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Introduction

Semilinear wave equations

u : Rt ×Rx → R solution to {
∂ttu− ∂xxu− |u|p−1u = 0,
(u, ∂tu)|t=0 = (u0, u1).

(NLW)

where p > 1.

Local well-posedness: (u0, u1) ∈ H1(R)× L2(R) (Ginibre, Soffer & Velo, Lindblad &
Sogge).
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Introduction

Blow-up curve

Blow-up criterion (Levine 74):

If
∫ (

1
2
|u1|2 +

1
2
|∂xu0|2 −

1
p + 1

|u0|p+1
)

dx < 0,

then the solution can not be global in time.

If u is a blow-up solution:
let D ⊂ R2 be the maximal domain of influence of u (in space-time), write
D = {(x, t)| 0 ≤ t < T(x)}.
Blow-up curve Γ = {(x,T(x)}.
T is 1-Lipschitz (finite speed of propagation).
T̄ = infx∈R T(x) is the blow-up time.

Goal:
- Description of any arbitrary blow-up solution;
- Construction of examples for each of the blow-up modalities.
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Introduction

Charateristic points

A point a ∈ R is non-characteristic if D contains a splaying cone

Cδ(a,T(a)) := {(x, t) ∈ R×R+||x− a| ≤ T(a)− t
δ

} ⊂ D for some δ < 1.

t

T

0

t=T(x)

x

Du

a

slope delta <1

(slope 1)light cone

A point is characteristic if it is not the case.

Hatem ZAAG (P13 & CNRS) Blow-up for NLW IHES - H. Matano conference, June 25-28, 2012 4 / 24



Introduction

Notation:
R is the set of non-characteristic points.
S is the set of characteristic points.

Known results:
R is never empty (x̄ such that T(x̄) = T̄).
S can be empty (Caffarelli and Friedman 85, 86).
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Results

Introduce the similarity variables: for any point (x0,T0) ∈ D

wx0,T0(y, s) = (T0 − t)
2

p−1 u(x, t), y =
x− x0

T0 − t
, s = − ln(T0 − t).

Functional space:

H =

{
(q, p)

∣∣∣∣∫ 1

−1

(
|p(y)|2 + |∂yq|2(1− y2) + |q(y)|2

)
(1− y2)

2
p−1 dy < +∞

}
.

Stationary solutions (for the “w” equation):

κ(d, y) = ±κ0
(1− d2)

1
p−1

(1 + dy)
2

d−1

, κ0 =

(
2(p + 1)

(p− 1)2

) 1
p−1

.
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Results

Regularity of R

Theorem (Merle & Z. 2007, 2008)
R is open and T(x) is C 1 on R.
There exists µ0 > 0, C0, such that for all x0 ∈ R, there exist ε(x0) = ±1,
s(x0) ≥ − ln T(x0) such that ∀s ≥ s(x0),∥∥∥∥( wx0,T(x0)(s)

∂swx0,T(x0)(s)

)
− ε(x0)

(
κ(T ′(x0))

0

)∥∥∥∥
H

≤ C0e−µ0(s−s0).

(Nouaili improved the regularity of T to C 1,µ0).

Only one κ(d).
Its parameter it the slope of the blow-up curve.
Exponential convergence to the profile.
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Results

Description of S and refined asymptotics of characteristic
blow-up points

Theorem (Merle & Z. 2012, improved in Côte & Z. 2012)
S is a discrete set.
If x0 ∈ S , there exist k = k(x0) ≥ 2, ε(x0) = ±1 and ζ0 = ζ0(x0) s.t. ∀s ≥ s0∥∥∥∥∥
(

wx0,T(x0)(s)
∂swx0,T(x0)(s)

)
− ε(x0)

k∑
i=1

(−1)i
(
κ(di(s))

0

)∥∥∥∥∥
H

≤ C0

(s0

s

)η
for some η > 0.

where di(s) = − tanh ζi(s) and ζi(s) is defined on the next slide.
Furthermore, the blow-up curve is corner shaped at x0: for some γ = γ(p) > 0,

T(x) = T(x0)− |x− x0|+
γe2ζ0sgn(x0−x)|x− x0|(1 + o(1))

| ln |x− x0||
(k−1)(p−1)

2

.
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Results

Illustration with hyperbolic coordinates
Introducing

w̄x0(ξ, s) = (1− y2)
1

p−1 wx0(y, s) with y = tanh ξ and ζi(s) = − tanh−1 di(s),

we get

‖w̄x0(ξ, s)− ε(x0)κ0

k(x0)∑
i=1

(−1)i cosh−
2

p−1 (ξ − ζi(s))‖H1∩L∞(R) → 0 as s→∞,

and with k(x0) = 4 and ε(x0) = −1:
w(xi,s)

xi
zeta_1

zeta_2
zeta_3

zeta_4
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Results

(ζi)i=1,...,k is a solution to the system

ζ̇i = e−
2

p−1 (ζi−ζi−1) − e−
2

p−1 (ζi+1−ζi), i = 1, . . . , k,

with the convention ζ0(s) ≡ −∞, ζk+1(s) ≡ +∞, and barycenter
1
k

(ζ1(s) + · · ·+ ζk(s)) = ζ0. One can compute explicitely for

ζi(s) =

(
i− k + 1

2

)
(p− 1)

2
ln s + αi + ζ0(x0),

where αi = αi(p, k) are chosen adequately.

Notice that
The solitons are alternating.
The number of solitons can be seen on the blow-up curve.
The blow-up curve is never symetric with respect to x0, unless maybe if the barycenter
of the solitons ζ0(x0) = 0.
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Results

Characteristic blow-up points with prescribed asymptotics

Theorem (Côte & Z. 2012)
For any integer k ≥ 2 and ζ0 ∈ R, there exists a blow-up solution u(x, t) in H1 × L2(R) with
0 ∈ S such that T(0) = 1 and∥∥∥∥∥

(
w0,1(s)
∂sw0,1(s)

)
−

k∑
i=1

(−1)i+1
(
κ(di(s))

0

)∥∥∥∥∥
H

→ 0 as s→∞,

with

di(s) = − tanh ζi(s), ζi(s) =

(
i− k + 1

2

)
(p− 1)

2
ln s + αi + ζ0.
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Ideas of proofs Sums of solitons

Some ideas of proofs : DESCRIPTION, then CONSTRUCTION

Equation on w: let ρ = (1− y2)
2

p−1 and L w =
1
ρ
∂y(ρ(1− y2)∂yw).

∂ssw = L w− 2(p + 1)

(p− 1)2 w + |w|p−1w− p + 3
p− 1

∂sw− 2y∂2
ysw, (eqw)

Starting point: Monotonicity property in the w variable.

E(w) =

∫ 1

−1

(
1
2
|∂sw|2 +

1
2
|∂yw2|(1− y2) +

p + 1
(p− 1)2 w2 − 1

p + 1
|w|p+1

)
ρdy.

Theorem (Lyapunov functional, Antonini & Merle 02)

E(w(s2))− E(w(s1)) = − 4
p− 1

∫ s2

s1

∫ 1

−1
|∂sw|2(1− y2)

2
p−1−1dyds ≤ 0.

If E(w((s0)) < 0 for some s0 ∈ R, w blows-up in finite time.
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Ideas of proofs Sums of solitons

DESCRIPTION: Decomposition into a sum of solitons

We have two bounds

‖wx0,T(x0), ∂swx0,T(x0)‖H ≤ C,∫ +∞

− ln s0

∫ 1

−1
|∂sw|2(1− y2)

2
p−1−1dyds ≤ C.

We find local limits: for some sequences sn → +∞, in the ξ = arg tanh(y) variable,

wx0,T(x0)(ξ + ξn, s + sn)→ w∗ stationary solution, in H1
loc.

Nonzero stationary solutions are exactly the ±κ(d, ·). In the
(ζ, ξ) = (arg tanh d, arg tanh y) variables,

κ(ζ, ξ) =
κ0(p)

cosh(ξ − ζ)
2

p−1

is a soliton.
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Ideas of proofs Sums of solitons

Proposition
There exist an integer k(x0) and εi ∈ {±1} and continuous functions di(s) such that∥∥∥∥∥∥

(
wx0,T(x0)(s)
∂swx0,T(x0)(s)

)
−

k(x0)∑
i=1

εi

(
κ(di(s), ·)

0

)∥∥∥∥∥∥
H

→ 0 as s→ +∞.

and, with ζi = arg tanh(di), ζi+1(s)− ζi(s)→ +∞.

At this point:
We may have k(x0) = 0 or 1 or k(x0) ≥ 2.
No control on the signs εi.
If k(x0) ≥ 2, we have no control on the size ζi+1(s)− ζi(s).
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Ideas of proofs Non-characteristic blow-up

DESCRIPTION at non-characteristics points

If x0 is a non-characteristic point
Control in a splaying cone.
A covering argument gets rid of the weight.

‖wx0,T(x0), ∂swx0,T(x0)‖H1×L2 ≤ C.

We get one single limit: k(x0) = 1 (otherwise we quit H1(−1, 1)).
Modulation + linear version of the Lyapunov yields

∀s ≥ s(x0),

∥∥∥∥( wx0,T(x0)(s)
∂swx0,T(x0)(s)

)
− ε(x0)

(
κ(d(x0))

0

)∥∥∥∥
H

≤ C0e−µ0(s−s0).

Stability property→ d(x0) = T ′(x0) and R is open.
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Ideas of proofs Characteristic blow-up

DESCRIPTION at characteristics points

The covering argument does not hold:
We may have k(x0) ≥ 2.

Equation on the solitons centers ζi = arg tanh di:

1
c1(p)

ζ̇i =
(
εiεi−1e−

2
p−1 (ζi−ζi−1) − εiεi+1e−

2
p−1 (ζi+1−ζi)

)
+ o(1).

By construction ζi+1 − ζi → +∞.
This implies εi = (−1)i−1ε1.
To study further the dynamics, we need an adequate modulated decomposition.
Introduction of the κ∗(d, ν, y).
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Ideas of proofs Characteristic blow-up

Modulation
Define for ν > −1 + |d|, κ∗(d, ν, y) = (κ∗1(d, ν, y), κ∗2(d, ν, y)), where

κ∗1(d, ν, y) = κ0
(1− d2)

1
p−1

(1 + dy + ν)
2

p−1

, κ∗2(d, ν, y) = ν∂νκ
∗
1(d, ν, y).

For µ ∈ R, κ∗1(d, µes, y) is solution of (eqw).
If µ = 0, it is κ(d, y).
If µ > 0, it converges to 0 as s→ +∞.

If µ < 0, it blows up at time s = ln
(
|d|−1
µ

)
.

We can write a decomposition(
wx0,T(x0)(s)
∂swx0,T(x0)(s)

)
= q(s) +

k0∑
i=1

(−1)jκ∗(d̂i, ν̂i), ‖q(s)‖H → 0

with the projection Πλ,i(q(s)) = 0, for all i = 1, . . . , k(x0) and eigenvalues λ = 0, 1 (we
have 2k nonnegative eigenvalues).
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Ideas of proofs Characteristic blow-up

Define

J =
k∑

i=2

e−
2

p−1 (ζi−ζi−1), J̄ =
k∑

i=1

|νi|
1− d2

i
, Ĵ =

k∑
i=2

e−
p̄

p−1 (ζi−ζi−1),

where p̄ = min(p, 2− 1/100).

Proposition (Dynamics of the parameters)

|ν̇i − νi|
1− d2

i
≤ C(‖q‖2

H + J + ‖q‖H J̄)∣∣∣∣ 1
c1(p)

ζ̇i −
(

e−
2

p−1 (ζi−ζi−1) − e−
2

p−1 (ζi+1−ζi)
)∣∣∣∣ ≤ C(‖q‖2

H + (J + ‖q‖H )J̄ + J1+η)

‖q(s)‖2
H ≤ Ce−η(s−s0)‖q(s0)‖2

H + CĴ(s)2)

with ζi(s) = − arg tanh(di(s)).

The decomposition in generalized solitons κ∗ is stable in some sense:

ζi ∼
(

i− k + 1
2

)
(p− 1)

2
ln s, J ∼ s−2, Ĵ ∼ s−p̄, ‖q‖H ≤ s−p̄,

|νi|
1− d2

i
≤ s−p̄.
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Ideas of proofs Characteristic blow-up

CONSTRUCTION: Prescribed non-characteristic blow-up

Parameters are given: number of solitons k ≥ 2 integer and their barycenter ζ0 ∈ R.
Define ζ̄i, d̄i be the “perfect” centers of mass:

d̄i(s0) = tanh ζ̄i(s), ζ̄i(s) =

(
i− k + 1

2

)
(p− 1)

2
ln s + αi.

Step 1: Construction of w decomposing into k solitons as s→ +∞, without the condition on
the barycenter.

Recall there is a 1 to 1 correspondence between w and (q, (di)i, νi) around a sum of k
decoupled soliton.

Goal: Find initial conditions (q(s0), (di(s0))i, (νi(s0))i) such that w is defined on [s0,+∞)
and

q(s)→ 0, di(s) ∼ d̄i(s) and νi(s)→ 0 as s→ +∞.

Hatem ZAAG (P13 & CNRS) Blow-up for NLW IHES - H. Matano conference, June 25-28, 2012 19 / 24



Ideas of proofs Characteristic blow-up

Equations describing the dynamics up to leading order:

ν̇i ∼ νi,

1
c1(p)

ζ̇i ∼
(

e−
2

p−1 (ζi−ζi−1) − e−
2

p−1 (ζi+1−ζi)
)
,

‖q(s)‖2
H ≤ Ce−η(s−s0)‖q(s0)‖2

H + CĴ(s)2.

q has some (spectral) stability property: Negative part of the spectrum λ ≤ −η,
The νi correspond to λ = 1. They are transversally unstable.
The ζi correspond to λ = 1. Fortunately, we have almost a Lyapunov Theorem for the
ODE system of ζi: stability property except for the barycenter.
More precisely, consider the linearized system of ζi around ζ̄i.

Let ξ = (ζi − ζ̄i)i, up to a linear change of variable φ = Pξ, it writes

φ̇ ∼ 1
s

Mφ, where (Mφ,φ) ≤ −
k∑

i=2

φ2
i , and Mφ1 = 0.

Hence, the φi for i ≥ 2 are controlled, and φ1 “doesn’t change much”.

CONCLUSION: we only need to control νi for i = 1, . . . , k.
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Ideas of proofs Characteristic blow-up

Define the rescaling Γs : (ν1, . . . , νk) 7→ (s−1/2−|γ1|ν1, . . . , s−1/2−|γk|νk) where

γi = (i− k + 1
2

)
(p− 1)

2
.

Consider initial data of the type

(0, (d̄i(s0))i, (νi(s0)i) that is w(s0) = 0 +
k∑

i=1

κ∗(d̄i(s0), νi(s0))

where νi(s0) belongs to B := [−1, 1]k after rescaling

(νi(s0))i = Γs0((νi,0)i), νi,0 ∈ [−1, 1].

For any ν = (νi,0)i, let (q(s), ((di(s))i, (νi(s))i) the evolution with such initial conditions at
s = s0.
Define

The rescaled flow Φ : (s,ν) 7→ Γ−1
s ((ν1(s), . . . , νk(s)), and

The exit time s∗(ν) = sup{s ≥ s0| ∀τ ∈ [s0, s], Φ(ν) ∈ B}.

Goal: find ν ∈ B such that s∗(ν) = +∞.
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Ideas of proofs Characteristic blow-up

We argue by contradiction: assume that for all ν ∈ B, s∗(ν) < +∞. Define

Ψ : B→ B, ν 7→ Φ(s∗(ν),ν).

Then, denoting S = ∂B the boundary
1 ∀ν ∈ B, Ψ(ν) ∈ S.

2 ∀ν ∈ B, s ∈ [s0, s∗(ν)], s1/2+η‖q(s)‖H +
k∑

i=2

sη|φi|(s) + sη0 |φ1(s)| ≤ 1.

3 ∀ν ∈ S, s∗(ν) = s0 and Ψ(ν) = ν.
4 Ψ is continuous.

We used:
Stability properties for 2).
Transversality of the flow on the boundary S for 3) and 4).

Ψ : B→ S continuous such that Ψ|S = Id. This contradicts Brouwer’s Theorem.

Hence there exists ν] ∈ B = [−1, 1]k such that s∗(ν]) = +∞.
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Ideas of proofs Characteristic blow-up

Conclusion: existence of w] ∈ C ([s0,+∞),H ) satisfying the alternating k-soliton
decomposition, with barycenter |ζ0| ≤ sη0 .
Define u] ∈ H1

uloc × L2
uloc solution to (NLW), such that the trace on (−1, 1) is w]:

u](0)|(−1,1) = w(x, s), ∂tu](x, 0)|(−1,1) = ∂sw](x, s0) +
2

p− 1
w](x, s0) + x∂yw](x, s0).

Check that for t ∈ [0, 1) and |x| < 1− t,

u](x, t) = (1− t)−
2

p−1 w]
(

x
1− t

, s0 − ln(1− t)
)
.

u] has characteristic point 0 as desired (without the barycenter condition).
Fix barycenter using a Lorentz transform on u].
Corollary (prescribing multiple characteristic points) follows from finite speed of
propagation.
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Conclusion

Conclusion

Summary
Complete description of the blow-up.
Results are specific to semilinear equation:
e.g. ∂ttu− ∂xxu = ∂xu∂tu, explicit solution with blow-up curve {(x, |x|+ 1}, S = R

∗.
Results are very sensitive to the nonlinearity, especially to sign change, but
the method is robust:
e.g. ∂ttu− ∂xxu = |u|p: one always has S = ∅.

Some open questions
Extension to Rd? Ok in the radial case.
Problem in the general case: classification of stationnary solutions.
Can one construct a blow-up solution with prescribed characteristic set S ?
Given a 1-Lipshitz (smooth) curve Γ, can one give a solution u with blow-up curve Γ?
(See Killip & Visan).

Hatem ZAAG (P13 & CNRS) Blow-up for NLW IHES - H. Matano conference, June 25-28, 2012 24 / 24


	Introduction
	Results
	Ideas of proofs
	Sums of solitons
	Non-characteristic blow-up
	Characteristic blow-up

	Conclusion

