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Introduction

Introduction : The equation

 ∂2
t u = ∆u + |u|p−1u,

u(0) = u0 and ut(0) = u1,

where 1 < p < pc = 1 + 4
N−1 , u(t) : x ∈ RN → u(x, t) ∈ R, u0 ∈ H1(RN) and u1 ∈ L2(RN).

Rk.: pc ≡ 1 + 4
N−1 < 1 + 4

N−2 , the Sobolev critical exponent.

Earlier work: Levine 1974, Caffarelli and Friedman 1985, Ginibre, Soffer and Velo 1992,
Kichenassamy and Littman 1993, Alinhac 1995, Lindblad and Sogge 1995, Shatah and
Struwe 1998, Killip, Stroval and Vişan 2012, Donninger and Shorkhüber 2012, Schlag,
Krieger, Nakanishi, etc...
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Introduction

Singular solutions: the maximal influence domain

We consider an arbitrary blow-up solution u(x, t).
From the finite speed of propagation, its domain of definition is

Du = {(x, t) | 0 ≤ t < T(x)}

where x 7→ T(x) is 1-Lipschitz.

x

t

T

0

Du

t=T(x)

light cone

Remark: For all x ∈ RN , there exists a “local” blow-up time T(x).
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Introduction

Definition: Non characteristic points and characteristic points

A point a is said non characteristic if the domain contains a cone with vertex (a,T(a)) and
slope δ < 1.

t

T

0

t=T(x)

x

Du

a

slope delta <1

(slope 1)light cone

The point is said characteristic if not.

- Notation: R ⊂ RN is the set of all non characteristic points.
- Notation: S ⊂ RN is the set of all characteristic points (S ∪ R = RN).
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Case N = 1 (and p > 1)

Case N = 1 (and p > 1): Existence results

Rk. All blow-up solutions have non-characteristic points (x0 = arg min T(x));

Th (Merle, Z.): There exist solutions with characteristic points.

Example: We take odd initial data, with two large plateaus of different signs. Then, the
solution blows up, and the origin is a characteristic point with ∀t < T(0), u(0, t) = 0.

U_0(x)

x

Th. (Merle-Z.) If we perturb the constructed initial data, then the new solution blows up and
has a characteristic point.

Hatem ZAAG (P13 & CNRS) Blow-up for NLW Courant Institute, October 31, 2013 5 / 25



Case N = 1 (and p > 1)

Case N = 1 (and p > 1): Asymptotic behavior

Introducing similarity variables

wx0(y, s) = (T(x0)− t)
2

p−1 u(x, t) with y =
x− x0

T(x0)− t
and s = − log(T(x0)− t),

and the soliton

κ(d, y) = κ0(p)
(1− d2)

1
p−1

(1 + dy)
2

p−1

,

we have as s→∞:
- if x0 ∈ R, then wx0(y, s)→ ±κ(d(x0), y);
- if x0 ∈ S, then wx0(y, s) ∼ ±

∑k
i=1(−1)iκ(di(s), y) (multi-solitons)

with
k ≥ 2 and di(s) = tanh(C0(i− k+1

2 ) log s + C1).
Th. (Côte, Z.) : Every multi-soliton modality does occur.
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Case N = 1 (and p > 1)

Illustration with hyperbolic coordinates when x0 ∈ S

Introducing for ξ ∈ R,

w̄x0(ξ, s) = (1− y2)
1

p−1 wx0(y, s) with y = tanh ξ and ζi(s) = C0(i− k + 1
2

) log s + C1),

we get

‖w̄x0(ξ, s)− ε(x0)κ0

k(x0)∑
i=1

(−1)i cosh−
2

p−1 (ξ − ζi(s))‖H1∩L∞(R) → 0 as s→∞,

and with k(x0) = 4 and ε(x0) = −1:
w(xi,s)

xi
zeta_1

zeta_2
zeta_3

zeta_4
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Case N = 1 (and p > 1)

Behavior of the solitons’ centers

(ζi)i=1,...,k is a solution to the system

ζ̇i = e−
2

p−1 (ζi−ζi−1) − e−
2

p−1 (ζi+1−ζi), i = 1, . . . , k,

with the convention ζ0(s) ≡ −∞, ζk+1(s) ≡ +∞. Note that the barycenter is conserved
1
k

(ζ1(s) + · · ·+ ζk(s)) ≡ ζ̄(x0). One can compute explicitely:

ζi(s) =

(
i− k + 1

2

)
(p− 1)

2
ln s + αi + ζ̄(x0),

where αi = αi(p, k) are chosen adequately.
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Case N = 1 (and p > 1)

Regularity of the blow-up curve
- R is open and T|R is C1; more precisley, if d(x0) is such that wx0(y, s) ∼ ±κ(d(x0), y), then,
T ′(x0) = d(x0);
- S is finite on compact sets, and T is corner shaped near a ∈ S.

t=T(x)

x

(a,T(a))
t

Furthermore, for some γ = γ(p) > 0,

T(x)− T(x0) + |x− x0| ∼
γe2ζ0sgn(x0−x)|x− x0|

| ln |x− x0||
(k(x0)−1)(p−1)

2

as x→ x0,

where k(x0) is the solitons’ number and ζ0(x0) is their barycenter. Note that
The number of solitons k(x0) can be “seen” on the blow-up curve.
The blow-up curve is never symmetric with respect to x0, unless maybe if the barycenter
of the solitons ζ0(x0) = 0.
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Easy generalizations

(relatively) “Easy” Generalizations

When N = 1 with lower order perturbations (M.A. Hamza and Z. 2013):

∂2
t u = ∂2

x u + |u|p−1u + f (u) + +g(∂tu, ∂xu, x, t)

with

|f (u)| ≤ C(1 + |u|q), |g(∂tu, ∂xu, x, t)| ≤ M(1 + |∂tu|+ |∂xu|+ |u|q) and q < p.

When N ≥ 2, p < pc, with radial symmetry, outside the origin:

∂2
t u = ∂2

r u + (N − 1)
∂ru
r

+ |u|p−1u

(this is because the term ∂ru
r appears as a lower order perturbation).

A mixture of both cases (radial + perturbations),
When u ∈ C (by A. Azaiez 2013).
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Case N ≥ 2 with no radial symmetry

And what about N ≥ 2 with u not necessarily radial?

We know the blow-up rate:

If x0 ∈ R, then

0 < ε0(N, p) ≤ ‖(wx0(s), ∂swx0(s))‖H1×L2(|y|<1) ≤ K(u0, u1);

If x0 ∈ S, then
‖(wx0(s), ∂swx0(s))‖H1×L2(|y|< 1

2 )
≤ K(u0, u1).

Question: Can we derive the limit of wx0(y, s) as s→∞ ?
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Case N ≥ 2 with no radial symmetry

Candidates for the limit as s→∞?

Note that wx0(y, s) satisfies for all |y| < 1 and s ≥ − log T(x0):

∂2
s w = 1

ρ(y)div[ρ(∇w− (y · ∇w))− 2(p+1)
(p−1)2 w + |w|p−1w

−p+3
p−1∂sw− 2y · ∇∂sw

(1)

where ρ(y) = (1− |y|2)α and α =
2

p− 1
− N − 1

2
> 0 since p < pc.
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Case N ≥ 2 with no radial symmetry

Candidates for the limit as s→∞?

Thanks to dissipation, there is a Lyapunov functional, and we can prove that when x0 ∈ R,

inf
v∈S,v 6=0

‖wx0(s)− v‖H1×L2(|y|<1) → 0 as s→∞,

where S is the set of all finite-energy stationary solutions of equation (1).
The problem: unlike when N = 1, we don’t have S = S0 where

S0 ≡ {0,±κ(d, y) | d ∈ RN , |d| < 1} and κ(d, y) = κ0(p)
(1− |d|2)

1
p−1

(1 + d · y)
2

p−1

.

We only have S0 ⊂6= S.
Consequence: it is certainly not true that for any solution and any x0 ∈ R,

wx0(y, s)→ ±κ(d(x0), y) as s→∞.
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Case N ≥ 2 with no radial symmetry

Consequence for our framework

We restrict ourselves to the subset R0 ⊂ R where

R0 = {x0 ∈ R | wx0 → ±κ(d, y) for some |d| < 1}.

Rk.
If N = 1, we already proved that R = R0;
If N ≥ 2, we have R0 6= ∅, thanks to explicit blow-up solutions related to κ(d, y).
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Case N ≥ 2 with no radial symmetry

Stability results related to R0

Result 1: w.r.t to the blow-up point. R0 is open and T|R0 is C1.
In fact, ∇T(x0) = d(x0) where d(x0) is s.t.

wx0(y, s)→ ±κ(d(x0), y), hence u(x, t) ∼ ± κ0(p)(1− |d(x0)|2)
1

p−1

(T(x0)− t + d(x0) · (x− x0))
2

p−1

.

Result 2: w.r.t. initial data. Take û a blow-up solution and â ∈ R0(û). Then, there
exists ε0 > 0 such that B(â, ε0) ⊂ R0(u) for any solution satisfying

‖(u0, ∂tu0)− (û0, ∂tû0)‖ ≤ ε0.

Corollary: Persistence of a local minimum. Assume in addition that x 7→ T̂(x)
achieves a local minimum at â. Then, x 7→ T(x) achieves also a local minimum in
B(â, ε0).
We have the same statement with a local maximum.
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Ingredients of the proof

Ingredients of the proof

As for N = 1, the proof relies on two ingredients:
A very good understanding of the dynamics of the equation in similarity variables near
±κ(d, y);
A rigidity theorem for ancient solutions of ∂2

t u = ∆u + |u|p−1u defined in an infinite
backward non-characteristic cone.

However, the proof is far from being a simple adaptation of the case N = 1.

In the following, we will present these two ingredients and insist on the difference with the
case N = 1.
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Ingredients of the proof

Ingredient 1: the dynamics near κ(d, y)

I recall the equation (1)

∂2
s w = 1

ρ(y)div[ρ(∇w− (y · ∇w))− 2(p+1)
(p−1)2 w + |w|p−1w

−p+3
p−1∂sw− 2y · ∇∂sw

where ρ(y) = (1− |y|2)α and α =
2

p− 1
− N − 1

2
> 0 since p < pc.

I recall the soliton:

κ(d, y) = κ0(p)
(1− |d|2)

1
p−1

(1 + d · y)
2

p−1

.
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Ingredients of the proof

Ingredient 1: the dynamics near κ(d, y) (cont.)

And now, the dynamics near the soliton:

There exists ε0 > 0 s.t. if w is a solution of (1) with

‖w(0)− κ(d∗)‖H ≤ ε0 for some |d∗| < 1,

then:
either w(s)→ 0 as s→∞;
or w(s)→ κ(d∞) for some d∞ close to d∗;
or w(s) blows up in finite time.

Hatem ZAAG (P13 & CNRS) Blow-up for NLW Courant Institute, October 31, 2013 18 / 25



Ingredients of the proof

Idea of the proof

Linearizing equation (1) around κ(d, ·), we find the following eigenvalues:

λ = 1, with multiplicity 1 and the same eigenfunction as for N = 1 (depending only on
|d|);
λ = 0, with multiplicity N, with one eigenfunction which depends only on |d| and is the
same as for N = 1, and the N − 1 other eigenfunctions depend also on the N − 1 angular
directions of d (new feature)
An infinite-dimensional negative subspace.
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Ingredients of the proof

Control of the nonnegative directions

For the N + 1 nonnegative directions, we use a modulation technique, choosing parameters
d(s) ∈ RN and ν(s) ∈ R such that we kill the N + 1 nonnegative directions of q(y, s), where

q(y, s) = w(y, s)− κ∗(d, ν, y).

and
κ∗(d, ν, y) = κ0(p)

(1− |d|2)
1

p−1

(1 + ν + d · y)
2

p−1

.

Rk. Note that:
When ν = 0, κ∗(d, 0, y) = κ(d, y);
For any µ ∈ R, the function (y, s) 7→ κ∗(d, µes, y) is a particular solution of equation (1).
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Ingredients of the proof

Control of the negative directions (of infinite dimension)

We do it thanks to the Lyapunov functional of the linearized equation (obtained by
multiplication of the equation by the time derivative, then, integrating).

The difficulties with respect to N = 1:
Handling the angular derivatives (a new feature);
Deriving spectral properties of the operator v 7→ 1

ρ(y)div[ρ(∇v− (y · ∇v)) (related to the
Laplace-Beltrami operator);
Deriving some sharp Hardy-Sobolev inequality;
The modulation technique is more intricate.
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Ingredients of the proof

Ingredient 2: A rigidity (or Liouville) Theorem

The result: Consider u(x, t) a solution of ∂2
t u = ∆u + |u|p−1u such that:

- u is defined in the infinite green cone with δ∗ < 1,
- u is less than (T∗ − t)−

2
p−1 (in L2 average),

- In the blue cone (a light cone),

u(x, t) = κ0(p)
(1− |d∗|2)

1
p−1

(T∗ − t + d∗ · (x− x∗))
2

p−1

for some |d∗| < 1. (2)

(x*,T*)

t

x

Light cone

cone of slope delta*

Then, (2) holds in the green cone.
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Ingredients of the proof

Comments on the Liouville Theorem

When N = 1, we didn’t have the third hypothesis. Thus, we had more possibilities in the
conclusion.

In fact, both for N = 1 and N ≥ 2, we apply the rigidity theorem to data satisfying this third
hypothesis.

Proving a rigidity theorem without the third hypothesis is blocked by the non-availability of
the classification of the finite-energy self-similar solutions.
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Ingredients of the proof

The proof of the Liouville Theorem

Thanks to the third hypothesis (not used when N = 1), we know that for any a ∈ R,
wa(s)→ κ(d) as s→ −∞:

=⇒We can use our sharp knowledge of the dynamics of the equation near κ(d, y) given in
the first ingredient.
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Thank you !

Thank you for your attention.
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