
Sel. Math. New Ser.
DOI 10.1007/s00029-012-0098-y

Selecta Mathematica
New Series

The minimal model for the Batalin–Vilkovisky operad

Gabriel C. Drummond-Cole · Bruno Vallette

© Springer Basel AG 2012

Abstract The purpose of this paper is to explain and to generalize, in a homotopical
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Introduction

The notion of a Batalin–Vilkovisky algebra or BV-algebra for short is made up of a
commutative product, a Lie bracket, and a unary operator, which satisfy some rela-
tions. This algebraic structure has a topological interpretation in terms of the rational
homology of configurations of framed 2-disks. There is also a closely related type of
algebra, called BD-algebra after Beilinson and Drinfeld, which has the same structure
and relations but a different degree convention which matters in some applications,
like the geometric Langlands programm and in renormalization theory. BV-algebras
and BD-algebras arise in many areas of mathematics. Nearly, all these examples of
BV-algebras actually have some homology groups as underlying spaces. Therefore,
they are some shadow of a higher structure: that of a homotopy BV-algebra.

Algebra and homotopy theories do not mix well together a priori. The study of
the homotopy properties of algebraic structures often introduces infinitely many new
higher operations of higher arity. So one uses the operadic calculus to encode them.

The study of the homotopy properties of algebraic structures often introduces infi-
nitely many new higher operations of higher arity.

Homotopically, one can use any model of a structure, which has good enough lift-
ing properties, and in theory, there is no reason to prefer any one model over any
other. In practice, the canonical models (bar–cobar construction) can be large and
unwieldy, and this can obscure basic facts and relations. When one can find a smaller
model, sometimes rigid structure emerges and the isomorphism classes of structures
are often smaller and more manageable. This allows to prove formality results, like
the Kontsevich formality [43] for instance.

All of this is the case for Batalin–Vilkovisky algebras. They do not have homoto-
py invariance properties, like the transfer of structure under homotopy equivalences,
see [51, Section 10.3]. To solve this, we have defined, in [24], a notion of homoto-
py Batalin–Vilkovisky algebra with the required homotopy properties. To do so, we
have constructed a quasi-free, thus cofibrant, resolution of the operad BV encoding
Batalin–Vilkovisky algebras, using the inhomogeneous Koszul duality theory.

While quite “small”, this resolution carries a non-trivial internal differential; so it is
not minimal in the sense of D. Sullivan [68]. The purpose of the present paper is to go
even further and to produce the minimal model of the operad BV , that is, a resolution
as a quasi-free operad with a decomposable differential and a certain grading on the
space of generators.
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The first main result of this paper is the following computation of the homology
groups of the bar construction for the operad BV as a deformation retract.

Theorem (2.1) The various maps defined in Sect. 2 form a deformation retract in the
category of differential graded S-modules between the Koszul dual cooperad BV ¡ of
the operad BV (see 1.4) and its homology, which is identified to be the direct sum of the
non-unital cofree coalgebra T

c
(δ) on a single generator of degree 2 with S−1Grav∗,

the operadic desuspension of the cooperad dual to the homology H•(M0,n+1) of the
moduli space of genus 0 curves with marked points. In symbols:

BV ¡�� ��
T

c
(δ)⊕ S−1Grav∗.��

Calculating this homology provides the space of generators for the minimal model
of the operad BV , but this particular approach, with an explicit deformation retract,
gives more. In contrast to what would happen with Koszul duality theory, this graded
S-module is not endowed with a cooperad structure but with a homotopy cooperad
structure. This means that there are higher decomposition maps which split elements,
not only into 2 but also into 3, 4, etc. These maps can be obtained using the data of
the deformation retract to transfer the strict cooperad structure from BV ¡. Finally, the
differential of the minimal model is made up of these decomposition maps.

Note the relation to the work of E. Getzler [27]. He showed that the strict coo-
perad S−1Grav∗ was the space of generators for the minimal model of the operad
HyperCom, related to Frobenius manifold, with differential coming from the coope-
radic decomposition map. This relationship is explored further in Sect. 7.

Let us recall that the problem of making minimal models explicit in algebraic
topology is related to the following notions. Sullivan models [68] are dg commutative
algebras generated by the (dual of the) rational homotopy groups π•X ⊗Q of a topo-
logical space X , where the differential is given by the Whitehead products. Quillen
models [65] are dg Lie algebras generated by the (dual of the) rational homology
groups H•(X,Q) of a topological space X , where the differential is given by the
Massey products. The Steenrod algebra is an inhomogenous Koszul algebra, whose
Koszul dual dg algebra is the� algebra, see [63]. The minimal model of the Steenrod
algebra is generated by the underlying homology groups of the � algebra and the
differential is related to the Adams spectral sequence [3,72].

Sullivan Quillen Steenrod Batalin–Vilkovisky

Free Commutative
algebra S(−)

Lie algebra
Lie(−)

Associative
algebra T (−)

Operad T (−)

Generators π•X ⊗Q H•(X,Q) � H•(M0,n+1) ⊕
T̄ c(δ)

Differential Whitehead
brackets

Massey
products

Differentials of
Adams spectral
sequence

Homotopy
cooperad

Like the Steenrod algebra, the operad BV is susceptible to the methods of inhomo-
geneous Koszul duality theory, see [24]. But, in contrast to the Steenrod algebra, we
are able to compute, in this paper, the underlying homology groups of its Koszul dual
(co)operad together with its algebraic structure. We also provide a topological explana-
tion for our result. It was shown by E. Getzler [25] that the operad BV is the homology
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of the framed little disks operad. Its minimal model is generated by a homotopy cooper-
ad extension of the cooperad H•(M0,n+1) by a free resolution T c(δ) of the circle S1.

We call the algebras over the minimal model of the operad BV skeletal homotopy
Batalin–Vilkovisky algebras, since they involve fewer generating operations than the
notion of a homotopy BV-algebra given in [24]. We provide new formulae for the
homotopy transfer theorem for algebras over a quasi-free operad on a homotopy coo-
perad. To prove them, we have to introduce a new operadic method, based on a refined
bar–cobar adjunction, since the classical methods of [51, 10.2] (classical bar–cobar
adjunction), and of A. Berglund [6] (homological perturbation lemma) failed to apply.
This gives the homotopy transfer theorem for skeletal homotopy BV-algebras.

The d�-condition, also called the dd̄-lemma or ddc-lemma in [21], is a particu-
lar condition, coming from Kähler geometry, between the two unary operators: the
underlying differential d and the BV-operator�. Under this condition, S. Barannikov
and M. Kontsevich [7], and Y.I. Manin [52] proved that the underlying homology
groups of a dg BV-algebra carry a Frobenius manifold structure. Such a structure is
encoded by the homology operad H•(M0,n+1) of the Deligne–Mumford–Knudsen
moduli space of stable genus 0 curves. Its is also called an hypercommutative algebra
(with a compatible non-degenerate pairing). Tree formulae for such a structure have
been given by A. Losev and S. Shadrin in [50].

We show that these results are actually a consequence of the aforementioned
homotopy transfer theorem. This allows us to prove them under a weaker and optimal
condition, called the Hodge-to-de Rham condition. We recover the Losev–Shadrin
formulae and thereby explain their particular form. Moreover, our approach gives
higher non-trivial operations, which are necessary to recover the homotopy type of
the original dg BV-algebra.

Theorem (7.8) Let (A, d, •,�, 〈 , 〉) be a dg BV-algebra with Hodge-to-de Rham
degeneration data.

The underlying homology groups H(A, d) carry a homotopy hypercommutative
algebra structure, which extends the hypercommutative algebras of M. Kontsevich
and S. Barannikov [7], Y.I. Manin [52], A. Losev and S. Shadrin [50], and J.-S. Park
[62], and such that the rectified dg BV-algebra Rec(H(A)) is homotopy equivalent to
A in the category of dg BV-algebras.

In geometrical terms, this lifts the action of the operad of moduli space of genus 0
stable curves (cohomological field theory) into a certain action of the cooperad of the
open moduli space of genus 0 curves (homotopy cohomological field theory):

H•+1(M0,n+1)
��

��

EndH(A)

H•(M0,n+1).

[BK−M−L S−P]

��������������

We finish this paper with applications to the Poisson geometry, Lie algebra
cohomology, and the Mirror Symmetry conjecture. To conclude, this paper devel-
ops the homotopy theory for dg BV-algebras (homotopy skeletal BV-algebras,
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∞-quasi-isomorphisms) necessary to study the Mirror Symmetry conjecture, in the
same way as the homotopy theory of dg Lie algebras was used to prove the deformation
quantization of Poisson manifolds by M. Kontsevich in [43].

Some of the results of the present paper were announced in [19]. While we were
typing it, V. Dotsenko and A. Khoroshkin computed in [22] the homology of the bar
construction of the operad BV without the action of the symmetric groups. They used
the independent method of Gröbner basis for shuffle operads developed in [23].

The paper is organized as follows. We begin by recalling the Koszul resolution of
the operad BV given in [24]. In Sect. 2, we compute the homology of the Koszul dual
dg cooperad BV ¡ and we write it as a deformation retract of BV ¡. In the Sect. 3, we
recall the notion of homotopy cooperad with its homotopy properties: the homotopy
transfer theorem for homotopy cooperads. With these tools in hand, we produce the
minimal model of the operad BV at the end of Sect. 3. In Sect. 4, we describe the
associated notion of algebra, called skeletal homotopy BV-algebras. Section 5 deals
with a generalization of the bar–cobar adjunction between operads and homotopy coo-
perads. The last section contains the homotopy transfer theorem for skeletal homotopy
BV-algebras and the extension of the result of Barannikov–Kontsevich and Manin.

The reader is supposed to be familiar with the notion of an operad and operadic
homological algebra, for which we refer to the book [51]. In the present paper, we use
the same notations as used in this reference.

We work over a field K of characteristic 0, and all the S-modules M = {M(n)}n∈N

are reduced, that is, M(0) = 0.

1 Recollection on homotopy BV-algebras

In this section, we recall the main results of [24] needed in the rest of the text. In
loc.cit., we made explicit a resolution of the operad BV using the Koszul duality the-
ory. It is given by a quasi-free operad on a dg cooperad, which is smaller than the bar
construction of BV .

1.1 BV-algebras

Definition 1.1 (Batalin–Vilkovisky algebras) A differential graded Batalin–Vilkovi-
sky algebra or dg BV-algebra for short is a differential graded vector space (A, dA)

endowed with

	 a symmetric binary product • of degree 0,
	 a symmetric bracket 〈 , 〉 of degree +1,
	 a unary operator � of degree +1,

such that dA is a derivation with respect to each of them and such that

� the product • is associative,
� the bracket satisfies the Jacobi identity

〈〈 , 〉, 〉 + 〈〈 , 〉, 〉.(123) + 〈〈 , 〉, 〉.(321) = 0,
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� the product • and the bracket 〈 , 〉 satisfy the Leibniz relation

〈 -, - • - 〉 = (〈 -, - 〉 • -) + (- • 〈 -, - 〉).(12),

� the unary operator � satisfies �2 = 0,
� the bracket is the obstruction to� being a derivation with respect to the product •

〈 -, - 〉 = �(- • -) − (�(-) • -) − (- •�(-)),
� the operator � is a graded derivation with respect to the bracket

�(〈 -, - 〉) + 〈�(-), - 〉 + 〈 -,�(-)〉 = 0.

The operad encoding BV-algebras is the operad defined by generators and relations

BV := T (V )/(R),

where T (V ) denotes the free operad on the S-module

V := K2 • ⊕K2〈 , 〉 ⊕K�,

with K2 being the trivial representation of the symmetric group S2. The space of rela-
tions R is the sub-S-module of T (V ) generated by the relations “�” given above. The
basis elements •, 〈 , 〉, � are of degree 0, 1, and 1. Since the relations are homoge-
neous, the operad BV is graded by this degree, termed the homological degree.

We denote by Com the operad generated by the symmetric product • and the asso-
ciativity relation. We denote by Lie1 the operad generated by the symmetric bracket
〈 , 〉 and the Jacobi relation; it is the operad encoding Lie algebra structures on the
suspension of a space. The operad G governing Gerstenhaber algebras is defined sim-
ilarly. Its underlying S-module is isomorphic to Com ◦ Lie1, on which the operad
structure is given by means of distributive laws, see [51, Section 8.6].

1.2 Quadratic analogue

We consider the homogeneous quadratic analogue qBV of the operad BV . This operad
is defined by the same spaces of generators V and relation

•
�

− •
�

− •
�

− 〈 , 〉 ,

which is changed into the homogenous relation:

•
�

− •
�

− •
�

.
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We denote this homogenous quadratic space of relations by qR. This operad qBV =
T (V )/(qR) is also given by means of distributive laws on the S-module

qBV ∼= G ◦ D ∼= Com ◦ Lie1 ◦K[�]/(�2),

where D := K[�]/(�2) is the algebra of dual numbers, see [24, Proposition 3].

1.3 Koszul dual cooperad of the operad qBV

We denote by s the homological suspension, which shifts the homological degree by
+1. Recall that the Koszul dual cooperad of a quadratic operad T (V )/(qR) is defined
as the sub-cooperad C(sV, s2qR) ⊂ T c(sV ) cogenerated by the suspension sV of V
with correlators in the double suspension s2qR of qR, see [51, Chapter 7]. Namely,
it is the “smallest” sub-cooperad of the cofree cooperad on sV , which contains the
correlators s2qR.

We denote by Sc := Endc
Ks−1 = {Hom((Ks−1)⊗n,Ks−1)}n∈N the suspension coo-

perad of endomorphisms of the one-dimensional vector space s−1
K concentrated in

degree−1. The desuspension ScC of a cooperad C is the cooperad defined by the arity-
wise tensor product, called the Hadamard tensor product, (ScC)(n) = (Sc⊗HC)(n) :=
Sc(n)⊗C(n). The underlying S-module of the Koszul dual cooperad of qBV is equal to

qBV ¡ ∼= T c(δ) ◦ ScComc
1 ◦ ScLiec,

where T c(δ) ∼= K[δ] ∼= D¡ is the counital cofree coalgebra on a degree 2 generator
δ := s�, where Liec ∼= Lie∗ is the cooperad encoding Lie coalgebras and where
Comc

1
∼= Com∗−1 is the cooperad encoding cocommutative coalgebra structures on the

suspension of a space, see [24, Corollary 4]. The degree of the elements in

Kδm ⊗ ScComc
1(t)⊗ ScLiec(p1)⊗ · · · ⊗ ScLiec(pt ) ⊂ qBV ¡

is n + t + 2m − 2, for n = p1 + · · · + pt .

1.4 Koszul dual dg cooperad of the operad BV

We consider the map ϕ : qR → V defined by

•
�

− •
�

− •
�

�−→ 〈 , 〉

and 0 on the other relations of qR, so that the graph of ϕ is equal to the space of
relations R. The induced map qBV ¡ → sV extends to a square-zero coderivation dϕ
on the cooperad qBV ¡, see [24, Lemma 5]. The dg cooperad

BV ¡ := (qBV ¡, dϕ)

is called the Koszul dual dg cooperad of the inhomogeneous quadratic operad BV .
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We use the notation � for the “symmetric” tensor product, that is, the quotient
of the tensor product under the permutation of terms. In particular, we denote by
δm ⊗ L1�· · ·� Lt a generic element of T c(δ)◦ScComc

1 ◦ScLiec with Li ∈ ScLiec,
for i = 1, . . . , t ; the elements of ScComc

1 being implicit. Under these notations, the
coderivation dϕ is explicitly given by

dϕ(δ
m ⊗ L1 � · · · � Lt ) =

t∑

i=1

(−1)εi δm−1 ⊗ L1 � · · · � L ′i � L ′′i � · · · � Lt ,

(1)

where L ′i � L ′′i is Sweedler-type notation for the image of Li under the binary part

ScLiec → ScLiec(2)⊗ (ScLiec ⊗ ScLiec) � ScLiec � ScLiec

of the decomposition map of the cooperad ScLiec. The sign, given by the Koszul rule,
is equal to εi = (|L1| + · · · + |Li−1|). The image of dϕ is equal to 0 when m = 0 or
when Li ∈ ScLiec(1) = K I for all i .

Remark Let us denote the linear dual of δ by h̄ := δ∗. This is an element of homologi-
cal degree−2. The Koszul dual operad is defined by qBV ! := SqBV ¡∗ = S⊗HqBV ¡∗,
where S stands for the endomorphism operad S := Endc

Ks−1 . Up to a degree shift, the

Koszul dual dg operad BV ! := (qBV !, t dϕ), when viewed as a cohomologically graded
differential K[[h̄]]-operad, corresponds to the Beilinson–Drinfeld operad [4,14].

1.5 Koszul resolution of the operad BV

We denote by BV∞ the quasi-free operad given by the cobar construction on BV ¡:

BV∞ := �BV ¡ ∼= (T (s−1qBV ¡
), d = d1 + d2),

where d1 is the unique derivation, which extends the internal differential dϕ and where
d2 is the unique derivation, which extends the infinitesimal (or partial) coproduct of the
cooperad qBV ¡, see [51, Section 6.5]. The total derivation d = d1+d2 squares to zero
and faithfully encodes the algebraic structure of the dg cooperad on BV ¡. The space
of generators of this quasi-free operad is isomorphic to T c(δ) ◦ScComc

1 ◦ScLiec, up
to coaugmentation and desuspension.

Theorem 1.2 [24, Theorem 6] The operad BV∞ is a resolution of the operad BV

BV∞ = �BV ¡ =
(
T (s−1qBV ¡

), d = d1 + d2

) ∼−→ BV.

It is called the Koszul resolution of BV . Notice that it is much smaller than the bar–
cobar resolution �B BV ∼−→ BV . The Koszul resolution and the bar–cobar resolu-
tion are both quadratic. But they are not minimal resolutions: they are both quasi-free
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operads with a differential, which is the sum of a quadratic term (d2) and a non-trivial
linear term (d1).

Algebras over the operad BV∞ are called homotopy BV-algebras. For an explicit
description of this algebraic notion together with its homotopy properties, we refer
the reader to [24].

1.6 Homotopy transfer theorem for homotopy BV-algebras

We consider the data

(A, dA)h
�� p ��

(H, dH )
i

��

of two chain complexes, where i and p are chain maps and where h has degree 1. It
is called a homotopy retract when idA − i p = dAh + hdA and when, equivalently, i
or p is a quasi-isomorphism. If, moreover, the composite pi is equal to idH , then it is
called a deformation retract.

Theorem 1.3 [24, Theorem 33] Any homotopy BV-algebra structure on A transfers
to H through a homotopy retract such that i extends to an ∞-quasi-isomorphism.

2 The homology of BV ¡ as a deformation retract

The purpose of this section is to construct an explicit contracting homotopy for the
chain complex BV ¡ := (qBV ¡, dϕ). This is a necessary ingredient for the construction
of the minimal model of the operad BV given in the next section. As a by-product,
this computes the homology of the bar construction of the operad BV in terms of the
homology of the moduli space M0,n+1 of genus 0 curves. The main result of this
section is the following theorem.

Theorem 2.1 The various maps defined in this section form the following deformation
retract:

(qBV¡ ∼= T c(δ)⊗G¡, dϕ∼=δ−1⊗dψ)δ⊗H
�� ��

(T
c
(δ)⊗I⊕1⊗G¡/Im dψ ∼=T

c
(δ)⊕S−1Grav∗, 0).��

2.1 Trees

A reduced rooted tree is a rooted tree whose vertices have at least one input. We con-
sider the category of reduced rooted trees with leaves labeled bijectively from 1 to n,
denoted by Tree. The trivial tree | is considered to be part of Tree. Since the trees are
reduced, there are only trivial isomorphisms of trees. So we identify the isomorphism
classes of trees with the trees themselves; see [51, Appendix C] for more details.

We consider the planar representation of reduced trees provided by shuffle trees,
see E. Hoffbeck [39, 2.8], V. Dotsenko and A. Khoroshkin [23, 3.1], and [51, 8.2].
We define a total order on the vertices of a tree by reading its planar representation
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2

1 4 3 5 10

4 6

7 9 11

8 12

4

5 6 82

1 3 7

Fig. 1 Example of a planar representation of a tree with ordered vertices

from leaf 1 to the root by following the internal edges without crossing them. See
Fig. 1 for an example.

2.2 Free operad and cofree cooperad

The underlying S-module of the free operad T (V ) on an S-module V is given by
the direct sum

⊕
t∈Tree t (V ), where t (V ) is the treewise tensor module obtained by

labeling every vertex of the tree t with an element of V according to the arity and the
action of the symmetric groups. The operadic composition map is given the grafting
of trees. Dually, the underlying S-module of the conilpotent cofree cooperad T c(V ) is
equal to the same direct sum over trees and its decomposition map is given by cutting
the trees horizontally; see [51, Chapter 5] for more details.

The subcategory of trees with n vertices is denoted by Tree(n). The number of
vertices endows the free operad T (V ) ∼= ⊕

n∈N T (V )(n) and the conilpotent cofree
cooperad T c(V ) ∼= ⊕

n∈N T c(V )(n) with a weight grading. We represent a labeled
tree by t (v1, . . . , vn), using the aforementioned total order on vertices.

2.3 Coderivations on the cofree cooperad

Coderivations on cofree cooperads are characterized by their projection onto the space
of generators. In other words,

Lemma 2.2 Let η be a homogeneous morphism T c(M)→ M of graded S modules.
Then, there exists a unique coderivation dη on T c(M) extending η, given on an element
of T c(M) represented by a decorated tree by applying η to any subtree.

This is a classical generalization of the characterization of coderivation for cofree
coalgebras. Here, are two simple but useful examples; for more details, see [51, Sec-
tion 6.3.14].

1. If η factors through the projection T c(M) � T c(M)(1) = M , then dη is given
on a decorated tree as a signed sum over the vertices of the tree. The summand
corresponding to a vertex v is the same tree with η applied to the decoration of v
and all other decorations the same. The sign is the Koszul sign.

2. If η factors through the projection T c(M) � T c(M)(2), then dη is given on a
decorated tree as a signed sum over the internal edges of the tree. The summand
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corresponding to an edge e has the edge contraction along e of the original tree
as its underlying tree. The decorations away from the contraction vertex are the
same; the decoration on the contraction vertex is given by applying η to the two
decorated vertices involved in the contraction, viewed as a two-vertex decorated
tree in T c(M)(2). The sign is the Koszul sign.

2.4 A contracting homotopy for a cofree cooperad

Let M be the S-module, which is the linear span of elements μ and β, both of arity
two, in degrees 1 and 2 respectively, both with trivial symmetric group action.

M := K2 s•︸︷︷︸
μ

⊕K2 s〈 , 〉︸ ︷︷ ︸
β

Let ψ denotes the degree one morphism of graded S-modules ψ : T c(M)→ M ,
which first projects T c(M) to the cogenerators M and then takes μ to β and β to zero.
ψ can be extended uniquely to a degree one coderivation dψ of T c(M) by Lemma 2.2.
We will construct a degree −1 chain homotopy H of graded S-modules on T c(M),
so that dψH + Hdψ is the identity outside arity 1 and the zero map on arity 1 (which
is one dimensional, spanned by a representative of the coimage of the counit map).

To do this, we will need a combinatorial factor.

Definition 2.3 Let T be a binary tree. The vertex v has some number of leaves mv

above one of its incoming edges and another number nv above the other (we need not
concern ourselves which is which). Let the weight ω(v) be their product mvnv .

J.-L. Loday used this weight function to describe a parametrization of the Stasheff
associahedra.

Lemma 2.4 [49] The sum of the weights of all the vertices of a binary tree with n
vertices is

(n+1
2

)
.

Definition 2.5 Let h : M → M be the degree −1 morphism of graded S-modules
given by taking β toμ andμ to 0. We will use h to define the contracting homotopy H .

Let the homotopy H be defined on a decorated tree with n vertices in T c(M) as
a sum over the vertices. For the vertex v, the contribution to the sum is ω(v)

(n+1
2 )

times

the decorated tree obtained by applying h to v (including the Koszul sign). So it has a
similar flavor to extending h as a coderivation, but also includes combinatorial factors.

Lemma 2.6 The map dψH + Hdψ is zero in arity one and the identity in all other
arities.

Proof Some terms cancel in pairs; the terms that do not cancel are multiplication by
the combinatorial factor, summed over each vertex. By Lemma 2.4, this sum is one.

��
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2.5 Characterizing the Koszul dual of the Gerstenhaber operad

Consider the operad G governing Gerstenhaber algebras. This operad has a presen-
tation as T (s−1 M)/(R), where R is a set of quadratic relations in • = s−1μ and
〈 , 〉 = s−1β.

The Koszul dual cooperad (See [51, Section 7.3]) G¡ is a graded sub S-module
of T c(M) ⊂ T c(sG), characterized by being the intersection of T c(M) with the
kernel of the degree −1 coderivation d2 on BG := T c(sG) induced by the infinitesi-
mal composition map γ(1) : T c(G)(2) → G.

Applying d2 to a decorated tree in T c(M) gives a sum of trees, each of which has
one special 4-valent vertex decorated by an element of sG(2) obtained by contraction
of one edge and composition of the associated two operations. The rest of the vertices
are trivalent and decorated with an element of sG(1) = M . Because M is one dimen-
sional in each degree, we can specify that each trivalent vertex is decorated by either
μ or β, with an overall coefficient on the decoration of the special vertex. Then, in
order that two separate terms be in the same summand of T c(sG) so that they might
cancel, the underlying trees must be the same and the decorations on each trivalent
vertex must be the same.

In particular:

Lemma 2.7 The kernel of d2 on the linear span of ti (a, b) is six dimensional, spanned
by the shifted Gerstenhaber relations:

1. the two dimensional space of associativity relations ti (μ,μ)− t j (μ,μ),
2. the three dimensional space of Leibniz relations spanned by

L1 = t1(μ, β)+ t2(β, μ)+ t3(μ, β),

L2 = t1(β, μ)+ t2(μ, β)+ t3(μ, β),

and

L3 = t1(β, μ)+ t2(β, μ)+ t3(β, μ)

(note that the signs are different than in the usual Leibniz relation because of the
shift, and that the presentation is not symmetric in our basis), and

3. the one-dimensional space of the Jacobi relation t1(β, β)+ t2(β, β)+ t3(β, β).

2.6 Restricting the homotopy to G¡

Lemma 2.8 The homotopy H : T c(M)→ T c(M) restricts to G¡.

Proof Let
∑

cT T be a sum of decorated trees in G¡.
Let us consider applying H to

∑
cT T . By definition, this is a sum over every vertex

of the decorated tree T . To show that the resultant sum is in G¡, we then apply d2 and
demonstrate that we get zero. Applying d2 involves applying the desuspension of the
infinitesimal composition map γ(1) on each set of two adjacent vertices, summing over
all such pairs. We will confuse such subsets with internal edges, with which they are
in bijection, as described in Sect. 2.3.
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In total, to apply H and then d2 to a decorated tree, T involves summing over all
choices of a vertex and edge of T ; each individual summand is the application of first
a weighted multiple of h to the chosen vertex and then infinitesimal composition γ(1)
to the chosen edge.

This sum splits into those pairs of vertex and edge, which are distinct, and those
pairs where the chosen edge is incident on the chosen vertex. We will show that each
of these two constituent sums is zero individually.

This is also a property that may be checked locally, because the application of d2
creates a unique 4-valent vertex by collapsing an edge between two trivalent vertices
and does not affect any of the other trivalent vertices.

If the vertex and edge are distinct, then, up to sign, the application of h on the vertex
and infinitesimal composition on the edge commute. Then, these terms can be rein-
terpreted as the application of an operator ĥ to d2(

∑
cT T ). But

∑
cT T is d2-closed

so this part of the sum is zero.
The terms created by the cases where the edge involved in the contraction are inci-

dent on the vertex where h is applied come in pairs, where we can apply h to the top
or bottom vertex. We can polarize the large sum, grouping terms that have the same
tree and the same decorations outside the chosen edge. Because

∑
cT T is d2-closed,

in each of these smaller sums, the terms will be a linear combination of two vertex
trees in the kernel of d2, which were described in Lemma 2.7.

A direct check shows applying h kills the associativity relations, takes a Leibniz
relation to a linear combination of two associativity relations, and takes the Jacobi
relation to a linear combination of all three Leibniz relations. The weight factor in h
ensures that the global structure of the tree does not matter. ��

2.7 Proof of Theorem 2.1

Lemma 2.9 Let O = T (N )/(R) be a quadratic operad with Koszul dual cooperad
O¡ ⊂ T c(s N ). Let d be a coderivation of T c(s N ). If the composition

O¡ �� �� T c(s N )
d �� T c(s N ) �� �� T c(s N )(2)/O¡(2)

is zero, then d restricts to be a coderivation of O¡.

Proof Since the Koszul dual cooperead O¡ = C(s N , s2 R) is a quadratic cooperad,
this proof is dual to the proof that a derivation of the free operad T (N ) passes to the
quotient T (N )/(R), with R ⊂ T (N )(2), if the composite

R �� �� T (N ) d �� T (N ) �� �� T (N )/(R)

is zero. ��
Corollary 2.10 The coderivation dψ defined on T c(M) restricts to G¡. We will refer
to the restriction with the same notation.
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Proof In order to check this, we need to check only that elements of G¡ which dψ
takes into T c(M)(2) land in G¡(2). For degree reasons, such elements must belong to
G¡(2), which is described by Lemma 2.7. A direct calculation verifies that dψ takes
an associativity relation to a difference of two Leibniz relations, takes each Leibniz
relation to the Jacobi relation, and takes the Jacobi relation to zero. ��
Proposition 2.11 The counit map (G¡, dψ) → (I, 0) of the differential graded coo-
perad (G¡, dψ), the coaugmentation (I, 0)→ (G¡, dψ), and the homotopy H form the
following deformation retract:

(G¡, dψ)H
�� ��

(I, 0)��

Proof This is a direct corollary of Lemmata 2.6, 2.8, and Corollary 2.10. ��
Remark One can easily check that the dual of the chain complex (G¡, dψ) is isomor-
phic to both the Koszul complex Lie¡ ◦κ Lie (see [51, Section 7.4]) and the Chevalley–
Eilenberg complex of the free Lie algebra. This isomorphism along with the preceding
proposition implies as a corollary the well-known facts that the Lie and commutative
operads are Koszul, and that, equivalently, the Chevalley–Eilenberg homology of the
free Lie algebra is trivial.

Definition 2.12 We define a map of S-modules

θ : T c(δ)⊗ T c(M)→ T c(M ⊕Kδ)

as follows. We will describe the image of δm ⊗ x where x has underlying tree T . Let
λ range over assignments of a nonnegative integer to each edge of T so that the sum
of all the integers is m.

Then, the image of δm ⊗ x has underlying tree T ′, which is obtained from T by
inserting λ(e) bivalent vertices on each edge e, labeled by δ.

Lemma 2.13 The restriction of θ to T c(δ)⊗ G¡, still denoted θ , is the inverse to the
distributive isomorphism ρ : qBV ¡ → T c(δ)⊗ G¡.

Proof First, let x ∈ G¡. We will verify that θ(δn ⊗ x) is in qBV ¡ by checking that d2θ

is zero on T c(δ)⊗ G¡ (here, d2 is the differential induced by composition in qBV).
The map θ inserts vertices decorated by δ, and d2 composes pairs of adjacent ver-

tices. The sum involved in applying d2 includes compositions involving 0, 1, and 2
vertices decorated by δ. Each of these vanishes for a different reason.

1. The insertion of a vertex decorated with δ commutes up to sign with compositions
that do not involve it, so inserting m vertices decorated with δ and then contract-
ing an edge whose vertices are decorated by μ or β is the same as contracting the
edge first and then inserting vertices decorated with δ. But since dG¡

2 coincides

with dqBV¡

2 on the δ0 component of qBV ¡, and we are starting in the kernel of dG¡
2

to begin with, this summand is zero.
2. Contracting an edge whose vertices are both decorated by δ gives a bivalent vertex

whose decoration is s(� ◦�), which is zero since � ◦� = 0 in qBV .
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3. Finally, consider contracting an edge between a vertex v decorated by a μ or β
and an adjacent vertex decorated by a δ. Let λ′ be a map from the edges of T
to the natural numbers so that the sum of the images adds to m − 1. There are
precisely three choices of λ with a δ adjacent to v which can be forgotten to yield
an element whose underlying tree is T with vertices inserted according to λ′. The
sum of the three contractions with v associated to λ′ together make up a relation
of qBV .

Now consider ρθ(δm ⊗ x). Because ρ first decomposes and then projects, it is zero
on any tree decorated by β, δ, andμ unless all of the vertices decorated by δ are below
all of the other vertices. There is precisely one summand in the sum defining θ , which
satisfies this condition. That is the summand corresponding to the partition λwith λ of
the outgoing edge of the root equal to m and λ of every other edge equal to zero. The
map ρ splits this into two levels and then projects; the only way for the projection to
be nonzero is for it to split with δm as the bottom level; then, ρθ(δm ⊗ x) = (δm ⊗ x).
Because ρ is an isomorphism, a one-sided inverse is an inverse. ��
Lemma 2.14 Under the above isomorphism θ , the differential δ−1⊗dψ is sent to dϕ:

(qBV ¡, dϕ) ∼= (T c(δ)⊗ G¡, δ−1 ⊗ dψ)

Proof It is enough to prove it on the level of the cofree cooperads. We show that the
following diagram is commutative

T c(δ)⊗ T c(M)
θ ��

δ−1⊗dψ
��

T c(M ⊕Kδ)

d̃ϕ
��

T c(δ)⊗ T c(M)
θ �� T c(M ⊕Kδ),

where d̃ϕ is the unique coderivation of the cofree cooperad T c(M⊕Kδ), which extends
the map ϕ. Since δ−1⊗dψ is a coderivation, it is enough to prove it by projecting onto
the space of cogenerators M ⊕Kδ. We conclude by showing that the only non-trivial
component is

μ

δ

� ��
μ

δ

− μ

δ

− μ

δ

�

��

�

��

β

� ��
β .

��
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Proposition 2.15 Under the isomorphism of Lemma 2.14, the chain complex
(qBV ¡, dϕ) admits a degree given by the powers δm of δ, for which:

H•(qBV ¡)(m) =
{

one dimensional, spanned by (δm ⊗ I) : m > 0
isomorphic to 1⊗ G¡/Im dψ : m = 0.

Proof Write the chain complex as

. . . �� δm ⊗ G¡
δ−1⊗dψ �� δm−1 ⊗ G¡ �� . . . �� G¡ �� 0

The homology is then one dimensional by Proposition 2.11 everywhere except at
1 ⊗ G¡, where everything is in the kernel of the differential, so the homology is just
the quotient by the image of dψ . ��
Proof of Theorem 2.1 We prove that the following data

(T c(δ)⊗ G¡, δ−1 ⊗ dψ)δ⊗H
		 p �� (T c(δ)⊕ Im (Hdψ), 0).��

form a deformation retract, where the projection map p is the sum of the projection onto
T c(δ) and the projection onto G¡ composed with Hdψ . Assume that x is in the coaug-
mentation coideal G¡. Since H is a contracting homotopy for dψ, (dψH+Hdψ)x = x .
Then, dψHdψ x = −Hdψ 2x + dψ x = dψ x so (x − Hdψ x) is closed under dψ . Since
G¡ is contractible and x is in the coaugmentation coideal, this means that x−Hdψ x is
in the image of dψ , therefore in the image of dϕ . This shows that Hdψ x is in the same
homology class as x . It is independent of choice of representative because it gives zero
on all of Im dψ . A quick calculation verifies that dϕ(δ ⊗ H) − (δ ⊗ H)dϕ gives the
projection onto δm ⊗G¡ except on the rightmost factor, where it gives id−Hdψ . This
concludes the proof of the theorem, with the exception of the rightmost identification
with the dual to the Gravity operad given in the next section. ��

2.8 The homology of BV ¡
∞ in terms of the moduli space of curves

and the gravity operad

Let us recall from E. Getzler’s papers [26,27] the definition of the quadratic oper-
ad Grav encoding gravity algebras. It is generated by skew-symmetric operations
[x1, . . . , xn] of degree 2− n for any n ≥ 2, which satisfy the following relations:

∑

1≤i< j≤k

±[[xi , x j ], x1, . . . , x̂i , . . . , x̂ j , . . . , xk, y1, . . . , yl ]

=
{ [[x1, . . . , xk], y1, . . . , yl ] for l > 0,

0 for l = 0.

The sign is the Koszul sign coming from the permutation of the elements.
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We consider the moduli space M0,n+1 of genus 0 curves with n+1 marked points.
The gluing along two points and the Poincaré residue map induce an operad struc-
ture on the suspension s H•(M0,n+1) of its homology, see [27, Section 3.4]. Let S−1

denotes both the desuspension operad and cooperad structure on EndKs−1 .

Proposition 2.16 [26] The gravity operad is related to the homology of the moduli
space of genus 0 curves by the following isomorphism of operads:

S−1Grav ∼= s H•(M0,n+1).

Proposition 2.17 The quotient G¡/Im dψ is a cooperad isomorphic to S−1Grav∗.

Proof This is the cooperadic dual of Theorem 4.5 of [25]. The aritywise linear dual
of the differential graded quadratic cooperad (G¡, dψ), with degree 1 coderivation,
is a differential graded quadratic operad, with degree 1 derivation. (We consider the
opposite homological degree on the linear dual). By [30, Theorem 3.1], the underly-
ing operad is isomorphic to (G¡)∗ ∼= S2G := EndKs2 ⊗H G, which admits the same
quadratic presentation as the operad G except for the −2 degree shift of the genera-
tors s−2• and s−2〈 , 〉. By the universal property of quadratic operads, the derivation
t dψ is characterized by the images of these generators, that is, s−2• �→ s−2〈 , 〉, and
s−2〈 , 〉 �→ 0. Therefore, up to the degree shift, the derivation t dψ is equal to the deri-
vation� on G defined in [25]. Theorem 4.5 of loc. cit. states that S−1Grav ∼= Ker�.
Dually, it gives G¡/Im dψ ∼= S−1Grav∗. ��
This concludes the proof of Theorem 2.1.

Theorem 2.18 There exists isomorphisms of graded S-modules

H•(B BV) ∼= H•(qBV ¡, dϕ) ∼= T
c
(δ)⊕ S−1Grav∗.

Proof The first isomorphism is a general fact about Koszul operads. In the case of an
inhomogenous Koszul operad P , it is proved as follows. The degree −1 map qP ¡ �
sV → V � P is a twisting morphism κ : P ¡ = (qP ¡, dϕ) → P ∈ Tw(P ¡,P),
see [24, Appendix A] or [51, Section 7.8]. By the general properties of the bar–cobar
adjunction [51, Section 6.5], it induces a morphism of dg cooperads fκ : P ¡ → B P ,
which is equal to the following composite: P ¡ = qP ¡ � T c(sV )→ T c(sP) = B P .
On the right-hand side, the operad P comes equipped with a filtration; we consider
the induced filtration on the bar construction. On the left-hand side, we consider the
filtration given by the weight grading on the cooperad qP ¡. The coderivation dϕ low-
ers this filtration by 1 and the morphism fκ preserves the respective filtrations. By
the Poincaré–Birkhoff–Witt theorem [24, Theorem 39], gr P ∼= qP , the first page
(E0, d0) of the right-hand side spectral sequence is isomorphic to B qP . So the map
fκ induces the map fκ̄ : (qP ¡, 0)→ B qP , on the level of the first pages of the spec-
tral sequences, where κ̄ is the twisting morphism associated with the homogeneous
quadratic operad qP . Since it is Koszul, the morphism fκ̄ is a quasi-isomorphism
and we conclude by the convergence theorem of spectral sequences associated with
bounded below and exhaustive filtrations [58, Chapter 11]. The second isomorphism
follows from Theorem 2.1. ��
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Remarks � While we were writing this paper, V. Dotsenko and A. Khoroshkin in
[22] proved, with another method (Gröbner bases for shuffle operads), the sec-
ond isomorphism on the level of graded N-modules, i.e. without the action of the
symmetric groups.

� The cooperad G¡ with the action of dψ is the Koszul dual cooperad of the operad
G with the action of � is the sense of Koszul duality theory of operads over Hopf
algebras, see the Ph.D. Thesis of O. Bellier [5] for more details.

3 The minimal model of the operad BV

In this section, we recall the notion of a homotopy cooperad, and we develop a transfer
theorem for such structures across homotopy equivalences. We apply this result to the
deformation retract given in the previous section. This allows us to make the minimal
model of the operad BV explicit.

3.1 Homotopy cooperad

We recall from [70] the notion of a homotopy cooperad, studied in more detail in [60,
Section 4].

Definition 3.1 (Homotopy cooperad) A homotopy cooperad structure on a graded
S-module C is the datum of a square-zero degree −1 derivation d on the free oper-
ad T (s−1C), which respects the augmentation map. An ∞-morphism C � D of
homotopy cooperads is a morphism of augmented dg operads between the associ-
ated quasi-free operads (T (s−1C), d)→ (T (s−1D), d ′). We denote this category by
∞-coop∞.

We consider the isomorphism of S-modules T (s−1C) ∼= T (C) given by

t (s−1c1, . . . , s−1cn) �→ (−1)(n−1)|c1|+(n−2)|c2|+···+|cn−1|t (c1, . . . , cn).

Since the map d is a derivation on a free operad, it is completely characterized by its
image on generators � : C → T (C), under the above isomorphism. The substitution
of a tree t at the i th vertex by a tree t ′ is denoted by t ◦i t ′, see [51, Section 5.5] for
more details.

Proposition 3.2 [60, Proposition 24] The data of a homotopy cooperad (T (s−1C), d)
are equivalent to a family of morphisms of S-modules {�t : C → t (C)}t∈Tree such
that

� �| = 0,
� the degree of �t is equal to the number of vertices of t minus 2,
� for every c ∈ C, the number of non-trivial �t (c) is finite,
� for every c ∈ C,

∑
(−1)i−1+k(l−i) t ◦i t ′(c1, . . . , ci−1, c′1, . . . , c′k, ci+1, . . . , cl) = 0,
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where the sum runs over the elements t (c1, . . . , cl) and t ′(c′1, . . . , c′k) such that

�(c) =
∑

t∈Tree

�t (c) =
∑

t∈Tree

t (c1, . . . , cl) and �(ci )

=
∑

t ′∈Tree

�t ′(ci ) =
∑

t ′∈Tree

t ′(c′1, . . . , c′k).

A homotopy cooperad structure on a graded S-module C with vanishing maps
�t = 0 for trees t ∈ Tree(≥3) with more than 3 vertices is equivalent to a coaug-
mented dg cooperad structure on C := C ⊕ I. In this case, the definition in terms of a
square-zero derivation on the free operad is equivalent to the differential of the cobar
construction � C.

In the same way, the datum of an∞-morphism F : (T (s−1C), d)→ (T (s−1D), d ′)
is equivalent to a morphism of S-modules f∞ : C → T (D), that is, a family of mor-
phisms { ft : C → t (D)}t∈Tree, satisfying some relations. An interpretation in terms
of Maurer–Cartan elements is given in [60, Section 4.7].

The projection C → T (C) � C of d on the graded S-module C endows it with a
differential denoted by dC , which is equal to the sum dC =

∑
�t over the corollas

t . The images on corollas of any ∞-morphism define a morphism of dg S-modules
(C, dC)→ (D, dD). When this latter map is a quasi-isomorphism, the ∞-morphism
is called an ∞-quasi-isomorphism.

3.2 Homotopy transfer theorem for homotopy cooperads

Theorem 3.3 Let (C, {�t }) be a homotopy cooperad. Let (H, dH) be a dg S-module,
which is a homotopy retract of the dg S-module (C, dC):

(C, dC)h
�� p ��

(H, dH).
i

��

There is a homotopy cooperad structure on the dg S-module (H, dH), which extends
the transferred composition maps t (p) ◦�t ◦ i and such that the map p extends to an
∞-quasi-isomorphism.

Proof For any corolla t , the transferred structure map �̃t on H is given by the differ-
ential dH. For any tree t ∈ Tree with at least 2 vertices, we consider all the possible
ways of writing it by successive substitutions of trees with at least 2 vertices:

t = (((t1 ◦ j1 t2) ◦ j2 t3) . . .) ◦ jk tk+1

The transferred structure map �̃t : H → t (H) is then given by

�̃t :=
∑

± t (p) ◦ (
(�tk+1 h) ◦ jk (. . . (�t3 h) ◦ j2 ((�t2 h) ◦ j1 �t1))

) ◦ i,
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where the notation (�t ′h) ◦ j �t means here the composite of�t with�t ′h at the j th
vertex of the tree t .

The extension of the map p : C → H into an ∞-morphism p∞ : C → T (H) is
given by the same kind of formula. On corollas, it is given by the map p, and for any
tree t ∈ Tree(≥2) with at least 2 vertices, it is given by

pt :=
∑

± t (p) ◦ (
(�tk+1 h) ◦ jk (. . . (�t3 h) ◦ j2 ((�t2 h) ◦ j1 �t1))

) ◦ h.

When C is a dg cooperad, these formulae are the exact duals to the ones given by
Granåker [31] for dg (pr)operads. The rest of the proof is straightforward, following
the ideas of loc. cit. ��

3.3 The homotopy cooperad structure on H(B BV)

Let us denote the graded S-module

H := T
c
(δ)⊕ S−1Grav

∗ ∼= H•(B BV) ∼= H•(qBV ¡
, dϕ).

Theorem 2.1 provides us with the following deformation retract in the category of
dg S-modules:

(qBV ¡ ∼= T c(δ)⊗ G¡, dϕ ∼= δ−1 ⊗ dψ)h:=δ⊗H
		 p ��

(H⊕ I, 0).
i

��

Corollary 3.4 The graded S-module H := T
c
(δ) ⊕ S−1Grav

∗
is endowed with a

homotopy cooperad structure and with an∞-quasi-isomorphism from the dg cooper-
ad BV ¡ = (qBV ¡, dϕ).

Proof This is a direct application of the Homotopy Transfer Theorem 3.3 for homot-
opy cooperads. ��

3.4 The minimal model of the operad BV

Definition 3.5 A minimal operad is a quasi-free dg operad (T (X), d)

� with a decomposable differential, that is d : X → T (≥2)(X), and
� such that the generating degree graded S-module admits a decomposition into

X = ⊕
k≥1 X (k) satisfying d(X (k+1)) ⊂ T (

⊕k
i=1 X (i)).

A minimal model of a dg operad P is the data of a minimal operad (T (X), d)

together with a quasi-isomorphism of dg operads (T (X), d)
∼ �� �� P , which is an

epimorphism. (This last condition is always satisfied when the differential of P is
trivial).
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The generalization of the notion of a minimal model from dg commutative algebras
[21,68] to dg operads was initiated by M. Markl in [53], see also [59, Section II.3.10].
Notice however that the aforementioned definition is strictly more general than loc.
cit. and includes the crucial case of dg associative algebras, since we do not require
that X (1) = 0 here. (A minimal operad in the sense of Markl is minimal in the present
sense: the extra grading is given by the arity grading X (k) := X (k + 1)). The present
definition faithfully follows Sullivan’s ideas: the increasing filtration Fk := ⊕k

i=1 X (i)

is the Sullivan triangulation assumption. The extra grading X (k) is called the syzygy
degree. Notice that any nonnegatively graded quasi-free operad with decomposable
differential is minimal; one only has to consider X (k) := Xk−1.

The following lemma compares the two approaches of Quillen (cofibrant) and Sul-
livan (minimal) of homotopical algebra.

Lemma 3.6 A minimal operad is cofibant in the model category given by V. Hinich
[34].

Proof This is a particular case of [61, Corollary 40]. ��
Since the definition is different, one needs a more general proof for the uniqueness

of minimal models.

Proposition 3.7 Let P be a dg operad. When it exists, the minimal model of the operad
P is unique up to isomorphism.

Proof We work with the model category structure on dg operads defined by V. Hinich
in [34]. Let M and M′ be two minimal models of the graded operad P . They are cofi-

brant operads by the preceding proposition. Since the quasi-isomorphism M′ ∼ �� �� P
is an epimorphism, it is a trivial fibration. By the lifting property of a model category,
there exists a quasi-isomorphism f : M = (T (X), d)

∼−→ M′ = (T (X ′), d ′) of
dg operads. It induces a quasi-isomorphism of dg S-modules between the space of
generators (X, dX )

∼−→ (X ′, dX ′) by [60, Proposition 43]. Since the differentials are
decomposable, we get dX = 0 and dX ′ = 0. So the aforementioned quasi-isomor-
phism is actually an isomorphism of graded S-modules X ∼= X ′. Therefore, the map
f is an isomorphism of dg operads. ��
Theorem 3.8 The data of Corollary 3.4 provide us with the minimal model of the
operad BV:

(
T (s−1(T

c
(δ)⊕ S−1Grav

∗
)), d

) ∼−→ BV,

where this quasi-isomorphism is defined by s−1δ �→ � and by s−1μ �→ •.

Proof First, the quasi-free operad
(
T (s−1(T

c
(δ)⊕S−1Grav

∗
)), d

)
is minimal since

it is nonnegatively graded with the decomposable differential coming from the trans-
ferred homotopy cooperad structure on H.

Then, the∞-quasi-isomorphism p∞ : qBV ¡ � H of Corollary 3.4 induces a mor-
phism of dg operads P : �BV ¡ → (T (s−1H), d). It is a quasi-isomorphism by the
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following argument. We consider the filtration F• on �BV ¡ and, respectively, F ′• on
(T (s−1H), d), given by the number of vertices of the underlying tree:

F−k :=
⊕

t∈Tree(≥k)

t (s−1qBV ¡
) and F ′−k :=

⊕

t∈Tree(≥k)

t (s−1H).

The first terms of the respective associated spectral sequences are (E0, d0) ∼=
(T (s−1qBV ¡

), d1) and (E ′0, d ′0) ∼= (T (s−1H), 0). The morphism of dg operads P
preserves the aforementioned filtrations. Moreover, it satisfies E0(P) = T (s−1 p). So
it is a quasi-isomorphism by the Künneth formula. The two filtrations are obviously
exhaustive. At fixed arity, they are bounded below: for a fixed degree, the number of
vertices is limited since the generator of arity one have degree greater or equal to 1.
We conclude the argument by means of the classical convergence theorem for spectral
sequences [58, Chapter 11].

Finally, we define a morphism of operads F : T (s−1H)→ BV by

s−1δ �→ �, s−1S−1Grav
∗
(2) ∼= s−1Im Hdψ(2) ∼= Ks−1μ→ K•,

and the rest being sent to 0. We now check the commutativity of the differentials on
the generators. It is straightforward on s−1δm .

The only elements of Im Hdψ whose image under d are trees with vertices labeled
only by μ and δ are in Im Hdψ(3). Indeed, let t be an element of Im Hdψ(n), which
is the sum of trees with k vertices labeled by μ and with n − 1 − k vertices labeled
by β. To get trees labeled only by μ and δ, one has to apply h = δ ⊗ H a total of
n − 1− k times. This introduces the n − 1− k power of δ and applies the coproduct
of the cooperad T c(δ)⊗ G¡ a total of n − k times. In the end, we get trees labeled by
n− 1 copies of μ and n− 1− k copies of δ split n− k times. To get totally split trees,
we should have n − k = 2n − 3− k, which implies n = 3.

The one-dimensional space Lie¡
1(3), generated by the Jacobi relation, lives in

Im dψ = Ker dψ . The image under d of the corresponding element in H Lie¡
1(3)

is a sum of 7 trees with 3 vertices (d3), whose image in the operad BV is the 7-term
relation

�(- • - • -) + (�(- • -) • -).(id+(123)+ (321))

+ (�(-) • - • -).(id+(123)+ (321)) = 0,

which is a consequence of the definition of the operad BV . The two-dimensional space
Com¡(3) is generated by (the suspension of) the associators of •. The composite Hdψ
acts on it as the identity. Its image under d is equal to d2, which produces the associa-
tivity relation in the operad BV . So the map F : (T (s−1H), d)→ BV is a morphism
of dg operads.
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It remains to show that the following diagram is commutative

�BV ¡ ∼ ��

∼
P 

����������� BV

(T (s−1H), d),

F

������������

to conclude that F is a quasi-isomorphism. It is enough to check it on the generators,
which is equivalent to the commutativity of the following diagram

(qBV ¡, dϕ)
κ ��

p∞
��

BV

(T (s−1H), d) �� �� (T (Ks−1δ ⊕Ks−1μ), 0).

F

��

It is easily checked on δ, μ, and β. Both maps vanish on the rest of qBV ¡ by the
same arguments as above: the only element which produces a non-trivial element in
T (Ks−1δ ⊕Ks−1μ) under p∞ is β, which concludes the proof. ��

We denote by dn : s−1H → T (s−1H)(n) the part of the differential d, which splits
elements into n pieces. The component d2 coincides with the decomposition map on
the cooperad S−1Hyc¡∗.

Proposition 3.9 The differential of the minimal model of the operad BV has the fol-
lowing shape:

d2 : s−1δm �→
∑

m1+m2=m

s−1δm1 ⊗ s−1δm2 and dn : s−1δm �→ 0, for n ≥ 3.

Up to the desuspension s−1, the image of an element of degree k of S−1Gravk
∗

under
the map dn is a sum of trees with n vertices labeled by elements of S−1Grav

∗
and of

T
c
(δ), such that the total degree of the elements from S−1Grav

∗
is equal to k−n+2

and such that the total weight, that is, the total power, of the elements coming from
T

c
(δ) is equal to n − 2. For instance, this induces

dn(S−1Gravk
∗
) = 0 for n > k + 2.

Proof By direct inspection of the various formulae. ��
We denote the minimal model of the operad BV by

BV∞ := (
T (s−1(T

c
(δ)⊕ S−1Grav

∗
)), d

)
.

Remarks � The results about TCFT, two-fold loop spaces, and the cyclic Deligne
conjecture, obtained in [24] using the cofibrance property of the Koszul resolution
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of the operad BV hold as well with this minimal model. The proof of the Lian–
Zuckerman conjecture with this minimal model requires further work and will be
the subject of another paper.

� The same method can be applied to [37] to make explicit the minimal model of
the inhomogeneous quadratic operad H0(SC), where the operad SC is Kontsevich
Swiss-cheese operad.

4 Skeletal homotopy BV-algebras

We call algebras over the minimal model of the operad BV skeletal homotopy BV-alge-
bras. We make this notion explicit and we give a description in terms of Maurer–Cartan
elements in a homotopy Lie algebra.

4.1 Second definition of homotopy BV-algebras

Definition 4.1 A skeletal homotopy Batalin–Vilkovisky algebra is an algebra over the
minimal operad BV∞.

Recall that a skeletal homotopy BV-algebra structure on a dg module (A, dA) is the
datum of a morphism of dg operads BV∞ → EndA. The differential ∂A of the operad
EndA is equal to ∂A( f ) := dA ◦ f − (−1)| f | ∑n

i=1 f ◦i dA. We denote μ̃ the image
of an element μ of BV∞ into EndA.

Proposition 4.2 A skeletal homotopy BV-algebra is a chain complex (A, dA) endowed
with operations

�m : A → A, of degree 2m − 1, for m ≥ 1,

and

μ̃ : A⊗n → A, of degree |μ| + n − 2, for any μ ∈ Grav
∗
(n),

such that

∂A(�
m) =

∑

m1+m2=m

�m1 ◦�m2 , for m ≥ 1,

and

∂A(μ̃) =
∑

± μ̃1 ◦i μ̃2 +
∑

t (̃ν1, . . . , ν̃k,�
m1 , . . . ,�ml

︸ ︷︷ ︸
≥1

),

where the first sum runs over the decomposition product of the cooperad structure
on Grav∗,�Grav∗(μ) = ∑

μ1 ◦i μ2, and where the second sum corresponds to
composites of at least three operations with at least one �m.



The minimal model

Proof This is a direct corollary of Proposition 3.9. ��
A BV-algebra is a skeletal homotopy BV-algebra with vanishing operations �m ,

for m ≥ 2 and μ̃, for μ ∈ Grav∗(n), n ≥ 3. The aforementioned quasi-isomorphism

P : BV∞ := �BV ¡ ∼−→ BV∞ := (T (s−1H), d)

shows how a skeletal homotopy BV-algebra carries a homotopy BV-algebra. Theo-
rem 4.7.4 of [34] implies the functor

P∗ : skeletal homotopy BV-algebras → homotopy BV-algebras

induces equivalences of the associated homotopy categories

Ho(homotopy BV-algebras) ∼= Ho(skeletal homotopy BV-algebras) ∼= Ho(BV-algebras).

Recall that a hypercommutative algebra [27,40] is a chain complex equipped with
a totally symmetric n-ary operation (x1, . . . , xn) of degree 2(n − 2) for any n ≥ 2,
which satisfy

∑

S1�S2={1,...,n}
((a, b, xS1), c, xS2) =

∑

S1�S2={1,...,n}
(−1)|c||xS1 |(a, (b, xS1 , c), xS2),

for any n ≥ 0. We denote the associated operad by HyperCom. It is isomorphic to the
homology operad of the Deligne–Mumford–Knudsen compactification of the mod-
uli space of genus 0 curves H•(M0,n+1). It is Koszul dual to the operad Gravity:
HyperCom! ∼= Grav.

Proposition 4.3 A skeletal homotopy BV-algebra with vanishing operators �m, for
m ≥ 1, is a homotopy hypercommutative algebra.

Proof This is a direct corollary of Proposition 4.2 together with the fact that the operad
HyperCom is Koszul, that is �(S−1Grav∗) ∼−→ HyperCom, see [27]. ��

In operadic terms, this means that

(
s−1T

c
(δ)

)
� BV∞ � HyperCom∞

is a short exact sequence of dg operads, where
(
s−1T

c
(δ)

)
is the ideal of BV∞ gen-

erated by s−1T
c
(δ). Equivalently, the short sequence of homotopy cooperads

T
c
(δ) � H � S−1Grav

∗ ∼= s H•(M0,n+1)

is exact, that is, H is an extension of the (non-unital) cooperads T
c
(δ) = H•(S1)¡ and

s H•(M0,n+1) = H•(M0,n+1)
¡.
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Theorem 4.4 The operad HyperCom is a representative of the homotopy quotient of
the operad BV by � in the homotopy category of dg operads.

Proof Let D∞ denotes T (s−1T
c
(δ)). This is the minimal resolution of the algebra

of dual numbers D. The pushout of I ← D∞ � BV∞ gives a representative of
the homotopy quotient of BV by � since D∞ � BV∞ is a cofibration and since
all the operads in the diagram are cofibrant, see [35, Chapter 15]. A map from this
diagram to an operad is the same thing as a map of the generators of HyperCom∞ that
respects the differentials; since the augmentation ideal of D∞ vanishes in any map
from this diagram, the differentials coincide with those of HyperCom∞. So the image
of HyperCom in the homotopy category of dg operads gives the homotopy quotient
of BV by �. ��

We refer the reader to [22,41,54] for further studies on this topic. This result on the
level of homology allows us to conjecture that the homotopy quotient of the framed
little disk by the circle is the compactified moduli space of genus zero stable curves
M0,n+1. This result was recently proved by the first author in [16].

Remark Since the generators of HyperCom∞ form a cooperad, one can define the
notion of ∞-morphism of homotopy hypercommutative algebras using [51, 10.2].
In the case of the operad BV∞, to define the notion of ∞-morphism of skeletal
homotopy BV-algebras, one has to refine the arguments, using the homotopy pull-
back of endomorphism operads for instance. With these definitions, Proposition 4.3
shows that the category of homotopy hypercommutative algebras with∞-morphisms
is a subcategory of the category of skeletal homotopy BV-algebras with∞-morphisms,
but not a full subcategory.

4.2 Maurer–Cartan interpretation

Recall from [60, Theorem 28] that the module of morphisms of S-modules

HomS(H,EndA) :=
∏

n≥1

HomSn (H(n),EndA(n))

carries an L∞-algebra structure, {�n}n≥1, given in terms of the homotopy cooperad
structure on H by the formula:

�n( f1, . . . , fn) :=
∑

t∈Tree(n)

σ∈Sn

± γEndA ◦ t ( fσ(1), . . . , fσ(n)) ◦�t ,

where γEndA is the composition map of operations of EndA and where the sign is the
Koszul sign due to the permutation of the graded elements { fi }.

The solutions to the (generalized) Maurer–Cartan equation

∑

n≥1

1

n! �n(α, . . . , α) = 0, with |α| = −1,
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in this convolution L∞-algebra are called the (generalized) twisting morphisms and
denoted by Tw∞(H,EndA).

Proposition 4.5 There is a natural bijection

Homdg op(BV∞,EndA) ∼= Tw∞(H,EndA).

Proof This follows from Theorem 54 of [60]. ��
This result gives an interpretation of skeletal homotopy BV-algebra structures in

term of Maurer–Cartan elements in an L∞-algebra.
We denote by (Im Hdψ)[k] the subspace of Im Hdψ spanned by the tree monomials

with k vertices labeled by μ.

Lemma 4.6 The isomorphism of Theorem 2.18 preserves the respective gradings:

S−1Grav∗(k) ∼= (Im Hdψ)
[k].

Proof By direct inspection. ��
This result allows us to organize the operations of a skeletal homotopy BV-alge-

bra into strata. The first stratum is described as follows. Since S−1Grav∗(1) ∼=
H Lie¡

1, in weight 1, is equal to the trivial representation of Sn , then we get
HomS(Grav∗(1),EndA) ∼= Hom(Sc(≥2)(A), A), up to suspension.

So a twisting element α vanishing outside the weight 1 part of Grav∗ actually
satisfies the truncated Maurer–Cartan equation ∂α+ 1

2�2(α, α) = 0. This corresponds
to the definition of a Frobenuis manifold in terms of a hypercommutative algebra
structure, see Y.I. Manin [52].

5 Homotopy bar–cobar adjunction

In this section, we introduce a new bar–cobar adjunction between the category of aug-
mented dg operads and the category of homotopy cooperads. This bar construction
relies on the notion of a cofree homotopy cooperad, which we make explicit in terms
of nested trees.

5.1 Cofree homotopy cooperad

We consider now the category of homotopy cooperads with (strict) morphisms.

Definition 5.1 A morphism f : (C, {�t })→ (D, {�′t }) of homotopy cooperads is a
morphism of graded S-modules C → D, which commutes with the structure maps.

A morphism of homotopy cooperads is an ∞-morphism with vanishing compo-
nents C → T (D)(n) for n ≥ 2. The associated category is denoted by coop∞. There
is a forgetful functor

U : coop∞ → dg-S-Mod, (C, {�t }) �→ (C, dC),

which retains only the underlying dg S-module structure of a homotopy cooperad.
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Fig. 2 Example of a nested tree

Definition 5.2 A nested tree is a tree t ∈ Tree\{|} equipped with a set of subsets of
vertices {Ti }i , called nests, such that:

� each nest Ti corresponds to a subtree of the tree t ,
� each nest Ti has at least two elements,
� if Ti ∩ Tj �= ∅, then Ti ⊂ Tj or Tj ⊂ Ti , and
� the full subset corresponding to the tree t is a nest as long as t has more than one

vertex.

The associated category is denoted by NestedTree. See Fig. 2 for an example.

We consider the following total order on nests. The innermost nests are the largest
ones. We compare them using their minimal element. Then, we forget about these
nests and proceed in the same way until reaching the full nest, which is the minimal
nest. In the example of Fig. 2, it gives

T1 = {1, 2, 3, 4, 5, 6, 7, 8}<T2 = {1, 2, 3}<T3 = {2, 3}<T4 = {4, 8}<T5 = {6, 7}.

To any dg S-module (V, dV ), we associate the S-module spanned by nested trees
with vertices labeled by the elements of V . It is denoted by

NT (V ) :=
⊕

t∈NestedTree

t (V ).

Using the order on vertices given in Sect. 2.1 and the above order on nests, we write
a simple element of NT (V ) by

t (T1, T2, . . . , TN ; v1, v2, . . . , vn).

Its homological degree is equal to
∑n

k=1 |vk | + N − n+ 1. So the degree of a labeled
corolla t (v) is equal to |v|.
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Two nests Tj � Ti are called consecutive if Tj ⊂ Tk ⊂ Ti implies either Tk = Ti

or Tk = Tj . We define a differential dN by

dN (t) :=
∑

consecutive pairs Tj �Ti

± t (T1, . . . , Ti , . . . , T̂ j , . . . , TN ; v1, . . . , vn)

where the notation T̂i means that we forget the nest Ti . The sign is given as usual by
the Koszul rule as follows. To every nest Ti , we associate the tree ti obtained from the
subtree of t defined by Ti after contracting all its proper subnests. Each vertex thereby
obtained is labeled by the least element of the contracted nest. The degree of a nest
Ti is equal to |Ti | := 2 − #ti , where #ti stands for the number of vertices of the tree
ti . (In the example of Fig. 2, one has |T1| = −2.) If Tj � Ti , then i < j . So we first
permute Tj with the nests Tj−1, . . . , Ti+1 to bring it next to Ti . Then, we apply the
differential to the pair (Ti , Tj ), that is we forget about the nest Tj . This comes with a
sign equal to (−1) to the power #ti + #t j + k + des(t j , ti ), where k is the number of
vertices of ti smaller than the smallest vertex of t j and where des(t j , ti ) is the number
of descents, that is the number of pairs (a, b) of vertices of t j and ti , respectively, such
that a > b. But the differential has to “jump over” the nests T1, . . . , Ti−1. In the end,
it produces the sign (−1)ε, with

ε := |T1| + · · · + |Ti−1| + |Tj |(|Ti+1| + · · · + |Tj−1|)+ #ti + #t j + k + des(t j , ti ).

We consider the differential on NT (V ) given by the sum over all the vertices of
the image of the labeling element of V under dV . By a slight abuse of notation, it is
still denoted dV :

dV (t) :=
n∑

i=1

(−1)N−n+1+|v1|+···+|vi−1| t (T1, . . . , TN ; v1, . . . , dV (vi ), . . . , vn).

We consider maps {�t : NT (V ) → t (NT (V ))}t∈Tree(≥2) defined as follows. Let τ
be a simple element of NT (V ). We consider the aforementioned tree t1 associated
with the full nest T1, which is obtained by contracting all the subtrees corresponding
to the interior nests. If t �= t1, then �t (τ ) := 0. Otherwise, if t = t1, the image of τ
under�t is equal to the tree t1 with vertices labeled by the nested trees obtained from
τ by forgetting its full nest.

Proposition 5.3 For any dg S-module (V, dV ), the data (NT (V ), dV + dN ,
{�t }t∈Tree(2) ) form a homotopy cooperad. This defines a functor NT : dg-S-Mod →
coop∞, which is right adjoint to the forgetful functor U : coop∞ → dg-S-Mod.

Proof The three first points of the equivalent definition of a homotopy cooperad given
in Proposition 3.2 are trivially satisfied by NT (V ). The last point is straightforward
to check.

Let C be a homotopy cooperad. We consider the morphism of S-modules �iter :
C → NT (C) defined as follows. For any tree t , the extra data given by the nests
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t (T1, . . . , TN ) is equivalent to the decomposition of t into successive substitutions

t = (((t1 ◦i1 t2) ◦i2 t3) . . .) ◦iN−1 tN

where the trees {ti } are associated with the nests {Ti } as defined above. The image of
the map �iter on a nested tree t (T1, . . . , TN ) is defined by

�iter
t := �tN ◦iN−1 (. . . (�t3 ◦i2 (�t2 ◦i1 �t1))).

Let V be a dg S-module. To any morphism of dg S-modules f : U(C) → V, we
associate a morphism F : C → NT (V ) defined by the composite

F := C �iter−−→ NT (C) NT ( f )−−−−→ NT (V ).

The map F is a morphism of homotopy cooperads, which satisfies the following
universal property

V NT (V )����

C,
f



���������
∃! F

��

which concludes the proof. ��
Hence, the homotopy cooperad NT (V ) is called the cofree homotopy cooperad

on V .

Remarks � The endofunctor U ◦NT in dg-S-Mod can be endowed with a como-
nad structure: decompose a nested tree into all the possible ways of seeing it as
a nested tree of nested subtrees. Proposition 5.3 and its proof are equivalent to
saying that the category of homotopy cooperads is the category of coalgebras over
the comonad U ◦NT .

� Recall that the notion of an A∞-algebra can be encoded geometrically by the
Stasheff polytopes, also called the associahedra. In the same way, the notion of a
homotopy cooperad can be encoded by a family of polytopes, defined by by means
of graph associahedra labelled by nested trees as introduced by M.P. Carr and S.L.
Devadoss in [13,20]. Notice that this notion generalizes the nested sets of C. De
Concini and C. Procesi [18]. For instance, the chain subcomplex of nested trees
with fixed underlying tree t should be isomorphic to the cochain complex

(NT t , dN ) ∼= C•(graph associahedron associated to t)

This surely deserves further study, which we leave to a future work or to the
interested reader.
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5.2 Homotopy bar–cobar adjunction

Definition 5.4 Let (P, γ, dP ) be an augmented dg operad. The underlying S-module
of the bar construction BπP is given by the cofree homotopy cooperad NT (sP) on
the suspension of the augmentation ideal of P . We define the differential dγ by

dγ (t (T1, . . . , TN , sμ1, . . . , sμn))

:=
∑

innermost Ti={i1,...,ik }
± t (T1, . . . , T̂i , . . . , TN ; sμ1, . . . , sγ (ti (μi1 , . . . , μik )), . . . , ŝμi2 , . . . , ŝμik , . . . , sμn).

We consider

BπP := (NT (sP), dP + dN + dγ , {�t }t∈Tree(≥2) ).

Proposition 5.5 The data (NT (sP), dP+dN +dγ , {�t }t∈Tree(≥2) ) form a homotopy
cooperad.

Proof Checking this is a straightforward calculation. ��

Definition 5.6 The cobar construction �πC of a homotopy cooperad C is the aug-
mented dg operad �πC := (T (s−1C), d).

Theorem 5.7 There are natural bijections

Homdg op(�πC,P) ∼= Tw∞(C,P) ∼= Homcoop∞(C,BπP).

In plain words, the pair of functors �π and Bπ is adjoint and this adjunction is
represented by the twisting morphism bifunctor.

Proof The first natural bijection is given by [60, Theorem 54]. The second one is
described as follows. Proposition 5.3 already provides us with a natural bijection

Homcoop∞
(
C, (NT (sP), dN , {�t }t∈Tree(≥2) )

) ∼= HomS(C, sP), F �→ f.

Under this bijection, a morphism of S-modules f : C → sP induces a morphism of
homotopy cooperads F : C → BπP if and only if the following diagram commutes

C F ��

dC
��

NT (sP)
dP+dγ �� NT (sP)

����
C

f �� sP.
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This last condition is equivalent to f dC = dP f +∑
t∈Tree(≥2) γ ◦ t ( f ) ◦�t , which

is exactly the Maurer–Cartan equation

∑

n≥1

1

n! �n(s
−1 f, . . . , s−1 f ) = 0

satisfied by s−1 f in the convolution L∞-algebra HomS(C,P). ��
Remark The universal operadic twisting morphism π : B(S As) → S As induces a
pair of adjoint functors Bπ and �π between the category of dg associative algebras
and the category of homotopy coalgebras by [30], see also [51, Chapter 11]. One can
prove that it coincides with the restriction of the above bar and cobar constructions
Bπ and �π to S-modules concentrated in arity one, which explains the notation.

6 Homotopy transfer theorem

In this section, we prove the homotopy transfer theorem and the rectification theorem
for skeletal homotopy BV-algebras.

6.1 Universal morphism of homotopy cooperads

Let (H, dH ) be a homotopy retract of a chain complex (A, dA):

(A, dA)h
�� p ��

(H, dH ).
i

��

Recall that the homotopy transfer theorem for homotopy algebras over a Koszul
operad of [24, Appendix B.3] and of [51, Section 10.3] relies on the classical bar–cobar
adjunction

Homdg op(�P ¡,EndA) ∼= Tw(P ¡,EndA) ∼= Homdg coop(P ¡,B EndA)

and on the quasi-isomorphism of dg cooperads

� : B EndA
∼−→ B EndH

introduced by P. Van der Laan in [71], see also [51, Section 10.3.3]. Such a map is
characterized by its projection B EndA = T c(sEndA) → sEndH onto the space of
generators. The Van der Laan map� is explicitly given by labeling the leaves of every
tree by the map i , the root by the map p, and the interior edges by the homotopy h.

We consider the map G(EndA) : B EndA → BπEndA defined, for any t ∈ Tree,
by

t (s fn, . . . , s f1)∈T c(sEndA) �→
∑

± t (T1, . . . , Tn−1; s fn, . . . , s f1)∈NT (sEndA),
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where the sum runs over all the maximal nestings, that is the ones with a maxi-
mal number of nests. Since the bar construction B EndA is a cooperad, it carries a
homotopy cooperad structure; the map G(EndA) is a quasi-isomorphism of homotopy
cooperads.

Proposition 6.1 Let (H, dH ) be a homotopy retract of a chain complex (A, dA). There
exists a quasi-isomorphism of homotopy cooperads

� : BπEndA
∼−→ BπEndH

such that the following diagram, made up of quasi-isomorphisms of homotopy coo-
perads, is commutative,

B EndA
G(EndA) ��

�

��

BπEndA

�

��
B EndH

G(EndH ) �� BπEndH .

Proof Let us first give the proof in arity 1; so here EndA = Hom(A, A). We consider
the quasi-isomorphism of cooperads G : Asc ∼−→ B(S As). The map G(EndA) is
equal to

G(EndA) = G ◦ id : Asc ◦κ ′ S As ◦S As sEndA
∼−→ B(S As) ◦π S As ◦S As sEndA,

where κ ′ := Sκ : Asc = S As¡ → S As is the Koszul morphism coming from the
Koszul duality of the operad As. By the Comparison Lemma [51, Lemma 6.4.13], the
quasi-isomorphism G induces a quasi-isomorphism

id ◦G ◦ id : S As ◦κ ′ Asc ◦κ ′ S As
∼−→ S As ◦π B(S As) ◦π S As

of quasi-free left S As-modules (or equivalently of quasi-free anti-associative algebras
in the category of S-modules). By the left lifting property, it admits a homotopy inverse
quasi-isomorphism

F : S As ◦π B(S As) ◦π S As
∼−→ S As ◦κ ′ Asc ◦κ ′ S As.

Under the bar–cobar adjunction, the quasi-isomorphism of cooperads� is equivalent
to the quasi-isomorphism of operads �̃ : �B EndA

∼−→ EndH . Finally, we define the
morphism of homotopy cooperads � : BπEndA

∼−→ BπEndH to be the map corre-
sponding to the quasi-isomorphism of operads

�πBπEndA
F◦S As sEndA−−−−−−−→ �B EndA

�̃−→ EndH

under the homotopy bar–cobar adjunction.
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One extends these arguments to higher arity by using the colored Koszul operad
of [71], which encodes operads, instead of the Koszul (non-symmetric) operad As,
which encodes associative algebras.

By definition, the following diagram is commutative

BπEndA
F◦S As sEndA ��

�

��
�B EndA

�̃ �� EndH

B EndA ,

G(EndA)

��

��

�����������������
�

��

which concludes the proof. ��

The morphism of homotopy cooperads � : BπEndA
∼−→ BπEndH is completely

characterized by its projection onto the space of cogenerators, which we denote by
φ : NT (sEndA)→ sEndH .

6.2 Homotopy transfer theorem for skeletal homotopy BV-algebras

Theorem 6.2 Let A be a skeletal homotopy BV-algebra and let (H, dH ) be a homotopy
retract of the chain complex (A, dA):

(A, dA)h
�� p ��

(H, dH ).
i

��

There is a skeletal homotopy BV-algebra on (H, dH ), which extends the transferred
operations pμ̃i⊗n, for any μ ∈ H. If we denote by α ∈ Tw∞(H,EndA) the skeletal
homotopy BV-algebra structure on A, such a transferred skeletal homotopy BV-alge-
bra structure on H is given by

H �iter−−→ NT (H) NT (sα)−−−−−→ NT (sEndA)
s−1φ−−−→ EndH .

Proof We apply the bar–cobar adjunction of Theorem 5.7 to

Homdg op(�πH,EndA) ∼= Tw∞(H,EndA) ∼= Homcoop∞(H,BπEndA).

So a skeletal homotopy BV-algebra structure α : H → EndA on A is equivalently
given by a morphism of homotopy cooperads Fα : H → BπEndA. The transferred
skeletal homotopy BV-algebra on H is then obtained by pushing along the morphism
�:

� ◦ Fα : H → BπEndA → BπEndH
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which is equivalent to the following twisting morphism

H �iter−−→ NT (H) NT (sα)−−−−−→ NT (sEndA)
s−1φ−−−→ EndH .

��
Remark We proved the homotopy transfer theorem for homotopy BV-algebras, that
is, for the Koszul model BV∞ of the operad BV in [24, Theorem 33]. Since the
S-module of generators of the minimal model BV∞ forms a homotopy cooperad and
not a cooperad, we cannot apply the arguments of [24, Appendix B.3] and of [51,
Section 10.3] based on the classical bar–cobar adjunction. Neither can we use the
homological perturbation lemma of [6]. Notice that the existence of the homotopy
transferred structure follows from model category arguments by [8,67]. But we need
here an explicit formula for the application to Frobenius manifolds in the next section.

Needless to say that the homotopy transfer theorem 6.2 holds for any algebras over a
quasi-free operad generated by a homotopy cooperad. In the case of a quasi-free oper-
ad generated by a dg cooperad, Koszul models, or bar–cobar resolutions for instance,
we recover the formulae of [24] and of [51, Chapter 10] as follows.

Proposition 6.3 Let P be a Koszul operad, eventually inhomogeneous. Let A be a
homotopy P-algebra and let (H, dH ) be a homotopy retract of the chain complex
(A, dA).

The transferred homotopy P-algebra structure on H given by [24, Theorem 47]
and by [51, Theorem 10.3.6] is equal to the transferred homotopy P-algebra structure
on H given by Theorem 6.2.

Proof The proof relies on the following diagram being commutative:

Tw(P ¡,EndA)
∼= �� Homdg coop(P ¡,B EndA)

G(EndA)∗
��

�∗ �� Homdg coop(P ¡,B EndH )

G(EndH )∗
��

∼= �� Tw(P ¡,EndH )

Tw∞(P
¡
,EndA)

∼= �� Homcoop∞ (P
¡
,BπEndA)

�∗ �� Homcoop∞ (P
¡
,BπEndH )

∼= �� Tw∞(P
¡
,EndH ).

��
The two homotopy transfer theorems for homotopy BV-algebras and skele-

tal homotopy BV-algebras commute under the functor P∗ : skeletal homotopy
BV-algebras → homotopy BV-algebras as follows.

Proposition 6.4 Let (H, dH ) be a homotopy retract of a chain complex (A, dA).
Consider a skeletal homotopy BV-algebra structure on A. The associated homotopy
BV-algebra structure P∗(A) on A transfers to a homotopy BV-algebra to H by The-
orem 33 of [24]. This homotopy BV-algebra structure on H is equal to the homotopy
BV-algebra associated, under P, with the transferred skeletal BV-algebra given by
Theorem 6.2.
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Proof The proof relies on the commutativity of the following diagram:

Homdg op(�πH,EndA)

∼=
��

P∗

��

Homdg op(�πH,EndH )

P∗

��

Homcoop∞ (H,BπEndA)
�∗ ��

��

��

Homcoop∞ (H,BπEndH )��

��

∼=

��

Hom∞-coop∞ (H,BπEndA)
�∗ ��

p∗∞
��

Hom∞-coop∞ (H,BπEndH )

p∗∞
��

Hom∞-coop∞ (BV¡
,BπEndA)

�∗ �� Hom∞-coop∞ (BV¡
,BπEndH )

Homcoop∞ (BV ¡
,BπEndA)

��

��

�∗ ��
Homcoop∞ (BV ¡

,BπEndH )

��

��

Homdg coop(BV¡ ,B EndA)

��
G(EndA)∗

��

�∗ ��
Homdg coop(BV¡ ,B EndH )

∼=
��

��
G(EndH )∗

��

Homdg op(�BV¡,EndA)

∼=
��

Homdg op(�BV¡,EndH ).

��

6.3 Rectification theorem for skeletal homotopy BV-algebras

We proved in [24, Proposition 32] the following rectification theorem: for any
homotopy BV-algebra A, there is an∞-quasi-isomorphism A

∼� �κBιA of homotopy
BV-algebras, where �κBιA := BV(BV ¡(A)) is a dg BV-algebra. We refer to loc. cit.
and to [51, Chapter 11] for more details.

To every skeletal homotopy BV-algebra H , we define its rectified dg BV-algebra
by

Rec(H) := �κBιP
∗(H).

Theorem 6.5 Let (H, dH ) be a homotopy retract of a chain complex (A, dA). We
consider a dg BV-algebra structure on A together with the transferred skeletal homot-
opy BV-algebra on H given by Theorem 6.2. The dg BV-algebra Rec(H) is homotopy
equivalent to A in the category of dg BV-algebras.

Proof By Proposition 6.4, the homotopy BV-algebra structure P∗(H) is equal to the
one produced by the homotopy transfer theorem for homotopy BV-algebras [24, The-
orem 33]. Hence, there exists an ∞-quasi-isomorphism of homotopy BV-algebras
A

∼� P∗(H) by Theorem 10.4.7 of [51]. The rectification theorem for homotopy
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BV-algebras provides us with an ∞-quasi-isomorphism P∗(H) ∼� �κBιP∗(H). Fi-
nally, the two dg BV-algebras

A
∼←− • ∼−→ • · · · • ∼←− • ∼−→ �κBιP

∗(H) = Rec(H)

are linked by a zigzag of quasi-isomorphism of dg BV-algebras by Theorem 11.4.14
of [51]. ��

This theorem gives homotopy control of the transferred structure. It plays a key
role in the interpretation of the main result in the next section.

7 From BV-algebras to homotopy Frobenius manifolds

We apply the homotopy transfer theorem to endow the underlying homology of a dg
BV-algebra with Massey products. When the induced action of� is trivial, we recover
and extend up to homotopy the Barannikov–Kontsevich–Manin Frobenius manifold
structure. Applications of this general result are given in Poisson geometry and Lie
algebra cohomology and to the Mirror Symmetry conjecture.

7.1 Massey products

Working over a field K, one can always write the underlying homology (H•(A, dA), 0)
of a dg BV-algebra A as a deformation retract of (A, dA).

Definition 7.1 We call Massey–Batalin–Vilkovisky products the operations compos-
ing the transferred skeletal homotopy BV-algebra structure on the homology H(A) of
a dg BV-algebra given by the homotopy transfer theorem 6.2.

Recall that the homology of any dg commutative (associative) algebra carries partial
Massey products, see [55]. For instance, the partial Massey triple-product 〈x, y, z〉 is
defined for three homology classes x, y, z ∈ H(A) such that xy = 0 = yz as follows.
Let x̄, ȳ, z̄ ∈ A be cycles which represent x, y, and z, respectively, and let a, b ∈ A
such that x̄ ȳ = da, ȳ z̄ = db. Then, the chain az̄ − (−1)|x̄ | x̄b is a cycle. So it defines
an element 〈x, y, z〉 in H(A)/(x H(A)+ H(A)z). When the partial Massey products
are defined, they are given by the same formulae as the (uniform) Massey products, see
[51, Sections 9.4 and 10.3]. For dg Lie algebras, partial Massey products were defined
by V.S. Retakh in [66]. The present Massey–Batalin–Vilkovisky products generalize
both the partial commutative and Lie Massey products.

Theorem 6.5 shows that the data of the Massey products allow one to reconstruct
the homotopy type of the initial dg BV-algebra.

7.2 Trivialization of the action of �

Proposition 7.2 Let A be a dg BV-algebra. If there exists a homotopy retract to the
homology, which satisfies p(�h)m−1�i = 0, for m ≥ 1, then the transferred skeletal
homotopy BV-algebra on homology forms a homotopy hypercommutative algebra.
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Proof The transferred operations �m under Theorem 6.2 are given by �m :=
p(�h)m−1�i . Then, one concludes with Proposition 4.3. ��

A mixed chain complex is a graded vector space A equipped with two anti-com-
muting square-zero operators d and � of respective degree −1 and 1.

Definition 7.3 Let (A, d,�) be a mixed chain complex. Hodge-to-de Rham degen-
eration data consists of a deformation retract

(A, d)h
�� p ��

(H(A), 0),
i

��

such that

p(�h)m−1�i = 0

for m ≥ 1.

Up to regrading, a bicomplex is a mixed complex. If we denote its differentials
by d1 := d and d2 := �, then the existence of a Hodge-to-de Rham degenera-
tion data ensures that the associated spectral sequence degenerates at rank 1 [51,
Section 10.3.17], like the classical Hodge-to-de Rham spectral sequence of compact
Kähler manifods [64, Section 2.3].

Definition 7.4 The compatibility relation

Ker d ∩ Ker� ∩ (Im d + Im �) = Im d� = Im �d

between the operators d and � of a mixed chain complex is called the d�-condition.

Lemma 7.5 [21, Proposition 5.17] A mixed chain complex (A•, d,�) satisfies the
d�-condition if and only if there exists two sub-graded modules H• and S• of A• such
that

An ∼= Hn ⊕ Sn ⊕ d Sn+1 ⊕�Sn−1 ⊕ d�Sn

where dHn = 0,�Hn = 0, and where the maps of the following commutative diagram
are isomorphisms

Sn
�

∼= ��

∼=d
��

�Sn

∼=d
��

d Sn
∼=
−�

�� d�Sn .

A dg BV-algebra, which satisfies this condition, is called a Hodge dg BV-algebra
by A. Losev and S. Shadrin in [50]. (In this case, the obvious homotopy h, which
contracts A to its homology H , is such that [h,�] = h�+�h = 0.)
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Definition 7.6 [62] A mixed chain complex is called semi-classical if every homology
class has a representative in the kernel of �.

Proposition 7.7 Let (A, dA,�) be a mixed chain. The following implications hold

(d�-condition) �⇒ (semi-classical) �⇒ (Hodge-to-de Rham degeneration data).

Proof The first assertion is given by Lemma 7.5. To prove the second one, it is enough
to write the homology H(A) as a deformation retract of A, with representatives in
Ker�. In this case, �i = 0, which concludes the proof. ��

The existence of Hodge-to-de Rham degeneration data is therefore the most general
condition that naturally supports this notion of the trivialization of the action of � on
the homology of a dg BV-algebra.

Examples � Let M be a compact Kähler manifold, with complex structure denoted
by J . The space of differential forms (�•(M), dDR,� := JdDR J ) forms a dg
BV-algebra which satisfies the d�-condition, see P. Deligne, P. Griffiths, J. Mor-
gan and D. Sullivan [21]. (Notice that here the operator � has order less than
1).

� Let M be a Calabi–Yau manifold. The Dolbeault complex of anti-holomor-
phic differential forms with coefficients into holomorphic polyvector fields
(�(M,∧•T̄ ∗M ⊗ ∧•TM), d := ∂̄,∧,� := div, 〈 , 〉S) is a dg BV-algebra sat-
isfying the d�-condition, see S. Barannikov and M. Kontsevich [7]. This is an
extension, from vector fields to polyvector fields, of the Kodaira–Spencer dg Lie
algebra [45,46], which encodes the complex structures of a manifold.

� Let (M, w) be a Poisson manifold. The space of differential forms (�•(M), dDR,

∧,� := [iw, dDR]) form a dg BV-algebra, see [9,44]. When (M, ω) is a compact
symplectic manifold of dimension n, O. Mathieu proved in [56] that M satisfies
the hard Lefschetz condition, i.e. the cup product [ωk] : Hn−k(M)→ Hn+k(M)
is an isomorphism, for k ≤ n/2, if and only if this dg BV-algebra is semi-classical.
S. Merkulov further proved that this is equivalent to the d�-condition in [57]. This
is the case when M is a Kähler manifold, see [9].

� Let V be finite dimensional vector space with basis {vi }1≤i≤n . We consider the
free commutative algebra A := S(V ⊕ s−1V ∗) of functions on the cotangent bun-
dle of V ∗, equipped with the order 2 and degree 1 operator � := ∑n

i=1
∂
∂vi

∂
∂v∗i

.

These data define the prototypical example of BV-algebras, see [10]. Any element
w of degree −2 such that �(w) = 〈w,w〉 = 0 gives rise to a dg BV-algebra
(A, dw := 〈w,−〉, •,�, 〈 , 〉). One can find dg BV-algebras of this type equipped
with Hodge-to-de Rham degeneration data but which does not satisfy the d�-con-
dition, see [62, Example 9] and [69, Section 3.2].

7.3 Homotopy Frobenius manifold

Theorem 7.8 Let (A, d, •,�, 〈 , 〉) be a dg BV-algebra with Hodge-to-de Rham
degeneration data.



G.C. Drummond-Cole, B. Vallette

The underlying homology groups H(A, d) carry a homotopy hypercommutative
algebra structure, which extends the hypercommutative algebras of M. Kontsevich
and S. Barannikov [7], Y.I. Manin [52], A. Losev and S. Shadrin [50], and J.-S. Park
[62], and such that the rectified dg BV-algebra Rec(H(A)) is homotopy equivalent to
A in the category of dg BV-algebras.

Proof The transferred skeletal homotopy BV-algebra structure on homology given by
Theorem 6.2 forms a homotopy hypercommutative algebra by Proposition 7.2.

We make explicit the various constructions of [7] as follows. When a dg BV-algebra
satisfies the d�-condition, there is a zigzag of quasi-isomorphisms of dg Lie algebras
(smooth formality)

(A, d, 〈 , 〉) (Ker�, d, 〈 , 〉)∼�� ∼ �� (H•(A,�) ∼= (H•(A, d)), 0, 0) .

By [51, Theorem 10.4.7], there exists an ∞-quasi-isomorphism of dg Lie algebras
H

∼� Ker�, explicitly given by sums of binary trees with vertices labeled by • and
with edges and root labeled by h�. Normalizing each sum of trees of arity n by a
factor 1

n! , this provides a solution γ to the Maurer–Cartan equation in the dg Lie alge-
bra Hom(S̄c(H),Ker�), where S̄c stands for the non-counital cofree cocommutative
coalgebra. The twisted data (Hom(S̄c(H), A), dγ := d + 〈γ,−〉, •,�, 〈 , 〉) form a
dg BV-algebra over the ring of formal power series Ŝ(H∗) without constant term. Its
homology with respect to dγ is equal to Hom(S̄c(H), H) ∼= Ŝ(H∗)⊗ H . The trans-
ferred commutative product on homology Ŝ(H∗) ⊗ H provides us with the desired
hypercommutative algebra structure on H , see [52, Chapters 0 and 3] for the various
equivalent definitions of a formal Frobenius manifold. Tracing through the aforemen-
tioned constructions, one can see that the associated potential is given by the same
kind of sums of labeled trees but with a normalizing coefficient given by the number
of automorphisms of the trees. We recover the explicit formula of [50]. Manin [52]
and Park [62] use obstruction theory, for which choices can be made to produce the
above structure.

The first stratum of operations composing the transferred homotopy hypercommu-
tative algebra is equal to the tree formulae of Losev–Shadrin as follows. Lemma 4.6
shows that the weight 1 part of Grav∗ is isomorphic to H Lie¡

1. For any n ≥ 2, the space
Lie¡

1(n) is one dimension and generated by the element, which in T c(β) is the sum of
all binary tree with vertices labeled by β. The image of such trees under the formula of
Theorem 6.2 is made up of binary trees with each vertex labeled by •, one leaf (input or
output) of each vertex labeled by�, and with all edges labeled by h. (One can see that
the image of a maximal nesting under the map� is given by labeling all interior edges
by h.) Under the d�-condition, the relations p� = �i = h�+�h = �2 = 0 make
many trees cancel and this produces the aforementioned Losev–Shadrin formulae.

The last assertion is a direct corollary of Theorem 6.5. ��

Remarks � First, this theorem conceptually explains the result of Barannikov–
Kontsevich, Manin, Losev–Shadrin, and Park in terms of the homotopy transfer
theorem, thereby answering a question asked by the referee of [62, Section 5].
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� Since there is no differential on homology, the first stratum of operations of this ho-
motopy hypercommutative algebra satisfies the relations of an hypercommutative
algebra. So Theorem 7.8 proves the existence of such a structure under a weaker
condition (Hodge-to-de Rham degeneration data) than in [7,52,62] (d�-condition,
semiclassical).

� Unlike the framework of Frobenius manifolds, we do not work here with cyclic
unital BV-algebras. First, a cyclic BV-algebra is equipped with a non-degenerate
bilinear form which forces its dimension to be finite. The present method works in
the infinite dimensional case. Then, the operad which encodes BV-algebras with
unit is not augmented, so it does not admit a minimal model. To make a cofibrant
replacement explicit, one would need to use the more general Koszul duality theory
developed by J. Hirsh and J. Millès in [38].

� Finally, Theorem 7.8 provides higher structure on homology, which is shown to be
necessary to recover the homotopy type of the original dg BV-algebra and not to
lose any homotopy data when passing to homology, see also Example 7.4 below.

In geometrical terms, we have lifted the action of the Deligne–Mumford–Knudsen
moduli space of genus 0 curves to an action of the open moduli space of genus 0 curves
as follows.

H•+1(M0,n+1)
α ��

κ

��

EndH(A)

H•(M0,n+1).

f

��������������

The map f is the morphism of operads given by [7,50,52,62]. The map κ is the
twisting Koszul morphism from the cooperad H•+1(M0,n+1) given in [27]. It sends
the cohomological class corresponding to H0(M0,n+1) to the fundamental class of
M0,n+1. The construction given in Theorem 7.8 corresponds to the map α, which is
a twisting morphism from the cooperad H•+1(M0,n+1). The map κ vanishes outside
the top dimensional classes and the restriction of the map α to these top dimensional
classes is equal to the composite f ◦ κ . Such a morphism of operads f defines the
genus zero part of what Kontsevich–Manin call a Cohomological Field Theory in [40].

Definition 7.9 A genus 0 homotopy cohomological field theory is a graded vector
space H equipped with an operadic twisting morphism H•+1(M0,n+1)→ EndH .

7.4 An example

Let us consider the following non-unital dg commutative algebra A generated by the
5 generators

x3, y3, z7, u7, and v8,
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where the subscript indicates the homological degree, satisfying the relations

A := S̄(x, y, z, u, v)/(xu, yu, zu, xv, yv, zv, uv, v2).

(The product by u and by v is equal to zero.) The differential map is defined on the
generators by

dz := xy, dv := u,

and by 0 otherwise.
The algebra A is finite dimensional and spanned by the 9 elements: x, y, xy, z, u,

v, xz, yz, xyz. Its underlying homology H•(A, d) is five dimensional and spanned
by the classes of: x, y, xz, yz, xyz.

We define the degree +1 operator � on the aforementioned elements by

�(xy) := u, �(z) := −v

and by 0 otherwise.

Proposition 7.10 The dg commutative algebra (A, d,�) is a dg BV-algebra, which
satisfies the d�-condition.

Proof It is straightforward to see that � commutes with d that it has order less than
2 (but not less than 1), and that it squares to 0.

A decomposition such as the one of Lemma 7.5 is given by

H• := Kx ⊕Ky ⊕Kxz ⊕Kyz ⊕Kxyz and S• = Kz.

Therefore, this dg BV-algebra satisfies the d�-condition. ��
The first Massey product in the second stratum of the transferred homotopy hy-

percommutative algebra structure is the first homotopy in the associated C∞-algebra
structure, since S−1Grav∗(2)(3) ∼= Com¡(3). In the present example, this product is
not trivial since it is equal to−yz on the elements x, y, y. So this provides an example
of a dg BV-algebra, which satisfies the d�-condition, the strongest condition, and
for which the Barannikov–Kontsevich–Manin structure of a Frobenius manifold on
homology is not enough to recover the original homotopy type of the dg BV-algebra.

On the other hand, computations performed in [17] show that for the BV-algebra
obtained by the Barannikov–Kontsevich procedure from a low dimensional Calabi–
Yau manifold, the higher homotopy Frobenius manifold structure on the Dolbeault
cohomology of the manifold does indeed contain all the information of the homotopy
type of the BV-algebra.

7.5 Application to Poisson geometry and Lie algebra cohomology

Let M be an n-dimensional manifold. We consider the Gerstenhaber algebra of poly-
vector fields A := �(M,�•TM) on M, equipped with the Schouten–Nijenhuis
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bracket 〈 , 〉SN . Recall from J.-L. Koszul [44, Proposition (2.3)] that any torsion-free
connection ∇ on TM, which induces a flat connection on �nTM, gives rise to a
square-zero order 2 operator D∇ making (A,∧, D∇ , 〈 , 〉SN ) into a BV-algebra. For
instance, this is the case when M is orientable with volume form � or when M is a
Riemannian manifold with the Levi-Civita connection.

Moreover, if M carries a Poisson structure, that is, w ∈ �(M,�2TM) satisfying
〈w,w〉SN = 0, such that the infinitesimal automorphism D∇(w) = 0 vanishes, then
the twisted differential dw := 〈w,−〉SN induces a dg BV-algebra

(�(M,�•TM), dw,∧, D∇ , 〈 , 〉SN ).

For instance, this is the case when M is orientable with unimodular Poisson stucture,
that is, D�(w) = 0. The homology groups associated with the differential dw form
the Poisson cohomology of the manifold M, see [48]. (For similar constructions in
non-commutative geometry, we refer the reader to [32]).

Proposition 7.11 [44] When M is a symplectic manifold, the contraction with the
symplectic form ω induces an isomorphism of dg BV-algebras

(�•(M), dDR,∧,�, 〈 , 〉) ∼= (�(M,�•TM), dw,∧, D, 〈 , 〉SN ),

where D := [iω, dw].
Recall that the homology groups associated with the differential � on the left-

hand side form the Poisson homology of the manifold M. The Poisson homology and
cohomology are proved to be isomorphic under the weaker condition that the Poisson
manifold is orientable and unimodular, see P. Xu in [73].

Theorem 7.12 The de Rham cohomology of a Poisson manifold M carries a skeletal
homotopy BV-algebra, whose rectified dg BV-algebra is homotopy equivalent to the
dg BV-algebra (�•(M), dDR,∧,�). The Poisson cohomology of an orientable uni-
modular Poisson manifold M carries a skeletal homotopy BV-algebra, whose rectified
dg BV-algebra is homotopy equivalent to the dg BV-algebra (�(M,�•TM), dw,∧,
�, 〈 , 〉SN ).

The de Rham cohomology and the Poisson cohomology of a symplectic manifold
are isomorphic skeletal homotopy BV-algebras. When the manifold M is compact and
satisfies the hard Lefsechtz condition, this isomorphism reduces to an isomorphism of
homotopy hypercommutative algebras.

Proof This is a direct corollary of Theorem 7.8 and Proposition 7.11. ��
Let us now describe the linear case. Under the same notations as in the last exam-

ple of Sect. 7.2, when V = g∗ is the linear dual of a finite dimensional Lie algebra,
the transpose of the bracket produces a degree −2 element w in g⊗�2g∗ satisfying
〈w,w〉 = 0, by the Jacobi relation. In this case, the twisted differential dw is equal to
the Chevalley–Eilenberg differential on A ∼= S(g)⊗�(g∗) ⊂ C∞(g∗)⊗�(g∗), which
computes the cohomology of g with coefficients in S(g) and the adjoint action. If the
Lie algebra g is unimodular, that is Tr(〈x,−〉) = 0, for any x ∈ g, then�(w) = 0 and
the Chevalley–Eilenberg complex (S(g)⊗�(g∗), dw, •,�, 〈 , 〉) is a dg BV-algebra.



G.C. Drummond-Cole, B. Vallette

Theorem 7.13 The Chevalley–Eilenberg cohomology H•
C E (g, S(g)) of a finite dimen-

sional unimodular Lie algebra g, with coefficients in S(g)with adjoint action, carries a
skeletal homotopy BV-algebra, whose rectified dg BV-algebra is homotopy equivalent
to the dg BV-algebra (S(g)⊗�(g∗), dw, •,�, 〈 , 〉).
Remark It would be now interesting to study the relationship with the Duflo isomor-
phism, the analogue of the space of differential forms, and the symplectic and the hard
Lefschetz condition, in this linear case.

7.6 Application to mirror symmetry

Theorem 7.14 The Dolbeault cohomology of a Calabi–Yau manifold carries a ho-
motopy hypercommutative algebra structure, which extends the hypercommutative
algebra structure of [7] and whose rectified dg BV-algebra is homotopy equivalent to
the Dolbeault complex (�(M,∧•T̄ ∗M ⊗∧•TM), ∂̄,∧, div, 〈 , 〉S).

The moduli space M of Maurer–Cartan elements associated with the Dolbeault
complex is an extension of the moduli space M classical associated with the Koda-
ira–Spencer dg Lie subalgebra, which encodes deformations of complex structures.
The notion of generalized complex geometry was introduced by N. Hitchin in [36]
and then developed by his students M. Gualtieri [33] and G.R. Cavalcanti [11] as
a framework which encompasses both complex and symplectic geometries. In this
sense, the moduli space M was shown by Gualtieri to correspond to the deformations
of generalized complex structures. Several versions of the d�-condition were shown
to hold in this setting, see [1,12]. Finally, the dg BV-algebra structure of [47] allows us
to apply the same argument, which produces a version of Theorem 7.14 in the context
of generalized complex geometry.

S. Barannikov generalized in [2] the notions of periods and variations of Hodge
structure from M classical to M . He showed, for instance, that the image of these
generalized periods on H•(M,C) coincide with the Gromov–Witten invariants. This
is based on the fact that the Dolbeault cohomology admits not one but a family of
Frobenius manifold structures. This remark coincides with the present approach: there
are many choices in the homotopy transfer theorem. Moreover, the various transferred
structures are related by the group of∞-isomorphisms, see [51, Theorem 10.3.15]. In
the case of homotopy BV-algebras, this group should be related to the Givental group
[28,29].

The Mirror Symmetry conjecture [42] claims that the Fukaya A∞-category of
Lagrangian submanifolds of a Calabi–Yau manifold M (A-side) should be equivalent
to the bounded derived category of coherent sheaves on a dual Calabi–Yau manifold
M̃ (B-side). The tangent space of the moduli space of A∞-deformations of the Fukaya
category is conjectured to be given by the de Rham cohomology H•

DR(M,C) of X . By
the Kontsevich formality [43], the A∞-deformations of the latter category are encoded
by the Dolbeault complex. So the de Rham cohomology equipped with the Gromov–
Witten invariants should be isomorphic to the Dolbeault cohomology H•(M̃,�•TM̃)

as Frobenius manifolds. The following conjecture of Cao–Zhou [15], similar to Prop-
osition 7.11, gives a way to study this question: there is a quasi-isomorphism of dg



The minimal model

BV-algebras

(�n−•(M), dDR,∧,�, 〈 , 〉) ∼−→ (�(M̃,∧•T̄ ∗̃M ⊗∧•TM̃), ∂̄,∧, div, 〈 , 〉S).

The results of the present paper show that it is actually enough to prove the existence of
an ∞-quasi-isomorphism of dg BV-algebras to get the aforementioned isomorphism
on the cohomology level and to relate the two associated deformation functors.
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