Introduction and results on blow-up for the semilinear wave equation

Hatem ZAAG

CNRS & LAGA Université Paris 13

Hausdorff Institute for Mathematics, Bonn November 9, 2010

joint work with Frank Merle, Université de Cergy-Pontoise and IHES

Introduction and results on blow-up for the semilinear wave equation -p. 1/30

The equation

$$\left\{ \begin{array}{l} \partial_t^2 u = \partial_x^2 u + |u|^{p-1} u, \\ u(0) = u_0 \text{ and } u_t(0) = u_1, \end{array} \right.$$

where
$$p > 1$$
,
 $u(t) : x \in \mathbb{R} \rightarrow u(x,t) \in \mathbb{R}$,
 $u_0 \in H^1_{loc,u}(\mathbb{R})$ and $u_1 \in L^2_{loc,u}(\mathbb{R})$
and

$$\|v\|_{L^2_{\mathrm{loc},\mathrm{u}}}(\mathbb{R}) = \sup_{a \in \mathbb{R}} \left(\int_{a-1}^{a+1} |v(x)|^2 dx \right)^{1/2}.$$

THE CAUCHY PROBLEM IN $H^1_{loc,u}(\mathbf{I\!R}) \times L^2_{loc,u}(\mathbf{I\!R})$

It is a consequence of:

- ▶ the Cauchy problem in $H^1 \times L^2(\mathbb{R})$,
- the finite speed of propagation.

Maximal solution in $H^1_{loc,u}(\mathbb{R}) \times L^2_{loc,u}(\mathbb{R})$

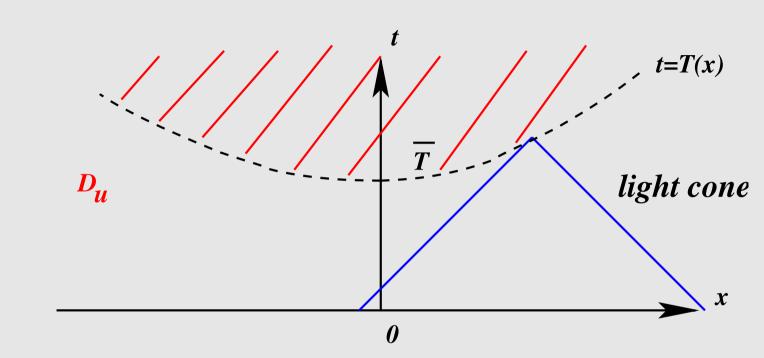
- either it exists for all $t \in [0, \infty)$ (global solution),
- or it exists for all $t \in [0, \overline{T})$ (singular solution).

Existence of singular solutions

It's a consequence of ODE techniques and the finite speed of propagation; see also the energy argument by Levine 1974:

if $(u_0, u_1) \in H^1 \times L^2(\mathbb{R})$ and $\int_{\mathbb{R}} \left(\frac{1}{2} (u_1)^2 + \frac{1}{2} (\partial_x u_0)^2 - \frac{1}{p+1} |u_0|^{p+1} \right) dx < 0$, *then u is not global.*

Singular solutions: the maximal influence domain



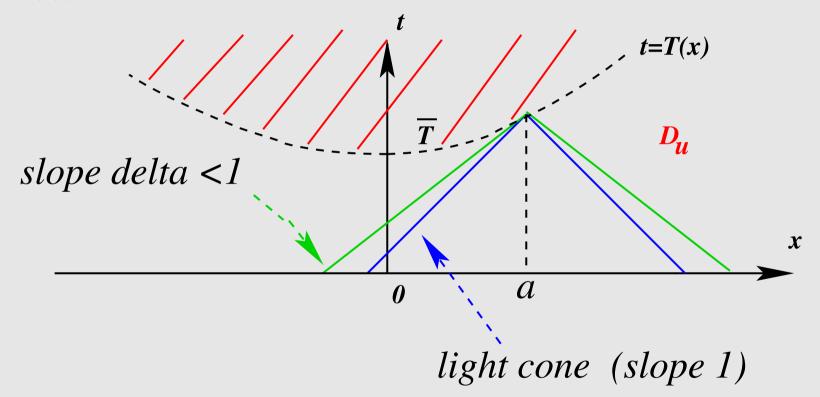
The blow-up set $t \to T(x)$ is 1-Lipschitz (finite speed of propagation).

Remark: $\overline{T} = \inf T(x)$ is the blow-up time. For all $x \in \mathbb{R}^N$, there exists a "local" blow-up time T(x).

The aim of this talk: To describe precisely the blow-up set, and the solution near the blow-up set, for an arbitrary blow-up solution.

Definition: Non characteristic points and characteristic points

A point *a* is said *non characteristic* if the domain contains a cone with vertex (a, T(a)) and slope $\delta < 1$.



The point is said *characteristic* if not.

- Notation: $\mathcal{R} \subset \mathbb{R}$ is the set of all *non* characteristic points.
- Notation: $S \subset \mathbb{R}$ is the set of all characteristic points ($S \cup \mathcal{R} = \mathbb{R}$).

Known results, for an arbitrary solution

- The blow-up set $\Gamma = \{(x, T(x))\} \subset \mathbb{R}^2$.
- By definition, Γ is 1-Lipschitz.
- $\mathcal{R} \neq \emptyset$ (Indeed, \bar{x} such that $T(\bar{x}) = \min_{x \in \mathbb{R}} T(x)$ is non characteristic).
- Caffarelli and Friedman (1985 and 1986) had two criteria to have $\mathcal{R} = \mathbb{R}$ and $x \mapsto T(x)$ of class C^1 (using the positivity of the fundamental solution):
 - ▷ either when $p \ge 3$, with $u_0 \ge 0$, $u_1 \ge 0$ and $(u_0, u_1) \in C^4 \times C^3(\mathbb{R})$,
 - or under conditions on initial data that ensure that

 $u \geq 0$ and $\partial_t u \geq (1 + \delta_0) |\partial_x u|$

for some $\delta_0 > 0$.

Questions and new results

- ▷ **Existence**
 - Are there characteristic points? *yes,* $S \neq \emptyset$.
- ▶ Regularity
 - Is ${\mathcal R}$ open? yes
 - Is Γ (or $\Gamma_{\mathcal{R}}$) of class C^1 ? *yes*
 - "How is" *S*? *isolated points*
 - How does Γ look like near S? *corner shaped*
- Asymptotic behavior (profile)
 - How does the solution behave near a non characteristic point? *we have the profile*
 - and near a characteristic point? *we have a precise decomposition into solitons*

Rk. Regularity and asymptotic behavior are linked.

The plan

- ▶ Part 1: Existence of characteristic points.
- ▶ Part 2: A Liouville theorem and regularity of the blow-up set.
- ▶ Part 3: A Lyapunov functional and the blow-up rate.
- Part 4: Asymptotic behavior near *non characteristic* points (the blow-up profile).
- Part 5: Asymptotic behavior near *characteristic* points (decomposition into solitons).

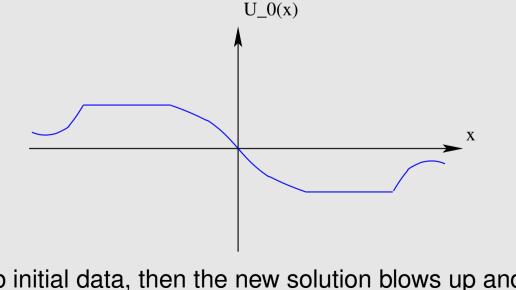
Rk. The order of this presentation goes from the easiest (to state) to the most complicated. The chronological order is actually 3, 4, 1, 2, 5.

Part 1: Existence of characteristic points

We recall: Any solution to the Cauchy problem has (at least) a non characteristic point (the minimum of the blow-up set).

Th. There exist *initial data which give solutions with a characteristic point.*

Example: We take odd initial data, with two large plateaus of different signs. Then, the solution blows up, and the origin is a characteristic point with $\forall t < T(0), u(0, t) = 0.$



Th. If we perturb initial data, then the new solution blows up and has a characteristic point.

Part 2: Regularity of the blow-up set

Near a non characteristic point:

Th. The set of non characteristic points \mathcal{R} is open and T(x) is of class C^1 on this set ($C^{1,\alpha}$ by N. Nouaili CPDE 2008).

▷ Near a characteristic point:

Th. The set of characteristic points S is made of **isolated points**. If $a \in S$, then $T'_{l}(a) = 1$ and $T'_{r}(a) = -1$.

Cor. There is no solution with $a \in S$ and T'(a) = 1.

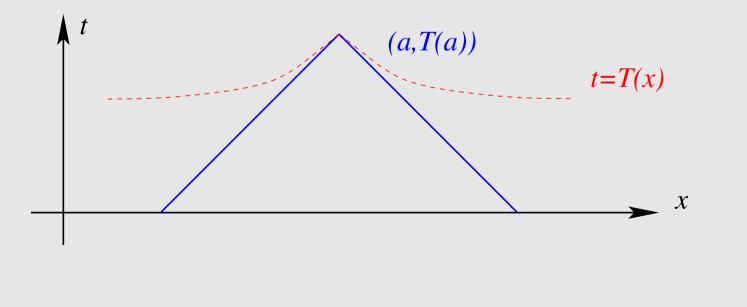
Part 2: The corner property near a characteristic point

Th. (the corner property) *If* $a \in S$ *, then for all x near a,*

$$\frac{1}{C}|x-a||\log|x-a||^{-\gamma(a)} \le T(x) - T(a) + |x-a| \le C|x-a||\log|x-a||^{-\gamma(a)}$$
(1)

where

$$\gamma(a) = \frac{(k(a) - 1)(p - 1)}{2} \text{ with } k(a) \in \mathbb{N}, k(a) \ge 2.$$



Introduction and results on blow-up for the semilinear wave equation -p. 11/30

Comments

Rk. We recall the result of Caffarelli and Friedman:

If for all $x \in \mathbb{R}$ and t < T(x), we have $u(x,t) \ge 0$ and $\partial_t u \ge (1+\delta_0)|\partial_x u|$ for some $\delta_0 > 0$, then $\mathcal{R} = \mathbb{R}$.

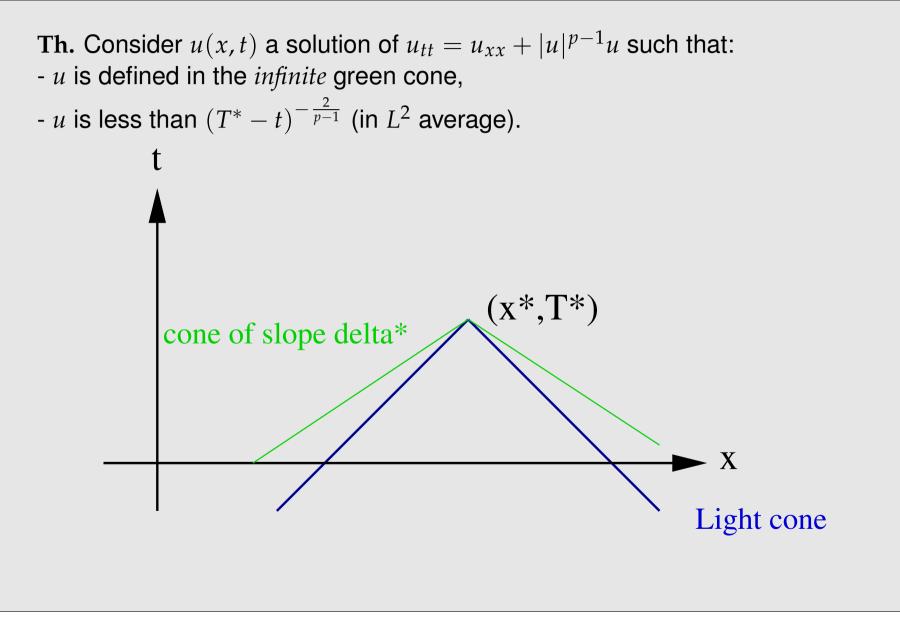
Here, We improve their criterion: If for all $x \in [a, b]$ and t < T(x), we have $u(x, t) \ge 0$, then $(a, b) \subset \mathcal{R}$.

Idea of the proof of the regularity in the non characteristic case: The techniques are based on

- a very good understanding of the behavior of the solution in selfsimilar variables in the energy space related to the selfsimilar variable (see Part 3 of this talk).
- a Liouville Theorem (see next slide).

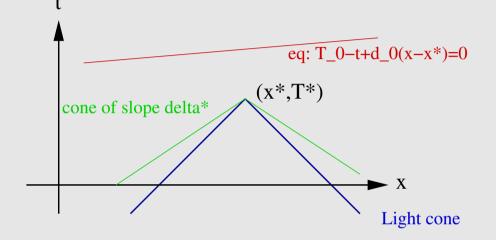
Idea of the proof of the regularity in the characteristic case: See the third talk.

A Liouville Theorem



LATEX prosper

A Liouville Theorem



Then,

- either $u \equiv 0$,

- or there exists $T_0 \ge T^*$, $d_0 \in [-\delta_*, \delta_*]$ and $\theta_0 = \pm 1$ such that u is actually defined below the red line by

$$u(x,t) = \theta_0 \kappa_0(p) \frac{(1-d_0^2)^{\frac{1}{p-1}}}{(T_0 - t + d_0(x - x^*))^{\frac{2}{p-1}}}.$$

Remark: *u* blows up on the red line.

Comments

▷ The limiting case $\delta^* = 1$ is still open.

The proof:

- The proof has a completely different structure from the proof for the heat equation.
- The proof is based on various energy arguments and on a dynamical result.

Part 3: A Lyapunov functional and the blow-up rate

Selfsimilar transformation for all $x_0 \in \mathbf{I} \mathbf{R}$

$$w_{x_0}(y,s) = (T(x_0) - t)^{\frac{2}{p-1}} u(x,t), \ y = \frac{x - x_0}{T(x_0) - t}, \ s = -\log(T(x_0) - t).$$

(x,t) in the light cone of vertex $(x_0, T(x_0)) \iff (y,s) \in (-1,1) \times [-\log T(x_0), \infty)$. Equation on $w = w_{x_0}$: For all $(y,s) \in (-1,1) \times [-\log T(x_0), \infty)$:

$$\partial_{ss}^2 w - \frac{1}{\rho} \partial_y (\rho(1-y^2) \partial_y w) + \frac{2(p+1)}{(p-1)^2} w - |w|^{p-1} w$$
$$= -\frac{p+3}{p-1} \partial_s w - 2y \partial_{sy}^2 w$$
where $\rho(y) = (1-|y|^2)^{\frac{2}{p-1}}$

Introduction and results on blow-up for the semilinear wave equation – p. 16/30

A Lyapunov functional (Antonini-Merle)

$$E(w) = \int_{-1}^{1} \left(\frac{1}{2} (\partial_s w)^2 + \frac{1}{2} (\partial_y w)^2 (1 - y^2) + \frac{(p+1)}{(p-1)^2} w^2 - \frac{1}{p+1} |w|^{p+1} \right) \rho dy,$$

Thanks to a Hardy-Sobolev inequality, $E = E(w, \partial_s w)$ is well defined in the energy space

$$\mathcal{H} = \left\{ q \in H^1_{loc} \times L^2_{loc}(B) \mid \|q\|^2_{\mathcal{H}} \equiv \int_{-1}^1 \left(q_1^2 + \left(\partial_y q_1 \right)^2 \left(1 - y^2 \right) + q_2^2 \right) \rho dy < +\infty \right\}.$$

Introduction and results on blow-up for the semilinear wave equation – p. 17/30

Properties of the Lyapunov functional *E*

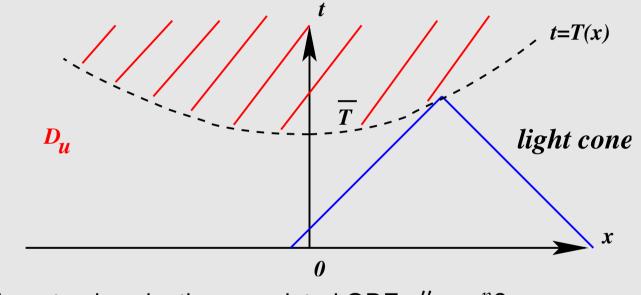
Lemma 1 (Monotonicity (Antonini-Merle)) For all s_1 and s_2 :

$$E(w(s_2)) - E(w(s_1)) = -\frac{4}{p-1} \int_{s_1}^{s_2} \int_{-1}^{1} (\partial_s w)^2 (1-|y|^2)^{\frac{2}{p-1}-1} dy ds.$$

Lemma 2 (A blow-up criterion) Consider a solution W such that $E(W(s_0)) < 0$ for some $s_0 \in \mathbb{R}$, then W blows up in finite time $S > s_0$.

The blow-up rate

We look for a *local* blow-up rate near the singular surface (i.e. near every local blow-up time, $t \to T(x_0)$), in $H^1 \times L^2$ of the section of the light cone.



Hint: Is the rate given by the associated ODE $v'' = v^p$?

Introduction and results on blow-up for the semilinear wave equation – p. 19/30

An upper bound on the blow-up rate in selfsimilar variables

Th. For all
$$x_0 \in \mathbb{R}$$
 and $s \ge -\log T(x_0) + 1$,

$$\int_{-1}^{1} \left(\frac{1}{2} (\partial_s w)^2 + \frac{1}{2} (\partial_y w)^2 (1 - |y|^2) + \frac{(p+1)}{(p-1)^2} w^2 + \frac{1}{p+1} |w|^{p+1} \right) \rho dy \le K$$

where the constant *K* depends only on *p* and an upper bound on $T(x_0)$, $1/T(x_0)$ and $||(u_0, u_1)||$.

Getting rid of the weights

Reducing (-1,1) to $(-\frac{1}{2},\frac{1}{2})$, we get:

Cor. For all $x_0 \in \mathbb{R}$ and $s \ge -\log T(x_0) + 1$,

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \left((\partial_s w)^2 + (\partial_y w)^2 + w^2 + |w|^{p+1} \right) dy \le K.$$

Upper bound in the original u(x, t) **variables**

Th. sup. *For all*
$$x_0 \in \mathbb{R}$$
 and $t \in [\frac{3}{4}T(x_0), T(x_0))$:

$$(T(x_0) - t)^{\frac{2}{p-1}} \frac{\|u(t)\|_{L^2(B(x_0, \frac{T(x_0) - t}{2}))}}{(T(x_0) - t)^{1/2}} + (T(x_0) - t)^{\frac{2}{p-1} + 1} \left(\frac{\|u_t(t)\|_{L^2(B(x_0, \frac{T(x_0) - t}{2}))}}{(T(x_0) - t)^{1/2}} + \frac{\|\partial_x u(t)\|_{L^2(B(x_0, \frac{T(x_0) - t}{2}))}}{(T(x_0) - t)^{1/2}} \right) \le K.$$

Rk. We have a lower bound of the same size when x_0 is non characteristic (see Part 4 on profiles near a non characteristic point).

Idea of the proof of the upper bound

- Selfsimilar transformation and existence of a Lyapunov functional
- Interpolation to gain regularity
- ▷ Gagliardo-Nirenberg estimates.

Part 4: Asymptotic behavior at a non characteristic point

Take $x_0 \in \mathbb{R}$ non characteristic. Using a covering argument for x near x_0 , we obtain that $\|(w_{x_0}(s), \partial_s w_{x_0}(s))\|_{H^1 \times L^2(-1,1)}$ is bounded.

Question: Does $w_{x_0}(y,s)$ have a limit or not, as $s \to \infty$ (that is as $t \to T(x_0)$).

Remark: In the context of Hamiltonian systems, this question is delicate, and there is no natural reason for such a convergence, since the wave equation is time reversible.

See for similar difficulty and approach, results for

- ▶ the critical KdV (Martel and Merle),
- ▶ NLS (Merle and Raphaël).

Stationary solutions.

We look for solutions of

$$\frac{1}{\rho}\left(\rho(1-y^2)w'\right)' - \frac{2(p+1)}{(p-1)^2}w + |w|^{p-1}w = 0.$$

We work in \mathcal{H}_0 , the (stationary energy space) defined by

$$\mathcal{H}_0 = \{ r \in H^1_{loc}(-1,1) \mid \|r\|^2_{\mathcal{H}_0} \equiv \int_{-1}^1 \left(r'^2(1-y^2) + r^2 \right) \rho dy < +\infty \}.$$

Prop. Consider a stationary solution in \mathcal{H}_0 . Then, either $w \equiv 0$ or there exist $d \in (-1, 1)$ and $e = \pm 1$ such that $w(y) = e\kappa(d, y)$ where

$$\forall (d,y) \in (-1,1)^2, \ \kappa(d,y) = \kappa_0 \frac{(1-d^2)^{\frac{1}{p-1}}}{(1+dy)^{\frac{2}{p-1}}} \text{ and } \kappa_0 = \left(\frac{2(p+1)}{(p-1)^2}\right)^{\frac{1}{p-1}}$$

Remark: We have 3 connected components. $E(0) = 0 < E(\pm \kappa(d)) = E(\kappa_0)$.

Blow-up profile near a non characteristic point

Th. There exist $C_0 > 0$ and $\mu_0 > 0$ such that if x_0 is **non characteristic**, then there exist $d(x_0) \in (-1, 1)$, $e(x_0) = \pm 1$ and $s^*(x_0) \ge -\log T(x_0)$ such that: (i) For all $s \ge s^*(x_0)$,

$$\left\| \begin{pmatrix} w_{x_0}(s) \\ \partial_s w_{x_0}(s) \end{pmatrix} - e(x_0) \begin{pmatrix} \kappa(d(x_0), \cdot) \\ 0 \end{pmatrix} \right\|_{\mathcal{H}} \le C_0 e^{-\mu_0(s-s^*)}$$

and $E(w_{x_0}(s) \rightarrow E(\kappa_0)$ where the energy space

$$\mathcal{H} = \left\{ q \in H^1_{loc} \times L^2_{loc}(-1,1) \mid \|q\|^2_{\mathcal{H}} \equiv \int_{-1}^1 \left(q_1^2 + \left(q_1'\right)^2 \left(1 - y^2\right) + q_2^2 \right) \rho dy < +\infty \right\}.$$

(*ii*) $d(x_0) = T'(x_0)$. **Rk.** We have exp. fast convergence (hence, C^{1,μ_0} regularity of \mathcal{R} , see Nouaili). **Rk.** $||w_{x_0}(y,s) - e(x_0)\kappa(d(x_0), y)||_{L^{\infty}(-1,1)} \to 0$. **Rk.** The parameter of the profile $d(x_0)$ has a geometrical interpretation $(T'(x_0))$.

Difficulties of the proof of convergence

- The set of non zero stationary solutions is made up of non isolated solutions (one parameter family):
 - \longrightarrow we need a modulation technique.
- The linearized operator around a non zero stationary solution is non self-adjoint:

 \longrightarrow we need to use dispersive properties coming from the Lyapunov functional to control the negative part of the spectrum.

Part 5: Asymptotic behavior at a characteristic point

Th. If $x_0 \in \mathbb{R}$ is characteristic, then, there exist $k(x_0) \ge 2$, $e(x_0) = \pm 1$ and continuous $d_i(s) = -\tanh \zeta_i(s)$ for i = 1, ..., k such that: (i)

$$\left\| \left(\begin{array}{c} w_{x_0}(s) \\ \partial_s w_{x_0}(s) \end{array} \right) - e(x_0) \sum_{i=1}^{k(x_0)} (-1)^i \left(\begin{array}{c} \kappa(d_i(s), \cdot) \\ 0 \end{array} \right) \right\|_{\mathcal{H}} \to 0 \text{ as } s \to \infty,$$

(ii) Introducing

$$\bar{w}_{x_0}(\xi,s) = (1-y^2)^{\frac{1}{p-1}} w_{x_0}(y,s)$$
 with $y = \tanh \xi$ and $\zeta_i(s) = -\tanh^{-1} d_i(s)$,

we get

$$\|\bar{w}_{x_0}(\xi,s) - e(x_0)\sum_{i=1}^{k(x_0)} (-1)^i \cosh^{-\frac{2}{p-1}}(\xi - \zeta_i(s))\|_{H^1 \cap L^\infty(\mathbb{R})} \to 0 \text{ as } s \to \infty,$$

Part 5: Asymptotic behavior at a characteristic point (cont.)

(iii) For all $i = 1, ..., k(x_0)$ and s large enough,

$$\left(i - \frac{(k(x_0) + 1)}{2}\right) \frac{(p - 1)}{2} \log s - C_0 \le \zeta_i(s) \le \left(i - \frac{(k(x_0) + 1)}{2}\right) \frac{(p - 1)}{2} \log s + C_0.$$

(iv)
$$E(w_{x_0}(s)) \rightarrow k(x_0)E(\kappa_0)$$
 as $s \rightarrow \infty$.

Rk.

LATEX prosper

- As $s \to \infty$, w_{x_0} becomes like a **decoupled** sum of *equidistant* stationary solutions ("solitons"), with *alternate* signs.

- In the ξ variable, half of the solitons go to $-\infty$, and the other half to $+\infty$.

- The main difficulty in the proof is to prove that $k(x_0) \ge 2$ (the case $k(x_0) = 0$ is harder to eliminate).

- The $\zeta_i(s)$ satisfy a Toda system:

$$\frac{1}{c_1}\zeta'_i(s) = e^{-\frac{2}{p-1}(\zeta_i - \zeta_{i-1})} - e^{-\frac{2}{p-1}(\zeta_{i+1} - \zeta_i)} + R_i \text{ with } R_i = o\left(\sum_{j=1}^{k-1} e^{-\frac{2}{p-1}(\zeta_{j+1} - \zeta_j)}\right) \text{ as } s \to \infty.$$

The energy behavior

Defining

 $k(x_0) = 1$ when $x_0 \in \mathcal{R}$,

we get the following:

Cor. (i) For all $x_0 \in \mathbb{R}$ and $s \ge -\log T(x_0)$, we have

 $E(w_{x_0}(s)) \ge k(x_0)E(\kappa_0).$

(ii) (An energy criterion for non characteristic points) *If for some* $x_0 \in \mathbb{R}$ *and* $s_0 \ge -\log T(x_0)$, we have

 $E(w_{x_0}(s_0)) < 2E(\kappa_0),$

then $x_0 \in \mathcal{R}$.

Introduction and results on blow-up for the semilinear wave equation – p. 29/30

Blow-up speed or the L^{∞} norm behavior

Cor. (i) (Case of non-characteristic points) *If* $x_0 \in \mathcal{R}$ *, then*

$$\frac{(T(x_0)-t)^{-\frac{2}{p-1}}}{C} \le \sup_{|x-x_0| < T(x_0)-t} |u(x,t)| \le C(T(x_0)-t)^{-\frac{2}{p-1}}$$

(i) (Case of characteristic points) *If* $x_0 \in S$ *, then*

 $\frac{|\log(T(x_0)-t)|^{\frac{k(x_0)-1}{2}}}{C(T(x_0)-t)^{\frac{2}{p-1}}} \leq \sup_{|x-x_0|< T(x_0)-t} |u(x,t)| \leq \frac{C|\log(T(x_0)-t)|^{\frac{k(x_0)-1}{2}}}{(T(x_0)-t)^{\frac{2}{p-1}}}.$

where $k(x_0) \ge 2$ is the solitons' number in the decomposition of w_{x_0} .

Rk.

When $x_0 \in \mathcal{R}$, the speed is given by the associated ODE $u'' = u^p$. When $x_0 \in S$, the speed is higher. It has a log correction depending on the number of solitons.