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The equation

∂tu = ∆u + (1 + iδ)|u|p−1u
u(0, x) = u0(x) ∈ L∞(RN),

(Equδ)

where u(t) : R
N → C, p > 1 and δ ∈ R.

We say that u(t) blows up in finite time T , if u(t) exists for all
t ∈ [0,T ) and limt→T ‖u(t)‖L∞ = +∞.

The point a is a blow-up point if and only if there exists
(an, tn) → (a,T ) as n → +∞ such that |u(an, tn)| → +∞.
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Why this equation?

- A submodel of the Ginzburg-Landau equation

∂tu = (1 + iβ)∆u + (1 + iδ)|u|p−1u − γu (1)

where β, δ and γ are real (See Masmoudi and Zaag JFA 2008
where a blow-up solution is contructed for equation (1)).

- A lab model for the blow-up problem in parabolic equations with
no gradient structure.
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Fundamental feature:

Existence of a Lyapunov functional:

d

dt
E0(u) = −

∫

RN

|∂tu|2dx

where

E0(u) =
1

2

∫

RN

|∇u|2 dx − 1

p + 1

∫

RN

|u|p+1dx .

Remark: From Ball 77, we have E (u0) < 0 ⇒ u(t) blows up in
finite time.
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Extensive bibliography δ = 0

• Existence of Blow-up solutions? yes, energy method by Levine
1974 and Ball 1977.
• Blow-up rate? Giga-Kohn 1987, Giga, Matsui and Sasayama
2004.
If u blows up at time T , then

∀t ∈ [0,T ), ‖u(t)‖L∞ ≤ Cv(t),

with v(t) = κ(T − t)
− 1

p−1 , κ = (p − 1)
− 1

p−1 and

{

v
′
(t) = v(t)p,

v(T ) = +∞.

Definition: We say that u is of ”type I”.
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• Asymptotic Behavior (Blow-up profile δ = 0)1990’ Herrero,
Velázquez , Bricmont, Kupiainen, Filippas, Kohn, Liu.
Given a blow-up point a, the (supposed to be generic) profile is the
following:

u(x , t) ∼ (T − t)
− 1

p−1 f0

(
∣

∣

∣

∣

∣

x − a
√

(T − t)| log(T − t)|

∣

∣

∣

∣

∣

)

,

where f0(z) = (p − 1 + b(p)z)−
1

p−1 .

1/2^ a+R[(T−t)|log(T−t)]^ a

−1/(p−1)
(T−t)κ

u(x,t)

x
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Remark: If N = 1, we know it is generic (Herrero, Velázquez).
If N ≥ 2, open problem.

• Stability of the blow-up profile (δ = 0)

Theorem (Fermanian, Merle, Z. 2000) Consider initial data û0, the
solution û(x , t) of (Equ0) with blow-up time T̂ , blow-up point â
and profile f0 centered at (T̂ , â).

Then, ∃V neighborhood of û0 s.t. ∀u0 ∈ V, u(x , t) the solution of
(Equ0) blows up at time T , at a point a, with the profile f0
centered at (T , a).

Moreover, (T , a) → (T̂ , â) as u0 → û0.
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A Liouville Theorem for equation (Equ0)

Theorem
Assume that u is a solution of (Equ0) s.t.

∀(x , t) ∈ R
N × (−∞,T ), |u(x , t)| ≤ M(T − t)−

1
p−1 .

Then,

u ≡ 0 or ∀(x , t) ∈ R
N × (−∞,T ), u(x , t) = ±κ(T0 − t)

− 1
p−1 ,

for some T0 ≥ T.
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Consequences of the Liouville Theorem for equation (Equ0)

Proposition Consider u a solution of (Equ0), which blows up at
time T .
Then, (i) (L∞ estimates for u and derivatives)

‖u(t)‖L∞(T − t)
1

p−1 → κ and ‖∇ku(t)‖L∞(T − t)
1

p−1
+ k

2 → 0

as t → T for k = 1, 2 or 3.

(ii) (Uniform ODE localization) For all ε > 0, there is C (ε)
such that ∀x ∈ R

N , ∀t ∈ [0,T ),

∣

∣

∣

∣

∂u

∂t
(x , t) − |u|p−1u(x , t)

∣

∣

∣

∣

≤ ε|u(x , t)|p + C .

Other consequences: Regularity of the set of all blow-up points,
see Z. 2006.
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• What changes? No Lyapunov functional.

• What is known? Existence of a blow-up solution stable/ initial
data (constructive method Z. 1998).

• What is unknown? The blow-up rate, the blow-up profile, etc......

•Our approach: Try to prove a Liouville Theorem.
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A Liouville theorem for equation (Equδ), δ 6= 0

Theorem (Nouaili,Z.)
If 0 < |δ| ≤ δ0 and

∀(x , t) ∈ R
N × (−∞,T ) |u(x , t)| ≤ M(δ)(T − t)−

1
p−1

for some δ0 > 0 and M(δ) > 0, then,

u ≡ 0 or ∀(x , t) ∈ R
N × (−∞,T ), u(x , t) = κe iθ0(T0 − t)

− 1+iδ
p−1 ,

for some T0 ≥ T and θ0 ∈ R.

Rk. M(δ) → +∞ as δ → 0.

Hatem ZAAG LAGA, CNRS UMR 7539 Université Paris 13 A Liouville theorem for vector valued semilinear heat equations with



Case δ = 0, (N − 2)p < N + 2
Case δ 6= 0

Proof of the Liouville theorem case δ = 0
Proof of the Liouville theorem case δ 6= 0

Uniform blow-up estimates

Proposition Consider 0 < |δ| ≤ δ0 and u a solution of (Equδ) that
blows up at time T and satisfies

∀t ∈ [0,T ), ‖u(t)‖L∞ ≤ M(δ)(T − t)
− 1

p−1 . (type I)

Then, (i) (L∞ estimates for derivatives)

‖u(t)‖L∞(T − t)
1

p−1 → κ and ‖∇ku(t)‖L∞(T − t)
1

p−1
+ k

2 → 0

as t → T for k = 1, 2 or 3.

(ii) (Uniform ODE localization) For all ε > 0, there is C (ε)
such that ∀x ∈ R

N , ∀t ∈ [0,T ),
∣

∣

∣

∣

∂u

∂t
(x , t) − (1 + iδ)|u|p−1u(x , t)

∣

∣

∣

∣

≤ ε|u(x , t)|p + C .

Proof It follows from the Liouville theorem.
Hatem ZAAG LAGA, CNRS UMR 7539 Université Paris 13 A Liouville theorem for vector valued semilinear heat equations with



Case δ = 0, (N − 2)p < N + 2
Case δ 6= 0

Proof of the Liouville theorem case δ = 0
Proof of the Liouville theorem case δ 6= 0

Part 1: Limits of w as s → ±∞
Part 2: Trivial cases
Part 3: Case when w−∞ → κ as s → −∞

Outline of the talk

1 Case δ = 0, (N − 2)p < N + 2

2 Case δ 6= 0

3 Proof of the Liouville theorem case δ = 0
Part 1: Limits of w as s → ±∞
Part 2: Trivial cases
Part 3: Case when w−∞ → κ as s → −∞

Step 1: Linearization of w near κ as s → −∞

Step 2: The relevant case, λ = 1
Step 3: The irrelevant cases; ii) λ = 1

2
or iii) λ = 0

4 Proof of the Liouville theorem case δ 6= 0
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Part 1: Limits of w as s → ±∞
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Let us recall the Liouville Theorem for:

∂tu = ∆u + |u|p−1u.

Theorem
Assume that u is a solution of (Equ0) s.t.

∀(x , t) ∈ R
N × (−∞,T ), |u(x , t)| ≤ M(T − t)

− 1
p−1 .

Then,

u ≡ 0 or ∀(x , t) ∈ R
N × (−∞,T ), u(x , t) = ±κ(T0 − t)

− 1
p−1 ,

for some T0 ≥ T.
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Statement in selfsimilar variables:

wa(y , s) = (T − t)
1

p−1 u(x , t), y =
x − a√
T − t

, s = − log(T − t),

for all (x , t) ∈ R
N × (−∞,T ), the function w = wa satisfies for all

(y , s) ∈ R
N × R:

ws = ∆w − 1

2
y · ∇w − 1

(p − 1)
w + |w |p−1w . (Eqw0)
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Theorem (A Liouville theorem for equation (Eqw0)) If

‖w(y , s)‖L∞(RN×R,R) ≤ M

and w is a solution of (Eqw0), then

w ≡ 0 or w ≡ ±κ or w = ±ϕ0(s − s0),

for some s0 ∈ R, and

ϕ0(s) = κ(1 + es)
− 1

(p−1) and κ = (p − 1)−
1

p−1 .
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A Lyapunov functional in the w variable

E(w) =

∫

RN

(

1

2
|∇w |2 +

|w |2
2(p − 1)

− |w |p+1

p + 1

)

ρ(y)dy with

ρ(y) =
e−

|y|2

4

(4π)N/2
.

d

ds
E(w) = −

∫

(∂sw)2ρ(y)dy

Consequence: w±∞ = lims→±∞ w(y , s) exists and is a stationary
solution of (Eqw0). From Giga and Kohn we obtain w±∞ = 0,
w±∞ = κ or w±∞ = −κ.
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Hatem ZAAG LAGA, CNRS UMR 7539 Université Paris 13 A Liouville theorem for vector valued semilinear heat equations with



Case δ = 0, (N − 2)p < N + 2
Case δ 6= 0

Proof of the Liouville theorem case δ = 0
Proof of the Liouville theorem case δ 6= 0

Part 1: Limits of w as s → ±∞
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Since E(w−∞) − E(w+∞) =

∫ +∞

−∞
ds

∫

R

∣

∣

∣

∣

∂w

∂s
(y , s)

∣

∣

∣

∣

2

ρdy ≥ 0

and E(κ) = E(−κ) > 0 = E(0),

we have 2 cases:

(Trivial)
E(w−∞) − E(w+∞) = 0 ⇒ ∂sw ≡ 0 ⇒ w ≡ 0 or w ≡ ±κ.

(Non trivial)
E(w−∞) − E(w+∞) > 0 ⇒ (w−∞,w+∞) ≡ (±κ, 0).
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Step 1: Linearization of w near κ as s → −∞

We consider v(y , s) = w(y , s) − κ.

∂sv = Lv + f (v), with Lv = ∆v − 1

2
y · ∇v + v , |f (v)| ≤ C |v |2.

L is self adjoint, spec(L) = {1 − m
2 |m ∈ R}.

The eigenvectors are Hermite polynomials.
As s → −∞, one of the following cases occurs:

i) λ = 1, w(y , s) = κ + C0e
s + o(es), C0 ∈ R.

ii)λ = 1
2 , w(y , s) = κ + C1e

s/2y + o(es/2), C1 ∈ R
∗.

iii)λ = 0, w(y , s) = κ − κ
2ps

(1
2y2 − 1) + o(1

s
).

Convergence is in L2
ρ and uniformly on compact sets.
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Step 2: The relevant case, λ = 1

If ϕ∗(s) =











= κ if C0 = 0,

= ϕ0(s − s0) = κ(1 + es−s0)
− 1

p−1 , if C0 < 0,

= ϕ̃(s − s0) = κ(1 − es−s0)−
1

p−1 , if C0 > 0,

with s0 = − log
(

(p−1)
κ |C0|

)

, then ϕ∗ is a solution of (Eqw0) with

the same expansion of w as s → −∞.
If V = w − ϕ∗, then ‖V (y , s)‖L2

ρ
= O(e3/2s ).

Since 3
2 > 1 = max{λ ∈ spec(L)}, then V ≡ 0.

Because w+∞ = 0, we get ϕ∗ = ϕ0(s − s0).

w(y , s) = ϕ(s − s0) = κ(1 + es−s0)
− 1

p−1 , for some s0 ∈ R.

Hatem ZAAG LAGA, CNRS UMR 7539 Université Paris 13 A Liouville theorem for vector valued semilinear heat equations with



Case δ = 0, (N − 2)p < N + 2
Case δ 6= 0

Proof of the Liouville theorem case δ = 0
Proof of the Liouville theorem case δ 6= 0

Part 1: Limits of w as s → ±∞
Part 2: Trivial cases
Part 3: Case when w−∞ → κ as s → −∞

Step 3: The irrelevant cases; ii) λ = 1
2

or iii) λ = 0

Merle-Zaag (Blow-up criterion). Let W a solution of (Eqw0), such
that

(
∫

|W (y , s0)|2ρ(y)dy

)
p+1
2

> 2
p + 1

p − 1
E(W (., s0)), (Is0)

for some s0 ∈ R. Then W blows-up at some time S > s0.
In case ii) and iii) one can find a0 and s0 such that (Is0) is true
with W (y , s0) = wa0(y , s0) = w(y + a0e

s0/2, s0).
Then, there exists S > s0, such that wa0 blows up at S ,
contradiction because w (w(y , s) = wa0(y − a0e

s/2, s)) is bounded.
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Part 1: Limits of w as s → −∞
Part 2: Case where w → 0 as s → −∞
Part 3: Case where infθ∈R ‖w(., s)−κe iθ‖

L2
ρ

→ 0 as s → −∞

What changes?

No Lyapunov functional:

No Lyapunov functional to get the limits as s → ±∞.

No blow-up criterion to rule out the irrelevant cases.
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ρ

→ 0 as s → −∞

Let us recall the Liouville Theorem for:

∂tu = ∆u + (1 + iδ)|u|p−1u.

Theorem (Nouaili, Z.)
If 0 < |δ| ≤ δ0 and u is a solution of (Equδ) satisfying

∀(x , t) ∈ R
N × (−∞,T ) |u(x , t)| ≤ M(δ)(T − t)

− 1
p−1

for some δ0 > 0 and M(δ) > 0, then,

u ≡ 0 or ∀(x , t) ∈ R
N × (−∞,T ), u(x , t) = κe iθ0(T0 − t)−

1+iδ
p−1 ,

for some T0 ≥ T and θ0 ∈ R.
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L2
ρ

→ 0 as s → −∞

Statement in selfsimilar variables:

wa(y , s) = (T − t)
1+iδ
p−1 u(x , t), y =

x − a√
T − t

, s = − log(T − t),

for all (x , t) ∈ R
N × (−∞,T ), the function w = wa satisfies for all

(y , s) ∈ R
N × R:

ws = ∆w − 1

2
y · ∇w − 1 + iδ

(p − 1)
w + (1 + iδ)|w |p−1w . (Eqwδ)
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Theorem(A Liouville theorem for equation (Eqwδ)) If 0 < |δ| ≤ δ0

and w is a solution of (Eqwδ) s.t.

‖w(y , s)‖L∞(RN×R,C) ≤ M(δ),

then,
w ≡ 0 or w ≡ κe iθ0 or w = ϕδ(s − s0)e

iθ0 ,

for some θ0 ∈ R and s0 ∈ R, where

ϕδ(s) = κ(1 + es)
− (1+iδ)

(p−1) and κ = (p − 1)−
1

p−1 .
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Outline of the talk

1 Case δ = 0, (N − 2)p < N + 2

2 Case δ 6= 0

3 Proof of the Liouville theorem case δ = 0
Part 1: Limits of w as s → ±∞
Part 2: Trivial cases
Part 3: Case when w−∞ → κ as s → −∞

Step 1: Linearization of w near κ as s → −∞

Step 2: The relevant case, λ = 1
Step 3: The irrelevant cases; ii) λ = 1

2
or iii) λ = 0

4 Proof of the Liouville theorem case δ 6= 0
Part 1: Limits of w as s → −∞
Part 2: Case where w → 0 as s → −∞
Part 3: Case where infθ∈R ‖w(., s) − κe iθ‖L2

ρ
→ 0 as s → −∞

Step 1: Modulation
Step 2: Behavior as s → −∞

Step 3: The relevant case λ = 1
Step 4: The irrelevant cases, ii) λ = 1

2
or iii) λ = 0
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(Stationary solution) Consider w ∈ L∞(RN) a stationary solution
of (Eqwδ). Then, w ≡ 0 or there exists θ0 ∈ R such that
w ≡ κe iθ0 .
Remark: The proof is trivial and much easier than the case δ = 0.

To get the limits, we have no Lyapunov functional.
Fortunately, a perturbation method used by Andreucci, Herrero
and Velázquez, works here and yields the following:

Proposition If 0 < |δ| ≤ δ0 and w is a solution of (Eqwδ) satisfying
for all (y , s) ∈ R × R, |w(y , s)| ≤ M(δ) for some δ0 and M(δ),
then, as s → −∞

either (i) ‖w(., s)‖L2
ρ
→ 0

or (ii) infθ∈R ‖w(., s) − κe iθ‖L2
ρ
→ 0.
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If h(s) ≡
∫

R
|w(y , s)|2 ρ(y)dy , then

h′(s) ≤ − 2

p − 1
h(s) + 2

∫

R

|w(y , s)|p+1 ρ(y)dy .

Using the regularizing effect of equation (Eqwδ), we derive the
following delay estimate, for some positive s∗ and C

∀s ∈ R, h′(s) ≤ − 2

p − 1
h(s) + C (M)h(s − s∗) p+1

2 .

Using h(s) → 0 as s → −∞ and delay ODE techniques, we have
for some ε > 0 small enough,

∀σ ∈ R, ∀s ≥ σ + s∗, h(s) ≤ εe
− 2(s−σ)

p−1 ,

Fixing s and letting σ → −∞, we get w ≡ 0.
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Part 1: Limits of w as s → −∞
Part 2: Case where w → 0 as s → −∞
Part 3: Case where infθ∈R ‖w(., s)−κe iθ‖

L2
ρ

→ 0 as s → −∞

Step 1: Modulation

We introduce θ(s) and v such that

w(y , s) = e iθ(s)(v(y , s)+κ), ∀s ≤ s1,

∫

( Im (v)−δ Re (v))ρ = 0.(∗)

∂sv = L̃v − iθs(v + κ) + G , where

L̃v = ∆v − 1
2y∇v + (1 + iδ)v1, |G (v)| ≤ C |v |2.

spec(L̃) = {1 − m
2 |m ∈ R} its eigenvectors are given by

{(1 + iδ)hm, ihm|n ∈ N} and hm are Hermite polynomials.

The choice of θ(s) (∗) kills one neutral mode.
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Part 1: Limits of w as s → −∞
Part 2: Case where w → 0 as s → −∞
Part 3: Case where infθ∈R ‖w(., s)−κe iθ‖

L2
ρ

→ 0 as s → −∞

Step 2: Behavior as s → −∞

• λ = 1, with eigenfunction (1 + iδ)h0(y) = (1 + iδ).
• λ = 1/2, with eigenfunction (1 + iδ)h1(y) = (1 + iδ)y .
• λ = 0, with two eigenfunctions (1 + iδ)h2(y) = (1 + iδ)(y2 − 2)
and ih0(y) = i (killed by the choice of θ(s) (∗)).
We have one of the following cases as s → −∞:

(i) w(y , s) = {κ + (1 + iδ)C0e
s}e iθ0 + o(e

3
2
s), C0 ∈ R

(ii) w(y , s) = {κ + (1 + iδ)C1e
s/2y}e iθ0 + o(es/2), C1 ∈ R

∗,

(iii) w(y , s) = e iθ0{κ − (1 + iδ) κ
4(p−δ2)s

(y2 − 2) − i (1+δ2)δκ2

2(p−δ2)2
1
s
} + o( 1

|s|).

Convergence takes place in L2
ρ and uniformly on compact sets.
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Part 2: Case where w → 0 as s → −∞
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Step 3: The relevant case, λ = 1

We do exactly as in case δ = 0.

If ϕ∗(s) =











= κe iθ0 if C0 = 0,

= ϕδ(s − s0) = κe iθ0(1 + es−s0)−
1+iδ
p−1 , if C0 < 0,

= ϕ̃δ(s − s0) = κe iθ0(1 − es−s0)−
1+iδ
p−1 , if C0 > 0,

with s0 = − log
(

(p−1)
κ |C0|

)

and θ0 ∈ R. Then ϕ∗ is a solution of

(Eqwδ) with the same expansion of w as s → −∞.
If V = w − ϕ∗, then ‖V (y , s)‖L2

ρ
= O(e3/2s ).

Since 3
2 > 1 = max{λ ∈ spec(L)}, then V ≡ 0.

Because w is bounded, we get ϕ∗ 6≡ ϕ̃δ , hence w(y , s) = κe iθ0 or

w(y , s) = ϕδ(s − s0)e
iθ0 = κe iθ0(1 + es−s0)

− 1+iδ
p−1 , for some s0 ∈ R.
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Step 4: The irrelevant cases, ii) λ = 1
2

or iii) λ = 0

No blow-up criterion ? Our source of inspiration is Velázquez’s
work.
We extend the convergence in ii) and iii) from |y | < R to larger
regions to find singular profiles.

ii)f1(ξ) = κ(1 − C1κ
−pξ)

− (1+iδ)
(p−1) singular for ξ = R1(p)

lim
s→−∞

sup
|y |≤Re−s/2

∣

∣

∣
w(y , s) − f1(ye

s/2)
∣

∣

∣
= 0, where R < R1(p).

iii)f2(ξ) = κ

(

1 − (p − 1)

4(p − δ2)
ξ2

)− (1+iδ)
p−1

singular for ξ = R2(p).

lim
s→−∞

sup
|y |≤R

√
−s

∣

∣

∣

∣

w(y , s) − f

(

y√
−s

)
∣

∣

∣

∣

= 0 where R < R2(p).
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A picture for the case iii) λ = 0

y

2M

M
w

1/2 )

 1/2

F2( y/(−s)

R(−s)

Here, we choose R = R(M) such that |f2( R√
−s

)| = 2M, where

‖w‖L∞(RN×R) ≤ M = M(δ) (*). Then, for |s| large enough,

|w(R
√
−s, s)−f2(

R√−s
)| ≤ M

2
, |w(R

√
−s, s)| ≥ |f2(

R√−s
)|−M

2
=

3M

2
.

Contradiction with (*).
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