Construction of a multi-soliton blow-up solution to the semilinear wave equation in one space dimension

Hatem ZAAG

CNRS and LAGA Université Paris 13

Joint work with R. Côte (CNRS and Chicago) and F. Merle (CNRS and IHES)

IHES - H. Matano conference, June 25-28, 2012

Semilinear wave equations

 $u: \mathbb{R}_t \times \mathbb{R}_x \to \mathbb{R}$ solution to

$$\begin{cases} \partial_{tt}u - \partial_{xx}u - |u|^{p-1}u = 0, \\ (u, \partial_t u)|_{t=0} = (u_0, u_1). \end{cases}$$
 (NLW)

where p > 1.

Local well-posedness: $(u_0, u_1) \in H^1(\mathbb{R}) \times L^2(\mathbb{R})$ (Ginibre, Soffer & Velo, Lindblad & Sogge).

Introduction

Blow-up curve

Blow-up criterion (Levine 74):

If
$$\int \left(\frac{1}{2}|u_1|^2 + \frac{1}{2}|\partial_x u_0|^2 - \frac{1}{p+1}|u_0|^{p+1}\right) dx < 0,$$

then the solution can not be global in time.

If *u* is a blow-up solution:

- let $D \subset \mathbb{R}^2$ be the maximal domain of influence of *u* (in space-time), write $D = \{(x, t) | 0 \le t < T(x)\}.$
- Blow-up curve $\Gamma = \{(x, T(x))\}.$
- *T* is 1-Lipschitz (finite speed of propagation).
- $\overline{T} = \inf_{x \in \mathbb{R}} T(x)$ is the blow-up time.

Goal:

- Description of any arbitrary blow-up solution;
- Construction of examples for each of the blow-up modalities.

Introduction

Charateristic points

A point $a \in \mathbb{R}$ is *non-characteristic* if *D* contains a splaying cone

$$\mathscr{C}_{\delta}(a,T(a)) := \{(x,t) \in \mathbb{R} \times \mathbb{R}^+ | |x-a| \le \frac{T(a)-t}{\delta}\} \subset D \text{ for some } \delta < 1.$$

A point is *characteristic* if it is not the case.

> < = > < = >

Notation:

- \mathscr{R} is the set of non-characteristic points.
- \mathscr{S} is the set of characteristic points.

Known results:

- \mathscr{R} is never empty $(\bar{x} \text{ such that } T(\bar{x}) = \bar{T})$.
- \mathscr{S} can be empty (Caffarelli and Friedman 85, 86).

Introduce the similarity variables: for any point $(x_0, T_0) \in \overline{D}$

$$w_{x_0,T_0}(y,s) = (T_0 - t)^{\frac{2}{p-1}} u(x,t), \quad y = \frac{x - x_0}{T_0 - t}, \quad s = -\ln(T_0 - t).$$

Functional space:

$$\mathscr{H} = \left\{ (q,p) \left| \int_{-1}^{1} \left(|p(y)|^2 + |\partial_y q|^2 (1-y^2) + |q(y)|^2 \right) (1-y^2)^{\frac{2}{p-1}} dy < +\infty \right\} \right\}$$

Stationary solutions (for the "w" equation):

$$\kappa(d, y) = \pm \kappa_0 \frac{(1 - d^2)^{\frac{1}{p-1}}}{(1 + dy)^{\frac{2}{d-1}}}, \qquad \kappa_0 = \left(\frac{2(p+1)}{(p-1)^2}\right)^{\frac{1}{p-1}}$$

- 34

.

Regularity of \mathscr{R}

Theorem (Merle & Z. 2007, 2008)

- \mathscr{R} is open and T(x) is \mathscr{C}^1 on \mathscr{R} .
- There exists $\mu_0 > 0$, C_0 , such that for all $x_0 \in \mathscr{R}$, there exist $\varepsilon(x_0) = \pm 1$, $s(x_0) \ge -\ln T(x_0)$ such that $\forall s \ge s(x_0)$,

$$\left\| \begin{pmatrix} w_{x_0,T(x_0)}(s) \\ \partial_s w_{x_0,T(x_0)}(s) \end{pmatrix} - \varepsilon(x_0) \begin{pmatrix} \kappa(T'(x_0)) \\ 0 \end{pmatrix} \right\|_{\mathscr{H}} \leq C_0 e^{-\mu_0(s-s_0)}$$

(Nouaili improved the regularity of T to \mathscr{C}^{1,μ_0}).

- Only one $\kappa(d)$.
- Its parameter it the slope of the blow-up curve.
- Exponential convergence to the profile.

• • = • • =

Description of \mathscr{S} and refined asymptotics of characteristic blow-up points

Theorem (Merle & Z. 2012, improved in Côte & Z. 2012)

- *I* is a discrete set.
- If $x_0 \in \mathscr{S}$, there exist $k = k(x_0) \ge 2$, $\epsilon(x_0) = \pm 1$ and $\zeta_0 = \zeta_0(x_0)$ s.t. $\forall s \ge s_0$

$$\left\| \begin{pmatrix} w_{x_0,T(x_0)}(s) \\ \partial_s w_{x_0,T(x_0)}(s) \end{pmatrix} - \varepsilon(x_0) \sum_{i=1}^k (-1)^i \begin{pmatrix} \kappa(d_i(s)) \\ 0 \end{pmatrix} \right\|_{\mathscr{H}} \le C_0 \left(\frac{s_0}{s}\right)^{\eta} \quad \text{for some } \eta > 0.$$

where $d_i(s) = -\tanh \zeta_i(s)$ and $\zeta_i(s)$ is defined on the next slide.

• Furthermore, the blow-up curve is corner shaped at x_0 : for some $\gamma = \gamma(p) > 0$,

$$T(x) = T(x_0) - |x - x_0| + \frac{\gamma e^{2\zeta_0 \operatorname{sgn}(x_0 - x)} |x - x_0| (1 + o(1))}{|\ln|x - x_0||^{\frac{(k-1)(p-1)}{2}}}$$

Illustration with hyperbolic coordinates

Introducing

$$\bar{w}_{x_0}(\xi, s) = (1 - y^2)^{\frac{1}{p-1}} w_{x_0}(y, s)$$
 with $y = \tanh \xi$ and $\zeta_i(s) = -\tanh^{-1} d_i(s)$,

we get

$$\|\bar{w}_{x_0}(\xi,s) - \epsilon(x_0)\kappa_0 \sum_{i=1}^{k(x_0)} (-1)^i \cosh^{-\frac{2}{p-1}}(\xi - \zeta_i(s))\|_{H^1 \cap L^{\infty}(\mathbb{R})} \to 0 \text{ as } s \to \infty,$$

and with $k(x_0) = 4$ and $\epsilon(x_0) = -1$: $\overline{w}(xi,s)$ $\overline{zeta_2}$ $zeta_4$ xi

 $(\zeta_i)_{i=1,...,k}$ is a solution to the system

$$\dot{\zeta}_i = e^{-\frac{2}{p-1}(\zeta_i - \zeta_{i-1})} - e^{-\frac{2}{p-1}(\zeta_{i+1} - \zeta_i)}, \quad i = 1, \dots, k,$$

with the convention $\zeta_0(s) \equiv -\infty$, $\zeta_{k+1}(s) \equiv +\infty$, and barycenter $\frac{1}{k}(\zeta_1(s) + \cdots + \zeta_k(s)) = \zeta_0$. One can compute explicitly for

$$\zeta_i(s) = \left(i - \frac{k+1}{2}\right) \frac{(p-1)}{2} \ln s + \alpha_i + \zeta_0(x_0),$$

where $\alpha_i = \alpha_i(p, k)$ are chosen adequately.

Notice that

- The solitons are alternating.
- The number of solitons can be seen on the blow-up curve.
- The blow-up curve is never symetric with respect to x_0 , unless maybe if the barycenter of the solitons $\zeta_0(x_0) = 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Characteristic blow-up points with prescribed asymptotics

Theorem (Côte & Z. 2012)

For any integer $k \ge 2$ and $\zeta_0 \in \mathbb{R}$, there exists a blow-up solution u(x, t) in $H^1 \times L^2(\mathbb{R})$ with $0 \in \mathscr{S}$ such that T(0) = 1 and

$$\left\| \begin{pmatrix} w_{0,1}(s) \\ \partial_s w_{0,1}(s) \end{pmatrix} - \sum_{i=1}^k (-1)^{i+1} \begin{pmatrix} \kappa(d_i(s)) \\ 0 \end{pmatrix} \right\|_{\mathscr{H}} \to 0 \quad \text{as } s \to \infty,$$

with

$$d_i(s) = -\tanh \zeta_i(s), \quad \zeta_i(s) = \left(i - \frac{k+1}{2}\right) \frac{(p-1)}{2} \ln s + \alpha_i + \zeta_0.$$

Sums of solitons

Some ideas of proofs : DESCRIPTION, then CONSTRUCTION

Equation on w: let
$$\rho = (1 - y^2)^{\frac{2}{p-1}}$$
 and $\mathscr{L}w = \frac{1}{\rho}\partial_y(\rho(1 - y^2)\partial_y w).$

$$\partial_{ss}w = \mathscr{L}w - \frac{2(p+1)}{(p-1)^2}w + |w|^{p-1}w - \frac{p+3}{p-1}\partial_sw - 2y\partial_{ys}^2w, \qquad (eqw)$$

Starting point: Monotonicity property in the *w* variable.

$$E(w) = \int_{-1}^{1} \left(\frac{1}{2} |\partial_s w|^2 + \frac{1}{2} |\partial_y w^2| (1 - y^2) + \frac{p + 1}{(p - 1)^2} w^2 - \frac{1}{p + 1} |w|^{p + 1} \right) \rho dy.$$

Theorem (Lyapunov functional, Antonini & Merle 02)

$$E(w(s_2)) - E(w(s_1)) = -\frac{4}{p-1} \int_{s_1}^{s_2} \int_{-1}^{1} |\partial_s w|^2 (1-y^2)^{\frac{2}{p-1}-1} dy ds \le 0.$$

If $E(w((s_0)) < 0$ for some $s_0 \in \mathbb{R}$, w blows-up in finite time.

DESCRIPTION: Decomposition into a sum of solitons

• We have two bounds

$$\|w_{x_0,T(x_0)},\partial_s w_{x_0,T(x_0)}\|_{\mathscr{H}} \leq C, \ \int_{-\ln s_0}^{+\infty} \int_{-1}^{1} |\partial_s w|^2 (1-y^2)^{rac{2}{p-1}-1} dy ds \leq C.$$

• We find local limits: for some sequences $s_n \to +\infty$, in the $\xi = \arg \tanh(y)$ variable,

 $w_{x_0,T(x_0)}(\xi + \xi_n, s + s_n) \to w^*$ stationary solution, in H^1_{loc} .

• Nonzero stationary solutions are exactly the $\pm \kappa(d, \cdot)$. In the $(\zeta, \xi) = (\arg \tanh d, \arg \tanh y)$ variables,

$$\kappa(\zeta,\xi) = \frac{\kappa_0(p)}{\cosh(\xi-\zeta)^{\frac{2}{p-1}}}$$
 is a soliton.

• • = • • = •

Proposition

There exist an integer $k(x_0)$ *and* $\varepsilon_i \in \{\pm 1\}$ *and continuous functions* $d_i(s)$ *such that*

$$\left\| \begin{pmatrix} w_{x_0,T(x_0)}(s) \\ \partial_s w_{x_0,T(x_0)}(s) \end{pmatrix} - \sum_{i=1}^{k(x_0)} \varepsilon_i \begin{pmatrix} \kappa(d_i(s), \cdot) \\ 0 \end{pmatrix} \right\|_{\mathscr{H}} \to 0 \quad as \quad s \to +\infty.$$

and, with $\zeta_i = \arg \tanh(d_i), \ \zeta_{i+1}(s) - \zeta_i(s) \to +\infty.$

At this point:

- We may have $k(x_0) = 0$ or 1 or $k(x_0) \ge 2$.
- No control on the signs ε_i .
- If $k(x_0) \ge 2$, we have no control on the size $\zeta_{i+1}(s) \zeta_i(s)$.

DESCRIPTION at non-characteristics points

If x_0 is a non-characteristic point

- Control in a splaying cone.
- A covering argument gets rid of the weight.

$$|w_{x_0,T(x_0)}, \partial_s w_{x_0,T(x_0)}||_{H^1 \times L^2} \le C.$$

- We get one single limit: $k(x_0) = 1$ (otherwise we quit $H^1(-1, 1)$).
- Modulation + linear version of the Lyapunov yields

$$\forall s \geq s(x_0), \quad \left\| \begin{pmatrix} w_{x_0,T(x_0)}(s) \\ \partial_s w_{x_0,T(x_0)}(s) \end{pmatrix} - \varepsilon(x_0) \begin{pmatrix} \kappa(d(x_0)) \\ 0 \end{pmatrix} \right\|_{\mathscr{H}} \leq C_0 e^{-\mu_0(s-s_0)}.$$

• Stability property $\rightarrow d(x_0) = T'(x_0)$ and \mathscr{R} is open.

DESCRIPTION at characteristics points

- The covering argument does not hold:
- We may have $k(x_0) \ge 2$.

Equation on the solitons centers $\zeta_i = \arg \tanh d_i$:

$$\frac{1}{c_1(p)}\dot{\zeta}_i = \left(\varepsilon_i\varepsilon_{i-1}e^{-\frac{2}{p-1}(\zeta_i-\zeta_{i-1})} - \varepsilon_i\varepsilon_{i+1}e^{-\frac{2}{p-1}(\zeta_{i+1}-\zeta_i)}\right) + o(1).$$

- By construction $\zeta_{i+1} \zeta_i \to +\infty$.
- This implies $\varepsilon_i = (-1)^{i-1} \varepsilon_1$.
- To study further the dynamics, we need an adequate modulated decomposition.
- Introduction of the $\kappa^*(d, \nu, y)$.

Modulation

Define for $\nu > -1 + |d|$, $\kappa^{*}(d, \nu, y) = (\kappa_{1}^{*}(d, \nu, y), \kappa_{2}^{*}(d, \nu, y)),$ where

$$\kappa_1^*(d,\nu,y) = \kappa_0 \frac{(1-d^2)^{\frac{1}{p-1}}}{(1+dy+\nu)^{\frac{2}{p-1}}}, \qquad \kappa_2^*(d,\nu,y) = \nu \partial_\nu \kappa_1^*(d,\nu,y).$$

- For $\mu \in \mathbb{R}$, $\kappa_1^*(d, \mu e^s, y)$ is solution of (eqw).
- If $\mu = 0$, it is $\kappa(d, y)$.
- If $\mu > 0$, it converges to 0 as $s \to +\infty$.
- If $\mu < 0$, it blows up at time $s = \ln\left(\frac{|d|-1}{\mu}\right)$.
- We can write a decomposition

$$\begin{pmatrix} w_{x_0,T(x_0)}(s) \\ \partial_s w_{x_0,T(x_0)}(s) \end{pmatrix} = q(s) + \sum_{i=1}^{k_0} (-1)^j \kappa^*(\hat{d}_i,\hat{\nu}_i), \quad \|q(s)\|_{\mathscr{H}} \to 0$$

with the projection $\prod_{\lambda,i}(q(s)) = 0$, for all $i = 1, \dots, k(x_0)$ and eigenvalues $\lambda = 0, 1$ (we have 2k nonnegative eigenvalues).

Hatem ZAAG (P13 & CNRS)

Define

$$J = \sum_{i=2}^{k} e^{-\frac{2}{p-1}(\zeta_i - \zeta_{i-1})}, \quad \bar{J} = \sum_{i=1}^{k} \frac{|\nu_i|}{1 - d_i^2}, \quad \hat{J} = \sum_{i=2}^{k} e^{-\frac{\bar{p}}{p-1}(\zeta_i - \zeta_{i-1})},$$

where $\bar{p} = \min(p, 2 - 1/100)$.

Proposition (Dynamics of the parameters)

$$\begin{aligned} \frac{|\dot{\nu}_i - \nu_i|}{1 - d_i^2} &\leq C(\|q\|_{\mathscr{H}}^2 + J + \|q\|_{\mathscr{H}}\bar{J}) \\ \left|\frac{1}{c_1(p)}\dot{\zeta}_i - \left(e^{-\frac{2}{p-1}(\zeta_i - \zeta_{i-1})} - e^{-\frac{2}{p-1}(\zeta_{i+1} - \zeta_i)}\right)\right| &\leq C(\|q\|_{\mathscr{H}}^2 + (J + \|q\|_{\mathscr{H}})\bar{J} + J^{1+\eta}) \\ \|q(s)\|_{\mathscr{H}}^2 &\leq Ce^{-\eta(s-s_0)}\|q(s_0)\|_{\mathscr{H}}^2 + C\hat{J}(s)^2) \end{aligned}$$

with $\zeta_i(s) = -\arg \tanh(d_i(s))$.

• The decomposition in generalized solitons κ^* is *stable* in some sense:

$$\zeta_i \sim \left(i - \frac{k+1}{2}\right) \frac{(p-1)}{2} \ln s, \quad J \sim s^{-2}, \quad \hat{J} \sim s^{-\bar{p}}, \quad \|q\|_{\mathscr{H}} \leq s^{-\bar{p}}, \quad \frac{|\nu_i|}{1 - d_i^2} \leq s^{-\bar{p}}.$$

Hatem ZAAG (P13 & CNRS)

CONSTRUCTION: Prescribed non-characteristic blow-up

Parameters are given: number of solitons $k \ge 2$ integer and their barycenter $\zeta_0 \in \mathbb{R}$. Define $\overline{\zeta_i}$, $\overline{d_i}$ be the "perfect" centers of mass:

$$\bar{d}_i(s_0) = \tanh \bar{\zeta}_i(s), \qquad \bar{\zeta}_i(s) = \left(i - \frac{k+1}{2}\right) \frac{(p-1)}{2} \ln s + \alpha_i.$$

Step 1: Construction of *w* decomposing into *k* solitons as $s \to +\infty$, without the condition on the barycenter.

Recall there is a 1 to 1 correspondence between w and $(q, (d_i)_i, \nu_i)$ around a sum of k decoupled soliton.

Goal: Find initial conditions $(q(s_0), (d_i(s_0))_i, (\nu_i(s_0))_i)$ such that w is defined on $[s_0, +\infty)$ and

$$q(s) o 0, \quad d_i(s) \sim ar{d}_i(s) \quad ext{and} \quad
u_i(s) o 0 \quad ext{as} \quad s o +\infty.$$

Equations describing the dynamics up to leading order:

$$\dot{
u}_i \sim
u_i, \ rac{1}{c_1(p)} \dot{\zeta}_i \sim \left(e^{-rac{2}{p-1}(\zeta_i - \zeta_{i-1})} - e^{-rac{2}{p-1}(\zeta_{i+1} - \zeta_i)}
ight), \ \|q(s)\|_{\mathscr{H}}^2 \leq C e^{-\eta(s-s_0)} \|q(s_0)\|_{\mathscr{H}}^2 + C \hat{J}(s)^2.$$

- q has some (spectral) stability property: Negative part of the spectrum $\lambda \leq -\eta$,
- The ν_i correspond to $\lambda = 1$. They are *transversally* unstable.
- The ζ_i correspond to λ = 1. Fortunately, we have almost a Lyapunov Theorem for the ODE system of ζ_i: stability property except for the barycenter.
 More precisely, consider the linearized system of ζ_i around ζ_i.

Let $\boldsymbol{\xi} = (\zeta_i - \overline{\zeta}_i)_i$, up to a linear change of variable $\boldsymbol{\phi} = P\boldsymbol{\xi}$, it writes

$$\dot{\phi} \sim \frac{1}{s} M \phi$$
, where $(M \phi, \phi) \leq -\sum_{i=2}^{k} \phi_i^2$, and $M \phi_1 = 0$.

Hence, the ϕ_i for $i \ge 2$ are controlled, and ϕ_1 "doesn't change much".

CONCLUSION: we only need to control ν_i for $i = 1, \ldots, k$.

Hatem ZAAG (P13 & CNRS)

Ideas of proofs Characteristic blow-up Define the rescaling $\Gamma_s : (\nu_1, \dots, \nu_k) \mapsto (s^{-1/2 - |\gamma_1|} \nu_1, \dots, s^{-1/2 - |\gamma_k|} \nu_k)$ where $\gamma_i = (i - \frac{k+1}{2}) \frac{(p-1)}{2}.$

Consider initial data of the type

$$(0, (\bar{d}_i(s_0))_i, (\nu_i(s_0)_i) \text{ that is } w(s_0) = 0 + \sum_{i=1}^k \kappa^*(\bar{d}_i(s_0), \nu_i(s_0))$$

where $\nu_i(s_0)$ belongs to $\mathbb{B} := [-1, 1]^k$ after rescaling

$$(\nu_i(s_0))_i = \Gamma_{s_0}((\nu_{i,0})_i), \quad \nu_{i,0} \in [-1,1].$$

For any $\boldsymbol{\nu} = (\nu_{i,0})_i$, let $(q(s), ((d_i(s))_i, (\nu_i(s))_i)$ the evolution with such initial conditions at $s = s_0$.

Define

- The rescaled flow Φ : $(s, \nu) \mapsto \Gamma_s^{-1}((\nu_1(s), \dots, \nu_k(s)))$, and
- The exit time $s^*(\boldsymbol{\nu}) = \sup\{s \ge s_0 | \forall \tau \in [s_0, s], \ \Phi(\boldsymbol{\nu}) \in \mathbb{B}\}.$

Goal: find $\boldsymbol{\nu} \in \mathbb{B}$ such that $s^*(\boldsymbol{\nu}) = +\infty$.

We argue by contradiction: assume that for all $\nu \in \mathbb{B}$, $s^*(\nu) < +\infty$. Define

$$\Psi: \mathbb{B} \to \mathbb{B}, \quad \boldsymbol{\nu} \mapsto \Phi(\boldsymbol{s}^*(\boldsymbol{\nu}), \boldsymbol{\nu}).$$

Then, denoting $\mathbb{S}=\partial \mathbb{B}$ the boundary

 $\Psi \in \mathbb{B}, \quad \Psi(\nu) \in \mathbb{S}.$

$$\forall \nu \in \mathbb{B}, s \in [s_0, s^*(\nu)], \quad s^{1/2+\eta} \|q(s)\|_{\mathscr{H}} + \sum_{i=2}^k s^{\eta} |\phi_i|(s) + s_0^{\eta} |\phi_1(s)| \le 1.$$

$$\forall \nu \in \mathbb{S}, \quad s^*(\nu) = s_0 \text{ and } \Psi(\nu) = \nu.$$

• Ψ is continuous.

We used:

- Stability properties for 2).
- Transversality of the flow on the boundary \mathbb{S} for 3) and 4).

 $\Psi: \mathbb{B} \to \mathbb{S}$ continuous such that $\Psi|_{\mathbb{S}} = \text{Id.}$ This contradicts Brouwer's Theorem.

Hence there exists $\boldsymbol{\nu}^{\sharp} \in \mathbb{B} = [-1,1]^k$ such that $s^*(\boldsymbol{\nu}^{\sharp}) = +\infty$.

Hatem ZAAG (P13 & CNRS)

- Conclusion: existence of w[♯] ∈ C([s₀, +∞), ℋ) satisfying the alternating k-soliton decomposition, with barycenter |ζ₀| ≤ s₀^η.
- Define $u^{\sharp} \in H^1_{\text{uloc}} \times L^2_{\text{uloc}}$ solution to (NLW), such that the trace on (-1, 1) is w^{\sharp} :

$$u^{\sharp}(0)|_{(-1,1)} = w(x,s), \quad \partial_{t}u^{\sharp}(x,0)|_{(-1,1)} = \partial_{s}w^{\sharp}(x,s_{0}) + \frac{2}{p-1}w^{\sharp}(x,s_{0}) + x\partial_{y}w^{\sharp}(x,s_{0}).$$

• Check that for $t \in [0, 1)$ and |x| < 1 - t,

$$u^{\sharp}(x,t) = (1-t)^{-\frac{2}{p-1}} w^{\sharp}\left(\frac{x}{1-t}, s_0 - \ln(1-t)\right).$$

 u^{\sharp} has characteristic point 0 as desired (without the barycenter condition).

- Fix barycenter using a Lorentz transform on u^{\sharp} .
- Corollary (prescribing multiple characteristic points) follows from finite speed of propagation.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Conclusion

Summary

- Complete description of the blow-up.
- Results are specific to semilinear equation:

e.g. $\partial_{tt}u - \partial_{xx}u = \partial_x u \partial_t u$, explicit solution with blow-up curve $\{(x, |x| + 1\}, \mathscr{S} = \mathbb{R}^*.$

• Results are very sensitive to the nonlinearity, especially to sign change, but the method is robust:

e.g.
$$\partial_{tt}u - \partial_{xx}u = |u|^p$$
: one always has $\mathscr{S} = \varnothing$.

Some open questions

- Extension to \mathbb{R}^d ? Ok in the radial case. Problem in the general case: classification of stationnary solutions.
- Can one construct a blow-up solution with prescribed characteristic set \mathscr{S} ?
- Given a 1-Lipshitz (smooth) curve Γ, can one give a solution *u* with blow-up curve Γ?
 (See Killip & Visan).