\delta_{1}\right)^{2} \neq 0
$$

$$
\rightarrow\left(\delta_{1}\right)^{2}=p \Delta \underbrace{i p}_{\sim \text { id }_{A}} \sim \Delta i p \underbrace{\Delta^{2}}_{=0} i=0
$$

First higher operations

- IDEA: introduce a higher operation

$$
\delta_{2}:=p \Delta h \Delta i
$$

First higher operations

- IDEA: introduce a higher operation

$$
\delta_{2}:=p \Delta h \Delta i
$$

$$
\Longrightarrow \quad \partial\left(\delta_{2}\right):=d_{A} \delta_{2}+\delta_{2} d_{A}=\left(\delta_{1}\right)^{2}
$$

First higher operations

- IDEA: introduce a higher operation

$$
\delta_{2}:=p \Delta h \Delta i
$$

$$
\Longrightarrow \quad \partial\left(\delta_{2}\right):=d_{A} \delta_{2}+\delta_{2} d_{A}=\left(\delta_{1}\right)^{2}
$$

$\leftrightarrow \delta_{2}$ is a homotopy for the relation $\left(\delta_{1}\right)^{2}=0$

First higher operations

- IDEA: introduce a higher operation

$$
\delta_{2}:=p \Delta h \Delta i
$$

$$
\Longrightarrow \quad \partial\left(\delta_{2}\right):=d_{A} \delta_{2}+\delta_{2} d_{A}=\left(\delta_{1}\right)^{2}
$$

$\leftrightarrow \delta_{2}$ is a homotopy for the relation $\left(\delta_{1}\right)^{2}=0$

- Question: strict relation $\delta_{1} \delta_{2}+\delta_{2} \delta_{1}=0$?

First higher operations

- IDEA: introduce a higher operation

$$
\delta_{2}:=p \Delta h \Delta i
$$

$$
\Longrightarrow \quad \partial\left(\delta_{2}\right):=d_{A} \delta_{2}+\delta_{2} d_{A}=\left(\delta_{1}\right)^{2}
$$

$\leftrightarrow \delta_{2}$ is a homotopy for the relation $\left(\delta_{1}\right)^{2}=0$

- Question: strict relation $\delta_{1} \delta_{2}+\delta_{2} \delta_{1}=0$? no $\neq 0$

First higher operations

- IDEA: introduce a higher operation

$$
\delta_{2}:=p \Delta h \Delta i
$$

$$
\Longrightarrow \quad \partial\left(\delta_{2}\right):=d_{A} \delta_{2}+\delta_{2} d_{A}=\left(\delta_{1}\right)^{2}
$$

$\leftrightarrow \delta_{2}$ is a homotopy for the relation $\left(\delta_{1}\right)^{2}=0$

- Question: strict relation $\delta_{1} \delta_{2}+\delta_{2} \delta_{1}=0$? no $\neq 0$
- IDEA: introduce an even higher operation $\quad \delta_{3}:=p \Delta h \Delta h \Delta i$

First higher operations

- IDEA: introduce a higher operation

$$
\delta_{2}:=p \Delta h \Delta i
$$

$$
\Longrightarrow \quad \partial\left(\delta_{2}\right):=d_{A} \delta_{2}+\delta_{2} d_{A}=\left(\delta_{1}\right)^{2}
$$

$\leftrightarrow \delta_{2}$ is a homotopy for the relation $\left(\delta_{1}\right)^{2}=0$

- Question: strict relation $\delta_{1} \delta_{2}+\delta_{2} \delta_{1}=0$? no $\neq 0$
- IDEA: introduce an even higher operation $\quad \delta_{3}:=p \Delta h \Delta h \Delta i$

$$
\Longrightarrow \quad \partial\left(\delta_{3}\right)=\delta_{1} \delta_{2}+\delta_{2} \delta_{1}
$$

First higher operations

- IDEA: introduce a higher operation

$$
\delta_{2}:=p \Delta h \Delta i
$$

$$
\Longrightarrow \quad \partial\left(\delta_{2}\right):=d_{A} \delta_{2}+\delta_{2} d_{A}=\left(\delta_{1}\right)^{2}
$$

$\leftrightarrow \delta_{2}$ is a homotopy for the relation $\left(\delta_{1}\right)^{2}=0$

- Question: strict relation $\delta_{1} \delta_{2}+\delta_{2} \delta_{1}=0$? no $\neq 0$
- IDEA: introduce an even higher operation $\quad \delta_{3}:=p \Delta h \Delta h \Delta i$

$$
\Longrightarrow \quad \partial\left(\delta_{3}\right)=\delta_{1} \delta_{2}+\delta_{2} \delta_{1}
$$

$\leftrightarrow \delta_{3}$ is a homotopy for the relation $\delta_{1} \delta_{2}+\delta_{2} \delta_{1}=0$

Higher structure: multicomplex

Higher up, we consider: $\quad \delta_{n}:=p(\Delta h)^{n-1} \Delta i, \quad$ for $n \geq 1$

Higher structure: multicomplex

Higher up, we consider: $\quad \delta_{n}:=p(\Delta h)^{n-1} \Delta i, \quad$ for $n \geq 1$

Proposition

$$
\partial\left(\delta_{n}\right)=\sum_{k=1}^{n-1} \delta_{k} \delta_{n-k}, \text { for } n \geq 1 \text {. }
$$

Higher structure: multicomplex

Higher up, we consider:

$$
\delta_{n}:=p(\Delta h)^{n-1} \Delta i, \quad \text { for } n \geq 1
$$

Proposition

$$
\partial\left(\delta_{n}\right)=\sum_{k=1}^{n-1} \delta_{k} \delta_{n-k} \quad, \text { for } n \geq 1
$$

Definition (Multicomplex)

($H, \delta_{0}:=-d_{H}, \delta_{1}, \delta_{2}, \ldots$) graded vector space H endowed with a family of linear operators of degree $\left|\delta_{n}\right|=2 n-1$ satisfying

$$
\sum_{k=0}^{n} \delta_{k} \delta_{n-k}=0, \quad \text { for } n \geq 0 .
$$

Higher structure: multicomplex

Higher up, we consider:

$$
\delta_{n}:=p(\Delta h)^{n-1} \Delta i, \quad \text { for } n \geq 1
$$

Proposition

$$
\partial\left(\delta_{n}\right)=\sum_{k=1}^{n-1} \delta_{k} \delta_{n-k} \quad, \text { for } n \geq 1
$$

Definition (Multicomplex)

($H, \delta_{0}:=-d_{H}, \delta_{1}, \delta_{2}, \ldots$) graded vector space H endowed with a family of linear operators of degree $\left|\delta_{n}\right|=2 n-1$ satisfying

$$
\sum_{k=0}^{n} \delta_{k} \delta_{n-k}=0, \quad \text { for } n \geq 0 .
$$

- MIXED COMPLEX OR BICOMPLEX: multicomplex s.t. $\delta_{n}=0, n \geq 2$.

Multicomplexes are homotopy stable

- Starting now from a multicomplex $\left(A, \Delta_{0}=-d_{A}, \Delta_{1}, \Delta_{2}, \ldots\right)$

Multicomplexes are homotopy stable

- Starting now from a multicomplex $\left(A, \Delta_{0}=-d_{A}, \Delta_{1}, \Delta_{2}, \ldots\right)$
- Consider the transferred operators

$$
\delta_{n}:=\sum_{k_{1}+\cdots+k_{l}=n} p \Delta_{k_{1}} h \Delta_{k_{2}} h \ldots h \Delta_{k_{l}} i \quad \text { for } n \geq 1
$$

Multicomplexes are homotopy stable

- Starting now from a multicomplex $\left(A, \Delta_{0}=-d_{A}, \Delta_{1}, \Delta_{2}, \ldots\right)$
- Consider the transferred operators

$$
\delta_{n}:=\sum_{k_{1}+\cdots+k_{l}=n} p \Delta_{k_{1}} h \Delta_{k_{2}} h \ldots h \Delta_{k_{l}} i \quad \text { for } n \geq 1
$$

Proposition

$$
\partial\left(\delta_{n}\right)=\sum_{k=1}^{n-1} \delta_{k} \delta_{n-k}
$$

in $\operatorname{Hom}(A, A)$, for $n \geq 1$

Multicomplexes
Homotopy associative algebras
Operadic calculus

Multicomplexes are homotopy stable

- Starting now from a multicomplex $\left(A, \Delta_{0}=-d_{A}, \Delta_{1}, \Delta_{2}, \ldots\right)$
- Consider the transferred operators

$$
\delta_{n}:=\sum_{k_{1}+\cdots+k_{l}=n} p \Delta_{k_{1}} h \Delta_{k_{2}} h \ldots h \Delta_{k_{l}} i \quad \text { for } n \geq 1
$$

Proposition

$$
\partial\left(\delta_{n}\right)=\sum_{k=1}^{n-1} \delta_{k} \delta_{n-k}
$$

in $\operatorname{Hom}(A, A)$, for $n \geq 1$
\Longrightarrow Again a multicomplex, no need of further higher structure

Higher morphisms

Higher morphisms

- i chain map $\Longleftrightarrow \quad \Delta_{0} i=i \delta_{0}$

Higher morphisms

$$
\underbrace{\left(A, \Delta_{0}=-d_{A}, \Delta_{1}, \Delta_{2}, \ldots\right)}_{\text {Original structure }} \stackrel{i}{i}^{\left(H, \delta_{0}=-d_{H}, \delta_{1}, \delta_{2}, \ldots\right)}
$$

- i chain map $\Longleftrightarrow \quad \Delta_{0} i=i \delta_{0}$
- Question: does i commute with the higher Δ 's and δ 's?

Higher morphisms

$$
\underbrace{\left(A, \Delta_{0}=-d_{A}, \Delta_{1}, \Delta_{2}, \ldots\right)}_{\text {Original structure }} \stackrel{i}{i}^{\left(H, \delta_{0}=-d_{H}, \delta_{1}, \delta_{2}, \ldots\right)}
$$

- i chain map $\Longleftrightarrow \quad \Delta_{0} i=i \delta_{0}$
- Question: does i commute with the higher Δ 's and δ 's?

$$
i \delta_{1}=\underbrace{i p}_{\sim_{h} \text { id }_{A}} \Delta_{1} i \neq \Delta_{1} i \text { in general! }
$$

Higher morphisms

$$
\underbrace{\left(A, \Delta_{0}=-d_{A}, \Delta_{1}, \Delta_{2}, \ldots\right)}_{\text {Original structure }} \leftarrow_{\text {Transferred structure }}^{i} \underbrace{\left(H, \delta_{0}=-d_{H}, \delta_{1}, \delta_{2}, \ldots\right)}
$$

- i chain map $\Longleftrightarrow \quad \Delta_{0} i=i \delta_{0}$
- Question: does i commute with the higher Δ 's and δ 's?

$$
i \delta_{1}=\underbrace{i p}_{\sim_{h} \text { id }_{A}} \Delta_{1} i \neq \Delta_{1} i \quad \text { in general! }
$$

Definition (∞-morphism)

$i_{\infty}:\left(H, \delta_{0}=-d_{H}, \delta_{1}, \delta_{2}, \ldots\right) \rightsquigarrow\left(A, \Delta_{0}=-d_{A}, \Delta_{1}, \Delta_{2}, \ldots\right)$
collection of maps $\left\{i_{n}: H \rightarrow A\right\}_{n \geq 0}$ satisfying

Higher morphisms

$$
\underbrace{\left(A, \Delta_{0}=-d_{A}, \Delta_{1}, \Delta_{2}, \ldots\right)}_{\text {Original structure }} \leftarrow^{i} \underbrace{\left(H, \delta_{0}=-d_{H}, \delta_{1}, \delta_{2}, \ldots\right)}_{\text {Transferred structure }}
$$

- i chain map $\Longleftrightarrow \quad \Delta_{0} i=i \delta_{0}$
- Question: does i commute with the higher Δ 's and δ 's?

$$
i \delta_{1}=\underbrace{i p}_{\sim_{h} \mathrm{id}_{A}} \Delta_{1} i \neq \Delta_{1} i \text { in general! }
$$

Definition (∞-morphism)

$i_{\infty}:\left(H, \delta_{0}=-d_{H}, \delta_{1}, \delta_{2}, \ldots\right) \rightsquigarrow\left(A, \Delta_{0}=-d_{A}, \Delta_{1}, \Delta_{2}, \ldots\right)$ collection of maps $\left\{i_{n}: H \rightarrow A\right\}_{n \geq 0}$ satisfying

$$
\sum_{k=0}^{n} \Delta_{n-k} i_{k}=\sum_{k=0}^{n} i_{k} \delta_{n-k}, \quad \text { for } n \geq 0
$$

∞-quasi-isomorphism

Definition (∞-quasi-isomorphism)

∞-morphism $i: H \leadsto A$ s.t. $i_{0}: H \xrightarrow{\sim} A$ homology isomorphism

∞-quasi-isomorphism

Definition (∞-quasi-isomorphism)

∞-morphism $i: H \leadsto A$ s.t. $i_{0}: H \xrightarrow{\sim} A$ homology isomorphism

Proposition

∞-quasi-isomorphisms are (homotopy) invertible

∞-quasi-isomorphism

Definition (∞-quasi-isomorphism)

∞-morphism $i: H \leadsto A$ s.t. $i_{0}: H \xrightarrow{\sim} A$ homology isomorphism

Proposition

∞-quasi-isomorphisms are (homotopy) invertible
\rightarrow Wrong for homology isomorphisms of mixed complexes: not invertible!

∞-quasi-isomorphism

Definition (∞-quasi-isomorphism)

∞-morphism $i: H \leadsto A$ s.t. $i_{0}: H \xrightarrow{\sim} A$ homology isomorphism

Proposition

∞-quasi-isomorphisms are (homotopy) invertible
\rightarrow Wrong for homology isomorphisms of mixed complexes: not invertible!

Proof.

$$
(1-X)^{-1}=1+X+X^{2}+X^{3}+\cdots \text { in } \mathbb{K}[[X]] .
$$

Homotopy Transfer Theorem for multicomplexes

Theorem (Homotopy Transfer Theorem [Lapin 2001])

Given any deformation retract

$$
h \circlearrowright\left(A, d_{A}\right) \stackrel{p}{<}\left(H, d_{H}\right) \quad \mathrm{id}_{A}-i p=d_{A} h+h d_{A}
$$

and any mixed complex (or multicomplex) structure on A, there exists a multicomplex structure on H such that i and p extend to ∞-quasi-isomorphisms and such that h extends to an ∞-homotopy.

Homotopy Transfer Theorem for multicomplexes

Theorem (Homotopy Transfer Theorem [Lapin 2001])

Given any deformation retract

$$
{ }^{n} C\left(A, d_{A}\right) \stackrel{p}{\underset{i}{\rightleftarrows}}\left(H, d_{H}\right) \quad \mathrm{id}_{A}-i p=d_{A} h+h d_{A}
$$

and any mixed complex (or multicomplex) structure on A, there exists a multicomplex structure on H such that i and p extend to ∞-quasi-isomorphisms and such that h extends to an ∞-homotopy.
\longrightarrow explicit formulas \& no loss of algebro-homotopic data

Homotopy Transfer Theorem for multicomplexes

Theorem (Homotopy Transfer Theorem [Lapin 2001])

Given any deformation retract

$$
{ }^{n} C\left(A, d_{A}\right) \stackrel{p}{\underset{i}{\rightleftarrows}}\left(H, d_{H}\right) \quad \mathrm{id}_{A}-i p=d_{A} h+h d_{A}
$$

and any mixed complex (or multicomplex) structure on A, there exists a multicomplex structure on H such that i and p extend to ∞-quasi-isomorphisms and such that h extends to an ∞-homotopy.
\longrightarrow explicit formulas \& no loss of algebro-homotopic data

- Application 1: spectral sequences

Homotopy Transfer Theorem for multicomplexes

Theorem (Homotopy Transfer Theorem [Lapin 2001])

Given any deformation retract

$$
{ }^{n} C\left(A, d_{A}\right) \stackrel{p}{\underset{i}{\rightleftarrows}}\left(H, d_{H}\right) \quad \mathrm{id}_{A}-i p=d_{A} h+h d_{A}
$$

and any mixed complex (or multicomplex) structure on A, there exists a multicomplex structure on H such that i and p extend to ∞-quasi-isomorphisms and such that h extends to an ∞-homotopy.
\longrightarrow explicit formulas \& no loss of algebro-homotopic data

- Application 1: spectral sequences
- Application 2: cyclic homology

Homotopy Transfer Theorem for multicomplexes

Theorem (Homotopy Transfer Theorem [Lapin 2001])

Given any deformation retract

$$
{ }^{n} C\left(A, d_{A}\right) \stackrel{p}{\underset{i}{\rightleftarrows}}\left(H, d_{H}\right) \quad \mathrm{id}_{A}-i p=d_{A} h+h d_{A}
$$

and any mixed complex (or multicomplex) structure on A, there exists a multicomplex structure on H such that i and p extend to ∞-quasi-isomorphisms and such that h extends to an ∞-homotopy.
\longrightarrow explicit formulas \& no loss of algebro-homotopic data

- Application 1: spectral sequences
- Application 2: cyclic homology (Connes' boundary map $\mathrm{B}=\delta_{2}$, Chern characters $=i_{\infty}$)

Homotopy Transfer Theorem for multicomplexes

Theorem (Homotopy Transfer Theorem [Lapin 2001])

Given any deformation retract

$$
{ }^{n} C\left(A, d_{A}\right) \stackrel{p}{\underset{i}{\rightleftarrows}}\left(H, d_{H}\right) \quad \mathrm{id}_{A}-i p=d_{A} h+h d_{A}
$$

and any mixed complex (or multicomplex) structure on A, there exists a multicomplex structure on H such that i and p extend to ∞-quasi-isomorphisms and such that h extends to an ∞-homotopy.
\longrightarrow explicit formulas \& no loss of algebro-homotopic data

- Application 1: spectral sequences
- Application 2: cyclic homology (Connes' boundary map $\mathrm{B}=\delta_{2}$, Chern characters $=i_{\infty}$)
- Application 3: optimal version of the $d \bar{d}-l e m m a$

Algebraic Topology in the XXth century Homotopy+Algebra=Higher Structures Lie methods in Deformation Theory

Multicomplexes
Homotopy associative algebras Operadic calculus

Doors of hell or pandora's box?

Algebraic Topology in the XXth century Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Multicomplexes
Homotopy associative algebras Operadic calculus

Doors of hell or pandora's box?

Multicomplexes

Doors of hell or pandora's box?

Verse-nous ton poison pour qu'il nous réconforte! Nous voulons, tant ce feu nous brûle le cerveau,
Plonger au fond du gouffre, Enfer ou Ciel, qu'importe ?
Au fond de l'Inconnu pour trouver du nouveau !

Le voyage, Charles Baudelaire (Les fleurs du mal, 1861)

Transfer associative algebra structure

- Another algebraic structure: associative algebra $\nu=$

Transfer associative algebra structure

- Another algebraic structure: associative algebra $\nu=$

Proposition (Transfer of structure)

$p: A \rightleftarrows H: i, p i=\mathrm{id}_{H}, i p=\mathrm{id}_{A} \Longrightarrow \mu_{2}:=p \nu i^{\otimes 2}:$ associative

Transfer associative algebra structure

- Another algebraic structure: associative algebra $\nu=$

Proposition (Transfer of structure)

$p: A \rightleftarrows H: i, p i=\mathrm{id}_{H}, i p=\mathrm{id}_{A} \Longrightarrow \mu_{2}:=p \nu i^{\otimes 2}$: associative

Transfer associative algebra structure

- Another algebraic structure: associative algebra $\nu=$

Proposition (Transfer of structure)

$p: A \rightleftarrows H: i, p i=\mathrm{id}_{H}, i p=\mathrm{id}_{A} \Longrightarrow \mu_{2}:=p \nu i^{\otimes 2}:$ associative

Transfer associative algebra structure

- Another algebraic structure: associative algebra $\nu=$

Isomorphism \rightarrow Deformation retract:

$$
\begin{aligned}
& { }^{n} C\left(A, d_{A}\right) \stackrel{p}{\rightleftarrows}\left(H, d_{H}\right) \\
& i d_{A}-i p=d_{A} h+h d_{A} \neq 0
\end{aligned}
$$

Transfer associative algebra structure

- Another algebraic structure: associative algebra $\nu=$

Isomorphism \rightarrow Deformation retract:

$$
\begin{aligned}
& { }^{h} C\left(A, d_{A}\right) \stackrel{p}{\rightleftarrows}\left(H, d_{H}\right) \\
& i d_{A}-i p=d_{A} h+h d_{A} \neq 0
\end{aligned}
$$

Transfer associative algebra structure

- Another algebraic structure: associative algebra $\nu=$

Isomorphism \rightarrow Deformation retract:

$$
\begin{aligned}
& { }^{n} C\left(A, d_{A}\right) \stackrel{p}{\rightleftarrows}\left(H, d_{H}\right) \\
& i d_{A}-i p=d_{A} h+h d_{A} \neq 0
\end{aligned}
$$

$$
\mu_{2}=\gamma:=\psi_{\mathrm{p}}^{\mathrm{i}}
$$

not associative!

p

Higher operations

- IDEA: introduce a higher operation $\mu_{3}: H^{\otimes 3} \rightarrow H$

Higher operations

- IDEA: introduce a higher operation

$$
\mu_{3}: H^{\otimes 3} \rightarrow H
$$

mesures the failure of associativity for μ_{2}

Higher operations

- IdEA: introduce a higher operation $\mu_{3}: H^{\otimes 3} \rightarrow H$

mesures the failure of associativity for μ_{2}
in $\operatorname{Hom}\left(H^{\otimes 3}, H\right)$

Higher operations

- IDEA: introduce a higher operation $\mu_{3}: H^{\otimes 3} \rightarrow H$

mesures the failure of associativity for μ_{2}
in $\operatorname{Hom}\left(H^{\otimes 3}, H\right)$
$\leftrightarrow \mu_{3}$ is a homotopy for the associativity relation of μ_{2}.

Higher operations

- IdEA: introduce a higher operation $\mu_{3}: H^{\otimes 3} \rightarrow H$

mesures the failure of associativity for μ_{2}

$$
(\varphi)-Y \cdot Y
$$

in $\operatorname{Hom}\left(H^{\otimes 3}, H\right)$
$\leftrightarrow \mu_{3}$ is a homotopy for the associativity relation of μ_{2}.

- Even higher operations: $\mu_{n}: H^{\otimes n} \rightarrow H, \forall n \geqslant 2$

Higher structure: homotopy associative algebras

Proposition

The operations $\left\{\mu_{n}\right\}_{n \geq 2}$ satisfy

Higher structure: homotopy associative algebras

Proposition

The operations $\left\{\mu_{n}\right\}_{n \geq 2}$ satisfy

Définition (A_{∞}-algebras [Stasheff, 1963])

$$
\begin{gathered}
\left(H, \mu_{1}=d_{H}, \mu_{2}, \mu_{3}, \ldots\right) \\
\mu_{n}: H^{\otimes n} \rightarrow H
\end{gathered}
$$

A_{∞}-algebras are homotopy stable

\rightarrow Starting from an A_{∞}-algebra $\left(A, d_{A}, \nu_{2}, \nu_{3}, \ldots\right)$:

A_{∞}-algebras are homotopy stable

\rightarrow Starting from an A_{∞}-algebra $\left(A, d_{A}, \nu_{2}, \nu_{3}, \ldots\right)$:

A_{∞}-algebras are homotopy stable

\rightarrow Starting from an A_{∞}-algebra $\left(A, d_{A}, \nu_{2}, \nu_{3}, \ldots\right)$:

Consider

Proposition

A_{∞}-algebras are homotopy stable

\rightarrow Starting from an A_{∞}-algebra $\left(A, d_{A}, \nu_{2}, \nu_{3}, \ldots\right)$:

Consider

Proposition

\Longrightarrow Again an A_{∞}-algebra, no need of further higher structure

Higher morphisms

$$
\underbrace{\left(A, d_{A}, \nu_{2}, \nu_{3}, \ldots\right)}_{\text {Original structure }} \leftarrow^{i} \underbrace{\left(H, d_{H}, \mu_{2}, \mu_{3}, \ldots\right)}_{\text {Transferred structure }}
$$

Higher morphisms

$$
\underbrace{\left(A, d_{A}, \nu_{2}, \nu_{3}, \ldots\right)}_{\text {Original structure }} \stackrel{i}{i}_{\longleftarrow}^{\left(H, d_{H}, \mu_{2}, \mu_{3}, \ldots\right)}
$$

$\bullet i$ chain map $\Longleftrightarrow \quad d_{A} i=i d_{H}$

Higher morphisms

$$
\underbrace{\left(A, d_{A}, \nu_{2}, \nu_{3}, \ldots\right)}_{\text {Original structure }} \stackrel{i}{i}_{\longleftarrow}^{\left(H, d_{H}, \mu_{2}, \mu_{3}, \ldots\right)}
$$

- i chain map $\Longleftrightarrow \quad d_{A} i=i d_{H}$
- Question: Does i commutes with the higher ν 's and μ 's?

Higher morphisms

$$
\underbrace{\left(A, d_{A}, \nu_{2}, \nu_{3}, \ldots\right)}_{\text {Original structure }} \stackrel{i}{i}_{\longleftarrow}^{\left(H, d_{H}, \mu_{2}, \mu_{3}, \ldots\right)}
$$

- i chain map $\Longleftrightarrow \quad d_{A} i=i d_{H}$
- Question: Does i commutes with the higher ν 's and μ 's? \rightarrow not in general!

Higher morphisms

$$
\underbrace{\left(A, d_{A}, \nu_{2}, \nu_{3}, \ldots\right)}_{\text {Original structure }} \stackrel{i}{i}_{\longleftarrow}^{\left(H, d_{H}, \mu_{2}, \mu_{3}, \ldots\right)}
$$

- i chain map $\Longleftrightarrow \quad d_{A} i=i d_{H}$
- Question: Does i commutes with the higher ν 's and μ 's? \rightarrow not in general!

Définition (A_{∞}-morphism)

$\left(H, d_{H},\left\{\mu_{n}\right\}_{n \geq 2}\right) \rightsquigarrow\left(A, d_{A},\left\{\nu_{n}\right\}_{n \geq 2}\right)$: collection $\left\{f_{n}: H^{\otimes n} \rightarrow A\right\}_{n \geq 1}$

Higher morphisms

$$
\underbrace{\left(A, d_{A}, \nu_{2}, \nu_{3}, \ldots\right)}_{\text {Original structure }} \leftarrow_{\text {Transferred structure }}^{i}
$$

- i chain map $\Longleftrightarrow \quad d_{A} i=i d_{H}$
- Question: Does i commutes with the higher ν 's and μ 's? \rightarrow not in general!

Définition (A_{∞}-morphism)

$\left(H, d_{H},\left\{\mu_{n}\right\}_{n \geq 2}\right)_{\rightsquigarrow}\left(A, d_{A},\left\{\nu_{n}\right\}_{n \geq 2}\right)$: collection $\left\{f_{n}: H^{\otimes n} \rightarrow A\right\}_{n \geq 1}$

Homotopy Transfer Theorem for A_{∞}-algebras

A_{∞}-QUASI-ISOMORPHISM: $i: H \leadsto A$ s.t. $i_{0}: H \xrightarrow{\sim} A$ homology iso.

Homotopy Transfer Theorem for A_{∞}-algebras

A_{∞}-QUASI-ISOMORPHISM: $i: H \cong A$ s.t. $i_{0}: H \xrightarrow{\sim} A$ homology iso.

Theorem (HTT for A_{∞}-algebras [Kadeshvili 1982])

Given a A_{∞}-algebra A and a deformation retract

$$
{ }_{n} C\left(A, d_{A}\right) \stackrel{p}{\underset{i}{\rightleftarrows}}\left(H, d_{H}\right) \quad \mathrm{id}_{A}-i p=d_{A} h+h d_{A}
$$

there exists an A_{∞}-algebra structure on H such that i, p, and h extend to A_{∞}-quasi-isomorphisms and A_{∞}-homotopy respectively.

Homotopy Transfer Theorem for A_{∞}-algebras

A_{∞}-QUASI-ISOMORPHISM: $i: H \leadsto A$ s.t. $i_{0}: H \xrightarrow{\sim} A$ homology iso.

Theorem (HTT for A_{∞}-algebras [Kadeshvili 1982])

Given a A_{∞}-algebra A and a deformation retract

$$
{ }_{n} C\left(A, d_{A}\right) \underset{i}{\stackrel{p}{\rightleftarrows}}\left(H, d_{H}\right) \quad \mathrm{id}_{A}-i p=d_{A} h+h d_{A}
$$

there exists an A_{∞}-algebra structure on H such that i, p, and h extend to A_{∞}-quasi-isomorphisms and A_{∞}-homotopy respectively.
\longrightarrow explicit formulas \& no loss of algebro-homotopic data

Homotopy Transfer Theorem for A_{∞}-algebras

A_{∞}-QUASI-ISOMORPHISM: $i: H \cong A$ s.t. $i_{0}: H \xrightarrow{\sim} A$ homology iso.

Theorem (HTT for A_{∞}-algebras [Kadeshvili 1982])

Given a A_{∞}-algebra A and a deformation retract

$$
{ }_{n} C\left(A, d_{A}\right) \underset{i}{\stackrel{p}{\rightleftarrows}}\left(H, d_{H}\right) \quad \mathrm{id}_{A}-i p=d_{A} h+h d_{A}
$$

there exists an A_{∞}-algebra structure on H such that i, p, and h extend to A_{∞}-quasi-isomorphisms and A_{∞}-homotopy respectively.
\longrightarrow explicit formulas \& no loss of algebro-homotopic data

- Application 1: Massey products on $H^{\bullet}(X, \mathbb{K})$ \rightarrow Galois cohomology, elliptic curves, etc.

Homotopy Transfer Theorem for A_{∞}-algebras

A_{∞}-QUASI-ISOMORPHISM: $i: H \cong A$ s.t. $i_{0}: H \xrightarrow{\sim} A$ homology iso.

Theorem (HTT for A_{∞}-algebras [Kadeshvili 1982])

Given a A_{∞}-algebra A and a deformation retract

$$
{ }_{n} C\left(A, d_{A}\right) \underset{i}{\stackrel{p}{\rightleftarrows}}\left(H, d_{H}\right) \quad \mathrm{id}_{A}-i p=d_{A} h+h d_{A}
$$

there exists an A_{∞}-algebra structure on H such that i, p, and h extend to A_{∞}-quasi-isomorphisms and A_{∞}-homotopy respectively.
\longrightarrow explicit formulas \& no loss of algebro-homotopic data

- Application 1: Massey products on $H^{\bullet}(X, \mathbb{K})$ \rightarrow Galois cohomology, elliptic curves, etc.
- Application 2 : A_{∞}-categories \rightarrow Floer cohomology, mirror symmetry, etc.

Operadic calculus [1994-now]

Operadic calculus [1994-now]

Operadic calculus [1994-now]

- Examples: Lie $_{\infty}$, Com $_{\infty}$, LieBi $_{\infty}$, Frobenius $_{\infty}$, etc.

Operadic calculus [1994-now]

- Examples: $\mathrm{Lie}_{\infty}, \mathrm{Com}_{\infty}, \mathrm{LieBi}_{\infty}$, Frobenius $_{\infty}$, etc.
- Theorem: Homotopy transfer theorem

Operadic calculus [1994-now]

- Examples: $\mathrm{Lie}_{\infty}, \mathrm{Com}_{\infty}, \mathrm{LieBi}_{\infty}$, Frobenius $_{\infty}$, etc.
- Theorem: Homotopy transfer theorem
- Applications: Feynman diagrams, NC probability, etc.

Operadic calculus [1994-now]

- Examples: $\mathrm{Lie}_{\infty}, \mathrm{Com}_{\infty}, \mathrm{LieBi}_{\infty}$, Frobenius ${ }_{\infty}$, etc.
- Theorem: Homotopy transfer theorem
- Applications: Feynman diagrams, NC probability, etc.

Theorem (Mandell [2005])

The homotopy type of a topological space X is faithfully detected by the E_{∞}-algebra structure on its singular cochains $C_{\text {sing }}^{\bullet}(X, \mathbb{Z})$.

Table of contents

(1) Algebraic Topology in the $X X$ th century
 2 Homotopy+Algebra=Higher Structures

(3) Lie methods in Deformation Theory

Classical Lie theory

- Lie 3 ${ }^{\text {rd }}$ THEOREM: Lie algebra $\mathfrak{g} \xrightarrow{\text { exp }}$ Lie Group G

Classical Lie theory

- LIE $3{ }^{\text {rd }}$ THEOREM: Lie algebra $\mathfrak{g} \xrightarrow{\exp }$ Lie Group G

Definition (Baker-Campbell-Hausdorff formula)

$\mathrm{BCH}(x, y):=\ln (\exp (x) \cdot \exp (y)) \in \mathbb{K}\langle\langle x, y\rangle\rangle \cong \widehat{\operatorname{Ass}}(x, y)$

Classical Lie theory

- Lie 3 ${ }^{\text {rd }}$ THEOREM: Lie algebra $\mathfrak{g} \xrightarrow{\text { exp }}$ Lie Group G

Definition (Baker-Campbell-Hausdorff formula)

$\operatorname{BCH}(x, y):=\ln (\exp (x) \cdot \exp (y)) \in \mathbb{K}\langle\langle x, y\rangle\rangle \cong \widehat{\operatorname{Ass}}(x, y)$

Theorem

- $\operatorname{BCH}(x, y)=x+y+\frac{1}{2}[x, y]+\frac{1}{12}[x,[x, y]]+\frac{1}{12}[y,[x, y]]+\cdots$

$$
\in \widehat{\operatorname{Lie}}(x, y) \subset \widehat{\operatorname{Ass}}(x, y)
$$

Classical Lie theory

- Lie 3 ${ }^{\text {rd }}$ THEOREM: Lie algebra $\mathfrak{g} \xrightarrow{\text { exp }}$ Lie Group G

Definition (Baker-Campbell-Hausdorff formula)

$\mathrm{BCH}(x, y):=\ln (\exp (x) \cdot \exp (y)) \in \mathbb{K}\langle\langle x, y\rangle\rangle \cong \widehat{\operatorname{Ass}}(x, y)$

Theorem

- $\operatorname{BCH}(x, y)=x+y+\frac{1}{2}[x, y]+\frac{1}{12}[x,[x, y]]+\frac{1}{12}[y,[x, y]]+\cdots$

$$
\in \widehat{\operatorname{Lie}}(x, y) \subset \widehat{\operatorname{Ass}}(x, y)
$$

- $\operatorname{BCH}(\mathrm{BCH}(x, y), z)=\mathrm{BCH}(x, \operatorname{BCH}(y, z))$

Classical Lie theory

- Lie 3 ${ }^{\text {rd }}$ THEOREM: Lie algebra $\mathfrak{g} \xrightarrow{\text { exp }}$ Lie Group G

Definition (Baker-Campbell-Hausdorff formula)

$\mathrm{BCH}(x, y):=\ln (\exp (x) \cdot \exp (y)) \in \mathbb{K}\langle\langle x, y\rangle\rangle \cong \widehat{\operatorname{Ass}}(x, y)$

Theorem

- $\operatorname{BCH}(x, y)=x+y+\frac{1}{2}[x, y]+\frac{1}{12}[x,[x, y]]+\frac{1}{12}[y,[x, y]]+\cdots$

$$
\in \widehat{\operatorname{Lie}}(x, y) \subset \widehat{\operatorname{Ass}}(x, y)
$$

- $\operatorname{BCH}(\mathrm{BCH}(x, y), z)=\mathrm{BCH}(x, \operatorname{BCH}(y, z))$
- $\operatorname{BCH}(x, 0)=x=\operatorname{BCH}(0, x)$

Classical Lie theory

- Lie 3 ${ }^{\text {rd }}$ THEOREM: Lie algebra $\mathfrak{g} \xrightarrow{\text { exp }}$ Lie Group G

Definition (Baker-Campbell-Hausdorff formula)

$\mathrm{BCH}(x, y):=\ln (\exp (x) \cdot \exp (y)) \in \mathbb{K}\langle\langle x, y\rangle\rangle \cong \widehat{\operatorname{Ass}}(x, y)$

Theorem

- $\operatorname{BCH}(x, y)=x+y+\frac{1}{2}[x, y]+\frac{1}{12}[x,[x, y]]+\frac{1}{12}[y,[x, y]]+\cdots$

$$
\in \widehat{\operatorname{Lie}}(x, y) \subset \widehat{\operatorname{Ass}}(x, y)
$$

- $\operatorname{BCH}(\mathrm{BCH}(x, y), z)=\mathrm{BCH}(x, \operatorname{BCH}(y, z))$
- $\operatorname{BCH}(x, 0)=x=\operatorname{BCH}(0, x)$

Definition (Hausdorff group)

($\mathfrak{g},[$,$]) complete Lie algebra$

Classical Lie theory

- Lie 3 ${ }^{\text {rd }}$ THEOREM: Lie algebra $\mathfrak{g} \xrightarrow{\text { exp }}$ Lie Group G

Definition (Baker-Campbell-Hausdorff formula)

$\mathrm{BCH}(x, y):=\ln (\exp (x) \cdot \exp (y)) \in \mathbb{K}\langle\langle x, y\rangle\rangle \cong \widehat{\operatorname{Ass}}(x, y)$

Theorem

- $\operatorname{BCH}(x, y)=x+y+\frac{1}{2}[x, y]+\frac{1}{12}[x,[x, y]]+\frac{1}{12}[y,[x, y]]+\cdots$

$$
\in \widehat{\operatorname{Lie}}(x, y) \subset \widehat{\operatorname{Ass}}(x, y)
$$

- $\operatorname{BCH}(\mathrm{BCH}(x, y), z)=\mathrm{BCH}(x, \operatorname{BCH}(y, z))$
- $\operatorname{BCH}(x, 0)=x=\operatorname{BCH}(0, x)$

Definition (Hausdorff group)

$(\mathfrak{g},[]$,$) complete Lie algebra \Longrightarrow G:=(\mathfrak{g}, \mathrm{BCH}, 0)$ Hausdorff group

Deformation theory

\rightarrow Differential graded Lie algebra: (g, [,], d)

Deformation theory

\rightarrow Differential graded Lie algebra: (g, [,], d)

Definition (Maurer-Cartan elements)

$$
\mathrm{MC}(\mathfrak{g}):=\left\{\alpha \in \mathfrak{g}_{-1} \left\lvert\, \mathrm{d} \alpha+\frac{1}{2}[\alpha, \alpha]=0\right.\right\}
$$

Deformation theory

\rightarrow Differential graded Lie algebra: $(\mathfrak{g},[], d$,

Definition (Maurer-Cartan elements)

$$
\operatorname{MC}(\mathfrak{g}):=\left\{\alpha \in \mathfrak{g}_{-1} \left\lvert\, \mathrm{d} \alpha+\frac{1}{2}[\alpha, \alpha]=0\right.\right\}
$$

Proposition

The Hausdorff group G of \mathfrak{g}_{0} acts on $\mathrm{MC}(\mathfrak{g})$

Deformation theory

\rightarrow Differential graded Lie algebra: ($\mathfrak{g},[], d$,
Definition (Maurer-Cartan elements)

$$
\mathrm{MC}(\mathfrak{g}):=\left\{\alpha \in \mathfrak{g}_{-1} \left\lvert\, \mathrm{d} \alpha+\frac{1}{2}[\alpha, \alpha]=0\right.\right\}
$$

Proposition

The Hausdorff group G of \mathfrak{g}_{0} acts on $\mathrm{MC}(\mathfrak{g})$
\rightarrow PHILOSOPHY: "Any deformation problem over a field of characteristic 0 can be encoded by a dg Lie algebra."

Deformation theory

\rightarrow Differential graded Lie algebra: ($\mathfrak{g},[], d$,
Definition (Maurer-Cartan elements)

$$
\mathrm{MC}(\mathfrak{g}):=\left\{\alpha \in \mathfrak{g}_{-1} \left\lvert\, \mathrm{d} \alpha+\frac{1}{2}[\alpha, \alpha]=0\right.\right\}
$$

Proposition

The Hausdorff group G of \mathfrak{g}_{0} acts on $\mathrm{MC}(\mathfrak{g})$
\rightarrow PHILOSOPHY: "Any deformation problem over a field of characteristic 0 can be encoded by a dg Lie algebra."
structures of type \mathcal{P} on a "space" $A \quad \longleftrightarrow \quad \mathrm{MC}\left(\mathfrak{g}_{\mathcal{P}, A}\right)$

Deformation theory

\rightarrow Differential graded Lie algebra: ($\mathfrak{g},[], d$,
Definition (Maurer-Cartan elements)

$$
\mathrm{MC}(\mathfrak{g}):=\left\{\alpha \in \mathfrak{g}_{-1} \left\lvert\, \mathrm{d} \alpha+\frac{1}{2}[\alpha, \alpha]=0\right.\right\}
$$

Proposition

The Hausdorff group G of \mathfrak{g}_{0} acts on $\mathrm{MC}(\mathfrak{g})$
\rightarrow PHILOSOPHY: "Any deformation problem over a field of characteristic 0 can be encoded by a dg Lie algebra."
structures of type \mathcal{P} on a "space" $A \quad \longleftrightarrow \quad \mathrm{MC}\left(\mathfrak{g}_{\mathcal{P}, A}\right)$ equivalence $\quad \longleftrightarrow \quad G$

Deformation theory

\rightarrow Differential graded Lie algebra: ($\mathfrak{g},[], d$,
Definition (Maurer-Cartan elements)

$$
\mathrm{MC}(\mathfrak{g}):=\left\{\alpha \in \mathfrak{g}_{-1} \left\lvert\, \mathrm{d} \alpha+\frac{1}{2}[\alpha, \alpha]=0\right.\right\}
$$

Proposition

The Hausdorff group G of \mathfrak{g}_{0} acts on $\mathrm{MC}(\mathfrak{g})$
\rightarrow PHILOSOPHY: "Any deformation problem over a field of characteristic 0 can be encoded by a dg Lie algebra."

- ($\left.\operatorname{Hoch}^{\bullet}(A, A),[,]_{G e r s t}\right)$: associative algebras / isomorphisms

Deformation theory

\rightarrow Differential graded Lie algebra: ($\mathfrak{g},[], d$,
Definition (Maurer-Cartan elements)

$$
\mathrm{MC}(\mathfrak{g}):=\left\{\alpha \in \mathfrak{g}_{-1} \left\lvert\, \mathrm{d} \alpha+\frac{1}{2}[\alpha, \alpha]=0\right.\right\}
$$

Proposition

The Hausdorff group G of \mathfrak{g}_{0} acts on $\mathrm{MC}(\mathfrak{g})$
\rightarrow PHILOSOPHY: "Any deformation problem over a field of characteristic 0 can be encoded by a dg Lie algebra."

- ($\left.\operatorname{Hoch}^{\bullet}(A, A),[,]_{G e r s t}\right)$: associative algebras / isomorphisms
- $\left(\Gamma\left(\Lambda^{\bullet} T M\right),[,]_{S N}\right)$: Poisson structure / diffeomorphisms

Deformation quantisation of Poisson manifolds

Theorem (Kontsevich [1997])

Any Poisson manifold (M, π) can be quantised:
\exists associative product $*$ on $C^{\infty}(M)[[\hbar]]$ s.t. $*_{0}=$. and $*_{1}=\{$,

Deformation quantisation of Poisson manifolds

Theorem (Kontsevich [1997])

Any Poisson manifold (M, π) can be quantised:
\exists associative product $*$ on $C^{\infty}(M)[[\hbar]]$ s.t. $*_{0}=$. and $*_{1}=\{$,

Proof.

- The functor: dg nilpotent Lie algebra ($\mathfrak{g},[], \mathrm{d},) \mapsto \mathrm{MC}(\mathfrak{g}) / \mathrm{G}$ sends quasi-isomorphisms to bijections.

Deformation quantisation of Poisson manifolds

Theorem (Kontsevich [1997])

Any Poisson manifold (M, π) can be quantised:
\exists associative product $*$ on $C^{\infty}(M)[[\hbar]]$ s.t. $*_{0}=$. and $*_{1}=\{$,

Proof.

- The functor: dg nilpotent Lie algebra $(\mathfrak{g},[], \mathrm{d},) \mapsto \mathrm{MC}(\mathfrak{g}) / \mathrm{G}$ sends quasi-isomorphisms to bijections.
- The Hochschild-Kostant-Rosenberg quasi-isomorphism

$$
\Gamma\left(\Lambda^{\bullet} T M\right) \xrightarrow{\sim} \operatorname{Hoch}^{\bullet}\left(C^{\infty}(M), C^{\infty}(M)\right)
$$

Deformation quantisation of Poisson manifolds

Theorem (Kontsevich [1997])

Any Poisson manifold (M, π) can be quantised:
\exists associative product $*$ on $C^{\infty}(M)[[\hbar]]$ s.t. $*_{0}=$. and $*_{1}=\{$,

Proof.

- The functor: dg nilpotent Lie algebra $(\mathfrak{g},[], \mathrm{d},) \mapsto \mathrm{MC}(\mathfrak{g}) / \mathrm{G}$ sends quasi-isomorphisms to bijections.
- The Hochschild-Kostant-Rosenberg quasi-isomorphism

$$
\Gamma\left(\Lambda^{\bullet} T M\right) \xrightarrow{\sim} \operatorname{Hoch}^{\bullet}\left(C^{\infty}(M), C^{\infty}(M)\right)
$$

(fails to respect to Lie brackets)

Deformation quantisation of Poisson manifolds

Theorem (Kontsevich [1997])

Any Poisson manifold (M, π) can be quantised:
\exists associative product $*$ on $C^{\infty}(M)[[\hbar]]$ s.t. $*_{0}=$. and $*_{1}=\{$,

Proof.

- The functor: dg nilpotent Lie algebra $(\mathfrak{g},[], \mathrm{d},) \mapsto \mathrm{MC}(\mathfrak{g}) / \mathrm{G}$ sends quasi-isomorphisms to bijections.
- The Hochschild-Kostant-Rosenberg quasi-isomorphism

$$
\Gamma\left(\Lambda^{\bullet} T M\right) \xrightarrow{\sim} \operatorname{Hoch}^{\bullet}\left(C^{\infty}(M), C^{\infty}(M)\right)
$$

(fails to respect to Lie brackets)
extends to a $L i e_{\infty}$-quasi-isomorphism.

Deformation quantisation of Poisson manifolds

Theorem (Kontsevich [1997])

Any Poisson manifold (M, π) can be quantised:
\exists associative product $*$ on $C^{\infty}(M)[[\hbar]]$ s.t. $*_{0}=$. and $*_{1}=\{$,

Proof.

- The functor: dg nilpotent Lie algebra $(\mathfrak{g},[], \mathrm{d},) \mapsto \mathrm{MC}(\mathfrak{g}) / G$ sends quasi-isomorphisms to bijections.
- The Hochschild-Kostant-Rosenberg quasi-isomorphism

$$
\Gamma\left(\Lambda^{\bullet} T M\right) \xrightarrow{\sim} \operatorname{Hoch}^{\bullet}\left(C^{\infty}(M), C^{\infty}(M)\right)
$$

(fails to respect to Lie brackets)
extends to a $L i e_{\infty}$-quasi-isomorphism.

- \exists Lie $_{\infty}$-quasi-isomorphism $\Leftrightarrow \exists$ zig-zag of quasi-isomorphisms

Fundamental theorem of deformation theory

Definition (Deformation functor)
Given a dg Lie algebra ($\mathfrak{g},[],$,d):

$$
\begin{array}{lrlc}
\text { Def }_{\mathfrak{g}}: & \text { Artin rings } & \rightarrow & \text { groupoids } \\
& \mathfrak{R} \cong \mathbb{K} \oplus \mathfrak{m} & \mapsto & (\mathrm{MC}(\mathfrak{g} \otimes \mathfrak{m}), G)
\end{array}
$$

Fundamental theorem of deformation theory

Definition (Formal moduli problem)

Given a dg Lie algebra ($\mathfrak{g},[],$,d):

$$
\begin{aligned}
\text { Def }_{\mathfrak{g}}: \text { dg Artin rings }^{\text {din }} & \rightarrow \infty \text { - groupoids s.t. [...] } \\
\mathfrak{R} \cong \mathbb{K} \oplus \mathfrak{m} & \mapsto(\mathrm{g} \otimes \mathfrak{m}), G)
\end{aligned}
$$

Fundamental theorem of deformation theory

Definition (Formal moduli problem)

Given a dg Lie algebra ($\mathfrak{g},[],$,d):

$$
\begin{aligned}
\text { Def }_{\mathfrak{g}}: \text { dg Artin rings }^{\text {din }} & \rightarrow \infty \text { - groupoids s.t. [...] } \\
\mathfrak{R} \cong \mathbb{K} \oplus \mathfrak{m} & \mapsto(\mathrm{g} \otimes \mathfrak{m}), G)
\end{aligned}
$$

- HEURISTIC: ∞-groupoid \leftrightarrow topological space \leftrightarrow Kan complex

Fundamental theorem of deformation theory

Definition (Formal moduli problem)

Given a dg Lie algebra ($\mathfrak{g},[],$,$d):$

$$
\begin{aligned}
\text { Def }_{\mathfrak{g}}: \text { dg Artin rings }^{\text {din }} & \rightarrow \infty \text { - groupoids s.t. [...] } \\
\mathfrak{R} \cong \mathbb{K} \oplus \mathfrak{m} & \mapsto(\mathrm{g} \otimes \mathfrak{m}), G)
\end{aligned}
$$

- HEURISTIC: ∞-groupoid \leftrightarrow topological space \leftrightarrow Kan complex

Fundamental theorem of deformation theory

Definition (Formal moduli problem)

Given a dg Lie algebra ($\mathfrak{g},[], d$,$) :$

$$
\begin{aligned}
\text { Def }_{\mathfrak{g}}: \begin{aligned}
& \text { dg Artin rings } \rightarrow \\
& \mathfrak{R} \cong \mathbb{K} \oplus \mathfrak{m} \mapsto \\
&(\mathrm{MC} \cdot(\mathfrak{g} \otimes \mathfrak{m}), G)
\end{aligned}
\end{aligned}
$$

- HEURISTIC: ∞-groupoid \leftrightarrow topological space \leftrightarrow Kan complex

Theorem ([Pridham-Lurie 2010])

char $\mathbb{K}=0 \Longrightarrow$ equivalence of ∞-categories:
Formal moduli problems $\stackrel{\cong}{\leftrightarrows}$ dg Lie algebras

Inventory "à la Prevert"

« [...] une douzaine d'huîtres un citron un pain un rayon de soleil une lame de fond six musiciens [...] " Inventaire (Paroles, 1946)

Inventory "à la Prevert"

« [...] une douzaine d'huîtres un citron un pain un rayon de soleil une lame de fond six musiciens [...] " Inventaire (Paroles, 1946)

- Higher Lie theory= higher BCH formulas [Robert-Nicoud-Vallette 2020]

Inventory "à la Prevert"

« [...] une douzaine d'huîtres un citron un pain un rayon de soleil une lame de fond six musiciens [...] " Inventaire (Paroles, 1946)

- Higher Lie theory= higher BCH formulas [Robert-Nicoud-Vallette 2020]
- Tensor product of A_{∞}-algebras/categories PROOF: diagonal of operadic polytopes [Masuda-Thomas-Tonks-Vallette 2021]

Inventory "à la Prevert"

« [...] une douzaine d'huîtres un citron un pain un rayon de soleil une lame de fond six musiciens [...] " Inventaire (Paroles, 1946)

- Higher Lie theory= higher BCH formulas [Robert-Nicoud-Vallette 2020]
- Tensor product of A_{∞}-algebras/categories PROOF: diagonal of operadic polytopes [Masuda-Thomas-Tonks-Vallette 2021]
- The enveloping algebra \mathcal{U} detects isomorphisms [Campos-Petersen-Robert-Nicoud-Wierstra 2019]

Inventory "à la Prevert"

« [...] une douzaine d'huîtres un citron un pain un rayon de soleil une lame de fond six musiciens [...] " Inventaire (Paroles, 1946)

- Higher Lie theory= higher BCH formulas [Robert-Nicoud-Vallette 2020]
- Tensor product of A_{∞}-algebras/categories PROOF: diagonal of operadic polytopes [Masuda-Thomas-Tonks-Vallette 2021]
- The enveloping algebra \mathcal{U} detects isomorphisms [Campos-Petersen-Robert-Nicoud-Wierstra 2019]

- Purity of the mixed Hodge structure on Brown's moduli spaces $\mathcal{M}_{0, n} \subset \mathcal{M}_{0, n}^{\delta} \subset \overline{\mathcal{M}}_{0, n}$ [Dupont-Vallette 2017]

Inventory "à la Prevert"

« [...] une douzaine d'huîtres un citron un pain un rayon de soleil une lame de fond six musiciens [...] " Inventaire (Paroles, 1946)

- Higher Lie theory= higher BCH formulas [Robert-Nicoud-Vallette 2020]
- Tensor product of A_{∞}-algebras/categories PROOF: diagonal of operadic polytopes [Masuda-Thomas-Tonks-Vallette 2021]
- The enveloping algebra \mathcal{U} detects isomorphisms [Campos-Petersen-Robert-Nicoud-Wierstra 2019]

- Purity of the mixed Hodge structure on Brown's moduli spaces $\mathcal{M}_{0, n} \subset \mathcal{M}_{0, n}^{\delta} \subset \overline{\mathcal{M}}_{0, n}$ [Dupont-Vallette 2017]
- Unification of the Grothendieck-Teichmüller group and the Givental group
 [Dotsenko-Shadrin-Vallette-Vaintrob 2020]

References

Algebraic Operads

Q Springer

References

Grundlehren der mathematischen Wissenschaften 346
A Series of Comprehensive Studies in Mathematics

Jean-Louis Loday Bruno Vallette

Algebraic Operads

Q Springer

Maurer-Cartan methods in deformation theory: the twisting procedure

Vladimir Dotsenko, Sergey Shadrin, and Bruno Vallette

Algebraic Topology in the XXth century Homotopy+Algebra=Higher Structures

Lie methods in Deformation Theory

Derived deformation theory
Quantisation of Poisson manifolds
Fundamental theorem of deformation theory

References

Grundlehren der mathematischen Wissenschaften 346
A Series of Comprehensive Studies in Mathematics

Jean-Louis Loday Bruno Vallette

Algebraic Operads

Maurer-Cartan methods in deformation theory: the twisting procedure

Vladimir Dotsenko, Sergey Shadrin, and Bruno Vallette

Yuri I. Manin
MATHEMATICS

