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Homotopy theory

— Classification of topological spaces

@ Strong equivalence : up to homeomorphisms no

@ Weak equivalence : up to homotopy equivalence
“continuous deformation without cutting” yes

MEeTHODS: find a set of faithful invariants

@ H.(X),H*(X) : homology and cohomology groups.
@ 7.(X) : homotopy groups.

— invariants but not faithful
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Category theory

— Notion of a category [Eilenberg—MacLane, 1942]

Définition (Category)

OBJECTS+ARROWS: oo 3
“monoid with many base points” C // \ /
@)
@ PurPoOsE 1: encode the functoriality /W"\{
of the invariants. Top ﬂ Ab
@ PURPOSE 2: compare the invariants. "

— 2-categorical (higher category)
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Classical algebraic structures

o ( ong(X,2), U, d): singular cochains with the cup product.

\differential graded associative algebra \

o (Hg

sing

(X,Z),0): singular cohomology with the cup product.

\ graded commutative algebra \

HEURISTIC REASON: 3 Uy : G o (X, Z)%2 — C3y(X,Z) st

doUs +Ujo(d®id) + U o (id®d) = U — U2,
@ (me1(X),[,]): homotopy groups with the Whitehead bracket.

\graded Lie algebra\

None is a faithful invariant of the homotopy type.
— Need to consider higher structures.
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Loop spaces

Definition (Loop space)

Q(X,x) = {f: [0,1] = X |
f continuous, f(0) = f(1) = x}

)
CONCATENATION PRODUCT: ¢ % (1) = { zgi)_’ 3, g (12) i ié 2
— is x associative? T 1

no: (¢ * 1) xw#p* (Y xw). 0

but: (@* ) xw~px (P *w). f g h

XYYy |

=
N
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Higher operations

— More operations: configurations of intervals in the unit interval

@ LEFT-HAND SIDE: operations acting naturally on loop spaces.

Dy(n) = {l1,...,lnintervalsof[0,1] | knl=0,1 <k</<n}

@ RIGHT-HAND SIDE: all the operations acting on Y = QX.

Endy(n) := Top(Y*",Y)
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— Algebraic structure on Endy :

SEQUENTIAL AXIOM: | (A oj u) oj_14jv = Aoj(pojv)

for A € Endy(/),n € Endy(m),1 <i</,1<j<m.
PARALLEL AXIOM: [ (A 0j 1) ok _11m ¥ = (A ok ¥) o; 1]
for A € Endy(/),n € Endy(m),1 <i< k < 1.

Definition (Operad)

@ Collection : {P(n)}nen of Sp-modules
@ Compositions : o; : P(n) x P(m) = P(n+m—1)
satisfying the sequential and the parallel axioms.
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Algebra over an operad

— Same operadic structure on D; :
[t H

[ ]

Definition (Algebra over an operad)

Structure of a P-algebra : morphism of operads P — Endy.

ExampLE: QX is a Dy-algebra.

— Definitions hold in any symmetric monoidal category.
— “Multilinear” representation theory: P(n) — Hom(Y*",Y).
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Recognition principle

Definition (Little d-discs operad)

Dy(n) = {D1,...,D,,d-discsofod\D"kmé,:@, 1 <k</<n}

Theorem (Recognition principle [Stasheff, Boardman—Vogt, May])

Y Dy-algebra < Y ~ Q9(X)

— Algebraic structure faithfully detects the homotopical form.
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Differential graded world

— Transfer of structure: under isomorphisms

p

A__=H, ip=idy et pi=idy.
]

po = pvi® . H®2 — H: associative

Y MYY

Y Y Y

p
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Naive homotopy transfer

@ Algebraic homotopy equivalence: Deformation retract

WS :llv O (" (A, da) = (H, dy)

IdA—Ip—dAh-i-hdA;EO

@ Transferred product: Y = Y : not associative

VRAPNEN
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Higher homotopy transfer

@ Idea: introduce 3 : H®® — H
i i mesures the failure of

NP Y iativity for us .
\*/:= h ; h associativity for o
7Y

P

In Hom(H®3, H), - \ﬁ/ - \?/
it satisfies: ’ ( Y )

<= g3 is a homotopy for the associativity relation of ..

And so on: N

jin : H®" — H, e 5.y
forany n > 2. Y S
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Homotopy associative algebras

Définition (A.-algebras [Stasheff, 1963])

(H):u"l = dHaM27lu37' o )

satisfying T
(YY) -2

l=<j=<k

Theorem (Homotopy transfer [Kadeishvili, 1982])
H deformation retract on a dg associative algebra (A,v):

(H> My 25 1435 - - ) Aoo_algebra'
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Applications

@ Higher Massey products: A = Cg, (X, K), H = H*(X,K)

ing
U (U= uo, us, pa, - . .) : (lifting of) Higher Massey products

— Non-triviality of the Borromean rings,
Galois cohomology, elliptic curves, etc.

[Fukaya—Oh—Ohta—Ono, 2009]

@ A..-categories: higher version of dg category
— Homological mirror symmetry conjecture [Kontsevich]
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A..-algebras are homotopy stable

— Starting from an A -algebra (A, da, 10,13, .. .):

Consider |up = \*/ _3. .>’h

v —

Proposition

— Again an A.-algebra, no need of further higher structure.
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Compatibility with the transferred structure

(A, da,vo,v3,...) «— (H,du, 2, i3, - . .)

Original structure Transferred structure

@ /chainmap —
@ Question: Does i commutes with the higher v’s and p's?
Anwser: not in general!

@ Define and consider in Hom(H®" A), for n > 2:
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A..-morphism

Définition (As-morphism)
(H, du, {pn}tn>2) ~ (A, da, {vn}n>2) is a collection of linear maps

{fn : H®" — A} 1

of degree |f,| = n — 1 satisfying

W
- 2 :
k+l=n+1
l<j=<k

ExampLE: The aforementioned {i, : H®" — A};>1.
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Homotopy Transfer Theorem for A,.-algebras

A..-QUASI-ISOMORPHISM: i : H <5 A s.t. o : H = A quasi-iso.

Theorem (HTT for A.-algebras, Kadeshvili '82 — Markl '04)
Given a Ax —algebra A and a deformation retract

n(C(Adp) = (H,dy)  ida—ip=dah+ hdp,

there exists an A -algebra structure on H such that i, p, and h
extend to A -quasi-isomorphisms and A~.-homotopy respectively.

— no loss of algebro-homotopical data & explicit formulas.

Théoréme (Munkholm °78, Lefévre-Hasegawa '03)
@ Every co-qi of A -algebras admits a homotopy inverse.

@ |Ho(dga alg) := dga alg [gi '] = co-dga alg/ ~ |.
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Operadic calculus

— Previous structures encoded by dg operads:

ass=T (V) /(= V) S Ae= (T(¥e Ve ).a).

quotient quasi—free

@ General method: Koszul duality theory for dg operads

= P~: quasi-free resolution (cofibrant) J

Y Y
category of algebras C category of P.-algebra =
of type P category of homotopy P-algebras

e Examples: Lie,,, Com.,, Gerstenhaber.,, Batalin-
Vilkovisky,, LieBiy., Frobenius.,, DoublePoisson.., etc.

° ]AII the results for A, hold for any Koszul (pr)operads‘
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Further applications

@ Applications of the homotopy transfer theorem:
spectral sequences, cyclic homology (definition and Chern
characters), formality statements, Feynman diagrams, etc.

@ Applications of co-morphisms: cumulants in
non-commutative probability.

— NOTION OF E.-ALGEBRA: E.. = Com
associativity and commutativity relaxed up to homotopy

EXAMPLE: (C$,4(XZ), U, d) extends to a natural E.-algebra

Theorem (Mandell, 2005)

The homotopy category of (some) topological spaces embeds
inside the homotopy category of E..-algebras under C2_ (X, Z).

sing

= First family of faithful invariants!
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Classical Lie theory

e Integration: Lie algebra g =5 Lie Group G.
UNIVERSAL FORMULA:
BCH(x, y) = In (exp(x).exp(y))
=X+y+ %[Xay]%[xa [X,_}/]] + 1172[.}/7 [Xay]] T+
€ Lie(x,y) C Ass(x.y) .

— BCH(BCH(x, y),z) = BCH(x,BCH(y, z)) and
BCH(x, 0) = x = BCH(O0, x)

Definition (Hausdorff group)
(g,[,]) complete Lie algebra: G := (g, BCH, 0) Hausdorff group.
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Deformation theory

— Differential graded Lie algebra: (g,[,],d)

Definition (Maurer—Cartan elements)
MC(g) ={a€g_y|da+ Y, a] = 0} .

Proposition
The Hausdorff group G of go acts on MC(g) .

— PHILOSOPHY: “Any deformation problem over a field of
characteristic 0 can be encoded by a dg Lie algebra.”

structures «+— MC(g)
equivalence <+— G

@ (Hoch*(A,A),[,]gerst): @ssociative algebras up to iso.
@ (F(A*TM),[,]sn) : Poisson structure up to diffeomorphisms.
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Deformation quantisation of Poisson manifolds

Theorem (Kontsevich, 1997)

Any Poisson manifold (M, ) can be quantised: 3 associative
product « on C>*(M)[[R]] such that xy = - and 1 = {, }.

PROOF:

@ The functor: dg Lie algebra (g, [,],d) — MC(g)/G
sends quasi-isomorphisms to bijections.

@ The Hochschild—Kostant—Rosenberg quasi-isomorphism
F(A*TM) = Hoch®(C>(M), C>=(M))
extends to a Lie,,-quasi-isomorphism.
@ dJlie,-qi < dzig-zag of gis.
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Deformation functor

— Make this “philosophy” into a theorem.

Definition (Deformation functor)
Given a dg Lie algebra (g,[,],d):

Defy: Artinrings — groupoids
R2Kpm — (MC(gem),G)

— no enough: need a notion of an co-groupoid.

X

HEURISTIC: oo-groupoid <> topological space <> Kan complex.
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co-groupoid

Definition (co-groupoid)

N — Xe

o4
A simplicial set X, having horn fillers [ 3

An
[ ]
objects Xy, f g
1-morphisms Xj, / \
2-morphisms X5, etc. o YV ____ 5 @
“gof” ’

00-CATEGORY: no horn filler for k =0 or k = n.
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Fundamental theorem of deformation theory

Definition (Sullivan algebra)
Qp: polynomial differential forms on |A”).

— Q,: simplicial dg commutative algebra.
Theorem (Hinich, 1997)

MC(g @ m ® Q,) : co-groupoid.

= functor: dg Lie algebras — (dg Artin rings — oo-groupoids)

~
formal moduli problems

Theorem (Pridham—Lurie, 2010)

3 equivalence of co-categories

FMP <= dg Lie algebras
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Higher Lie theory

— Refinement of Hinich’s functor: Getzler [2009]
ALGEBRAIC co-GROUPOID: horn fillers are given.

— Higher BCH formulas [Robert-Nicoud-V. 2020].

THANK YOU FOR YOUR ATTENTION!
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