Regularity of the blow-up set for the semilinear heat equation

Hatem Zaag April 26, 2004 Institut Henri Poincaré

Three contributions:

- Z., Annales IHP, Analyse Non Linéaire, 2002.
- Z., Comm. Math. Phys., 2002.
- Z., 2004, preprint.

Motivation: singularities in PDEs

Solutions which are regular at t = 0, may become "infinite" in finite time T. Example: heat, Schrödinger, wave, generalized KdV, geometric flows, etc...

Motivation: singularities in PDEs

Solutions which are regular at t = 0, may become "infinite" in finite time T. Example: heat, Schrödinger, wave, generalized KdV, geometric flows, etc...

Common questions:

- Find the asymptotic behavior(s) near the singularity.
- Discuss their stability.
- Obtain **uniforms** estimates / initial data, etc..
- Understand interactions between regular and singular regions.

The semilinear heat equation

$$\begin{cases} u_t = \Delta u + |u|^{p-1}u, \\ u(0) = u_0, \end{cases}$$

where $u(t) : x \in \mathbb{R}^N \to u(x,t) \in \mathbb{R}$ and

$$1 if $N \ge 3$.$$

(Critical exponent for the Sobolev injection).

The semilinear heat equation

$$\begin{cases} u_t = \Delta u + |u|^{p-1}u, \\ u(0) = u_0, \end{cases}$$

where $u(t) : x \in \mathbb{R}^N \to u(x,t) \in \mathbb{R}$ and

$$1 if $N \ge 3$.$$

(Critical exponent for the Sobolev injection).

Rk. This a lab model where one can go far in computations and develop tools for more physical situations.

The semilinear heat equation

$$\begin{cases} u_t = \Delta u + |u|^{p-1}u, \\ u(0) = u_0, \end{cases}$$

where $u(t) : x \in \mathbb{R}^N \to u(x,t) \in \mathbb{R}$ and

$$1 if $N \ge 3$.$$

(Critical exponent for the Sobolev injection).

Rk. This a lab model where one can go far in computations and develop tools for more physical situations.

Rk. Possible generalizations.

The solution of the Cauchy problem exists:

- either on $[0, +\infty)$: there is global existence,
- or on [0,T) with $T < +\infty$: there is **finite-time blow-up**.

In this case,

$$\lim_{t\to T} \|u(t)\|_{L^{\infty}} = +\infty.$$

The solution of the Cauchy problem exists:

- either on $[0, +\infty)$: there is **global existence**,
- or on [0,T) with $T < +\infty$: there is **finite-time blow-up**. In this case,

$$\lim_{t\to T} \|u(t)\|_{L^{\infty}} = +\infty.$$

A point *a* is a **blow-up point** if

$$|u(a,t)| \to +\infty \text{ as } t \to T.$$

We denote by $S_u \subset \mathbb{R}^N$ the **blow-up set**, i.e. the set of all blow-up points.

The solution of the Cauchy problem exists:

- either on $[0, +\infty)$: there is **global existence**,
- or on [0,T) with $T < +\infty$: there is **finite-time blow-up**. In this case,

$$\lim_{t\to T} \|u(t)\|_{L^{\infty}} = +\infty.$$

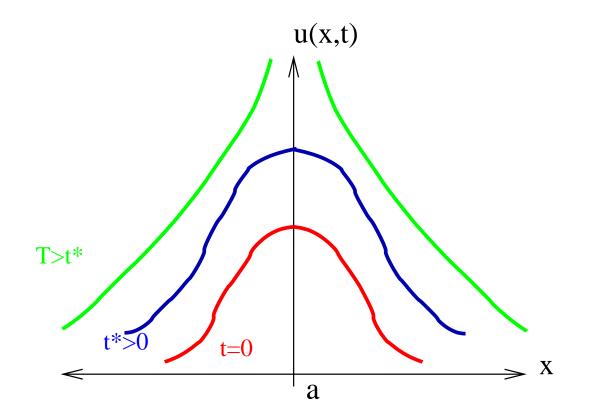
A point *a* is a **blow-up point** if

$$|u(a,t)| \to +\infty \text{ as } t \to T.$$

We denote by $S_u \subset \mathbb{R}^N$ the **blow-up set**, i.e. the set of all blow-up points.

Goal : Study S_u .

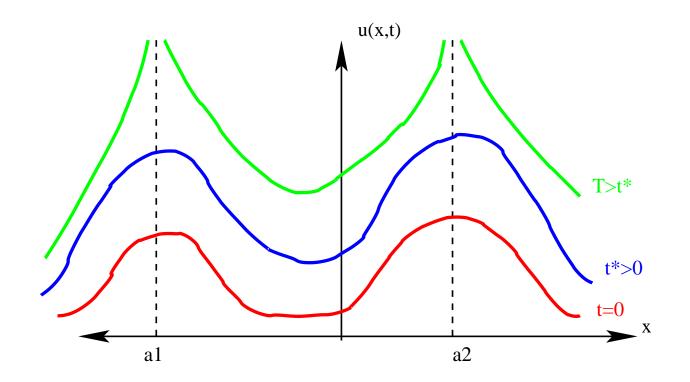
Example 1: Single-point blow-up



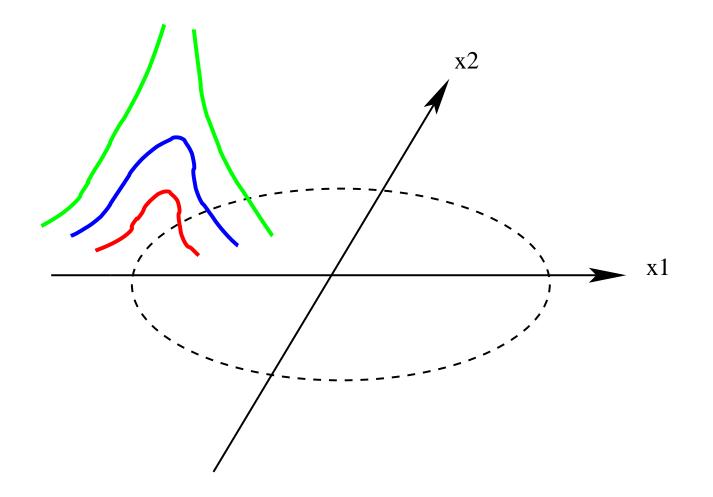
Rk. Sorry, this is not a simulation!

Rk. The only blow-up point is a. The other points are called "regular points".

Example 1 bis : Two blow-up points (both isolated)



Rk. This is still not a simulation (by the way, blowing-up at 2 points is *unstable* and hard to get on a computer!) **Rk.** Imagine the same picture with k points and in N dimensions. **Example 2**: S_u is a sphere (radial sol., picture for N = 2).



Rk. Here, all blow-up points are *non isolated* in S_u .

Goal of the talk:

- Study of the blow-up set S_u ($\subset \mathbb{R}^N$).

Two questions arise: the construction and the description.

The construction : Given a set $\hat{S} \subset \mathbb{R}^N$, is there a solution \hat{u} of $u_t = \Delta u + |u|^{p-1}u$ that blows up at some finite time T such that $S_{\hat{u}} = \hat{S}$?

The construction : Given a set $\hat{S} \subset \mathbb{R}^N$, is there a solution \hat{u} of $u_t = \Delta u + |u|^{p-1}u$ that blows up at some finite time T such that $S_{\hat{u}} = \hat{S}$?

The answer is YES in the following cases:

 - an isolated point (Herrero-Velázquez, Bricmont-Kupiainen, Weissler...),

- k points (Merle),
- a sphere (radial solution, Giga-Kohn).

The construction : Given a set $\hat{S} \subset \mathbb{R}^N$, is there a solution \hat{u} of $u_t = \Delta u + |u|^{p-1}u$ that blows up at some finite time T such that $S_{\hat{u}} = \hat{S}$?

The answer is YES in the following cases:

 - an isolated point (Herrero-Velázquez, Bricmont-Kupiainen, Weissler...),

- k points (Merle),
- a sphere (radial solution, Giga-Kohn).

In all the other cases, the question remains open (the ellipse for example).

Rk. Of course, we don't deal with the case of isolated blowup points (no geometry! and there is an extensive literature!).

Rk. Of course, we don't deal with the case of isolated blowup points (no geometry! and there is an extensive literature!).

known information:

- S_u is a closed set (by definition).
- S_u is bounded, if u_0 is small at infinity (Giga-Kohn 1989).
- The Hausdorff dimension of S_u is $\leq N-1$ (Velázquez 1992).

Rk. Of course, we don't deal with the case of isolated blowup points (no geometry! and there is an extensive literature!).

known information:

- S_u is a closed set (by definition).
- S_u is bounded, if u_0 is small at infinity (Giga-Kohn 1989).
- The Hausdorff dimension of S_u is $\leq N-1$ (Velázquez 1992).

Open questions: Is S_u locally connected? Is it C^1 , C^{∞} ,..?

Main result of Z. IHP 2002: case of non isolated blow-up points ($C^0 \implies C^1$)

Th. (N = 2) Consider u a solution of $u_t = \Delta u + |u|^{p-1}u$ and \hat{a} a non isolated blow-up in S_u such that:

Main result of Z. IHP 2002:

case of non isolated blow-up points ($C^0 \implies C^1$)

Th. (N = 2) Consider u a solution of $u_t = \Delta u + |u|^{p-1}u$ and \hat{a} a non isolated blow-up in S_u such that:

1/ ($S_u \supset$ Continuum) $\exists a \in C((-1,1), \mathbb{R}^2), a(0) = \hat{a} \text{ and } \operatorname{Im} a \subset S_u.$

2/ (\hat{a} is not an endpoint).

3/ (A "reasonable" technical condition).

Main result of Z. IHP 2002:

case of non isolated blow-up points ($C^0 \implies C^1$)

Th. (N = 2) Consider u a solution of $u_t = \Delta u + |u|^{p-1}u$ and \hat{a} a non isolated blow-up in S_u such that:

1/ ($S_u \supset$ Continuum) $\exists a \in C((-1,1), \mathbb{R}^2), a(0) = \hat{a} \text{ and } \operatorname{Im} a \subset S_u.$

2/ (\hat{a} is not an endpoint).

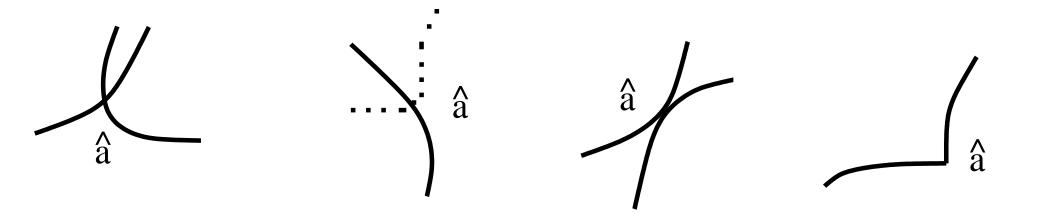
3/ (A "reasonable" technical condition).

Conclusion: Locally near \hat{a} , S_u is the graph of a C^1 function.

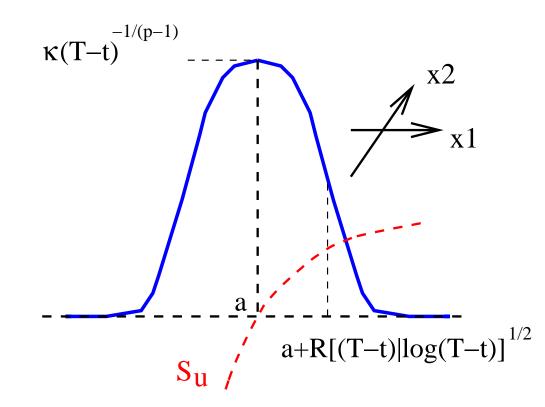
Rk. Valid in any dimension.

Rk. (Z. CMP 2002) If codim $S_u = 1$, then S_u is $C^{1,\frac{1}{2}}$.

Some impossible cases for the blow-up set



Second main result of Z. IHP 2002: The blow-up profile

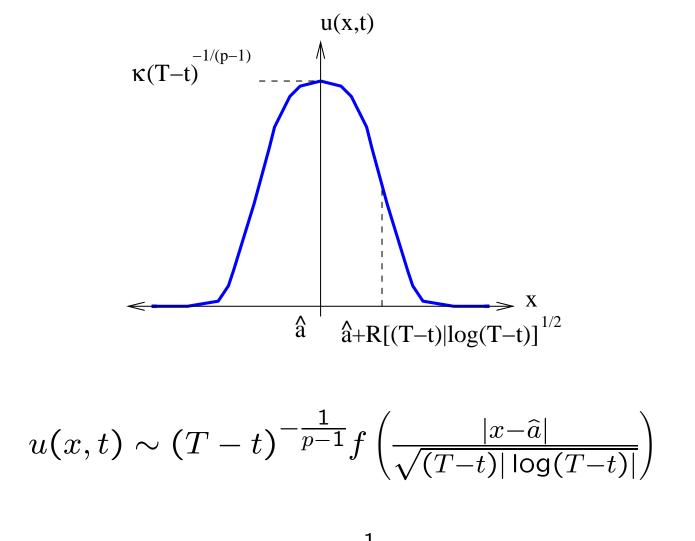


$$u(x,t) \sim (T-t)^{-\frac{1}{p-1}} f\left(\frac{d(x,S_u)}{\sqrt{(T-t)|\log(T-t)|}}\right)$$

where $f(z) = (p - 1 + b(p)z^2)^{-\frac{1}{p-1}}$.

Rk. Only the one-dimensional variable $d(x, S_u)$ (orthogonal to S_u) is responsible of the size of u at blow-up.

Rk. f is the generic profile in dimension 1.



where $f(z) = (p - 1 + b(p)z^2)^{-\frac{1}{p-1}}$.

Rk. In this case $|x - \hat{a}| = d(x, S_u)$.

Hence, in all cases (isolated points or not),

$$u(x,t) \sim (T-t)^{-\frac{1}{p-1}} f\left(\frac{d(x,S_u)}{\sqrt{(T-t)|\log(T-t)|}}\right)$$

 \implies Universality.

Liouville (or rigidity) theorem (Merle, Z.)

$$1$$

Consider u(x,t) a solution of $u_t = \Delta u + |u|^{p-1}u$ such that

$$\forall (x,t) \in \mathbb{R}^N \times (-\infty,T), \ |u(x,t)| \leq C(T-t)^{-\frac{1}{p-1}}.$$

Liouville (or rigidity) theorem (Merle, Z.)

$$1$$

Consider u(x,t) a solution of $u_t = \Delta u + |u|^{p-1}u$ such that

$$\forall (x,t) \in \mathbb{R}^N \times (-\infty,T), \ |u(x,t)| \leq C(T-t)^{-\frac{1}{p-1}}.$$

Then,

either $u \equiv 0$,

of there exists $T^* \geq T$ such that

 $\forall (x,t) \in \mathbb{R}^N \times (-\infty,T), \ u(x,t) = \kappa (T^* - t)^{-\frac{1}{p-1}}.$

Liouville (or rigidity) theorem (Merle, Z.)

$$1$$

Consider u(x,t) a solution of $u_t = \Delta u + |u|^{p-1}u$ such that

$$\forall (x,t) \in \mathbb{R}^N \times (-\infty,T), \ |u(x,t)| \leq C(T-t)^{-\frac{1}{p-1}}.$$

Then,

either $u \equiv 0$,

of there exists $T^* \geq T$ such that

$$\forall (x,t) \in \mathbb{R}^N \times (-\infty,T), \ u(x,t) = \kappa (T^* - t)^{-\frac{1}{p-1}}$$

Rk. This result yields blow-up estimates which are *uniform* (with respect to initial data, blow-up point, etc...)

Most recent contribution (preprint 2004)

The blow-up set is in fact C^2 , and we can explicitly compute its curvature (which is a geometric invariant).

In one word, $C^0 \implies C^2$.