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The equation











∂2
t u = ∂2

xu + |u|p−1u,

u(0) = u0 and ut(0) = u1,

where p > 1,

u(t) : x ∈ IR → u(x, t) ∈ IR,

u0 ∈ H1
loc,u(IR) and u1 ∈ L2

loc,u(IR)

and

‖v‖L2
loc,u(IR) = sup

a∈IR

(

∫ a+1

a−1
|v(x)|2dx

)1/2

.
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Definition: Non characteristic points and characteristic points

A point a is said non characteristic if the domain contains a cone with vertex
(a, T(a)) and slope δ < 1.

t

T

0

t=T(x)

x

Du

a

slope delta <1

(slope 1)light cone

The point is said characteristic if not.

- Notation: R ⊂ IR is the set of all non characteristic points.
- Notation: S ⊂ IR is the set of all characteristic points (S ∪R = IR).
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A Lyapunov functional and the blow-up rate

Selfsimilar transformation for all x0 ∈ IR

wx0(y, s) = (T(x0)− t)
2

p−1 u(x, t), y =
x − x0

T(x0)− t
, s = − log(T(x0)− t).

(x, t) in the light cone of vertex (x0, T(x0)) ⇐⇒ (y, s) ∈ (−1, 1)× [− log T(x0), ∞).

Equation on w = wx0 : For all (y, s) ∈ (−1, 1)× [− log T(x0), ∞):

∂2
ssw − 1

ρ ∂y(ρ(1 − y2)∂yw) + 2(p+1)
(p−1)2 w − |w|p−1w

= − p+3
p−1 ∂sw − 2y∂2

syw

where ρ(y) = (1 − |y|2)
2

p−1
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A Lyapunov functional (Antonini-Merle)

E(w) =
∫ 1

−1

(

1

2
(∂sw)2 +

1

2
(∂yw)2(1 − y2) +

(p + 1)

(p − 1)2
w2 −

1

p + 1
|w|p+1

)

ρdy,

Thanks to a Hardy-Sobolev inequality, E = E(w, ∂sw) is well defined in the
energy space

H =

{

q ∈ H1
loc × L2

loc(B) | ‖q‖2
H ≡

∫ 1

−1

(

q2
1 +

(

∂yq1
)2 (1 − y2) + q2

2

)

ρdy < +∞

}

.
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Properties of the Lyapunov functional E

Lemma 1 (Monotonicity (Antonini-Merle)) For all s1 and s2:

E(w(s2))− E(w(s1)) = −
4

p − 1

∫ s2

s1

∫ 1

−1
(∂sw)2(1 − |y|2)

2
p−1 −1dyds.

Lemma 2 (A blow-up criterion) Consider a solution W such that
E(W(s0)) < 0 for some s0 ∈ IR, then W blows up in finite time S > s0.
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An upper bound on the blow-up rate in selfsimilar variables

Th. For all x0 ∈ IR and s ≥ − log T(x0) + 1,

∫ 1

−1

(

1

2
(∂sw)2 +

1

2
(∂yw)2(1 − |y|2) +

(p + 1)

(p − 1)2
w2 +

1

p + 1
|w|p+1

)

ρdy ≤ K

where the constant K depends only on p and an upper bound on T(x0),
1/T(x0) and ‖(u0, u1)‖.

Getting rid of the weights

Reducing (−1, 1) to (− 1
2 , 1

2 ), we get:

Cor. For all x0 ∈ IR and s ≥ − log T(x0) + 1,

∫ 1
2

− 1
2

(

(∂sw)2 + (∂yw)2 + w2 + |w|p+1
)

dy ≤ K.
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Upper bound in the original u(x, t) variables

Th. sup. For all x0 ∈ IR and t ∈ [ 3
4 T(x0), T(x0)):

(T(x0)− t)
2

p−1

‖u(t)‖
L2(B(x0,

T(x0)−t
2 ))

(T(x0)− t)1/2

+(T(x0)− t)
2

p−1 +1





‖ut(t)‖L2(B(x0,
T(x0)−t

2 ))

(T(x0)− t)1/2
+

‖∂xu(t)‖
L2(B(x0,

T(x0)−t
2 ))

(T(x0)− t)1/2



 ≤ K.

Rk. We have a lower bound of the same size when x0 is non characteristic
(see Part 4 on profiles near a non characteristic point).

Isolatedness of characteristic points for blow-up solutions of a semilinear wave equation – p. 8/30



—
LA

T E
X
p
r
o
s
p
e
r

—

Covering technique at a non characteristic point

If x0 is non characteristic point, then we can recover the estimate in whole
section of the light-cone (or in the y variable, on the whole interval (−1, 1)):

Prop. If x0 ∈ R, then for all s ≥ − log T(x0), we have
‖(wx0(s), ∂swx0 (s))‖H1×L2(−1,1) ≤ C0.

x

t

x
0

0

t

T
0

T*(x)=T − delta |x−x |
0 0 0

Blue: slope δ0 < 1, Green: slope 1 (light-cone), Red: slope 2.
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Asymptotic behavior at a non characteristic point

Take x0 ∈ IR non characteristic. Using the energy structure, we obtain that
‖(wx0(s), ∂swx0 (s))‖H1×L2(−1,1) is bounded.

Question: Does wx0 (y, s) have a limit or not, as s → ∞ (that is as t → T(x0)).

Remark: In the context of Hamiltonian systems, this question is delicate, and
there is no natural reason for such a convergence, since the wave equation is
time reversible.

See for similar difficulty and approach, results for

! the critical KdV (Martel and Merle),

! NLS (Merle and Raphaël).
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Stationary solutions.

We look for solutions of

1

ρ

(

ρ(1 − y2)w′
)′

−
2(p + 1)

(p − 1)2
w + |w|p−1w = 0.

We work in H0, the (stationary energy space) defined by

H0 = {r ∈ H1
loc(−1, 1) | ‖r‖2

H0
≡

∫ 1

−1

(

r′2(1 − y2) + r2
)

ρdy < +∞}.

Prop. Consider a stationary solution in H0. Then, either w ≡ 0 or there exist

d ∈ (−1, 1) and e = ±1 such that w(y) = eκ(d, y) where

∀(d, y) ∈ (−1, 1)2, κ(d, y) = κ0
(1 − d2)

1
p−1

(1 + dy)
2

p−1

and κ0 =

(

2(p + 1)
(p − 1)2

)
1

p−1

.

Remark: We have 3 connected components. E(0) = 0 < E(±κ(d)) = E(κ0).
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Blow-up profile near a non characteristic point

Th. There exist C0 > 0 and µ0 > 0 such that
if x0 is non characteristic, then there exist d(x0) ∈ (−1, 1), e(x0) = ±1 and
s∗(x0) ≥ − log T(x0) such that :
(i) For all s ≥ s∗(x0),

∥

∥

∥

∥

∥

(

wx0 (s)

∂swx0 (s)

)

− e(x0)

(

κ(d(x0), ·)

0

)∥

∥

∥

∥

∥

H

≤ C0e−µ0(s−s∗)

and E(wx0(s) → E(κ0) where the energy space

H =

{

q ∈ H1
loc × L2

loc(−1, 1) | ‖q‖2
H ≡

∫ 1

−1

(

q2
1 +

(

q′1
)2

(1 − y2) + q2
2

)

ρdy < +∞

}

.

(ii) d(x0) = T′(x0).

Rk. We have exp. fast convergence (hence, C1,µ0 regularity of R, see Nouaili).
Rk. ‖wx0 (y, s)− e(x0)κ(d(x0), y)‖L∞(−1,1) → 0.

Rk. The parameter of the profile d(x0) has a geometrical interpretation

(T′(x0)).
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Difficulties of the proof of convergence

! The set of non zero stationary solutions is made up of non isolated
solutions (one parameter family):
−→ we need a modulation technique.

! The linearized operator around a non zero stationary solution is non
self-adjoint:
−→ we need to use dispersive properties coming from the Lyapunov
functional to control the negative part of the spectrum.
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The aim of the talk: the proof the convergence

Consider x0 ∈ R and write w instead of wx0 . We proceed in 3 parts:

- Part 1: Approaching the set of (non zero) stationary solutions.

-Part 2: Study of the linearized operator around a stationary solution and
decomposition of the solution.

- Part 3: Convergence to a stationary solution.

Isolatedness of characteristic points for blow-up solutions of a semilinear wave equation – p. 14/30



—
LA

T E
X
p
r
o
s
p
e
r

—

Part 1: Approaching the set of stationary solutions

We claim the following
Prop. For some d0 ∈ (−1, 1) and e0 = ±1, we have

inf
|d|<d0

∥

∥

∥

∥

∥

(

w(s)

∂sw(s)

)

− e0

(

κ(d)

0

)
∥

∥

∥

∥

∥

H1×L2(−1,1)

→ as s → ∞.

Consider the set of stationary solutions Stat = {0,±κ(d) | |d| < 1}. Since

! for s large, 0 < ε0(p) ≤ ‖(w(s), ∂sw(s))‖H1×L2(−1,1) ≤ C0,

! ‖κ(d)‖H1(−1,1) → +∞ as |d| → 1,

! Stat is made of 3 connected components {0}, {κ(d) | |d| < 1} and

{−κ(d) | |d| < 1},

it is enough to prove that

inf
w∗∈Stat

,

∥

∥

∥

∥

∥

(

w(s)

∂sw(s)

)

−

(

w∗

0

)∥

∥

∥

∥

∥

H1×L2(−1,1)

→ as s → ∞.
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The proof of Part 1

We proceed in 2 steps:

- In Step 1, we use compactness to prove the convergence in L∞(−1, 1).

- In Step 2, we use the energy localization in the u variable to gain control in

H1(−1, 1).
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Step 1: Compactness and convergence in L∞(−1, 1)

Consider an arbitrary sequence sn → ∞. We will show that for some w∗ ∈ S
and up to a subsequence, we have

∥

∥

∥

∥

∥

(

w(sn)

∂sw(sn)

)

−

(

w∗

0

)∥

∥

∥

∥

∥

H1×L2(−1,1)

→ as n → ∞.

From the bound

‖(w(s), ∂sw(s))‖H1×L2(−1,1) ≤ C0

for s large enough and compactness, we see that for some

(w∗, v∗) ∈ H1 × (−1, 1) and up to a subsequence,

(

w(sn)

∂sw(sn)

)

→

(

w∗

v∗

)

weakly in H1 × L2(−1, 1) as n → ∞.

and

‖w(sn)− w∗‖L∞(−1,1) → 0 as n → ∞.
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Step 1: Compactness and convergence in L∞(−1, 1) (cont.)

From the dissipation of the Lyapunov functional:

∫ ∞

− log T(x0)

∫ 1

−1

∂sw(y, s)2

1 − y2
ρ(y)dy ≤ E(w(− log T(x0))) ≤ C0,

we prove that

v∗ ≡ 0, w∗ ∈ Stat and w(y, sn + s) → w∗(y) as n → ∞

uniformly for |y| < 1 and |s| ≤ M, for any M > 0.
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Step 2: Convergence in H1 through energy localization in the u variable

Going to the u(x, t) variable, writing a Duhamel formulation in the light cone

and coming back to the w(y, s) variable, we get a Duhamed formulation in w,

for s ∈ [sn − M, sn], yielding

∥

∥

∥

∥

∥

(

w(sn)

∂sw(sn)

)

−

(

w∗

0

)
∥

∥

∥

∥

∥

H1×L2(−1,1)

≤ C(M)‖w(sn − M)−w∗‖L∞(−1,1) +C0e−
2M
p−1 .

Fixing M then n large enough, we get to the conclusion which we recall:

Prop. For some d0 ∈ (−1, 1) and e0 = ±1, we have

inf
|d|<d0

∥

∥

∥

∥

∥

(

w(s)

∂sw(s)

)

− e0

(

κ(d)

0

)∥

∥

∥

∥

∥

H1×L2(−1,1)

→ as s → ∞.
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Part 2: Linearization around a possible limit

Let us assume that w(y, s) → κ(d, y) in the energy space H. Let

q(y, s) = w(y, s)− e0κ(d, y).

To simplify the notation, we assume that

e0 = 1, p = 2 and w ≥ 0.
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Part 2: Linearization around a possible limit (cont.)

For all s ≥ − log T(x0),

∂

∂s

(

q1

q2

)

= Ld

(

q1

q2

)

+

(

0

q2
1

)

where

Ld

(

q1

q2

)

=

(

q2

Lq1 + ψ(d, y)q1 − 5q2 − 2yq′2

)

,

Lq1 = 1
ρ ∂y

(

ρ(1 − y2)∂yq1
)

,

ψ(d, y) = 6
(

2 (1−d2)
(1+dy)2 − 1

)
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Properties of the linear operator

- The operator Ld is not self-adjoint in the energy space.
- Its spectrum is given by

λn = 1 − n and µn = −6 − n, n ∈ N.

In particular, it has λ = 1 and λ = 0 as eigenvalues. The others are negative.

Two problems :

! How to control the zero eigenvalue? By modulation.

! How to control the negative part? By a linear version of the Lyapunov
functional.
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Decomposition of the solution

For λ = 1 or 0, we introduce the eigenfunction Fd
λ(y) such that

LdFd
λ = λFd

λ

and the projector πd
λ on Fd

λ .

Rk. We have

Fd
0 (y) = C(d)

(

∂dκ(d, y)

0

)

and Fd
1 is coming from the choice of the scaling time in the definition of

w = wx0 .
We decompose q as

q(y, s) = πd
1(q(s))Fd

1 (y) + πd
0(q(s))Fd

0 (y) + q−(y, s).
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Control of the negative part

Let us introduce the symmetric bilnear form

ϕd (q, r) =
∫ 1

−1
(−q1 (Lr1 + ψ(d, y)r1) + q2r2) ρdy

where Lr1 + ψ(d, y)r1 already apperas in the definition of Ld:

Ld

(

r1

r2

)

=

(

r2

Lr1 + ψ(d, y)r1 − 5r2 − 2yr′2

)

.
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Control of the negative part (cont.)

We recall the decomposition:

r(y) = πd
1(r)Fd

1 (y) + πd
0(r)Fd

0 (y) + r−(y).

We claim the following:
Prop.

(i) If r ∈ H and πd
1(r) = πd

0(r) = 0, then

1

C0
‖r‖2

H ≤ ϕd(r, r) ≤ C0‖r‖2
H.

(ii) If r ∈ H, then,

1

C0
‖r‖2

H ≤ ϕd(r−, r−) +
1

∑
λ=0

|πd
λ(r)|

2 ≤ C0‖r‖2
H.
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Modulation technique

I recall that we know that

inf
|d|<d0

∥

∥

∥

∥

∥

(

w(s)

∂sw(s)

)

−

(

κ(d)

0

)∥

∥

∥

∥

∥

H1×L2(−1,1)

→ as s → ∞

for some d0 ∈ (−1, 1). We want to prove the convergence to some κ(d∗, y).
We introduce

q(y, s) = w(y, s)− κ(d(s), y)

where d(s) ∈ (−1, 1) is chosen so that

π
d(s)
0 (q(s)) = 0 in q(y, s) = π

d(s)
1 (q(s))F

d(s)
1 (y) + π

d(s)
0 (q(s))F

d(s)
0 (y) + q−(y, s).

This is possible because Fd
0 (y) = C(d)

(

∂dκ(d, y)

0

)

.
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Modulation technique (cont.)

The decomposition becomes

q(y, s) = π
d(s)
1 (q(s))F

d(s)
1 (y) + 0 + q−(y, s)

and if we define

α1(s) = π
d(s)
1 (q(s)) and α−(s) =

√

ϕd(s)(q−, q−),

then
1

C0
‖q(s)‖H ≤ |α1(s)|+ |α−(s)| ≤ C0‖q(s)‖H.
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Projection of the equation on the components of q

We recall the equation:

∂

∂s

(

q1

q2

)

= Ld

(

q1

q2

)

+

(

0

q2
1

)

− d′(s)

(

∂dκ(d)

0

)

.

If d(s) = tanh ζ(s), then

|ζ ′(s)| ≤ C‖q(s)‖2
H,

|α′1(s)− α1(s)| ≤ C‖q(s)‖2
H,

(
1

2
α−(s)

2 + R−)
′ ≤ −4

∫ 1

−1
q2
−,2

ρ

1 − y2
dy + C‖q(s)‖3

H

with |R−(s)| ≤ C‖q(s)‖3
H

d

ds

∫ 1

−1
q1q2ρ ≤ −

4

5
α−(s)

2 + C
∫ 1

−1
q2
−,2

ρ

1 − y2
dy + Cα2

1.
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Decreasing of the function

If

f (s) = α−(s)
2 + 2R−(s) + η

∫ 1

−1
q1q2ρ

and η > 0 is small, then

f ′(s) ≤ −2µ f (s),

1

C0
‖q(s)‖2

H ≤ f (s) ≤ C0‖q(s)‖2
H.

Thus,

‖q(s)‖2
H ≤ Ce−µs with q(y, s) = w(y, s)− κ(d(s), y).

But does w(y, s) converge?
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Convergence of the modulation parameter

Recalling that |ζ ′(s)| ≤ C‖q(s)‖2
H, we see that ζ(s) converges and so does

d(s) = tanh ζ(s).

Finally, we see that

‖w(y, s)− κ(d∗, y)‖H ≤ Ce−µs

for some d∗ ∈ (−1, 1).
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