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The material presented here is extracted from Sections 1, 2.1–3, and 10 of [1].

1. MOTIVATION: CLASSICAL EILENBERG–STEENROD AXIOMS

In the 40s, Eilenberg and Steenrod gave axioms that uniquely determine the homology theory of pairs
of spaces. These axioms can be lifted to the chain level to give the following definition of a homology
theory.

Definition 1.1. A homology theory for spaces is a functor

H : Top −→ Chain(Z)

from topological spaces to differential graded abelian groups satisfying the following properties.
(1) Homotopy invariance, i.e. H sends homotopies between continuous maps to homotopies between maps of

chain complexes.
(2) The functorH is determined by its value on connected components, i.e. we want that the canonical maps⊕

i∈I
H(Xi) −→ H

(⊔
i∈I

Xi

)
to be a weak equivalence. In other words,H is monoidal.

(3) We wantH to satisfy excision. Let

Z
i−→ X , Z

j−→ Y

be inclusions of a closed subspace, and denote

H(Z)
i∗−→ H(X) , H(Z)

j∗−→ H(Y ) .

We obtain a map

H(Z)
i∗−j∗−−−−→ H(X)⊕H(Y ) ,

and the canonical map
H(X)⊕H(Y ) −→ H(X ∪Z Y ) ,

whose composition with i∗ − j∗ is zero. We require that the canonical map

cone
(
H(Z)

i∗−j∗−−−−→ H(X)⊕H(Y )
)
−→ H(X ∪Z Y )

is a homotopy equivalence.
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Axiom (3) is not really excision in the classical sense, but rather Meyer–Vietoris, and it is known that
(1)+(2)+(Meyer–Vietoris) is equivalent to (1)+(2)+(excision). Let’s detail this a bit. If f : A → B is a
chain map, then we have a triangle

A
f−→ B −→ cone(f) −→ sA ,

where sA is the suspension of A. Axiom (3) tells us that the homology of the cone of i∗ − j∗ is the same
as the homology of X ∪Z Y . Taking the long sequence associated to the triangle of the cone and passing
to homology, we recover Meyer–Vietoris.

It is a well-known result that the axioms above plus a choice of value for H(pt) determine a unique
homology theory.

Theorem 1.2 (Eilenberg–Steenrod). Let G be an abelian group. Up to natural homotopy equivalences, there
exists a unique homotopy theory

H : Top −→ Chain(Z)

such thatH(pt) ' G.

Of course, this theory is nothing other than the usual singular chains with coefficients in G. This result
remains true if we take G to be an element of Chain(Z) instead of an abelian group (i.e. a complex
concentrated in degree 0). Therefore,H gives a functor

H : Top× Chain(Z) −→ Chain(Z) ,

which is well defined up to natural homotopy equivalences.

The goal is now to do something analogous in the derived setting, i.e. ∞-categories, and to replace
Chain(Z) by some other (symmetric monoidal∞-)category.

2. RECOLLECTION ON E∞-ALGEBRAS

Let k be a commutative, unital ring, and denote by Chain(k) the∞-category of dg k-modules. One can
recover it from the usual model structure on Chain(k). The derived tensor product ⊗ makes it into a
symmetric monoidal∞-category. If P,Q are two chain complexes and k is a field, then their mapping
space is

Map(P,Q)n := homChain(k)(P ⊗ C•(∆n), Q) .

The homotopy category of Chain(k) is the usual derived category D(k) of k-modules. The symmetric
monoidal ∞-category Chain(k) is enriched over itself, meaning that for every chain complexes P,Q
there is a chain complex Rhomk(P,Q) such that

Map(R⊗ P,Q) ' Map(R,Rhom(P,Q)) .

In particular, the derived tensor product commutes with homotopy colimits.

The n-little cube operad Cuben is the topological operad given by

Cuben(k) := Rect

(
k⊔
i=1

(0, 1)n, (0, 1)n

)
,

where the right hand side denotes the space of rectilinear embeddings of k disjoint copies of the unit n-
cube into one unit n-cube. The operad structure is simply given by composition of embeddings. Taking
chains, we obtain an operad over chain complexes C•(Cuben).

Definition 2.1. An En-algebra is an algebra over C•(Cuben).

The usual (Hinich) model structure on the category of En-algebras gives us an ∞-category of En-
algebras. The symmetric monoidal structure of Chain(k) lifts to a symmetric monoidal structure on
this∞-category of En-algebras, which is given by the (derived) tensor product on the underlying chain
complexes.

Another point of view is the following. Let O be a topological operad, then we have an associated
symmetric monoidal category with the non-empty, pointed finite sets as objects, and as morphisms
n+ := {0, . . . , n} → m+ := {0, . . . ,m} (where 0 is the basepoint) the disjoint union⊔

f :n+→m+

∏
i∈m+

O(|f−1(i)|+)
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The tensor product is given by n+ ⊗m+ := (n + m)+. We abuse notation and denote again by O the
associated symmetric monoidal∞-category.

Definition 2.2. Let (C ,⊗) be a symmetric monoidal∞-category. An O-algebra in C is a symmetric monoidal
∞-functor from O to C , an O-coalgebra is a symmetric monoidal∞-functor from O to C op.

Example 2.3. AnEn-algebra is an element of Fun⊗(Cuben,Chain(k)). A commutative dg algebra is an element
of Fun⊗(Fin∗,Chain(k)), where Fin∗ is the symetric monoidal∞-category of pointed finite sets.

There are natural maps
pt = Cube0 −→ Cube1 −→ Cube2 −→ · · ·

given by taking the product of an n-cube with the whole interval (0, 1) in order to get an (n + 1)-cube.
The colimit of the diagram is denoted by Cube∞, and in E∞-algebra is an algebra over C•(Cube∞), or
equivalently a symmetric monoidal functor from Cube∞ to Chain(k).

Example 2.4. Let X be a topological space, then C•(X) is an E∞-coalgebra whose structure is induced by the
diagonal map X → X ×X .

Question 2.5. If k is a field of characteristic 0, are E∞-coalgebras equivalent to cocommutative coalgebras?

Again, the derived tensor product lifts to define a symmetric monoidal structure on the category of
E∞-algebras.

Proposition 2.6. In the category of E∞-algebras, the tensor product is a coproduct.

3. HIGHER EILENBERG–STEENROD AXIOMS

We will now give the axioms for a homology theory with values in (Chain(k),⊗) instead of (Chain(Z),⊕).

First notice that the homotopy commutative monoids in (Chain(k),⊗) are the E∞-algebras.

Remark 3.1. If k is a field of characteristic 0, then the ∞-category of E∞-algebras over k is equivalent to the
∞-category of commutative dg algebras. Sometimes, it can help to think about it in this setting.

We want functors starting from the symmetric monoidal∞-category (Top,t) and landing into the sym-
metric monoidal∞-category (Chain(k),⊗). If X is a topological space, then the identity map induces a
canonical map

X tX idXtidX−−−−−−→ X ,

and thus, every space is canonically a commutative algebra object in Top. It follows that so must be the
image of topological spaces under any symmetric monoidal functor.

Lemma 3.2. Let (C ,⊗) be a symmetric monoidal∞-category. Any symmetric monoidal functor F : Top→ C

canonically lifts to a functor F̃ : Top→ E∞-alg(C ).

The good definition of a homology theory is the following.

Definition 3.3. A homology theory for spaces with values in the symmetric monoidal∞-category (Chain(k),⊗)
is an∞-functor

CH : Top× E∞-alg −→ E∞-alg ,
whose evaluation on an object (X,A) will be denoted by CHX(A), which satisfies the following axioms.

(1) There is a natural equivalence CHpt(A)
∼−→ A.

(2) The canonical maps ⊗
i∈I

CHXi(A) −→ CH⊔
i∈I Xi

(A)

are weak equivalences.
(3) The functor CH commutes with homotopy pushouts of spaces, i.e. the canonical maps

CHX(A)
L
⊗

CHZ(A)
CHY (A) −→ CHX∪ZY (A)

are weak equivalences.

The first axiom gives us the value of the homology theory on a point, the second one is a strong version
of asking that CH is a symmetric monoidal∞-functor, while the third one is analogous to excision.
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Theorem 3.4. There is a unique such homology theory for spaces, which is given by derived Hochschild chains,
i.e.

CHX(A) ' A�X ,

where � is the tensor product of an E∞-alg with a space, giving back and E∞-alg. Moreover, given a functor
F : E∞-alg → E∞-alg, there is a unique homology theory satisfying axioms (2) and (3) and whose value on a
point is F (A), and it is given by (X,A) 7→ CHX(F (A)).

Remark 3.5. The tensorization � appears as follows. Let C be an ordinary category with coproduct. Then C is
tensored over Sets as follows: if C ∈ C and S ∈ Sets, then

CS :=
⊔
s∈S

C .

Going higher, let C be an ∞-category, by which here we mean a quasicategory, and suppose that we have a
realization functor

| − | : sC −→ C .

Then C is enriched over sSets as follows. Let C ∈ C , and let K• ∈ sSets. We have a simplicial object by
considering the tensorization over Sets described above level by level, i.e.(

CK•
)
p

:= CKp .

Define
C �K• :=

∣∣CK• ∣∣ ∈ C

Later, we will see this in detail for the∞-category of commutative dg algebras, where the realization is given by
the Dold-Kan construction together with the shuffle product.

An immediate interesting corollaries of the theorem is the exponential rule:

CHX×Y (A) ' CHX

(
CHY (A)

)
in E∞-alg.

A possible way to compute derived Hochschild homology is given by the following result.

Proposition 3.6. Let X ∈ Top and A ∈ E∞-alg. There is a natural equivalence (in Chain(k))

CHX(A) ' C•(X)
L
⊗
E∞

A .

Moreover, if A is actually a commutative dg algebra, then

CHX(A) ' C•(X)
L
⊗
Fin∗

A .

Here, the chains C•(X) are seen as an E∞-coalgebra with the structure induced by the diagonal map
∆ : X → X ×X , i.e. a right module over the operad E∞ := C•(Cube∞). The E∞-algebra A is seen as a
left module over E∞, and the derived tensor product is given by

C•(X)
L
⊗
E∞

A := hocoeq

 ⊔
f :{0,...,q}→{0,...,p}

C•(X)⊗p ⊗ E∞(p, q)⊗A⊗q ⇒
⊔
n

C•(X)⊗n ⊗A⊗n
 .

Heuristically, this is a bar construction.

4. HIGHER HOCHSCHILD HOMOLOGY AND COHOMOLOGY

In order to have a higher Hochschild cohomology theory, one is led to consider pointed spaces instead
of just topological spaces. The basepoint will have the role of the "base field" with respect to which we
will dualize the chains. Let X ∈ Top∗ be a pointed space, and denote by τ : pt→ X the basepoint. Then
τ induces a map

CHA(τ) : A ' CHpt(A) −→ CHX(A) ,

making CHX(A) into an A-module.

Definition 4.1. Let A be an E∞-algebra, and let M be a module over A.
(1) The derived Hochschild cochains of A with values in M over X are

CHX(A,M) := RhomA(CHX(A),M) .
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(2) The derived Hochschild chains of A with values in M over X are

CHX(A,M) := M
L
⊗
A
CHX(A) .

Here, −
L
⊗
A
− denotes the lift of the derived tensor product of chain complexes to E∞-modules over A.

If k is a field and A is a commutative dg algebra over k, then it can be computed as a two-sided bar
construction. Dually, RhomA(−,−) is the enriched mapping space. Both constructions are canonically
two-sided E∞-modules over A.

All of these constructions are well behaved, in the sense that they are functorial and that they respect
the forgetful functors from modules to algebras in the way one would expect.

5. EXPLICIT MODELS FOR DERIVED HOCHSCHILD CHAINS

In this section, we specialize to the case where k is a field of characteristic 0. When A is a commutative
dg algebra, then one can give explicit models for the derived Hochschild chains. In this section, all al-
gebras are commutative dg algebras, and all spaces are simplicial sets (whose∞-category is equivalent
to the one of topological spaces).

Let A be a commutative dg algebra with differential d : A → A and multiplication µ : A ⊗ A → A.
Denote by n+ the set {0, . . . , n} as before, and define

CHn+
(A) := A⊗n+ ∼= A⊗(n+1).

If f : m+ → n+ is any set map, define

f∗ : A⊗m+ −→ A⊗n+

by sending a0 ⊗ · · · ⊗ am ∈ A⊗m+ to

f∗(a0 ⊗ · · · ⊗ am) = (−1)εb0 ⊗ · · · ⊗ bn , where bi :=
∏

j∈f−1(i)

aj ,

and where (−1)ε is the Koszul sign. This produces a functor from finite sets to commutative dg algebras.
We extend it to any set Y by

Y 7−→ CHY (A) := colim
Fin3K→Y

CHK(A) .

Notice this is axiom (2) for discrete spaces. This again induces a functor from simplicial sets to simplicial
commutative dg algebras, sending Y• to CHY•(A). Applying the Dold–Kan construction, we obtain the
commutative dg algebra

Tot
(
CHY•(A)

)
,

where Tot(−) is the total complex, given by1

Totn
(
CHY•(A)

)
:= sn

⊕
p+q=n

s−qCHYp(A)q ∼=
⊕
p+q=n

spCHYp(A)q .

Here, s is a formal element of degree 1. The multiplication of this commutative dg algebra is the shuffle
product, which is given in simplicial degree (p, q) by the composite

sh : CHYp(A)⊗ CHYp(A)
sh×−−→ CHYp+q (A)⊗ CHYp+q (A) ∼= CHYp+q (A⊗A)

CHYp+q
(µ)

−−−−−−−→ CHYp+q (A) ,

where sh× is explicitly given by

sh×(x⊗ y) :=
∑

(σ,θ)∈Sh(p,q)

(−1)(σ,θ)sσ1
· · · sσp

(x)⊗ sθ1 · · · sθp(y) ,

where (σ, θ) is a (p, q)-shuffle, i.e. a partition of {1, . . . , p + q} into two disjoint subsets σ = {σ1 < σ2 <
· · · < σp} and θ = {θ1 < · · · < θq}. Here, si denotes the ith degeneracy map of CHY•(A), which is a
simplicial commutative dg algebra. The differential is given by

D

sp ⊗
j∈Yp

aj

 := (−1)pspdA

⊗
j∈Yp

aj


︸ ︷︷ ︸

d1

+ sp−1
i∑
i=0

(−1)i∂i∗

⊗
j∈Yp

aj


︸ ︷︷ ︸

d2

.

1A remark on conventions: if A is a chain complex, then we denote by Aq the elements of degree q of A seen as elements of
degree q. This is what other people might denote by sqAq .
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Notice that d1 and d2 are actually differentials themselves, and they commute.

Remark 5.1. One can alternatively take the normalized chains of CHY•(A) instead of the total chain complex,
which results in a smaller, but equivalent complex.

Proposition 5.2. The derived Hochschild chains of A over Y• are given by the commutative dg algebra(
Tot
(
CHY•(A)

)
, D, sh

)
described above.

If Y• is pointed, then one can define derived Hochschild cochains and derived Hochschild chains with
value in a right module over A in a way analogous to the one seen above.

To conclude, we present some examples of explicit computations.

5.1. The point. The point pt• is the discrete simplicial set given by a single p-simplex at every simplicial
degree, and all faces and degeneracies are trivial. Thus CHptp(A) = A for all p, and we have

Totn
(
CHpt•(A)

)
= sn

⊕
p+q=n

s−qCHptp(A)q = sn
⊕
q≤n

s−qAq .

Fix n ∈ Z, let q ≤ n and denote p := n− q. Take a ∈ Aq , then

d1(spa) = (−1)pspda = (−1)psn−1s−(q−1)da ,

and

d2(spa) =

{
sp−1a if p even,
0 if p odd.

By taking homology with respect to d2, we see that only a copy of A survives (the one with p = 0), and
d1 = dA. Therefore, we have

Tot
(
CHpt•(A)

)
' A

as expected. The product is easily seen to be given by

sh(sp1a1 ⊗ sp2a2) = (−1)p2|a1|sp1+p2a1a2 .

5.2. The interval. The interval I• = ∆[1] is the simplicial set given by

In := {0, . . . , n+ 1} ,
where the elements are shorthand for the strings

i = 0 . . . 0︸ ︷︷ ︸
i

1 . . . 1︸ ︷︷ ︸
n−i

∈ In .

Here, 0 and 1 are the two 0-simplices, while 1 = 01 ∈ I1 is the non-degenerate 1-simplex. There are
no other non-degenerate simplices. The ith face map acts by eliminating the (i + 1)th character in the
string. Therefore, we have

∂ij =

{
j − 1 if i ≤ j ,
j if i > j .

The total complex is given by

Totn
(
CHI•(A)

)
= sn

⊕
p≥0

p+q0+···+qp+1=n

s−q0Aq0 ⊗ · · · ⊗ s−qn+1Aqn+1 .

Let n ≥ 0, p ≥ 0 and q0, . . . , qn+1 ∈ Z be such that p+ q0 + · · ·+ qp+1 = n. Take ai ∈ Aqi for all i. Then

d1(spa0 ⊗ · · · ⊗ ap+1) = (−1)psp
p+1∑
k=0

(−1)
∑

0≤j<k |aj |a0 ⊗ · · · ⊗ dak ⊗ · · · ⊗ ap+1 ,

and

d2(spa0 ⊗ · · · ⊗ ap+1) = sp−1
p∑
i=0

a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ap+1 .

The shuffle product of spa0 ⊗ · · · ⊗ ap+1 and sqb0 ⊗ · · · ⊗ bq+1 is easily seen to be the sum of all possible
ways to shuffle the ais and the bjs (with Koszul signs).
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5.3. The circle. We model the circle as a simplicial set S1
• by taking a single 0-cell and gluing both ends

of a 1-cell to it. We have
S1
n = {0, x1, x2, . . . , xn} ,

where we think to xi as the string
xi = 0 . . . 0︸ ︷︷ ︸

i−1

(00) 0 . . . 0︸ ︷︷ ︸
n−i−1

.

The bracketed zeros (00) represent the 1-cell, while the normal zeros represent the 0-cell. The ith face
acts by removing the (i + 1)-th character and then removing the brackets if they enclose a single 0.
Therefore, we have

∂i(0) = 0 , and ∂i(xj) =


xj−1 if i ≤ j − 2 ,

0 if i = j − 1, j ,

xj if i ≥ j + 1 .

The simplicial chain complex CHS1
•
(A) is given by

CHS1
p
(A) = A⊗A⊗p,

where the first copy of A corresponds to 0, and the others to the xjs. The total chain complex resembles
the one of the interval (with one less copy of A each time). The part d1 of the differential is as usual,
while the other piece is given (up to the suspending therm sp, which we omit) by

d2(a0 ⊗ · · · ⊗ ap) = a0a1 ⊗ a2 ⊗ · · · ⊗ ap+

+

p−1∑
i=1

(−1)ia0aiai+1 ⊗ a2 ⊗ · · · ⊗ ai−1 ⊗ 1⊗ ai+2 ⊗ · · · ⊗ ap

+ (−1)pa0ap ⊗ a1 ⊗ · · · ⊗ ap−1 .
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