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The equation











∂2
t u = ∂2

xu + |u|p−1u,

u(0) = u0 and ut(0) = u1,

where p > 1,

u(t) : x ∈ IR → u(x, t) ∈ IR,

u0 ∈ H1
loc,u(IR) and u1 ∈ L2

loc,u(IR)

and

‖v‖L2
loc,u(IR) = sup

a∈IR

(

∫ a+1

a−1
|v(x)|2dx

)1/2

.
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Definition: Non characteristic points and characteristic points

A point a is said non characteristic if the domain contains a cone with vertex
(a, T(a)) and slope δ < 1.

t

T

0

t=T(x)

x

Du

a

slope delta <1

(slope 1)light cone

The point is said characteristic if not.

- Notation: R ⊂ IR is the set of all non characteristic points.
- Notation: S ⊂ IR is the set of all characteristic points (S ∪R = IR).
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Similarity variables

Selfsimilar transformation for all x0 ∈ IR

wx0(y, s) = (T(x0)− t)
2

p−1 u(x, t), y =
x − x0

T(x0)− t
, s = − log(T(x0)− t).

(x, t) in the light cone of vertex (x0, T(x0)) ⇐⇒ (y, s) ∈ (−1, 1)× [− log T(x0), ∞).

Equation on w = wx0 : For all (y, s) ∈ (−1, 1)× [− log T(x0), ∞):

∂2
ssw − 1

ρ ∂y(ρ(1 − y2)∂yw) + 2(p+1)
(p−1)2 w − |w|p−1w

= − p+3
p−1 ∂sw − 2y∂2

syw

where ρ(y) = (1 − |y|2)
2

p−1
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A Lyapunov functional (Antonini-Merle)

E(w) =
∫ 1

−1

(

1

2
(∂sw)2 +

1

2
(∂yw)2(1 − y2) +

(p + 1)

(p − 1)2
w2 −

1

p + 1
|w|p+1

)

ρdy,

Thanks to a Hardy-Sobolev inequality, E = E(w, ∂sw) is well defined in the
energy space

H =

{

q ∈ H1
loc × L2

loc(B) | ‖q‖2
H ≡

∫ 1

−1

(

q2
1 +

(

∂yq1
)2 (1 − y2) + q2

2

)

ρdy < +∞

}

.
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Properties of the Lyapunov functional E

Lemma 1 (Monotonicity (Antonini-Merle)) For all s1 and s2:

E(w(s2))− E(w(s1)) = −
4

p − 1

∫ s2

s1

∫ 1

−1
(∂sw)2(1 − |y|2)

2
p−1 −1dyds.

Lemma 2 (A blow-up criterion) Consider a solution W such that
E(W(s0)) < 0 for some s0 ∈ IR, then W blows up in finite time S > s0.
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Regularity of the blow-up set at a characteristic point

Th. The set of characteristic points S is made of isolated points.

If a ∈ S , then T′
l (a) = 1 and T′

r(a) = −1.

Rk. An important step of the proof is to prove first that S has an empty interior.

Th. (the corner property) If a ∈ S , then for all x near a,

1

C
|x − a|| log |x − a||−γ(a) ≤ T(x)− T(a) + |x − a| ≤ C|x − a|| log |x − a||−γ(a)

(1)
where

γ(a) =
(k(a)− 1)(p − 1)

2
with k(a) ∈ N, k(a) ≥ 2.

Rk. Estimate (1) remains valid after differentiation.

t=T(x)

x

(a,T(a))
t
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Asymptotic behavior at a characteristic point

Th. If x0 ∈ IR is characteristic, then, there exist k(x0) ≥ 2, e(x0) = ±1 and

continuous di(s) = − tanh ζi(s) for i = 1, ..., k such that:
(i)

∥

∥

∥

∥

∥

(

wx0(s)

∂swx0(s)

)

− e(x0)
k(x0)

∑
i=1

(−1)i

(

κ(di(s), ·)

0

)∥

∥

∥

∥

∥

H

→ 0 as s → ∞,

(ii) Introducing

w̄x0(ξ, s) = (1 − y2)
1

p−1 wx0 (y, s) with y = tanh ξ and ζi(x0) = − argth di(s),

we get

‖w̄x0(ξ, s)− e(x0)
k(x0)

∑
i=1

(−1)i cosh− 2
p−1 (ξ − ζi(s))‖H1∩L∞(IR) → 0 as s → ∞,
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Asymptotic behavior at a characteristic point (cont.)

(iii) For all i = 1, ..., k(x0) and s large enough,

(

i −
(k(x0) + 1)

2

)

(p − 1)
2

log s−C0 ≤ ζi(s) ≤

(

i −
(k(x0) + 1)

2

)

(p − 1)
2

log s+C0.

(iv) E(wx0(s)) → k(x0)E(κ0) as s → ∞.

Rk.
- As s → ∞, wx0 becomes like a decoupled sum of equidistant stationary

solutions (“solitons”), with alternate signs.
- In the ξ variable, half of the solitons go to −∞, and the other half to +∞.
- The main difficulty in the proof is to prove that k(x0) ≥ 2 (the case k(x0) = 0
is harder to eliminate).
- The ζi(s) satisfy a Toda system:

1

c1
ζ ′i(s) = e−

2
p−1 (ζi−ζi−1)− e−

2
p−1 (ζi+1−ζi) +Ri with Ri = o





k−1

∑
j=1

e−
2

p−1 (ζ j+1−ζ j)



 as s → ∞.
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Idea of the proof of the results in the characteristic case

The results are: the decomposition into solitons, the corner property and the
fact that the interior of S is empty.

6 main steps are needed:

! Step 1: Decomposition into a decoupled sum of k(x0) ≥ 0 solitons, with
no information on the signs or the distance between the solitons’ centers
(in the ξ variable).

! Step 2: Characterization of the case k(x0) ≥ 2. Proof of the upper bound
in the corner property if k(x0) ≥ 2.

! Step 3: Excluding the case k(x0) = 0 if x0 ∈ ∂S (note that ∂S ⊂ S since

R = IR\S is open).

! Step 4: Characterization of the case where x0 ∈ ∂S and k(x0) = 1.

! Step 5: We prove that the interior of S is empty, then that k(x0) ≥ 2 for
all x0 ∈ S (which gives the upper bound in the corner property by Step 2).

! Step 6: We prove that S is made of isolated points.
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Comments

Rk. 1: A good understading of the non-characteristic case is crucial.

Rk. 2: Excluding the case k(x0) = 0 is more difficult than excluding the case

k(x0) = 1.

In particular, we can’t exclude directly the case k(x0) = 0 for all x0 ∈ S . We do
it first when x0 ∈ ∂S , then prove that the interior of S is empty, hence ∂S = S .
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Step 1: Decomposition into a decoupled sum of k(x0) ≥ 0 solitons

Take x0 ∈ IR a characteristic points. We have two estimates:

! ‖(wx0(s), ∂swx0 (s))‖H ≤ C0;

!
∫ ∞
− log T(x0)

∫ 1
−1(∂swx0(y, s))2 ρ

1−y2 dy ≤ C0.

Rk. Unlike the non characteristic case, we can’t have a covering argument, so

we can’t obtain the H1 × L2 norm bounded (in fact, we will show that it is
unbounded).
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Step 1: Decomposition into a decoupled sum of k(x0) ≥ 0 solitons (cont.)

In the w̄x0(ξ, s) variable, we have

‖w̄x0(ξ, s)‖H1(IR) ≤ C0.

For any sequence ξn in IR, we find a “local” limit in the sense that for some
sn → ∞, we have

w̄x0(ξ + ξn, s + sn) → w̄∗ as n → ∞,

uniformly on compact sets for (ξ, s), with w∗ a stationary solution, due to the
fact that

∫ ∞

− log T(x0)

∫ 1

−1
(∂swx0(y, s))2 ρ

1 − y2
dy ≤ C0.

Since the energy is bounded, the number of non zero “local limits” is finite, and
we end-up with the following result:
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Step 1: Decomposition into a decoupled sum of k(x0) ≥ 0 solitons (cont.)

Prop.There exist k(x0) ≥ 0 and continuous di(s) ∈ (−1, 1) such that

∥

∥

∥

∥

∥

(

wx0(s)

∂swx0(s)

)

−
k(x0)

∑
i=1

ei(x0)

(

κ(di(s), ·)

0

)∥

∥

∥

∥

∥

H

→ 0 as s → ∞,

with
ζi+1(s)− ζi(s) → ∞ as s → ∞ and di(s) = − tanh ζi(s).

Rk.

! If k(x0) = 0, then the above sum is 0.

! At this level, we don’t know that k(x0) = 0 and k(x0) = 1 don’t occur.

! We have no information on the signs ei(x0).

! We have no equivalent for ζi(s) as s → ∞.
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Step 2: Case k(x0) ≥ 2; A differential equation on the solitons’ centers

Here, we assume that k(x0) ≥ 2 (we don’t prove that fact here).

Linearizing the equation in the w(y, s) setting around the sum of the solitons,
we get the following Toda system on the solitons’ centers in the ξ variable:
for all i = 1, ..., k and s large enough, we have

1

c1
ζ ′i = −ei−1eie

− 2
p−1 (ζi−ζi−1) + eiei+1e−

2
p−1 (ζi+1−ζi) + Ri

where

|Ri | ≤ CJ1+δ0 , J(s) =
k−1

∑
j=1

e−
2

p−1 (ζ j+1(s)−ζ j(s)),

e0 = ek+1 = 0, for some c1 > 0 and δ0 > 0.
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Step 2: Case k(x0) ≥ 2 (cont.)

Since for all i = 1, ..., k(x0)− 1, we have

ζi+1(s)− ζi(s) → ∞ as s → ∞,

using ODE techniques, we find that

eiei+1 = −1 and ζi(s) ∼

(

i −
k(x0) + 1

2

)

(p − 1)
2

log s.

The upper bound on the blow-up rate gives the upper bound in the corner
property.
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Step 3: Excluding the case where x0 ∈ ∂S and k(x0) = 0

By contradiction, if x0 ∈ ∂S and k(x0) = 0, then

‖wx0 (s)‖H → 0 and E(wx0(s)) → 0 as s → ∞.

Fixing s0 large enough such that E(wx0(s0)) ≤
1
4 E(κ0), we find x1 near x0 such

that

x1 ∈ R and E(wx1(s0)) ≤
1

2
E(κ0).

Since E(wx1(s)) → E(κ0) as s → ∞ and E(wx1(s)) is decreasing, it follows that

E(wx1(s0)) ≥ E(κ0).

Contradiction.
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Step 4: Characterization of the case where x0 ∈ ∂S and k(x0) = 1

In this case,

∥

∥

∥

∥

∥

(

wx0 (s)

∂swx0 (s)

)

− e1

(

κ(d1(s), y)

0

)∥

∥

∥

∥

∥

H

→ 0 as s → ∞ and E(wx0(s)) ≥ E(κ0).

Our “trapping” result implies that for some d(x0) ∈ (−1, 1),

wx0 (s) → κ(d(x0)) as s → ∞.

Some elementary geometry and the precise knowledge of the case of non
characteristic points gives that x0 is either left-non-characteristic or
right-non-characteristic.
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Step 5: Conclusion without Isolatedness

Using the previous steps, we prove in the same time that k(x0) ≥ 2 and the
interior of S is empty, together with precise estimate on the location of the
solitons’ centers.
We also get the upper bound in the corner property.
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Step 6: Characteristic points are isolated

Consider x0 ∈ S . From translation invariance of the equation in u(x, t), we can

assume that x0 = T(x0) = 0, hence,

0 ∈ S and T(0) = 0.

We have just proved that for some integer k = k(0) ≥ 2, for some continuous

functions di(s), C0 > 0 and s0 ∈ IR, we have

∥

∥

∥

∥

∥

∥

∥

(

w0(s)

∂sw0(s)

)

−







k

∑
i=1

(−1)iκ(di(s))

0







∥

∥

∥

∥

∥

∥

∥

H

→ 0 as s → ∞,

∀s ≥ s0,
∣

∣

∣
argth di(s)−

γi

2
log s

∣

∣

∣
≤ C0 where γi = (p − 1)

(

k + 1

2
− i

)

.
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Step 6: Characteristic points are isolated (cont.)

Introducing for x 2= 0, B = B(x) by

−
T(x)
|x|

= 1 − B(x),

we translate the upper bound in the corner property as follows

0 < B ≤
C0

| log |x||γ1
.

We proceed in two parts:

- In Part 1, we use the algebraic relation between w0 and wx and a dynamical
study to derive the expansion of wx where x is near 0 ∈ S .

- In Part 2, we show that x is non characteristic and measure the distance of
T′(x) to 1 when x < 0 (and to −1 when x > 0).
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Part 1: Expansion for wx.

Algebraic transformation
Recalling the selfsimilar change of variables for w0 and wx:

w0(Y, S) = (−τ)
2

p−1 u(ξ, τ), Y =
ξ

−τ
, S = − log(−τ),

wx(y, s) = (T(x)− τ)
2

p−1 u(ξ, τ), y =
ξ − x

T(x)− τ
, s = − log(T(x)− τ),

we get the following algebraic relation between wx and w0

wx(y, s) = (1− (1− B)xes)−
2

p−1 w0(Y, S), Y =
y + xes

1 − (1 − B)xes S = s− log(1− (1− B)xes).

This means that the expansion for w0 translates into an expansion for wx:
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Part 1: Expansion for wx (cont.)

Prop. We have

lim
L→∞

(

lim
x→0−

sup
L≤s≤L+| log |x||

∥

∥

∥

∥

∥

(

wx(s)

∂swx(s)

)

−
k

∑
i=1

(−1)iκ∗
(

d̂i(s), ν̂i(s)
)

∥

∥

∥

∥

∥

H

)

= 0

where

ν̂i(x, s) = [B− (1− d̂i(x, s))]xes, d̂i(x, s) = di(S) and − e−S(x,s) = x(1− B)− e−s.

Moreover, for any d ∈ (−1, 1) and µ ∈ IR, κ∗(d, µes, y) is a particular solution
of the equation in selfsimilar variables, given by...
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Part 1: Definition of κ∗(d, ν, y)

.... κ∗(d, ν, y) = (κ∗1 , κ∗2 )(d, ν, y) where

κ∗1(d, ν, y) = κ0
(1 − d2)

1
p−1

(1 + dy + ν)
2

p−1

and κ∗2 (d, ν, y) = ν∂νκ∗1 (d, ν, y) = −
2κ0ν

p − 1

(1 − d2)
1

p−1

(1 + dy + ν)
p+1
p−1

where d ∈ (−1, 1) and ν > −1 + |d|.
Note that for any µ ∈ IR, (y, s) 3→ κ∗(d, µes, y) is an explicit solution to the
equation in similarity variables. Moreover,
- when µ = 0, we recover the stationary solutions κ(d, y);
- when µ > 0, the solution exists for all (y, s) ∈ (−1, 1)× IR and converges to 0
in H as s → ∞;

- when µ < 0, the solution exists for all (y, s) ∈ (−1, 1)×
(

−∞, log
(

|d|−1
µ

))

and blows up at time s = log
(

|d|−1
µ

)

.
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Part 1: Proof: First, algebraic technique

Rk. The algebraic technique gives explicit parameters but not on the whole
interval (−1, 1).

Starting from the expansion of w0 and the algebraic relation between wx and
w0, we get the result with the norm restricted to

y > y1(x, s)

for some y1(x, s) > −1:

lim
L→∞



 lim
x→0−

sup
L≤s≤L+| log |x||

∥

∥

∥

∥

∥

(

wx(s)

∂swx(s)

)

−
k

∑
i=1

(−1)iκ∗
(

d̂i(s), ν̂i(s)
)

∥

∥

∥

∥

∥

H(y>y1(x,s))



 = 0
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Part 1, Proof: Second, analytic technique

Rk. The analytic technique gives non explicit parameters, but on the whole
interval (−1, 1).

Since the result holds for w0 on the square (y, s) ∈ (−1, 1)× [L, L + 1], by

continuity, it holds also for wx when |x| small on the same square. Performing

a modulation technique around the sum of κ∗(di, νi), we propagate the
estimate with non explicit parameters up to

s = L + | log |x||,

in the sense that

lim
L→∞

(

lim
x→0−

sup
L≤s≤L+| log |x||

∥

∥

∥

∥

∥

(

wx(s)

∂swx(s)

)

−
k

∑
i=1

(−1)iκ∗
(

d̄i(s), ν̄i(s)
)

∥

∥

∥

∥

∥

H

)

= 0.
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Part 1: Conlusion of the proof of the expansion for wx

Since y1(x, s) is “close” to the center of the first soliton, comparing the two

expansions for y ∈ (y1, (x, s), 1) gives that the parameters (d̂i(s), ν̂i(s)) and

(d̄i(s), ν̄i(s)) are close, and we get to the conclusion of the proposition:

lim
L→∞

(

lim
x→0−

sup
L≤s≤L+| log |x||

∥

∥

∥

∥

∥

(

wx(s)

∂swx(s)

)

−
k

∑
i=1

(−1)iκ∗
(

d̂i(s), ν̂i(s)
)

∥

∥

∥

∥

∥

H

)

= 0.
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Part 2: Conclusion of the fact that x is isolated

It happens that when s = L + | log |x||, all the solitons for i ≥ 2 vanish, in the
sense that

∀i ≥ 2, lim
L→∞

∥

∥

∥
κ∗

(

d̂i(| log |x||+ L), ν̂i(| log |x||+ L)
)
∥

∥

∥

H
= 0.

Therefore, given ε > 0, for L large enough and |x| small enough, we have

∥

∥

∥

∥

∥

(

wx(| log |x||+ L)

∂swx(| log |x||+ L)

)

+ κ∗
(

d̂1(| log |x||+ L), ν̂i(| log |x||+ L)
)

∥

∥

∥

∥

∥

H

≤ ε.

Characteristic points for the semilinear wave equation – p. 28/33



—
LA

T E
X
p
r
o
s
p
e
r

—

Part 2: Using the energy behavior

Since we have the following
Prop. (Energy minimum)

∀x ∈ IR, ∀s ≥ − log T(x), E(wx(s)) ≥ E(κ0),

it follows that

E
(

κ∗
(

d̂1(| log |x||+ L), ν̂i(| log |x||+ L)
))

≥ E(κ0)− Cε (2)

on the one hand.
On the other hand, we have by direct computation

E(κ0) ≤ E(κ∗(d, ν)) ≤ E(κ0)
(

3λ2 − (2 − ε)λ3
)

where λ =
(1 − d2)

(1 + ν)2 − d2
.

(3)
From (2) and (3), we see that

3λ2 − (2 − ε)λ3 ≥ 1 − Cε, hence |λ − 1| ≤ Cε.
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Part 2: Using the energy behavior (cont.)

Since we have in this regime

∥

∥

∥

∥

∥

κ∗(d, ν)−

(

κ
(

d
1+ν , 0

)

0

)∥

∥

∥

∥

∥

H

≤ C|λ − 1|,

it follows that

∥

∥

∥

∥

∥

(

wx(| log |x||+ L)

∂swx(| log |x||+ L)

)

+ κ

(

d̂1(| log |x||+ L)
1 + ν̂i(| log |x||+ L)

, 0

)∥

∥

∥

∥

∥

H

≤ Cε.
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Part 2: A trapping argument

Now, we recall the following result (from the non-characteristic case):

Prop. (Trapping result) There exists ε∗ > 0 such that if for some x∗ ∈ IR,
s∗ ≥ − log T(x∗) and d∗ ∈ (−1, 1) we have

‖wx∗ (s∗) + κ(d∗, y)‖H ≤ ε∗,

then, wx∗ (s) → κ(d̄) as s → ∞ for some d̄ such that

∣

∣argth d̄ − argth d∗
∣

∣ ≤ Cε∗.
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Part 2: Application to our case

Therefore, in our case, for some d̄(x) such that

∣

∣

∣

∣

∣

argth d̄(x)− argth
d̂1(| log |x||+ L)

1 + ν̂i(| log |x||+ L)

∣

∣

∣

∣

∣

≤ Cε∗,

we have wx(s) → −κ(d̄(x)) as s → ∞.

From the knowledge of the non-characteristic case and the characteristic case,
x is not characteristic !!!!!

Moreover, T′(x) = d̄(x).

∣

∣

∣

∣

∣

argth T′(x)− argth
d̂1(| log |x||+ L)

1 + ν̂i(| log |x||+ L)

∣

∣

∣

∣

∣

≤ Cε∗.
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Part 2: Final conclusion

This gives a bound on T′(x):

1

C| log |x||
(k(x0)−1)(p−1)

2

≤ T′(x)− 1 ≤
C

| log |x||
(k(x0)−1)(p−1)

2

which gives by integration

|x|

C| log |x||
(k(x0)−1)(p−1)

2

≤ T(x)− x ≤
C|x|

| log |x||
(k(x0)−1)(p−1)

2

(remember that

x0 = T(x0) = 0).
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