All about blow-up for a semilinear wave equation in one space dimension

Hatem ZAAG CNRS & LAGA, Université Paris 13

HANDDY 2, Jussieu, May 11, 2011

in collaboration with Frank Merle, Université de Cergy-Pontoise et IHES

All about blow-up for a semilinear wave equation in one space dimension – p. 1/41

The equation

$$\left\{ \begin{array}{l} \partial_t^2 u = \partial_x^2 u + |u|^{p-1} u, \\ u(0) = u_0 \text{ and } u_t(0) = u_1, \end{array} \right.$$

where
$$p > 1$$
,
 $u(t) : x \in \mathbb{R} \rightarrow u(x,t) \in \mathbb{R}$,
 $u_0 \in H^1_{loc,u}(\mathbb{R})$ and $u_1 \in L^2_{loc,u}(\mathbb{R})$
and

$$\|v\|_{L^2_{\mathrm{loc},\mathrm{u}}}(\mathbb{R}) = \sup_{a \in \mathbb{R}} \left(\int_{a-1}^{a+1} |v(x)|^2 dx \right)^{1/2}.$$

. ...

THE CAUCHY PROBLEM IN $H^1_{loc,u}(\mathbf{I\!R}) \times L^2_{loc,u}(\mathbf{I\!R})$

It is a consequence of:

- ▶ the Cauchy problem in $H^1 \times L^2(\mathbb{R})$,
- the finite speed of propagation.

Maximal solution in $H^1_{loc,u}(\mathbb{R}) \times L^2_{loc,u}(\mathbb{R})$

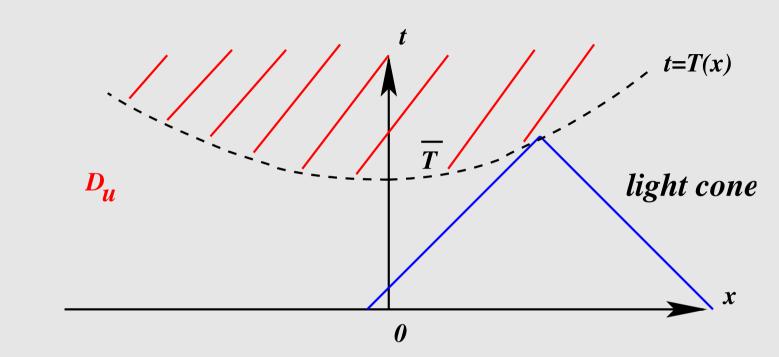
- either it exists for all $t \in [0, \infty)$ (global solution),
- or it exists for all $t \in [0, \overline{T})$ (singular solution).

Existence of singular solutions

It's a consequence of ODE techniques and the finite speed of propagation; see also the energy argument by Levine 1974:

if $(u_0, u_1) \in H^1 \times L^2(\mathbb{R})$ and $\int_{\mathbb{R}} \left(\frac{1}{2} (u_1)^2 + \frac{1}{2} (\partial_x u_0)^2 - \frac{1}{p+1} |u_0|^{p+1} \right) dx < 0$, *then u is not global.*

Singular solutions: the maximal influence domain



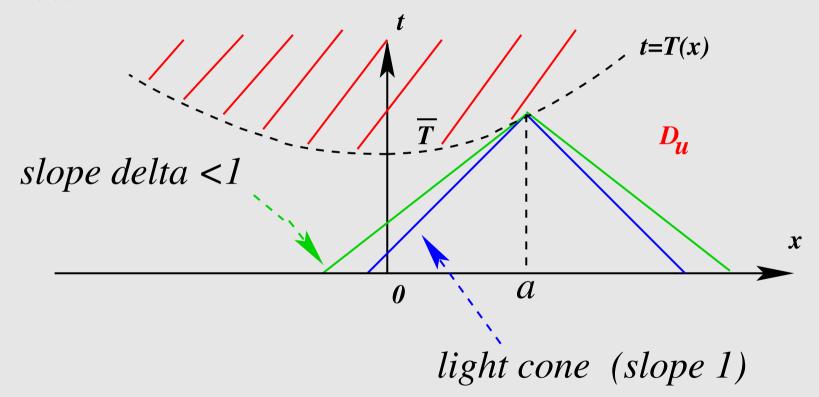
The blow-up set $x \mapsto T(x)$ is 1-Lipschitz (finite speed of propagation).

Remark: $\overline{T} = \inf T(x)$ is the blow-up time. For all $x \in \mathbb{R}^N$, there exists a "local" blow-up time T(x).

The aim of this talk: To describe precisely the blow-up set, and the solution near the blow-up set, for an arbitrary blow-up solution.

Definition: Non characteristic points and characteristic points

A point *a* is said *non characteristic* if the domain contains a cone with vertex (a, T(a)) and slope $\delta < 1$.



The point is said *characteristic* if not.

- Notation: $\mathcal{R} \subset \mathbb{R}$ is the set of all *non* characteristic points.
- Notation: $S \subset \mathbb{R}$ is the set of all characteristic points ($S \cup \mathcal{R} = \mathbb{R}$).

Known results, for an arbitrary solution

- The blow-up set $\Gamma = \{(x, T(x))\} \subset \mathbb{R}^2$.
- By definition, Γ is 1-Lipschitz.
- $\mathcal{R} \neq \emptyset$ (Indeed, \bar{x} such that $T(\bar{x}) = \min_{x \in \mathbb{R}} T(x)$ is non characteristic).
- Caffarelli and Friedman (1985 and 1986) had two criteria to have $\mathcal{R} = \mathbb{R}$ and $x \mapsto T(x)$ of class C^1 (using the positivity of the fundamental solution):
 - ▷ either when $p \ge 3$, with $u_0 \ge 0$, $u_1 \ge 0$ and $(u_0, u_1) \in C^4 \times C^3(\mathbb{R})$,
 - or under conditions on initial data that ensure that

 $u \geq 0$ and $\partial_t u \geq (1 + \delta_0) |\partial_x u|$

for some $\delta_0 > 0$.

Questions and new results

- ▷ **Existence**
 - Are there characteristic points? *yes,* $S \neq \emptyset$.
- ▶ Regularity
 - Is ${\mathcal R}$ open? yes
 - Is Γ (or $\Gamma_{\mathcal{R}}$) of class C^1 ? *yes*
 - "How is" *S*? *isolated points*
 - How does Γ look like near S? *corner shaped*
- Asymptotic behavior (profile)
 - How does the solution behave near a non characteristic point? *we have the profile*
 - and near a characteristic point? *we have a precise decomposition into solitons*

Rk. Regularity and asymptotic behavior are linked.

Extension to the radial case outside the origin

If u = u(r, t) satisfies for all r > 0,

$$\partial_t^2 u = \partial_r^2 u + \frac{(N-1)}{r} \partial_r u + |u|^{p-1} u$$

then all our results in one dimension extend to this case, as long as we consider the behavior outside the origin.

The plan

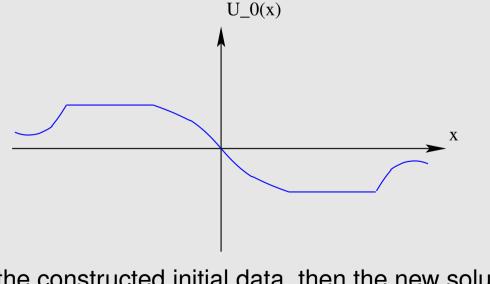
- ▶ Part 1: Existence of characteristic points.
- ▶ Part 2: A Liouville theorem and regularity of the blow-up set.
- ▶ Part 3: A Lyapunov functional and the blow-up rate.
- Part 4: Asymptotic behavior near *non characteristic* points (the blow-up profile).
- Part 5: Asymptotic behavior near *characteristic* points (decomposition into solitons).

Part 1: Existence of characteristic points

We recall: Any solution to the Cauchy problem has (at least) a non characteristic point (the minimum of the blow-up set).

Th. There exist *initial data which give solutions with a characteristic point.*

Example: We take odd initial data, with two large plateaus of different signs. Then, the solution blows up, and the origin is a characteristic point with $\forall t < T(0), u(0, t) = 0.$



Th. If we perturb the constructed initial data, then the new solution blows up and has a characteristic point.

Part 2: Regularity of the blow-up set

Near a non characteristic point:

Th. The set of non characteristic points \mathcal{R} is open and T(x) is of class C^1 on this set ($C^{1,\alpha}$ by N. Nouaili CPDE 2008).

▶ Near a characteristic point:

Th. The set of characteristic points S is made of **isolated points**. If $a \in S$, then $T'_{l}(a) = 1$ and $T'_{r}(a) = -1$.

Cor. There is no solution with $a \in S$ and T'(a) = 1.

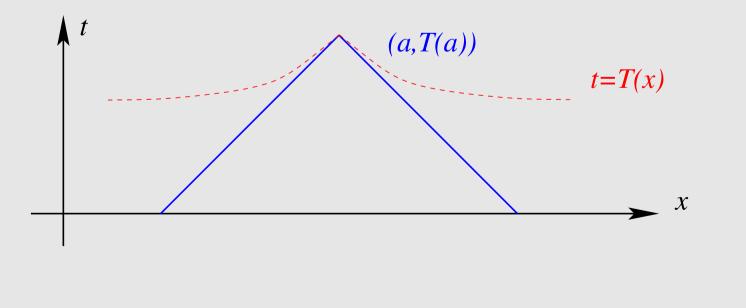
Part 2: The corner property near a characteristic point

Th. (the corner property) *If* $a \in S$ *, then for all x near a,*

$$\frac{1}{C}|x-a||\log|x-a||^{-\gamma(a)} \le T(x) - T(a) + |x-a| \le C|x-a||\log|x-a||^{-\gamma(a)}$$
(1)

where

$$\gamma(a) = \frac{(k(a)-1)(p-1)}{2} \text{ with } k(a) \in \mathbb{N}, k(a) \ge 2.$$



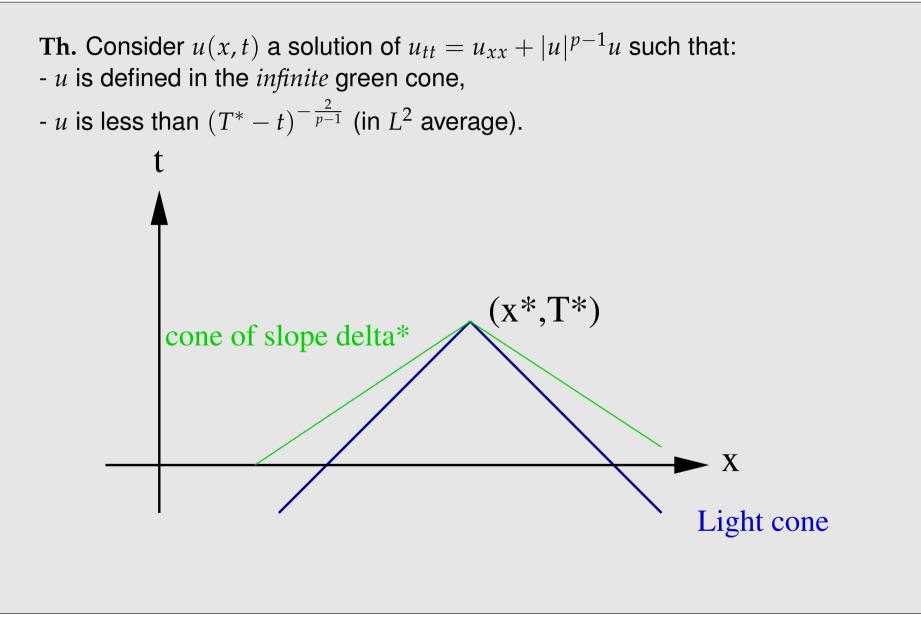
Comments

Idea of the proof:

The techniques are based on

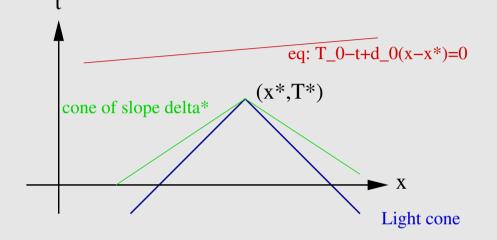
- a very good understanding of the behavior of the solution in selfsimilar variables in the energy space related to the selfsimilar variable (see Part 3 of this talk).
- a Liouville Theorem (see next slide).

A Liouville Theorem



LATEX prosper

A Liouville Theorem



Then,

- either $u \equiv 0$,

- or there exists $T_0 \ge T^*$, $d_0 \in [-\delta_*, \delta_*]$ and $\theta_0 = \pm 1$ such that u is actually defined below the red line by

$$u(x,t) = \theta_0 \kappa_0(p) \frac{(1-d_0^2)^{\frac{1}{p-1}}}{(T_0 - t + d_0(x - x^*))^{\frac{2}{p-1}}}.$$

Remark: *u* blows up on the red line.

Comments

▷ The limiting case $\delta^* = 1$ is still open.

The proof:

- The proof has a completely different structure from the proof for the heat equation.
- The proof is based on various energy arguments and on a dynamical result.

Part 3: A Lyapunov functional and the blow-up rate

Selfsimilar transformation for all $x_0 \in \mathbf{I} \mathbf{R}$

$$w_{x_0}(y,s) = (T(x_0) - t)^{\frac{2}{p-1}} u(x,t), \ y = \frac{x - x_0}{T(x_0) - t}, \ s = -\log(T(x_0) - t).$$

(x,t) in the light cone of vertex $(x_0, T(x_0)) \iff (y,s) \in (-1,1) \times [-\log T(x_0), \infty)$. Equation on $w = w_{x_0}$: For all $(y,s) \in (-1,1) \times [-\log T(x_0), \infty)$:

$$\partial_{ss}^2 w - \frac{1}{\rho} \partial_y (\rho(1-y^2) \partial_y w) + \frac{2(p+1)}{(p-1)^2} w - |w|^{p-1} w$$
$$= -\frac{p+3}{p-1} \partial_s w - 2y \partial_{sy}^2 w$$
where $\rho(y) = (1-|y|^2)^{\frac{2}{p-1}}$

All about blow-up for a semilinear wave equation in one space dimension – p. 17/41

The case of radial solutions

If u = u(r, t) satisfies for all r > 0,

$$\partial_t^2 u = \partial_r^2 u + \frac{(N-1)}{r} \partial_r u + |u|^{p-1} u$$

and for $r_0 > 0$, $w_{r_0}(y, s)$ is defined by

$$w_{r_0}(y,s) = (T(r_0) - t)^{\frac{2}{p-1}} u(r,t), \ y = \frac{r - r_0}{T(r_0) - t}, \ s = -\log(T(r_0) - t),$$

then $w_{r_0}(y,s)$ satisfies the following:

$$\begin{aligned} \partial_{ss}^{2}w &- \frac{1}{\rho}\partial_{y}(\rho(1-y^{2})\partial_{y}w) + \frac{2(p+1)}{(p-1)^{2}}w - |w|^{p-1}w + \frac{(N-1)e^{-s}}{r_{0}+ye^{-s}}\partial_{y}w \\ &= -\frac{p+3}{p-1}\partial_{s}w - 2y\partial_{sy}^{2}w. \end{aligned}$$

In particular, the new term $\frac{(N-1)e^{-s}}{r_0+ye^{-s}}\partial_y w$ is negligeable (unlike when $r_0 = 0$).

Back to 1 d: A Lyapunov functional (Antonini-Merle)

$$E(w) = \int_{-1}^{1} \left(\frac{1}{2} (\partial_s w)^2 + \frac{1}{2} (\partial_y w)^2 (1 - y^2) + \frac{(p+1)}{(p-1)^2} w^2 - \frac{1}{p+1} |w|^{p+1} \right) \rho dy,$$

Thanks to a Hardy-Sobolev inequality, $E = E(w, \partial_s w)$ is well defined in the energy space

$$\mathcal{H} = \left\{ q \in H^1_{loc} \times L^2_{loc}(B) \mid \|q\|^2_{\mathcal{H}} \equiv \int_{-1}^1 \left(q_1^2 + \left(\partial_y q_1 \right)^2 \left(1 - y^2 \right) + q_2^2 \right) \rho dy < +\infty \right\}.$$

All about blow-up for a semilinear wave equation in one space dimension – p. 19/41

Properties of the Lyapunov functional *E*

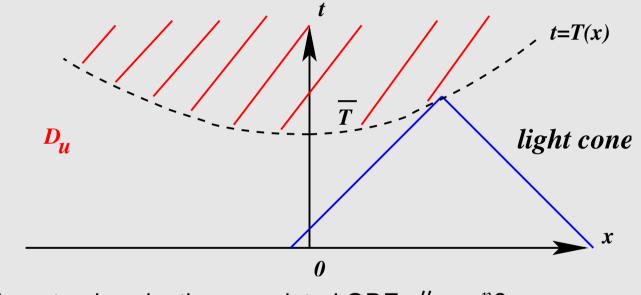
Lemma 1 (Monotonicity (Antonini-Merle)) For all s_1 and s_2 :

$$E(w(s_2)) - E(w(s_1)) = -\frac{4}{p-1} \int_{s_1}^{s_2} \int_{-1}^{1} (\partial_s w)^2 (1-|y|^2)^{\frac{2}{p-1}-1} dy ds.$$

Lemma 2 (A blow-up criterion) Consider a solution W such that $E(W(s_0)) < 0$ for some $s_0 \in \mathbb{R}$, then W blows up in finite time $S > s_0$.

The blow-up rate

We look for a *local* blow-up rate near the singular surface (i.e. near every local blow-up time, $t \to T(x_0)$), in $H^1 \times L^2$ of the section of the light cone.



Hint: Is the rate given by the associated ODE $v'' = v^p$?

All about blow-up for a semilinear wave equation in one space dimension -p.21/41

An upper bound on the blow-up rate in selfsimilar variables

Th. For all
$$x_0 \in \mathbb{R}$$
 and $s \ge -\log T(x_0) + 1$,

$$\int_{-1}^{1} \left(\frac{1}{2} (\partial_s w)^2 + \frac{1}{2} (\partial_y w)^2 (1 - |y|^2) + \frac{(p+1)}{(p-1)^2} w^2 + \frac{1}{p+1} |w|^{p+1} \right) \rho dy \le K$$

where the constant *K* depends only on *p* and an upper bound on $T(x_0)$, $1/T(x_0)$ and $||(u_0, u_1)||$.

Idea of the proof of the upper bound

- Selfsimilar transformation and existence of a Lyapunov functional
- Interpolation to gain regularity
- ▷ Gagliardo-Nirenberg estimates.

Part 4: Asymptotic behavior at a non characteristic point

Take $x_0 \in \mathbb{R}$ non characteristic. Using a covering argument for x near x_0 , we obtain that $\|(w_{x_0}(s), \partial_s w_{x_0}(s))\|_{H^1 \times L^2(-1,1)}$ is bounded.

Question: Does $w_{x_0}(y,s)$ have a limit or not, as $s \to \infty$ (that is as $t \to T(x_0)$).

Remark: In the context of Hamiltonian systems, this question is delicate, and there is no natural reason for such a convergence, since the wave equation is time reversible.

See for similar difficulty and approach, results for

- ▶ the critical KdV (Martel and Merle),
- ▶ NLS (Merle and Raphaël).

Stationary solutions.

We look for solutions of

$$\frac{1}{\rho}\left(\rho(1-y^2)w'\right)' - \frac{2(p+1)}{(p-1)^2}w + |w|^{p-1}w = 0.$$

We work in \mathcal{H}_0 , the (stationary energy space) defined by

$$\mathcal{H}_0 = \{ r \in H^1_{loc}(-1,1) \mid \|r\|^2_{\mathcal{H}_0} \equiv \int_{-1}^1 \left(r'^2(1-y^2) + r^2 \right) \rho dy < +\infty \}.$$

Prop. Consider a stationary solution in \mathcal{H}_0 . Then, either $w \equiv 0$ or there exist $d \in (-1, 1)$ and $e = \pm 1$ such that $w(y) = e\kappa(d, y)$ where

$$\forall (d,y) \in (-1,1)^2, \ \kappa(d,y) = \kappa_0 \frac{(1-d^2)^{\frac{1}{p-1}}}{(1+dy)^{\frac{2}{p-1}}} \text{ and } \kappa_0 = \left(\frac{2(p+1)}{(p-1)^2}\right)^{\frac{1}{p-1}}$$

Remark: We have 3 connected components. $E(0) = 0 < E(\pm \kappa(d)) = E(\kappa_0)$.

Blow-up profile near a non characteristic point

Th. There exist $C_0 > 0$ and $\mu_0 > 0$ such that if x_0 is **non characteristic**, then there exist $d(x_0) \in (-1, 1)$, $e(x_0) = \pm 1$ and $s^*(x_0) \ge -\log T(x_0)$ such that: (i) For all $s \ge s^*(x_0)$,

$$\left\| \begin{pmatrix} w_{x_0}(s) \\ \partial_s w_{x_0}(s) \end{pmatrix} - e(x_0) \begin{pmatrix} \kappa(d(x_0), \cdot) \\ 0 \end{pmatrix} \right\|_{\mathcal{H}} \le C_0 e^{-\mu_0(s-s^*)}$$

and $E(w_{x_0}(s) \to E(\kappa_0)$ where the energy space

$$\mathcal{H} = \left\{ q \in H^1_{loc} \times L^2_{loc}(-1,1) \mid \|q\|^2_{\mathcal{H}} \equiv \int_{-1}^1 \left(q_1^2 + \left(q_1'\right)^2 \left(1 - y^2\right) + q_2^2 \right) \rho dy < +\infty \right\}.$$

(*ii*) $d(x_0) = T'(x_0)$. **Rk.** We have exp. fast convergence (hence, C^{1,μ_0} regularity of \mathcal{R} , see Nouaili). **Rk.** $||w_{x_0}(y,s) - e(x_0)\kappa(d(x_0), y)||_{L^{\infty}(-1,1)} \to 0$. **Rk.** The parameter of the profile $d(x_0)$ has a geometrical interpretation $(T'(x_0))$.

Difficulties of the proof of convergence

- The set of non zero stationary solutions is made up of non isolated solutions (one parameter family):
 - \longrightarrow we need a modulation technique.
- The linearized operator around a non zero stationary solution is non self-adjoint:

 \longrightarrow we need to use dispersive properties coming from the Lyapunov functional to control the negative part of the spectrum.

Part 5: Asymptotic behavior at a characteristic point

Th. If $x_0 \in \mathbb{R}$ is characteristic, then, there exist $k(x_0) \ge 2$, $e(x_0) = \pm 1$ and continuous $d_i(s) = -\tanh \zeta_i(s)$ for i = 1, ..., k such that: (i)

$$\left\| \left(\begin{array}{c} w_{x_0}(s) \\ \partial_s w_{x_0}(s) \end{array} \right) - e(x_0) \sum_{i=1}^{k(x_0)} (-1)^i \left(\begin{array}{c} \kappa(d_i(s), \cdot) \\ 0 \end{array} \right) \right\|_{\mathcal{H}} \to 0 \text{ as } s \to \infty,$$

(ii) Introducing

$$\bar{w}_{x_0}(\xi,s) = (1-y^2)^{\frac{1}{p-1}} w_{x_0}(y,s)$$
 with $y = \tanh \xi$ and $\zeta_i(s) = -\tanh^{-1} d_i(s)$,

we get

$$\|\bar{w}_{x_0}(\xi,s) - e(x_0)\sum_{i=1}^{k(x_0)} (-1)^i \cosh^{-\frac{2}{p-1}}(\xi - \zeta_i(s))\|_{H^1 \cap L^{\infty}(\mathbb{R})} \to 0 \text{ as } s \to \infty,$$

Part 5: Asymptotic behavior at a characteristic point (cont.)

(iii) For all
$$i = 1, ..., k(x_0)$$
 and s large enough,

$$\left(i - \frac{(k(x_0) + 1)}{2}\right) \frac{(p-1)}{2} \log s - C_0 \le \zeta_i(s) \le \left(i - \frac{(k(x_0) + 1)}{2}\right) \frac{(p-1)}{2} \log s + C_0.$$
(iv) $E(w_{x_0}(s)) \rightarrow k(x_0)E(\kappa_0)$ as $s \rightarrow \infty$.

$$\overline{w}(x_i, s)$$

$$\overline{w}(x_i, s)$$

$$\overline{v}(x_i, s)$$

$$\overline{v}(x_i, s)$$

$$\overline{v}(x_i, s)$$

$$\overline{v}(x_i, s)$$

$$\overline{v}(x_i, s)$$

$$\overline{v}(x_i, s)$$

LATEX prosper

All about blow-up for a semilinear wave equation in one space dimension – p. 28/41

Part 5: Asymptotic behavior at a characteristic point (cont.)

Rk.

- As $s \to \infty$, w_{χ_0} becomes like a **decoupled** sum of *equidistant* stationary solutions ("solitons"), with *alternate* signs.

- In the ξ variable, half of the solitons go to $-\infty$, and the other half to $+\infty$.

- The main difficulty in the proof is to prove that $k(x_0) \ge 2$ (the case $k(x_0) = 0$ is harder to eliminate).

- The $\zeta_i(s)$ satisfy the following system:

$$\frac{1}{c_1}\zeta'_i(s) = e^{-\frac{2}{p-1}(\zeta_i - \zeta_{i-1})} - e^{-\frac{2}{p-1}(\zeta_{i+1} - \zeta_i)} + R_i \text{ with } R_i = o\left(\sum_{j=1}^{k-1} e^{-\frac{2}{p-1}(\zeta_{j+1} - \zeta_j)}\right) \text{ as } s \to \infty.$$

The energy behavior

Defining

 $k(x_0) = 1$ when $x_0 \in \mathcal{R}$,

we get the following:

Cor. (i) For all $x_0 \in \mathbb{R}$ and $s \ge -\log T(x_0)$, we have

 $E(w_{x_0}(s)) \ge k(x_0)E(\kappa_0).$

(ii) (An energy criterion for non characteristic points) *If for some* $x_0 \in \mathbb{R}$ *and* $s_0 \ge -\log T(x_0)$, we have

 $E(w_{x_0}(s_0)) < 2E(\kappa_0),$

then $x_0 \in \mathcal{R}$.

All about blow-up for a semilinear wave equation in one space dimension – p. 30/41

Blow-up speed or the L^{∞} norm behavior

Cor. (i) (Case of non-characteristic points) *If* $x_0 \in \mathcal{R}$ *, then*

$$\frac{(T(x_0)-t)^{-\frac{2}{p-1}}}{C} \le \sup_{|x-x_0| < T(x_0)-t} |u(x,t)| \le C(T(x_0)-t)^{-\frac{2}{p-1}}$$

(i) (Case of characteristic points) *If* $x_0 \in S$ *, then*

 $\frac{|\log(T(x_0)-t)|^{\frac{k(x_0)-1}{2}}}{C(T(x_0)-t)^{\frac{2}{p-1}}} \leq \sup_{|x-x_0|< T(x_0)-t} |u(x,t)| \leq \frac{C|\log(T(x_0)-t)|^{\frac{k(x_0)-1}{2}}}{(T(x_0)-t)^{\frac{2}{p-1}}}.$

where $k(x_0) \ge 2$ is the solitons' number in the decomposition of w_{x_0} .

Rk.

When $x_0 \in \mathcal{R}$, the speed is given by the associated ODE $u'' = u^p$. When $x_0 \in S$, the speed is higher. It has a log correction depending on the number of solitons.

Idea of the proof of the results in the characteristic case

The results are: the decomposition into solitons, the corner property and the fact that the interior of \mathcal{S} is empty.

6 main steps are needed:

- Step 1: Decomposition into a decoupled sum of $k(x_0) \ge 0$ solitons, with no information on the signs or the distance between the solitons' centers (in the ξ variable).
- Step 2: Characterization of the case $k(x_0) \ge 2$. Proof of *the upper bound* in the corner property if $k(x_0) \ge 2$.
- Step 3: Excluding the case $k(x_0) = 0$ if $x_0 \in \partial S$ (note that $\partial S \subset S$ since $\mathcal{R} = \mathbb{R} \setminus S$ is open).
- Step 4: Characterization of the case where $x_0 \in \partial S$ and $k(x_0) = 1$.
- Step 5: We prove that the interior of S is empty, then that $k(x_0) \ge 2$ for all $x_0 \in S$ (which gives *the upper bound* in the corner property by Step 2).
- Step 6: We prove that S is made of isolated points and the *lower bound* in the corner property (omitted here).

Comments

Rk. 1: A good understading of the *non-characteristic* case is *crucial*.

Rk. 2: Excluding the case $k(x_0) = 0$ is more difficult than excluding the case $k(x_0) = 1$.

In particular, we can't exclude directly the case $k(x_0) = 0$ for all $x_0 \in S$. We do it first when $x_0 \in \partial S$, then prove that the interior of S is empty, hence $\partial S = S$.

Step 1: Decomposition into a decoupled sum of $k(x_0) \ge 0$ **solitons**

Take $x_0 \in \mathbb{R}$ a characteristic points. We have two estimates:

- $\triangleright \quad \|(w_{x_0}(s),\partial_s w_{x_0}(s))\|_{\mathcal{H}} \leq C_0;$
- $\triangleright \quad \int_{-\log T(x_0)}^{\infty} \int_0^1 (\partial_s w_{x_0}(y,s))^2 \frac{\rho}{1-y^2} dy ds \leq C_0.$

Rk. Unlike the non characteristic case, we can't have a covering argument, so we can't obtain the $H^1 \times L^2$ norm bounded (in fact, we will show that it is unbounded).

Step 1: Decomposition into a decoupled sum of $k(x_0) \ge 0$ **solitons (cont.)**

In the $\bar{w}_{\chi_0}(\xi, s)$ variable, we have

```
\|\bar{w}_{x_0}(\xi,s)\|_{H^1(\mathbb{R})} \leq C_0.
```

For any sequence ξ_n in \mathbb{R} , we find a "local" limit in the sense that for some $s_n \to \infty$, we have

$$\bar{w}_{\chi_0}(\xi+\xi_n,s+s_n)\to \bar{w}^*$$
 as $n\to\infty$,

uniformly on compact sets for (ξ, s) , with w^* a stationary solution, due to the fact that

$$\int_{-\log T(x_0)}^{\infty}\int_0^1 (\partial_s w_{x_0}(y,s))^2 \frac{\rho}{1-y^2} dy ds \leq C_0.$$

Since the energy is bounded, the number of non zero "local limits" is finite, and we end-up with the following result:

Step 1: Decomposition into a decoupled sum of $k(x_0) \ge 0$ **solitons (cont.)**

Prop.*There exist* $k(x_0) \ge 0$ *and continuous* $d_i(s) \in (-1, 1)$ *such that*

$$\left(\begin{array}{c}w_{x_0}(s)\\\partial_s w_{x_0}(s)\end{array}\right) - \sum_{i=1}^{k(x_0)} e_i(x_0) \left(\begin{array}{c}\kappa(d_i(s),\cdot)\\0\end{array}\right) \right\|_{\mathcal{H}} \to 0 \text{ as } s \to \infty,$$

with

$$\zeta_{i+1}(s) - \zeta_i(s) \rightarrow \infty \text{ as } s \rightarrow \infty \text{ and } d_i(s) = - \tanh \zeta_i(s).$$

Rk.

- ▷ If $k(x_0) = 0$, then the above sum is 0.
- ▷ At this level, we don't know that $k(x_0) = 0$ and $k(x_0) = 1$ don't occur.
- ▷ We have no information on the signs $e_i(x_0)$.
- ▶ We have no equivalent for $\zeta_i(s)$ as $s \to \infty$.

Step 2: Case $k(x_0) \ge 2$; A differential equation on the solitons' centers

Here, we assume that $k(x_0) \ge 2$ (we don't prove that fact here). Linearizing the equation in the w(y,s) setting around the sum of the solitons, we get the following system on the solitons' centers in the ξ variable: for all i = 1, ..., k and s large enough, we have

$$\frac{1}{c_1}\zeta'_i = -e_{i-1}e_ie^{-\frac{2}{p-1}(\zeta_i - \zeta_{i-1})} + e_ie_{i+1}e^{-\frac{2}{p-1}(\zeta_{i+1} - \zeta_i)} + R_i$$

where

$$|R_i| \leq CJ^{1+\delta_0}, \ J(s) = \sum_{j=1}^{k-1} e^{-\frac{2}{p-1}(\zeta_{j+1}(s) - \zeta_j(s))},$$

 $e_0 = e_{k+1} = 0$, for some $c_1 > 0$ and $\delta_0 > 0$.

All about blow-up for a semilinear wave equation in one space dimension -p.37/41

Step 2: Case $k(x_0) \ge 2$ (cont.)

Since for all
$$i = 1, ..., k(x_0) - 1$$
, we have

$$\zeta_{i+1}(s) - \zeta_i(s) \to \infty \text{ as } s \to \infty,$$

using ODE techniques, we find that

$$e_i e_{i+1} = -1 \text{ and } \zeta_i(s) \sim \left(i - \frac{k(x_0) + 1}{2}\right) \frac{(p-1)}{2} \log s.$$

The upper bound on the blow-up rate gives the *upper bound* in the corner property.

Step 3: Excluding the case where $x_0 \in \partial S$ **and** $k(x_0) = 0$

By contradiction, if $x_0 \in \partial S$ and $k(x_0) = 0$, then

$$||w_{x_0}(s)||_{\mathcal{H}} \to 0 \text{ and } E(w_{x_0}(s)) \to 0 \text{ as } s \to \infty.$$

Fixing s_0 large enough such that $E(w_{x_0}(s_0)) \leq \frac{1}{4}E(\kappa_0)$, we find x_1 near x_0 such that

$$x_1 \in \mathcal{R}$$
 and $E(w_{x_1}(s_0)) \leq \frac{1}{2}E(\kappa_0).$

Since $E(w_{x_1}(s)) \to E(\kappa_0)$ as $s \to \infty$ and $E(w_{x_1}(s))$ is decreasing, it follows that

 $E(w_{x_1}(s_0)) \geq E(\kappa_0).$

Contradiction.

All about blow-up for a semilinear wave equation in one space dimension -p.39/41

Step 4: Characterization of the case where $x_0 \in \partial S$ **and** $k(x_0) = 1$

In this case,

$$\left\| \left(\begin{array}{c} w_{x_0}(s) \\ \partial_s w_{x_0}(s) \end{array} \right) - e_1 \left(\begin{array}{c} \kappa(d_1(s), y) \\ 0 \end{array} \right) \right\|_{\mathcal{H}} \to 0 \text{ as } s \to \infty \text{ and } E(w_{x_0}(s)) \ge E(\kappa_0).$$

Our "trapping" result implies that for some $d(x_0) \in (-1, 1)$,

 $w_{x_0}(s) \to \kappa(d(x_0))$ as $s \to \infty$.

Some elementary geometry and the precise knowledge of the case of non characteristic points gives that x_0 is either left-non-characteristic or right-non-characteristic.

All about blow-up for a semilinear wave equation in one space dimension -p.40/41

Step 5: Conclusion without Isolatedness

Using the previous steps, we prove in the same time that $k(x_0) \ge 2$ and the interior of S is empty, together with precise estimate on the location of the solitons' centers.

We also get *the upper bound* in the corner property.