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Homotopy theory

→ Classification of topological spaces

∼

Strong equivalence : up to homeomorphisms no
Weak equivalence : up to homotopy equivalence

“continuous deformation without cutting” yes

METHODS: find a set of faithful invariants

H•(X ),H•(X ) : homology and cohomology groups.
π•(X ) : homotopy groups.

→ invariants but not faithful
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Category theory

→ Notion of a category [Eilenberg–MacLane, 1942]

Définition (Category)

OBJECTS+ARROWS:

“monoid with many base points”

•
��

�� ��

•oo
oo

yy

•%%

FF

•

FF

YY

PURPOSE 1: encode the functoriality
of the invariants.
PURPOSE 2: compare the invariants.
=⇒ 2-categorical (higher category)

Top Ab

πn

Hn
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Classical algebraic structures
(
C•sing(X ,Z),∪, d

)
: singular cochains with the cup product.

differential graded associative algebra(
H•sing(X ,Z),∪

)
: singular cohomology with the cup product.

graded commutative algebra

HEURISTIC REASON: ∃ ∪1 : C•sing(X ,Z)⊗2 → C•sing(X ,Z) s.t.

d ◦ ∪1 + ∪1 ◦ (d⊗ id) + ∪1 ◦ (id⊗ d) = ∪ − ∪(12).(
π•+1(X ), [ , ]

)
: homotopy groups with the Whitehead bracket.

graded Lie algebra

None is a faithful invariant of the homotopy type.
→ Need to consider higher structures.
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Loop spaces

Definition (Loop space)

Ω(X , x) :=
{

f : [0,1]→ X |
f continuous, f (0) = f (1) = x

}

 

CONCATENATION PRODUCT: ϕ ? ψ(t) :=

{
ϕ(2t) , for 0 6 t 6 1

2 ,

ψ(2t − 1) , for 1
2 6 t 6 1 .

→ is ? associative?
no: (ϕ ? ψ) ? ω 6=ϕ ? (ψ ? ω).
but: (ϕ?ψ) ?ω∼ϕ? (ψ ?ω).

0

0

1

1

1
4

1
2

1
2

3
4

0

1

f g h
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Higher operations

→ More operations: configurations of intervals in the unit interval

 

→

 

LEFT-HAND SIDE: operations acting naturally on loop spaces.

D1(n) :=
{

I1, . . . , In intervals of [0,1] | I̊k ∩ I̊l = ∅, 1 6 k < l 6 n
}

RIGHT-HAND SIDE: all the operations acting on Y = ΩX .

EndY (n) := Top(Y×n,Y )

ACTION: D1 → EndY
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Operad

→ Algebraic structure on EndY : f ◦i g = = 0=0
f

g
i

SEQUENTIAL AXIOM: (λ ◦i µ) ◦i−1+j ν = λ ◦i (µ ◦j ν)

for λ ∈ EndY (l), µ ∈ EndY (m),1 6 i 6 l ,1 6 j 6 m.

PARALLEL AXIOM: (λ ◦i µ) ◦k−1+m ν = (λ ◦k ν) ◦i µ
for λ ∈ EndY (l), µ ∈ EndY (m),1 6 i < k 6 l .

Definition (Operad)

Collection : {P(n)}n∈N of Sn-modules
Compositions : ◦i : P(n)× P(m)→ P(n + m − 1)
satisfying the sequential and the parallel axioms.
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Algebra over an operad

→ Same operadic structure on D1 :

 

Definition (Algebra over an operad)

Structure of a P-algebra : morphism of operads P → EndY .

EXAMPLE: ΩX is a D1-algebra.

→ Definitions hold in any symmetric monoidal category.
→ “Multilinear” representation theory: P(n)→ Hom(Y×n,Y ).
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Recognition principle

Definition (Little d-discs operad)

Dd (n) :=
{

D1, . . . ,Dn d -discs of Dd | D̊k ∩ D̊l = ∅, 1 6 k < l 6 n
}

◦1 =

Theorem (Recognition principle [Stasheff, Boardman–Vogt, May])

Y Dd -algebra ⇐⇒ Y ∼ Ωd (X )

→ Algebraic structure faithfully detects the homotopical form.
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Differential graded world

→ Transfer of structure: under isomorphisms

A
p // H
i

oo , ip = idA et pi = idH .

µ2 := p ν i⊗2 : H⊗2 → H : associative

ν =

2 BRUNO VALLETTE

This text does not pretend to be exhaustive, nor to serve as a faithful reference to the existing literature. Its
only aim is to give a gentle introduction to the ideas of this field of mathematics. We would like to share
here one point of view on the subject, from “student to student”. It includes many figures and exercises to
help the learning reader in its journey. To ease the reading, we skipped many technical details, which can
be found in the book [LV10].

CONVENTION. In this text, a chain complex (V, d) is usually a graded module V := {Vn}n2Z equipped
with a degree�1 map d (homological convention), which squares to zero. For the simplicity of the presen-
tation, we always work over a field K of characteristic 0, even if some exposed results admit generalizations
beyond that case.

1. WHEN ALGEBRA MEETS HOMOTOPY

In this section, we treat the mother example of higher algebras: A1-algebras. We show how this notion
appears naturally when one tries to transfer the structure of an associative algebra through homotopy data.
We provide an elementary but extensive study of its homotopy properties (Homotopy Transfer Theorem,
A1-morphism, Massey products and homotopy category).

1.1. Homotopy data and algebraic data. Let us first consider the following homotopy data of chain
complexes:

(A, dA)h
%%

p
// (H, dH)

i
oo

IdA � ip = dAh + hdA ,

where i and p are morphisms of chain complexes and where h is a degree +1 map. It is called a homotopy
retract, when the map i is a quasi-isomorphism, i.e. when it realizes an isomorphism in homology. If
moreover pi = IdH , then it is called a deformation retract.

EXERCISE 1. Since we work over a field, show that any quasi-isomorphism i extends to a homotopy
retract. (Such a statement holds over Z when all the Z-modules are free.)
Hint. Use the same kind of decomposition of chain complexes with their homology groups as in Sec-
tion 1.4.

Independently, let us consider the following algebraic data of an associative algebra structure on A:

⌫ : A⌦2 ! A, such that ⌫(⌫(a, b), c) = ⌫(a, ⌫(b, c)), 8a, b, c 2 A .

By simplicity, we choose to depict these composites by the following graphically composition schemes:

where we forget about the input variables since they are generic. Actually, we consider a differential graded
associative algebra structure on (A, dA), dga algebra for short, on A. This means that the differential dA

of A is a derivation for the product ⌫:

(In this section, we do not require that the associative algebra has a unit.)

µ2 =

PROOF:

i i

p

i i

p

=

i i

i

p

=

i i

i

p

=

i i

p

i i

p
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Naive homotopy transfer

Algebraic homotopy equivalence: Deformation retract

h !!
p //

i
oo

(A,dA)h
&& p //

(H,dH)
i

oo

idA − ip = dAh + hdA 6= 0

Transferred product: : not associative

i i

p

i i

p

6=∼h

i i

i

p

=

i i

i

p

6=∼h

i i

p

i i

p
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Higher homotopy transfer

Idea: introduce µ3 : H⊗3 → H
mesures the failure of
associativity for µ2 .

In Hom(H⊗3,H),
it satisfies:
⇐⇒ µ3 is a homotopy for the associativity relation of µ2.

And so on:
µn : H⊗n → H,
for any n > 2.
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Homotopy associative algebras

Définition (A∞-algebras [Stasheff, 1963])

(H, µ1 = dH , µ2, µ3, . . .)
satisfying

Theorem (Homotopy transfer [Kadeishvili, 1982])

H deformation retract on a dg associative algebra (A, ν):

(H, µ1, µ2, µ3, . . .) A∞-algebra.

16 / 31 Bruno VALLETTE Why Higher Structures?



Classical structures
Operadic calculus
Higher Lie theory

Recognition principle
Homotopy algebras
Applications

Applications

Higher Massey products: A = C•Sing(X ,K), H = H•(X ,K)

∪ 7→ (∪ = µ2, µ3, µ4, . . .) : (lifting of) Higher Massey products

→ Non-triviality of the Borromean rings,
Galois cohomology, elliptic curves, etc.

Floer cohomology for Lagrangian submanifolds
[Fukaya–Oh–Ohta–Ono, 2009]
A∞-categories: higher version of dg category
→ Homological mirror symmetry conjecture [Kontsevich]
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A∞-algebras are homotopy stable

→ Starting from an A∞-algebra (A,dA, ν2, ν3, . . .):

Consider µn =

Proposition

=⇒ Again an A∞-algebra, no need of further higher structure.
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Compatibility with the transferred structure

(A,dA, ν2, ν3, . . .)︸ ︷︷ ︸
Original structure

i←− (H,dH , µ2, µ3, . . .)︸ ︷︷ ︸
Transferred structure

i chain map =⇒ dAi = idH

Question: Does i commutes with the higher ν’s and µ’s?
Anwser: not in general!
Define i1 := i and consider in Hom(H⊗n,A), for n ≥ 2:

in :=
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A∞-morphism

Définition (A∞-morphism)

(H,dH , {µn}n≥2) (A, dA, {νn}n≥2) is a collection of linear maps

{fn : H⊗n → A}n≥1

of degree |fn| = n − 1 satisfying

EXAMPLE: The aforementioned {in : H⊗n → A}n≥1.
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Homotopy Transfer Theorem for A∞-algebras

A∞-QUASI-ISOMORPHISM: i : H ∼
 A s.t. i0 : H ∼−→ A quasi-iso.

Theorem (HTT for A∞-algebras, Kadeshvili ’82→ Markl ’04)

Given a A∞-algebra A and a deformation retract

(A,dA)h
&& p //

(H,dH)
i

oo idA − ip = dAh + hdA ,

there exists an A∞-algebra structure on H such that i, p, and h
extend to A∞-quasi-isomorphisms and A∞-homotopy respectively.

→ no loss of algebro-homotopical data & explicit formulas.

Théorème (Munkholm ’78, Lefèvre-Hasegawa ’03)

Every∞-qi of A∞-algebras admits a homotopy inverse.

Ho(dga alg) := dga alg [qi−1] ∼=∞-dga alg/ ∼h .
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Operadic calculus

→ Previous structures encoded by dg operads:

Ass = T
( )

/
(

−
)

︸ ︷︷ ︸
quotient

∼←− A∞ :=
(
T
( • ⊕ • ⊕ · · · ),d2

)
︸ ︷︷ ︸

quasi−free

.

General method: Koszul duality theory for dg operads
an operad P

��

P∞: quasi-free resolution (cofibrant)

��

∼oo

category of algebras
of type P

⊂ // category of P∞-algebra =
category of homotopy P-algebras

Examples: Lie∞, Com∞, Gerstenhaber∞, Batalin-
Vilkovisky∞, LieBi∞, Frobenius∞, DoublePoisson∞, etc.

All the results for A∞ hold for any Koszul (pr)operads
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Further applications

Applications of the homotopy transfer theorem:
spectral sequences, cyclic homology (definition and Chern
characters), formality statements, Feynman diagrams, etc.

Applications of∞-morphisms: cumulants in
non-commutative probability.

→ NOTION OF E∞-ALGEBRA: E∞
∼−→ Com

associativity and commutativity relaxed up to homotopy
EXAMPLE:

(
C•sing(X ,Z),∪, d

)
extends to a natural E∞-algebra

Theorem (Mandell, 2005)
The homotopy category of (some) topological spaces embeds
inside the homotopy category of E∞-algebras under C•sing(X ,Z).

=⇒ First family of faithful invariants!
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Classical Lie theory

Integration: Lie algebra g
exp−−→ Lie Group G.

UNIVERSAL FORMULA:

BCH(x , y) := ln (exp(x).exp(y))

= x + y + 1
2 [x , y ] 1

12 [x , [x , y ]] + 1
12 [y , [x , y ]] + · · ·

∈ L̂ie(x , y) ⊂ Âss(x , y) .

→ BCH(BCH(x , y), z) = BCH(x ,BCH(y , z)) and
BCH(x ,0) = x = BCH(0, x)

Definition (Hausdorff group)

(g, [ , ]) complete Lie algebra: G := (g,BCH,0) Hausdorff group.
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Deformation theory

→ Differential graded Lie algebra: (g, [ , ], d)

Definition (Maurer–Cartan elements)

MC(g) :=
{
α ∈ g−1 | dα + 1

2 [α, α] = 0
}
.

Proposition

The Hausdorff group G of g0 acts on MC(g) .

→ PHILOSOPHY: “Any deformation problem over a field of
characteristic 0 can be encoded by a dg Lie algebra.”

structures ←→ MC(g)
equivalence ←→ G

(Hoch•(A,A), [ , ]Gerst ): associative algebras up to iso.
(Γ(Λ•TM), [ , ]SN) : Poisson structure up to diffeomorphisms.
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Deformation quantisation of Poisson manifolds

Theorem (Kontsevich, 1997)

Any Poisson manifold (M, π) can be quantised: ∃ associative
product ∗ on C∞(M)[[~]] such that ∗0 = · and ∗1 = { , }.

PROOF:

The functor: dg Lie algebra (g, [ , ], d) 7→ MC(g)/G
sends quasi-isomorphisms to bijections.
The Hochschild–Kostant–Rosenberg quasi-isomorphism

Γ(Λ•TM)
∼−→ Hoch•(C∞(M),C∞(M))

extends to a Lie∞-quasi-isomorphism.
∃ Lie∞-qi ⇐⇒ ∃ zig-zag of qis.
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Deformation functor

→ Make this “philosophy” into a theorem.

Definition (Deformation functor)

Given a dg Lie algebra (g, [ , ], d):

Defg : Artin rings → groupoids
R ∼= K⊕m 7→ (MC(g⊗m),G)

→ no enough: need a notion of an∞-groupoid. 

HEURISTIC: ∞-groupoid↔ topological space↔ Kan complex.
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∞-groupoid

Definition (∞-groupoid)

A simplicial set X• having horn fillers

Λn
k X•

∆n

∃

objects X0,
1-morphisms X1,
2-morphisms X2, etc.

•

• • .

gf

“g◦f”

∞-CATEGORY: no horn filler for k = 0 or k = n.
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Fundamental theorem of deformation theory

Definition (Sullivan algebra)

Ωn: polynomial differential forms on |∆n|.

→ Ω•: simplicial dg commutative algebra.

Theorem (Hinich, 1997)

MC(g⊗m⊗ Ω•) : ∞-groupoid.

⇒ functor: dg Lie algebras→ (dg Artin rings→∞-groupoids)︸ ︷︷ ︸
formal moduli problems

Theorem (Pridham–Lurie, 2010)
∃ equivalence of∞-categories

FMP
∼=←→ dg Lie algebras
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Higher Lie theory

→ Refinement of Hinich’s functor: Getzler [2009]
ALGEBRAIC ∞-GROUPOID: horn fillers are given.

•0 • 0

•
0

x y0

BCH(x,y)

→ Higher BCH formulas [Robert-Nicoud–V. 2020].

THANK YOU FOR YOUR ATTENTION!
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