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1 Introduction

In this paper, we are concerned with the following semilinear equation :

ut = ∆u+ |u|p−1u

u(., 0) = u0 ∈ H, (1)

where u(t) : x ∈ R
N → u(x, t) ∈ R and ∆ stands for the Laplacian in R

N .
We assume in addition the exponent p > 1 subcritical : if N ≥ 3 then
1 < p < (N + 2)/(N − 2). Moreover, we assume that

u0 ≥ 0 or (3N − 4)p < 3N + 8. (2)

Local Cauchy problem for equation (1) can be solved in L∞(RN ). One
can show that either the solution u(t) exists on [0,+∞), or on [0, T ) with
T < +∞. In this former case, u blows-up in finite time in the sense that

‖u(t)‖L∞(RN ) → +∞ when t→ T .
Let us consider u(t) a solution to (1) which blows up in finite time T at

only one blow-up point a. The study of the blow-up behavior of u(t) has
been done through the introduction of the following similarity variables :

y =
x− a√
T − t

, s = − log(T − t), wa,T (y, s) = (T − t)
1

p−1u(x, t). (3)

The study of the profile of u as t→ T is then equivalent to the study of the
asymptotic behavior of wa,T (or w for simplicity), as s→ ∞, and each result
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for u has an equivalent formulation in terms of w. The equation satisfied by
w is the following :

ws = ∆w − 1

2
y.∇w − w

p− 1
+ |w|p−1w. (4)

Giga and Kohn showed first in [GK85], [GK87] and [GK89] that for each
C > 0,

lim
s→+∞

sup
|y|≤C

| w(y, s) − κ| = 0,

with κ = (p− 1)
− 1

p−1 , which gives if stated for u :

lim
t→T

sup
|y|≤C

| (T − t)1/(p−1)u(a+ y
√
T − t, t) − κ |= 0.

This result was specified by Filippas and Liu [FL93] (see also Filippas and
Kohn [FK92] and Herrero and Velázquez [HV93], [Vel92]) who established
that in the (supposed to be) generic case,

∥

∥

∥

∥

wa,T (y, s) −
[

κ+
κ

2ps
(N − 1

2
|y|2)

]
∥

∥

∥

∥

= O(1/s1+δ) (5)

for some δ > 0, where the norm is either the L2 norm with respect to the
following Gaussian measure

ρ(y) =
e−

|y|2
4

(4π)N/2
, (6)

or the Ck,α
loc norm, for all k ∈ N and α ∈ (0, 1).

Let us note that Herrero and Velázquez [HV92b] (see also [HV92a]) prove
that the behavior (5) is generic in the case N = 1 with u0 ≥ 0. The question
remains opened in the higher dimensional case with no positivity condition.
Merle and Zaag [MZ], [MZ98b], [MZ98a] and [MZ97a] (with no sign con-
dition), and Herrero and Velázquez [HV93], [Vel92] (in the positive case)
show that wa,T has a limiting profile in the variable z = y√

s
in the sense that

∀K0 > 0,

sup
|y|≤K0

√
s

∣

∣

∣

∣

wa,T (y, s) − f

(

y√
s

)
∣

∣

∣

∣

→ 0 as s→ +∞ (7)
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where f(z) =

(

p− 1 +
(p− 1)2

4p
|z|2
)− 1

p−1

. (8)

In [MZ], [MZ98b] and [Zaa98] (see also [Vel92]), the authors derive the
limiting profile of u in the variables (x, t) : there exists u∗ ∈ C(RN\{a})
such that for all x ∈ R

N\{a}, u(x, t) → u∗(x) and

u∗(x) ∼
[

8p

(p− 1)2
| log |x− a||
|x− a|2

]
1

p−1

as x→ a. (9)

Let us note that it is shown in [MZ] and [MZ98b] that all the behaviors (5),
(7) and (9) are in fact equivalent (with no sign condition).

In this paper, we aim at studying some properties of the limiting behavior
described by (5), (7) or (9). We first introduce the following definition :

Definition 1.1 For all (a, T ) ∈ R
N ×R, Sa,T stands for the set of all solu-

tions of (1) which blow-up with the behavior (5) (or (7) or (9)).

Let us remark that the following invariances of equation (1) are one to one
mappings between sets Sa,T :

Tξ,τ : Sa,T → Sa+ξ,T+τ

u 7→ (Tξ,τu : (x, t) 7→ u(x− ξ, t− τ))
Dλ : Sa,T → Saλ−1,Tλ−2

u 7→
(

Dλu : (x, t) 7→ λ
2

p−1u(λx, λ2t)
)

.

Given u1 ∈ Sa1,T1 and u2 ∈ Sa2,T2 , we see from (9) that up to invariances
of (1), their main singular parts at blow-up are the same. One can ask the
same question about lower order terms of the expansion of their singularity.
We have the following result :

Theorem 1 Assume N = 1 and p ≥ 3, and consider ui ∈ Sai,Ti for i =
1, 2. Then, there exist λ > 0, t0 ∈ [0, T1) and C0 > 0 such that ũ2 ∈ Sa1,T1

where

ũ2 = Ta1,T1DλT−a2,−T2 , (10)

∀(x, t) ∈ R
N × [t0, T1), |u1(x, t) − ũ2(x, t)| ≤ C0,

and u1(x, t) − ũ2(x, t) → 0 as (x, t) → (a1, T1).
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With this Theorem, we see that for N = 1 and p ≥ 3, up to the invariances
of (1), u1 and u2 have the same terms in the expansion of their singularity,
until the order of functions with limit zero at the singularity. Moreover, their
difference remains bounded, uniformly in space, until blow-up (still up to
an invariance of (1)). Unfortunately, we are not able to have such a striking
result in higher dimensions. However, we can prove that u1 and u2 have the
same terms in the expansion of their singularity, until some singular order.
More precisely, we have the following result which in the case N = 1 and
p ≥ 3 gives a sharp estimate that directly implies Theorem 1 :

Theorem 2 (Smallness of the difference of two given solutions of
(1) with the behaviors (5)) Assume N ≥ 1 and consider ui ∈ Sai,Ti for
i = 1, 2. Then, Ta1−a2,T1−T2 ∈ Sa1,T1 and ∀(x, t) ∈ R

N × [0, T1),
|u1(x, t) − Ta1−a2,T1−T2u2(x, t)|

≤ Cmin

{

(T1 − t)
− 1

p−1

| log(T1 − t)| ,
|x− a1|−

2
p−1

| log |x− a1||1−
1

p−1

}

.

Moreover, if N = 1, then there exists λ > 0 such that ũ2 defined in (10)
belongs to Sa1,T1 and :
- If 1 < p < 3, then ∀(x, t) ∈ R

N × [0, T1),

|u1(x, t) − ũ2(x, t)| ≤ Cmin

{

(T1 − t)
1
2
− 1

p−1

| log(T1 − t)| 32
,

|x− a1|1−
2

p−1

| log |x− a1||2−
1

p−1

}

.

- If p ≥ 3, then ∀(x, t) ∈ R
N × [0, T1),

|u1(x, t) − ũ2(x, t)| ≤ C

{

(T1 − t)
1
2
− 1

p−1

| log(T1 − t)| 32
+

|x− a1|1−
2

p−1

| log |x− a1||2−
1

p−1

}

.

Even though Theorem 2 does not give in higher dimensions a result anal-
ogous to Theorem 1, it has an application for the stability of the behavior
(5) (or (7) or (9)) with respect to initial data for general N . Recently,
we proved this stability result with Merle in [FKMZ99] for all subcritical
p < (N + 2)/(N − 2) if N ≥ 3, without the restriction (2). The method of
[FKMZ99] relies on a dynamical system approach applied to solutions of (4).
Here, we adopt a completely different point of view, and present a different
proof based on a former stability result by Merle and Zaag in [MZ97b]. In
that paper (see also [MZ96]), the authors construct a solution û(t) to (1)
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which blows-up at time T̂ at only one point â ∈ R
N with the behavior (7).

More precisely, they obtain ∀s ≥ − log T̂ ,

sup
y∈RN

∣

∣

∣

∣

ŵâ,T̂ (y, s) − f

(

y√
s

)
∣

∣

∣

∣

≤ C√
s
, (11)

where f is defined in (8). Bricmont and Kupiainen obtain the same result
in [BK94]. However, the method used by Merle and Zaag allows them to
show that the behavior (11) of the constructed solution û(t) is stable with
respect to initial data. As a matter of fact, their stability result is stronger :
they prove that each solution u(t) to (1) with the behavior (5) (or (7) or
(9)) is stable provided that the function

qa,T (y, s) = wa,T (y, s) −
{

f

(

y√
s

)

+
Nκ

2ps

}

(12)

satisfies additional smallness conditions.
In this paper, we use Theorem 2 to estimate Ta−â,T−T̂u(t)− û(t) for each

solution u(t) ∈ Sa,T and then show that u(t) do satisfy the same smallness
conditions as û(t). Therefore, u(t) is stable with respect to initial data.
More precisely :

Theorem 3 (Stability of the behavior (5) with respect to initial
data) Let ũ(t) be a solution to (1) such that ũ(t) blows up at time T̃ at only
one blow-up point ã and w̃ã,T̃ satisfies the behavior (5). Then, ∀ε > 0, there

exists a neighborhood Vε of ũ(0) in L∞(RN ) such that ∀u0 ∈ Vε, the solution
u(t) to (1) with initial data u0 blows up at time T at only one blow-up point
a such that

|T − T̃ | + |a− ã| ≤ ε

and wa,T satisfies (5).

Theorem 1 follows directly from Theorem 2. We prove Theorems 2 and
3 respectively in sections 2 and 3.

The authors want to thank Frank Merle for the very interesting discus-
sions.
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2 Smallness of the difference of two given solutions
of (1) with the behaviors (5)

In this section, we prove Theorem 2. Consider ui ∈ Sai,Ti for i = 1, 2 and
assume T2 ≥ T1. Then, u1 and Ta1−a2,T1−T2u2 blow up in finite time T1 at
one blow-up point a1. Our aim is to estimate |u1(x, t)−Ta1−a2,T1−T2u2(x, t)|
for (x, t) ∈ R

N × [0, T1). As in (3), we introduce the similarity variables with
T = T1 and a = a1

x = a1 + ye−s, t = T1 − e−s/2,

and we note

w1(y, s) = (T1 − t)
1

p−1u1(x, t)

w2(y, s) = (T1 − t)
1

p−1u2(x− a1 + a2, t− T1 + T2)
g(y, s) = w1(y, s) − w2(y, s)

We prove Theorem 2 in three parts.
Part 1: Analysis in the variables (y, s). We prove an L2

ρ estimate on g.
From (5) applied to u1 and u2, we have

|| g(s) ||L2
ρ
= O(

1

s1+δ
). (13)

We prove a better estimate by expanding g on the eigenspaces of operator
L = ∆− y

2 ·∇+1. This yields an estimate in the sets {| y |≤ R}, for R > 0.
Part 2: Analysis in the variables (z = y√

s
, s). By using estimates

for linear equation as in [MZ98b], we derive L∞ estimates on g(y, s) for
| y |≤ K0s

1/2 from the L2
ρ estimates proved before.

Part 3: Analysis in the variables (x, t). The L∞ estimate obtained on
g in Part 2 yields an estimate on | u1(x, t) − u2(x − a2 + a1, t − T2 + T1) |
in the sets | x− a1 |≤ K0(T1 − t)1/2 | log(T1 − t) |1/2. We use this estimate
and the uniform comparison of u1 and u2 with ODEs (see Proposition 2.3
below) to obtain Theorem 2.

The following subsections are devoted to each of these three parts. Let
us briefly recall some general results on blow-up solutions of (1) that we
shall use in the following.

Proposition 2.1 (Equivalence of different notions of blow-up pro-
files at a singular point) Let u(t) be a solution to (1) which blows-up at
time T at only one blow-up point a ∈ R

N . The blow-up behaviors of u(t)
described by (5), (7) and (9) are equivalent.
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Proof : See Theorem 3 and its proof in [MZ98b] and Proposition 3 in [MZ].

Proposition 2.2 (Refined L∞ estimates for solution to (1) at blow-
up) There exist positive constants C1, C2 and C3 such that if u is a solution
to (1) which blows up at time T > 0, then, for all ε > 0 there exists s1(ε)
such that for all s ≥ s1(ε) and for all a ∈ R

N ,

|| wa,T (s) ||L∞≤ κ+ (
Nκ

2p
+ ε)

1

s
, and || ∇iwa,T (s) ||L∞≤ Ci

si/2
(14)

for all i ∈ {1, 2, 3}, where wa,T is defined in (3).

Proposition 2.3 (A uniform ODE comparison) Let u be a solution to
(1) which blows up at time T . Then, ∀ε > 0, ∃Cε > 0,

∀t ∈ [
T

2
, T ), ∀x ∈ R

N , | ∂u
∂t

− up |≤ εup + Cε.

The reader will find a proof of these Propositions in [MZ] and [MZ98b]
respectively.

2.1 L2
ρ estimates on g.

Our aim in this section is to prove the following Proposition

Proposition 2.4 (L2
ρ estimates on g) We have

|| g(s) ||L2
ρ
= O(

1

s2
). (15)

Moreover, if N = 1, then there exists σ0 ∈ R such that

|| w1(s) − w2(s+ σ0) ||L2
ρ
= O(

e−s/2

s3
). (16)

Note that the translation in time σ0 of w2(y, s) is associated via similarity
variables to a dilatation of λ = exp( σ0

2 ) of u2(x− a2 + a1, t− T2 + T1).
Let g = w1 − w2, then we see from (4) that g satisfies

∂sg = Lg + αg, (17)

with L = ∆ − y
2 · ∇ + 1 and ∀(y, s) ∈ R

N × R,

α(y, s) =
| w1 |p−1 w1− | w2 |p−1 w2

w1 − w2
− p

p− 1
, if w1 6= w2, (18)

7



and in general,

α(y, s) = p | w0(y, s) |p−1 − p

p− 1
for some w0(y, s) ∈

(

w1(y, s) , w2(y, s)
)

.

(19)

Operator L is a self-adjoint operator on D(L) ⊂ L2
ρ(R

N ) where ρ is defined
in (6). The spectrum of L consists of eigenvalues

specL = {1 − m

2
, m ∈ N}.

The eigenfunctions corresponding to 1 − m
2 are

y 7→ hm1(y1)...hmN
(yN ), m1 + ...+mN = m,

where the Hermite polynomials

hm(ξ) =

[m/2]
∑

j=0

m!

j!(m − 2j)!
(−1)jξm−2j , for m ∈ N, (20)

satisfy
∫

R

hm(ξ)hj(ξ)ρ(ξ)dξ = 2mm!δm,j . (21)

For all n ∈ N, for all multi-index β = (β1, ..., βN ) ∈ N
N , | β |= n and for all

(y, s) ∈ R
N × R we note

hβ(y) = hβ1(y1)...hβN
(yN ), (22)

and kβ(y) =|| hβ ||−2
L2

ρ
hβ(y). Then the component of g(s) on hβ is

gβ(s) =

∫

kβ(y)g(y, s)ρ(y)dy. (23)

The component of g on the eigenspace corresponding to the eigenvalue 1− n
2

is

Png(y, s) =
∑

|β|=n

gβ(s)hβ(y). (24)

Since the eigenfunctions of L span the whole space L2
ρ(R

N ), we obtain the
following expansion of g

g(y, s) = g0(s) + g1(s) · y +
1

2
yT g2(s)y − tr g2(s) + g−(y, s) (25)
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where g0(s) = P0g(y, s), g1(s) · y = P1g(y, s), g−(y, s) =
∑

n≥3
Png(y, s) and

g2(s) is the N ×N matrix defined by

g2(s) =

∫

M(y)g(y, s)ρ(y)dy (26)

where

M(y) =
(1

4
yiyj −

1

2
δij
)

1≤i,j≤N
. (27)

Let us note then that we have from (25) and the orthogonality relation (21)

1

2
yT g2(s)y − tr g2(s) = P2g(y, s).

Our aim is to study as s goes to infinity

I(s) =|| g(s) ||L2
ρ
.

Since I(s)2 =
∑

n≥0 ln(s)2 with

ln(s) =|| Png(s) ||L2
ρ
,

we show in the first step that either ∀n ∈ N, ln(s) = o(I(s)), which gives
the conclusion of Proposition 2.4 rather easily, or that there exists n0 ∈ N

so that I(s) ∼ ln0(s). Then, in this latter case, we study precisely the cases
n0 = 2 and n0 = 3. If N = 1 we prove that by modifying w2 we can reduce
to the case n0 ≥ 3 and thus obtain estimate (16). If N ≥ 1 we obtain (15).
Of course we shall need estimates on α which are given in the following
Lemma.

Lemma 2.5 (Estimates on α) There exist some constants C > 0, δ ′ ∈
(0, 1) and s1 ∈ R such that for all y ∈ R

N and s ≥ s1,

α(y, s) ≤ C

s
, |α(y, s)| ≤ C

s
(1 + |y|2) (28)

and |α(y, s) − 1

2s
(N − |y|2

2
)| ≤ C

s1+δ′ (1 + |y|3). (29)
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Proof of Lemma 2.5 : Let us study α. Since w0 ∈ (w1, w2), uniform estimates
of Proposition 2.2 yield the existence of s1 and a constant C such that

∀s ≥ s1, | w0(y, s) |≤ κ+
C

s
.

Therefore (19) yields for s ≥ s1,

α(y, s) ≤ p(κ+
C

s
)p−1 − p

p− 1
≤ C0

s
for some C0 > 0.

Let us perform a Taylor expansion of wi(y, s) for i ∈ {1, 2},

wi(y, s) = wi(0, s) + y.∇wi(0, s) +
1

2
yT∇2wi(y

′, s)y, y′ ∈ B(0, |y|). (30)

The Ck,α
loc estimates of (5) yield

wi(0, s) = κ+
Nκ

2ps
+O(

1

s1+δ
) and ∇wi(0, s) = O(

1

s1+δ
).

Moreover uniform estimates of Proposition 2.2 yield | ∇2wi(y
′, s) |≤ C

s .
Therefore (30) becomes for i ∈ {1, 2},

| wi(y, s) − κ |≤ C

s
(1+ | y |2). (31)

Since w0 ∈ (w1, w2), (31) holds also for i = 0. Note that by (19) we obtain

|α(y, s)| ≤ C |w0(y, s) − κ| .

This yields (28). A Taylor expansion until the second order and the same
arguments as before yield (29) with δ ′ = min(1

2 , δ).

2.1.1 Step 1: Existence of a dominating component

Proposition 2.6 (Existence of a dominating component)

(i) For i ∈ {0, 1}, li(s) = O( I(s)
s ).

(ii) Only two cases may occur :

• Either there exists n ∈ N, n /∈ {0, 1} so that I(s) ∼ ln(s) and

∀m 6= n, lm(s) = O(
ln(s)

s
). (32)

Moreover, there exist σ1, C > 0 and C ′ > 0 such that

∀s ≥ σ1, (sC′
C ′)−1 exp

(

(1 − n

2
)s
)

≤ I(s) ≤ CsC exp
(

(1 − n

2
)s
)

.

(33)
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• Either for all n ∈ N, ln(s) = O( I(s)
s ) and there exist σn, Cn > 0 and

C ′
n > 0 such that

∀s ≥ σn, I(s) ≤ Cns
Cn exp

(

(1 − n

2
)s
)

. (34)

This Proposition comes from two Lemmas :

Lemma 2.7 (Evolution of I(s) and ln(s)) There exist s2 ∈ R and C0 ∈ R

such that for all n ∈ N there exists Cn such that for all s ≥ s2,

| l′n(s) + (
n

2
− 1)ln(s) |≤ Cn

s
I(s) (35)

and I ′(s) ≤ (1 − n+ 1

2
+
C0

s
)I(s) +

n
∑

k=0

n+ 1 − k

2
lk(s). (36)

Lemma 2.8 If for all s ≥ s0 > 0, x(s) and y(s) satisfy

0 ≤ x(s) ≤ y(s) and y(s) −→ 0 as s→ +∞,

with moreover

x′(s) ≥ −C
s
y(s) and y′(s) ≤ −1

2
y(s) +

C

s
y(s) +

1

2
x(s),

then, either x ∼ y, or there exists a constant C so that

∀s ≥ s0, x(s) ≤ C

s
y(s).

Lemma 2.8 is proved in Appendix A.

Proof of Lemma 2.7 : Consider n ∈ N, β ∈ N
N with | β |= n. Then, we have

from (17) and (23),

∀s ≥ s0, g′β(s) = (1 − n

2
)gβ(s) +

∫

α(y, s)g(y, s)kβ(y)ρ(y)dy. (37)

Therefore, from Cauchy-Schwartz’s inequality we obtain

∀s ≥ s0, | g′β(s) − (1 − n

2
)gβ(s) |≤ I(s) || α(s)kβ ||L2

ρ
. (38)
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By Lemma 2.5, there exists C > 0 so that || α(s)kβ ||L2
ρ
≤ C(β)

s for s ≥ s1.

Since l2n(s) =
∑

|β|=n gβ(s)2 we obtain (35). By (17) we obtain for all s ≥ s0,

2I(s)I ′(s) = 2
(

Lg(s) | g(s)
)

L2
ρ

+ 2
(

α(s)g(s) | g(s)
)

L2
ρ
.

Using (28) we obtain

(

α(s)g(s) | g(s)
)

L2
ρ
≤ C0

s
I(s).

Therefore,

I(s)I ′(s) ≤ C0

s
I(s)2 + (1 − n+ 1

2
)I(s)2 +

(

(L− 1 +
n+ 1

2
)g(s) | g(s)

)

L2
ρ
.

Since g =
∑

k≥0 Pkg, (L− 1 + n+1
2 )g =

∑

k≥0
n+1−k

2 Pkg and

(

(L− 1 + n+1
2 )g(s) | g(s)

)

L2
ρ

=
∑

k≥0
n+1−k

2 lk(s)
2

≤ ∑n
k=0

n+1−k
2 lk(s)

2

≤ I(s)
∑n

k=0
n+1−k

2 lk(s).

This yields (36).

Proof of Proposition 2.6 : Note that because of (13),

I(s) = O(
1

s1+δ
) and ln(s) −→

s→+∞
0.

(i) Lemma 2.7 yield that x(s) = l0(s)e
−s and y(s) = I(s)e−s satisfy the

assumptions of Lemma 2.8. Therefore l0(s) = O
(I(s)

s

)

or l0(s) ∼ I(s).
Let us examine the case l0(s) ∼ I(s). Then (35) yields either l0 ≡ 0 in a
neighborhood of +∞ (hence l0 = O(I(s)/s)) or there exists C > 0 such that

(CsC)−1es ≤ l0(s) for large,

and this is not possible because l0(s) −→
s→+∞

0. Therefore l0(s) = O
(

I(s)/s
)

.

The same argument applied to x(s) = l1(s)e
−s/2 and y(s) = I(s)e−s/2 yields

l1(s) = O
( I(s)

s

)

. Hence (i).

(ii) Let us examine the following proposition

∀n ∈ N, ln(s) = O
(I(s)

s

)

. (39)
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Either (39) is true or (39) is false. Let us first examine what happens if (39)
is true. Then using (36) for some fixed n ∈ N we obtain that there exists
Cn ∈ R such that

I ′(s) ≤ (1 − n+ 1

2
+
Cn

s
)I(s).

Hence (34).
Let us now examine what happens if (39) is false. Then there exists n ∈ N

such that ln(s) is not O
( I(s)

s

)

and

∀k ∈ {0, ..., n − 1}, lk(s) = O
(I(s)

s

)

.

One can see from (35) and (36) that x(s) = exp
(

(n
2 − 1)s

)

ln(s) and y(s) =
exp
(

(n
2 − 1)s

)

I(s) satisfy the assumptions of Lemma 2.8. Therefore either

ln(s) ∼ I(s), or there exists C > 0 so that ln(s) < C
s I(s), which is ruled out

by the hypothesis. Therefore ln(s) ∼ I(s) and (35) yields

| l′n(s) + (
n

2
− 1)ln(s) |≤ C

s
ln(s). (40)

Since ln 6≡ 0 in a neighborhood of +∞ (otherwise ln = O(I(s)/s)), this gives
(33).
Moreover for m > n, (35) and I(s) ∼ ln(s) imply that for all s ≥ s0, s0 ∈ R,

lm(s) ≤ e−( m
2
−1)(s−s0)lm(s0) + C(m,n)

∫ s

s0

ln(t)

t
e−( m

2
−1)(s−t)dt. (41)

Since m > n ≥ 2, we have from (33)

e−( m
2
−1)(s0−s)lm(s0) = O

( ln(s)

s

)

. (42)

It remains to prove that
∫ s
s0

ln(t)
t e−( m

2
−1)(s−t)dt = O (ln(s)/s). By integrating

by parts we obtain
∫ s

s0

e−( m
2
−1)(s−t) ln(t)

t
dt = 2

m−2
ln(s)

s − 2
m−2e

−( m
2
−1)(s−s0) ln(s0)

s0
(43)

− 2
m−2

∫ s
s0
e−( m

2
−1)(s−t)

( l′n(t)
t − ln(t)

t2

)

dt. (44)

Note that as for (42), (33) yields e−( m
2
−1)(s−s0) ln(s0)

s0
= O

( ln(s)
s

)

. It remains

to study
∫ s
s0
e−( m

2
−1)(s−t)

( l′n(t)
t − ln(t)

t2

)

dt. Estimating l′n by means of (40), we
obtain

∣

∣

∣

∫ s
s0
e−( m

2
−1)(s−t)

( l′n(t)
t − ln(t)

t2

)

dt−
(

2−n
2

) ∫ s
s0
e−( m

2
−1)(s−t) ln(t)

t dt
∣

∣

∣

≤ C(n)
∫ s
s0
e−( m

2
−1)(s−t) ln(t)

t2
dt.

13



Using (44) and (2.1.1) we obtain
∣

∣

∣

∣

∫ s

s0

ln(t)

t
e−( m

2
−1)(s−t)dt− n− 2

m− 2

∫ s

s0

ln(t)

t
e−( m

2
−1)(s−t)dt

∣

∣

∣

∣

≤ C(n,m)

∫ s

s0

e−( m
2
−1)(s−t) ln(t)

t2
dt+ C(n,m)

ln(s)

s
.

Since m > n ≥ 2, n−2
m−2 < 1. Moreover, we have

∫ s

s0

e−( m
2
−1)(s−t) ln(t)

t2
dt ≤ 1

s0

∫ s

s0

e−( m
2
−1)(s−t) ln(t)

t
dt.

Therefore,

(1 − n− 2

m− 2
− C(n,m)

s0
)

∫ s

s0

e−( m
2
−1)(s−t) ln(t)

t
dt ≤ C(n,m)

ln(s)

s
.

By choosing s0 large enough so that 1 − n−2
m−2 − C(n,m)

s0
> 0 we obtain

∫ s

s0

e−( m
2
−1)(s−t) ln(t)

t
dt = O

( ln(s)

s

)

. (45)

Using (42), (45) in (41), we obtain lm(s) = O
( ln(s)

s

)

. This closes the proof
of Proposition 2.6.

2.1.2 Step 2: Description of the dominating component.

Let us now examine what happens more precisely if I(s) ∼ ln(s) for n = 2
or n = 3. More precisely, in the case n = 3, our aim is to find an equivalent
for l3(s), hence for I(s).

Proposition 2.9 (Description of the dominating component)

1) If I(s) ∼ l2(s) then l′2(s) = −2
s l2(s) + O( l2(s)

s1+δ′ ), and there exists

C2 > 0, l2(s) = C2
s2 + o( 1

s2 )

2) If I(s) ∼ l3(s) then l′3(s) = −( 1
2 + 3

s )l3(s) +O( l3(s)

s1+δ′ ), and there exists

C3 > 0, l3(s) = C3
s3 e

−s/2 + o( e−s/2

s3 ).

Proof of Proposition 2.9 : We shall prove 2) and the proof of 1) is quite
similar. We want to calculate l3(s), therefore we study gβ(s) for | β |= 3.
Because of (37) we have to study

M(s) =

∫

α(y, s)g(y, s)kβ(y)ρ(y)dy. (46)

14



By (20) and (29) we obtain

M(s) = − 1

4s

N
∑

k=1

∫

g(y, s)h2(yk)kβ(y)ρ(y)dy +

∫

γ(y, s)g(y, s)kβ(y)ρ(y)dy.

with

| γ(y, s) |≤ C

s1+δ′ (1+ | y |3). (47)

Note that by Cauchy-Schwartz’s inequality we have

|
∫

γ(y, s)g(y, s)kβ(y)ρ(y)dy |≤ I(s) || γ(s)kβ ||L2
ρ
.

By using I(s) ∼ l3(s) and (47) we obtain for

|| γ(s)kβ ||L2
ρ
≤ C

s1+δ′ || (1+ | y |2)kβ(y) ||L2
ρ
,

therefore,

|
∫

γ(y, s)g(y, s)kβ(y)ρ(y)dy |= O
( l3(s)

s1+δ′
)

.

We obtain

M(s) = − 1

4s

N
∑

k=1

∫

g(y, s)h2(yk)kβ(y)ρ(y)dy +O
( l3(s)

s1+δ′
)

.

Let us expand now g, we obtain

M(s) = − 1

4s

N
∑

k=1

∑

j≥0

∫

Pjg(y, s)h2(yk)kβ(y)ρ(y)dy +O
( l3(s)

s1+δ′
)

.

Note that for j ≥ 6,
∫

Pjg(y, s)h2(yk)kβ(y)ρ(y)dy = 0 because of the or-
thogonality relation (21). Therefore

M(s) = − 1

4s

N
∑

k=1

5
∑

j=0

∫

Pjg(y, s)h2(yk)kβ(y)ρ(y)dy +O
( l3(s)

s1+δ′
)

.

Since for j 6= 3, || Pjg(s) ||L2
ρ
= lj(s) ≤ Cj

s l3(s) by (32), we have by Cauchy-
Schwartz’s inequality

| 1

4s

N
∑

k=1

5
∑

j=0, j 6=3

∫

Pjg(y, s)h2(yk)kβ(y)ρ(y)dy |= O
( l3(s)

s2
)

.
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Therefore we only compute the term for j = 3. For k ∈ {1, ..., N} we have
from (24),

∫

P3g(y, s)h2(yk)kβ(y)ρ(y)dy =
∑

|γ|=3

gγ(s)

∫

hγ(y)h2(yk)kβ(y)ρ(y)dy

As kβ(y) is of one of the following forms (see (22)),

kβ(y) = k3(yk′),
kβ(y) = k2(yk′)k1(yl) with k′ 6= l,
kβ(y) = k1(yk′)k1(yl)k1(ym) with k′ 6= l 6= m,

long but straightforward computations yield

∀β ∈ N
N , | β |= 3,

N
∑

k=1

∫

P3g(y, s)h2(yk)kβ(y)ρ(y)dy = 12gβ(s).

We obtain M(s) = − 3
sgβ(s) + O

( l3(s)

s1+δ′
)

. Together with (46) and (37), this

gives l′3(s) = −
(

1
2 + 3

s

)

l3(s) + O
(

l3(s)

s1+δ′

)

. Therefore, there exists C3 ≥ 0

such that

l3(s) = C3
e−s/2

s3
exp
(

∫ s

s0

φ(u)

u1+δ′ du
)

with φ bounded. Note that
∫ +∞
s0

φ(u)

u1+δ′ du < +∞. From (33) applied with
n = 3, we have C3 > 0 and 2) of Proposition 2.9 is true.

2.1.3 Conclusion : Proof of Proposition 2.4

Propositions 2.6 and 2.9 directly yield the following Corollary.

Corollary 2.10 As s goes to +∞, I(s) behaves in two ways.

1. Case 1 : I(s) ∼ l2(s) and l2(s) = C2
s2 + o( 1

s2 ) for some C2 > 0.

2. Case 2 : I(s) = O
(

e−s/2

s3

)

.

(15) is an immediate consequence of this Corollary.
We concentrate now on the case N = 1 in order to prove (16). If Case 2 of
Corollary 2.10 holds, then (16) holds with σ0 = 0. We are reduced to Case
1. Note that since N = 1 and for all s ≥ s0, l2(s) 6= 0, g2 is a scalar and
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we have either for all s ≥ s0, g2(s) = l2(s), or for all s ≥ s0, g2(s) = −l2(s).
Therefore, from Corollary 2.10, we have for all s ≥ s0,

g2(s) =
C ′

2

s2
+ o(

1

s2
) (48)

for some C ′
2 ∈ R. Roughly speaking we shall replace w2(y, s) by

w̃2(y, s) = w2(y, s+ σ0), (49)

where σ0 is to be fixed in terms of C ′
2 and we shall compare w1 to w̃2 rather

than to w2. Obviously all the estimates satisfied by g = w1 − w2 hold also
for

g̃ = w1 − w̃2, (50)

since w̃2 is also a solution to (4), in particular the alternative of Corol-
lary 2.10 holds for w̃2. In the following we denote with a ˜ any the items
associated with g̃. We claim that we can select a particular σ0(C

′
2) such that

Case 1 of Corollary 2.10 does not hold for

Ĩ(s) = ||g̃(s)||L2
ρ

= ||w1(s) − w̃2(s)||L2
ρ

= ||w1(s) − w2(s+ σ0)||L2
ρ
. (51)

More precisely,

Lemma 2.11 There exists σ0 ∈ R such that l̃2(s) = o( 1
s2 ) as s goes to +∞.

This Lemma yields that only Case 2 of Corollary 2.10 may occur for w̃2 and

||w1(s) − w2(s+ σ0)||L2
ρ(RN ) = O

(e−s/2

s3
)

,

which gives (16). It remains for us to prove Lemma 2.11.
Proof of Lemma 2.11 : Let us expand w2 as in (25)

w2(y, s) = w2,0(s) + w2,1(s)y +
1

2
w2,2(s)(y

2 − 2) + w2,−(y, s).

Then there exists θ ∈ [0, 1], θ = θ(s, σ0) such that

w2,2(s+ σ0) = w2,2(s) + σ0∂sw2,2(s+ θσ0). (52)

We estimate ∂sw2,2 in the following Lemma by Filippas and Liu [FL93] (see
also [FK92]).
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Lemma 2.12 (Filippas-Liu) There exists a constant C(p) > 0 and σ3 > 0
such that for s ≥ σ3,

w2,2(s) ∼ −C(p)

s
and ∂sw2,2(s) =

1

C(p)
w2,2(s)

2 +O
(

w2,2(s)
2
)

.

Proof of Lemma 2.12 : See Lemma 2.2. and Lemma 2.3. in [FL93].
Because of (50), we have g̃(y, s) = g(y, s)+w2(y, s)−w2(y, s+σ0). Therefore,
g̃2(s) = g2(s) + w2,2(s) − w2,2(s + σ0). By using (52), we obtain g̃2(s) =
g2(s) − σ0∂sw2,2(s+ θσ0). From Lemma 2.12 and (48), we obtain

g̃2(s) =
C ′

2

s2
− σ0

C(p)(s+ θσ0)2
+ o(

1

s2
) = (C ′

2 − σ0C(p))
1

s2
+ o(

1

s2
)

since θ ∈ [0, 1]. If σ0 = − C′
2

C(p) , then l̃2(s) = o( 1
s2 ). This finishes the proof of

Lemma 2.11 and Proposition 2.4.

2.2 L∞ estimates for g in sets {| y |≤ K0s
1/2}

This section is devoted to the proof of the following :

Proposition 2.13 ∀K0 > 0, ∃s0 ∈ R, ∃C(K0) > 0,

∀s ≥ s0, ∀ | y |≤ K0

√
s, | g(y, s) |≤ C(K0)

s
.

Moreover if N = 1, then there exists σ0 ∈ R such that
∀K0 ∈ R

∗+, ∃s0 ∈ R, ∃C(K0) ∈ R
∗+,∀s ≥ s0, ∀ | y |≤ K0

√
s,

| w1(y, s) − w2(y, s+ σ0) |≤ C(K0) exp(−s/2)s−3/2.

Proof of Proposition 2.13 : We study the general case, the same arguments
will lead to the particular case N = 1. Let us define Z(y, s) =| g(y, s) | s−C0

where C0 is defined in Lemma 2.5 such that

∀(y, s) ∈ R
N × [s1,+∞), α(y, s) ≤ C0

s
.

Then, because of Proposition 2.4 and equation (17), Z satisfies

∂Z
∂s ≤ LZ (53)

|| Z(s) ||L2
ρ
= O(s−2−C0). (54)
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We want to estimate | Z(y, s) | for | y |≤ K0
√
s and for large enough s. We

use the norm Nr(Ψ) for Ψ ∈ L2
ρ(R

N ) defined for all r > 0 by

Nr(Ψ) = sup
|ξ|≤r

[

∫

Ψ(y)2ρ(y + ξ)dy
]1/2

. (55)

We denote by S(τ) the semi-group associated with the operator L defined
on L2

ρ(R
N ) with domain H2

ρ (RN ). The kernel of the semi-group S(τ) is

S(τ, y, z) =
eτ

(

4π(1 − e−τ )
)N/2

exp
[

−| ye−τ/2 − z |2
4(1 − e−τ )

]

. (56)

We shall use the following results stated in [Vel92].

Lemma 2.14 (Velázquez, A linear regularizing effect) Consider
(r, r′) ∈ (R+)2, then for any τ > 0 and any ψ such that Nr′(ψ) < +∞ we
have

Nr

(

S(τ)ψ
)

≤ exp(τ)

[4π(1 − e−τ )]N/2
exp
(exp(−τ)(r − r′eτ/2)2+

4(1 − e−τ )

)

Nr′(ψ) (57)

where s+ = max(s, 0).

Proof of Lemma 2.14 : See Proposition 2.1. in [Vel92].
Our first aim is to estimate NK0

√
s

(

Z(s)
)

for large s. We claim that there
exists s1(K0) such that

for all s ≥ s1(K0), NK0
√

s (Z(s)) ≤ CK2
0s

−1−C0 . (58)

Let us prove (58). Consider K0 > 0 and define for each s ∈ R, σ = σ(s) < s
such that

e
s−σ

2 = K0

√
s. (59)

For all s′ ∈ [σ, s], we note r(s′, σ) = e
s′−σ

2 . From (53), we have for s large,

Z(s) ≤ S(s− σ)Z(σ) = S(s− σ − 1)S(1)Z(σ).

Therefore, in Nr(s,σ) norm, we obtain,

Nr(s,σ)

(

Z(s)
)

≤ Nr(s,σ)

(

S(s− σ − 1)S(1)Z(σ)
)

.
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Using (57) and noticing that r(σ+1, σ)e
s−σ−1

2 = e
s−σ

2 = r(s, σ), which yields

(

r(s, σ) − r(σ + 1, σ)e
s−σ−1

2
)

+
= 0,

we obtain that there exists a constant C such that

Nr(s,σ)

(

Z(s)
)

≤ Ces−σ−1Nr(σ+1,σ)

(

S(1)Z(σ)
)

.

Finally, using (57) with r′ = 0 and r = r(σ + 1, σ), we obtain an estimate
on Nr(σ+1,σ)

(

S(1)Z(σ)
)

, hence a constant C̃ such that

Nr(s,σ)

(

Z(s)
)

≤ C̃es−σ−1 || Z(σ) ||L2
ρ
. (60)

From (54) and since r(s, σ) = K0
√
s, (60) becomes

NK0
√

s

(

Z(s)
)

≤ C̃es−σ−1 || Z(σ) ||L2
ρ
≤ CK2

0sσ
−2−C0 .

Using (59), we see that σ(s) ∼ s as s→ +∞. Thus, (58) follows.
It remains for us to estimate Z(y, s) for | y |≤ K0

4

√
s by means of

NK0

√
s′ (Z(s′)) for some s′ < s, in order to finish the proof of Proposition

2.13. We do as in [Vel92]. We have from (53)

0 ≤ Z(y, s) ≤ S(K0)Z(y, s−K0)

≤ C(K0)

∫

exp

[

−| ye−K0/2 − λ |2
4(1 − e−K0)

]

Z(λ, s−K0)dλ.

Let us introduce NK0
√

s−K0

(

Z(s−K0)
)

. We have for all | ξ |≤ K0

√
s−K0,

Z(y, s) ≤ C(K0)

∫

e
− |ye−K0/2−λ|2

4(1−e−K0 )
+ |λ+ξ|2

8 e−
|λ+ξ|2

8 Z(λ, s−K0)dλ.

By Cauchy-Schwartz’s inequality, we obtain for all | ξ |≤ K0

√
s−K0,

Z(y, s) ≤ C(K0)

(
∫

| Z(λ, s−K0) |2 exp
[

−| λ+ ξ |2
4

]

dλ

)1/2

I(K0, ξ, y)
1/2,

with I(K0, ξ, y) =
∫

exp
[

− |ye−K0/2−λ|2
2(1−e−K0 )

+ |λ+ξ|2
4

]

dλ.

Therefore, for all | ξ |≤ K0

√
s−K0,

0 ≤ Z(y, s) ≤ C(K0)NK0
√

s−K0

(

Z(s−K0)
)

I(K0, ξ, y)
1/2.
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Taking the infimum in ξ with | ξ |≤ K0

√
s−K0 and then the supremum in

y with | y |≤ K0
√

s
4 , we obtain for all | y |≤ K0

√
s

4 ,

Z(y, s) ≤ C(K0)NK0
√

s−K0

(

Z(s−K0)
)

(

sup
|y|≤K0

√
s

4

inf
|ξ|≤K0

√
s−K0

I(K0, ξ, y)
)

1
2
.

Note that simple computations yield

I(K0, ξ, y) =
(4π(1 − e−K0)

1 + e−K0

)N/2
exp

( | ξ + ye−K0/2 |2
2(1 + e−K0)

)

.

Therefore, sup
|y|≤K0

√
s

4

inf
|ξ|≤K0

√
s−K0

| ξ + ye−K0/2 |2= 0 for all s ≥ s2(K0) for

some s2(K0) ∈ R. Hence, we obtain that there exists C̃(K0) such that for

all | y |≤ K0
√

s
4 ,

0 ≤ Z(y, s) ≤ C̃(K0)NK0
√

s−K0

(

Z(s−K0)
)

.

Using (58), we obtain for all s ≥ s3(K0) and |y| ≤ K0
√

s
4 , 0 ≤ Z(y, s) ≤

C1(K0)s
−1−C0 . Therefore, for all s ≥ s3(K0),

sup
|y|≤K0

√
s

4

| g(y, s) |≤ C ′(K0)

s
.

Hence Proposition 2.13.

2.3 Estimates in the variables (x, t) near the blow-up point

In this subsection we use Proposition 2.13 to prove Theorem 2. As a Corol-
lary of Proposition 2.13 and the estimate (7) which is satisfied by wi,ai,Ti ,
we obtain with the notations of Theorem 1 the following :

Corollary 2.15 (L∞ estimates in the variables (x, t)) For all K0 > 0,
there exist δ0 ∈ (0, T1) and C(K0) > 0 such that for all t ∈ (T1 − δ0, T1) and
x ∈ B(a1,K0

√

(T1 − t)| log (T1 − t)|),
∣

∣

∣

∣

∣

(T1 − t)
1

p−1u1(x, t) − f

(

x− a1
√

(T1 − t)| log(T1 − t)|

)∣

∣

∣

∣

∣

≤ ε(K0, t), (61)

∣

∣

∣

∣

∣

(T1 − t)
1

p−1 ū2(x, t) − f

(

x− a1
√

(T1 − t)| log(T1 − t)|

)∣

∣

∣

∣

∣

≤ ε(K0, t), (62)
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| u1(x, t) − ū2(x, t) |≤ C(K0)(T1 − t)−
1

p−1 | log (T1 − t) |−1 (63)

where ū2 = Ta1−a2,T1−T2u2 and ε(K0, t) → 0 as t→ T1.
Moreover, if N = 1, then there exists λ > 0 such that

| u1(x, t) − Ta1,T1DλT−a2,−T2u2(x, t) |≤ C(K0)
(T1 − t)

1
2
− 1

p−1

| log (T1 − t) | 32
. (64)

Proof of Corollary 2.15 : The first part of Corollary 2.15 is straightforward.
The second part requires to note the following fact. Consider u and u two
solutions of (1) which blow-up at time T = 0 and point a = 0, consider w
and w associated respectively to u and u by (4). We suppose that there
exists σ0 such that w(y, s) = w(y, s+ σ0). Then for t ≤ 0

u(x, t) = (−t)−
1

p−1w(y, s)

with y = x√
−t

and s = − log(−t). Therefore,

u(x, t) = (−t)−
1

p−1w
(

x√
−t
,− log(−t)+σ0

)

= (−t)−
1

p−1w
(

x√
−t
,− log(− t

e−σ0
)
)

= e
σ0

p−1u(xe
σ0
2 , teσ0).

If we note λ = eσ0 we have u(t, x) = Dλu(t, x). This closes the proof of
Corollary 2.15.

By translation invariance of equation (1), we take a1 = 0. We choose
K0 > 27 and β = 26 ∈ (0, K0

2 ), hence δ0 and C(K0) associated with K0 by
Corollary 2.15. Consider the set

Ω = {(x, t), t ∈ (T1 − δ0, T1), | x |≤ K0(T1 − t)
1
2 | log (T1 − t) | 12 } (65)

and define for each | x |≤ K0
2

√

T1 | log T1 |, t(x) ∈ [0, T1) such that

| x |= K0

2

(

T1 − t(x)
)

1
2 | log

(

T1 − t(x)
)

| 12 . (66)

Our aim is to estimate |u1(x, t) − ū2(x, t)| or if N = 1,
|u1(x, t) − Ta1,T1DλT−a2,−T2u2(x, t)| in a set

{t ∈ [T1 − δ1, T1), | x |≤ ε0}

for some δ1 ∈ (0, δ0) and ε0 ∈ (0, K0
2

√

T1| log T1|). By Corollary 2.15 we
already have an estimate for (x, t) ∈ Ω. We need an estimate for (x, t)
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outside Ω, namely when |x| ≥ K0

√

(T − t)| log(T − t)|. Since
(

x, t(x)
)

∈ Ω,
we will use the ODE comparison of Proposition 2.3 and deduce information
for such a (x, t) from information near

(

x, t(x)
)

for which either (63) or (64)
holds. We explain the general case N ≥ 1 and the special case N = 1 can
be similarly studied. From now on, we restrict to the general case where
estimate (63) holds.

Consider (x, t) with t > t(x) and let us note τ1(x, t) = t−t(x)
T1−t(x) , τ1 ∈ (0, 1).

Then for all τ ∈ [0, τ1] and | ξ |≤ β
√

| log(T1 − t(x))|, we define

v1(ξ, τ) =
(

T1 − t(x)
)

1
p−1u1

(

x+ ξ
√

T1 − t(x), t(x) + τ
(

T1 − t(x)
)

)

v2(ξ, τ) =
(

T1 − t(x)
)

1
p−1 ū2

(

x+ ξ
√

T1 − t(x), t(x) + τ
(

T1 − t(x)
)

)

η(ξ, τ) = v1(ξ, τ) − v2(ξ, τ).

(67)

From the scaling property of equation (1) and from Proposition 2.3, we have
for i ∈ {1, 2} and for all τ ∈ [0, τ1], |ξ| ≤ β

√

| log(T1 − t(x))| and ε > 0,

∂vi

∂τ
= ∆ξvi + | vi |p−1 vi, (68)

∂η

∂τ
= ∆ξη + p | v0 |p−1 η, with v0 ∈ (v1, v2). (69)

| ∂vi

∂τ
− | vi |p−1 vi | ≤ ε | vi |p +C(ε)

(

T − t(x)
)

p
p−1 (70)

where C(ε) > 0.
Since β < K0

2 , we have for all |ξ| ≤ β
√

| log(T1 − t(x))|,
|x+ ξ| log(T1 − t(x))|| ≤ K0

√

(T1 − t)| log(T1 − t(x))|. Therefore, we have
from (61), (62) and (63) : for all |ξ| ≤ β

√

| log(T1 − t(x))|
∣

∣

∣

∣

∣

vi(ξ, 0) − f

(

K0

2
+

ξ
√

| log(T1 − t(x))|

)
∣

∣

∣

∣

∣

≤ ε1(K0, x) (71)

|η(ξ, τ)| ≤ C| log(T1 − t(x))|−1 (72)

where ε1(K0, x) → 0 as x→ 0.

Since we have from (8), f

(

K0
2 + ξ√

| log(T1−t(x))|

)

≤ f
(

K0
2 − β

)

< κ for all

|ξ| ≤ β
√

| log(T1 − t(x))|, and since the solution of

v′ = |v|p−1v, v(0) = f

(

K0

2
− β

)
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is well defined and bounded for all τ ∈ [0, 1], (70) and (71) imply from a priori
estimates that for some ε0(K0) > 0, for all |x| ≤ ε0, |ξ| ≤ β

√

| log(T1 − t(x))|
and τ ∈ [0, 1),

|vi(ξ, τ)| ≤M(
K0

2
− β). (73)

Now, we apply to η the following parabolic regularity result :

Lemma 2.16 (Parabolic regularity for a linear heat inequality) As-
sume that z(ξ, τ) satisfies for all | ξ |≤ 4B1 and τ ∈ [0, τ ∗],

∂τz ≤ ∆z + λz, z(ξ, 0) ≤ z0 and z(ξ, τ) ≤ B2 (74)

where τ ∗ ≤ 1. Then, there exists C > 0 such that for all | ξ |≤ B1 and for
all τ ∈ [0, τ ∗],

z(ξ, τ) ≤ eλτ (z0 + CB2e
−B2

1
4 ).

Proof of Lemma 2.16 : See Appendix C in [MZ98b].
In view of (69), (72) and (73), η satisfies the assumptions of Lemma 2.16

with τ∗ = τ1, λ = p
(

M(K0
2 − β)

)p−1
, B1 = β

4

√

| log(T1 − t(x))|, z0 =

C| log(T1 − t(x))|−1 and B2 = 2M(K0
2 − β).

Therefore, there exists a constant C1(
K0
2 − β) > 0 such that for all (ξ, τ) ∈

B
(

0, β
4

√

| log(T1 − t(x))|
)

× [0, τ1],

|η(ξ, τ)| ≤ C1

(

| log(T1 − t(x))|−1 + exp
(

− β2

4.42
| log(T1 − t(x))|

)

)

.

Now, since β = 26, we end up with |η(0, τ1(x, t))| ≤ C(K0)| log(T1 − t(x))|−1

which gives from (67) : If ε0(K0) ≥ |x| ≥ K0
2

√

(T1 − t)| log(T1 − t), then

|u1(x, t) − ū2(x, t)| ≤ C(K0)(T1 − t(x))−
1

p−1 | log(T1 − t(x))|−1. (75)

Let us conclude the proof of Theorem 2. Proposition 2.15 and (75) yield :
- if |x| ≤ K0

√

(T1 − t)| log(T1 − t)| and t ∈ (T1 − δ0, T1), then

|u1(x, t) − ū2(x, t)| ≤ C(K0)(T1 − t)
− 1

p−1 | log (T1 − t)|−1,
- if ε0(K0) ≥ |x| ≥ K0

√

(T1 − t)| log(T1 − t)|, then

|u1(x, t) − ū2(x, t)| ≤ C ′(K0)(T1 − t(x))−
1

p−1 | log (T1 − t(x))|−1.
It is easy to see from (66) that

log(T1 − t(x)) ∼ 2 log |x| and T1 − t(x) ∼ 2|x|2
K2

0 |log |x||
as x→ 0. (76)
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Thus, Theorem 2 falls in the case N ≥ 1. If N = 1, then we have by the
same techniques

- if |x| ≤ K0

√

(T1 − t)| log(T1 − t)| and t ∈ (T1 − δ0, T1), then

|u1(x, t) − ũ2(x, t)| ≤ C(K0)(T1 − t)
1
2
− 1

p−1 | log (T1 − t)|− 3
2 ,

- if ε0(K0) ≥ |x| ≥ K0

√

(T1 − t)| log(T1 − t)|, then

|u1(x, t) − ũ2(x, t)| ≤ C ′(K0)(T1 − t(x))
1
2
− 1

p−1 | log (T1 − t(x))|− 3
2 .

Using (76) gives the conclusion for Theorem 2.

3 Stability with respect to initial data of the be-
havior (5)

In this section, we prove Theorem 3. Theorem 3 is in fact a consequence of
Theorem 2 and results from [MZ97b], [MZ98b] and [MZ].

We first recall geometric considerations from [MZ97b]. For this, we in-
troduce some useful notations and definitions. Let χ0 ∈ C∞

0 ([0,+∞)) with
χ0 ≡ 1 on [0, 1] and χ0 ≡ 0 on [2,+∞). We then fix K0 > 0 and define

χ(y, s) = χ0

( |y|
K0

√
s

)

. (77)

For each r ∈ L∞(RN ) and s > 0, we write r(y) = rb(y, s) + re(y, s) where
rb(y, s) = r(y)χ(y, s) and re(y, s) = r(y) (1 − χ(y, s)). Then, we expand rb

as in (25) and write

r(y, s) = rb,0(s) + rb,1(s).y +
1

2
yT rb,2(s)y − tr rb,2(s) + rb,−(y, s) + re(y, s).

(78)

For simplicity in the notations, we drop down the subscript b in rb,m and
rb,−. However, one should keep in mind that rm are the components of
rb = rχ and not those of r.

Definition 3.1 For each A > 0, for each s > 0, we define VA(s) as being
the set of all functions r in L∞(RN ) such that

|rm(s)| ≤ As−2, m = 0, 1, |r2(s)| ≤ A2s−2 log s,

|r−(y, s)| ≤ A(1 + |y|3)s−2, |re(y, s)| ≤ A2s−
1
2 ,

(79)

where r is expanded in (78).
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We recall in the following Proposition the results of [MZ97b].

Proposition 3.2 (Merle-Zaag, Existence and stability of a solution
of (1) with the behavior (5) under the geometric condition of VA(s))

i) There exists û(t) a solution to (1) which blows-up at time T̂ at only one
blow-up point â. Moreover, ŵâ,T̂ satisfies (11) and ∀s ≥ − log T̂ , q̂â,T̂ (s) ∈
VÂ(s) for some Â > 0, where ŵâ,T̂ , q̂â,T̂ and VÂ(s) are defined respectively
in (3), (12) and (79).

ii) Assume that ũ(t) is a solution of (1) such that ũ(t) blows-up at time
T̃ at only one point ã ∈ R

N and ∀s ≥ − log T̃ , q̃ã,T̃ (s) ∈ VÃ(s) for some

Ã > 0. Then, there exists A > Ã such that for all ε > 0, there exists a
neighborhood Vε of ũ(0) in L∞(RN ) such that ∀u0 ∈ Vε, the solution u(t) to
(1) with initial data u0 blows-up at time T at only one blow-up point a such
that

|T − T̃ | + |a− ã| ≤ ε

and wa,T satisfies (11) and ∀s ≥ − log T , qa,T (s) ∈ VA(s).

Proof :
i) See Theorem 1 and subsection 3.2 in [MZ97b].
ii) See in [MZ97b] Theorem 2 and the second and the fourth remark after
it, and the first remark in Section 4. Let us emphasize that the results
of [MZ97b] actually hold with as Cauchy space L∞(RN ) and not L∞ ∩
W 1,p+1(RN ) as stated there.

In the following Proposition, we consider u(t) a solution to (1) which
blows-up at time T at only one blow-up point a ∈ R

N . We use Theorem
2 to estimate the difference û(t) − Ta−â,T−T̂u(t) where û is the solution to
(1) constructed in i) of Proposition 3.2, which allows us to show that qa,T

satisfies the same smallness conditions as q̂â,T̂ . More precisely,

Proposition 3.3 (Smallness condition for solutions of (1) with the
behavior (5)) Let u(t) be a solution to (1) which blows-up at time T at
only one blow-up point a ∈ R

N . u(t) satisfies (5) if and only if

∃A > 0 such that ∀s ≥ − log T, qa,T (s) ∈ VA(s) (80)

where qa,T is defined in (12).

It is obvious that Theorem 3 is a direct consequence of ii) in Proposition 3.2
and Proposition 3.3. Thus, we focus on the the proof of Proposition 3.3.
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Proof of Proposition 3.3 : For simplicity, we write q for qa,T .
We first assume (80) and prove that it yields (5). From (78), we write :

q(y, s) = qb(y, s) + qe(y, s) = qb(y, s).1{|y|≤2K0
√

s} + qe(y, s)

=
(

q0(s) + q1(s).y + 1
2y

T q2(s)y − trq2(s) + q−(y, s)
)

1{|y|≤2K0
√

s} + qe(y, s).
From (79) and the definition of hm, we get

sup
y∈RN

|q(y, s)| ≤ C(A)√
s
,

which implies (7) by (12). Using Proposition 2.1, we get the conclusion.

We now assume (5) and prove (80). If û is the solution constructed in
i) of Proposition 3.2, then, we have ∀s ≥ − log T̂ , q̂â,T̂ (s) ∈ VÂ(s) for some

Â > 0. If we define

g(y, s) = qa,T (y, s) − q̂â,T̂ (y, s),

then, it is enough to prove that for some s0 and B > 0

g(s) ∈ VB(s) for all s ≥ s0. (81)

From (12), we have

g(y, s) = wa,T (y, s) − ŵâ,T̂ (y, s). (82)

Applying Theorem 2 (Case N ≥ 1) and Proposition 2.4 to u and û, we get
through the transformation (3) and straightforward calculations :

∀s ≥ s1, ‖g(s)‖L2
ρ
≤ C0

s2
, ‖g(s)‖L∞ ≤ C0

s
, (83)

where s1 ≥ 1.
We now use (83) in order to estimate gm, g− and ge, and prove (81).

Estimate on gm, m ∈ {0, 1, 2} : For all m ∈ N, |gm(s)| ≤ ‖χg(s)‖L2
ρ
≤

‖g(s)‖L2
ρ
≤ C0s

−2 ≤ Cs−2 log s by (83).

Estimate on ge : |ge(y, s)| = |(1 − χ)g| ≤ |g| ≤ C0s
−1 by (83).

Estimate on g− : From (82) and (17), we see that g satisfies for all
s ≥ 2s1 ≥ 2 and σ ≤ s− 1,

g(s) = S(s− σ)g(σ) +

∫ s

σ
S(s− τ)α(τ)g(τ)dτ
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where α(y, s) = |w|p−1w−|ŵ|p−1ŵ
w−ŵ − p

p−1 if w 6= ŵ and α(y, s) = p|w|p−1 − p
p−1

if w = ŵ, and S(τ) is the semigroup of L introduced in (56).
Therefore, g−(y, s) = −P− ((1 − χ)g(s)) + P−(g(s)) = E1 +E2 +E3 where

E1 = −P− ((1 − χ)g(s)) ,

E2 = P− (S(s− σ)g(σ)) and E3 = P−

[
∫ s

σ
S(s− τ)α(τ)g(τ)dτ

]

.(84)

We now estimate E1, E2 and E3.

If G = (1 − χ)g, then we can write as in (25)

G(y, s) = G0(s) +G1(s).y +
1

2
yTG2(s)y − tr G2(s) +G−(y, s). (85)

From (77) and (83), we have

|G(y, s)| ≤ 1{|y|≥K0
√

s}|g(y, s)| ≤
|y|2
K2

0s

C0

s
. (86)

From (6), (77), (83) and (26), we write for m = 2 :
|G2(s)| =

∣

∣

∫

M(y)(1 − χ)gρdy
∣

∣ where M is defined in (27). Therefore,

|G2(s)| ≤ C
∫

{|y|≥K0
√

s}(1 + |y|2)|g(y, s)|e−
|y|2
8 e−

|y|2
8 dy

≤ e−
K2

0s

8
C0
s

∫

RN (1 + |y|2)e−
|y|2
8 dy ≤ C

s e
−K2

0s

8 . Doing analogous calculations
for m = 0 or 1, we get for all m ∈ {0, 1, 2},

|Gm(s)| ≤ C

s
e−

K2
0s

8 . (87)

Combining (85), (86) and (87), we end up with

|E1| = |P− ((1 − χ)g) (y, s)| = |G−(y, s)| ≤ C

s2
(1 + |y|3). (88)

It remains to estimate E2 and E3. We use the following estimate on the
operator S(θ) :

Lemma 3.4 (Linear estimate for S(θ)) Let θ ≥ 1 and consider
h : R

N → R such that

∀x ∈ R
N , |h(x)| ≤ µ(1 + |x|3). (89)

Then, for all y ∈ R
N :

i) |S(θ)h(y)| ≤ Cµeθ(1 + |y|3),
ii) |P−(S(θ)h)(y)| = |S(θ)P−h(y)| ≤ Cµe−

θ
2 (1 + |y|3)
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Proof : see Appendix B.
If we set θ = s− σ, h(x) = g(x, σ), then, using ii) of this Lemma and (83),
we obtain

|E2| ≤
C

σ
e−

(s−σ)
2 (1 + |y|3). (90)

We now estimate E3. Since P− is the L2
ρ projector on the negative

eigenspace of L, we have

E3 =

∫ s

σ
S(s− τ)P− (α(τ)g(τ)) dτ. (91)

From (83) and (28), we have |α(x, τ)g(x, τ)| ≤ C
τ2 (1 + |x|3). Therefore, if

τ ≤ s− 1, then we have from ii) of Lemma 3.4

|S(s− τ)P− (α(τ)g(τ)) (y)| ≤ C

τ2
e−

(s−τ)
2 (1 + |y|3). (92)

If τ ≥ s− 1, we can do as we did for G in the proof of the estimate (88) on
E1 to get |P−(α(τ)g(τ))(x)| ≤ C

τ2 (1 + |x|3).
Applying i) of Lemma 3.4, we obtain

|S(s− τ)P−(α(τ)g(τ))(y)| ≤ C

τ2
es−τ (1 + |y|3) ≤ C

τ2
e−

(s−τ)
2 (1 + |y|3) (93)

since 0 ≤ s− τ ≤ 1.
Combining (91), (92) and (93), we get

|E3| ≤
C

σ2
(1 + |y|3)

∫ s

σ
e−

(s−τ)
2 dτ ≤ C

σ2
(1 + |y|3). (94)

Using (84), (88), (90) and (94), and taking σ = s− 2 log s, we end up with

|g−(y, s)| ≤ C

s2
(1 + |y|3).

This concludes the proof of (81) and the proof of Proposition 2.1. This
concludes also the proof of Theorem 3.

A Proof of Lemma 2.8.

Either x ∼ y as s→ +∞, or there exists ε > 0 and (sn) ∈ R with sn −→ +∞
as n→ +∞ so that x(sn) < (1 − ε)y(sn). Our first claim is that

∃n0 ∈ N, ∀s > sn0 , x(s) < (1 − ε)y(s). (95)
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If (95) is false we can find σ1 and σ2 as big as we want such that

x(σ2) = (1 − ε)y(σ2) and ∀σ ∈ [σ1, σ2[, x(σ) ≥ (1 − ε)y(σ).

Then necessarily x′(σ2) ≤ (1 − ε)y′(σ2). But

(x′ − (1 − ε)y′) (σ2) ≥ − C
σ2
y(σ2) + (1 − ε)

(

1
2y(σ2) − C

σ2
y(σ2) − 1

2x(σ2)
)

≥ ε
2(1 − ε)y(σ2) − C

σ2
(2 − ε)y(σ2).

Therefore, if σ2 is big enough x′(σ2) > (1 − ε)y′(σ2). Hence a contradiction
and (95) is true.

From (95), we can define z(s) = x(s)
y(s) < 1 − ε for s > sn0 . Therefore, from

the inequalities satisfied by x and y we have

z′(s) ≥ −C
s

+
1

2
z(s) − C

s
z(s) − 1

2
z(s)2 ≥ −C

s
− C

s
z(s) +

ε

2
z(s).

Hence, d
ds

(

exp(− ε
2s)s

Cz(s)
)

≥ −C
s exp(− ε

2s)s
C . This gives

z(s) ≤ C exp( ε
2s)s

−C
∫ +∞
s exp(− ε

2σ)σC−1dσ.

Since γ(s) =
∫ +∞
s exp(− ε

2σ)σC−1dσ

= 2
ε exp(− ε

2s)s
C−1 + 2

ε (C − 1)
∫ +∞
s exp(− ε

2σ)σC−2dσ
≤ 2

ε exp(− ε
2s)s

C−1 + 2
εs(C − 1)γ(s),

there exist C ′ > 0 and s4 ∈ R such that for all s > s4,
γ(s) ≤ C ′ exp(− ε

2s)s
C−1. This yields z(s) = O( 1

s ) as s→ +∞, which closes
the proof.

B Linear estimates for the fundamental solution

of L = ∆ − 1
2y.∇ + 1

We prove Lemma 3.4 in this appendix.

Proof of i) : This follows easily from (56) by using a simple change of
variables.

Proof of ii) : From linearity, we can assume µ = 1. Since P− is the L2
ρ

projector on the negative eigenspace of L and the eigenfunctions of L are
given by (20), we have P− (S(θ)h) = S(θ)P−(h) and

∀β ∈ N
N with |β| ≤ 2,

∫

RN

P−h(x)x
βρ(x)dx = 0. (96)
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From (56), we write

S(θ)P−(h) =

∫

dxK(y, x)ψ(x) (97)

where ψ(x) = ρ(x)P−(h(x)) and

K(y, x) = S(θ, y, x)ρ(x)−1 =
eθ

[4π(1 − e−θ)]
N/2

exp[−|ye−θ/2 − x|2
4(1 − e−θ)

]ρ(x)−1.

(98)

Using (89) and techniques used for G in the proof of (88), we obtain

|ψ(x)| ≤ Cρ(x)(1 + |x|3). (99)

Note that (96) is equivalent to the fact that

∀β ∈ N
N with |β| ≤ 2,

∫

RN

ψ(x)xβdx = 0. (100)

We have the following Lemma :

Lemma B.1 (Existence of a fast decaying flux for a fast decaying
L1 function with a null integral)
Assume that F ∈ L1(RN ,R) satisfies

∫

RN F = 0 and

if |y| ≤ 1, |F (y)| ≤ C

|y|N−1
; if |y| ≥ 1, |F (y)| ≤ Cρ(y)|y|m (101)

for some m ∈ N
∗. Then, there exists U ∈ L1(RN ,RN ) such that divU = F

in the distribution sense, and

if |y| ≤ 1, |U(y)| ≤ C

|y|N−1
; if |y| ≥ 1, |U(y)| ≤ Cρ(y)|y|m−1. (102)

We let the proof of this Lemma to the end and use it now to finish the proof
of ii) of Lemma 3.4.

From (99), (100), Lemma B.1 and a very simple finite induction, we
obtain the existence of φijk ∈W 3,1(RN ,R) such that

∑

ijk ∂
3
ijkφijk = ψ and

∀i, j, k ∈ {1, ..., N},

if |y| ≤ 1, |φijk| ≤
C

|y|N−1
; if |y| ≥ 1, |φijk| ≤ Cρ(y) (103)
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where ∂3
ijk stands for ∂3

∂xi∂xj∂xk
.

Therefore, using (97), we have

S(θ)P−h =
∑

ijk

∫

dxK(y, x)∂3
ijkφijk(x) = −

∑

ijk

∫

dx∂3
ijkK(y, x)φijk(x)

(104)

by integration by parts (this is possible, since φijk ∈W 3,1(RN ) andK(y, .) ∈
W 3,∞(RN )).
By simple calculations, we can derive from (98) the fact that for θ ≥ 1,

|∂3
ijkK(y, x)| ≤ Ce−

3
2
θ(1 + |x|3 + |y|3)K(y, x). (105)

Using (104), (105) and (103), we write : if θ ≥ 1, then

|S(θ)P−h| ≤
∑

ijk

∫

|∂3
ijkK(y, x)||φijk(x)|dx ≤ Ce−

3
2
θ(I1 + I2) (106)

where I1 =
∫

B(0,1) K(y, x)(1 + |x|3 + |y|3) dx
|x|N−1 and

I2 =
∫

RN\B(0,1) K(y, x)(1 + |x|3 + |y|3)ρ(x)dx.
From (98), I1 =

∫

B(0,1) S(θ, y, x)ρ(x)−1(1 + |x|3 + |y|3)|x|1−Ndx

≤ ρ(1)−1(2 + |y|3)
∫

B(0,1)
|x|1−Ndx ≤ C(1 + |y|3). (107)

Moreover,

I2 ≤
∫

RN

S(θ, y, x)(1 + |x|3 + |y|3)dx ≤ Ceθ(1 + |y|3) (108)

by i) of Lemma 3.4.

Gathering (106), (107) and (108), we get |S(θ)P−h(y)| ≤ Ce−
θ
2 (1 + |y|3)

which is the conclusion of ii) of Lemma 3.4.

Now we prove Lemma B.1.
Proof of Lemma B.1 : We aim at finding U such that for all q ∈ C∞

0 (RN ),
∫

RN F (x)q(x)dx = −
∫

RN U(x).∇q(x)dx.
We follow here a duality method introduced by Bouchut and Perthame (see
Lemma A1.1 in [BP98]).
Since

∫

F = 0, we write
∫

RN F (x)q(x)dx =
∫

RN F (x) (q(x) − q(0)) dx =
∫

RN F (x)
∫ 1
0 x.∇q(tx)dt =
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∫ 1
0 dt

∫

RN F (x)x.∇q(tx)dx =
∫ 1
0 t

−(N+1)dt
∫

RN F (t−1y)y.∇q(y)dy
= −

∫

RN U(y).∇q(y)dy where

U(y) = −y
∫ 1

0
t−(N+1)F (t−1y)dt. (109)

The argument will be completed if we show that U(y) satisfies (102) (which
implies that U(y) is well defined and is in L1(RN )).
From (109) and (101), we have :
- If |y| ≥ 1, then |U(y)| ≤ |y|

∫ 1
0 t

−(N+1)|F (t−1y)|dt
≤ C|y|

∫ 1
0 t

−(N+1)e−
|y|2
4t2 t−m|y|mdt

= C|y|1−N
∫ +∞

|y|2
4

e−θθ
N−2+m

2 dθ ≤ C|y|1−Ne−
|y|2
4 |y|N−2+m = Cρ(y)|y|m−1.

- If |y| ≤ 1, then, we have from (101)

|U(y)| ≤ C|y|
(

∫ |y|
0 t−(N+1)e−

|y|2
4t2 t−m|y|mdt+

∫ 1
|y| t

−(N+1)|y|1−N tN−1dt

)

≤ C|y|2−N
(

∫ +∞
1
4

e−θθ
N−2+m

2 dθ + 1
|y| − 1

)

≤ C|y|1−N .

This finishes the proof of Lemma B.1, and also the proof of Lemma 3.4.
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Séminaire sur les Équations aux Dérivées Partielles, 1996–1997,
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