Why Higher Structures?

Bruno VALLETTE

Université Sorbonne Paris Nord

Antwerp Algebra Colloquium

April 23, 2021

Table of contents

Homotopy theory Category theory Classical algebraic structures

Table of contents

2 Operadic calculus

3 Higher Lie theory

Bruno VALLETTE Why Higher Structures?

Homotopy theory Category theory Classical algebraic structures

Homotopy theory

\rightarrow Classification of topological spaces

- Strong equivalence : up to homeomorphisms no
- Weak equivalence : up to homotopy equivalence "continuous deformation without cutting" yes

METHODS: find a set of faithful invariants

- H_●(X), H[●](X) : homology and cohomology groups.
- $\pi_{\bullet}(X)$: homotopy groups.
 - \rightarrow invariants but not faithful

Homotopy theory Category theory Classical algebraic structures

Category theory

→ Notion of a category [Eilenberg–MacLane, 1942]

- PURPOSE 1: encode the functoriality of the invariants.
- PURPOSE 2: compare the invariants.

 2-categorical (higher category)

Homotopy theory Category theory Classical algebraic structures

Classical algebraic structures

• $(C^{\bullet}_{sing}(X,\mathbb{Z}),\cup,\mathrm{d})$: singular cochains with the cup product.

differential graded associative algebra

• $(H^{\bullet}_{sing}(X,\mathbb{Z}),\overline{\cup})$: singular cohomology with the cup product.

graded commutative algebra

 $\text{HEURISTIC REASON: } \exists \cup_1 \colon C^{\bullet}_{\text{sing}}(X,\mathbb{Z})^{\otimes 2} \to C^{\bullet}_{\text{sing}}(X,\mathbb{Z}) \text{ s.t. }$

 $\mathrm{d} \circ \cup_1 + \cup_1 \circ (\mathrm{d} \otimes \mathrm{id}) + \cup_1 \circ (\mathrm{id} \otimes \mathrm{d}) = \cup - \cup^{(12)}.$

• $(\pi_{\bullet+1}(X), [,])$: homotopy groups with the Whitehead bracket.

graded Lie algebra

None is a faithful invariant of the homotopy type. \rightarrow Need to consider higher structures.

Recognition principle Homotopy algebras Applications

Table of contents

Recognition principle Homotopy algebras Applications

Loop spaces

Definition (Loop space)

 $\Omega(X, x) \coloneqq \{f \colon [0, 1] \to X \mid f \text{ continuous, } f(0) = f(1) = x\}$

CONCATENATION PRODUCT:
$$\varphi \star \psi(t) \coloneqq \begin{cases} \varphi(2t) , & \text{for } 0 \leqslant t \leqslant \frac{1}{2} , \\ \psi(2t-1) , & \text{for } \frac{1}{2} \leqslant t \leqslant 1 . \end{cases}$$

 $\rightarrow \text{ is } \star \text{ associative?}$ no: $(\varphi \star \psi) \star \omega \neq \varphi \star (\psi \star \omega).$ but: $(\varphi \star \psi) \star \omega \sim \varphi \star (\psi \star \omega).$

Recognition principle Homotopy algebras Applications

Higher operations

 \rightarrow More operations: configurations of intervals in the unit interval

• LEFT-HAND SIDE: operations acting naturally on loop spaces.

 $\mathcal{D}_1(n) \coloneqq \left\{ I_1, \dots, I_n \text{ intervals of } [0,1] \mid \mathring{I}_k \cap \mathring{I}_l = \emptyset, \ 1 \leqslant k < l \leqslant n \right\}$

• RIGHT-HAND SIDE: all the operations acting on $Y = \Omega X$.

$$\operatorname{End}_{Y}(n) \coloneqq \operatorname{Top}(Y^{\times n}, Y)$$

• ACTION: $\mathcal{D}_1 \rightarrow \text{End}_Y$

Recognition principle Homotopy algebras Applications

$$\Rightarrow \text{Algebraic structure on End}_{Y} : f \circ_{i} g = \underbrace{f}_{f} f \circ_{i} g$$

Definition (Operad)

Operad

• Collection : $\{\mathcal{P}(n)\}_{n\in\mathbb{N}}$ of \mathbb{S}_n -modules

Compositions : ○_i : P(n) × P(m) → P(n+m-1) satisfying the sequential and the parallel axioms.

Recognition principle Homotopy algebras Applications

Algebra over an operad

Definition (Algebra over an operad)

Structure of a \mathcal{P} -algebra : morphism of operads $\mathcal{P} \to \text{End}_{Y}$.

EXAMPLE: ΩX is a \mathcal{D}_1 -algebra.

- ightarrow Definitions hold in any symmetric monoidal category.
- \rightarrow "Multilinear" representation theory: $\mathcal{P}(n) \rightarrow \text{Hom}(Y^{\times n}, Y)$.

Recognition principle Homotopy algebras Applications

Recognition principle

Definition (Little *d*-discs operad)

$$\mathcal{D}_d(n) \coloneqq \left\{ D_1, \dots, D_n \ d ext{-discs of } D^d \mid \mathring{D}_k \cap \mathring{D}_l = \emptyset, \ 1 \leqslant k < l \leqslant n
ight\}$$

Theorem (Recognition principle [Stasheff, Boardman–Vogt, May])

$$Y \ \mathcal{D}_d\text{-algebra} \iff Y \sim \Omega^d(X)$$

\rightarrow Algebraic structure faithfully detects the homotopical form.

Recognition principle Homotopy algebras Applications

Differential graded world

\rightarrow Transfer of structure: under isomorphisms

Recognition principle Homotopy algebras Applications

Naive homotopy transfer

• Algebraic homotopy equivalence: Deformation retract

Bruno VALLETTE Why Higher Structures?

Recognition principle Homotopy algebras Applications

Higher homotopy transfer

• Idea: introduce
$$\mu_3 : H^{\otimes 3} \to H$$

mesures the failure of associativity for μ_2 .

In Hom $(H^{\otimes 3}, H)$, it satisfies:

$$\partial(\Psi) = \Psi - \Psi$$

 $\iff \mu_3$ is a homotopy for the associativity relation of μ_2 .

And so on: $\mu_n: H^{\otimes n} \to H$, for any $n \ge 2$.

Recognition principle Homotopy algebras Applications

Homotopy associative algebras

Définition (A_{∞} -algebras [Stasheff, 1963]) ($H, \mu_1 = d_H, \mu_2, \mu_3, \ldots$) satisfying $\partial \left(\begin{array}{c} 1 & 2 & \cdots & n \\ 0 & 1 & 2 & \cdots & 1 \\ 0 & 1 & 2 & \cdots & n \\ 0 & 1 & 2 & \cdots & n \\ 0 & 1 & 2 & \cdots & n \\ 0 & 1 & 2 & \cdots & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 &$

Theorem (Homotopy transfer [Kadeishvili, 1982])

H deformation retract on a dg associative algebra (A, ν) :

 $(H, \mu_1, \mu_2, \mu_3, ...)$ *A*_{∞}-algebra.

Recognition principle Homotopy algebras Applications

Applications

• Higher Massey products: $A = C^{\bullet}_{Sing}(X, \mathbb{K}), H = H^{\bullet}(X, \mathbb{K})$

 $\cup\mapsto (\overline{\cup}=\mu_2,\mu_3,\mu_4,\ldots)$: (lifting of) Higher Massey products

 \rightarrow Non-triviality of the Borromean rings, Galois cohomology, elliptic curves, etc.

- Floer cohomology for Lagrangian submanifolds [Fukaya–Oh–Ohta–Ono, 2009]
- A_∞-categories: higher version of dg category
 → Homological mirror symmetry conjecture [Kontsevich]

Recognition principle Homotopy algebras Applications

A_{∞} -algebras are homotopy stable

 \rightarrow Starting from an A_{∞} -algebra ($A, d_A, \nu_2, \nu_3, \ldots$):

 \implies Again an A_{∞} -algebra, no need of further higher structure.

Recognition principle Homotopy algebras Applications

Compatibility with the transferred structure

$$\underbrace{(A, d_A, \nu_2, \nu_3, \ldots)}_{\text{Original structure}} \xleftarrow{i} \underbrace{(H, d_H, \mu_2, \mu_3, \ldots)}_{\text{Transferred structure}}$$

• *i* chain map $\implies d_A i = i d_H$

- Question: Does *i* commutes with the higher ν's and μ's?
 Anwser: not in general!
- Define $i_1 := i$ and consider in Hom $(H^{\otimes n}, A)$, for $n \ge 2$:

Recognition principle Homotopy algebras Applications

A_{∞} -morphism

Définition (A_{∞} -morphism)

 $(H, d_H, \{\mu_n\}_{n \ge 2}) \rightsquigarrow (A, d_A, \{\nu_n\}_{n \ge 2})$ is a **collection** of linear maps

$$\{f_n: H^{\otimes n} \to A\}_{n \ge 1}$$

of degree $|f_n| = n - 1$ satisfying

EXAMPLE: The aforementioned $\{i_n : H^{\otimes n} \to A\}_{n \ge 1}$.

Recognition principle Homotopy algebras Applications

Homotopy Transfer Theorem for A_{∞} -algebras

 A_{∞} -QUASI-ISOMORPHISM: $i: H \xrightarrow{\sim} A$ s.t. $i_0: H \xrightarrow{\sim} A$ quasi-iso.

Theorem (HTT for A_{∞} -algebras, Kadeshvili '82 ightarrow Markl '04)

Given a A_{∞} -algebra A and a deformation retract

$$h \stackrel{\rho}{\frown} (A, d_A) \stackrel{\rho}{\longleftarrow} (H, d_H) \qquad \text{id}_A - ip = d_A h + h d_A ,$$

there exists an A_{∞} -algebra structure on H such that i, p, and h extend to A_{∞} -quasi-isomorphisms and A_{∞} -homotopy respectively.

\rightarrow no loss of algebro-homotopical data & explicit formulas.

- Every ∞ -qi of A_∞ -algebras admits a homotopy inverse.
- | Ho(dga alg) := dga alg $[qi^{-1}] \cong \infty$ -dga alg $/ \sim_h |$.

Recognition principle Homotopy algebras Applications

Operadic calculus

 \rightarrow Previous structures encoded by dg operads:

General method: Koszul duality theory for dg operads

- Examples: Lie_∞, Com_∞, Gerstenhaber_∞, Batalin-Vilkovisky_∞, LieBi_∞, Frobenius_∞, DoublePoisson_∞, etc.
- All the results for A_{∞} hold for any Koszul (pr)operads

Recognition principle Homotopy algebras Applications

Further applications

- Applications of the homotopy transfer theorem: spectral sequences, cyclic homology (definition and Chern characters), formality statements, Feynman diagrams, etc.
- Applications of ∞-morphisms: cumulants in non-commutative probability.
- \rightarrow NOTION OF E_{∞} -ALGEBRA: $E_{\infty} \xrightarrow{\sim} Com$ associativity and commutativity relaxed up to homotopy EXAMPLE: $(C^{\bullet}_{sing}(X, \mathbb{Z}), \cup, \mathrm{d})$ extends to a natural E_{∞} -algebra

Theorem (Mandell, 2005)

The homotopy category of (some) topological spaces embeds inside the homotopy category of E_{∞} -algebras under $C^{\bullet}_{sing}(X, \mathbb{Z})$.

 \implies First family of faithful invariants!

Deformation theory Fundamental theorem Higher Lie theory

Table of contents

2 Operadic calculus

Deformation theory Fundamental theorem Higher Lie theory

Classical Lie theory

• Integration: Lie algebra $\mathfrak{g} \xrightarrow{\exp}$ Lie Group *G*. UNIVERSAL FORMULA:

$$\begin{aligned} \operatorname{BCH}(x,y) &\coloneqq \ln\left(\exp(x).\exp(y)\right) \\ &= x + y + \frac{1}{2}[x,y]\frac{1}{12}[x,[x,y]] + \frac{1}{12}[y,[x,y]] + \cdots \\ &\in \widehat{Lie}(x,y) \subset \widehat{Ass}(x,y) \;. \end{aligned}$$

 \rightarrow BCH(BCH(x, y), z) = BCH(x, BCH(y, z)) and BCH(x, 0) = x = BCH(0, x)

Definition (Hausdorff group)

 $(\mathfrak{g}, [,])$ complete Lie algebra: $G \coloneqq (\mathfrak{g}, \operatorname{BCH}, 0)$ Hausdorff group.

Deformation theory Fundamental theorem Higher Lie theory

Deformation theory

\rightarrow Differential graded Lie algebra: $(\mathfrak{g},[\,,],\mathrm{d})$

Definition (Maurer-Cartan elements)

$$\mathrm{MC}(\mathfrak{g}) \coloneqq \left\{ \alpha \in \mathfrak{g}_{-1} \mid \mathrm{d}\alpha + \frac{1}{2}[\alpha, \alpha] = \mathbf{0} \right\}$$

Proposition

The Hausdorff group G of \mathfrak{g}_0 acts on $\operatorname{MC}(\mathfrak{g})$.

→ PHILOSOPHY: "Any deformation problem over a field of characteristic 0 can be encoded by a dg Lie algebra."

structures \longleftrightarrow $\operatorname{MC}(\mathfrak{g})$ equivalence \longleftrightarrow *G*

• (*Hoch*•(*A*, *A*), [,]_{*Gerst*}): associative algebras up to iso.

(Γ(Λ•TM), [,]_{SN}): Poisson structure up to diffeomorphisms.

Deformation theory Fundamental theorem Higher Lie theory

Deformation quantisation of Poisson manifolds

Theorem (Kontsevich, 1997)

Any Poisson manifold (M, π) can be quantised: \exists associative product * on $C^{\infty}(M)[[\hbar]]$ such that $*_0 = \cdot$ and $*_1 = \{,\}$.

PROOF:

- The functor: dg Lie algebra (g, [,], d) → MC(g)/G sends quasi-isomorphisms to bijections.
- The Hochschild–Kostant–Rosenberg quasi-isomorphism $\Gamma(\Lambda^{\bullet}TM) \xrightarrow{\sim} Hoch^{\bullet}(C^{\infty}(M), C^{\infty}(M))$

extends to a Lie_{∞} -quasi-isomorphism.

• \exists *Lie*_{∞}-qi \iff \exists zig-zag of qis.

Deformation theory Fundamental theorem Higher Lie theory

Deformation functor

 \rightarrow Make this "philosophy" into a theorem.

Definition (Deformation functor)Given a dg Lie algebra $(\mathfrak{g}, [,], d)$: $Def_{\mathfrak{g}}$: Artin rings \rightarrow groupoids $\mathfrak{R} \cong \mathbb{K} \oplus \mathfrak{m} \mapsto (\mathrm{MC}(\mathfrak{g} \otimes \mathfrak{m}), G)$

 \rightarrow no enough: need a notion of an ∞ -groupoid.

 $\texttt{HEURISTIC:} \quad \infty \textbf{-groupoid} \leftrightarrow \textbf{topological space} \leftrightarrow \textbf{Kan complex}.$

Deformation theory Fundamental theorem Higher Lie theory

∞ -groupoid

Definition (∞ -groupoid)

A simplicial set X_{\bullet} having horn fillers

objects X_0 , 1-morphisms X_1 , 2-morphisms X_2 , etc.

 ∞ -CATEGORY: no horn filler for k = 0 or k = n.

Deformation theory Fundamental theorem Higher Lie theory

Fundamental theorem of deformation theory

Definition (Sullivan algebra)

 Ω_n : polynomial differential forms on $|\Delta^n|$.

 $\rightarrow \Omega_{\bullet}$: simplicial dg commutative algebra.

Theorem (Hinich, 1997)

 $\mathrm{MC}(\mathfrak{g}\otimes\mathfrak{m}\otimes\Omega_{\bullet})$: ∞ -groupoid.

 $\Rightarrow \text{ functor: dg Lie algebras} \rightarrow \underbrace{(\text{dg Artin rings} \rightarrow \infty\text{-groupoids})}_{\text{formal moduli problems}}$

formal moduli problems

Theorem (Pridham–Lurie, 2010)

 \exists equivalence of ∞ -categories

$$\mathit{FMP} \xleftarrow{\cong} \mathit{dg} \mathit{Lie} \mathit{algebras}$$

Deformation theory Fundamental theorem Higher Lie theory

Higher Lie theory

→ Refinement of Hinich's functor: Getzler [2009]

ALGEBRAIC ∞ -GROUPOID: horn fillers are given.

\rightarrow Higher BCH formulas [Robert-Nicoud–V. 2020].

THANK YOU FOR YOUR ATTENTION!