Regularity of the blow-up set for the semilinear heat

equation

Hatem Zaag
CNRS Ecole Normale Supérieure
Ryukoku University, October 15, 2004



Motivation: singularities in PDE

Solutions which are regular at t = 0, may become “infinite” in

finite time T'. Example: heat, Schrodinger, wave, generalized

KdV, geometric flows, etc...



Motivation: singularities in PDE

Solutions which are regular at t = 0, may become “infinite” in
finite time T'. Example: heat, Schrodinger, wave, generalized

KdV, geometric flows, etc...

Common questions:

- Find the asymptotic behavior(s) near the singularity.
- Discuss their stability.

- Obtain uniforms estimates / initial data, etc..

- Understand interactions between regular and singular re-

gions.



The semilinear heat equation

(up = Au+ |ulPLu,

u(0) = up,

where u(t) : z € RY — u(z,t) € R and
N+ 2

1l <p< if N > 3.

(Critical exponent for the Sobolev injection).



The semilinear heat equation

(up = Au + |ulP~1u,

u(0) = up,

where u(t) : z € RY — u(z,t) € R and
N+ 2

1l <p<

if N > 3.

(Critical exponent for the Sobolev injection).

RK. This a lab model where one can go far in computations

and develop tools for more physical situations.



Generalization :
- A bounded domain,
-u € ]RM,

- Case of the equation

ur = div(a(x)Vu) + f(u)
with a(z) > ag > 0 and f(u) ~ |u/P~1u and |u| — oo,
- Cases of systems with no gradient structure, like

ur = Au + VP,
v = Av 4+ ul.



T he solution of the Cauchy problem exists:
- either on [0, +00): there is global existence,
- or on [0,T) with T' < 4oc0: there is finite-time blow-up.

In this case,

lim { co = .
1im [Ju(t) | 0 = +oc
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T he solution of the Cauchy problem exists:
- either on [0, +00): there is global existence,
- or on [0,T) with T' < 4oc0: there is finite-time blow-up.

In this case,

lim { co = .
1im [Ju(t) | 0 = +oc

A point a is a blow-up point if
lu(a,t)| — +occ ast — T.

We denote by S, C RY the blow-up set, i.e. the set of all

blow-up points.

Goal : Study 5.



Example 1: Single-point blow-up

u(x,t)

t* >O t:o

RKk. Sorry, this is not a simulation!
RKk. The only blow-up point is a. The other points are called
“regular points’.



Example 1 bis : Two blow-up points (both isolated)

u(x,t)

t*>0

RK. This is still not a simulation (by the way, blowing-up at
2 points is unstable and hard to get on a computer!)
RKk. Imagine the same picture with k points and in N dimen-

sions.



Example 2: S, is a sphere (radial sol., picture for N = 2).

Rk. Here, all blow-up points are non isolated in S,,.



Goal of the talk:
- Study of the blow-up set S, (C RV).

Two questions arise: the construction and the description.
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The construction : Given a set S C ]RN, IS there a solution
4 of uy = Au + |u[P~lu that blows up at some finite time T
such that S; =S 7

The answer is YES in the following cases:

- an isolated point (Herrero-Velazquez, Bricmont-Kupiainen,
Weissler...),
- k points (Merle),

- a sphere (radial solution, Giga-Kohn).

In all the other cases, the question remains open (the ellipse

for example).
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The description : Consider v a solution of u; = Au+ |u|P~1u
that blows up at some finite time 7T'. What information is

available on its blow-up set S,7

Rk. Of course, we don't deal with the case of isolated blow-

up points (no geometry! and there is an extensive literaturel!).

known information:

- Sy is a closed set (by definition).

- Sy is bounded, if ug is small at infinity (Giga-Kohn 1989).
- The Hausdorff dimension of Sy is < N—1 (Velazquez 1992).

Open questions: Is S, locally connected? Is it C1, ¢, ..?
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In this talk, we address the description issue.

For this, we need a new approach in the study of the semi-

linear heat equation.

Let us first review the classical approach.



Outline

- The classical approach
- The new approach : Liouville Theorem
- Case of an isolated blow-up point (stability / initial data)

- Case of a non isolated blow-up point (regularity of the blow-

up set)



The classical Approach

Let w be a solution of u; = Awu 4+ |u[P~1u that blows up at

time T and let a € 9.

Self-similar variables

1 —
wa(y, s) = (T — )7 Tu(z,t), y=———0

Study u near the singularity (a,T)

<— Study wq near y =0 as s — oo.



Equation :

For all se€ [—logT,+o0) and y € RY,

1 Wa

Oswqg = —div(pVwg) —
0

| |wa|p_1wa

with

_ly)?
ply) =e 4.

Energy (decreasing) :

1 2 1
E(w) = [pdy | S|Vwl? + " jw|? - ——|w[P*?
2 p—1 p+1



Uniform bound (Giga-Kohn 1987, Giga, Matsui and Sasayama.

2004)
1
Vs > —1logT, — < |lwe(s)]|pe < Cp.
Co
Convergence in L3 and L{S. (Giga-Kohn)

1
wa(y,s) — £tk =(p—1) =1 as s — +oo.

RKk. (Giga-Kohn) 0, k and —k are the only stationary solu-

tions.
1

Rk. u(a,t) ~ £x(T —t) P11 as t — T : a local comparison
“locale” with the solution of v = uP.
RKk. Further refinement of the development : Herrero-Velazquez

Bricmont-Kupiainen, Filippas-Kohn.



Problem : the stability. The estimates are too local: they

depend on initial data and on the blow-up point.

If a is isolated in Sy, : What happens if we perturb initial data

(for u) ?

If a is non isolated : For a given solution u(x,t), how does

wy(y, s) behaves when b € Sy, varies in a neighborhood of a 7
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The new approach: Liouville (or rigidity) theorem (Merle,
Z.)

N+ 2

N-—-2
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The new approach: Liouville (or rigidity) theorem (Merle,
Z.)

N+ 2

N-—-2

Consider u(z,t) a solution of u; = Au 4+ |ulP~1u such that

1l <p<

Wz, t) € RY x (=00, T), |u(z,t)] < O(T — £) 71,

Then,
either u = 0,
of there exists T™ > T such that

V(z,t) € RN x (—00,T), u(z,t) = (T — t)_lﬁ.

RK. This result yields blow-up estimates which are uniform
(with respect to initial data, blow-up point, etc...)



Generalization

- Critical exponent p = §*2.

- Same equation with v € RM™ (there is still a Lyapunov

functional).

- Case of systems with no gradient structure, like

wr = Au + VP,
v = Av + uf,

with p and g subcritical and close to each other.



Cor. (Merle-Z.) If u is a solution of u; = Au + |u|P~1u that
blows up at time 7', then Ve > 0, dC¢ > 0 such that
V(z,t) e RY x [0,T),

[Au| = Jug — [ulP™ | < elul? + Ce

where C¢ depends only on € and on bounds on T and ||ug]|.
Rk. Localization property for the equation. The interaction
due to Aw is controlled by a local term ¢|ulP and a uniform
constant Ce.

Rk. If v > 0, then

uP(l —¢€) — Ce < up <uP(1l4¢) 4+ C..
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Case of an isolated blow-up point a

Blow-up profile (Herrero-Velazquez, Bricmont-Kupiainen, Merle
Z).

u(x,t) u* (x) (t=T)

-1/(p-1)
K(T-t)

|
|
|
|
|
|
I
|
1

X X
a  A+R[(T-t)]log(T-1)] "

Q>



u(x,t) ~ (T — t)_mf ( \/(T — t)| log(T — t)| )

and Vz # a, u(x,t) — u*(x) as t — T and

u (x) ~U(lx —al|) as z — a

where

1

_ 1 b(p) 22 \ »-1

= (p—14+b(p)z?) P I et U(z) = .

f(z) =(p—1+b(p)z°) (2) ( 5 ||ng|>
Rk. The profile is radial (it is a function of |x — al).

RK. This is the generic profile (proved in dim. 1 by Herrero

and Velazquez).



Th. This behavior is stable with respect to initial data (the

solution blows up at only one point with the same profile).

Rk. Two proofs:

- A geometrical approach, with construction of a stable

manifold near the limiting profile (Merle-Z.).

- A dynamical system approach Fermanian, Merle, Z.)
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Case of non isolated blow-up points (C° — 1)

Th (Regularity of the blow-up set). (N = 2) Consider u
a solution of u; = Au+ |u/P~ 1w and @ a non isolated blow-up
in Sy such that:

1/ (S, O Continuum)

Ja € C((—=1,1),R?), a(0) = a and Ima C Sy,

2/ (a is not an endpoint). .

3/ (A “r?asonable" technical condition) (7T—-t)r-lu(a,t) —
(p—1) »~1 qd t — T avec la vitesse la plus lente.

Conclusion: Locally near a, Sy is the graph of a C1 function.
RKk. Valid in any dimension.

1
Rk. If codim S, = 1, then S5, is cba.



Some impossible cases for the blow-up set

Q>

Q>



Th. (The blow-up profile)

-1/(p—-1)
K(T-t) B

1 dist(x,Su)
u(x,t) ~(T'—1t) r-1f <\/(T—t)| Iog(T—t)|>

where f(z) = (p — 1+ b(p)zQ)_Z%.



RK. Only the one-dimensional variable dist(x, Sy) (orthogonal

to Sy) is responsible of the size of u at blow-up.



RK. f is the generic profile in dimension 1.

u(x,t)

. X
a  A+R[(T-t)log(T-1)] "

w(z,8) ~ (T — ) 7-1f (\/ z—a )

(T—t)| log(T—t)|

where f(z) = (p —1 b(p)zz)_lﬁ.




RKk. In this case |x — a| = dist(x, Sy).

Hence, in all cases (isolated points or not),

_Iﬁ dist(x, Sy)
u(m,t)N(T—t) f(\/(T—t)llog(T_t>|)

—= Universality.



Th (Universality) (Z.) : Under a non degeneracy condition
at some a € Sy, the blow-up set is (locally near a) :

- Either an isolated point (of dimension 0),

- Or a C! manifold of dimension 1,... N —1.

_ﬁ dist(x, Sy)
u(x,t) ~ (T —t) tf(VQIr_t)Hog(T“—tN)

and Vx € Sy, u(x,t) — u*(x) as t — T and

uw*(z) ~ U (dist(x,Sy)) and dist(x,Sy) — O

_ 1
p—1

b(p) =22
2 |logz]

where f(z) = (p — 1+ b(p)zQ)_Z% and U(z) =

“is” the generic profile in dimension 1.



Most recent contribution (preprint 2004)

If the blow-up set is of co-dimension 1, then it is in fact

C?2, and we can explicitly compute its curvature (which is a

geometric invariant).

In one word, CY — (2.



