Isolatedness of characteristic points for blow-up solutions of a semilinear wave equation (Part 3)

Hatem ZAAG

CNRS & LAGA Université Paris 13

IHP Conference, April 21 to 23, 2010

joint work with Frank Merle, Université de Cergy-Pontoise and CNRS IHES

Isolatedness of characteristic points for blow-up solutions of a semilinear wave equation -p. 1/33

The equation

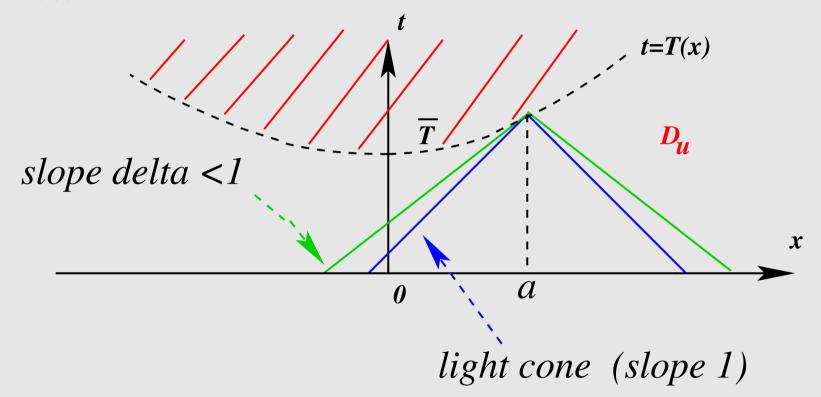
$$\left\{ \begin{array}{l} \partial_t^2 u = \partial_x^2 u + |u|^{p-1} u, \\ u(0) = u_0 \text{ and } u_t(0) = u_1, \end{array} \right.$$

where
$$p > 1$$
,
 $u(t) : x \in \mathbb{R} \rightarrow u(x,t) \in \mathbb{R}$,
 $u_0 \in H^1_{loc,u}(\mathbb{R})$ and $u_1 \in L^2_{loc,u}(\mathbb{R})$
and

$$\|v\|_{L^2_{\mathrm{loc},\mathrm{u}}}(\mathbb{R}) = \sup_{a \in \mathbb{R}} \left(\int_{a-1}^{a+1} |v(x)|^2 dx \right)^{1/2}.$$

Definition: Non characteristic points and characteristic points

A point *a* is said *non characteristic* if the domain contains a cone with vertex (a, T(a)) and slope $\delta < 1$.



The point is said *characteristic* if not.

- Notation: $\mathcal{R} \subset \mathbb{R}$ is the set of all *non* characteristic points.
- Notation: $S \subset \mathbb{R}$ is the set of all characteristic points ($S \cup \mathcal{R} = \mathbb{R}$).

Similarity variables

Selfsimilar transformation for all $x_0 \in \mathbf{I} \mathbf{R}$

$$w_{x_0}(y,s) = (T(x_0) - t)^{\frac{2}{p-1}} u(x,t), \ y = \frac{x - x_0}{T(x_0) - t}, \ s = -\log(T(x_0) - t).$$

(x, t) in the light cone of vertex $(x_0, T(x_0)) \iff (y, s) \in (-1, 1) \times [-\log T(x_0), \infty)$. Equation on $w = w_{x_0}$: For all $(y, s) \in (-1, 1) \times [-\log T(x_0), \infty)$:

$$\partial_{ss}^2 w - \frac{1}{\rho} \partial_y (\rho(1-y^2) \partial_y w) + \frac{2(p+1)}{(p-1)^2} w - |w|^{p-1} w$$
$$= -\frac{p+3}{p-1} \partial_s w - 2y \partial_{sy}^2 w$$
where $\rho(y) = (1-|y|^2)^{\frac{2}{p-1}}$

A Lyapunov functional (Antonini-Merle)

$$E(w) = \int_{-1}^{1} \left(\frac{1}{2} (\partial_s w)^2 + \frac{1}{2} (\partial_y w)^2 (1 - y^2) + \frac{(p+1)}{(p-1)^2} w^2 - \frac{1}{p+1} |w|^{p+1} \right) \rho dy,$$

Thanks to a Hardy-Sobolev inequality, $E = E(w, \partial_s w)$ is well defined in the energy space

$$\mathcal{H} = \left\{ q \in H^1_{loc} \times L^2_{loc}(B) \mid \|q\|^2_{\mathcal{H}} \equiv \int_{-1}^1 \left(q_1^2 + \left(\partial_y q_1 \right)^2 \left(1 - y^2 \right) + q_2^2 \right) \rho dy < +\infty \right\}.$$

Properties of the Lyapunov functional *E*

Lemma 1 (Monotonicity (Antonini-Merle)) For all s_1 and s_2 :

$$E(w(s_2)) - E(w(s_1)) = -\frac{4}{p-1} \int_{s_1}^{s_2} \int_{-1}^{1} (\partial_s w)^2 (1-|y|^2)^{\frac{2}{p-1}-1} dy ds.$$

Lemma 2 (A blow-up criterion) Consider a solution W such that $E(W(s_0)) < 0$ for some $s_0 \in \mathbb{R}$, then W blows up in finite time $S > s_0$.

Regularity of the blow-up set at a characteristic **point**

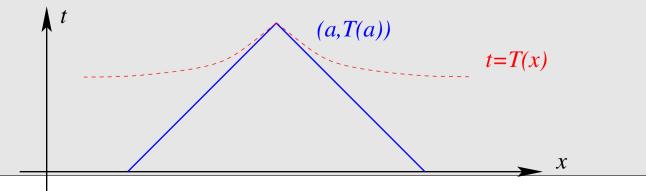
Th. The set of characteristic points S is made of **isolated points**. If $a \in S$, then $T'_l(a) = 1$ and $T'_r(a) = -1$. **Rk.** An important step of the proof is to prove first that S has an empty interior. **Th. (the corner property)** If $a \in S$, then for all x near a,

$$\frac{1}{C}|x-a||\log|x-a||^{-\gamma(a)} \le T(x) - T(a) + |x-a| \le C|x-a||\log|x-a||^{-\gamma(a)}$$
(1)

where

$$\gamma(a) = \frac{(k(a)-1)(p-1)}{2} \text{ with } k(a) \in \mathbb{N}, k(a) \ge 2.$$

Rk. Estimate (1) remains valid after differentiation.



Asymptotic behavior at a characteristic point

Th. If $x_0 \in \mathbb{R}$ is characteristic, then, there exist $k(x_0) \ge 2$, $e(x_0) = \pm 1$ and continuous $d_i(s) = -\tanh \zeta_i(s)$ for i = 1, ..., k such that: (i)

$$\left\| \left(\begin{array}{c} w_{x_0}(s) \\ \partial_s w_{x_0}(s) \end{array} \right) - e(x_0) \sum_{i=1}^{k(x_0)} (-1)^i \left(\begin{array}{c} \kappa(d_i(s), \cdot) \\ 0 \end{array} \right) \right\|_{\mathcal{H}} \to 0 \text{ as } s \to \infty,$$

(ii) Introducing

$$\bar{w}_{x_0}(\xi,s) = (1-y^2)^{\frac{1}{p-1}} w_{x_0}(y,s)$$
 with $y = \tanh \xi$ and $\zeta_i(x_0) = - \operatorname{argth} d_i(s)$,

we get

$$\|\bar{w}_{x_0}(\xi,s) - e(x_0)\sum_{i=1}^{k(x_0)} (-1)^i \cosh^{-\frac{2}{p-1}}(\xi - \zeta_i(s))\|_{H^1 \cap L^{\infty}(\mathbb{R})} \to 0 \text{ as } s \to \infty,$$

Asymptotic behavior at a characteristic point (cont.)

(iii) For all $i = 1, ..., k(x_0)$ and s large enough,

$$\left(i - \frac{(k(x_0) + 1)}{2}\right) \frac{(p - 1)}{2} \log s - C_0 \le \zeta_i(s) \le \left(i - \frac{(k(x_0) + 1)}{2}\right) \frac{(p - 1)}{2} \log s + C_0.$$

(iv) $E(w_{x_0}(s)) \rightarrow k(x_0)E(\kappa_0)$ as $s \rightarrow \infty$.

Rk.

- As $s \to \infty$, w_{x_0} becomes like a **decoupled** sum of *equidistant* stationary solutions ("solitons"), with *alternate* signs.

- In the ξ variable, half of the solitons go to $-\infty$, and the other half to $+\infty$.

- The main difficulty in the proof is to prove that $k(x_0) \ge 2$ (the case $k(x_0) = 0$ is harder to eliminate).

- The $\zeta_i(s)$ satisfy a Toda system:

$$\frac{1}{c_1}\zeta'_i(s) = e^{-\frac{2}{p-1}(\zeta_i - \zeta_{i-1})} - e^{-\frac{2}{p-1}(\zeta_{i+1} - \zeta_i)} + R_i \text{ with } R_i = o\left(\sum_{j=1}^{k-1} e^{-\frac{2}{p-1}(\zeta_{j+1} - \zeta_j)}\right) \text{ as } s \to \infty.$$

Idea of the proof of the results in the characteristic case

The results are: the decomposition into solitons, the corner property and the fact that the interior of \mathcal{S} is empty.

6 main steps are needed:

- Step 1: Decomposition into a decoupled sum of $k(x_0) \ge 0$ solitons, with no information on the signs or the distance between the solitons' centers (in the ξ variable).
- Step 2: Characterization of the case k(x₀) ≥ 2. Proof of *the upper bound* the corner property if k(x₀) ≥ 2.
- Step 3: Excluding the case $k(x_0) = 0$ if $x_0 \in \partial S$ (note that $\partial S \subset S$ since $\mathcal{R} = \mathbb{R} \setminus S$ is open).
- Step 4: Characterization of the case where $x_0 \in \partial S$ and $k(x_0) = 1$.
- Step 5: We prove that the interior of S is empty, then that $k(x_0) \ge 2$ for all $x_0 \in S$ (which gives *the upper bound* the corner property by Step 2).
- \triangleright Step 6: We prove that ${\cal S}$ is made of isolated points.

Comments

Rk. 1: A good understading of the *non-characteristic* case is *crucial*.

Rk. 2: Excluding the case $k(x_0) = 0$ is more difficult than excluding the case $k(x_0) = 1$.

In particular, we can't exclude directly the case $k(x_0) = 0$ for all $x_0 \in S$. We do it first when $x_0 \in \partial S$, then prove that the interior of S is empty, hence $\partial S = S$.

Step 1: Decomposition into a decoupled sum of $k(x_0) \ge 0$ **solitons**

Take $x_0 \in \mathbb{R}$ a characteristic points. We have two estimates:

- $\triangleright \quad \|(w_{x_0}(s),\partial_s w_{x_0}(s))\|_{\mathcal{H}} \leq C_0;$
- ▷ $\int_{-\log T(x_0)}^{\infty} \int_{-1}^{1} (\partial_s w_{x_0}(y,s))^2 \frac{\rho}{1-y^2} dy \le C_0.$

Rk. Unlike the non characteristic case, we can't have a covering argument, so we can't obtain the $H^1 \times L^2$ bounded (in fact, we will show that it is unbounded).

Step 1: Decomposition into a decoupled sum of $k(x_0) \ge 0$ **solitons (cont.)**

In the $\bar{w}_{\chi_0}(\xi, s)$ variable, we have

```
\|\bar{w}_{x_0}(\xi,s)\|_{H^1(\mathbb{R})} \leq C_0.
```

For any sequence ξ_n in \mathbb{R} , we find a "local" limit in the sense that for some $s_n \to \infty$, we have

$$\bar{w}_{\chi_0}(\xi+\xi_n,s+s_n)\to \bar{w}^*$$
 as $n\to\infty$,

uniformly on compact sets for (ξ, s) , with w^* a stationary solution, due to the fact that

$$\int_{-\log T(x_0)}^{\infty} \int_{-1}^{1} (\partial_s w_{x_0}(y,s))^2 \frac{\rho}{1-y^2} dy \le C_0.$$

Since the energy is bounded, the number of non zero "local limits" is finite, and we end-up with the following result:

Step 1: Decomposition into a decoupled sum of $k(x_0) \ge 0$ **solitons (cont.)**

Prop.*There exist* $k(x_0) \ge 0$ *and continuous* $d_i(s) \in (-1, 1)$ *such that*

$$\left(\begin{array}{c}w_{x_0}(s)\\\partial_s w_{x_0}(s)\end{array}\right) - \sum_{i=1}^{k(x_0)} e_i(x_0) \left(\begin{array}{c}\kappa(d_i(s),\cdot)\\0\end{array}\right) \right\|_{\mathcal{H}} \to 0 \text{ as } s \to \infty,$$

with

$$\zeta_{i+1}(s) - \zeta_i(s) \rightarrow \infty \text{ as } s \rightarrow \infty \text{ and } d_i(s) = - \tanh \zeta_i(s).$$

Rk.

- ▷ If $k(x_0) = 0$, then the above sum is 0.
- ▷ At this level, we don't know that $k(x_0) = 0$ and $k(x_0) = 1$ don't occur.
- ▷ We have no information on the signs $e_i(x_0)$.
- ▶ We have no equivalent for $\zeta_i(s)$ as $s \to \infty$.

Step 2: Case $k(x_0) \ge 2$; A differential equation on the solitons' centers

Here, we assume that $k(x_0) \ge 2$ (we don't prove that fact here). Linearizing the equation in the w(y,s) setting around the sum of the solitons, we get the following Toda system on the solitons' centers in the ξ variable: for all i = 1, ..., k and s large enough, we have

$$\frac{1}{c_1}\zeta'_i = -e_{i-1}e_ie^{-\frac{2}{p-1}(\zeta_i - \zeta_{i-1})} + e_ie_{i+1}e^{-\frac{2}{p-1}(\zeta_{i+1} - \zeta_i)} + R_i$$

where

$$|R_i| \leq CJ^{1+\delta_0}, \ J(s) = \sum_{j=1}^{k-1} e^{-\frac{2}{p-1}(\zeta_{j+1}(s) - \zeta_j(s))},$$

 $e_0 = e_{k+1} = 0$, for some $c_1 > 0$ and $\delta_0 > 0$.

Step 2: Case $k(x_0) \ge 2$ (cont.)

Since for all
$$i = 1, ..., k(x_0) - 1$$
, we have

$$\zeta_{i+1}(s) - \zeta_i(s) \to \infty \text{ as } s \to \infty,$$

using ODE techniques, we find that

$$e_i e_{i+1} = -1 \text{ and } \zeta_i(s) \sim \left(i - \frac{k(x_0) + 1}{2}\right) \frac{(p-1)}{2} \log s.$$

The upper bound on the blow-up rate gives the *upper bound* on the corner property.

Step 3: Excluding the case where $x_0 \in \partial S$ **and** $k(x_0) = 0$

By contradiction, if $x_0 \in \partial S$ and $k(x_0) = 0$, then

$$|w_{x_0}(s)||_{\mathcal{H}} \to 0 \text{ and } E(w_{x_0}(s)) \to 0 \text{ as } s \to \infty.$$

Fixing s_0 large enough such that $E(w_{x_0}(s_0)) \leq \frac{1}{4}E(\kappa_0)$, we find x_1 near x_0 such that

$$x_1 \in \mathcal{R}$$
 and $E(w_{x_1}(s_0)) \leq \frac{1}{2}E(\kappa_0).$

Since $E(w_{x_1}(s)) \to E(\kappa_0)$ as $s \to \infty$ and $E(w_{x_1}(s))$ is decreasing, it follows that

 $E(w_{x_1}(s_0)) \geq E(\kappa_0).$

Contradiction.

Step 4: Characterization of the case where $x_0 \in \partial S$ **and** $k(x_0) = 1$

In this case,

$$\left\| \left(\begin{array}{c} w_{x_0}(s) \\ \partial_s w_{x_0}(s) \end{array} \right) - e_1 \left(\begin{array}{c} \kappa(d_1(s), y) \\ 0 \end{array} \right) \right\|_{\mathcal{H}} \to 0 \text{ as } s \to \infty \text{ and } E(w_{x_0}(s)) \ge E(\kappa_0).$$

Our "trapping" result implies that for some $d(x_0) \in (-1, 1)$,

 $w_{x_0}(s) \to \kappa(d(x_0))$ as $s \to \infty$.

Some elementary geometry and the precise knowledge of the case of non characteristic points gives that x_0 is either left-non-characteristic or right-non-characteristic.

Isolatedness of characteristic points for blow-up solutions of a semilinear wave equation – p. 18/33

Step 5: Conclusion without Isolatedness

Using the previous steps, we prove in the same time that $k(x_0) \ge 2$ and the interior of S is empty, together with precise estimate on the location of the solitons' centers.

We also get *the upper bound* on the corner property.

Step 6: Characteristic points are isolated

Consider $x_0 \in S$. From translation invariance of the equation in u(x,t), we can assume that $x_0 = T(x_0) = 0$, hence,

 $0 \in S$ and T(0) = 0.

We have just proved that for some integer $k = k(0) \ge 2$, for some continuous functions $d_i(s)$, $C_0 > 0$ and $s_0 \in \mathbb{R}$, we have

$$\left\| \begin{pmatrix} w_0(s) \\ \partial_s w_0(s) \end{pmatrix} - \begin{pmatrix} \sum_{i=1}^k (-1)^i \kappa(d_i(s)) \\ 0 \end{pmatrix} \right\|_{\mathcal{H}} \to 0 \text{ as } s \to \infty,$$

$$\left| \operatorname{argth} d_i(s) - \frac{\gamma_i}{2} \log s \right| \le C_0 \text{ where } \gamma_i = (p-1) \left(\frac{k+1}{2} - i \right).$$

Step 6: Characteristic points are isolated (cont.)

Introducing for $x \neq 0$, B = B(x) by

$$-\frac{T(x)}{|x|} = 1 - B(x),$$

we translate *the upper bound* in the corner property as follows

$$0 < B \leq \frac{C_0}{|\log|x||^{\gamma_1}}.$$

We proceed in two parts:

- In Part 1, we use the algebraic relation between w_0 and w_x and a dynamical study to derive the expansion of w_x where x is near $0 \in S$.

- In Part 2, we show that x is non characteristic and measure the distance of T'(x) to 1.

Part 1: Expansion for w_x **.**

Algebraic transformation

Recalling the selfsimilar change of variables for w_0 and w_x :

$$w_{x_0}(Y,S) = (-\tau)^{\frac{2}{p-1}} u(\xi,\tau), \ Y = \frac{\xi}{-\tau}, \ S = -\log(-\tau),$$
$$w_x(y,s) = (T(x) - \tau)^{\frac{2}{p-1}} u(\xi,\tau), \ y = \frac{\xi - x}{T(x) - \tau}, \ s = -\log(T(x) - \tau),$$

we get the following algebraic relation between w_x and w_0

$$w_{x}(y,s) = (1 - (1 - B)xe^{s})^{-\frac{2}{p-1}}w_{0}(Y,S), \quad Y = \frac{y + xe^{s}}{1 - (1 - B)xe^{s}} \quad S = s - \log(1 - (1 - B)xe^{s})$$

This means that the expansion for w_0 translates intro an expansion for w_x :

Part 1: Expansion for w_x (cont.)

Prop. We have

$$\lim_{L \to \infty} \left(\lim_{x \to 0^-} \sup_{L \le s \le L + |\log|x||} \left\| \begin{pmatrix} w_x(s) \\ \partial_s w_x(s) \end{pmatrix} - \sum_{i=1}^k (-1)^i \kappa^* \left(\hat{d}_i(s), \hat{v}_i(s) \right) \right\|_{\mathcal{H}} \right) = 0$$

where

 $\hat{\nu}_i(x,s) = [B - (1 - \hat{d}_i(x,s))]xe^s, \ \hat{d}_i(x,s) = d_i(S) \text{ and } -e^{-S(x,s)} = x(1-B) - e^{-s}.$

Moreover, for any $d \in (-1, 1)$ and $\mu \in \mathbb{R}$, $\kappa^*(d, \mu e^s, y)$ is a particular solution of the equation in selfsimilar variables, given by...

Part 1: Definition of $\kappa^*(d, \nu, y)$

.... $\kappa^*(d, \nu, y) = (\kappa_1^*, \kappa_2^*)(d, \nu, y)$ where

$$\kappa_1^*(d,\nu,y) = \kappa_0 \frac{(1-d^2)^{\frac{1}{p-1}}}{(1+dy+\nu)^{\frac{2}{p-1}}} \text{ and } \kappa_2^*(d,\nu,y) = \nu \partial_\nu \kappa_1^*(d,\nu,y) = -\frac{2\kappa_0\nu}{p-1} \frac{(1-d^2)^{\frac{1}{p-1}}}{(1+dy+\nu)^{\frac{p+1}{p-1}}}$$

where $d \in (-1, 1)$ and $\nu > -1 + |d|$. Note that for any $\mu \in \mathbb{R}$, $(y, s) \mapsto \kappa^*(d, \mu e^s, y)$ is an explicit solution to the equation in similarity variables. Moreover, - when $\mu = 0$, we recover the stationary solutions $\kappa(d, y)$;

- when $\mu > 0$, the solution exists for all $(y, s) \in (-1, 1) \times \mathbb{R}$ and converges to 0 in \mathcal{H} as $s \to \infty$;

- when $\mu < 0$, the solution exists for all $(y, s) \in (-1, 1) \times \left(-\infty, \log\left(\frac{|d|-1}{\mu}\right)\right)$ and blows up at time $s = \log\left(\frac{|d|-1}{\mu}\right)$.

Part 1: Proof: First, algebraic technique

Rk. The algebraic technique gives *explicit* parameters but *not on the whole interval* (-1, 1).

Starting from the expansion fo w_0 and the algebraic relation between w_x and w_0 , we get the result with the norm restricted to

 $y > y_1(x,s)$

for some $y_1(x,s) > -1$:

$$\lim_{L \to \infty} \left(\lim_{x \to 0^-} \sup_{L \le s \le L + |\log|x||} \left\| \begin{pmatrix} w_x(s) \\ \partial_s w_x(s) \end{pmatrix} - \sum_{i=1}^k (-1)^i \kappa^* \left(\hat{d}_i(s), \hat{\nu}_i(s) \right) \right\|_{\mathcal{H}(y > y_1(x,s))} \right) = 0$$

Part 1, Proof: Second, analytic technique

Rk. The analytic technique gives *non explicit* parameters, but *on the whole interval* (-1, 1).

Since the result holds for w_0 on the square $(y,s) \in (-1,1) \times [L,L+1]$, by continuity, it holds also for w_x when |x| small on the same square. Performing a modulation technique around the sum of $\kappa^*(d_i, v_i)$, we propagate the estimate with non explicit parameters up to

 $s = L + |\log|x||,$

in the sense that

$$\lim_{L\to\infty} \left(\lim_{x\to 0^-} \sup_{L\le s\le L+|\log|x||} \left\| \left(\begin{array}{c} w_x(s)\\ \partial_s w_x(s) \end{array} \right) - \sum_{i=1}^k (-1)^i \kappa^* \left(\bar{d}_i(s), \bar{n}u_i(s) \right) \right\|_{\mathcal{H}} \right) = 0.$$

Part 1: Conlusion of the proof of the expansion for w_x

Since $y_1(x,s)$ is "close" to the center of the first soliton, comparing the two expansions for $y \in (y_1, (x, s), 1)$ gives that the parameters $(\hat{d}_i(s), \hat{v}_i(s))$ and $(\bar{d}_i(s), \bar{v}_i(s))$ are close, and we get to the conclusion of the proposition:

$$\lim_{L\to\infty} \left(\lim_{x\to 0^-} \sup_{L\le s\le L+|\log|x||} \left\| \left(\begin{array}{c} w_x(s)\\ \partial_s w_x(s) \end{array} \right) - \sum_{i=1}^k (-1)^i \kappa^* \left(\hat{d}_i(s), \hat{\nu}_i(s) \right) \right\|_{\mathcal{H}} \right) = 0.$$

Part 2: Conclusion of the fact that *x* **is isolated**

It happens that when $s = L + |\log |x||$, all the solitons for $i \ge 2$ vanish, in the sense that

$$\forall i \geq 2, \quad \lim_{L \to \infty} \left\| \kappa^* \left(\hat{d}_i(|\log |x|| + L), \hat{v}_i(|\log |x|| + L) \right) \right\|_{\mathcal{H}} = 0.$$

Therefore, given $\epsilon > 0$, for *L* large enough and |x| small enough, we have

$$\left| \left(\begin{array}{c} w_x(|\log|x||+L) \\ \partial_s w_x(|\log|x||+L) \end{array} \right) + \kappa^* \left(\hat{d}_1(|\log|x||+L), \hat{v}_i(|\log|x||+L) \right) \right|_{\mathcal{H}} \leq \epsilon.$$

Part 2: Using the energy behavior

Since we have the following **Prop.** (*Energy minimum*)

$$\forall x \in \mathbb{R}, \ \forall s \geq -\log T(x), \ E(w_x(s)) \geq E(\kappa_0),$$

it follows that

$$E\left(\kappa^*\left(\hat{d}_1(|\log|x||+L),\hat{\nu}_i(|\log|x||+L)\right)\right) \ge E(\kappa_0) - C\epsilon$$
(2)

on the one hand. On the other hand, we have by direct computation

$$E(\kappa_0) \le E(\kappa^*(d,\nu)) \le E(\kappa_0) \left(3\lambda^2 - (2-\epsilon)\lambda^3\right) \text{ where } \lambda = \frac{(1-d^2)}{(1+\nu)^2 - d^2}.$$
(3)

From (2) and (3), we see that

 $3\lambda^2 - (2 - \epsilon)\lambda^3 \ge 1 - C\epsilon$, hence $|\lambda - 1| \le C\epsilon$.

Part 2: Using the energy behavior (cont.)

Since we have in this regime

$$\left\|\kappa^*(d,\nu) - \left(\begin{array}{c}\kappa\left(\frac{d}{1+\nu},0\right)\\0\end{array}\right)\right\|_{\mathcal{H}} \leq C|\lambda-1|,$$

it follows that

$$\left\| \left(\begin{array}{c} w_x(|\log|x||+L) \\ \partial_s w_x(|\log|x||+L) \end{array} \right) + \kappa \left(\frac{\hat{d}_1(|\log|x||+L)}{1+\hat{\nu}_i(|\log|x||+L)}, 0 \right) \right\|_{\mathcal{H}} \le C\epsilon.$$

Isolatedness of characteristic points for blow-up solutions of a semilinear wave equation – p. 30/33

Part 2: A trapping argument

Now, we recall the following result (from the non-characteristic case):

Prop. (Trapping result) There exists $\epsilon^* > 0$ such that if for some $x^* \in \mathbb{R}$, $s^* \ge -\log T(x^*)$ and $d^* \in (-1, 1)$ we have

 $\|w_{x^*}(s^*)+\kappa(d^*,y)\|_{\mathcal{H}}\leq \epsilon^*,$

then, $w_{x^*}(s) \to \kappa^*(\bar{d})$ as $s \to \infty$ for some \bar{d} such that

 $\left|\operatorname{argth} \bar{d} - \operatorname{argth} d^*\right| \leq C\epsilon^*.$

Part 2: Application to our case

Therefore, in our case, for some d(x) such that

$$\operatorname{argth} \bar{d}(x) - \operatorname{argth} \frac{\hat{d}_1(|\log |x|| + L)}{1 + \hat{v}_i(|\log |x|| + L)} \le C\epsilon^*,$$

we have $w_x(s) \to -\kappa(\overline{d}(x))$ as $s \to \infty$.

From the knowledge of the non-characteristic case and the characteristic case, *x* is not characteristic !!!!!

Moreover, $T'(x) = \overline{d}(x)$.

$$\left|\operatorname{argth} T'(x) - \operatorname{argth} \frac{\hat{d}_1(|\log |x|| + L)}{1 + \hat{\nu}_i(|\log |x|| + L)}\right| \le C\epsilon^*.$$

Part 2: Final conclusion

