Regularity of the blow-up set for the semilinear heat equation

Hatem Zaag CNRS École Normale Supérieure Ryukoku University, October 15, 2004

Motivation: singularities in PDE

Solutions which are regular at t = 0, may become "infinite" in finite time T. Example: heat, Schrödinger, wave, generalized KdV, geometric flows, etc...

Motivation: singularities in PDE

Solutions which are regular at t = 0, may become "infinite" in finite time T. Example: heat, Schrödinger, wave, generalized KdV, geometric flows, etc...

Common questions:

- Find the asymptotic behavior(s) near the singularity.
- Discuss their stability.
- Obtain **uniforms** estimates / initial data, etc..
- Understand interactions between regular and singular regions.

The semilinear heat equation

$$\begin{cases} u_t = \Delta u + |u|^{p-1}u, \\ u(0) = u_0, \end{cases}$$

where $u(t) : x \in \mathbb{R}^N \to u(x,t) \in \mathbb{R}$ and

$$1 if $N \ge 3$.$$

(Critical exponent for the Sobolev injection).

The semilinear heat equation

$$\begin{cases} u_t = \Delta u + |u|^{p-1}u, \\ u(0) = u_0, \end{cases}$$

where u(t): $x \in \mathbb{R}^N \to u(x,t) \in \mathbb{R}$ and

$$1 if $N \ge 3$.$$

(Critical exponent for the Sobolev injection).

Rk. This a lab model where one can go far in computations and develop tools for more physical situations.

Generalization :

- A bounded domain,
- $u \in {\rm I\!R}^M$,
- Case of the equation

$$u_t = \operatorname{div}(a(x)\nabla u) + f(u)$$

with $a(x) > a_0 > 0$ and $f(u) \sim |u|^{p-1}u$ and $|u| \to \infty$,

- Cases of systems with no gradient structure, like

$$\begin{cases} u_t = \Delta u + v^p, \\ v_t = \Delta v + u^q. \end{cases}$$

The solution of the Cauchy problem exists:

- either on $[0, +\infty)$: there is global existence,
- or on [0,T) with $T < +\infty$: there is **finite-time blow-up**.

In this case,

$$\lim_{t\to T} \|u(t)\|_{L^{\infty}} = +\infty.$$

The solution of the Cauchy problem exists:

- either on $[0, +\infty)$: there is **global existence**,
- or on [0,T) with $T < +\infty$: there is **finite-time blow-up**. In this case,

$$\lim_{t\to T} \|u(t)\|_{L^{\infty}} = +\infty.$$

A point *a* is a **blow-up point** if

$$|u(a,t)| \to +\infty \text{ as } t \to T.$$

We denote by $S_u \subset \mathbb{R}^N$ the **blow-up set**, i.e. the set of all blow-up points.

The solution of the Cauchy problem exists:

- either on $[0, +\infty)$: there is **global existence**,
- or on [0,T) with $T < +\infty$: there is **finite-time blow-up**. In this case,

$$\lim_{t\to T} \|u(t)\|_{L^{\infty}} = +\infty.$$

A point *a* is a **blow-up point** if

$$|u(a,t)| \to +\infty \text{ as } t \to T.$$

We denote by $S_u \subset \mathbb{R}^N$ the **blow-up set**, i.e. the set of all blow-up points.

Goal : Study S_u .

Example 1: Single-point blow-up

Rk. Sorry, this is not a simulation!

Rk. The only blow-up point is a. The other points are called "regular points".

Example 1 bis : Two blow-up points (both isolated)

Rk. This is still not a simulation (by the way, blowing-up at 2 points is *unstable* and hard to get on a computer!) **Rk.** Imagine the same picture with k points and in N dimensions. **Example 2**: S_u is a sphere (radial sol., picture for N = 2).

Rk. Here, all blow-up points are *non isolated* in S_u .

Goal of the talk:

- Study of the blow-up set S_u ($\subset \mathbb{R}^N$).

Two questions arise: the construction and the description.

The construction : Given a set $\hat{S} \subset \mathbb{R}^N$, is there a solution \hat{u} of $u_t = \Delta u + |u|^{p-1}u$ that blows up at some finite time T such that $S_{\hat{u}} = \hat{S}$?

The construction : Given a set $\hat{S} \subset \mathbb{R}^N$, is there a solution \hat{u} of $u_t = \Delta u + |u|^{p-1}u$ that blows up at some finite time T such that $S_{\hat{u}} = \hat{S}$?

The answer is YES in the following cases:

- an isolated point (Herrero-Velázquez, Bricmont-Kupiainen, Weissler...),

- k points (Merle),
- a sphere (radial solution, Giga-Kohn).

The construction : Given a set $\hat{S} \subset \mathbb{R}^N$, is there a solution \hat{u} of $u_t = \Delta u + |u|^{p-1}u$ that blows up at some finite time T such that $S_{\hat{u}} = \hat{S}$?

The answer is YES in the following cases:

- an isolated point (Herrero-Velázquez, Bricmont-Kupiainen, Weissler...),

- k points (Merle),
- a sphere (radial solution, Giga-Kohn).

In all the other cases, the question remains open (the ellipse for example).

Rk. Of course, we don't deal with the case of isolated blowup points (no geometry! and there is an extensive literature!).

Rk. Of course, we don't deal with the case of isolated blowup points (no geometry! and there is an extensive literature!).

known information:

- S_u is a closed set (by definition).
- S_u is bounded, if u_0 is small at infinity (Giga-Kohn 1989).
- The Hausdorff dimension of S_u is $\leq N-1$ (Velázquez 1992).

Rk. Of course, we don't deal with the case of isolated blowup points (no geometry! and there is an extensive literature!).

known information:

- S_u is a closed set (by definition).
- S_u is bounded, if u_0 is small at infinity (Giga-Kohn 1989).
- The Hausdorff dimension of S_u is $\leq N-1$ (Velázquez 1992).

Open questions: Is S_u locally connected? Is it C^1 , C^{∞} ,..?

In this talk, we address the description issue.

In this talk, we address the description issue.

For this, we need a *new approach* in the study of the semilinear heat equation. In this talk, we address the description issue.

For this, we need a *new approach* in the study of the semilinear heat equation.

Let us first review the classical approach.

Outline

- The classical approach
- The new approach : Liouville Theorem
- Case of an isolated blow-up point (stability / initial data)
- Case of a non isolated blow-up point (regularity of the blowup set)

The classical Approach

Let u be a solution of $u_t = \Delta u + |u|^{p-1}u$ that blows up at time T and let $a \in S_u$.

Self-similar variables

$$w_a(y,s) = (T-t)^{\frac{1}{p-1}}u(x,t), \ y = \frac{x-a}{\sqrt{T-t}}, \ s = -\log(T-t).$$

Study u near the singularity (a,T)

 \iff Study w_a near y = 0 as $s \to \infty$.

Equation :

For all
$$s \in [-\log T, +\infty)$$
 and $y \in \mathbb{R}^N$,
 $\partial_s w_a = \frac{1}{\rho} \operatorname{div}(\rho \nabla w_a) - \frac{w_a}{p-1} + |w_a|^{p-1} w_a$

with

$$\rho(y) = e^{-\frac{|y|^2}{4}}.$$

Energy (decreasing) :

$$E(w) = \int \rho dy \left(\frac{1}{2} |\nabla w|^2 + \frac{2}{p-1} |w|^2 - \frac{1}{p+1} |w|^{p+1} \right)$$

Uniform bound (Giga-Kohn 1987, Giga, Matsui and Sasayama. 2004)

$$\forall s \ge -\log T, \quad \frac{1}{C_0} \le \|w_a(s)\|_{L^{\infty}} \le C_0.$$

Convergence in L^2_{ρ} and L^{∞}_{loc} (Giga-Kohn)

$$w_a(y,s) \rightarrow \pm \kappa \equiv (p-1)^{-\frac{1}{p-1}}$$
 as $s \rightarrow +\infty$.

Rk. (Giga-Kohn) 0, κ and $-\kappa$ are the only stationary solutions.

Rk. $u(a,t) \sim \pm \kappa (T-t)^{-\frac{1}{p-1}}$ as $t \to T$: a local comparison "locale" with the solution of $u' = u^p$.

Rk. Further refinement of the development : Herrero-Velázquez, Bricmont-Kupiainen, Filippas-Kohn.

Problem : the *stability*. The estimates are *too local*: they depend on initial data and on the blow-up point.

If a is isolated in S_u : What happens if we perturb initial data (for u) ?

If a is non isolated : For a given solution u(x,t), how does $w_b(y,s)$ behaves when $b \in S_u$ varies in a neighborhood of a ?

Outline

- The classical approach
- The new approach : Liouville Theorem
- Case of an isolated blow-up point (stability / initial data)
- Case of a non isolated blow-up point (regularity of the blowup set)

The new approach: Liouville (or rigidity) theorem (Merle, Z.)

$$1$$

Consider u(x,t) a solution of $u_t = \Delta u + |u|^{p-1}u$ such that

 $\forall (x,t) \in \mathbb{R}^N \times (-\infty,T), \ |u(x,t)| \leq C(T-t)^{-\frac{1}{p-1}}.$

The new approach: Liouville (or rigidity) theorem (Merle, Z.)

$$1$$

Consider u(x,t) a solution of $u_t = \Delta u + |u|^{p-1}u$ such that

$$\forall (x,t) \in \mathbb{R}^N \times (-\infty,T), \ |u(x,t)| \leq C(T-t)^{-\frac{1}{p-1}}.$$

Then,

either $u \equiv 0$,

of there exists $T^* \geq T$ such that

 $\forall (x,t) \in \mathbb{R}^N \times (-\infty,T), \ u(x,t) = \kappa (T^* - t)^{-\frac{1}{p-1}}.$

The new approach: Liouville (or rigidity) theorem (Merle, Z.)

$$1$$

Consider u(x,t) a solution of $u_t = \Delta u + |u|^{p-1}u$ such that

$$\forall (x,t) \in \mathbb{R}^N \times (-\infty,T), \ |u(x,t)| \leq C(T-t)^{-\frac{1}{p-1}}.$$

Then,

either $u \equiv 0$,

of there exists $T^* \geq T$ such that

$$\forall (x,t) \in \mathbb{R}^N \times (-\infty,T), \ u(x,t) = \kappa (T^* - t)^{-\frac{1}{p-1}}.$$

Rk. This result yields blow-up estimates which are *uniform* (with respect to initial data, blow-up point, etc...)

Generalization

- Critical exponent
$$p = \frac{N+2}{N-2}$$
.

- Same equation with $u \in \mathbb{R}^M$ (there is still a Lyapunov functional).

- Case of systems with no gradient structure, like

$$\begin{cases} u_t = \Delta u + v^p, \\ v_t = \Delta v + u^q, \end{cases}$$

with p and q subcritical and close to each other.

Cor. (Merle-Z.) If u is a solution of $u_t = \Delta u + |u|^{p-1}u$ that blows up at time T, then $\forall \epsilon > 0$, $\exists C_{\epsilon} > 0$ such that $\forall (x,t) \in \mathbb{R}^N \times [0,T)$,

$$|\Delta u| = |u_t - |u|^{p-1}u| \le \epsilon |u|^p + C_\epsilon$$

where C_{ϵ} depends only on ϵ and on bounds on T and $||u_0||$. **Rk.** Localization property for the equation. The interaction due to Δu is controlled by a local term $\epsilon |u|^p$ and a uniform constant C_{ϵ} .

Rk. If $u \ge 0$, then

$$u^p(1-\epsilon) - C_\epsilon \leq u_t \leq u^p(1+\epsilon) + C_\epsilon.$$

Outline

- The classical approach
- The new approach : Liouville Theorem
- Case of an isolated blow-up point (stability / initial data)
- Case of a non isolated blow-up point (regularity of the blowup set)

Case of an isolated blow-up point \widehat{a}

Z).

Blow-up profile (Herrero-Velázquez, Bricmont-Kupiainen, Merle

$$u(x,t) \sim (T-t)^{-\frac{1}{p-1}} f\left(\left| \frac{x-\hat{a}}{\sqrt{(T-t)} \log(T-t)} \right| \right)$$

and $\forall x \neq \hat{a}, \ u(x,t) \rightarrow u^*(x) \text{ as } t \rightarrow T \text{ and}$

$$u^*(x) \sim U(|x - \hat{a}|)$$
 as $x \to \hat{a}$

where

$$f(z) = \left(p - 1 + b(p)z^2\right)^{-\frac{1}{p-1}} \text{ et } U(z) = \left(\frac{b(p)}{2} \frac{z^2}{|\log z|}\right)^{-\frac{1}{p-1}}$$

Rk. The profile is radial (it is a function of $|x - \hat{a}|$). **Rk.** This is the generic profile (proved in dim. 1 by Herrero and Velázquez). **Th.** This behavior is stable with respect to initial data (the solution blows up at only one point with the same profile).

Rk. Two proofs:

- A geometrical approach, with construction of a stable manifold near the limiting profile (Merle-Z.).

- A dynamical system approach Fermanian, Merle, Z.)

Outline

- The classical approach
- The new approach : Liouville Theorem
- Case of an isolated blow-up point (stability / initial data)
- Case of a non isolated blow-up point (regularity of the blowup set)

Case of non isolated blow-up points ($C^0 \implies C^1$)

Th (Regularity of the blow-up set). (N = 2) Consider ua solution of $u_t = \Delta u + |u|^{p-1}u$ and \hat{a} a non isolated blow-up in S_u such that: Case of non isolated blow-up points ($C^0 \Longrightarrow C^1$)

Th (Regularity of the blow-up set). (N = 2) Consider ua solution of $u_t = \Delta u + |u|^{p-1}u$ and \hat{a} a non isolated blow-up in S_u such that:

1/ ($S_u \supset$ Continuum) $\exists a \in C((-1,1), \mathbb{R}^2), a(0) = \hat{a} \text{ and } \text{Im } a \subset S_u.$ 2/ (\hat{a} is not an endpoint). 3/ (A "reasonable" technical condition) $(T-t)^{\frac{1}{p-1}}u(\hat{a},t) \rightarrow (p-1)^{-\frac{1}{p-1}}$ qd $t \rightarrow T$ avec la vitesse la plus lente. Case of non isolated blow-up points ($C^0 \implies C^1$)

Th (Regularity of the blow-up set). (N = 2) Consider ua solution of $u_t = \Delta u + |u|^{p-1}u$ and \hat{a} a non isolated blow-up in S_u such that:

1/ ($S_u \supset$ Continuum) $\exists a \in C((-1,1), \mathbb{R}^2), a(0) = \hat{a} \text{ and } \operatorname{Im} a \subset S_u.$ 2/ (\hat{a} is not an endpoint). 3/ (A "reasonable" technical condition) $(T-t)^{\frac{1}{p-1}}u(\hat{a},t) \rightarrow (p-1)^{-\frac{1}{p-1}}$ qd $t \rightarrow T$ avec la vitesse la plus lente.

Conclusion: Locally near \hat{a} , S_u is the graph of a C^1 function.

Case of non isolated blow-up points ($C^0 \implies C^1$)

Th (Regularity of the blow-up set). (N = 2) Consider ua solution of $u_t = \Delta u + |u|^{p-1}u$ and \hat{a} a non isolated blow-up in S_u such that:

1/ ($S_u \supset$ Continuum) $\exists a \in C((-1,1), \mathbb{R}^2), a(0) = \hat{a} \text{ and } \operatorname{Im} a \subset S_u.$ 2/ (\hat{a} is not an endpoint). 3/ (A "reasonable" technical condition) $(T-t)^{\frac{1}{p-1}}u(\hat{a},t) \rightarrow (p-1)^{-\frac{1}{p-1}}$ qd $t \rightarrow T$ avec la vitesse la plus lente.

Conclusion: Locally near \hat{a} , S_u is the graph of a C^1 function. **Rk.** Valid in any dimension.

Rk. If codim $S_u = 1$, then S_u is $C^{1,\frac{1}{2}}$.

Some impossible cases for the blow-up set

Th. (The blow-up profile)

$$u(x,t) \sim (T-t)^{-\frac{1}{p-1}} f\left(\frac{dist(x,S_u)}{\sqrt{(T-t)|\log(T-t)|}}\right)$$

where $f(z) = (p - 1 + b(p)z^2)^{-\frac{1}{p-1}}$.

Rk. Only the one-dimensional variable $dist(x, S_u)$ (orthogonal to S_u) is responsible of the size of u at blow-up.

Rk. f is the generic profile in dimension 1.

where $f(z) = (p - 1 + b(p)z^2)^{-\frac{1}{p-1}}$.

Rk. In this case $|x - \hat{a}| = dist(x, S_u)$.

Hence, in all cases (isolated points or not),

$$u(x,t) \sim (T-t)^{-\frac{1}{p-1}} f\left(\frac{dist(x,S_u)}{\sqrt{(T-t)|\log(T-t)|}}\right)$$

 \implies Universality.

Th (Universality) (Z.) : Under a non degeneracy condition at some $\hat{a} \in S_u$, the blow-up set is (locally near \hat{a}) :

- Either an isolated point (of dimension 0),
- Or a C^1 manifold of dimension 1,... N-1.

$$u(x,t) \sim (T-t)^{-\frac{1}{p-1}} f\left(\frac{dist(x,S_u)}{\sqrt{(T-t)|\log(T-t)|}}\right)$$

and $\forall x \notin S_u$, $u(x,t) \to u^*(x)$ as $t \to T$ and

 $u^*(x) \sim U(dist(x, S_u))$ and $dist(x, S_u) \rightarrow 0$

where
$$f(z) = (p - 1 + b(p)z^2)^{-\frac{1}{p-1}}$$
 and $U(z) = \left[\frac{b(p)}{2} \frac{z^2}{|\log z|}\right]^{-\frac{1}{p-1}}$

"is" the generic profile in dimension 1.

Most recent contribution (preprint 2004)

If the blow-up set is of co-dimension 1, then it is in fact C^2 , and we can explicitly compute its curvature (which is a geometric invariant).

In one word, $C^0 \implies C^2$.