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Outline of the talk

- An example: the Dictyostellium Discoideum

- the general Patlak / Keller-Segel model

- A first model: Chemotaxis (existence of Lp solutions)

- Chemotaxis : A blow-up criterion

- A second model: Angiogenesis (existence of Lp solutions)



An example: chemotaxis. Case of the amoeba Dic-

tyostellium Discoideum

Chemotaxis (definition): movement of bacteria, amoebas,

cells, under the attraction of some chemical (the chemoat-

tractant).



1st movie (source: dictybase.org)

Aggregation of amoebas D. Discoideum towards a source

point of the chemoattractant cAMP (cyclo Adenosine Monophos-

phate).

Time in minutes and seconds.

Experience by G. Gerisch, Max Planck Institut für Biochemie,

Martinsried, Germany.



2nd movie (source: dictybase.org)

Chemotaxis of one amoeba towards a source point of cAMP.

Time in minutes and seconds.

Experience by G. Gerisch, Max Planck Institut für Biochemie,

Martinsried, Germany.



3rd movie (source: dictybase.org)

Aggregation of amoebas.

Time interval between two steps: 6 minutes.

Experience by P. Devreotes, Johns Hopkins Medical Institu-

tions, Baltimore, USA.



Explanation (from a paper by D. Horstmann)

1- D. Discoideum is a unicellular organism that reproduces

by cellular division, as long as resources are available.

2- When there are no more resources, amoebas are every-

where.

3- One amoeba secretes cAMP which attracts the other

amoebas.

4- Amoebas move towards the “founding” amoeba, and se-

crete cAMP (3rd movie).
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5- Aggregation and beginning of differentiation.

6- Formation of a pseudoplasmoid (multicellular body).

7- The pseudoplasmoid moves towards light sources.

8- Formation of a fruiting body and spreading of spores,

and the cycle restarts (birth of amiboes....).
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A summary



Interest of D. Discoideum for medical research

It is a simple model for the study of chemotaxis, which is

involved in many processes in superior organisms (differenti-

ation, cancer, etc...)



Example: Angiogenesis near a cancer tumor

At the beginning, the tumor takes directly the nutriments

across its boundary. At some point, this is no longer enough.

The tumor sends a chemical signal outside in order to attract

endothelial cells (cells that make the interior of blood vessels),

and then form a network of capillary vessels that will directly

provide the tumor with nutriments.
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The classical model of Patlak / Keller-Segel

∂tn = div[κ(n, c)∇n − χ(n, c)∇c], t > 0, x ∈ Ω,

∂tc = η∆c + β(n, c)n − γ(n, c)c, t > 0, x ∈ Ω,

n(0, t) = n0(x), c(0, x) = c0(x).

n = population density, c = density of the chemical.

χ = chemtactic sensitivity. Generally, χ(n, c) = nχ(c).

χ(c) > 0 (decreasing): attraction, positive chemotaxis.

χ(c) < 0 (increasing): repulsion, negative chemotaxis.

β and γ: production and decay rate of the chemical.

Boundary condition to have the mass conservation:
∫

Ω
n(x, t)dx ≡

∫

Ω
n0(x)dx.

Maximum principle: n0 ≥ 0, c0 ≥ 0 =⇒ n ≥ 0, c ≥ 0.
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Other models

- hyperbolic models (Preziosi et al., initiation of angiogenesis

- kinetic models (Filbet, Laurençot, Perthame).



A first model: a parabolic-elliptic system of chemotaxis
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

∂
∂tn = κ∆n − χ∇ · [n∇c], t > 0, x ∈ IRd,

−∆c = n − αc, t > 0, x ∈ IRd,

n(0, x) = n0(x), x ∈ IRd.

χ(n, c) = χn where the “sensitivity” χ is constant.

Ed the fundamental solution of −∆ + αId, α ≥ 0:

c(x, t) =
∫

IRd Ed(x − y)n(y, t)dy.

If α = 0, then

∇c(x, t) = −C(d)
∫

IRd

(x − y)

|x − y|d
n(y, t)dt, d ≥ 2.

If α ≥ 0, then: n(t) ∈ Lp(IRd), p > d =⇒ ∇c(t) ∈ L∞(IRd).
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A 2nd model : a parabolic-ode system of angiogenesis.
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∂
∂tc = −cm n, t > 0, x ∈ IRd,

n(0, x) = n0(x), c(0, x) = c0(x), x ∈ IRd.

where m > 0,

n: endothelial cells, c: the tumor angiogenic factor,

and χ(c) = c−α, 0 < α < 1 or χ(c) = β
α+βc,

c1−m(x, t) = (m − 1)
∫ t

0
n(x, τ)dτ + c1−m

0 (x) if m 6= 1 and

c(x, t) = c0(x)e
−

∫ t

0
n(x, τ)dτ

if m = 1.
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How to obtain global weak solutions?

A classical idea: (for example), control the Lp norm of n for

all t. Computation gives:

d

dt

∫

Ω
np + 4κ

p − 1

p

∫

Ω
|∇np/2|2 = χp(p − 1)

∫

Ω
np−1∇n · ∇c .

If ∇c(x, t) is uniformly bounded in x and t, then we are done

(technique of Nagai and Hortsmann). Indeed,



We simply estimate the RHS as follows:

χp(p − 1)
∫

Ω
np−1∇n · ∇c = 2χ(p − 1)

∫

Ω
np/2∇np/2 · ∇c

≤ 2κ
p − 1

p

∫

Ω
|∇np/2|2 +

χ2p(p − 1)

2κ
‖∇c‖2L∞

t,x

∫

Ω
np,

which gives

d

dt

∫

Ω
np + 2κ

p − 1

p

∫

Ω
|∇np/2|2 ≤

χ2p(p − 1)

2κ
‖∇c‖2L∞

t,x

∫

Ω
np ,

=⇒ control of all Lp norms of n, 1 ≤ p ≤ +∞.



- This method worked only in 1 dimension or in the radial

case in 2 dimensions, for Nagai (who obtained the L∞ bound

on ∇c).

- Generalization to other sensitivity functions (non handeled

by us) by Biler.



A new idea. Ω = IRd, dimension d ≥ 2. I recall the system...
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... and the equation on the Lp norm:

d

dt

∫

np + 4κ
p − 1

p

∫

|∇np/2|2 = χ(p − 1)
∫

∇np · ∇c

= −χ(p − 1)
∫

np · ∆c.



Since −∆c = n − αc, we have

d

dt

∫

np + 4κ
p − 1

p

∫

|∇np/2|2 ≤ χ(p − 1)
∫

np+1.

Gagliardo-Nirenberg (condition : p ≥ max
(

1, d
2 − 1

)

) :

∫

np+1 ≤ C(d, p) ≤ C(d)‖∇np/2‖2L2 ‖n‖
L

d
2
,

and

d

dt

∫

np ≤ (p − 1)‖∇np/2‖2L2



χC̃(d)‖n‖
L

d
2
−

4κ

p



 .



Dimension d = 2 : ‖n‖
L

d
2
= ‖n‖L1 ≡ ‖n0‖L1, therefore

d

dt

∫

np ≤ (p − 1)‖∇np/2‖2L2



χC̃(d)‖n0‖L1 −
4κ

p



 .

Hence, if

χC̃(d)‖n0‖L1 −
4κ

p∗
≤ 0 ,

then for all p ≤ p∗,
∫

np decreases and stays bounded.



Dimension d = 3 : ‖n‖
L

d
2

is not conserved, but with p = d
2,

we write

d

dt

∫

n
d
2 ≤ (

d

2
− 1)‖∇n

d
4−

1
2‖2L2






χC̃(d)‖n‖

L
d
2
−

4κ
d
2





 .

therefore, if

χC̃(d)‖n0‖
L

d
2
−

4κ
d
2

≤ 0,

then ‖n‖
L

d
2

decreases and we write for any other p:



d

dt

∫

np ≤ (p − 1)‖∇np/2‖2L2



χC̃(d)‖n0‖
L

d
2
−

4κ

p



 .

Therefore, (like in 2 dimensions, but with the L
d
2 norm instead

of the mass), if

χC̃(d)‖n0‖
L

d
2
≤ min







4κ
d
2

,
4κ

p∗







then, for all p ≤ p∗,
∫

np decreases and stays bounded.



We actually would like a uniform condition

p ∈ [max
(

1, d
2 − 1

)

,+∞) without the restriction p ≤ p∗. For

this, we work with (n − K)+ instead of n, and we take K

sufficietly large.

After that, we regularize the system by introducing

−∆ce = nε ? ρε − αcε

where ρε is a regularizing kernel. We obtain the following

theorem (I first recall the system):
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Theorem (Existence for the chemotaxis system) (d ≥ 2)

If n0 ≥ 0, n0 ∈ L1(IRd) and ‖n0‖
L

d
2(IRd

)
≤ K0(κ, χ, d), then the

system has a global weak solution such that for all t > 0

‖n(t)‖
L1(IRd

)
= ‖n0‖L1(IRd

)
,

‖n(t)‖
Lp(IRd

)
≤ ‖n0‖Lp(IRd

)
, max{1; d

2 − 1} ≤ p ≤ d
2,

‖n(t)‖
Lp(IRd

)
≤ C

(

t, K0, ‖n0‖Lp(IRd
)

)

d
2 < p ≤ ∞.



Theorem (Blow-up criterion for the chemotaxis sys-

tem)For d ≥ 3 assume that

∫

IRd

|x|2

2
n0(x)dx ≤ C(χ, κ, d)

(∫

IRd n0

)
d

d−2

and for d = 2 assume that
∫

IRd

|x|2

2
n0(x)dx is finite and that

∫

IRd n0 ≥ M0 for some M0(χ, κ, d) > 0. Then, the chemo-

taxis system has no global smooth soution with fast decay at

infinity.



The classical system of chemotaxis
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c is the density of the chemo-attractant,

χ is the sensitivity of the the chemo-attractant.



A 2nd model : a parabolic-ode system of angiogenesis.
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Conservation of mass:
∫

n(x, t)dx =
∫

n0(x)dx .

Maximum principle: n(x, t) ≥ 0 and 0 ≤ c(x, t) ≤ ‖c0‖L∞ .

Divergence form: Let v = n
φ(c)

, where φ is defined by

φ′(c) =
1

κ
φ(c)χ(c) c > 0, φ(0) = 1.

Then,

∂

∂t





n

φ(c)



 = κ
1

φ(c)
∇ ·



φ(c)∇





n

φ(c)







+
1

κ





n

φ(c)





2

φ(c)χ(c) cm.



A fundamental differential inequality (Ω = IRd) :

For all p ≥ max(1, d
2 − 1),

d
dt

∫





n

φ(c)





p

φ(c)

≤ (p − 1)‖∇( n
φ(c)

)p/2‖2
L2

[

1
κC̃(d)K1‖φ

2/d(c)
(

n
φ(c)

)

‖
L

d
2
− 4κ

p

]

,

analogous to the inequality for the parabolic-elliptic system:

d

dt

∫

np ≤ (p − 1)‖∇np/2‖2L2



χC̃(d)‖n‖
L

d
2
−

4κ

p



 .



We do as before, and we obtain the following theorem (I

recall the system first):











































∂
∂tn = κ∆n −∇ · [nχ(c)∇c], t > 0, x ∈ IRd,

∂
∂tc = −cm n, t > 0, x ∈ IRd,

n(0, x) = n0(x), c(0, x) = c0(x), x ∈ IRd.

où m > 0.



Theorem (Existence for the angiogenesis system). If

d ≥ 2, m ≥ 1, n0 ∈ L1(IRd), c0 ∈ L∞(IRd), n0 ≥ 0, c0 ≥ 0

and ‖n0‖
L

d
2(IRd

)
≤ K0

(

κ, χ, d, ‖c0‖L∞(IRd
)

)

, then the angio-

genesis system has a global weak solution (n, c) such that

n ∈ L∞(IR+, L1 ∩ L
d
2(IRd)), c ∈ L∞(IR+ × IRd) and for all

p∗ ≥ max{1; d
2 − 1},

‖n(t)‖
Lp(IRd

)
≤ C(t, K0, p∗, ‖n0‖Lp(IRd

)
),

∀ max{1;
d

2
− 1} ≤ p ≤ p∗.


