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1 Introduction

1.1 Presentation of the results

In this paper, we consider the following parabolic equation

∂u

∂t
= ∆u+ | u |p−1 u, u0 = u(0) (1)

u(t) ∈ L∞, u : R
N × [0, T ) 7→ R.

We will assume 1 < p, (N − 2)p < N + 2. We are interested in blow-up
solutions u(t) of (1), that is solutions of (1) for which there exists T such
that

‖u(t)‖L∞ → +∞ as t → T

(see [Bal77] and [Lev73] for the existence of such solutions). Note that
from the regularizing effect of the heat equation, the blow-up time does not
depend on the space where the Cauchy problem is solved. The point a is a
blow-up point if and only if there exists (an, tn) → (a, T ) as n → +∞ such
that |u(an, tn)| → +∞. Note that in the case p < 3N+8

3N−4 or u(0) ≥ 0, we

know from [MZ] that an equivalent definition could be a point a ∈ R
N such

that
| u(x, t) | −→

(x,t)→(a,T )
+∞.

The blow-up set S ⊂ R
N at time T is the set of all blow-up points. From

[Mer92] and [MZ], under some restrictions on p there exists u∗ ∈ C2
loc(R

N/S)
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such that
u(x, t) −→

t→T
u∗(x) in C2

loc.

u∗ can have different types of behavior close to a blow-up point a. For
example, from [HV92], [Vel92], [BK94] and [MZ], we have solutions such
that

u∗(x) ∼
x→a

U1(x − a), where U1(x) =
( 8p | log | x ||

(p − 1)2 | x |2
)

1

p−1

(2)

and other solutions such that for some k ≥ 2,

u∗(x) ∼
x→a

CUk(x − a), where Uk(x) = |x|−
2k

p−1 and C 6= 0

(there are also non-symmetric profiles but they are suspected to be unsta-
ble).

We will be interested in proving stability properties of the behavior (2).
The question is the following : consider initial data ũ0 such that ũ(x, t)
blows-up in finite time T̃ at a unique point ã with ũ(x, t) −→

t→T̃
ũ∗(x) for

all x 6= ã, ũ∗ ∈ C2
loc(R

N/{ã}) and ũ∗ ∼
x→ã

U1(x − a). Is such a behavior

stable under a perturbation of the initial data? Note that the other types
of behavior are supposed to be unstable. In particular, when there are at
least two blow-up points or when the blow-up profile is different from (2).

To clarify the situation, let us introduce similarity variables (see [GK89]).
Let u be a solution of (1) which blows-up at time T in point a. We introduce

y =
x − a√
T − t

, s = − log(T − t), wa,T (y, s) = (T − t)1/(p−1)u(x, t). (3)

Then wa,T (y, s) satisfies the following equation

∂swa,T = ∆wa,T − 1

2
y · ∇wa,T + | wa,T |p−1 wa,T − 1

p − 1
wa,T , (4)

for all (y, s) ∈ R
N × [− log T,+∞).

Giga and Kohn, under some more assumptions on the power p, proved that

∃C0 > 0, ∀s ≥ − log T, ‖wa,T (s)‖L∞ ≤ C0 (5)

and wa,T (y, s) −→
s→+∞

±κ. (6)

where κ = (p − 1)−1/(p−1) and the convergence is uniform on compact sets
of R

N . Let us give the following definition :
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Definition 1.1 (Type I blow-up solutions) A solution u(t) of (1) is
called a blow-up solution of type I if there exists C > 0 such that ∀t ∈ [0, T ),

‖u(t)‖L∞ ≤ C(T − t)
− 1

p−1 .

Let us assume in the following wa,T (y, s) −→
s→+∞

+κ (if not consider −wa,T ).

The result then has been specified ([FK92], [HV93]) at least in the posi-
tive case. We have two possibilities (up to an orthogonal change of space
variables) :

a) wa,T (y, s)−κ ∼ κ
2ps(N − 1

2

l
∑

i=1

y2
i ) on compact sets, where 1 ≤ l ≤ N ,

b)| wa,T (y, s) − κ |≤ Ce−s/2 on compact sets.

In [MZ98b] (see also [Vel92]), the following equivalence is proved (not
necessarily in the radial case) for type I blow-up solutions, we have

(P1) ⇔ (P2) ⇔ (P3)

where
(P1) ∀R > 0, sup

|y|≤R
| wa,T (y, s) − κ − κ

2ps(N − |y|2
2 ) |= o(1

s ),

(P2) ‖wa,T (y, s) − f( y√
s
)‖L∞ −→

s→+∞
0 with

f(z) = (p − 1 +
(p − 1)2

4p
|z|2)

− 1

p−1

, (7)

(P3) u∗(x) ∼ U1(x − a) as x → a, x 6= a.

The first stability result for this problem is due to Merle and Zaag [MZ97]
who prove the following. They exhibit a set of initial data ũ0 such that ũ(x, t)
blows-up at one point ã and behaves like (P2). Equivalence was not known
at that time. For these initial data constructed before, they proved the
following stability result.

There exists a neighborhood V0 of ũ0 such that for all u0 ∈ V0, u(x, t)
solution to (1) with initial data u0 blows-up at time T and has a unique
blow-up point a such that wa,T satisfies (P2).

Unfortunately this result was proved only for initial data constructed as
before and a priori does not hold for all initial data blowing-up at one point
such that (P1), (P2) or (P3) is satisfied. In this paper, we extend the result
to such functions. Note that the strategy will be completely different. The
proof will be closely related to some uniform estimates with respect to initial
data (following from a Liouville Theorem) and a solution of a dynamical
system of ordinary differential equations. We claim the following :
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Theorem 1 (Stability of the blow-up profile with respect to the
initial data) Let ũ(t) be a type I blow-up solution of (1) with initial data
ũ0 which blows-up at time T at only one point ã = 0. Assume that for some
R > 0 and M > 0,

for all |x| ≥ R and t ∈ [0, T̃ ), |ũ(x, t)| ≤ M. (8)

and

∀x ∈ R
N\{0}, ũ(x, t) −→

t→T̃
ũ∗(x) where ũ∗(x) ∼

x∼0
U1(x).

Then, there is a neighborhood V in L∞ of ũ0 such that for all u0 ∈ V the
solution of (1) with initial data u0 blows-up at time T = T (u0) at a unique
point a = a(u0) and

∀x ∈ R
N\{a}, u(x, t) −→

t→T
u∗(x) where u∗(x) ∼

x∼a
U1(x − a).

Moreover, (a(u0), T (u0)) goes to (0, T̃ ) as u0 goes to ũ0.

Using the equivalence between (P1), (P2) and (P3) we have equivalent for-
mulations of Theorem 1. Let us write one which will be useful for the proof.

Theorem 2 Let ũ(t) be a type I blow-up solution of (1) with initial data ũ0

which blows-up at t = T̃ at only one point ã = 0. Assume that (8) holds
and that the function w̃0,T̃ (y, s) defined in (3) satisfies uniformly on compact

sets of R
N

w̃0,T̃ (y, s) − κ ∼
s→+∞

κ

2ps
(N − | y |2

2
). (9)

Then, there is a neighborhood V in L∞ of ũ0 such that for all u0 ∈ V the
solution of (1) with initial data u0 blows-up at time T = T (u0) at a unique
point a = a(u0) and the function wa,T (y, s) defined in (3) satisfies uniformly
on compact sets of R

N

wa,T (y, s) − κ ∼
s→+∞

κ

2ps
(N − | y |2

2
).

Moreover, (a(u0), T (u0)) goes to (0, T̃ ) as u0 goes to ũ0.

Remark : The condition (8) means that ũ does not blow-up at infinity (in
space).
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Remark : The hypothesis that ũ(t) is of type I can be removed for we can
show, by the techniques of [MZ98b], that (8) and (9) imply that ũ(t) is of
type I.
Remark : In [FKZ], the authors study the difference between two blow-up
solutions of (1) with the same blow-up time and the same unique blow-up
point. As a consequence of this and the stability result of [MZ97], they
obtain the same stability result as in Theorem 1, under the restrictive con-
dition u(0) ≥ 0 or (3N − 4)p ≤ 3N + 8 (which implies by [GK89] that all
blow-up solutions are of type I).
Remark : For N+2

N−2 > p ≥ 3N+8
3N−4 it is not known (with no positivity con-

ditions on the initial data) that all blow-up solutions are of type I. In the
proof, we show in fact that if a solution u(t) is of type I, then in a neighbor-
hood of u(0), all the solutions blow-up (which was not known before) and
are of type I. More precisely,

Theorem 3 The set of initial data such that u(t) is a blow-up solution of
type I is open.

Remark : It is still an open problem for p ≥ 3N+8
3N−4 to know if there are

blow-up solutions which are not of type I.

Generalizations
As in [MZ98a], there are various generalizations of this result.
1) | u |p−1 u can be replaced by f(u) where f(u) ∼| u |p−1 u in C3 as

| u |→ +∞.
2) R

N can be replaced by a convex domain.
3) Using techniques of [MZ] and [FM95], we can generalize the result to

the case of the equation (1) where u is a vector-valued function u : R
N 7→

R
M , and where F (u) ∼| u |p−1 u as |u| goes to infinity in C3.

1.2 Strategy of the proof

We consider a type I blow-up solution ũ(t) of (1) with initial data ũ0. We
suppose that ũ(t) blows-up at time T̃ with a unique blow-up point ã = 0.
We also assume that

∥

∥

∥

∥

w̃0,T̃ (s) −
{

κ +
κ

2ps

(

N − |y|2
2

)}∥

∥

∥

∥

L2
ρ

= o

(

1

s

)

. (10)

Therefore, from the equivalence of the properties (Pi), i = 1, 2, 3 (which
holds for type I solutions), we have

ũ(x, t) −→
t→T̃

ũ∗(x), ũ∗(x) ∼
x∼0

U1(x).
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We shall consider initial data u0 in a neighborhood of ũ0 in C3. We shall note
with a ˜ the items associated with ũ(t) such as w̃0,T̃ while those associated

with u(t) will not present some ,̃ for example wa,T for some a ∈ R
N and

T ∈ R.
From the fact that if we have un(0) → u(0) in L∞ as n goes to infinity

then for all ε ∈ [0, T ), un(ε) → u(ε) in C3 as n goes to infinity, we are reduced
to prove the stability for the C3 topology.

1.2.1 Formulation of the problem

We will adopt a dynamical system approach and work in the variable (y, s)
in order to use the spectral properties of the operator

f 7→ L(f) = ∆f − 1

2
y · ∇f + f

which appears in the equation of wa,T .
Indeed, we have for all s ∈ [− log T, +∞) and for all y ∈ R

N ,

∂swa,T = ∆wa,T − 1

2
y · ∇wa,T + | wa,T |p−1 wa,T − 1

p − 1
wa,T .

Under the condition that a is a blow-up point, we have

‖wa,T (s)‖L∞ ≤ C, (11)

(known if p < 3N+8
3N−4 and unknown in general if 3N+8

3N−4 ≤ p < N+2
N−2), proved

by Giga and Kohn in [GK87]. Considering −w if necessary, we can suppose

wa,T (y, s) −→
s→+∞

κ,

on compact sets (see [GK89]). Let us now introduce

v = wa,T − κ, (12)

v satisfies the following equation

∂sv = Lv + f(v) (13)

where f(v) = |v + κ|p−1(v + κ) − κ

p − 1
− p

p − 1
v.

(14)
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From (11), we obtain | f(v) |≤ c | v |2. Therefore, f is a quadratic term.

Operator L is self-adjoint on L2
ρ where ρ(y) = e−

|y|2

4 / (4π)N/2,
Spec L = {1 − m

2 | m ∈ N} and the eigenfunctions of L are derived from
the Hermite polynomials. If N = 1, all the eigenvalues of L are simple. To
1 − m

2 corresponds the eigenfunction

hm(y) =

[m
2

]
∑

n=0

m!

n!(m − 2n)!
(−1)nym−2n.

If N ≥ 2, then the eigenfunctions corresponding to 1 − m
2 are

Hα(y) = hα1
(y1)...hαN

(yN ), with α = (α1, ..., αN ) and |α| = m.

In particular,

1. 1 is an eigenvalue of multiplicity 1 and the corresponding eigenfunction
is H0(y) = 1,

2. 1
2 is of multiplicity N and its eigenspace is generated by the orthogonal
basis {yi | i = 1, ..., N},

3. 0 is of multiplicity N(N+1)
2 and its eigenspace is generated by the or-

thogonal basis

{yiyj | i < j} ∪ {y2
i − 2 | i = 1, ..., N}. (15)

Since the eigenfunctions of L constitute a total orthonormal family of L2
ρ,

we expand v as follows

v(y, s) =

2
∑

m=0

vm(y, s) + v−(y, s) = v2(y, s) + v−(y, s) + v+(y, s), (16)

where vm(y, s) is the orthogonal projection of v on the eigenspace of λ = 1−
m
2 , v−(y, s) = P−(v)(y, s) and P− is the projector on the negative subspace
of L and v+(y, s) = v0(y, s) + v1(y, s). Let us define a N × N symmetric
matrix A(s) by

Aij(s) =

∫

RN

v(y, s)

(

1

4
yiyj −

1

2
δij

)

ρ(y)dy. (17)
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Then, from (16), (15) and the orthogonality between eigenfunctions of L,
we have

v2(y, s) =
1

2
yT A(s)y − tr A(s). (18)

It has been proved in [FK92], [FL93] and [Vel92] for a general blow-up
solution as s goes to +∞ that either v ∼ v2 (case a) or v ∼ v− (case
b) in L2

ρ. In addition in the case a, there is a symmetric matrix Q and
l ∈ {1, ..., N} such that

v2(Qy, s) ∼ κ

4ps
(2l−

l
∑

i=1

y2
i ).

Thus, we now assume in accordance with (10) (see [FK92]) that v2 is pre-
dominant and that l = N . Therefore,

ṽ2(y, s) ∼ κ

4ps
(2N− | y |2) as s → +∞. (19)

We will prove that this behavior is stable under perturbation of the initial
data, that is there is a neighborhood V of ũ0 such that for all u0 ∈ V, u(t)
blows up at one point a = a(u0) at T = T (u0) and

va,T (y, s) ∼ κ

4ps
(2N− | y |2) as s → +∞.

1.2.2 Uniform L∞ estimates on u and O.D.E. comparison.

Here, we use crucially a central argument (from [MZ]) in the proof of The-
orem 1.

Proposition 1.2 (A Liouville Theorem for equation (1)) Let u(t) be
a solution of (1) defined for all (x, t) ∈ R

N × (−∞, T ) such that for some
C > 0,

| u(x, t) |≤ C

(T − t)
1

p−1

.

Then, there exist T1 ∈ [T,+∞) and ω0 ∈ {−1,+1} such that

u(x, t) = ω0κ(T1 − t)−
1

p−1 .

This Theorem has an equivalent formulation for equation (4).
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Proposition 1.3 (A Liouville Theorem for equation (4)) Let w be a
solution of (4) defined on R

N × R such that w ∈ L∞(RN × R). Then,
w ≡ 0 or w ≡ ±κ or w(y, s) ≡ ±θ(s + s0) for a s0 ∈ R,

where θ(s) = κ(1+es)−
1

p−1 and satisfies θ′ = θp− 1
p−1θ, θ(−∞) = κ and

θ(+∞) = 0.

This allows Merle and Zaag [MZ] to prove for u0 ∈ C2 the following :

Proposition 1.4 (Uniform ODE comparison of blow-up solutions
of (1)) Assume 1 < p < 3N+8

3N−4 . If ‖u0‖C2 ≤ C0 and T < T0 then we have
the following :

i) Uniform estimates: ∃C1 = C1(C0, T0) such that ‖u(t)‖L∞ ≤ C1

(T−t)
1

p−1

.

ii) Uniform O.D.E. behavior: ∀ε > 0, ∃C = C(ε, C0, T0) such that
∀(x, t) ∈ R

N × [0, T ),

| ∂tu− | u |p−1 u |≤ ε | u |p +C.

The purpose of this section is to prove without the condition p < 3N+8
3N−4

the same result but for initial data only in a neighborhood of ũ0, assuming
that ũ(t) is a type I blow-up solution. Indeed, in this case (p ≥ 3N+8

3N−4 ) the
obstruction on the proof of ii) of Proposition 1.4 is the estimate ‖u(t)‖L∞ ≤

C

(T−t)
1

p−1

. Actually, we prove here that for all ū0 such that ū(t) is of type

I, there is V1 neighborhood of ũ0 such that i) and ii) of Proposition 1.4 is
satisfied uniformly in V1 (see Theorem 3 and section 2). We first have the
following :

Lemma 1.5 (Continuity of the blow-up time at ũ0) There exists V0

neighborhood of ũ0 such that for all u0 ∈ V0, u(t) blows-up in finite time
T = T (u0) and

T (u0) −→ T̃ as u0 → ũ0.

Remark : The continuity of the blow-up time was known (see [Mer92]) in
the case of bounded domains. Here, we will prove using an elementary but
crucial blow-up result that the blow-up time is continuous and in particular
finite at initial data such that u(t) is a blow-up solution of type I. It is still
open in the other cases.
Note that from the continuity of the blow-up time, we have the continuity
of the blow-up profile in the following sense :

Corollary 1.6 (Continuity of the blow-up profile) As u0 → ũ0, we
have u∗ → ũ∗ uniformly on compact sets of R

N\S.
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Proof : The proof of Proposition 2.3 in [Mer92] holds in the present case
because we have the continuity of the blow-up time.

Proposition 1.7 (Uniform L∞ bound, O.D.E. comparison) There ex-
ist V1 a neighborhood of ũ0, C > 0 and {Cε}ε such that for all initial data
u0 in V1,

i) u(t) blows-up in T ,

ii) ∀t ∈ [0, T ), ‖u(t)‖L∞ ≤ C(T − t)
− 1

p−1 ,
iii) ∀ε > 0, ∀t ∈ [0, T ), | ∂tu− | u |p−1 u |≤ ε | u |p +Cε.

Corollary 1.8 (Constant sign property of u(x, t) for x close to the
blow-up point) There exists V2 a neighborhood of ũ0 and δ > 0 such that
for all initial data u0 in V2,

∀t ∈ [T − δ, T ), ∀|x| ≤ δ, u(x, t) ≥ 0.

1.2.3 Reduction to a finite dimensional problem

From continuity properties of the blow-up set and the blow-up time, we are
able to control the unstable modes on the equation on v by the use of the
geometric transformation (3), we note va,T = wa,T − κ.

Proposition 1.9
i) There exists a neighborhood V3 of ũ0 such that for all initial data u0 in
V3, there exists a ∈ R

N , T ∈ R such that

va,T −→
s→+∞

0 in C2,α
loc (RN ).

ii) a goes to 0 and T goes to T̃ as u0 goes to ũ0 in C3.

Note that T is the blow-up time of u(t) and a is a blow-up point of u(t).
At this stage of the proof, uniqueness of the blow-up point a is not known.
We will see at the end of the proof the uniqueness of a. From now on, for
each u0 we fix a given a.

As a consequence of the Liouville Theorem, we have uniform convergence
of va,T with respect to the initial data, which allows us to compare uniformly
the nonlinear problem with the linear problem (in fact with the quadratic
problem when we deal with the neutral mode).

Proposition 1.10 (Uniform smallness of va,T ) There exists a neighbor-
hood V4 of ũ0 such that for all initial data u0 in V4,
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i) sup
u0∈V4

‖va,T (s)‖L2
ρ

−→
s→+∞

0,

ii) ∀R > 0, sup
u0∈V4

(

sup
|y|≤R

| va,T (y, s) |
)

−→
s→+∞

0.

It follows from this Proposition and the fact that the dynamics on the neutral
mode are slow for the quadratic approximation the following stability result.
For simplicity we denote by vi, 0 ≤ i ≤ 2 and v− the components of the
expansion of va,T (see (16)).

Proposition 1.11 (Reduction to a finite dimensional problem)
There exist ε0 > 0 and a neighborhood V5 of ũ0 such that for all ε ∈ (0, ε0),
there is s0(ε) ∈ R such that for all initial data u0 in V5,

∀s ≥ s0(ε), ε‖v2(s)‖L2
ρ
≥ ‖v−(s)‖L2

ρ
+ ‖v+(s)‖L2

ρ
.

Note that the choice of the (N + 1) parameters (a, T ) controls the (N + 1)
unstable modes of v.

1.2.4 Solving of the finite dimensional problem

We study now v2(s) as s goes to infinity by using the matrix A introduced
in (18). From (19), we have

Ã(s) ∼ −β

s
Id (20)

as s goes to +∞ with β = κ
2p . The question is now about the stability of

behavior (20). Let us first give the form of the equation satisfied by A(s).

Proposition 1.12 (Form of the finite dimensional problem : Finite
dynamical system) There exists a neighborhood V6 of ũ0 such that for all
ε > 0, there is s1(ε) ∈ R such that for all initial data u0 in V6,

∀s ≥ s1(ε), A′(s) =
1

β
A(s)2 + R(s), (21)

where β = κ
2p and | R(s) |≤ ε | A(s) |2.

The stability result follows from the stability of the behavior − β
s Id among

solutions going to 0 for the ordinary differential equation A′(s) = 1
βA(s)2.

Indeed,
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Proposition 1.13 (Stability of − β
s Id behavior)There is a neighborhood

V7 of ũ0 such that for all ε > 0, there exists s2(ε) such that for all u0 ∈ V7

∀s ≥ s2(ε), | A(s) +
β

s
Id |≤ ε

s
.

From this stability result and the uniform estimates of Proposition 1.7, we
have the following Proposition which obviously implies Theorem 1 :

Proposition 1.14 (Uniform convergence of the different notions of
profile in a neighborhood of ũ0) There is a neighborhood V8 of ũ0 such
that :

i) ∀ε > 0, ∃s3(ε) such that ∀s ≥ s3(ε), ∀u0 ∈ V8,

∥

∥

∥

∥

wa,T (y, s) −
{

κ +
κ

2ps

(

N − | y |2
2

)}∥

∥

∥

∥

L2
ρ

≤ ε

s
,

ii) ∀K0 > 0, ∀ε > 0, ∃s4(K0, ε) such that ∀s ≥ s4(K0, ε), ∀u0 ∈ V8,
sup

|z|≤2K0

| wa,T (z
√

s, s) − f(z) |≤ ε where f is defined in (7),

iii) For all u0 ∈ V8 and x 6= a, u(x, t) → u∗(x) as t → T and

sup
u0∈V8

∣

∣

∣

∣

u∗(a + x′)
U1(x′)

− 1

∣

∣

∣

∣

→ 0 as x′ → 0, x′ 6= 0

where U1 is defined in (2).

iv) For all u0 ∈ V8, u(t) blows-up at T with a unique blow-up point a, T
goes to T̃ and a goes to 0 as u0 goes to ũ0.

2 Uniform ODE comparison and L
∞ bound

We prove Theorem 3, Lemma 1.5, Proposition 1.7 and Corollary 1.8 in this
section.

Let us start by connecting some notions related to uniform ODE behavior
and blow-up rate of type I. Consider a blow-up solution u(t) with blow-up
time T such that T0

2 ≤ T ≤ T0 and ‖u0‖C2 ≤ C0 for given T0, C0.

Proposition 2.1 (Equivalent properties for type I blow-up solu-
tions) Consider the following properties.

12



Property i): For all ε1 > 0, there is a constant C1 > 0 such that

|∂u

∂t
− |u|p−1u| = |∆u| ≤ ε1|u|p + C1 on R

N × [0, T ). (22)

Property ii): There is a constant C2 > 0 such that

|∆u| ≤ 1

2
|u|p + C2 on R

N × [0, T ). (23)

Property iii): There is a constant C3 > 0 such that

‖u(t)‖L∞ ≤ C3(T − t)−
1

p−1 on [0, T ). (24)

We claim that

Property i) ⇐⇒ Property ii) ⇐⇒ Property iii) . (25)

with constants depending only on T0, C0, that is C2 = C2(C1), C3 =
C3(T0, C0, C2) and C1 = C1(ε1, T0, C0, C3).

Remark : Under these properties, the solution is a blow-up solution of type
I.
Proof of Proposition 2.1 :

Property i) =⇒ Property ii) : From the definitions.
Property ii) =⇒ Property iii) : Define for a given x ∈ R

N , z(t) = |u(x, t)|.
We have from Property ii),

z′(t) ≥ 1

2
z(t)p − C2,∀t ∈ [0, T ) and z(t) defined on [0, T ). (26)

Let us prove that

∀t ∈ [0, T ),
1

z(t)p−1 ≥ 1

(4C2)
p−1

p

+
(p − 1)(T − t)

4
. (27)

If ∀t0 ∈ [0, T ), z(t0)
p < 4C2, then it is done. If z(t0)

p ≥ 4C2 for some
t0 ∈ [0, T ), then we have by a priori estimates, ∀s ∈ [t0, T ), z′(s) ≥ 0, and
∀s ∈ [t0, T ), z(s)p ≥ 4C2. Therefore, ∀s ∈ [t0, T ), z′(s) ≥ 1

4z(s)p and

(−z1−p)′(s) ≥ p−1
4 .

By integration in time of this identity, we have

1

z(t)p−1
≥ (p − 1)(T − t)

4
. (28)

13



which concludes the proof. Therefore

∀t ∈ [0, T ),∀x ∈ R
N , |u(x, t)| ≤ C ′′

(T − t)
1

p−1 + C ′
,

where C ′ = C ′(C2) and C ′′ = C ′′(C2). This concludes the proof since the
constants do not depend on x ∈ R

N .
Property iii) =⇒ Property i) : The proof follows exactly the one of [MZ]

(see also [MZ98a]) since in fact only Property i) was used there to prove the
result. This concludes the proof of Proposition 2.1.

We now prove Lemma 1.5.
Proof of Lemma 1.5 : Since ũ(t) is a type I blow-up solution, Lemma 1.5

follows directly from the following :

Lemma 2.2 The blow-up time is continuous at ū0 where the associated
solution ū(t) is a blow-up solution of type I.

Remark : Note that no condition of decay at infinity in space is made.

Proof of Lemma 2.2 : Assume that ū(t) is a blow-up solution of type
I (T̄ is the blow-up time). Let us consider a sequence un of initial data
converging to ū0. Let un(t) and Tn be the associated solution and blow-up
time.

By local wellposedness in time of the Cauchy problem it is classical to
have lim inf

n→+∞
Tn ≥ T̄ .

Let us show that lim sup
n→+∞

Tn ≤ T̄ . This will follow from two facts :

- Fact 1 : From [MZ] (the results were in fact proved under the assump-
tion that ū(t) is a blow-up solution of type I), we have

‖∇w̄(s)‖L∞ → 0 and ‖w̄(s)‖L∞ → κ as s → +∞ (29)

where w̄(y, s) = e−
s

p−1 ū(ye−
s
2 , T − e−s). In particular, there is a sequence

T̂m going to T̄ , x̂m ∈ R
N , ŝm going to +∞ such that

‖∇w̄T̂m,x̂m
(ŝm)‖L∞ → 0, ‖w̄T̂m ,x̂m

(ŝm)‖L∞ ≤ 2.2
1

p−1 κ

and w̄T̂m,x̂m
(., ŝm) → 2

1

p−1 κ in L∞
loc as m → +∞,

(30)

where w̄T̂m,x̂m
is defined from ū(t) in (3). Indeed, consider any sequence ŝm

going to infinity, from (29) we have then the existence of x̂m such that

w̄T̄ ,x̂m
(0, ŝm) → κ.

14



Again from (29),

‖∇w̄T̄ ,x̂m
(ŝm)‖L∞ → 0, ‖w̄T̄ ,x̂m

(ŝm)‖L∞ ≤ 2κ and wT̄ ,x̂m
(ŝm) → κ in L∞

loc

(31)

as m → +∞.
Take now T̂m such that 2(T̄ − t̂m) = T̂m − t̂m where ŝm = − log(T̄ − t̂m).
From the definition (3), we have

w̄T̂m,x̂m
(y, ŝm − log 2) = 2

1

p−1 w̄T̄ ,x̂m
(y
√

2, ŝm).

It is easy then to check that w̄T̂m,x̂m
(ŝm − log 2) satisfies (30).

- Fact 2 : In [MZ], there is a blow-up criterion in the w variable (sharp
for functions close to constants in L∞

loc) which is the following. Consider w
a solution of equation (4). Assume in addition that for some s1 we have

I(w(s1)) > 0

where for w,∇w ∈ L∞,

I(w) = −2E(w) +
p − 1

p + 1

(
∫

RN

|w(y)|2ρ(y)dy

)
p+1

2

(32)

and

E(w) =

∫

RN

(

1

2
|∇w(y)|2 +

1

2(p − 1)
|w(y)|2 − 1

p + 1
|w(y)|p+1

)

ρ(y)dy.

(33)

Then, the solution w(s) blows-up in finite time.
We claim that lim sup

n→+∞
Tn ≤ T̂m for all m, which will conclude the proof

of the Lemma. Indeed, from (30) and (32), we have

I(w̄T̂m,x̂m
(ŝm)) → I(2

1

p−1 κ) > 0 as m goes to infinity . (34)

We have by continuity of the solution with respect to the initial data that
for a given m,

wT̂m,x̂mn
(ŝm) → w̄T̂m,x̂m

(ŝm) in W 1,∞ as n goes to infinity and

‖wT̂m,x̂mn
(ŝm)‖W 1,∞ is uniformly bounded in n

15



where wT̂m,x̂mn
is defined from un(t) by (3).

Therefore for n and m large, I(wT̂m,x̂mn
(ŝm) ≥ I(2

1
p−1 κ)
2 > 0. Thus wT̂m,x̂mn

blows up in finite time and for n large Tn ≤ T̂m. Therefore, lim sup
n→+∞

Tn ≤ T̂m.

This concludes the proof of Lemma 2.2 since T̂m goes to T̄ as m → +∞.

Proof of Theorem 3 and Proposition 1.7 : We now claim the following
Lemma which concludes the proof of Theorem 3 and Proposition 1.7 (from
the fact that Property i) ⇐⇒ Property ii) ⇐⇒ Property iii)). We still
consider ū(t) a blow-up solution of (1) of type I. From Proposition 2.1, we
know that there is a constant C2 such that

|∆ū| ≤ 1

2
|ū|p + C2 on R

N × [0, T̄ ). (35)

Lemma 2.3 (Uniform O.D.E. behavior in a neighborhood of a type
I blow-up solution) There exists V0 a neighborhood of ū0 such that for all
u0 ∈ V0, u(t) blows-up in finite time T = T (u0) and

|∆u| ≤ 1

2
|u|p + 2C2 on R

N × [0, T ).

Proof of Lemma 2.3 : Let us argue by contradiction. Let us consider un a
solution of (1) with initial data u0n → ū0 ∈ C2 such that un(t) blows-up at
time Tn → T̄ and the statement

|∆un| ≤
1

2
|un|p + 2C2 on R

N × [0, Tn)

is not valid. Therefore, there is (xn, tn) ∈ R
N × [0, Tn) such that

|∆un(xn, tn)| − 1

2
|un(xn, tn)|p → 2C2 (36)

and |∆un| =

∣

∣

∣

∣

∂un

∂t
− |un|p−1un

∣

∣

∣

∣

≤ 1

2
|un|p + 2C2 on R

N × [0, tn]. (37)

In the first step, we find a subsequence of (un) which tends (up to a
translation) to a solution û of (1) blowing-up at T̄ in 0. Then in a second
step we use this limit object to find a contradiction.
First step : Behavior of un(tn) as n → +∞

a) tn → T̄ .

16



From the fact that un(t0) → ū(t0) in C2 for all t0 < T̄ , there is for each
t0 < T̄ , a n0 such that for all n ≥ n0,

|∆un| ≤
1

2
|un|p +

3

2
C2 on R

N × [0, t0].

Therefore, we have

T̄ − tn → 0 and Tn − tn → 0 as n → +∞.

b) Compactness procedure on the limit object ū.
Note that in the case where initial data is decaying at infinity, the blow-

up set is compact, and this step is not needed. In this situation, take û = ū.
In the general case, from Proposition 2.1, we have

∀t ∈ [0, T̄ ), ‖ū(t)‖L∞ ≤ C1

(T̄ − t)
1

p−1

(38)

where C1 = C1(C2, T̄ , ‖ū(0)‖C2). Considering ū(xn + x, t) and using a com-
pactness procedure based on (38), we can assume that

ū(xn + x, t) → û(x, t) in C2,1
loc (RN × [0, T̄ )) (39)

where û is also a solution of (1). We now claim the following :

c) The point 0 is a blow-up point of û and |un(xn, tn)| → ∞.
i) Proof of the fact that 0 is a blow-up point of û and T̄ is its blow-up

time.
We proceed by contradiction. Assume that there are δ > 0 and M > 0

such that ∀(x, t) ∈ Bδ × [0, T̄ ),

|û(x, t)| + |∆û(x, t)| ≤ M.

From the fact that

un(xn + x, t) → û(x, t) in C2,1
loc (R

N × [0, T̄ )) (40)

(which follows from (39) and the fact that un → ū in L∞
loc([0, T̄ ), C2(RN )))

and the ODE property for t < tn stated in (37), an easy calculation shows
that for n large enough, ∀(x, t) ∈ B(xn, δ

2) × [0, tn),

|un(x, t)| ≤ 2M.

Let us now recall a useful Lemma on parabolic regularization.
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Lemma 2.4 (Parabolic regularity for equation (1)) Assume h is a
solution of (1) defined for (ξ, τ) ∈ D = B(0, η) × [0, t∗] and satisfying
‖h‖L∞ ≤ M . Consider t1 ∈ (0, t∗). Then, there exist α(p) ∈ (0, 1) and
K(t1, η,M) such that

‖h‖C2,1(D′) + |∇2h|α,D′ + |∂h

∂t
|α,D′ ≤ K

where D′ = B(0, η
2 ) × [t1, t

∗], ‖h‖C2,1(D′) = ‖h‖L∞(D′) + ‖∇h‖L∞(D′) +

‖∇2h‖L∞(D′) + ‖∂h
∂t ‖L∞(D′) and

|a|α,D = sup
(ξ,τ),(ξ′,τ ′)∈D

|a(ξ, τ) − a(ξ′, τ ′)|
(

|ξ − ξ′| + |τ − τ ′|1/2
)α . (41)

Proof : see Lemmas 2.8 and 2.10 in [MZ98b].

Thus, there is M ∗(T̄ , δ,M) such that for n large,

|∆un|α,Dn + |∂un

∂t
|α,Dn ≤ M∗,

where Dn = B(xn, δ
4) × [ T̄2 , tn). In particular, ∆un and ∂un

∂t are uniformly
continuous on Dn, with a constant of continuity independent of n.
We claim now that ∀(x, t) ∈ Dn,

|∆un(x, t)| ≤ 1

2
|un(x, t)|p +

3

2
C2. (42)

Indeed, since tn → T̄ and the constant of uniform continuity of ∆un and ∂un

∂t
on Dn is independent of n, there is a t0 such that for n large, ∀(x, t) ∈ Dn,
we have

either t ≤ t0 or |∆un(x, t) − ∆un(x, t0)| ≤ C2

16

and ||un(x, t)|p−1un(x, t) − |un(x, t0)|p−1un(x, t0)| ≤ C2

16 .
(43)

From (40) and the identity

|∆û(x, t)| ≤ 1

2
|û(x, t)|p + C2 on R

N × [0, T̄ ) (44)

(which follows from (35) and (39)), we have for n large and for all (x, t) ∈
B(xn, δ

4 ) × [ T̄2 , t0],

|∆un(x, t)| ≤ 1

2
|un(x, t)|p +

17

16
C2. (45)
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It follows then from (43) and (45) that ∀(x, t) ∈ Dn,

|∆un(x, t)| ≤ 1

2
|un(x, t)|p +

3

2
C2, (46)

which is a contradiction. Therefore 0 is a blow-up point of û.

ii) Proof of the fact that |un(xn, tn)| → +∞.
We argue by contradiction. Assume that there is M > 0 such that

|un(xn, tn)| ≤ M . Integrating the ODE (37) backwards in time, there is a
M∗ > 0 such that ∀t ∈ [0, tn], |un(xn, t)| ≤ M ∗. Fix any t0 < T̄ . For n large
we have |un(xn, t0)| ≤ M∗. Let n go to infinity, we obtain |û(0, t0)| ≤ M∗.
Thus for all t < T̄ ,

|û(0, t)| ≤ M ∗

which is a contradiction with the fact that 0 is a blow-up point of û.

Second step : Conclusion of the proof using the Liouville Theorem.
We now follow an argument in [MZ98b] except that we will use the

O.D.E. approximation to obtain key estimates (see [MZ98b] for more de-
tails). We consider two cases.

Case 1 : un(xn,tn)
‖un(tn)‖L∞

6−→ 0 (the very singular region).

Let us assume that κ
2

un(xn,tn)
‖un(tn)‖L∞

→ κ1 ∈ (0, κ
2 ], and consider

vn(ξ, τ) = M
1

p−1

n un(xn + ξ
√

Mn, tn + τMn) (47)

where

Mn

1

p−1 ‖un(tn)‖L∞ =
κ

2
.

From the Liouville Theorem stated for equation (1) (Proposition 1.2), we
show that the nonlinear term is “subcritical” on compact sets of R

N ×
(−∞, 0]. In particular, we show that vn(ξ, τ) → v(τ) where v′ = vp and
v(0) = κ1, uniformly on compact sets of R

N × (−∞, 0] (Note that

v(τ) = κ

(

(

κ

κ1

)p−1

− τ

)− 1

p−1

(48)

and v(1) < +∞ since 2κ1 ≤ κ).
We have from the definition of vn that vn is defined for all τ ∈ [τn, 0] where
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τn = − tn
Mn

→ −∞ (since Mn → 0 from the fact that |un(xn, tn)| → +∞ and

tn → T̄ ) and satisfies

∂vn

∂τ
= ∆vn + |vn|p−1vn.

Moreover, vn satisfies the following O.D.E. estimate from (47) and (37) : for
all (ξ, τ) ∈ R

N × [τn, 0],

∂|vn|
∂τ

≥ 1

2
|vn|p − 2M

p
p−1

n C2. (49)

Therefore, for all τ ∈ [τn, 0], ‖vn(τ)‖L∞ ≤ max

(

(4C2)
1

p M
1

p−1

n , κ

)

. Indeed,

if not, we have by integration ‖vn(0)‖L∞ ≥ κ which is a contradiction.
By the wellposedness of the Cauchy problem in L∞, there is τ0 ∈ (0, 1) such
that vn(τ) is uniformly bounded on [0, τ0] in L∞. By a classical compactness
procedure and up to extracting a subsequence, we can assume vn → v in
C2,1

loc (RN × (−∞, τ0]) where

∂v

∂τ
= ∆v + |v|p−1v

v(0, 0) = κ1.

Moreover, letting n go to infinity in (49), we obtain that for all τ ∈ (−∞, 0],

∂|v|
∂τ

≥ 1

2
|v|p and ‖v(0)‖L∞ ≤ κ

2
. (50)

Therefore, by integration, we have

∀τ ≤ τ0, ‖v(τ)‖L∞ ≤ C ′

(1 − τ)
1

p−1

for some C ′ > 0.

From Proposition 1.2, that is using in some sense the Liouville Theorem in
the very singular region, we have v(ξ, τ) = v(τ), defined in (48). By a direct
calculation and from (47) and (36), we have for n large

|∆vn(0, 0)| = M
p

p−1

n |∆un(xn, tn)| ≥ 1
2 |un(xn, tn)|pM

p

p−1

n = 1
2 |vn(0, 0)|p. Let-

ting n → +∞, we obtain

0 ≥ 1

2
v(0)p > 0,

which is a contradiction.
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Case 2 : un(xn,tn)
‖un(tn)‖L∞

−→ 0 (the singular region).

Define

Mn(t) =

(‖un(t)‖L∞

κ

)1−p

and M(t) =

(‖û(t)‖L∞

κ

)1−p

. (51)

From the Liouville Theorem, we prove a useful Lemma relating Mn(t) and
Tn − t.

Lemma 2.5 Consider (tn,1) a subsequence tending to T̄ and assume that
tn,1 ≤ tn. Then

Tn − tn,1

Mn(tn,1)
→ 1 as n → +∞.

Proof : Since un blows-up at time Tn, we have by the maximum principle

‖un(tn,1)‖L∞ ≥ κ(Tn − tn,1)
− 1

p−1 . Therefore,

∀n ∈ N,
Tn − tn,1

Mn(tn,1)
≥ 1. (52)

We now claim that

lim sup
n→+∞

Tn − tn,1

Mn(tn,1)
≤ 1. (53)

This estimate follows from the Liouville Theorem and the blow-up criterion
which is sharp near constants. Let us consider

h̃n(ξ, τ) = Mn(tn,1)
1

p−1 un

(

xn,1 + ξ
√

Mn(tn,1), tn,1 + τMn(tn,1)

)

. (54)

where xn,1 is chosen such that |un(xn,1, tn,1)|Mn(tn,1)
1

p−1 → κ.
From the Liouville Theorem stated for equation (1) (Proposition 1.2), we
will show that h̃n(ξ, τ) → h̃(τ), h̃′ = h̃p and h̃(0) = κ uniformly on compact
sets of R

N × (−∞, 0]. Note that

h̃(τ) = κ (1 − τ)
− 1

p−1 . (55)

Since T̄ − tn,1 → 0, we have Mn(tn,1) → 0. Indeed, if not, then we have
‖un(tn,1)‖L∞ ≤ C∗ for some C∗ > 0 and some subsequence. Therefore, from
the wellposedness of the Cauchy problem for equation (1), Tn ≥ tn,1 + τ∗

for some τ ∗(C∗) > 0. As n → +∞, we obtain T̄ ≥ T̄ + τ∗ which is a
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contradiction.
As in Case 1 and up to a subsequence, we have from the definition of h̃n

that h̃n is defined for all τ ∈ [τn, 0] where τn → −∞ (since T̄ − tn,1 → 0 and
Mn(tn,1) → 0) and satisfies

∂h̃n

∂τ = ∆h̃n + |h̃n|p−1h̃n,

h̃n(0, 0) → κ and ‖h̃n(0)‖L∞ ≤ κ.
(56)

By the same techniques as in the previous case and from the integration of
the O.D.E. (37) backwards (note that tn,1 ≤ tn), we have for all τ ∈ [τn, 0],

‖h̃n(τ)‖L∞ ≤ max
(

(4C2)
1

p Mn(tn,1)
1

p−1 , κ
)

. Thus, by parabolic regularity

and a compactness procedure, we can assume that h̃n → h in C2,1
loc (RN ×

(−∞, 0]) where

∂h
∂τ = ∆h + |h|p−1h
h(0, 0) = κ and ‖h(0)‖L∞ ≤ κ.

As in Case 1, if we integrate backwards the limit ODE (obtained form (37)

when n → +∞), we obtain ‖h(τ)‖L∞ ≤ C ′(1 − τ)−
1

p−1 for all τ ∈ (−∞, 0].
From Proposition 1.2, (that is using in some sense the Liouville Theorem in
the very singular region), we have h̃(ξ, τ) = h̃(τ), where h̃ is defined in (55).
Let us note that from this argument, we have for all θ > 1 and n large

I
(

θ
1

p−1 h̃n(.
√

θ, 0)
)

>
1

2
I
(

θ
1

p−1 h̃(0)
)

=
1

2
I(θ

1

p−1 κ) > 0

where I is defined in (32). Therefore, for n large enough, I (w̃n(0)) > 0

where w̃n(y, s) = e
− s

p−1 θ
1

p−1 h̃n

(

ye−
s
2

√
θ, (1 − e−s) θ

)

is defined from

θ
1

p−1 h̃n(.
√

θ, .θ) by (3). Thus, from the blow-up criterion, w̃n blows-up in
finite time, hence, h̃n blows-up before the time θ. This implies by (54) that

for n large enough,
Tn−tn,1

Mntn,1
≤ θ, hence (53) follows.

(52) and (53) finish the proof of Lemma 2.5.

Let us recall the following result which asserts that the smallness of the
following weighted energy (related to the energy E(wa) defined in (33))

Ea,t(u) = t
2

p−1
−N

2
+1
∫
[

1

2
|∇u(x)|2 − 1

p + 1
|u(x)|p+1

]

ρ(
x − a√

t
)dx

+
1

2(p − 1)
t

2

p−1
−N

2

∫

|u(x)|2ρ(
x − a√

t
)dx

implies an L∞ bound on u(x, t) locally in space-time.
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Proposition 2.6 (Local energy smallness result) There exists σ0 > 0
such that for all δ′ > 0 and θ′ > 0, the following property holds . If hn is a
solution of (1) which blows-up at time θn and satisfies Eξ,θn−τ ′(hn(τ ′)) ≤ σ0

for some τ ′ ∈ [0, θn − θ′] and for all ξ ∈ B(0, 2δ′), then

- ∀|ξ| ≤ δ′, ∀τ ∈ [ τ ′+θn

2 , θn), |hn(ξ, τ)| ≤ Cσθ
0(θn − τ)−

1

p−1

- Moreover, if ∀|ξ| ≤ δ′, |hn(ξ, τ ′+θn

2 )| ≤ M ′ then ∀|ξ| ≤ δ′

2 , ∀τ ∈ [ τ ′+θn

2 , θn),
|hn(ξ, τ)| ≤ M ∗ where M ∗ = M∗(M ′, δ′, θ′).

Proof : See [GK89] and [Mer92] (Proposition 2.5).
From the fact that 0 is a blow-up point of û, we are able to choose a suitable
scaling parameter connecting (0, tn) and the “very singular region” of un.
Consider κ0 ∈ (0, 1) a constant such that E0,1(κ0) ≤ σ0

2 (E0,1(0) = 0 yields
the existence of such a κ0).
Since 0 is a blow-up point of û and û is a blow-up solution of type I (this
follows from (44) and Proposition 2.1), the results of Giga and Kohn [GK89]
and those of [MZ] apply and we have as t goes to T̄ (up to a sign change),

û(0, t)(T̄ − t)
1

p−1 → κ and
M(t)

T̄ − t
→ 1. (57)

We claim the following : we have the existence of t̃n ∈ [0, tn] going to T̄ such

that |un(xn, t̃n)|Mn(t̃n)
1

p−1 = κ0 and ∀t ∈ (t̃n, tn], |un(xn, t)|Mn(t)
1

p−1 < κ0.
Indeed, from (40) and the fact that Tn → T̄ , we have

un(xn, t) → û(0, t) and
T̄ − t

Tn − t
→ 1

uniformly on compact subsets of [0, T̄ ). Thus, from a diagonal process and
up to a subsequence, there is a sequence tn,2 → T̄ such that

tn,2 ≤ tn,
T̄ − tn,2

Tn − tn,2
→ 1 and

un(xn, tn,2)

û(0, tn,2)
→ 1. (58)

Therefore, we have from (57), (58) and Lemma 2.5,

un(xn, tn,2)Mn(tn,2)
1

p−1 =

un(xn, tn,2)

û(0, tn,2)

(

Mn(tn,2)

Tn − tn,2

)
1

p−1
(

Tn − tn,2

T̄ − tn,2

)
1

p−1

û(0, tn,2)
(

T̄ − tn,2

) 1

p−1 → κ.

(59)

Since we assume un(xn,tn)
‖un(tn)‖L∞

→ 0, we have from (51) and continuity argu-

ments the existence of t̃n ∈ [tn,2, tn] such that |un(xn, t̃n)|Mn(t̃n)
1

p−1 = κ0
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and ∀t ∈ (t̃n, tn], |un(xn, t)|Mn(t)
1

p−1 < κ0.
Note that we have t̃n → T̄ from the fact that t̃n ≥ tn,2, thus Mn(t̃n) → 0.
Indeed, if for some C∗ > 0 and a subsequence, ‖un(t̃n)‖L∞ ≤ C∗, then
we have Tn ≥ t̃n + τ∗ for some τ ∗(C∗) > 0, from the wellposedness of the
Cauchy problem for equation (1). As n → +∞, we obtain T̄ ≥ T̄ +τ∗ which
is a contradiction.
Let us now consider

hn(ξ, τ) = Mn(t̃n)
1

p−1 un

(

xn + ξ

√

Mn(t̃n), t̃n + τMn(t̃n)

)

. (60)

From the Liouville Theorem stated for equation (1) (Proposition 1.2), we
will show now that hn(ξ, τ) → h(τ), h′ = hp and h(0) = κ0 uniformly on
compact sets of R

N × (−∞, 1). Note that

h(τ) = κ

(

(

κ

κ0

)p−1

− τ

)− 1

p−1

. (61)

As in Case 1 and up to a subsequence, we have from the definition of hn

that hn is defined for all τ ∈ [τn, 0] where τn → −∞ (since T̄ − t̃n → 0 and
Mn(t̃n) → 0) and satisfies

∂hn

∂τ = ∆hn + |hn|p−1hn,
hn(0, 0) = κ0 and ‖hn(0)‖L∞ ≤ κ.

(62)

By the same techniques as in Case 1 and from the integration of the O.D.E.
(37) backwards, we have for all τ ∈ [τn, 0],

‖hn(τ)‖L∞ ≤ max
(

(4C2)
1

p Mn(t̃n)
1

p−1 , κ
)

. Since ‖hn(0)‖L∞ ≤ κ, we have

from the wellposedness for the Cauchy problem of (62), hn is well defined

for all τ ∈ [0, 1) and for all τ ∈ [0, 1), ‖hn(τ)‖L∞ ≤ κ(1 − τ)−
1

p−1 . Thus,
by parabolic regularity and a compactness procedure, we can assume that
hn → h in C2,1

loc (RN × (−∞, 1)) where

∂h
∂τ = ∆h + |h|p−1h

h(0, 0) = κ0 and ∀τ ∈ [0, 1), ‖h(τ)‖L∞ ≤ κ(1 − τ)
− 1

p−1 .

As in Case 1, if we integrate backwards the limit ODE obtained from (37) as

n → +∞, we obtain ‖h(τ)‖L∞ ≤ C ′(1 − τ)−
1

p−1 for all τ ∈ (−∞, 1). From
Proposition 1.2, (that is using in some sense the Liouville Theorem in the
very singular region), we have h(ξ, τ) = h(τ), where h is defined in (61).

24



Thanks to this result, we are again in subcritical estimates and we can
conclude as in Case 1. Define τ ′

n = tn−t̃n
Mn(t̃n)

and θn = Tn−t̃n
Mn(t̃n)

the blow-up time

of hn. From Lemma 2.5, we have θn → 1. Therefore, we have uniformly
with respect to |ξ| ≤ 2,

Eξ,θn
(hn(0)) → Eξ,1(h(0)) = E0,1(κ0) ≤

σ0

2
.

Thus, for n large, ∀|ξ| ≤ 2, Eξ,θn
(hn(0)) ≤ σ0, |hn(ξ, θn

2 )| ≤ 2h( 3
4 ), and

by Proposition 2.6, ∀|ξ| ≤ 1
2 , ∀τ ∈ [ θn

2 , θn), |hn(ξ, τ)| ≤ M ∗. Therefore,
∀(ξ, τ) ∈ B(0, 1

2) × [−1, θn), |hn(ξ, τ)| ≤ M ∗
1 .

By Lemma 2.4, this implies that for n large, ‖hn‖C2,1(B(0, 1
4
)×[0,θn)) ≤ M∗∗.

Since for all ξ ∈ B(0, 1
4 ), ∆hn(ξ, 0) → ∆h(ξ, 0) = 0, we obtain by a classical

parabolic estimate

sup
(ξ,τ)∈B(0, 1

8
)×[0,θn)

|∆hn(ξ, τ)| → 0 as n → +∞. (63)

Since hn is a solution of (1) and hn(0, 0) = κ0, a continuity argument for
ODEs shows that

sup
τ∈[0,θn)

|hn(0, τ) − h(τ)| → 0 as n → +∞. (64)

Since τ ′
n ∈ [0, θn), we have from (60) and (36), |∆hn(0, τ ′

n)|
= Mn(t̃n)

p

p−1 |∆un(xn, tn)| ≥ 1
2 |un(xn, tn)|pMn(t̃n)

p

p−1 = 1
2 |hn(0, τ ′

n)|p. Let-
ting n → +∞, we obtain

0 ≥ 1

2

(

min
τ∈[0,1]

h(τ)

)p

≥ 1

2
κp

0 > 0

which is a contradiction. This concludes the proof of Lemma 2.3, Theorem
3 and Proposition 1.7 too.

Proof of Corollary 1.8 : By Proposition 1.7 applied to ε = 1
2 , there exists

C 1

2

> 0 such that

∀u0 ∈ V1, ∀(x, t) ∈ R
N × [0, T ),

∂u

∂t
≥ |u|p−1u − |u|p − C 1

2

. (65)

We choose A > 0 such that

1

2
Ap − C 1

2

> 0. (66)
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From (10) (see also Property (P1)), we have ũ(0, t) → +∞ as t → T̃ .
Therefore, there exist δ > 0 and δ′ > 0 such that for all x ∈ B̄(0, δ),
ũ(x, T̃ − δ′) > 2A. Then, from continuity arguments applied to equation (1)
and the continuity of the blow-up time (Lemma 1.5), there exists V2 ⊂ V1,
a neighborhood of ũ0 such that

∀u0 ∈ V ′
1, ∀x ∈ B̄(0, δ), u(x, T − δ′) > A. (67)

Thanks to (66), we can prove from (65) and (67) by a priori estimates that
u(x, t) > A > 0, for all u0 ∈ V2 and (x, t) ∈ B̄(0, δ) × [T − δ′, T ), which
concludes the proof of Corollary 1.8.

3 Reduction to a finite dimensional problem

In this section we reduce the initial problem to a finite dimensional one by
proving Propositions 1.9, 1.10 and 1.11.

Proposition 1.9 is a crucial step in the proof of Proposition 1.10. It
asserts that for all u0 in some neighborhood of ũ0, there exist a ∈ R

N and
T ∈ R such that

va,T → 0 as s → +∞.

In Proposition 1.10, we crucially use this fact and the Liouville Theorem
to prove that this convergence is uniform with respect to u0. Let us prove
Proposition 1.9.

Proof of Proposition 1.9 :
i) We know from Proposition 1.7 that u(t) blows-up at time T , for all

u0 ∈ V1. The following Lemma asserts that u(t) does not blow-up at infinity
in space, and allows us to conclude.

Lemma 3.1 (No blow-up at infinity) There exists M1 > 0 and V∗
3 a

neighborhood of û0 such that for all u0 ∈ V∗
3 ,

∀|x| ≥ δ, ∀t ∈ [0, T ), |u(x, t)| ≤ M1

where δ is introduced in Corollary 1.8.

indeed, let V3 = V∗
3 ∩ V1 ∩ V2 where V2 in introduced in Corollary 1.8 and

consider u0 ∈ V3. Since u(t) blows-up in finite time, it has a blow-up point
a = a(u0) ∈ B̄(0, δ) by the previous Lemma. For this a, (6) holds, namely
in Ck,α,

wa,T −→
s→+∞

±κ, (68)
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uniformly on compact sets. Since |a| ≤ δ, the case wa,T → −κ is ruled out
by Corollary 1.8. It remains for us to prove Lemma 3.1.

Proof of Lemma 3.1 : The Lemma follows from the fact that ũ(t) does
not blow-up at infinity and the ODE comparison. From (8) and the fact
that ũ(t) blows-up only at the point 0, there is M2 > 0 such that

∀|x| ≥ δ and t ∈ [0, T̃ ), |ũ(x, t)| ≤ M2. (69)

From Proposition 1.7, we know that for all u0 ∈ V1 and (x, t) ∈ R
N × [0, T ),

|∂tu − |u|p−1u| ≤ |u|p + C(1).

By a priori estimates, there is η0 > 0 such that for all v ∈ C1([0, η0))
satisfying

|v′ − |v|p−1v| ≤ |v|p + C(1),
|v(0)| ≤ 2M2,

(70)

we have ∀τ ∈ [0, η0), |v(τ)| ≤ 3M2.
From the continuity of the solution to the Cauchy problem of (1) and the
continuity of the blow-up time stated in Lemma 1.5, there is a neighborhood
V∗

3 ⊂ V1 such that for all u0 ∈ V3

∀(x, t) ∈ R
N × [0, T − η0], |u(x, t) − ũ(x, t)| ≤ M2.

Using (69), we obtain

∀|x| ≥ δ, ∀t ∈ [0, T − η0], |u(x, t)| ≤ 2M2. (71)

Therefore, if |x| ≥ δ, then v(τ) = u(x, T − η0 + τ) satisfies (70) and

∀|x| ≥ δ. ∀t ∈ [T − η0, T ), |u(x, t)| ≤ 3M2. (72)

(71) and (72) finish the proof of Lemma 3.1.

ii) is a consequence of Lemma 1.5 and Corollary 1.6. This closes the
proof of Proposition 1.9.

Now, we prove Proposition 1.10.

Proof of Proposition 1.10 :
i) The proof crucially uses the Liouville Theorem of Proposition 1.3. Let

us suppose that we cannot find any neighborhood of ũ0 such that i) holds.
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Then there exist η0 > 0, sn → +∞ and a subsequence u0n → ũ0 as n → +∞
of functions of V1 ∩ V3 such that

∀n ∈ N, || wn,an,Tn(sn) − κ ||L2
ρ
> η0, (73)

where an = a(u0n) and Tn = T (u0n) are given by Proposition 1.9, and
wn,an,Tn is defined from un by (3). By Proposition 1.9, we know that

wn,an,Tn → κ as s → +∞ in Ck,α
loc (RN ). Therefore, E(wn,an,Tn(s)) → E(κ)

as s → +∞, where E is defined in (33), and since E is a decreasing function
of time, we have

E(wn,an,Tn(sn)) ≥ E(κ). (74)

From Proposition 1.9, we have an → 0 as n → +∞. Since sn → +∞,
Corollary 1.8 implies that for n large,

wn,an,Tn(0, sn) = e−
sn

p−1 un(an, Tn − e−sn) ≥ 0. (75)

We introduce

Wn(y, s) = wn,an,Tn(y, s + sn). (76)

Then, Wn satisfies the equation (4) and (73), (74) and (75) yield for n large,

E(Wn(0)) ≥ E(κ), Wn(0, 0) ≥ 0 and ‖Wn(., 0) − κ‖L2
ρ

> η0. (77)

By Proposition 1.7, there exists C > 0 such that

∀s ∈ [− log Tn − sn,+∞), ‖Wn(s)‖L∞ ≤ C. (78)

By parabolic regularity and a compactness procedure, and since sn → +∞,
there exists W (y, s) such that up to a subsequence

Wn −→
n→+∞

W in C2,1
loc (RN × R). (79)

Moreover, W satisfies (4), and we have from (77) and (78),

‖W‖L∞ ≤ C, E(W (0)) ≥ E(κ), W (0, 0) ≥ 0 and ‖W (0) − κ‖L2
ρ

> η0.

(80)

Therefore, by using Proposition 1.3, we obtain

W ≡ ±κ, W ≡ 0 or W (y, s) = ±θ(s + s0), (81)
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for some s0 ∈ R. This is in contradiction with (80). Indeed, W ≡ −κ
contradicts W (0, 0) ≥ 0, W ≡ κ contradicts ‖W (0) − κ‖L2

ρ
> η0 and W ≡ 0

or W = ±θ(s + s0) contradicts E(W (0)) ≥ E(κ) (for E(0) = 0 < E(κ) and
∀s ∈ R, E(±θ(s)) < E(κ). This concludes the proof of i) of Proposition
1.10. Hence the neighborhood V4 ⊂ V1 ∩ V3.

ii) It is well-known that for solutions to (1), L2
ρ estimates on a time

interval [s, s+1] yield L∞ estimates on compact subsets of R
N at time s+1.

Let us check that the uniformity with respect to the initial data is preserved.
From (13) and Proposition 1.7, there exists C > 0 such that for all u0 ∈ V4

and (y, s) ∈ R
N × [− log T,+∞), we have

∂

∂s
| va,T (y, s) |2≤ (L + C) | va,T (y, s) |2 .

Let us introduce the kernel of the operator L

eσL(y, x) =
eσ

(

4π(1 − e−σ)
)N/2

exp
(

−|ye−σ/2 − x|2
4(1 − e−σ)

)

.

Therefore, for all (y, s) ∈ R
N × [− log T + 1,+∞),

|va,T (y, s)|2 ≤ C
∫

RN eL(y, x)|va,T (x, s − 1)|2dx

≤ ‖va,T (s − 1)‖2
L2

ρ
sup

x∈RN

eL(y, x)ρ(x)−1 ≤ C(N)ρ(y)−1‖va,T (s − 1)‖2
L2

ρ
.

Thus, ii) follows from i) of Proposition 1.10. This closes the proof of Propo-
sition 1.10.

Our aim is to describe more precisely this uniform smallness of va,T for
initial data near ũ0 by considering the components of va,T on the eigenspaces
of L introduced in (16). Let us note for some k ∈ N,

x(s) = || v2(s) ||L2
ρ

(82)

y(s) = || v−(s) ||L2
ρ

+ || |y|k/2v ||L2
ρ

(83)

z(s) = || v+(s) ||L2
ρ

(84)

In [FK92], Filippas and Kohn proved the following

Proposition 3.2 If u is a solution of (1) blowing-up at time T and the
point a, and satisfies (P1) then,

∀ε > 0, ∃s0(ε, u0), ∀s ≥ s0(ε), εx(s) ≥ y(s) + z(s). (85)
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See Theorem A in [FK92]. Proposition 1.11 consists in proving that this
fact holds uniformly with respect to the initial data u0. By Proposition
1.11, we prove that this domination is uniform with respect to initial data.
Therefore, we are led to study v2 which reduces our initial problem to a
finite dimensional problem.

Proof of Proposition 1.11 : We follow the proof of Theorem A in [FK92] with
uniformity with respect to initial data. The first step consists in deriving
ordinary differential inequalities describing the evolution of x, y and z. Then,
in a second step, we prove that z is not the dominating component uniformly
and in a third step, comparing x and y we prove that x is the dominating
component uniformly with respect to the initial data.
First step : By using Proposition 1.7 and by following the proof of Theorem
A in [FK92], we obtain the following claim.
Claim 1 There exists V ′

4 ⊂ V4 neighborhood of ũ0 such that ∀ε > 0, ∃s1(ε) ∈
R, ∀s ≥ s1(ε), ∀u0 ∈ V4,

ż(s) ≥ 1

2
z(s) − ε

(

x(s) + y(s) + z(s)
)

, (86)

| ẋ(s) | ≤ ε
(

x(s) + y(s) + z(s)
)

, (87)

ẏ(s) ≤ −1

2
y(s) + ε

(

x(s) + y(s) + z(s)
)

. (88)

Remark : k introduced in (83) is fixed and depends only on C0 given by

Proposition 1.7 such that for all u0 ∈ V1 and t ∈ [0, T ), ‖u(t)‖L∞(T−t)
1

p−1 ≤
C0.

Second Step : Uniform smallness of z.
Claim 2 : ∀ε > 0, ∃s2(ε) ∈ R, ∀u0 ∈ V ′

4,

∀s ≥ s2(ε), ε
(

x(s) + y(s)
)

≥ z(s). (89)

Let us prove this claim by contradiction. We suppose that there exists
ε0 ∈ (0, 1) such that for all s∗0 > 0, there exists some initial data u∗

0 in V ′
4

and some s∗ > s∗0 such that

z(s∗) − ε0

(

x(s∗) + y(s∗)
)

> 0. (90)

Take ε = ε0
20 and s∗0 = s1(ε) defined in Claim 1. Consider u∗

0 ∈ V ′
4 and

s∗ > s∗0 such that

α(s∗) > 0, (91)
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where for all s > s∗0, α(s) = z(s)− ε0

(

x(s)+y(s)
)

. From Claim 1, we obtain
for all s > s∗0

α′(s) = z′(s) − ε0

(

x′(s) + y′(s)
)

≥ 1

2
z(s) − ε

(

x(s) + y(s) + z(s)
)

− ε0ε
(

x(s) + y(s) + z(s)
)

+
ε0

2
y − ε0ε

(

x(s) + y(s) + z(s)
)

≥ z(s)(
1

2
− ε − 2ε0ε) + y(s)(

ε0

2
− ε − 2εε0) − x(s)ε(1 + 2ε0).

Therefore, for s such that α(s) > 0, we have

α′(s) ≥ z(s)
(1

2
− ε

ε0
(1 + 2ε2

0 + 3ε0)
)

+
ε0

2
y(s). (92)

Since 1 + 2ε2
0 + 3ε0 > 1 and ε0

ε = 20 > 3(1 + 2ε2
0 + 3ε0), we obtain

1

2
− ε

ε0
(1 + 2ε2

0 + 3ε0) > 0. (93)

Note that y(s) = z(s) = 0 contradicts α(s) > 0. Therefore, if α(s) > 0,
then either y(s) > 0 or z(s) > 0, and (92) and (93) yield α′(s) > 0. As a
conclusion, we obtain

∀s > s∗0, α(s) > 0 =⇒ α′(s) > 0. (94)

By (91), we obtain for all s > s∗, α(s) > α(s∗) > 0, which contradicts
α(s) −→

s→+∞
0 (this follows from Proposition 1.10) and closes the proof of the

claim of the second step.

Step 3: Uniform predominance of x. Here, two arguments are mixed-
up: the uniform stability of the dynamics where x is predominant and the
fact that for initial data ũ0, x̃ is predominant. The key Lemma of the proof
is the following :

Lemma 3.3 (Uniform stability of the dynamic where x is predom-
inant) For all C∗ > 0, there exists s∗ such that for all initial data in V ′

4

and s0 ≥ s∗,

if x(s0) ≥ C∗y(s0), then ∀s ≥ s0, x(s) ≥ C∗

2
y(s).
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Proof of Lemma 3.3 : Considering Claim 1 and Claim 2 we have
∀ε ∈ (0, 1

2), ∃s3(ε) = max
(

s1(ε), s2(ε)
)

, ∀u0 ∈ V ′
4, ∀s ≥ s3(ε)

| x′(s) |≤ 3

2
ε
(

x(s) + y(s)
)

and y′(s) ≤ −1

2
y(s) +

3

2
ε
(

x(s) + y(s)
)

. (95)

We argue by contradiction. Suppose that there exists C > 0, s0 > s3(ε)
where ε = C

3(2+C)2 and u0 in V ′
4 such that

x(s0) ≥ Cy(s0) and ∃s∗0 > s0, x(s∗0) <
C

2
y(s∗0).

Consider γ(s) = x(s) − C
2 y(s), then γ(s0) ≥ 0 and γ(s∗0) < 0. Therefore,

there exists s2 ∈ [s0, s
∗
0) such that

γ(s2) = 0 and γ(s) < 0 for all s ∈ [s2, s
∗
0[. (96)

But we have

γ′(s) = x′(s) − C

2
y′(s) ≥ C

4
y(s) − 3

2
ε(1 +

C

2
)
(

x(s) + y(s)
)

. (97)

Then, (96) and (97) yield

γ′(s2) ≥
(C

4
− 3

2
ε(1 +

C

2
)2
)

y(s2). (98)

Therefore, since ε = C
3(2+C)2 we have

C

4
− 3

2
ε(1 +

C

2
)2 > 0. (99)

Moreover, if y(s2) = 0 then x(s2) = 0 by (96) and z(s2) = 0 by (89).
Therefore, va,T (s2) ≡ 0 and the uniqueness of the solution to the Cauchy
problem of (13) yields va,T (s) ≡ 0 for all s ≥ s2. Hence, a contradiction
with γ(s∗0) < 0. Therefore, y(s2) > 0 and (98) and (99) yield γ ′(s2) > 0
which contradicts (96) and closes the proof of Lemma 3.3.

We apply Lemma 3.3 to C∗ = 2, hence some s∗ such that

∀u0 ∈ V ′
4, if ∃s0 ≥ s∗, x(s0) ≥ 2y(s0) then ∀s ≥ s0, x(s) ≥ y(s). (100)

Moreover, since ũ(t) satisfies (P1), by Proposition 3.2 applied to ε = 1
3 there

exists s0(
1
3 , ũ0) such that

∀s ≥ s0(
1

3
, ũ0), x̃(s) ≥ 3

(

ỹ(s) + z̃(s)
)

.
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Let us note s̃0 = max
(

s0(
1
3 , ũ0), s

∗). By using continuity arguments applied
to equation (1) we obtain the existence of a neighborhood V ′′

4 of ũ0 such that

∀u0 ∈ V ′′
4 , x(s̃0) ≥ 2

(

y(s̃0) + z(s̃0)
)

≥ 2y(s̃0).

By (100) we obtain for all u0 ∈ V5 = V ′′
4 ∩ V ′

4,

∀s ≥ s̃0, x(s) ≥ y(s). (101)

Let ε > 0 and u0 ∈ V5. If necessary we shall restrict ε to small ones
in the following. The first step, the second step and the work performed
immediately above yield that if s4(ε) = sup

(

s̃0, s1(ε), s2(ε)
)

, then

∀s ≥ s4(ε), (86), (87), (88), (89), (95) and (101) hold.

It is well-known that if x, y and z satisfy (86), (87) and (88) then there
exists s′5(ε, u0) such that for all s ≥ s′5(ε, u0)

either y(s) + z(s) ≤ 4εx(s) or x(s) + z(s) ≤ 4εy(s), (102)

(see Appendix A in [MZ98a]). In view of (101), x is necessarily the domi-
nating component and

∀s ≥ s′5(ε, u0), y(s) + z(s) ≤ 4εx(s).

It remains for us to prove in some sense that s′5(ε, u0) − s4(ε) is bounded
only in terms of ε, independently from u0. For this, let us introduce for all
ε > 0 and u0 ∈ V5,

s5(ε, u0) = inf{s ≥ s4(ε), ∀σ ≥ s, y(σ) ≤ 4εx(σ)}. (103)

Then, we claim the following : There exists ε0 > 0 such that if ε ∈ (0, ε0)
and if s4(ε) < s5(ε, u0) then

∀s ∈ [s4(ε), s5(ε, u0)], y(s) ≥ 4εx(s). (104)

Indeed, if s4(ε) < s5(ε, u0), then there exists sn −→
n→+∞

s5(ε, u0) with sn ∈
[s4(ε), s5(ε, u0)] and β(sn) > 0 where β(s) = y(s) − 4εx(s). We argue by
contradiction as in the proof of Lemma 3.3. If (104) does not hold, then we
can construct σ∗ ∈ [s4(ε), s5(ε, u0)) such that

β(σ∗) = 0 and ∀σ ∈ (σ∗, sn], β(σ) > 0 for some sn. (105)
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But (95) yields β ′(σ∗) ≤ (−1
8 + 3ε(1 + 2ε))y(σ∗). Note that

∀ε < ε0, −1

8
+ 3ε(1 + 2ε) < 0 (106)

where ε0 is a constant. As at the end of the proof of Lemma 3.3, we can
not have y(σ∗) = 0, because otherwise va,T (s) ≡ 0 for all s ≥ σ∗, and this
gives s5(ε, u0) ≤ σ∗ which is a contradiction. Therefore, y(σ∗) > 0 and (106)
implies that β ′(σ∗) < 0, which contradicts (105) and then (104) holds. Note
that (103) and (104) yield

β
(

s5(ε, u0)
)

= 0. (107)

Moreover, (89), (101) and (104) yield

∀s ∈ [s4(ε), s5(ε, u0)], 4εx(s) ≤ y(s) ≤ x(s), z(s) ≤ ε
(

x(s) + y(s)
)

.

Therefore (87) and (88) become

y′(s) ≤ (−1

4
+

5

4
ε + ε2)y(s) and x′(s) ≥ −3ε(ε + 1)x(s).

Hence,

y(s5) ≤ y(s4)exp
(

(−1
4 + 5

4ε + ε2)(s5 − s4)
)

x(s5) ≥ x(s4)exp
(

−3ε(ε + 1)(s5 − s4)
)

.
(108)

Again here, we can have neither x(s4) = 0 nor x(s5) = 0, otherwise in both
cases x(s4) = y(s4) = z(s4) = 0 and va,T (s) ≡ 0 for all s ≥ s4 and this
implies s5(ε, u0) = s4(ε). Therefore, using (107) and (108), we obtain

4ε =
y(s5)

x(s5)
≤ y(s4)

x(s4)
exp
(

(−1

4
+

17

4
ε + 4ε2)(s5 − s4)

)

≤ exp
(

(−1

4
+

17

4
ε + 4ε2)(s5 − s4)

)

.

Therefore, log(4ε) ≤ (− 1
4 + 17

4 ε + 4ε2)(s5 − s4). Then, for some ε′0 > 0 and
for all ε < ε′0, we have 1 − 17ε − 16ε2 > 0 and

s5(ε, u0) − s4(ε) ≤
4 | log ε |

1 − 17ε − 16ε2
.

As a conclusion, for ε < ε′0 we have

∀u0 ∈ V5, ∀s ≥ s4(ε) +
4 | log ε |

1 − 17ε − 16ε2
, y(s) + z(s) ≤ (4ε + ε(1 + 4ε)) x(s).

This closes the proof of Proposition 1.11.
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4 Stability properties for the finite dimensional
dynamical system and for the equation (1) at

the profile (2)

At this level of the proof, we know that for all u0 ∈ V5, neighborhood of ũ0,
the control of va,T near zero as s goes to infinity reduces to the control of
its component v2(y, s). Our aim in this section if to prove Proposition 1.14
which directly implies Theorem 1. We proceed in 2 Parts :

- In Part I, we write v2(y, s) = 1
2yT A(s)y − trA(s) as in (18) where A(s)

is a N × N matrix. From (20), we have Ã(s) ∼ −β
s Id as s → +∞. In this

Part, we show that this behavior is stable with respect to u0.
- In Part II, we use the stability of the behavior of A(s) and the uniform

estimates of Proposition 1.7 to conclude the proof of Proposition 1.14.
In the following v stands for va,T .

Part I : Stability for the finite dimensional problem
We show in this Part that the behavior of A(s) at infinity is stable with

respect to u0. For this, we first show that A(s) satisfies the following ODE

A′(s) =
1

β
A(s)2 + R(s) (109)

where β = κ
2p and R(s) = o

(

|A(s)|2
)

as s → +∞, uniformly for u0 near
ũ0 (this will prove Proposition 1.12). Then, we use the finite dimensional
system (109) to show that the behavior Ã(s) ∼ −β

s Id as s → +∞ is stable
with respect to u0 (this will prove Proposition 1.13).

Step 1 : An ODE satisfied by A(s)
We prove Proposition 1.12 in this Step. Proposition 1.12 gives the same

result as Theorem B in [FK92], except that there is no uniformity with
respect to u0 in the statement of Theorem B in [FK92]. However, the proof
of [FK92] actually holds uniformly with respect to u0. In the following, we
recall briefly the main steps of the proof of [FK92] and expand only the
parts where uniformity is not obvious. Let us consider u0 ∈ V1 defined in
Proposition 1.7. From (13), (17) and (18), we have for all i, j ∈ {1, ..., N},

∀s ≥ − log T, A′
ij(s) =

∫

f(v(y, s))

(

1

4
yiyj −

1

2
δij

)

ρ(y)dy. (110)

From the uniform estimate of Proposition 1.7, we have for all (y, s) ∈ R
N ×

[− log T,+∞), |v(y, s)| ≤ C. Therefore, we expand f(v) defined in (14) as
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follows
∣

∣

∣

∣

f(v) − 1

4β
v2

∣

∣

∣

∣

≤ C|v|3

and use (16) to write

A′
ij(s) = I + II + III (111)

where I = 1
4β

∫

v2(y, s)2
(

1
4yiyj − 1

2δij

)

ρ(y)dy,

II = 1
4β

∫ (

v2 − v2
2

) (

1
4yiyj − 1

2δij

)

ρ(y)dy and

|III| ≤ C
∫

|v(y, s)|3(1 + |y|2)ρ(y)dy.
From (18) and straightforward calculations, it is easy to see that

I =
1

β

(

A2
)

ij
(s). (112)

The control of II and III is possible thanks to the following Lemma (which
is the uniform version of Lemma 5.1 in [FK92]).

Lemma 4.1 There exist a neighborhood V∗
6 of ũ0, δ0 > 0 and an integer

k > 4 with the following property : for all δ ∈ (0, δ0), there exists a time
s∗(δ) such that for all u0 ∈ V∗

6 and s ≥ s∗,
∫

RN

v(y, s)2|y|kρ(y)dy ≤ c0(k)δ2− k
2

∫

RN

v2(y, s)2ρ(y)dy.

Proof : See Appendix A.
From Propositions 1.7, 1.10 and 1.11, we claim that the following holds
uniformly with respect to u0 ∈ V1 ∩ V4 ∩ V5 ∩ V∗

6 :
- For all (y, s) ∈ R

N × [− log T,+∞), |va,T (y, s)| ≤ C,
- ∀R > 0, sup

|y|<R
|va,T (y, s)| → 0 as s → +∞,

- v2 dominates v− and v+ in L2
ρ as s → +∞.

With these facts and Lemma 4.1, one can check straightforwardly that the

proof of Theorem B in [FK92] (page 850) gives |II|+|III| = o
(

‖v2(y, s)‖2
L2

ρ

)

= o
(

|A(s)|2
)

as s → +∞ uniformly for u0 ∈ V1 ∩ V4 ∩ V5 ∩ V∗
6 . Combined

with (110), (111) and (112), this yields Proposition 1.12.

Step 2 : Stability of the −β
s Id behavior for the ODE (21)

We prove Proposition 1.13 in this Step. Proposition 1.13 follows from
the following :
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Lemma 4.2 There exists s∗2 such that for any initial data u0 in V6,

if for some s0 ≥ s∗2, −2
β

s0
Id ≤ A(s0) ≤ − β

2s0
Id,

then ∀s ≥ s0, −3β

s
Id ≤ A(s) ≤ − β

3s
Id.

Remark : If A and B stand for two N × N symmetric matrices, then the
notation A ≤ B means that the matrix B − A is positive.
Indeed, from (20), there exists s0 ≥ s∗2 such that

− 3β

2s0
Id ≤ Ã(s0) ≤ − 2β

3s0
Id.

From continuity arguments applied to equation (1), there exists a neighbor-
hood V7 ⊂ V6 of ũ0 such that for all u0 ∈ V7,

−2β

s0
Id ≤ A(s0) ≤ − β

2s0
Id.

Hence, by Lemma 4.2, we have

∀s ≥ s0, −3β

s
Id ≤ A(s) ≤ − β

3s
Id. (113)

Since A(s) is a C1 symmetric matrix, it is more convenient to work with its
eigenvalues. We have the following result :

Lemma 4.3 Suppose that A(s) is a N × N symmetric and continuously
differentiable matrix-function in some interval I. Then, there exist con-
tinuously differentiable functions λ1(s),...,λN (s) in I such that for all j ∈
{1, ..., N},

A(s)φ(j)(s) = λj(s)φ
(j)(s)

for some (properly chosen) orthonormal system of vector functions
φ(1)(s),...,φ(N)(s).

Proof : See (for instance) Kato [Kat95].

Since

N
∑

i=1

|λi| is an equivalent norm for A(s), we see from this Lemma and

Proposition 1.12 that ∀ε > 0,

∀i ∈ {1, ..., N}, ∀s ≥ s1(ε),

∣

∣

∣

∣

λ′
i(s) −

1

β
λ2

i (s)

∣

∣

∣

∣

≤ εC(N)





N
∑

j=1

|λj(s)|





2

(114)
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for some C(N) > 0. Hence, from (113), we see that

∀s ≥ s0, λ′
i(s) =

1

β
λ2

i (s)(1 + γi(s))

where ∀s ≥ max(s0, s1(ε)), |γi(s)| ≤ Cε. Therefore, one can straightfor-
wardly solve this differential equation and prove the existence of some s2(ε)
such that for all s ≥ s2(ε) and u0 ∈ V7, |λi(s) + β

s | ≤ C ε
s , which concludes

the proof of Proposition 1.13. It remains for us to prove Lemma 4.2.

Proof of Lemma 4.2 : We argue by contradiction. Let us consider ε̂ > 0 to
be fixed in terms of N and p later, s0 ≥ s1(ε̂) and u0 ∈ V6 (where V6 and
s1(ε̂) are introduced in Proposition 1.12) such that

−2β

s0
Id ≤ A(s0) ≤ − β

2s0
Id

and for some s∗ > s0 and i0 ∈ {1, ..., N},

∀s ∈ [s0, s∗), ∀i = 1, ..., N, −3β

s
≤ λi(s) ≤ − β

3s
(115)

and λi0(s∗) = −3β
s∗

or λi0(s∗) = − β
3s∗

. Let us treat for example the case

λi0(s∗) = −3β

s∗
(116)

(the other case being quite similar).
On one hand, we have from (115) and (116),

λ′
i0(s∗) ≤

(

−3β

s

)′

|s=s∗

=
3β

s2∗
. (117)

On the other hand, (114) and (115) yield

λ′
i0(s∗) ≥ 1

β
λ2

i0(s∗) − ε̂C(N)

(

N
∑

i=1

|λi(s∗)|
)2

≥ 9β

s2∗
− ε̂C(N)N 2 9β2

s2∗
≥ 6β

s2∗

if ε̂ is fixed lower than
(

3βN2C(N)
)−1

, which contradicts (117). Taking
s∗2 = s1(ε̂), we conclude the proof of Lemma 4.2.

38



Part II : Stability of the behavior (2) with respect to initial
data

In this Part, we prove Proposition 1.14 which implies directly the stabil-
ity result of Theorem 1.

Proof of Proposition 1.14 :
i) Let us first introduce V ′

8 = V1 ∩ V5 ∩ V7. From Propositions 1.11 and
1.13, (12), (16) and (18), we have :

For all ε > 0, s ≥ max(s0(ε), s2(ε)) and u0 ∈ V ′
8,

∥

∥

∥

∥

wa,T (y, s) −
{

κ +
κ

2ps

(

N − |y|2
2

)}∥

∥

∥

∥

L2
ρ

≤ ε

s
,

which yields i) of Proposition 1.14.
ii) We claim the following :

Proposition 4.4 (Uniform L∞ estimates) There exist positive cons-
tants C1, C2 and C3 such that for all ε > 0, there exists s0(ε) ∈ R such that
for all s ≥ s0(ε), u0 ∈ V1 and i ∈ {1, 2, 3},

‖wa,T (s)‖L∞ ≤ κ +

(

Nκ

2p
+ ε

)

/s, ‖∇iwa,T (s)‖L∞ ≤ Cis
−i/2.

Remark : The notation ∇iwa,T stands for the differential of order i of wa,T .
Proof : From Proposition 1.7, we have for all u0 ∈ V1,

∀t ∈ [0, T ), ‖u(t)‖L∞ ≤ C0(T − t)−
1

p−1

for some C0 > 0. With this uniform estimate, Theorem 4 of [MZ] applies
and gives estimates independent of u0.
Remark : Theorem 4 of [MZ] follows from the Liouville Theorem and the
techniques of [MZ98b].

The previous Proposition provides us with a uniform estimate on ∆wa,T

which allows us to consider (4) as a perturbation of a hyperbolic equation.
Using the characteristic method, we propagate the estimate of i) of Propo-
sition 4.4 (which gives informations on compact sets of R

N ) to sets of the
type |y| ≤ K0

√
s. We claim the following :

Proposition 4.5 (Convergence extension to space-time parabolas)
For all K0 > 0 and ε > 0, there exists s4(K0, ε) such that for all s ≥ s4 and
u0 ∈ V ′

8, sup
|z|≤K0

∣

∣wa,T (z
√

s, s) − f(z)
∣

∣ ≤ ε where f is defined in (7).
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Proof : The proof of Proposition 3.1 in [MZ98b] holds here and there is no
problem with uniformity with respect to initial data, because i) of Propo-
sition 1.14 holds uniformly with respect to u0 (in L2

ρ and in L∞(B(0, R))
for all R > 0 thanks to classical parabolic estimates) and Proposition 4.4
provides us with an L∞ estimate on the Laplacian, uniform with respect to
u0.
This yields ii) of Proposition 1.14.

iii) Let us fix some K0 > 0 and introduce for each u0 ∈ V ′
8 and x ∈

B(a,K0e
−1/2), a time t(x, u0) ∈ [0, T ) defined by

|x − a| = K0

√

(T − t(u0, x))| log(T − t(u0, x))|. (118)

We shall write simply t(x) in the following.

We now introduce v(x, ξ, τ) defined for all (ξ, τ) ∈ R
N × [− t(x)

T−t(x) , 1) by

v(x, ξ, τ) = (T − t(x))
1

p−1 u(x + ξ
√

T − t(x), t(x) + τ(T − t(x))). (119)

From ii) in Proposition 1.14 and Proposition 1.7, we have (through the
transformations (119) and (3)) for all ε > 0, u0 ∈ V ′

8, x ∈ B(a, η(K0)),
ξ ∈ B(0, 2) and τ ∈ [− 1

2 , 1),

{

∣

∣

(

∂τv − |v|p−1v
)

(x, ξ, τ)
∣

∣ ≤ ε|v(x, ξ, τ)|p + Cε(T − t(x))
p

p−1 ,

|v(x, ξ, 0) − f(K0 + ξ |log(T − t(x))|−1/2)| ≤ ε
(120)

for some η(K0) > 0. Let us introduce for all τ ∈ (−∞, 1],

v∗(τ) =

[

(p − 1)2

4p
K2

0 + (p − 1)(1 − τ)

]− 1

p−1

(121)

which is the solution of
{

v′∗(τ) = v∗(τ)p,
v∗(0) = f(K0).

(122)

We claim that

sup
u0∈V ′

8

sup
τ∈[0,1)

|v(a + x′, 0, τ) − v∗(τ)| → 0 as x′ → 0. (123)

Indeed, if not, then there exists ε0 > 0 and sequences x′
n → 0, u0n ∈ V ′

8 and
τn ∈ [0, 1) such that

|v(an + x′
n, 0, τn) − v∗(τn)| ≥ ε0, (124)
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where an is the blow-up point associated with u0n. Let us denote v(an +
x′

n, ., .) by vn.
Since v∗ is bounded on (−∞, 1], it follows from a comparison principle and
(120) that for n large, we have

∀u0 ∈ V ′
8, ∀(ξ, τ) ∈ B(0, 2) × [−1

2
, 1), |vn(ξ, τ)| ≤ C0(K0).

From (119), we see that vn solves (1). Therefore, applying Lemma 2.4, we
find

‖vn‖L∞(D) + ‖∂τvn‖L∞(D) + |∂τvn|α,D ≤ C ′
0

where D = B(0, 1) × [0, 1), α ∈ (0, 1) and |.|α,D is defined in (41). Using a
compactness argument, we find v̂ ∈ C1 ([0, 1), R) and a subsequence (still de-
noted by vn) such that vn(0, .) → v̂ in C1

loc ([0, 1), R). Since ‖∂τvn‖L∞(D) ≤
C ′

0, we actually have

vn(0, .) → v̂ in C1 ([0, 1), R) . (125)

Using (120) with vn(0, τ) = v(xn, 0, τ) and letting n → +∞ and then ε → 0,
we obtain v̂ ≡ v∗ on [0, 1), in view of (122). Together with (125), this
contradicts (124). Thus, (123) holds.
Let us remark that from (118), we see that for all x′ 6= 0, t(a + x′) depends
only on x′ and is equal to t0(x

′) defined by

|x′| = K0

√

(T − t0(x′))| log(T − t0(x′))|. (126)

Using (119), we rewrite (123) as the following :

sup
u0∈V ′

8

sup
t∈[t0(x′),T )

∣

∣

∣

∣

(T − t0(x
′))

1

p−1 u(a + x′, t) − v∗

(

t − t0(x
′)

T − t0(x′)

)∣

∣

∣

∣

−→
x′→0

0.

(127)

Since v∗ is continuous and v∗(1) > 0, this implies the following :

Lemma 4.6 There exists δ0 > 0 such that for all x′ ∈ B(0, δ0)\{0}, for all
u0 ∈ V ′

8, a + x′ is not a blow-up point of u(t), and u(a + x′, t) → u∗(a + x′)
as t → T where u∗ is the limiting profile of u(t).

Proof : From (127) and (126), there exists δ0 > 0 such that for all x′ ∈
B(0, δ0)\{0}, for all u0 ∈ V ′

8, |u(a + x′, t)| can not go to +∞ as t → T .
Therefore, by [GK89], a + x′ is not a blow-up point, and by [Mer92] (for
instance), u(a + x′, t) → u∗(a + x′) as t → T .
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If for all u0 ∈ V ′
8, we let t → T in (127), we find

sup
u0∈V ′

8

∣

∣

∣(T − t0(x
′))

1

p−1 u∗(a + x′) − v∗(1)
∣

∣

∣→ 0 as x′ → 0, x′ 6= 0

on one hand. On the other hand, one can see from (126), (121) and (2) that

(T − t0(x
′))

1

p−1 U1(x
′) → v∗(1) as x′ → 0, x′ 6= 0.

Thus,

sup
u0∈V ′

8

∣

∣

∣

∣

u∗(a + x′)
U1(x′)

− 1

∣

∣

∣

∣

→ 0 as x′ → 0, x′ 6= 0.

This yields iii) of Proposition 1.16.
iv) Since ũ(t) blows-up only at the origin, Corollary 1.6 implies the ex-

istence of a neighborhood of ũ0, V8 ⊂ V ′
8 such that for all u0 ∈ V8, all the

blow-up points of u(t) are in B(0, δ0
3 ). Now, using Lemma 4.6, we see that

there is no blow-up point in B(a(u0), δ0)\{a(u0)}, where a(u0) is the blow-
up point associated with u0. Thus, a(u0) is the only blow-up point of u(t).
Therefore, the limiting profile u∗ is defined for all x 6= a(u0). The conti-
nuity of a(u0) and T (u0) follows from Lemma 1.5 and Corollary 1.6. This
concludes the proof of Proposition 1.14.

A Proof of Lemma 4.1

Let us introduce

K(s)2 =

∫

RN

v(y, s)2|y|kρ(y)dy and x(s)2 =

∫

RN

v2(y, s)2ρ(y)dy.

Arguing exactly as in the proof of Lemma 5.1 in [FK92], we claim the fol-
lowing :

Claim 1 There exist a neighborhood V̂6 of ũ0, δ1 > 0 and an integer k > 4
with the following property : for all δ ∈ (0, δ1], there exists a time ŝ(δ) such
that for all u0 ∈ V̂6,

i) ∀s ≥ ŝ(δ),

{

K ′ ≤ −K + d(k,N)δ2− k
2 x

|x′| ≤ CMδk/2I + 2Cδx
,

ii) If for some s0 ≥ ŝ(δ) we have K(s0)−2dδ2− k
2 x(s0) < 0, then ∀s ≥ s0,

K(s) − 2dδ2− k
2 x(s) ≤ 0, where d(k,N) = k(k + N − 2).
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Let us fix k > 4 as given by Claim 1. The conclusion follows from ii) of this
claim and the following :

Claim 2 There exist δ2 > 0 and s10 such that ∀s ≥ s10, K̃(s) ≤ dδ
2− k

2

2 x̃(s).

Indeed, let δ0 = min(δ1, δ2) and s0 = max(s10, ŝ(δ0)). From Claim 2 and
the continuity with respect to initial data in equation (1), there is a neigh-
borhood V∗

6 ⊂ V̂6 of ũ0 such that for all u0 ∈ V∗
6 ,

K(s0) < 2δ
2− k

2

0 x(s0).

From ii) of Claim 1, we have ∀δ ∈ (0, δ0), ∀s ≥ s0, ∀u0 ∈ V∗
6 ,

K(s) ≤ 2δ
2− k

2

0 x(s) ≤ 2δ2− k
2 x(s),

which is the conclusion of the proof of Lemma 4.1. It remains for us to prove
Claim 2.

Proof of Claim 2 : From Cauchy-Schwartz’s inequality, we have

K̃(s) =

(∫

ṽ(y, s)2|y|kρdy

)1/2

≤
(∫

ṽ(y, s)4ρdy

)1/4
(

|y|2kρdy
)1/4

.

(128)

We now use the following regularity estimate with a delay time shown by
Herrero and Velázquez in [HV93]. Although they proved their result in the
case N = 1, their proof holds in higher dimensions.

Claim 3 There exist s∗0 > 0 and C > 0 such that for all s ≥ − log T̃ ,

(∫

ṽ4(y, s + s∗0)ρdy

)1/4

≤ C

(∫

ṽ2(y, s)ρdy

)1/2

.

For s large enough, we have
(∫

ṽ4(y, s)ρdy
)1/4 ≤ C1

(∫

ṽ(y, s − s∗0)
2ρdy

)1/2 ≤ C2

s−s∗
0

by (19)

≤ C3

s ≤ C4

(∫

ṽ2(y, s)2ρdy
)1/2

by (19).
Using (128), we conclude the proof of Claim 2. This concludes the proof of
Lemma 4.1.
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