A Liouville theorem for vector valued semilinear heat equations with no gradient structure and applications to blow-up

Tokyo University, December 17, 2009

Hatem ZAAG LAGA, CNRS UMR 7539
Université Paris 13
joint work with Nejla Nouaili
Université Paris Dauphine

December 17, 2009

The equation

$$
\begin{array}{ll}
\partial_{t} u & =\Delta u+(1+i \delta)|u|^{p-1} u \\
u(0, x) & =u_{0}(x) \in L^{\infty}\left(\mathbb{R}^{N}\right)
\end{array}
$$

where $u(t): \mathbb{R}^{N} \rightarrow \mathbb{C}, p>1$ and $\delta \in \mathbb{R}$.
We say that $u(t)$ blows up in finite time T, if $u(t)$ exists for all $t \in[0, T)$ and $\lim _{t \rightarrow T}\|u(t)\|_{L^{\infty}}=+\infty$.

The point a is a blow-up point if and only if there exists $\left(a_{n}, t_{n}\right) \rightarrow(a, T)$ as $n \rightarrow+\infty$ such that $\left|u\left(a_{n}, t_{n}\right)\right| \rightarrow+\infty$.

Why this equation?

- A submodel of the Ginzburg-Landau equation

$$
\begin{equation*}
\partial_{t} u=(1+i \beta) \Delta u+(1+i \delta)|u|^{p-1} u-\gamma u \tag{1}
\end{equation*}
$$

where β, δ and γ are real (See Masmoudi and Zaag JFA 2008 where a blow-up solution is contructed for equation (1)).

- A lab model for the blow-up problem in parabolic equations with no gradient structure.

Outline of the talk

(1) Case $\delta=0,(N-2) p<N+2$
(2) Case $\delta \neq 0$
(3) Proof of the Liouville theorem case $\delta=0$
(4) Proof of the Liouville theorem case $\delta \neq 0$

Outline of the talk

(1) Case $\delta=0,(N-2) p<N+2$
(2) Case $\delta \neq 0$
(3) Proof of the Liouville theorem case $\delta=0$
(4) Proof of the Liouville theorem case $\delta \neq 0$

Fundamental feature:

Existence of a Lyapunov functional:

$$
\frac{d}{d t} E_{0}(u)=-\int_{\mathbb{R}^{N}}\left|\partial_{t} u\right|^{2} d x
$$

where

$$
E_{0}(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x-\frac{1}{p+1} \int_{\mathbb{R}^{N}}|u|^{p+1} d x
$$

Remark: From Ball 77, we have $E\left(u_{0}\right)<0 \Rightarrow u(t)$ blows up in finite time.

Extensive bibliography $\delta=0$

- Existence of Blow-up solutions? yes, energy method by Levine 1974 and Ball 1977.
- Blow-up rate? Giga-Kohn 1987, Giga, Matsui and Sasayama 2004.

If u blows up at time T, then

$$
\forall t \in[0, T),\|u(t)\|_{L^{\infty}} \leq C v(t)
$$

with $v(t)=\kappa(T-t)^{-\frac{1}{p-1}}, \kappa=(p-1)^{-\frac{1}{p-1}}$ and

$$
\begin{cases}v^{\prime}(t)= & v(t)^{p}, \\ v(T)= & +\infty\end{cases}
$$

Definition: We say that u is of "type I".

- Asymptotic Behavior (Blow-up profile $\delta=0$)1990' Herrero, Velázquez, Bricmont, Kupiainen, Filippas, Kohn, Liu. Given a blow-up point a, the (supposed to be generic) profile is the following:

$$
u(x, t) \sim(T-t)^{-\frac{1}{p-1}} f_{0}\left(\left|\frac{x-a}{\sqrt{(T-t)|\log (T-t)|}}\right|\right)
$$

$$
\text { where } f_{0}(z)=(p-1+b(p) z)^{-\frac{1}{p-1}}
$$

Remark: If $N=1$, we know it is generic (Herrero, Velázquez). If $N \geq 2$, open problem.

- Stability of the blow-up profile ($\delta=0$)

Theorem (Fermanian, Merle, Z. 2000) Consider initial data \hat{u}_{0}, the solution $\hat{u}(x, t)$ of $\left(E q u_{0}\right)$ with blow-up time \hat{T}, blow-up point \hat{a} and profile f_{0} centered at (\hat{T}, \hat{a}).

Then, $\exists \mathcal{V}$ neighborhood of \hat{u}_{0} s.t. $\forall u_{0} \in \mathcal{V}, u(x, t)$ the solution of (Equo) blows up at time T, at a point a, with the profile f_{0} centered at (T, a).

Moreover, $(T, a) \rightarrow(\hat{T}, \hat{a})$ as $u_{0} \rightarrow \hat{u}_{0}$.

A Liouville Theorem for equation (Equo)

Theorem

Assume that u is a solution of (Equo) s.t.

$$
\forall(x, t) \in \mathbb{R}^{N} \times(-\infty, T),|u(x, t)| \leq M(T-t)^{-\frac{1}{p-1}}
$$

Then,

$$
u \equiv 0 \text { or } \forall(x, t) \in \mathbb{R}^{N} \times(-\infty, T), u(x, t)= \pm \kappa\left(T_{0}-t\right)^{-\frac{1}{p-1}},
$$

for some $T_{0} \geq T$.

Proof of the Liouville theorem case $\delta=0$

Consequences of the Liouville Theorem for equation (Equ ${ }_{0}$)

Proposition Consider u a solution of (Equ u_{0}), which blows up at time T.
Then, (i) (L^{∞} estimates for u and derivatives)

$$
\begin{array}{r}
\|u(t)\|_{L \infty}(T-t)^{\frac{1}{p-1}} \rightarrow \kappa \text { and }\left\|\nabla^{k} u(t)\right\|_{L \infty}(T-t)^{\frac{1}{p-1}+\frac{k}{2}} \rightarrow 0 \\
\text { as } t \rightarrow T \text { for } k=1,2 \text { or } 3 .
\end{array}
$$

(ii) (Uniform ODE localization) For all $\varepsilon>0$, there is $C(\varepsilon)$ such that $\forall x \in \mathbb{R}^{N}, \forall t \in[0, T)$,

$$
\left|\frac{\partial u}{\partial t}(x, t)-|u|^{p-1} u(x, t)\right| \leq \varepsilon|u(x, t)|^{p}+C .
$$

Other consequences: Regularity of the set of all blow-up points, see Z. 2006.

Outline of the talk

(1) Case $\delta=0,(N-2) p<N+2$
(2) Case $\delta \neq 0$
(3) Proof of the Liouville theorem case $\delta=0$
4. Proof of the Liouville theorem case $\delta \neq 0$

- What changes? No Lyapunov functional.
- What is known? Existence of a blow-up solution stable/ initial data (constructive method Z. 1998).
- What is unknown? The blow-up rate, the blow-up profile, etc......
- Our approach: Try to prove a Liouville Theorem.

A Liouville theorem for equation (Equ), $\delta \neq 0$

Theorem (Nouaili,Z.)
If $0<|\delta| \leq \delta_{0}$ and

$$
\forall(x, t) \in \mathbb{R}^{N} \times(-\infty, T)|u(x, t)| \leq M(\delta)(T-t)^{-\frac{1}{p-1}}
$$

for some $\delta_{0}>0$ and $M(\delta)>0$, then,

$$
u \equiv 0 \text { or } \forall(x, t) \in \mathbb{R}^{N} \times(-\infty, T), u(x, t)=\kappa e^{i \theta_{0}}\left(T_{0}-t\right)^{-\frac{1+i \delta}{p-1}},
$$

for some $T_{0} \geq T$ and $\theta_{0} \in \mathbb{R}$.

Rk. $M(\delta) \rightarrow+\infty$ as $\delta \rightarrow 0$.

Uniform blow-up estimates

Proposition Consider $0<|\delta| \leq \delta_{0}$ and u a solution of (Equ \mathcal{S}_{δ}) that blows up at time T and satisfies

$$
\forall t \in[0, T),\|u(t)\|_{L^{\infty}} \leq M(\delta)(T-t)^{-\frac{1}{p-1}} .(\text { type } \mathbf{I})
$$

Then, (i) (L^{∞} estimates for derivatives)

$$
\begin{array}{r}
\|u(t)\|_{L^{\infty}}(T-t)^{\frac{1}{p-1}} \rightarrow \kappa \text { and }\left\|\nabla^{k} u(t)\right\|_{L^{\infty}}(T-t)^{\frac{1}{p-1}+\frac{k}{2}} \rightarrow 0 \\
\text { as } t \rightarrow T \text { for } k=1,2 \text { or } 3 .
\end{array}
$$

(ii) (Uniform ODE localization) For all $\varepsilon>0$, there is $C(\varepsilon)$ such that $\forall x \in \mathbb{R}^{N}, \forall t \in[0, T)$,

$$
\left.\left.\left|\frac{\partial u}{\partial t}(x, t)-(1+i \delta)\right| u\right|^{p-1} u(x, t)|\leq \varepsilon| u(x, t)\right|^{p}+C .
$$

Proof It follows from the Liouville theorem.

Outline of the talk

(1) Case $\delta=0,(N-2) p<N+2$

(3) Proof of the Liouville theorem case $\delta=0$

- Part 1: Limits of w as $s \rightarrow \pm \infty$
- Part 2: Trivial cases
- Part 3: Case when $w_{-\infty} \rightarrow \kappa$ as $s \rightarrow-\infty$
- Step 1: Linearization of w near κ as $s \rightarrow-\infty$
- Step 2: The relevant case, $\lambda=1$
- Step 3: The irrelevant cases; ii) $\lambda=\frac{1}{2}$ or iii) $\lambda=0$
(4) Proof of the Liouville theorem case $\delta \neq 0$

Let us recall the Liouville Theorem for:

$$
\partial_{t} u=\Delta u+|u|^{p-1} u .
$$

Theorem

Assume that u is a solution of $\left(E q u_{0}\right)$ s.t.

$$
\forall(x, t) \in \mathbb{R}^{N} \times(-\infty, T),|u(x, t)| \leq M(T-t)^{-\frac{1}{p-1}}
$$

Then,

$$
u \equiv 0 \text { or } \forall(x, t) \in \mathbb{R}^{N} \times(-\infty, T), u(x, t)= \pm \kappa\left(T_{0}-t\right)^{-\frac{1}{p-1}}
$$

for some $T_{0} \geq T$.

Statement in selfsimilar variables:

$$
w_{a}(y, s)=(T-t)^{\frac{1}{p-1}} u(x, t), y=\frac{x-a}{\sqrt{T-t}}, s=-\log (T-t),
$$

for all $(x, t) \in \mathbb{R}^{N} \times(-\infty, T)$, the function $w=w_{a}$ satisfies for all $(y, s) \in \mathbb{R}^{N} \times \mathbb{R}:$

$$
\begin{equation*}
w_{s}=\Delta w-\frac{1}{2} y \cdot \nabla w-\frac{1}{(p-1)} w+|w|^{p-1} w . \tag{0}
\end{equation*}
$$

Theorem (A Liouville theorem for equation (Eqwo)) If

$$
\|w(y, s)\|_{L^{\infty}\left(\mathbb{R}^{N} \times \mathbb{R}, \mathbb{R}\right)} \leq M
$$

and w is a solution of $\left(E q w_{0}\right)$, then

$$
w \equiv 0 \text { or } w \equiv \pm \kappa \text { or } w= \pm \varphi_{0}\left(s-s_{0}\right)
$$

for some $s_{0} \in \mathbb{R}$, and

$$
\varphi_{0}(s)=\kappa\left(1+e^{s}\right)^{-\frac{1}{(p-1)}} \text { and } \kappa=(p-1)^{-\frac{1}{p-1}}
$$

Case $\delta=0,(N-2) p<N+2$

Outline of the talk

Case $\delta=0,(N-2) p<N+2$
(2) Case $\delta \neq 0$
(3) Proof of the Liouville theorem case $\delta=0$

- Part 1: Limits of w as $s \rightarrow \pm \infty$
- Part 2: Trivial cases
- Part 3: Case when $w_{-\infty} \rightarrow \kappa$ as $s \rightarrow-\infty$
- Step 1: Linearization of w near κ as $s \rightarrow-\infty$
- Step 2: The relevant case, $\lambda=1$
- Step 3: The irrelevant cases; ii) $\lambda=\frac{1}{2}$ or iii) $\lambda=0$Proof of the Liouville theorem case $\delta \neq 0$
- Part 1: Limits of w as $s \rightarrow-\infty$
- Part 2: Case where $w \rightarrow 0$ as $s \rightarrow-\infty$
- Part 3: Case where $\inf _{\theta \in \mathbb{R}}\left\|w(., s)-\kappa e^{i \theta}\right\|_{L_{\rho}^{2}} \rightarrow 0$ as $s \rightarrow-\infty$
- Step 1: Modulation
- Step 2: Behavior as $s \rightarrow-\infty$
- Step 3: The relevant case $\lambda=1$
- Step 4: The irrelevant cases, ii) $\lambda=\frac{1}{2}$ or iii) $\lambda=0$

A Lyapunov functional in the w variable

$$
\begin{gathered}
\mathcal{E}(w)=\int_{\mathbb{R}^{N}}\left(\frac{1}{2}|\nabla w|^{2}+\frac{|w|^{2}}{2(p-1)}-\frac{|w|^{p+1}}{p+1}\right) \rho(y) d y \text { with } \\
\rho(y)=\frac{e^{-\frac{|y|^{2}}{4}}}{(4 \pi)^{N / 2}} . \\
\frac{d}{d s} \mathcal{E}(w)=-\int\left(\partial_{s} w\right)^{2} \rho(y) d y
\end{gathered}
$$

Consequence: $w_{ \pm \infty}=\lim _{s \rightarrow \pm \infty} w(y, s)$ exists and is a stationary solution of (Eqwo). From Giga and Kohn we obtain $w_{ \pm \infty}=0$, $w_{ \pm \infty}=\kappa$ or $w_{ \pm \infty}=-\kappa$.

Case $\delta=0,(N-2) p<N+2$

Outline of the talk

Case $\delta=0,(N-2) p<N+2$
(2) Case $\delta \neq 0$
(3) Proof of the Liouville theorem case $\delta=0$

- Part 1: Limits of w as $s \rightarrow \pm \infty$
- Part 2: Trivial cases
- Part 3: Case when $w_{-\infty} \rightarrow \kappa$ as $s \rightarrow-\infty$
- Step 1: Linearization of w near κ as $s \rightarrow-\infty$
- Step 2: The relevant case, $\lambda=1$
- Step 3: The irrelevant cases; ii) $\lambda=\frac{1}{2}$ or iii) $\lambda=0$Proof of the Liouville theorem case $\delta \neq 0$
- Part 1: Limits of w as $s \rightarrow-\infty$
- Part 2: Case where $w \rightarrow 0$ as $s \rightarrow-\infty$
- Part 3: Case where $\inf _{\theta \in \mathbb{R}}\left\|w(., s)-\kappa e^{i \theta}\right\|_{L_{\rho}^{2}} \rightarrow 0$ as $s \rightarrow-\infty$
- Step 1: Modulation
- Step 2: Behavior as $s \rightarrow-\infty$
- Step 3: The relevant case $\lambda=1$
- Step 4: The irrelevant cases, ii) $\lambda=\frac{1}{2}$ or iii) $\lambda=0$

Since $\mathcal{E}\left(w_{-\infty}\right)-\mathcal{E}\left(w_{+\infty}\right)=\int_{-\infty}^{+\infty} d s \int_{\mathbb{R}}\left|\frac{\partial w}{\partial s}(y, s)\right|^{2} \rho d y \geq 0$ and $\mathcal{E}(\kappa)=\mathcal{E}(-\kappa)>0=\mathcal{E}(0)$,
we have 2 cases:

- (Trivial)

$$
\mathcal{E}\left(w_{-\infty}\right)-\mathcal{E}\left(w_{+\infty}\right)=0 \Rightarrow \partial_{s} w \equiv 0 \Rightarrow w \equiv 0 \text { or } w \equiv \pm \kappa .
$$

- (Non trivial)

$$
\mathcal{E}\left(w_{-\infty}\right)-\mathcal{E}\left(w_{+\infty}\right)>0 \Rightarrow\left(w_{-\infty}, w_{+\infty}\right) \equiv(\pm \kappa, 0)
$$

Outline of the talk

Case $\delta=0,(N-2) p<N+2$ Case $\delta \neq 0$
(3) Proof of the Liouville theorem case $\delta=0$

- Part 1: Limits of w as $s \rightarrow \pm \infty$
- Part 2: Trivial cases
- Part 3: Case when $w_{-\infty} \rightarrow \kappa$ as $s \rightarrow-\infty$
- Step 1: Linearization of w near κ as $s \rightarrow-\infty$
- Step 2: The relevant case, $\lambda=1$
- Step 3: The irrelevant cases; ii) $\lambda=\frac{1}{2}$ or iii) $\lambda=0$Proof of the Liouville theorem case $\delta \neq 0$
- Part 1: Limits of w as $s \rightarrow-\infty$
- Part 2: Case where $w \rightarrow 0$ as $s \rightarrow-\infty$
- Part 3: Case where $\inf _{\theta \in \mathbb{R}}\left\|w(., s)-\kappa e^{i \theta}\right\|_{L_{\rho}^{2}} \rightarrow 0$ as $s \rightarrow-\infty$
- Step 1: Modulation
- Step 2: Behavior as $s \rightarrow-\infty$
- Step 3: The relevant case $\lambda=1$
- Step 4: The irrelevant cases, ii) $\lambda=\frac{1}{2}$ or iii) $\lambda=0$

Part 1: Limits of w as $s \rightarrow \pm \infty$
Part 2: Trivial cases
Part 3: Case when $w_{-\infty} \rightarrow \kappa$ as $s \rightarrow-\infty$

Step 1: Linearization of w near κ as s

We consider $v(y, s)=w(y, s)-\kappa$.

$$
\partial_{s} v=\mathcal{L} v+f(v), \text { with } \mathcal{L} v=\Delta v-\frac{1}{2} y \cdot \nabla v+v,|f(v)| \leq C|v|^{2} .
$$

\mathcal{L} is self adjoint, $\operatorname{spec}(\mathcal{L})=\left\{\left.1-\frac{m}{2} \right\rvert\, m \in \mathbb{R}\right\}$.
The eigenvectors are Hermite polynomials.
As $s \rightarrow-\infty$, one of the following cases occurs:

- i) $\lambda=1, w(y, s)=\kappa+C_{0} e^{s}+o\left(e^{s}\right), C_{0} \in \mathbb{R}$.
- ii) $\lambda=\frac{1}{2}, w(y, s)=\kappa+C_{1} e^{s / 2} y+o\left(e^{s / 2}\right), C_{1} \in \mathbb{R}^{*}$.
- iii) $\lambda=0, w(y, s)=\kappa-\frac{\kappa}{2 p s}\left(\frac{1}{2} y^{2}-1\right)+o\left(\frac{1}{s}\right)$.

Convergence is in L_{ρ}^{2} and uniformly on compact sets.

Step 2: The relevant case, $\lambda=1$

If $\varphi^{*}(s)=\left\{\begin{array}{l}=\kappa \text { if } C_{0}=0, \\ =\varphi_{0}\left(s-s_{0}\right)=\kappa\left(1+e^{s-s_{0}}\right)^{-\frac{1}{\rho-1}}, \text { if } C_{0}<0, \\ =\tilde{\varphi}\left(s-s_{0}\right)=\kappa\left(1-e^{s-s_{0}}\right)^{-\frac{1}{p-1}}, \text { if } C_{0}>0,\end{array}\right.$
with $s_{0}=-\log \left(\frac{(p-1)}{\kappa}\left|C_{0}\right|\right)$, then φ^{*} is a solution of (Eqw $\left.w_{0}\right)$ with the same expansion of w as $s \rightarrow-\infty$.
If $V=w-\varphi^{*}$, then $\|V(y, s)\|_{L_{\rho}^{2}}=O\left(e^{3 / 2 s}\right)$.
Since $\frac{3}{2}>1=\max \{\lambda \in \operatorname{spec}(\mathcal{L})\}$, then $V \equiv 0$.
Because $w_{+\infty}=0$, we get $\varphi^{*}=\varphi_{0}\left(s-s_{0}\right)$.

$$
w(y, s)=\varphi\left(s-s_{0}\right)=\kappa\left(1+e^{s-s_{0}}\right)^{-\frac{1}{\rho-1}}, \text { for some } s_{0} \in \mathbb{R} .
$$

Step 3: The irrelevant cases; ii) $\lambda=\frac{1}{2}$ or iii) $\lambda=0$

Merle-Zaag (Blow-up criterion). Let W a solution of (Eqwo), such that

$$
\begin{equation*}
\left(\int\left|W\left(y, s_{0}\right)\right|^{2} \rho(y) d y\right)^{\frac{p+1}{2}}>2 \frac{p+1}{p-1} \mathcal{E}\left(W\left(., s_{0}\right)\right) \tag{0}
\end{equation*}
$$

for some $s_{0} \in \mathbb{R}$. Then W blows-up at some time $S>s_{0}$. In case ii) and iii) one can find a_{0} and s_{0} such that ($\mid s_{0}$) is true with $W\left(y, s_{0}\right)=w_{a_{0}}\left(y, s_{0}\right)=w\left(y+a_{0} e^{s_{0} / 2}, s_{0}\right)$.
Then, there exists $S>s_{0}$, such that $w_{a 0}$ blows up at S, contradiction because $w\left(w(y, s)=w_{a_{0}}\left(y-a_{0} e^{s / 2}, s\right)\right)$ is bounded.

Outline of the talk

(1) Case $\delta=0,(N-2) p<N+2$

(3) Proof of the Liouville theorem case $\delta=0$
4. Proof of the Liouville theorem case $\delta \neq 0$

- Part 1: Limits of w as $s \rightarrow-\infty$
- Part 2: Case where $w \rightarrow 0$ as $s \rightarrow-\infty$
- Part 3: Case where $\inf _{\theta \in \mathbb{R}}\left\|w(., s)-\kappa e^{i \theta}\right\|_{L_{\rho}^{2}} \rightarrow 0$ as $s \rightarrow-\infty$
- Step 1: Modulation
- Step 2: Behavior as $s \rightarrow-\infty$
- Step 3: The relevant case $\lambda=1$
- Step 4: The irrelevant cases, ii) $\lambda=\frac{1}{2}$ or iii) $\lambda=0$

What changes?

No Lyapunov functional:

- No Lyapunov functional to get the limits as $s \rightarrow \pm \infty$.
- No blow-up criterion to rule out the irrelevant cases.

Let us recall the Liouville Theorem for:

$$
\partial_{t} u=\Delta u+(1+i \delta)|u|^{p-1} u
$$

Theorem (Nouaili, Z.)
If $0<|\delta| \leq \delta_{0}$ and u is a solution of (Equ $)$ satisfying

$$
\forall(x, t) \in \mathbb{R}^{N} \times(-\infty, T)|u(x, t)| \leq M(\delta)(T-t)^{-\frac{1}{p-1}}
$$

for some $\delta_{0}>0$ and $M(\delta)>0$, then,

$$
u \equiv 0 \text { or } \forall(x, t) \in \mathbb{R}^{N} \times(-\infty, T), u(x, t)=\kappa e^{i \theta_{0}}\left(T_{0}-t\right)^{-\frac{1+i \delta}{p-1}},
$$

for some $T_{0} \geq T$ and $\theta_{0} \in \mathbb{R}$.

Statement in selfsimilar variables:

$$
w_{a}(y, s)=(T-t)^{\frac{1+i \delta}{p-1}} u(x, t), y=\frac{x-a}{\sqrt{T-t}}, s=-\log (T-t),
$$

for all $(x, t) \in \mathbb{R}^{N} \times(-\infty, T)$, the function $w=w_{a}$ satisfies for all $(y, s) \in \mathbb{R}^{N} \times \mathbb{R}:$

$$
w_{s}=\Delta w-\frac{1}{2} y \cdot \nabla w-\frac{1+i \delta}{(p-1)} w+(1+i \delta)|w|^{p-1} w .
$$

Theorem(A Liouville theorem for equation (Eqw \boldsymbol{w}_{δ})) If $0<|\delta| \leq \delta_{0}$ and w is a solution of $\left(\mathrm{Eq} w_{\delta}\right)$ s.t.

$$
\|w(y, s)\|_{L^{\infty}\left(\mathbb{R}^{N} \times \mathbb{R}, \mathbb{C}\right)} \leq M(\delta)
$$

then,

$$
w \equiv 0 \text { or } w \equiv \kappa e^{i \theta_{0}} \text { or } w=\varphi_{\delta}\left(s-s_{0}\right) e^{i \theta_{0}}
$$

for some $\theta_{0} \in \mathbb{R}$ and $s_{0} \in \mathbb{R}$, where

$$
\varphi_{\delta}(s)=\kappa\left(1+e^{s}\right)^{-\frac{(1+i \delta)}{(p-1)}} \text { and } \kappa=(p-1)^{-\frac{1}{p-1}}
$$

Case $\delta=0,(N-2) p<N+2$

Outline of the talk

Case $\delta=0,(N-2) p<N+2$
(2) Case $\delta \neq 0$
(3. Proof of the Liouville theorem case $\delta=0$

- Part 1: Limits of w as $s \rightarrow \pm \infty$
- Part 2: Trivial cases
- Part 3: Case when $w_{-\infty} \rightarrow \kappa$ as $s \rightarrow-\infty$
- Step 1: Linearization of w near κ as $s \rightarrow-\infty$
- Step 2: The relevant case, $\lambda=1$
- Step 3: The irrelevant cases; ii) $\lambda=\frac{1}{2}$ or iii) $\lambda=0$

4. Proof of the Liouville theorem case $\delta \neq 0$

- Part 1: Limits of w as $s \rightarrow-\infty$
- Part 2: Case where $w \rightarrow 0$ as $s \rightarrow-\infty$
- Part 3: Case where $\inf _{\theta \in \mathbb{R}}\left\|w(., s)-\kappa e^{i \theta}\right\|_{L_{\rho}^{2}} \rightarrow 0$ as $s \rightarrow-\infty$
- Step 1: Modulation
- Step 2: Behavior as $s \rightarrow-\infty$
- Step 3: The relevant case $\lambda=1$
- Step 4: The irrelevant cases, ii) $\lambda=\frac{1}{2}$ or iii) $\lambda=0$
(Stationary solution) Consider $w \in L^{\infty}\left(\mathbb{R}^{N}\right)$ a stationary solution of $\left(E q w_{\delta}\right)$. Then, $w \equiv 0$ or there exists $\theta_{0} \in \mathbb{R}$ such that $w \equiv \kappa e^{i \theta_{0}}$.
Remark: The proof is trivial and much easier than the case $\delta=0$.
To get the limits, we have no Lyapunov functional.
Fortunately, a perturbation method used by Andreucci, Herrero and Velázquez, works here and yields the following:

Proposition If $0<|\delta| \leq \delta_{0}$ and w is a solution of (Eqw w_{δ}) satisfying for all $(y, s) \in \mathbb{R} \times \mathbb{R},|w(y, s)| \leq M(\delta)$ for some δ_{0} and $M(\delta)$, then, as $s \rightarrow-\infty$
either
or
(i) $\|w(., s)\|_{L_{\rho}^{2}} \rightarrow 0$
(ii) $\inf _{\theta \in \mathbb{R}}\left\|w(., s)-\kappa e^{i \theta}\right\|_{L_{\rho}^{2}} \rightarrow 0$.

Case $\delta=0,(N-2) p<N+2$

Part 1: Limits of w as $s \rightarrow-\infty$
Part 2: Case where $w \rightarrow 0$ as $s \rightarrow-\infty$
Part 3: Case where $\inf _{\theta \in \mathbb{R}}\left\|w(., s)-\kappa e^{i \theta}\right\|_{L_{\rho}^{2}} \rightarrow 0$ as s

Outline of the talk

Case $\delta=0,(N-2) p<N+2$
(2) Case $\delta \neq 0$
(3. Proof of the Liouville theorem case $\delta=0$

- Part 1: Limits of w as $s \rightarrow \pm \infty$
- Part 2: Trivial cases
- Part 3: Case when $w_{-\infty} \rightarrow k$ as $s \rightarrow-\infty$
- Step 1: Linearization of w near κ as $s \rightarrow-\infty$
- Step 2: The relevant case, $\lambda=1$
- Step 3: The irrelevant cases; ii) $\lambda=\frac{1}{2}$ or iii) $\lambda=0$

4. Proof of the Liouville theorem case $\delta \neq 0$

- Part 1: Limits of w as $s \rightarrow-\infty$
- Part 2: Case where $w \rightarrow 0$ as $s \rightarrow-\infty$
- Part 3: Case where $\inf _{\theta \in \mathbb{R}}\left\|w(., s)-\kappa e^{i \theta}\right\|_{L_{\rho}^{2}} \rightarrow 0$ as $s \rightarrow-\infty$
- Step 1: Modulation
- Step 2: Behavior as $s \rightarrow-\infty$
- Step 3: The relevant case $\lambda=1$
- Step 4: The irrelevant cases, ii) $\lambda=\frac{1}{2}$ or iii) $\lambda=0$

If $h(s) \equiv \int_{\mathbb{R}}|w(y, s)|^{2} \rho(y) d y$, then

$$
h^{\prime}(s) \leq-\frac{2}{p-1} h(s)+2 \int_{\mathbb{R}}|w(y, s)|^{p+1} \rho(y) d y .
$$

Using the regularizing effect of equation ($\mathrm{Eq} w_{\delta}$), we derive the following delay estimate, for some positive $s *$ and C

$$
\forall s \in \mathbb{R}, h^{\prime}(s) \leq-\frac{2}{p-1} h(s)+C(M) h(s-s *)^{\frac{p+1}{2}}
$$

Using $h(s) \rightarrow 0$ as $s \rightarrow-\infty$ and delay ODE techniques, we have for some $\varepsilon>0$ small enough,

$$
\forall \sigma \in \mathbb{R}, \forall s \geq \sigma+s *, h(s) \leq \varepsilon e^{-\frac{2(s-\sigma)}{p-1}},
$$

Fixing s and letting $\sigma \rightarrow-\infty$, we get $w \equiv 0$.

Outline of the talk

Case $\delta=0,(N-2) p<N+2$
(2) Case $\delta \neq 0$Proof of the Liouville theorem case $\delta=0$

- Part 1: Limits of w as $s \rightarrow \pm \infty$
- Part 2: Trivial cases
- Part 3: Case when $w_{-\infty} \rightarrow \kappa$ as $s \rightarrow-\infty$
- Step 1: Linearization of w near κ as $s \rightarrow-\infty$
- Step 2: The relevant case, $\lambda=1$
- Step 3: The irrelevant cases; ii) $\lambda=\frac{1}{2}$ or iii) $\lambda=0$

4. Proof of the Liouville theorem case $\delta \neq 0$

- Part 1: Limits of w as $s \rightarrow-\infty$
- Part 2: Case where $w \rightarrow 0$ as $s \rightarrow-\infty$
- Part 3: Case where $\inf _{\theta \in \mathbb{R}}\left\|w(., s)-\kappa e^{i \theta}\right\|_{L_{\rho}^{2}} \rightarrow 0$ as $s \rightarrow-\infty$
- Step 1: Modulation
- Step 2: Behavior as $s \rightarrow-\infty$
- Step 3: The relevant case $\lambda=1$
- Step 4: The irrelevant cases, ii) $\lambda=\frac{1}{2}$ or iii) $\lambda=0$

Step 1: Modulation

We introduce $\theta(s)$ and v such that

$$
\begin{aligned}
& w(y, s)=e^{i \theta(s)}(v(y, s)+\kappa), \forall s \leq s_{1}, \int(\operatorname{Im}(v)-\delta \operatorname{Re}(v)) \rho=0 .(*) \\
& \qquad \partial_{s} v=\tilde{\mathcal{L}} v-i \theta_{s}(v+\kappa)+G, \text { where } \\
& \tilde{\mathcal{L}} v=\Delta v-\frac{1}{2} y \nabla v+(1+i \delta) v_{1},|G(v)| \leq C|v|^{2} . \\
& \operatorname{spec}(\tilde{\mathcal{L}})=\left\{\left.1-\frac{m}{2} \right\rvert\, m \in \mathbb{R}\right\} \text { its eigenvectors are given by } \\
& \left\{(1+i \delta) h_{m}, i h_{m} \mid n \in \mathbb{N}\right\} \text { and } h_{m} \text { are Hermite polynomials. }
\end{aligned}
$$

The choice of $\theta(s)(*)$ kills one neutral mode.

Step 2: Behavior as $s \rightarrow-\infty$

- $\lambda=1$, with eigenfunction $(1+i \delta) h_{0}(y)=(1+i \delta)$.
- $\lambda=1 / 2$, with eigenfunction $(1+i \delta) h_{1}(y)=(1+i \delta) y$.
- $\lambda=0$, with two eigenfunctions $(1+i \delta) h_{2}(y)=(1+i \delta)\left(y^{2}-2\right)$ and $i h_{0}(y)=i$ (killed by the choice of $\theta(s)(*)$).
We have one of the following cases as $s \rightarrow-\infty$:
(i) $w(y, s)=\left\{\kappa+(1+i \delta) C_{0} e^{s}\right\} e^{i \theta_{0}}+o\left(e^{\frac{3}{2} s}\right), C_{0} \in \mathbb{R}$
(ii) $w(y, s)=\left\{\kappa+(1+i \delta) C_{1} e^{s / 2} y\right\} e^{i \theta_{0}}+o\left(e^{s / 2}\right), C_{1} \in \mathbb{R}^{*}$,
(iii) $w(y, s)=e^{i \theta_{0}}\left\{\kappa-(1+i \delta) \frac{\kappa}{4\left(p-\delta^{2}\right) s}\left(y^{2}-2\right)-i \frac{\left(1+\delta^{2}\right) \delta \kappa^{2}}{2\left(p-\delta^{2}\right)^{2}} \frac{1}{s}\right\}+o\left(\frac{1}{|s|}\right)$,

Convergence takes place in L_{ρ}^{2} and uniformly on compact sets.

Step 3: The relevant case, $\lambda=1$

We do exactly as in case $\delta=0$.
If $\varphi^{*}(s)=\left\{\begin{array}{l}=\kappa e^{i \theta_{0}} \text { if } C_{0}=0, \\ =\varphi_{\delta}\left(s-s_{0}\right)=\kappa e^{i \theta_{0}}\left(1+e^{s-s_{0}}\right)^{-\frac{1+i \delta}{p-1}}, \text { if } C_{0}<0, \\ =\tilde{\varphi}_{\delta}\left(s-s_{0}\right)=\kappa e^{i \theta_{0}}\left(1-e^{s-s_{0}}\right)^{-\frac{1+i \delta}{p-1}}, \text { if } C_{0}>0,\end{array}\right.$
with $s_{0}=-\log \left(\frac{(p-1)}{\kappa}\left|C_{0}\right|\right)$ and $\theta_{0} \in \mathbb{R}$. Then φ^{*} is a solution of
(Eq w_{δ}) with the same expansion of w as $s \rightarrow-\infty$.
If $V=w-\varphi^{*}$, then $\|V(y, s)\|_{L_{\rho}^{2}}=O\left(e^{3 / 2 s}\right)$.
Since $\frac{3}{2}>1=\max \{\lambda \in \operatorname{spec}(\mathcal{L})\}$, then $V \equiv 0$.
Because w is bounded, we get $\varphi^{*} \not \equiv \tilde{\varphi}_{\delta}$, hence $w(y, s)=\kappa e^{i \theta_{0}}$ or

$$
w(y, s)=\varphi_{\delta}\left(s-s_{0}\right) e^{i \theta_{0}}=\kappa e^{i \theta_{0}}\left(1+e^{s-s_{0}}\right)^{-\frac{1+i \delta}{p-1}}, \text { for some } s_{0} \in \mathbb{R}
$$

Step 4: The irrelevant cases, ii) $\lambda=\frac{1}{2}$ or iii) $\lambda=0$

No blow-up criterion ? Our source of inspiration is Velázquez's work.
We extend the convergence in ii) and iii) from $|y|<R$ to larger regions to find singular profiles.

$$
\text { ii) } f_{1}(\xi)=\kappa\left(1-C_{1} \kappa^{-p} \xi\right)^{-\frac{(1+i \delta)}{(p-1)}} \text { singular for } \xi=R_{1}(p)
$$

$$
\lim _{s \rightarrow-\infty} \sup _{|y| \leq R e^{-s / 2}}\left|w(y, s)-f_{1}\left(y e^{s / 2}\right)\right|=0, \text { where } R<R_{1}(p)
$$

$$
\text { iii) } f_{2}(\xi)=\kappa\left(1-\frac{(p-1)}{4\left(p-\delta^{2}\right)} \xi^{2}\right)^{-\frac{(1+i \delta)}{p-1}} \text { singular for } \xi=R_{2}(p)
$$

$$
\lim _{s \rightarrow-\infty} \sup _{|y| \leq R \sqrt{-s}}\left|w(y, s)-f\left(\frac{y}{\sqrt{-s}}\right)\right|=0 \text { where } R<R_{2}(p)
$$

A picture for the case iii) $\lambda=0$

Here, we choose $R=R(M)$ such that $\left|f_{2}\left(\frac{R}{\sqrt{-s}}\right)\right|=2 M$, where $\|w\|_{L^{\infty}\left(\mathbb{R}^{N} \times \mathbb{R}\right)} \leq M=M(\delta)\left(^{*}\right)$. Then, for $|s|$ large enough,
$\left|w(R \sqrt{-s}, s)-f_{2}\left(\frac{R}{\sqrt{-s}}\right)\right| \leq \frac{M}{2}, \quad|w(R \sqrt{-s}, s)| \geq\left|f_{2}\left(\frac{R}{\sqrt{-s}}\right)\right|-\frac{M}{2}=\frac{3 M}{2}$.
Contradiction with $(*)$.

