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Abstract: We first describe all positive bounded solutions of

∂w

∂s
= ∆w − 1

2
y.∇w − w

p− 1
+ wp.

where (y, s) ∈ R
N × R, 1 < p and (N − 2)p ≤ N + 2. We then obtain for

blow-up solutions u(t) of
∂u

∂t
= ∆u+ up

uniform estimates at the blow-up time and uniform space-time comparison
with solutions of u′ = up.

1 Introduction

We consider the following nonlinear heat equation:

∂u
∂t = ∆u+ |u|p−1u in Ω × [0, T )
u = 0 on ∂Ω × [0, T )

(1)

where u(t) ∈ H1(Ω) and Ω = R
N (or Ω is a convex domain).

We assume in addition that

1 < p, (N − 2)p < N + 2 and u(0) ≥ 0.

In this paper, we are interested in blow-up solutions u(t) of equation (1):
u(t) blows-up in finite time T if u exists for t ∈ [0, T ) and lim

t→T
‖u(t)‖H1 =

+∞. In this case, one can show that u has at least one blow-up point, that
is a ∈ Ω such that there exists (an, tn)n∈N satisfying (an, tn) → (a, T ) and
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|u(an, tn)| → +∞. We aim in this work at studying the blow-up behavior
of u(t). In particular, we are interested in obtaining uniform estimates on
u(t) at or near the singularity, that is estimates “basically” independent of
initial data.

We will give two types of uniform estimates: the first one holds especially
at the singular set (Theorem 1) and the other one consists in surprising
global estimates in space and time (Theorem 3). It will be deduced from
the former by some strong control of the interaction between regular and
singular parts of the solution. Various applications of this type of estimates
will be given in [12].

For the first type of estimates, we introduce for each a ∈ Ω (a may be a
blow-up point of u or not) the following similarity variables:

y = x−a√
T−t

s = − log(T − t)

wa(y, s) = (T − t)
1

p−1u(x, t).

(2)

wa (= w) satisfies ∀s ≥ − log T , ∀y ∈ Da,s:

∂w

∂s
= ∆w − 1

2
y.∇w − w

p− 1
+ |w|p−1w (3)

where
Da,s = {y ∈ R

N | a+ ye−s/2 ∈ Ω}. (4)

We introduce also the following Lyapunov functional:

E(w) =
1

2

∫

|∇w|2ρdy +
1

2(p− 1)

∫

|w|2ρdy − 1

p+ 1

∫

|w|p+1ρdy (5)

where ρ(y) =
e−|y|2/4

(4π)N/2
(6)

and the integration is done over the definition set of w.
The study of u(t) near (a, T ) where a is a blow-up point is equivalent

to the study of the long time behavior of wa. Note that Da,s 6= R
N in the

case Ω 6= R
N . This in fact is not a problem since we know from [8] that

a 6∈ ∂Ω in the case Ω is C2,α, and therefore, for a given a ∈ Ω, Da,s → R
N

as s→ +∞. Let a ∈ Ω be a blow-up point of u.

If Ω is a bounded convex domain in R
N or Ω = R

N , then Giga and Kohn
prove in [7] that:

∀s ≥ − log T, ‖wa(y, s)‖L∞(Da,s) ≤ C or equivalently

∀t ∈ [0, T ), ‖u(x, t)‖L∞(Ω) ≤ C(T − t)
− 1

p−1 .
(7)
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They also prove in [7] and [8] (see also [6]) that for a given blow-up point
a ∈ Ω,

lim
s→+∞

wa(y, s) = lim
t→T

(T − t)
1

p−1u(a+ y
√
T − t, t) = κ

where κ = (p− 1)
− 1

p−1 , uniformly on compact subsets of R
N . The result is

pointwise in a. Besides, for a.e y, lim
s→+∞

∇wa(y, s) = 0.

Let us denote L∞(Da,s) by L∞.
In this paper, we first obtain uniform (on a and in some sense on

u(0)) sharp estimates on wa, and we find a precise long time behavior for
‖wa(s)‖L∞ , ‖∇wa(s)‖L∞ and ‖∆wa(s)‖L∞ (global estimates).

Theorem 1 (Optimal bound on u(t) at blow-up time) Assume that Ω
is a convex bounded C2,α domain in R

N or Ω = R
N . Consider u(t) a blow-

up solution of equation (1) which blows-up at time T . Assume in addition
u(0) ≥ 0 and u(0) ∈ H1(Ω). Then

(T − t)
1

p−1 ‖u(t)‖L∞(Ω) → κ = (p− 1)−
1

p−1 as t→ T

and

(T − t)
1

p−1
+1‖∆u(t)‖L∞(Ω) + (T − t)

1

p−1
+ 1

2 ‖∇u(t)‖L∞(Ω) → 0 as t→ T,

or equivalently for any a ∈ Ω,

‖wa(s)‖L∞ → κ as s→ +∞

and
‖∆wa(s)‖L∞ + ‖∇wa(s)‖L∞ → 0 as s→ +∞.

Remark: We can point out that we do not consider local norm in w variable
such as L2(dµ) with dµ = e−|y|2/4dy as a center manifold theory for equation
(3) would suggest. Instead, we use L∞ norm which yields results uniform
with respect to ∈ Ω. Indeed, we have from (2) that ∀a, b ∈ Ω, ∀(y, s) ∈ Db,s,

wb(y, s) = wa(y + (b− a)e
s
2 , s),

which yields ‖wa‖L∞ = ‖wb‖L∞ , ‖∇wa‖L∞ = ‖∇wb‖L∞ and ‖∆wa‖L∞ =
‖∆wb‖L∞).

One interest of Theorem 1 is that in fact, its proof yields the following
compactness result:
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Theorem 1’ (Compactness of blow-up solutions of (1)) Assume that
Ω is a convex bounded C2,α domain in R

N or Ω = R
N . Consider (un)n∈N a

sequence of nonnegative solutions of equation (1) such that for some T > 0
and for all n ∈ N, un is defined on [0, T ) and blows-up at time T . Assume
also that ‖un(0)‖H2(Ω) is bounded uniformly in n. Then

sup
n∈N

(T − t)
1

p−1 ‖un(t)‖L∞(Ω) → κ as t→ T

and

sup
n∈N

(

(T − t)
1

p−1
+1‖∆un(t)‖L∞(Ω) + (T − t)

1

p−1
+ 1

2 ‖∇un(t)‖L∞(Ω)

)

→ 0

as t→ T .
Remark: The same results can be proved for the following heat equation:

∂u

∂t
= ∇.(a(x)∇u) + b(x)f(u), u(0) ≥ 0

where f(u) ∼ up as u→ +∞, (a(x)) is a symmetric, bounded and uniformly
elliptic matrix, b(x) is bounded, and a(x) and b(x) are C 1.

Let us point out that this result is optimal. One way to see it is by the
following Corollary which improves the local lower bound on the blow-up
solution given in [8] by Giga and Kohn.

Corollary 1 (Lower bound on the blow-up behavior for equation
(1)) Assume that Ω is a convex bounded C2,α domain in R

N or Ω = R
N .

Then for all nonnegative solution u(t) of (1) such that u(0) ∈ H 1(Ω) and u(t)
blows-up at time T , and for all ε0 ∈ (0, 1), there exists t0 = t0(ε0, u0) < T
such that if for some a ∈ Ω and some t ∈ [t0, T ) we have

0 ≤ u(a, t) ≤ (1 − ε0)κ(T − t)−
1

p−1 , (8)

then a is not a blow-up point of u(t).

Remark: The result is still true for a sequence of nonnegative solutions un

blowing-up at T > 0 and satisfying the assumptions of Theorem 1’, with a
t0 independent of n.
Remark: κ is the optimal constant giving such a result. The result of [8]
was the same except that (1 − ε0)κ was replaced by ε0 small and it was
required that (8) is true for all (x, t) ∈ B(a, r) × [T − r2, T ) for some r > 0
(no sign condition was required there).
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The proof of Theorem 1 relies strongly on the caracterization of all con-
nections between two critical points of equation (3) in L∞

loc. Due to [6], the
only bounded global nonnegative solutions of the stationary problem asso-
ciated to (3) in R

N are 0 and κ, provided that (N − 2)p ≤ N + 2. Here we
classify the solutions w(y, s) of (3) defined on R

N ×R and connecting two of
the cited critical points between them, and we obtain the surprising result:

Theorem 2 (Classification of connections between critical points
of (3)) Assume that 1 < p and (N − 2)p < N + 2 and that w is a global
nonnegative solution of (3) defined for (y, s) ∈ R

N ×R bounded in L∞. Then
necessarily one of the following cases occurs:

i) w ≡ 0 or w ≡ κ,
or ii) there exists s0 ∈ R such that ∀(y, s) ∈ R

N × R, w(y, s) = ϕ(s − s0)
where

ϕ(s) = κ(1 + es)−
1

p−1 . (9)

Note that ϕ is the unique global solution (up to a translation) of

ϕs = − ϕ

p− 1
+ ϕp

satisfying ϕ→ κ as s→ −∞ and ϕ→ 0 as s→ +∞.

Remark: This result is in the same spirit as the result of Berestycki and
Nirenberg [1], and Gidas, Ni and Nirenberg [5]. Here, the moving plane
technique is not used, even though the proof uses some elementary geomet-
rical transformations. It is unclear whether the result holds without a sign
condition or not. The assumption w is bounded in L∞ and is defined for s
up to +∞ is not really needed, in the following sense:

Corollary 2 Assume that 1 < p and (N − 2)p < N + 2 and that w a
nonnegative solution of (3) defined for (y, s) ∈ R

N × (−∞, s∗) where s∗ is
finite or s∗ = +∞. Assume in addition that there is a constant C0 such that
∀a ∈ R

N , ∀s ≤ s∗, Ea(w(s)) ≤ C0, where

Ea(w(s)) = E(w(. + ae
s
2 , s)) (10)

and E is defined in (5). Then, one of the following cases occurs:
i) w ≡ 0 or w ≡ κ,

or ii) ∃s0 ∈ R such that ∀(y, s) ∈ R
N × (−∞, s∗), w(y, s) = ϕ(s− s0) where

ϕ(s) = κ(1 + es)
− 1

p−1 ,
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or iii) ∃s0 ≥ s∗ such that ∀(y, s) ∈ R
N ×(−∞, s∗), w(y, s) = ψ(s−s0) where

ψ(s) = κ(1 − es)−
1

p−1 .

Theorem 2 has an equivalent formulation for solutions of (1):

Corollary 3 (A Liouville theorem for equation (1)) Assume that 1 <
p and (N − 2)p < N + 2 and that u is a nonnegative solution in L∞ of (1)
defined for (x, t) ∈ R

N × (−∞, T ). Assume in addition that 0 ≤ u(x, t) ≤
C(T − t)−

1

p−1 . Then u ≡ 0 or there exist T0 ≥ T such that ∀(x, t) ∈
R

N × (−∞, T ), u(x, t) = κ(T0 − t)−
1

p−1 .

Remark: u ≡ 0 or u blows-up in finite time T0 ≥ T .

The third main result of the paper shows that near blow-up time, the
solutions of equation (1) behave globally in space like the solutions of the
associated ODE:

Theorem 3 Assume that Ω is a convex bounded C2,α domain in R
N or

Ω = R
N . Consider u(t) a nonnegative solution of equation (1) which blows-

up at time T > 0. Assume in addition that u(0) ∈ H1(RN ) if Ω = R
N .

Then ∀ε > 0, ∃Cε > 0 such that ∀t ∈ [T
2 , T ), ∀x ∈ Ω,

|∂u
∂t

− |u|p−1u| ≤ ε|u|p + Cε. (11)

Remark: (11) is true until the blow-up time. Let us point out that the
result is global in time and in space. The same result holds for a sequence
un as before (Theorem 1’). For clear reasons, the result is optimal.
Remark: Let us note that the result is still true for equation

∂u

∂t
= ∇.(a(x)∇u) + b(x)f(u)

where f(u) ∼ up as u→ +∞, (a(x)) is a symmetric, bounded and uniformly
elliptic matrix, b(x) is bounded, and a(x) and b(x) are C 1.
The conclusion in this case is

|∂u
∂t

− b(x)f(u)| ≤ ε|f(u)| +Cε.

It is unclear whether Theorems 1, 2 and 3 hold without a sign condition.
Remark: u′ = up is a reversible equation. Therefore the non reversible
equation behaves like a reversible equation near and at the blow-up time.
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Theorem 3 localizes the equation. In particular, it shows that the interac-
tions between two singularities or one singularity and the “regular” region
are bounded up to the blow-up time.

Note that Theorem 3 has obvious corollaries. For example:
If x0 is a blow-up point, then

- u(x, t) → +∞ as (x, t) → (x0, T ) (In other words, u is a continuous
function in R̄ of (x, t) ∈ Ω × (0, T )).

- ∃ε0 > 0 such that for all x ∈ B(x0, ε0) and t ∈ (T − ε0, T ), we have
∂u
∂t (x, t) > 0.

Let us notice that theorems 1 and 3 have interesting applications in the
understanding of the asymptotic behavior of blow-up solutions u(t) of (1)
near a given blow-up point x0. Various points of view has been adopted in
the literature ([8], [2], [9], [14]) to describe this behavior. In [12], we sharpen
these estimates and put them in a relation.

In the second section, we see how Theorems 1 and 3 are proved using
Theorem 2. The third section is devoted to the proof of Theorem 2.

2 Optimal blow-up estimates for equation (1)

In this section, we assume that Theorem 2 holds and prove Theorems 1 and
1’, Corollary 1 and Theorem 3. The first three are mainly a consequence of
compactness procedure and Theorem 2. Theorem 3 follows from Theorem
1 and scaling properties of equation (1) used in a suitable way.

2.1 L
∞ estimates for the solution of (1)

We prove Theorems 1 and 1’ and Corollary 1 in this subsection.
Proof of Theorem 1: Let u(t) be a nonnegative solution of equation (1)

defined on [0, T ), which blows-up at time T and satisfies u(0) ∈ H 1(Ω). It is
clear that the estimates on wa for all a ∈ Ω follow from the estimates on u
by (2). In addition, the estimates on u follow from the estimates on wa for
a particular a ∈ Ω still by (2). Hence, we consider a ∈ Ω a blow-up point of
u and prove the estimates on this particular wa defined by

wa(y, s) = e
− s

p−1u(a+ ye−
s
2 , T − e−s).

Note that we have ∀a, b ∈ Ω, ∀(y, s) ∈ Db,s,

wb(y, s) = wa(y + (b− a)e
s
2 , s).
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We proceed in three steps: in a first step, we show that wa, ∇wa and ∆wa

are uniformly bounded (without any precision on the bounds). Then, we
show in Step 2 that blow-up for equation (1) must occur inside a compact
set K ⊂ Ω and that u, ∇u and ∆u are bounded in Ω\K. We finally find
the optimal bounds on wa through a contradiction argument.

Let us recall the expression of the energy E(w) introduced in (5), since
it will be useful for further estimates:

E(wa) =
1

2

∫

|∇wa|2ρdy +
1

2(p− 1)

∫

|wa|2ρdy −
1

p+ 1

∫

|wa|p+1ρdy (12)

where ρ is defined in (6) and integration is done over the definition set of w.
By means of the transformation (2), (12) yields a local energy for equation
(1):

Ea,t(u) = t
2

p−1
−N

2
+1
∫
[

1

2
|∇u(x)|2 − 1

p+ 1
|u(x)|p+1

]

ρ(
x− a√

t
)dx

+
1

2(p− 1)
t

2

p−1
−N

2

∫

|u(x)|2ρ(x− a√
t

)dx. (13)

Without loss of generality, we can suppose a = 0. We recall that the notation
L∞ stands for L∞(D0,s).

Step 1: Preliminary estimates on w

Lemma 2.1 (Giga-Kohn, Uniform estimates on w) There exists a
positive constant M such that ∀s ≥ − log T + 1, ∀y ∈ D0,s,

|w0(y, s)| + |∇w0(y, s)| + |∆w0(y, s)| + |∇∆w0(t, s)| ≤M

and |∂w
∂s

(y, s)| ≤M(1 + |y|).

Let us recall the main steps of the proof:
Since u(0) ≥ 0, we know from Giga and Kohn [8] that there exists B > 0
such that

∀t ∈ [0, T ), ∀x ∈ Ω, |u(x, t)| ≤ B(T − t)−
1

p−1 . (14)

In order to prove this, they argue by contradiction and construct by
scaling properties of equation (3) a solution of











0 = ∆v + vp in R
N

v ≥ 0
v(0) ≥ 1

2
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which does not exist if (N − 2)p < N + 2 and p > 1.
The estimate on w0 is equivalent to (14).
For s0 ≥ − log T + 1 and y0 ∈ D0,s0

, consider W (y′, s′) = w0(y
′ +

y0e
s
2 , s0 + s′). Then W (0, 0) = w0(y0, s0) and W satisfies also (3). If y0e

− s0
2

(which is in Ω) is not near the boundary, then we have |W (y ′, s′)| ≤ M for
all (y′, s′) ∈ B(0, 1) × [−1, 1]. By parabolic regularity (see lemma 3.3 in [7]
for a statement), we obtain |∇W (0, 0)|+ |∆W (0, 0)|+ |∇∆W (0, 0)| ≤M ′ =

M ′(M). If y0e
− s0

2 is near the boundary, then lemma 3.4 in [7] allows to get
the same conclusion. Since this is true for all (y0, s0), we have the bound
for ∇w0, ∆w0 and ∇∆w0.

The estimate on ∂w0

∂s follows then by equation (3).

Step 2: No blow-up for u outside a compact

Proposition 2.1 (Uniform boundedness of u(x, t) outside a com-
pact) Assume that Ω = R

N and u(0) ∈ H1(RN ), or that Ω is a convex
bounded C2,α domain. Then there exist C > 0, t1 < T and K a compact set
of Ω such that ∀t ∈ [t1, T ), ∀x ∈ Ω\K, |u(x, t)|+ |∇u(x, t)|+ |∆u(x, t)| ≤ C.

Proof: Case Ω = R
N and u(0) ∈ H1(RN ): Giga and Kohn prove in [8] that

uniform estimates on Ea,t (13) give uniform estimates in L∞
loc on the solution

of (1). More precisely,

Proposition 2.2 (Giga-Kohn) Let u be a solution of equation (1).
i) If for all x ∈ B(x0, δ), Ex,T−t0(u(t0)) ≤ σ, then ∀x ∈ B(x0,

δ
2), ∀t ∈

( t0+T
2 , T ), |u(t, x)| ≤ η(σ)(T − t)−

1

p−1 where η(σ) ≤ cσθ, θ > 0, and c and θ
depend only on p.

ii) Assume in addition that ∀x ∈ B(x0, δ), |u( t0+T
2 , x)| ≤ M . There

exists σ0 = σ0(p) > 0 such that if σ ≤ σ0, then ∀x ∈ B(x0,
δ
4), ∀t ∈

( t0+T
2 , T ), |u(t, x)| ≤M ∗ where M ∗ depends only on M , δ, T and t0.

Proof: see Proposition 3.5 and Theorem 2.1 in [8].
Now, since u(0) ∈ H1(RN ), we have u(t) ∈ H1(RN ) for all t ∈ [0, T ).

Therefore, for fixed t0 and σ ≤ σ0, (13), (6) and the dominated convergence
theorem yield the existence of a compact K0 ⊂ R

N such that ∀x ∈ R
N\K0,

Ex,T−t0(u(t0)) ≤ σ.
Hence, ii) of Proposition 2.2 applied to u(. + x1, .) for x1 ∈ K0 and with
δ = 1, asserts the existence of a compact K1 ⊂ R

N such that ∀x ∈ R
N\K1,

∀t ∈ ( t0+T
2 , T ), |u(x, t)| ≤M ∗.

Parabolic regularity (see lemma 3.3 in [7] for a statement) implies the
estimates on ∇u and ∆u on Ω\K with a compact K containing K1.
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Case Ω is a bounded convex C2,α domain: The main feature in the proof
of the estimate on |u(x, t)| is the result of Giga and Kohn which asserts that
blow-up can not occur at the boundary (Theorem 5.3 in [8]). The bounds
on ∇u and ∆u follow from a similar argument as before (see lemma 3.4 in
[7]).

Step 3: Conclusion of the proof
The result has been proved pointwise. Therefore, the question is in some

sense to prove it uniformly.
We want to prove that ‖w0(s)‖L∞ → κ as s→ +∞.
From [7] and [8], we know that |wb(0, s)| → κ as s→ +∞ if b is a blow-up

point. Since ‖w0(s)‖L∞ ≥ |w0(ae
s
2 , s)| = |wa(0, s)|, this implies that

lim inf
s→+∞

‖w0(s)‖L∞ ≥ κ

and lim inf
s→+∞

‖w0(s)‖L∞ + ‖∇w0(s)‖L∞ + ‖∆w0(s)‖L∞ ≥ κ.
(15)

The conclusion will follow if we show that

lim sup
s→+∞

‖w0(s)‖L∞ + ‖∇w0(s)‖L∞ + ‖∆w0(s)‖L∞ ≤ κ. (16)

Let us argue by contradiction and suppose that there exists a sequence
(sn)n∈N such that sn → +∞ as n→ +∞ and

lim
n→+∞

‖w0(sn)‖L∞ + ‖∇w0(sn)‖L∞ + ‖∆w0(sn)‖L∞ = κ+ 3ε0 where ε0 > 0.

We claim that (up to extracting a subsequence), we have

either lim
n→+∞

‖w0(sn)‖L∞ = κ+ ε0

or lim
n→+∞

‖∇w0(sn)‖L∞ = ε0

or lim
n→+∞

‖∆w0(sn)‖L∞ = ε0.

(17)

From Proposition 2.1 and the scaling (2), we deduce for n large enough the

existence of y
(0)
n , y

(1)
n and y

(2)
n in D0,sn such that

‖w0(sn)‖L∞ = |w0(y
(0)
n , sn)|,

or ‖∇w0(sn)‖L∞ = |∇w0(y
(1)
n , sn)|,

or ‖∆w0(sn)‖L∞ = |∆w0(y
(2)
n , sn)|.

(18)
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Let yn = y
(i)
n where i is the number of the case which occurs. Since yn ∈

D0,sn , (4) implies that yne
−sn/2 ∈ Ω. Therefore, we can use (2) and define

for each n ∈ N

vn(y, s) = wyne−sn/2(y, s+ sn)

= e−
s+sn
p−1 u(ye−

s+sn
2 + yne

−sn/2, T − e−(s+sn))

= w0(y + yne
s/2, s+ sn) (19)

We claim that (vn) is a sequence of solutions of (3) which is compact in
C3

loc(R
N × R). More precisely,

Lemma 2.2 (vn)n∈N is a sequence of solutions of (3) with the following
properties:

i) lim
n→+∞

|vn(0, 0)| = κ+ ε0 or lim
n→+∞

|∇vn(0, 0)| = ε0

or lim
n→+∞

|∆vn(0, 0)| = ε0.

ii) ∀R > 0, ∃n0 ∈ N such that ∀n ≥ n0,
- vn(y, s) is defined for (y, s) ∈ B̄(0, R) × [−R,R],
- vn ≥ 0 and ‖vn‖L∞(B̄(0,R)×[−R,R]) ≤ B where B is defined in (14).
- ∃m(R) > 0 such that ‖vn‖C3(B̄(0,R)×[−R,R]) ≤ m(R).

Proof: i) vn satisfies (3) since wyne−sn/2 does the same. From (19), (17) and
(18), we obtain i): lim

n→+∞
|vn(0, 0)| = κ+ ε0 or lim

n→+∞
|∇vn(0, 0)| = ε0

or lim
n→+∞

|∆vn(0, 0)| = ε0.

ii) Let R > 0.
If Ω = R

N , then it is obvious form (19) that vn is defined for (y, s) ∈
B̄(0, R) × [−R,R] for large n.

If Ω is bounded, then we can suppose that up to extracting a subse-
quence, yne

−sn/2 converges to y∞ ∈ Ω̄ as n → +∞. In fact y∞ ∈ Ω.

Indeed, since u(y
(0)
n e−sn/2, T − e−sn) = e

sn
p−1 vn(0, 0) → +∞ as n→ +∞ (or

|∇u(y(1)
n e−sn/2, T − e−sn)| = e

sn( 1

p−1
+ 1

2
)|∇vn(0, 0)| → +∞, or

|∆u(y(2)
n e−sn/2, T − e−sn)| = esn( 1

p−1
+1)|∆vn(0, 0)| → +∞), in all cases, y∞

is a blow-up point of u. Therefore, Step 2 implies that y∞ ∈ K and that
B(y∞, δ0) ⊂ Ω for some δ0 > 0. Together with (19), this implies that vn is
defined for (y, s) ∈ B̄(0, R) × [−R,R] for large n.

From (19), (14) and the fact that u ≥ 0, it directly follows that vn(y, s) ≥
0 and ‖vn‖L∞(B̄(0,R)×[−R,R]) ≤ B.

From lemma 2.1 and (19), it directly follows that ∀(y, s) ∈ B̄(0, R) ×
[−R,R], |vn(y, s)|+ |∇vn(y, s)|+ |∆vn(y, s)|+ |∇∆vn(y, s)| ≤M and |∂vn

∂s | ≤
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M×(1+R). Since w ≥ 0, parabolic estimates and strong maximum principle
imply that ‖vn‖C3(B̄(o,R)×[−R,R]) ≤ m(R) for some m(R) > 0. Just take
m(R) = M × (1 +R).

Now, using the compactness property of (vn) shown in lemma 2.2, we
find v ∈ C2(RN × R) such that up to extracting a subsequence, vn → v as
n→ +∞ in C2

loc(R
N × R). From lemma 2.2, it directly follows that

i) v satisfies equation (3) for (y, s) ∈ R
N × R

ii) v ≥ 0 and ‖v‖L∞(RN×R) ≤ B
iii) |v(0, 0)| = κ+ ε0 or |∇v(0, 0)| = ε0 or |∆v(0, 0)| = ε0 with ε0 > 0.
By Theorem 2, i) and ii) imply v ≡ 0 or v ≡ κ or v = ϕ(s − s0) where

ϕ(s) = κ(1 + es)
− 1

p−1 . In all cases, this contradicts iii). Thus, Theorem 1 is
proved.

Proof of Theorem 1’: The proof of Theorem 1’ is similar to the proof of
Theorem 1. Let us sketch the main differences.

Step 1: One can remark that a uniform estimate on E(wn,a(s0)) where
s0 = − log T is needed. Since ‖u0‖H2(Ω) is uniformly bounded, we have the
conclusion.

Step 2: One can use a uniform version of Giga and Kohn’s estimates,
as they are stated (for example) in [11].

Step 3: Same proof.

Proof of Corollary 1: Let us prove Corollary 1 now. We argue by con-
tradiction and assume that for some ε0 > 0, there is tn → T and (an)n a
sequence of blow-up points of u in Ω such that

∀n ∈ N, 0 ≤ u(an, tn) ≤ (1 − ε0)κ(T − tn)−
1

p−1 .

Let us give two different proofs:

Proof 1: Consider the following solution of equation (3):

vn(y, s) = wan(y, s− log(T − tn)).

From Proposition 2.1, an ∈ K, since it is a blow-up point of u. As before,
we can use a compactness procedure on vn to get a nonnegative bounded
solution v of (3) defined for (y, s) ∈ R

N ×R such that |v(0, 0)| ≤ (1−ε0)κ and
vn → v in C2

loc. Therefore, Theorem 2 implies that v ≡ 0 or v = ϕ(s − s0)
for some s0 ∈ R. In particular, E(v(0)) < E(κ). Since E(vn(0)) → E(v(0))
as n→ +∞, we have for n large E(wan(− log(T − tn))) = E(vn(0)) < E(κ),

12



and in particular an can not be a blow-up point of u (we have from [6], for
any blow-up point a of u, E(wa(s)) ≥ E(κ) for all s ≥ − log T ). From this
fact, a contradiction follows.

Proof 2: It is a more elementary proof based on Theorem 3. Since
an is a blow-up point and that the blow-up set is closed and bounded (see
Proposition 2.1), we can assume that an → a∞ where a∞ is a blow-up point.

We know from Theorem 3 that for some C ε2
0
2

, we have ∀x ∈ Ω, ∀t ∈

[T2 , T ),
∣

∣

∣

∣

∂u

∂t
(x, t) − up(x, t)

∣

∣

∣

∣

≤ ε20
2
|u(x, t)|p + C ε2

0
2

. (20)

In particular, u(x, t) → +∞ as (x, t) → (a∞, T ) (see next subsection for a
proof of Theorem 3 and this fact(22)-(23)). Let η > 0 such that

∀(x, t) ∈ B(0, η) × (T − η, T ), C ε2
0
2

<
ε20
2
up(x, t). (21)

For large n, an ∈ B(a∞, η) and tn ∈ [T − η, T ). Therefore (20) and (21)
yield

∀t ∈ [tn, T ),
∂u

∂t
(an, t) ≤ (1 + ε20)u

p(an, t).

Since 0 < u(an, tn) ≤ κ(1 − ε0)(T − tn)
− 1

p−1 , we get by direct integration:
∀t ∈ [tn,min(T, T ∗(ε0))),

0 ≤ u(an, t) ≤ κ

{

T − tn
(1 − ε0)p−1

− (1 + ε20)(t− tn)

}− 1

p−1

with T ∗(ε0) = tn + T−tn
(1+ε2

0
)(1−ε0)p−1 > T if ε0 < ε1(p) for some positive ε1(p).

Thus, an is not a blow-up point and a contradiction follows.

2.2 Global approximated behavior like an ODE

We prove Theorem 3 in this subsection. It follows from Theorem 1 and
propagation of flatness (through scaling arguments) observed in [14].

Let us first show how to derive the consequences of Theorem 3 announced
in the introduction:
If x0 is a blow-up point of u(t), then

u(x, t) → +∞ as (x, t) → (x0, T ) (22)

13



and ∃ε0 > 0 such that ∀(x, t) ∈ B(x0, ε0) × (T − ε0, T ),
∂u

∂t
(x, t) > 0. (23)

Proof of (22) and (23):
From Theorem 3 applied with ε > 0, there exists Cε such that ∀(x, t) ∈
Ω × [T2 , T )

∂u

∂t
(x, t) ≥ (1 − ε)up(x, t) − Cε. (24)

Let A be an arbitrary large positive number satisfying

(1 − ε)Ap −Cε > 0. (25)

From the continuity of u(x, t), there exist ε1 > 0 and ε2 > 0 such that
∀x ∈ B(x0, ε1),

u(x, T − ε2) > A. (26)

From (24) and (25), we have ∀x ∈ B(x0, ε1),
∂u
∂t (x, T − ε2) > 0. Now

we claim that ∀(x, t) ∈ B(x0, ε1) × (T − ε2, T ), u(x, t) > A (which yields
(22) and (23) also, by (24) and (25)). Indeed, if not, then there exists
(x1, t1) ∈ B(x0, ε1)×(T−ε2, T ) such that u(x1, t1) ≤ A. From the continuity
of u, we get t2 ∈ (T − ε2, t1] such that ∀t ∈ (T − ε2, t2), u(x1, t) > A and
u(x1, t2) = A. From (24) and (25), we have ∀t ∈ (T − ε2, t2),

∂u
∂t (x1, t) > 0,

therefore, u(x1, t2) > u(x1, T − ε2) > A by (26). Thus, a contradiction
follows, and (22) and (23) are proved.

We now prove Theorem 3.
Proof of Theorem 3: Let us argue by contradiction and suppose that for

some ε0 > 0, there exist (xn, tn)n∈N a sequence of elements of Ω × [T
2 , T )

such that ∀n ∈ N,

|∆u(xn, tn)| ≥ ε0|u(xn, tn)|p + n. (27)

Since ‖∆u(t)‖L∞(Ω) is bounded on compact sets of [T
2 , T ), we have that

tn → T as n→ +∞. We can also assume the existence of x∞ ∈ Ω such that
xn → x∞ as n → +∞. Indeed, if not, then either d(xn, ∂Ω) → 0 (if Ω is
bounded) or |xn| → +∞ (if Ω = R

N ) as n → +∞, and in both cases, (27)
is no longer satisfied for large n, thanks to Proposition 2.1.

We claim that x∞ is a blow-up point of u. Indeed, if not, then parabolic
regularity implies the existence of a positive δ such that
‖u(., t)‖W 2,∞(B(x∞,δ)) ≤ C for some positive C, which is a contradiction by
(27).

Theorem 1 implies that u(xn, tn)(T−tn)
1

p−1 is uniformly bounded, there-
fore, we can assume that it converges as n→ +∞.

14



Let us consider two cases:
- Case 1: u(xn, tn)(T − tn)

1

p−1 → κ′ > 0 ((xn, tn) is in some sense in the
singular region “near” (x∞, T )). From (27), it follows that ‖∆u(tn)‖L∞ ≥
|∆u(xn, tn)| ≥ ε0

(

κ′

2

)p
(T − tn)−

p
p−1 with tn → T , which contradicts Theo-

rem 1.
- Case 2: u(xn, tn)(T − tn)

1

p−1 → 0 ((xn, tn) is in the transitory region be-
tween the singular and the regular sets).
Let us first define (t(xn))n such that t(xn) ≤ tn, t(xn) → T and

u(xn, t(xn))(T − t(xn))
1

p−1 = κ0 (28)

where κ0 ∈ (0, κ) satisfies ∀t > 0, ∀a ∈ Ω, Ea,t(κ0t
− 1

p−1 ) ≤ κ2
0

2(p−1)−
κp+1

0

p+1 ≤ σ0

2
and σ0 is defined in Proposition 2.2.

Step 1: Existence of t(xn)

Since x∞ is a blow-up point of u, lim
t→T

u(x∞, t)(T − t)
1

p−1 = κ. It follows

that for any δ > 0 small enough, there exists a ball B(x∞, δ′) such that

∀x ∈ B(x∞, δ′), δ
1

p−1u(x, T − δ) ≥ 3κ+κ0

4 . Since xn → x∞ as n→ +∞, this
implies that

∀n ≥ n1, δ
1

p−1u(xn, T − δ) ≥ κ+ κ0

2
(29)

for some n1 = n1(δ) ∈ N. Since u(xn, tn)(T − tn)
1

p−1 → 0, we have the
existence of tδ(xn) ∈ [T − δ, tn] ⊂ [T − δ, T ) such that u(xn, tδ(xn))(T −
tδ(xn))

1

p−1 = κ0, for all n ≥ n2(δ), where n2(δ) ∈ N. Since δ was arbitrarily
small, it follows from a diagonal extraction argument that there exists a
subsequence t(xn) → T as n→ +∞ such that t(xn) ≤ tn and

u(xn, t(xn))(T − t(xn))
1

p−1 = κ0.

Now, we claim that a contradiction follows if we prove the following
Proposition:

Proposition 2.3 Let

vn(ξ, τ) = (T − t(xn))
1

p−1u(xn + ξ
√

T − t(xn), t(xn) + τ(T − t(xn))). (30)

Then, vn is a solution of (1) for τ ∈ [0, 1), and there exists n0 ∈ N such that
∀n ≥ n0,

∀τ ∈ [0, 1), |∆vn(0, τ)| ≤ ε0
2
|vn(0, τ)|p. (31)
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Indeed, from (31) and (30), we obtain: ∀n ≥ n0, ∀t ∈ [t(xn), T ),

|∆u(xn, t)| = (T − t(xn))
−( 1

p−1
+1)|∆ξvn(0, τ(t, n))|

≤ ε0
2 (T − t(xn))

− p
p−1 |vn(0, τ(t, n))|p = ε0

2 |u(xn, t)|p with τ(t, n) = t−t(xn)
T−t(xn) ,

which contradicts (27), since tn ≥ t(xn). Thus, Theorem 3 is proved.

Step 2: Flatness of vn

In this Step we prove Proposition 2.3.
We claim that the following lemma concludes the proof of Proposition

2.3:

Lemma 2.3 i) ∀δ0 > 0, ∀A > 0, ∃n3(δ0, A) ∈ N such that ∀n ≥ n3(δ0, A),
for all |ξ| ≤ A and τ ∈ [0, 3

4 ], |vn(ξ, 0) − κ0| ≤ δ0, |∇ξvn(ξ, τ)| ≤ δ0 and
|∆ξvn(ξ, τ)| ≤ δ0.

ii) ∀ε > 0, ∀A > 0, ∃n4(ε, A) ∈ N such that ∀n ≥ n4, ∀τ ∈ [0, 1), for
|ξ| ≤ A

4 , |vn(ξ, τ) − v̂(τ)| ≤ ε, |∇vn(ξ, τ)| ≤ ε and |∆vn(ξ, τ)| ≤ ε where

v̂(τ) = κ

(

(

κ
κ0

)p−1
− τ

)− 1

p−1

is a solution of dv̂
dτ = v̂p with v̂(0) = κ0.

Indeed, if ε is small enough and n is large enough, then ∀τ ∈ [0, 1), vn(0, τ) ≥
1
2 v̂(0) = κ0

2 and |∆vn(0, τ)| ≤
(κ0

2

)p ε0
2 ≤ ε0

2 |vn(0, τ)|p.

Proof of lemma 2.3: i) Let δ0 > 0 and A > 0. From (28) and (30), we
have: for all |ξ| ≤ A and τ ∈ [0, 3

4 ]:
vn(0, 0) = κ0,

|vn(ξ, 0) − vn(0, 0)| ≤ (T − t(xn))
1

p−1
+ 1

2A‖∇u(t(xn))‖L∞(Ω),

∇vn(ξ, τ) = (T − t(xn))
1

p−1
+ 1

2∇u
(

xn + ξ
√

T − t(xn), t(xn) + τ(T − t(xn))
)

=
(

1
1−τ

) 1

p−1
+ 1

2 (T − (t(xn) + τ (T − t(xn))))
1

p−1
+ 1

2 ×
∇u

(

xn + ξ
√

T − t(xn), t(xn) + τ(T − t(xn))
)

and

∆vn(ξ, τ) = (T − t(xn))
1

p−1
+1

∆u
(

xn + ξ
√

T − t(xn), t(xn) + τ(T − t(xn))
)

=
(

1
1−τ

) 1

p−1
+1

(T − (t(xn) + τ (T − t(xn))))
1

p−1
+1 ×

∆u
(

xn + ξ
√

T − t(xn), t(xn) + τ(T − t(xn))
)

.

Since τ ≤ 3
4 , t(xn) → T as n→ +∞, and (T − t)

1

p−1
+ 1

2 ‖∇u(t)‖L∞(Ω) +

(T − t)
1

p−1
+1‖∆u(t)‖L∞(Ω) → 0 as t→ T (Theorem 1), i) is proved.

ii) From i) and continuity arguments, it follows that for all |ξ| ≤ A,
Eξ,1 (vn(0)) ≤ 2Eξ,1(κ0) ≤ σ0 for n large enough, by definition of κ0. There-
fore, from Proposition 2.2 (applied with δ = 1 and using translation invari-
ance), we have ∀τ ∈ [ 12 , 1), ∀|ξ| ≤ A

2 , |vn(ξ, τ)| ≤M(p).
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By classical parabolic arguments, we get

∀τ ∈ [
3

4
, 1), ∀|ξ| ≤ A

3
, |vn| + |∇vn| + |∆vn| ≤M(p). (32)

Now, using i), (32) and classical estimates for the heat flow, we get for
all ε > 0: ∀|ξ| ≤ A

4 , ∀τ ∈ [0, 1), |∇vn(ξ, τ)| ≤ ε and |∆vn(ξ, τ)| ≤ ε if
n ≥ n5(ε, A).

Since vn is a solution of equation (1), combining this with i) and ODE
estimates yields for all ε > 0: ∀|ξ| ≤ A

4 , ∀τ ∈ [0, 1), |vn(ξ, τ) − v̂(τ)| ≤ ε if
n ≥ n6(ε, A). This concludes the proof of ii).

3 Classification of connections between critical

points of equation (3) in L
∞
loc

We prove Theorem 2 and Corollaries 2 and 3 in this section.
We first prove Theorem 2, and then we show how Corollaries 2 and 3

can be deduced from Theorem 2.
Proof of Theorem 2: We assume that 1 < p and (N − 2)p < N + 2,

and consider w(y, s) a nonnegative global bounded solution of (3) defined
for (y, s) ∈ R

N × R. Our goal is to show that w depends only on time s.
We proceed in 5 steps.
In Step 1, we show that w has a limit w±∞ as s → ±∞, where w±∞ is

a critical point of (3), that is w±∞ ≡ 0 or w±∞ ≡ κ. We focus then on the
non trivial case, that is w−∞ ≡ κ and w+∞ ≡ 0.

In Step 2, we investigate the linear problem around κ, as s→ −∞, and
show that w would behave at most in three ways.

In Step 3, we show that among these three ways we have the situation

w(y, s) = ϕ(s− s0) with ϕ(s) = κ(1 + es)−
1

p−1 . We then show (respectively
in Step 4 and in Step 5) that the two other ways actually can not occur, we
find in fact a contradiction through a blow-up argument for w(s) using the
geometrical transformation:

a→ wa defined by wa(y, s) = w(y + ae
s
2 , s) (33)

(wa is also a solution of (3)) and a blow-up criterion for equation (3).

Step 1: Behavior of w as s→ ±∞
This step can be found in Giga and Kohn [6]. The results are mainly

consequences of parabolic estimates and the gradient structure of equation
(3). Let us recall them briefly. We first restate lemma 2.1 of section 2:
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Lemma 3.1 (Parabolic estimates) There is a positive constant M such
that ∀(y, s) ∈ R

N × R,

|w(y, s)| + |∇w(y, s)| + |∆w(y, s)| ≤M and

∣

∣

∣

∣

∂w

∂s
(y, s)

∣

∣

∣

∣

≤M(1 + |y|).

Lemma 3.2 (Stationary solutions) Assume p ≤ (N + 2)/(N − 2) or
N ≤ 2. Then the only nonnegative bounded global solutions in R

N of

0 = ∆w − 1

2
y.∇w − w

p− 1
+ |w|p−1w (34)

are the trivial ones: w ≡ 0 and w ≡ κ.

Proof: The following Pohozaev identity can be derived for each bounded
solutions of equation (3) in R

N (see Proposition 2 in [6]):

(N + 2 − p(N − 2))

∫

|∇w|2ρdy +
p− 1

2

∫

|y|2|∇w|2ρdy = 0.

Hence, for (N − 2)p ≤ N + 2, w is constant. Thus, w ≡ 0 or w ≡ κ.

Lemma 3.3 (Gradient structure) Assume p < (N +2)/(N −2) or N ≤
2. We define for each w solution of (3)

E(w) =
1

2

∫

RN
|∇w|2ρdy+

1

2(p− 1)

∫

RN
|w|2ρdy− 1

p+ 1

∫

RN
|w|p+1ρdy (35)

where ρ(y) =
e−|y|2/4

(4π)N/2
. (36)

Then, ∀s1, s2 ∈ R,

∫ s2

s1

∫

RN

∣

∣

∣

∣

∂w

∂s

∣

∣

∣

∣

2

ρdyds = E(w(s1)) −E(w(s2)) (37)

Outline of the proof: (see Proposition 3 in [6] for more details).
One may multiply equation (3) by ∂w

∂s ρ and integrate over the ball
B(0, R) with R > 0. Then, using lemma 3.1 and the dominated conver-
gence theorem yields the result.

Proposition 3.1 (Limit of w as s→ ±∞) Assume p < (N +2)/(N − 2)
or N ≤ 2. Let w be a bounded nonnegative global solution of (3) in R

N+1.
Then w+∞(y) = lim

s→+∞
w(y, s) exists and equals 0 or κ. The convergence is

uniform on every compact subset of R
N . The corresponding statements hold

also for the limit w−∞(y) = lim
s→−∞

w(y, s).
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Outline of the proof: (see Propositions 4 and 5 in [6] for more details).
Let (sj) be a sequence tending to +∞, and let wj(y, s) = w(y, s +

sj). From lemma 3.1, (wj) converges uniformly on compact sets to some
w+∞(y, s) and ∇wj → ∇w+∞ a.e. Assuming that sj+1−sj → +∞, one can
use lemma 3.3 to show that wj does not depend on s. Therefore, w+∞ ≡ 0
or w+∞ = κ by lemma 3.2. The continuity of w then asserts that w+∞ does
not depend on the choice of the subsequence (sj). The analysis in −∞ is
completely parallel.

According to (37) (with s1 → −∞ and s2 → +∞), there are only two
cases:
- E(w−∞)−E(w+∞) = 0: hence, ∂w

∂s ≡ 0. Therefore, w is a bounded global
solution of (34). Thus, w ≡ 0 or w ≡ κ according to lemma 3.2. This case
has been treated by Giga and Kohn in [6].
- E(w−∞)−E(w+∞) > 0: since E(κ) = ( 1

2 − 1
p+1)κp+1

∫

ρdy > 0 = E(0), we
have (w−∞, w+∞) = (κ, 0). It remains to treat this case in order to finish
the proof of Theorem 2.

In the following steps, we consider the case

(w−∞, w+∞) = (κ, 0).

Step 2: Classification of the behavior of w as s→ −∞:
Since w is globally bounded in L∞ and w → κ as s → −∞, uniformly

on compact subsets of R
N , we have lim

s→−∞
‖w − κ‖L2

ρ
= 0 where L2

ρ is the

L2-space associated to the Gaussian measure ρ(y)dy and ρ is defined in (36).
In this part, we classify the L2

ρ behavior of w − κ as s → −∞. Let us
introduce v = w − κ. From (3), v satisfies the following equation: ∀(y, s) ∈
R

N+1,
∂v

∂s
= Lv + f(v) (38)

where Lv = ∆v− 1

2
y.∇v+v and f(v) = |v+κ|p−1(v+κ)−κp−pκp−1v. (39)

Since w is bounded in L∞, we can assume |v(y, s)| ≤M , and then |f(v)| ≤
Cv2 with C = C(M).

L is self-adjoint on D(L) ⊂ L2
ρ. Its spectrum is

spec(L) = {1 − m

2
|m ∈ N},

and it consists of eigenvalues. The eigenfunctions of L are derived from
Hermite polynomials:

19



• N = 1:
All the eigenvalues of L are simple. For 1 − m

2 corresponds the eigen-
function

hm(y) =

[m
2

]
∑

n=0

m!

n!(m− 2n)!
(−1)nym−2n. (40)

hm satisfies
∫

hnhmρdy = 2nn!δnm. Let us introduce

km = hm/‖hm‖2
L2

ρ
. (41)

• N ≥ 2:
We write the spectrum of L as

spec(L) = {1 − m1 + ...+mN

2
|m1, ...,mN ∈ N}.

For (m1, ...,mN ) ∈ N
N , the eigenfunction corresponding to

1 − m1+...+mN
2 is

y −→ hm1
(y1)...hmN

(yN ),

where hm is defined in (40). In particular,

*1 is an eigenvalue of multiplicity 1, and the corresponding eigenfunc-
tion is

H0(y) = 1, (42)

*1
2 is of multiplicity N , and its eigenspace is generated by the orthog-

onal basis {H1,i(y)|i = 1, ..., N}, with H1,i(y) = h1(yi); we note

H1(y) = (H1,1(y), ...,H1,N (y)), (43)

*0 is of multiplicity N(N+1)
2 , and its eigenspace is generated by the or-

thogonal basis {H2,ij(y)|i, j = 1, ..., N, i ≤ j}, with H2,ii(y) = h2(yi),
and for i < j, H2,ij(y) = h1(yi)h1(yj); we note

H2(y) = (H2,ij(y), i ≤ j). (44)

Since the eigenfunctions of L constitute a total orthonormal family of
L2

ρ, we expand v as follows:

v(y, s) =
2
∑

m=0

vm(s).Hm(y) + v−(y, s) (45)
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where
v0(s) is the projection of v on H0,
v1,i(s) is the projection of v on H1,i, v1(s) = (v1,i(s), ..., v1,N (s)), H1(y) is
given by (43),
v2,ij(s) is the projection of v on H2,ij, i ≤ j, v2(s) = (v2,ij(s), i ≤ j), H2(y)
is given by (44),
v−(y, s) = P−(v) and P− the projector on the negative subspace of L.

With respect to the positive, null and negative subspaces of L, we write

v(y, s) = v+(y, s) + vnull(y, s) + v−(y, s) (46)

where v+(y, s) = P+(v) =
∑1

m=0 vm(s).Hm(y),
vnull(y, s) = Pnull(v) = v2(s).H2(y), P+ and Pnull are the L2

ρ projectors
respectively on the positive subspace and the null subspace of L.

Now, we show that as s → −∞, either v0(s), v1(s) or v2(s) is predomi-
nant with respect to the expansion (45) of v in L2

ρ. At this level, we are not
able to use a center manifold theory to get the result (see [3] page 834-835
for more details). In some sense, we are not able to say that the nonlinear
terms in the function of space are small enough. However, using similar
techniques as in [3], we are able to prove the result. We have the following:

Proposition 3.2 (Classification of the behavior of v(y, s) as s→ −∞
) As s→ −∞, one of the following situations occurs:

i) |v1(s)| + ‖vnull(y, s)‖L2
ρ

+ ‖v−(y, s)‖L2
ρ

= o(v0(s)),

ii) |v0(s)| + ‖vnull(y, s)‖L2
ρ

+ ‖v−(y, s)‖L2
ρ

= o(|v1(s)|),
iii) ‖v+(y, s)‖L2

ρ
+ ‖v−(y, s)‖L2

ρ
= o(‖vnull(y, s)‖L2

ρ
).

Proof: See Appendix A.
Now we handle successively the three cases suggested by proposition 3.2

to show that only case i) occurs.
In case i), we end up to show that w(y, s) = ϕ(s− s0) for some s0 ∈ R,

where ϕ is defined in (9). In cases ii) and iii), we show that the solutions
satisfy through an elementary geometrical transformation a blow-up con-
dition for equation (3) considered for increasing s, which contradicts their
boundedness, and concludes the proof of Theorem 2.

Step 3: Case i) of Proposition 3.2: ∃s0 ∈ R such that w(y, s) =
ϕ(s− s0)

Proposition 3.3 Suppose that |v1(s)| + ‖vnull(y, s)‖L2
ρ

+ ‖v−(y, s)‖L2
ρ

=

o(v0(s)) as s→ −∞, then there exists s0 ∈ R such that:
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i) ∀ε > 0, v0(s) = − κ
p−1e

s−s0 +O(e(2−ε)s) as s→ −∞,

ii) ∀(y, s) ∈ R
N+1 w(y, s) = ϕ(s− s0) where ϕ(s) = κ(1 + es)−

1

p−1 .

Remark: This proposition asserts that if a solution of (38) behaves like a
constant independent of y (that is like v0(s)), then it is exactly a constant.

Proof: i) See Step 3 of Appendix A and take s0 = − log(− (p−1)C0

κ ).
We remark that we already know a solution of equation (38) which be-

haves like i). Indeed, ϕ(s− s0)− κ = (ϕ(s− s0)− κ)h0 is a solution of (38)
which satisfies

ϕ(s− s0) − κ = − κ

p− 1
es−s0 +O(e(2−ε)s) as s→ −∞.

From a dimension argument, we expect that for each parameter, there is at
most one solution such that:

v0(s) ∼ − κ

p− 1
es−s0 as s→ −∞.

(if for example, center manifold analysis applies). We propose to prove this
fact.

In other words, our goal is to show that

∀(y, s) ∈ R
N+1, v(y, s) = ϕ(s− s0) − κ.

Since (38) is invariant under translations in time, we can assume s0 = 0
without loss of generality.

For this purpose, we introduce

V (y, s) = v(y, s) − (ϕ(s) − κ) = w(y, s) − ϕ(s). (47)

From (3), V satisfies the following equation:

∂V

∂s
= (L + l(s))V + F (V )

where L = ∆ − 1
2y.∇ + 1, l(s) = − pes

(p−1)(1+es) and

F (V ) = |ϕ+V |p−1(ϕ+V )−ϕp−pϕp−1V . Note that ∀s ≤ 0, |F (V )| ≤ C|V |2
where C = C(M) and M ≥ ‖v‖L∞ .

We know from Step 3 in Appendix A that

|V0(s)| + |V1(s)| = O(e(2−ε)s), ‖Vnull(s)‖L2
ρ

= o(es) as s→ −∞.

The following Proposition asserts that V ≡ 0, which concludes the proof of
Proposition 3.3:
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Proposition 3.4 Let V be an L∞ solution of

∂V

∂s
= (L + l(s))V + F (V )

defined for (y, s) ∈ R
N × R such that V → 0 as s → ±∞ uniformly on

compact sets of R
N ,

|V0(s)| + |V1(s)| = O(e(2−ε)s) and ‖Vnull(s)‖L2
ρ

= o(es) as s→ −∞.

Then V ≡ 0.

Proof: see Appendix B.

Step 4: Irrelevance of the case where v1(s) is preponderant
In this case ii) of Proposition 3.3, we use the main term in the expansion

of v(s) as s→ −∞ to find a0 and s0 such that

∫

wa0
(y, s0)ρ(y)dy > κ (48)

where wa0
is defined in (33). Since w ≥ 0, we find that (48) implies that

wa0
(which is also a solution of (3)) blows-up in finite time S > s0 (and so

does w), which contradicts the fact that w is globally bounded. It is in fact
mainly the only place where the hypothesis

w ≥ 0

is used. More precisely, let us state the following Proposition:

Proposition 3.5 (A blow-up criterion for equation (3)) Consider
W ≥ 0 a solution of (3) and suppose that for some s0 ∈ R,
∫

W (y, s0)ρ(y)dy >
∫

κρdy = κ. Then W blows-up in finite time S > s0.

Proof: We argue by contradiction and suppose that W is defined for all
s ∈ [s0,+∞). If V = W − κ, then V satisfies equation (38). Let us define

z0(s) =

∫

V (y, s)ρ(y)dy.

Integrating (38) with respect to ρdy, we obtain

z′0(s) = z0(s) +

∫

f(V (y, s))ρdy
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where f(x) = (κ+ x)p − κp − pκp−1x for κ+ x ≥ 0.

It is obvious that f is nonnegative and convex on [−κ,+∞). Since W =
κ+ V ≥ 0, ρ ≥ 0 and

∫

ρdy = 1, we have the following Jensen’s inequality:

∫

f(V (y, s))ρdy ≥ f(

∫

V (y, s)ρdy) = f(z0(s)).

Therefore,
z′0(s) ≥ z0(s) + f(z0(s)). (49)

Since f(x) > 0 for x > 0 (f is strictly convex and f(0) = f ′(0) = 0) and
z0(s0) > 0 by the hypothesis, by classical arguments, we have ∀s ≥ s0,
z′0(s) ≥ 0, therefore, ∀s ≥ s0, z0(s) > 0. By direct integration, we have
∀s ≥ s0,

s− s0 ≤
∫ z0(s)

z0(s0)

dx

f(x)
≤
∫ +∞

z0(s0)

dx

f(x)
.

Since 1
f(x) ∼ 1

|x|p as s→ +∞, a contradiction follows and Proposition 3.5 is
proved.

Proposition 3.6 (Case where v1(s) is preponderant) Suppose that
|v0(s)| + ‖vnull(y, s)‖L2

ρ
+ ‖v−(y, s)‖L2

ρ
= o(|v1(s)|), then:

i) ∃C1 ∈ R
N\{0} such that v0(s) ∼ p

κ |C1|2ses and v1(s) ∼ C1e
s/2 as

s→ −∞.
ii) ∃a0 ∈ R

N , ∃s0 ∈ R such that
∫

wa0
(y, s0)ρ(y)dy > κ where wa0

introduced in (33) is a solution of equation (3) defined for (y, s) ∈ R
N × R

satisfying
‖wa0

‖L∞(RN×R) ≤ B.

From Proposition 3.5, ii) is a contradiction.
Remark: wa has a geometrical interpretation in terms of w(y, s). Indeed,
from w(y, s), we introduce u(x, t) (as in (2)) defined for (x, t) ∈ R

N×(−∞, 0)
by:

x =
y√
−t , s = − log(−t), u(x, t) = (−t)−

1

p−1w(y, s).

Now, if we define ŵa(y, s) from u(x, t) by (2) as

x =
y − a√
−t , s = − log(−t), ŵa(y, s) = (−t)

1

p−1u(x, t),

then, ŵa ≡ wa.
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Proof of Proposition 3.6: i) follows from Step 3 in Appendix A.
Therefore, we prove ii). It is easy to check that wa satisfies (3). More-

over, from (33) we get ‖wa‖L∞(RN×R) = ‖w‖L∞(RN×R) ≤ B. We want to

show that there exist a ∈ R
N and s0 ∈ R such that

∫

wa(y, s0)ρ(y)dy > κ.
From (33), we have:
∫

wa(y, s)ρdy =
∫

w(y + aes/2, s)ρdy.
Let us note α = aes/2. The conclusion follows if we show that there exist
s0 ∈ R and α(s0) ∈ R

N such that
∫

w(y + α(s0), s0)ρdy > κ.
For this purpose, we search an expansion for

∫

w(y+α, s)ρdy as s→ −∞
and α→ 0.
∫

w(y + α, s)ρdy =
∫

w(y, s)ρ(y − α)dy = κ+
∫

v(y, s) e−
|y−α|2

4

(4π)N/2 dy

= κ+ e−
|α|2

4

∫

v(y, s)ρ(y)e
α.y
2 dy

= κ+ e−
|α|2

4

∫

v(y, s)ρ(y)
(

1 + α.y
2 + (α.y)2

8

∫ 1
0 (1 − ξ)eξ α.y

2 dξ
)

dy

= κ+ (1 +O(|α|2)) (v0(s) + α.v1(s) + (I))

where (I) = e−
|α|2

4

∫

dyv(y, s)ρ(y) (α.y)2

8

∫ 1
0 dξ(1 − ξ)eξ α.y

2 .
Using Schwartz’s inequality, we have

|(I)| ≤ (
∫

v(y, s)ρ(y)dy)1/2
(

∫

dy (α.y)4

64 ρ(y)
(

∫ 1
0 dξ(1 − ξ)eξ α.y

2

)2
)1/2

≤ ‖v(s)‖L2
ρ
× |α|2

8

(

∫

dy|y|4ρ(y)
(

∫ 1
0 dξ(1 − ξ)e

|y|
2

)2
)1/2

≤ ‖v(s)‖L2
ρ
× |α|2

16

(

∫

dy|y|4ρ(y)e|y|
)1/2

= C|α|2‖v(s)‖L2
ρ
.

Therefore, using the fact that ‖v(s)‖L2
ρ
∼ 2|v1(s)| = O(es/2) and i), we

get:
∫

w(y + α, s)ρdy = κ+ v0(s) + α.v1(s) +O(|α|2es/2)
= κ+ p

κ |C1|2ses + o(ses) + α.C1e
s/2 + o(|α|es/2).

Now, if we make α = α(s) = − 1
s

C1

|C1| and take −s large enough, then
∫

w(y + α(s), s) − κ ≥ 1
2α(s).C1e

s/2 = − es/2

2s |C1| > 0, and the existence of
a0 and s0 is proved.

This concludes the proof of Proposition 3.6.

Step 5: Irrelevance of the case where v2(s) is preponderant
As in the previous part, we use the information given by the linear theory

at −∞ to find a contradiction in the case where iii) holds in Proposition
3.2.

Proposition 3.7 (Case where v2(s) is preponderant) Assume that
‖v+(y, s)‖L2

ρ
+ ‖v−(y, s)‖L2

ρ
= o(‖vnull(y, s)‖L2

ρ
), then:
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i) there exists δ ≥ 0, k ∈ {0, 1..., N − 1} and Q an orthonormal N ×N
matrix such that

vnull(y, s) = yTA(s)y − 2trA(s)

where A(s) = − κ

4ps
A0 +O(

1

s1+δ
) as s→ −∞,

A0 = Q

(

IN−k 0
0 0

)

Q−1

and IN−k is the (N − k) × (N − k) identity matrix. Moreover,

‖v(s)‖L2
ρ

= − κ

ps

√

N − k

2
+O

(

1

|s|1+δ

)

, v0(s) = O(
1

s2
) and v1(s) = O(

1

s2
).

ii) ∃a0 ∈ R
N , ∃s0 ∈ R such that

∫

wa0
(y, s0)ρ(y)dy > κ where wa0

defined
in (33) is a solution of equation (3) satisfying ‖wa0

‖L∞(RN×R) ≤ B.

From ii) and Proposition 3.5, a contradiction follows.
Proof of i) of Proposition 3.7:
The first part of the proof follows as before the ideas of Filippas and

Kohn in [3]. Then, we carry on the proof similarly as Filippas and Liu did
in [4] for the same equation when the null mode dominates as s → +∞.
Since the used techniques are the same than in [3] and [4], we leave the
proof in Appendix C.

Proof of ii) of Proposition 3.7:
We proceed exactly in the same way as for the proof of ii) of Proposition

3.6. wa satisfies equation (3), and the L∞ bound on wa follows as before.
By setting α = aes/2, the proof reduces then to find s0 and α = α(s0)

such that
∫

w(y + α(s0), s0)ρdy > κ.
For this purpose, we search an expansion for

∫

w(y+α, s)ρdy as s→ −∞
and α→ 0.
∫

w(y + α, s)ρdy =
∫

w(y, s)ρ(y − α)dy = κ+
∫

v(y, s) e−
|y−α|2

4

(4π)N/2 dy

= κ+ e−
|α|2

4

∫

v(y, s)ρ(y)e
α.y
2 dy

= κ+ e−
|α|2

4

∫

v(y, s)ρ(y)
(

1 + α.y
2 + (α.y)2

8 + (α.y)3

16

∫ 1
0 (1 − ξ)2eξ

α.y
2 dξ

)

dy.

We write
∫

w(y + α, s)ρdy = κ+ (I) + (II), (50)

where

(I) = e−
|α|2

4 (v0(s) + α.v1(s)) + e−
|α|2

4

∫

dyv(y, s)ρ(y) (α.y)3

16

∫ 1
0 dξ(1 − ξ)2eξ

α.y
2

and (II) = 1
8e

− |α|2

4

∫

v(y, s)(α.y)2ρ(y)dy.
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From i) of Proposition 3.7 and Schwartz’s inequality, we have

|(I)| ≤ C

s2
+C

|α|3
|s| . (51)

Since v = v− + vnull + v+ = v− + vnull + v1.y + v0, we have from the
orthogonality of v− and vnull + v+:

(II) = e−
|α|2

4

8

∫

v(y, s)(α.y)2ρdy

= e−
|α|2

4

8 (v0(s)
∫

(α.y)2ρdy + v1(s).
∫

y(α.y)2ρdy) + e−
|α|2

4

8

∫

vnull(α.y)
2ρdy

= v0(s)O(|α|2) + e−
|α|2

4

8

∫

(yTA(s)y − 2trA(s))(α.y)2ρdy

= O
(

|α|2
|s|1+δ

)

+ e−
|α|2

4

8
κ

4p|s|
∫

(yTA0y − 2trA0)(α.y)
2ρdy

for some δ > 0, according to i) of Proposition 3.7, with

A0 = Q

(

IN−k 0
0 0

)

Q−1.

With the change of variable y = Q−1z (Q is an orthonormal matrix) we
write:

(II) = O
(

|α|2
|s|1+δ

)

+ e−
|α|2

4

8
κ

4p|s|
∫

N−k
∑

i=1

(z2
i − 2) × (Qα.z)2ρ(z)dz,

therefore,

(II) =
κ

4p|s|
N−k
∑

i=1

∫

(z2
i − 2)(Qα.z)2ρdz +O

(

|α|2
|s|1+δ

)

+O

(

|α|4
|s|

)

. (52)

Gathering (50), (51) and (52), we write:
∫

w(y + α, s)ρdy

= κ+
κ

4p|s|
N−k
∑

i=1

∫

(z2
i − 2)(Qα.z)2ρdz +O(

1

s2
) +O

(

|α|2
|s|1+δ

)

+O

(

|α|3
|s|

)

.

Now, if we take α = α(s) = 1
|s|1/4Q

−1e1 where e1 = (1, 0, ..., 0), then

∫

w(y + α(s), s)ρdy = κ+
κ

4p|s|3/2
× 8 +O

(

1

|s|3/2+δ

)

.

If we take −s large enough, and a(s) = e−s/2α(s), then
∫

w(y + α(s)es/2, s) > κ.
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This concludes the proof of ii) of Proposition 3.7 and the proof of The-
orem 2.

We now prove Corollaries 1 and 2:
Proof of Corollary 2:
We consider w a nonnegative solution of (3) defined for (y, s) ∈ R

N ×
(−∞, s∗) where s∗ ∈ R ∪ {+∞}. We assume that there is a constant C0

such that
∀a ∈ R

N , ∀s ≤ s∗, Ea(w(s)) ≤ C0 (53)

where Ea is defined in (10).
Through some geometrical transformations, we define below ŵ, a solution

of (3) defined on R
N ×R, which satisfies the hypotheses of Theorem 2. Then,

we deduce the characterization of w from the one given in Theorem 2 for ŵ.
Let us define u(t) a solution of (1) by:

y =
x√
−t , s = − log(−t), u(x, t) = (−t)−

1

p−1w(y, s) (54)

where (x, t) ∈ R
N × (−∞, T ∗) with T ∗ = −e−s∗ if s∗ is finite and T ∗ = 0 if

s∗ = +∞. Then we introduce ŵ a solution of (3):

y =
x√

T ∗ − t
, s = − log(T ∗ − t), ŵ(y, s) = (T ∗ − t)

1

p−1u(x, t) (55)

defined for (y, s) ∈ R
N × R. We have then ∀(y, s) ∈ R

N × (−∞, s∗),

w(y, s) = (1 + T ∗es)−
1

p−1 ŵ(
y√

1 + T ∗es
, s− log(1 + T ∗es)). (56)

We claim that ŵ ∈ L∞(RN×R). Indeed, from (53), (54) and i) of Proposition

2.2, we have ∀(x, t) ∈ R
N ×(−∞, T ∗), |u(x, t)| ≤M(C0)(T

∗−t)−
1

p−1 . Hence,
(55) implies that ∀(y, s) ∈ R

N × R, |w(y, s)| ≤M(C0).
Since w is nonnegative, ŵ is also nonnegative, and then, by Theorem 2

we have:
either ŵ ≡ 0, or ŵ ≡ κ

or ŵ(y, s) = ϕ(s− s0) for some s0 ∈ R, where ϕ(s) = κ(1 + es)−
1

p−1 .
Therefore, by (56), we have:

either w ≡ 0, or w(y, s) = κ(1 − es−s∗)
− 1

p−1

or w(y, s) = (1 − es−s∗)−
1

p−1κ
(

1 + exp(s− log(1 − es−s∗ − s0))
)− 1

p−1

= κ
(

1 + es(e−s0 − e−s∗)
)− 1

p−1 .
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Since s0 is arbitrary in R, this concludes the proof of Corollary 2.

Proof of Corollary 3:
Let u(x, t) be a nonnegative solution of (1) defined for (x, t) ∈ R

N ×
(−∞, T ) which satisfies |u(x, t)| ≤ C(T − t)−

1

p−1 . We introduce w(y, s) =
w0(y, s) where w0 is defined in (2). Then, it is easy to see that w satisfies all
the hypotheses of Theorem 2. Therefore, either w ≡ 0 of there exists t0 ≥ 0

such that ∀(y, s) ∈ R
N+1, w(y, s) = κ(1 + t0e

s)
− 1

p−1 . Thus, either u ≡ 0 or

u(x, t) = κ(T + t0 − t)−
1

p−1 . This concludes the proof of Corollary 3.

A Proof of Proposition 3.2

We proceed in 3 steps: In Step 1, we give a new version of an ODE lemma
by Filippas and Kohn [3] which will be applied in Step 2 in order to show
that either vnull or v+ is predominant in L2

ρ as s → −∞. In Step 3, we
show that in the case where v+ is predominant, then either v0(s) or v1(s)
predominates the other.

Step 1: An ODE lemma

Lemma A.1 Let x(s), y(s) and z(s) be absolutely continuous, real valued
functions which are non negative and satisfy

i) (x, y, z)(s) → 0 as s→ −∞, and ∀s ≤ s∗, x(s) + y(s) + z(s) 6= 0,
ii) ∀ε > 0, ∃s0 ∈ R such that ∀s ≤ s0











ż ≥ c0z − ε(x+ y)
|ẋ| ≤ ε(x+ y + z)
ẏ ≤ −c0y + ε(x+ z).

(57)

Then, either x+ y = o(z) or y + z = o(x) as s→ −∞.

Proof: Filippas and Kohn showed in [3] a slightly weaker version of this
lemma (with in the conclusion x, y, z → 0 exponentially fast instead of
x+ y = o(z)). We adapt here their proof to get the proof of lemma A.1.

By rescaling in time, we may assume c0 = 1.

Part 1: Let ε > 0. We show in this part that either:

∃s2(ε) such that ∀s ≤ s2, z(s) + y(s) ≤ Cεx(s), (58)

or ∃s2(ε) such that ∀s ≤ s2, x(s) + y(s) ≤ Cεz(s). (59)

We first show that ∀s ≤ s0(ε), β(s) ≤ 0 where β = y − 2ε(x+ z).
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We argue by contradiction and suppose that there exists s∗ ≤ s0(ε) such
that β(s∗) > 0. Then, if s ≤ s∗ and β(s) > 0, we have form (57)
β̇(s) = ẏ − 2ε(ẋ+ ż) ≤ −y + ε(x+ z) + 2ε2(x+ y + z) − 2ε(z − ε(x+ y)) ≤
−ε(1 − 4ε− 8ε2)x− ε(3 − 2ε− 8ε2)z ≤ 0.
Therefore, ∀s ≤ s∗, β(s) ≥ β(s∗) > 0, which contradicts β(s) → 0 as
s→ −∞ . Thus

∀s ≤ s0(ε), y ≤ 2ε(x+ z). (60)

Therefore, (57) yields
ż ≥ 1

2z − 2εx
|ẋ| ≤ 2ε(x+ z)

(61)

Let γ(s) = 8εx(s) − z(s). Two cases arise then:
Case 1: ∃s2 ≤ s0(ε) such that γ(s2) > 0.
Suppose then γ(s) = 0 and compute γ̇(s).

γ̇(s) = 8εẋ− ż ≤ 16ε2(x+ z) − 1
2z + 2εx = −z(s)( 1

4 − 2ε− 16ε2).
Since z(s) > 0 (otherwise z(s) = 0, x(s) = 0 and then y(s) = 0 by (60),
which is excluded by the hypothesis), we have

γ(s) = 0 =⇒ γ̇(s) < 0.

Since γ(s2) > 0, this implies ∀s ≤ s2, γ(s) > 0, i.e. 8εx(s) > z(s). Together
with (60), this yields (58).

Case 2: ∀s ≤ s0(ε), γ(s) ≤ 0 i.e. 8εx ≤ z(s).
In this case, (61) yields

∀s ≤ s0(ε), ż ≥
1

4
z, and ẋ ≤ (2ε+

1

4
)z.

Therefore, we get by integration:

z(s) ≥ 1

4

∫ s

−∞
z(t)dt and x(s) ≤ (2ε+

1

4
)

∫ s

−∞
z(t)dt,

which yields x(s) ≤ (8ε+ 1)z(s). We inject this in (61) and get
ẋ(s) ≤ 2ε(x+ z) ≤ 2εz(2 + 8ε). Again, by integration:
x(s) ≤ 2ε(2+8ε)

∫ s
−∞ z(t)dt ≤ 8ε(2+8ε)z(s). Together with (60), this yields

(59).

Part 2: Let ε < 1
C . Then either (58) or (59) occurs.

For example, (58) occurs, that is ∃s2(ε) ≤ s0 such that ∀s ≤ s2, z + y ≤
Cεx. Let ε′ ≤ ε be an arbitrary positive number. Then, according to Part
1, either ∀s ≤ s′2, z + y ≤ Cε′x for some s′2(ε

′),
or ∀s ≤ s′2, y + x ≤ Cε′z for some s′2(ε

′).
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Only the first case occurs. Indeed, if not, then for s ≤ min(s2, s
′
2),

x ≤ Cε′z ≤ Cε′Cεx ≤ C2ε2x since ε′ ≤ ε. Since (Cε)2 < 1, we have x ≡ 0
and z ≡ y ≡ 0 for s ≤ min(s2, s

′
2), which is excluded by the hypotheses.

Do the same if (59) occurs.
This concludes the proof of lemma A.1.

Step 2: Competition between v+, vnull and v−
In this step we show that either ‖v−(s)‖L2

ρ
+‖v+(s)‖L2

ρ
= o(‖vnull(s)‖L2

ρ
)

(which is case iii) of Proposition 3.2) or
‖v−(s)‖L2

ρ
+‖vnull(s)‖L2

ρ
= o(‖v+(s)‖L2

ρ
) (which yields case i) or ii) of Propo-

sition 3.2) in Step 3).
This situation is exactly symmetric to the one in section 4 in Filippas and

Kohn’s paper [3]. Indeed, we are treating the same equation (38), but we
have ‖v(s)‖L∞

loc
→ 0 as s→ −∞ whereas in [3], ‖v(s)‖L∞

loc
→ 0 as s→ +∞.

Nevertheless, the derivation of the differential inequalities satisfied by v−,
vnull and v+ in [3] is still valid here with the changes: “s → +∞” becomes
s → −∞ and “s large enough” becomes “−s large enough”. Therefore, we
claim that [3] implies:

Lemma A.2 ∀ε > 0, ∃s0 ∈ R such that for a.e. s ≤ s0:

ż ≥ (1
2 − ε)z − ε(x+ y)

|ẋ| ≤ ε(x+ y + z)
ẏ ≤ −(1

2 − ε)y + ε(x+ z)

where z(s) = ‖v+(s)‖L2
ρ
, x(s) = ‖vnull(s)‖L2

ρ
and y(s) = ‖v−(s)‖L2

ρ
+

‖|y| k
2 v2(s)‖L2

ρ
for a fixed integer k.

Now, since ‖v(s)‖L∞
loc

→ 0 as s → −∞, we have (x, y, z)(s) → 0 as
s → −∞. We can not have x(s1) + y(s1) + z(s1) = 0 for some s1 ∈ R,
because this implies that ∀y ∈ R

N , v(y, s1) = 0, and from the uniqueness
of the solution to the Cauchy problem of equation (38) and v(s1) = 0, we
have ∀(y, s) ∈ R

N ×R, v(y, s) = 0, which contradicts κ+ v → 0 as s→ +∞.
Applying lemma A.1 with c0 = 1

4 , we get:
either ‖v−(s)‖L2

ρ
+ ‖v+(s)‖L2

ρ
= o(‖vnull(s)‖L2

ρ
)

or ‖v−(s)‖L2
ρ

+ ‖vnull(s)‖L2
ρ

= o(‖v+(s)‖L2
ρ
).

Step 3: Competition between v0 and v1

In this step, we focus on the case where ‖v−(s)‖L2
ρ

+ ‖vnull(s)‖L2
ρ

=

o(‖v+(s)‖L2
ρ
). We will show that it leads either to case i) or case ii) of

Proposition 3.2.
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Let us first remark that lemma A.1 implies in this case that

∀ε > 0, z(s) = ‖v+(s)‖L2
ρ

= O(e(
1

2
−ε)) as s→ −∞. (62)

Now, we want to derive from (38) the equations satisfied by v0 and v1.
We must estimate

∫

f(v(y, s))km(yi)ρ(y)dy for m = 0, 1 and i = 1, ..N (see
(41) for km). Let us give this crucial estimate:

Lemma A.3 There exists δ0 > 0 and an integer k′ > 4 such that for all
δ ∈ (0, δ0), ∃s0 ∈ R such that ∀s ≤ s0,

∫

v2|y|k′
ρdy ≤ c0(k

′)δ4−k′
z(s)2.

Proof: Let I(s) =
(

∫

v2|y|k′
ρdy

)1/2
. We first derive a differential inequality

satisfied by I(s). If we multiply (38) by v|y|k′
ρ and integrate over R

N , we
obtain:

1

2

d

ds
(I(s)2) =

∫

v.Lv|y|k′
ρdy +

∫

vf(v)|y|k′
ρdy.

Since v is bounded by M , we get
∫

vf(v)|y|k′
ρdy ≤MC

∫

v2|y|k′
ρdy.

After some calculations, we show that
∫

v.Lv|y|k′
ρdy ≤ k

2 (k +N − 2)
∫

|y|k′−2v2ρdy + (1 − k
4 )I(s)2.

Using Schwartz’s inequality, we find:
∫

v2|y|k′−2ρdy ≤ I(s)
(

∫

v2|y|k′−4ρdy
)1/2

.

Let us bound
(

∫

v2|y|k′−4ρdy
)1/2

. If k′ > 4 and δ > 0, then
(

∫

v2|y|k′−4ρdy
)1/2

≤
(

∫

|y|≤δ−1 v2|y|k′−4ρdy
)1/2

+
(

∫

|y|≥δ−1 v2|y|k′−4ρdy
)1/2

≤ δ2−k′/2
(∫

v2ρdy
)1/2

+ δ2I

≤ 2δ2−k′/2z(s) + δ2I since
(∫

v2ρdy
)1/2 ∼

(∫

v2
+ρdy

)1/2
= z(s) as s→ −∞.

Combining all the previous bounds, we obtain:
I ′(s) ≤ −θI + dδ2−k′/2z with θ = k′

4 − 1 −MC − k′

2 (k′ + N − 2)δ2 and
d = k′(k′ +N − 2).

We claim that there exist an integer k ′ > 4 and δ0 > 0 such that ∀δ ∈
(0, δ0), θ ≥ 1. Hence,

I ′(s) ≤ −I(s) + dδ2−k′/2z(s). (63)

Now, we will derive a differential inequality satisfied by z in order to couple
it with (63), and then prove lemma A.3.

We project (38) onto the positive subspace of L, we multiply the result
by v+ρ and then, we integrate over R

N to get:

1

2

d

ds
(z(s)2) =

∫

Lv+.v+ρdy +

∫

P+(f(v))v+ρdy.
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Since (Spec L) ∩ R
∗
+ = {1, 1

2}, we have
∫

Lv+.v+ρdy ≥ 1
2z(s)

2.
Using Schwartz’s inequality, we obtain:

|
∫

P+(f(v))v+ρdy| ≤
(∫

P+(f(v))2ρdy
)1/2 (∫

v2
+ρdy

)1/2

≤
(∫

f(v)2ρdy
)1/2

z(s).
Since v → 0 as s→ −∞ uniformly on compact sets, we have:
∫

f(v)2ρdy ≤ C2
∫

v4ρdy = C2
∫

|y|≤δ−1 v4ρdy + C2
∫

|y|≥δ−1 v4ρdy

≤ ε2
∫

v2ρdy + C2M2δk′ ∫

v2|y|k′
ρ ≤ 4ε2z2 + C2M2δk′

I2 for all ε > 0, pro-
vided that s ≤ s0(ε, δ).

Thus,
(∫

f(v)2ρdy
)1/2 ≤ 2εz + CMδk′/2I.

Combining all the previous estimates, we obtain:

z′(s) ≥ 1

2
z(s) − 2εz − CMδk′/2I(s). (64)

With ε = 1/8, (63) and (64) yield:

∀s ≤ s0

{

z′(s) ≥ 1
4z(s) − CMδk′/2I(s)

I ′(s) ≤ −I(s) + dδ2−k′/2z(s).

Now, we are ready to conclude the proof of lemma A.3:
Let γ(s) = I(s) − 2dδ2−k′/2z(s). Let us assume γ(s) > 0 and show that

γ′(s) < 0.
γ′(s) = I ′ − 2dδ2−k′/2z′ ≤ (−I + dδ2−k′/2z) − 2dδ2−k′/2(1

4z −CMδk′/2I)
≤ I(−1 + 1

4 + 2CMdδ2) = I(−3
4 + 2CMδ2d)

If we choose δ0 such that ∀δ ∈ (0, δ0), −3
4 + 2CMδ2d < 0, then γ(s) > 0

implies I(s) > 0 and γ ′(s) < 0. Since γ(s) → 0 as s→ −∞ (because v → 0
uniformly on compact sets), we conclude that for some s1 ∈ R, ∀s ≤ s1,
γ(s) ≤ 0. Since d = k′(k′ +N − 2), lemma A.3 is proved.

Using lemma A.3, we try to estimate
∫

f(v)km(yi)ρdy.
Since |f(v) − p

2κv
2| ≤ C(M)v3, we write:

∫

f(v)ρdy =
p

2κ

∫

v2ρdy +O(

∫

v3ρdy). (65)

For all ε > 0, δ > 0 and s ≤ s0, we write:
|
∫

v3ρdy| ≤ |
∫

|y|≤δ−1 v3ρdy| + |
∫

|y|≥δ−1 v3ρdy|
≤ |

∫

|y|≤δ−1 v3ρdy| +Mδk′ ∫

v2|y|k′
ρdy ≤ |

∫

|y|≤δ−1 v3ρdy| +Mc0(k
′)δ4z(s)2.

We fix δ > 0 small enough such that Mc0(k
′)δ4 ≤ ε

2 . Then, we take s ≤ s1(ε)
such that | ∫|y|≤δ−1 v3ρdy| ≤ ε

4

∫

|y|≤δ−1 v2ρdy ≤ ε
4

∫

v2ρdy (because v → 0 in
L∞(B(0, δ))).
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Since
∫

v2ρdy ∼ z(s)2 as s → −∞, we get for s ≤ s2(ε), |
∫

v3ρdy| ≤
εz(s)2. Therefore, equation (38) and (65) yield:

v′0(s) = v0(s) +
p

2κ
z(s)2(1 + α(s)) (66)

where α(s) → 0 as s→ −∞.
Using the same type of calculations as for

∫

v3ρdy, we can prove that
∫

v2k1(yi)ρdy = O(z(s)2). Therefore, (38) yields the following vectorial
equation:

v′1(s) =
1

2
v1(s) + β(s)z(s)2 (67)

where β is bounded.

From (62), (66), (67) and standard ODE techniques, we get:

∀ε > 0, v0(s) = O(e(1−ε)s) and v1(s) = C1e
s
2 +O(e(1−ε)s).

Since z(s)2 = v0(s)
2 + 2|v1(s)|2, we write (66) as

v′0(s) = v0(s) +
p

2κ
|C1|2es(1 + α(s)) + γ(s)

where γ(s) = O(e2(1−ε)s). Therefore,

∀ε > 0, v0(s) =
p

κ
|C1|2ses(1 + o(1)) + C0e

s +O(e2(1−ε)s) (68)

as s→ −∞.
Two cases arise:
i) If C1 6= 0, then v1(s) ∼ C1e

s
2 � p

κ |C1|2ses ∼ v0(s). This is case ii) of
Proposition 3.2.

ii) If C1 = 0, then |z(s)| ≤ Ce(2−ε)s, and (67) yields v1 = O(e(2−ε)s).
From (68), we have v0(s) = C0e

s +O(e(2−ε)s).
We claim that C0 < 0 (If not, then the function F (s) = e−sv0(s) goes
to C0 ≥ 0 as s → −∞ and is increasing if s ≤ s0. Therefore, ∀s ≤ s0,
v0(s) ≥ C0e

s ≥ 0. Since v is bounded and κ + v ≥ 0, we have from
Proposition 3.5 ∀s ∈ R,

∫

(κ+ v(y, s))ρdy ≤ κ, that is v0(s) ≤ 0.
Hence, ∀s ≤ s0, v0(s) = 0 and z(s) =

√
2|v1(s)|. Then, (67) implies that

∀s ≤ s0, v1(s) = 0 and z(s) = 0. Since
∫

v2ρdy ∼ z(s), we have v ≡ 0 and
w ≡ κ in a neighborhood of −∞ and then on R

N × R which contradicts
w → 0 as s→ +∞).
Thus, v0(s) ∼ C0e

s � Ce(2−ε)s ≥ |v1(s)|. This is Case i) of Proposition 3.2.
This concludes the proof of Proposition 3.2.
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B Proof of Proposition 3.4

Let us recall Proposition 3.4:

Proposition B.1 Let V be an L∞ solution of

∂V

∂s
= (L + l(s))V + F (V ) (69)

defined for (y, s) ∈ R
N × R, where L = ∆ − 1

2y.∇ + 1, l(s) = − pes

(p−1)(1+es)

and F (V ) = |ϕ+ V |p−1(ϕ+ V ) − ϕp − pϕp−1V .
Assume that V → 0 as s→ ±∞ uniformly on compact sets of R

N ,

|V0(s)| + |V1(s)| = O(e(2−ε)s) and ‖Vnull(s)‖L2
ρ

= o(es) as s→ −∞. (70)

Then V ≡ 0.

In order to show that V ≡ 0 in R
N+1, we proceed in three steps: in Step

1, we do an L2
ρ analysis for V as s→ −∞ , similarly as in Part 2 of section

2 to show that either ‖V (s)‖L2
ρ
∼ ‖V+(s)‖L2

ρ
or ‖V (s)‖L2

ρ
∼ ‖Vnull(s)‖L2

ρ
.

Then, we treat these two cases successively in Steps 2 and 3 to show that
V ≡ 0.

Step 1: L2
ρ analysis for V as s→ −∞

Lemma B.1 As s→ −∞ , either
i) ‖V−(s)‖L2

ρ
+ ‖Vnull(s)‖L2

ρ
= o(‖V+(s)‖L2

ρ
)

or ii) ‖V−(s)‖L2
ρ

+ ‖V+(s)‖L2
ρ

= o(‖Vnull(s)‖L2
ρ
).

Proof: One can adapt easily the proof of Filippas and Kohn in [3] here.
Indeed, V satisfies almost the same type of equation (because l(s) → 0 as
s → −∞ , and |F (V )| ≤ CV 2), and V → 0 as s → −∞ uniformly on
compact sets. Therefore, we claim that up to the change of “s→ −∞ ” into
“s→ +∞”, section 4 of [3] implies

Lemma B.2 ∀ε > 0, ∃s0 ∈ R such that for a.e. s ≤ s0:

Ż ≥ (1
2 − ε)Z − ε(X + Y )

|Ẋ| ≤ ε(X + Y + Z)

Ẏ ≤ −(1
2 − ε)Y + ε(X + Z)

where Z(s) = ‖V+(s)‖L2
ρ
, X(s) = ‖Vnull(s)‖L2

ρ
and Y (s) = ‖V−(s)‖L2

ρ
+

‖|y| k
2 V 2(s)‖L2

ρ
for a fixed integer k.
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Since ‖V (s)‖L∞
loc

→ 0 as s → −∞ and V is bounded in L∞, we have
(X,Y,Z)(s) → 0 as s→ −∞. Similarly as in Step 2 of Appendix A, we can
not have X(s) + Y (s) +Z(s) = 0 for some s ∈ R. Therefore, the conclusion
follows from lemma A.1, in the same way as in Step 2 of Appendix A.

Step 2: Case ‖V−(s)‖L2
ρ

+ ‖Vnull(s)‖L2
ρ

= o(‖V+(s)‖L2
ρ
)

Since (69) and (38) are very similar (the only real difference is the pres-
ence in (69) of l(s) which goes to zero as s→ −∞ ), one can adapt without
difficulty all the Step 3 of Appendix A and show that V0 and V1 satisfy
equations analogous to (66) and (67): ∀s ≤ s0

{

V ′
0(s) = V0(s)(1 + l(s)) + a0(s)(V0(s)

2 + 2|V1(s)|2)
V ′

1(s) = V1(s)(
1
2 + l(s)) + a1(s)(V0(s)

2 + 2|V1(s)|2)
(71)

where a0 and a1 are bounded.
According to (70), there exist B > 0 and s1 ≤ s0 such that ∀s ≤ s1

|a0(s)| ≤ B, |a1(s)| ≤ B, |V0(s)| ≤ e
3s
2 and |V1(s)| ≤ e

3s
2 . (72)

We claim then that the following lemma yields V ≡ 0:

Lemma B.3 ∀n ∈ N, ∀s ≤ s1, |Vm(s)| ≤ ( 3
2e(s1)B)2

n−1e3×2n−1s for m = 0

and m = 1, where e(s1) = e
−
∫ s1
−∞

l(t)dt
.

Indeed, the lemma yields that ∀s ≤ s2 V0(s) = V1(s) = 0 for some s2 ≤ s1.
Since ‖V (s)‖L2

ρ
∼ ‖V+(s)‖L2

ρ
as s → −∞ , we have ∀s ≤ s3, ∀y ∈ R

N ,

V (y, s) = 0 for some s3 ≤ s2. The uniqueness of the solution of the Cauchy
problem: ∀s ≥ s3, V satisfies equation (69) and V (s3) = 0 yields V ≡ 0 in
R

N+1.

Proof of lemma B.3: We proceed by induction:
- n = 0, the hypothesis is true by (72).
- We suppose that for n ∈ N, we have

∀s ≤ s1, |Vm(s)| ≤ ( 3
2e(s1)B)2

n−1e3×2n−1s for m = 0, 1. Let us prove that

∀s ≤ s1, |Vm(s)| ≤ ( 3
2e(s1)B)2

n+1−1e3×2ns for m = 0, 1.

Let Fm(s) = Vm(s)e
−(1−m

2
)s−
∫ s

−∞
l(t)dt

. From (71) and the induction hy-
pothesis, we have: ∀s ≤ s1,

|F ′
m(s)| ≤ e

−(1−m
2

)s−
∫ s1
−∞

l(t)dt
B×3(3

2e(s1)B)2(2
n−1)e3×2ns. By the induction

hypothesis, lim
s→−∞

Fm(s) = 0. Hence, ∀s ≤ s1,

|Fm(s)| = |
∫ s
−∞ F ′

m(σ)dσ| ≤
∫ s
−∞ |F ′

m(σ)|dσ
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≤ 3e(s1)B(3
2e(s1)B)2

n+1−2
∫ s
−∞ e(3×2n−(1−m

2
))σdσ

= 2
3×2n−(1−m

2
) (

3
2e(s1)B)2

n+1−1e(3×2n−(1−m
2

))s.

Since 3 × 2n − (1 − m
2 ) ≥ 2 and l(s) ≤ 0, this yields

∀s ≤ s1, |Vm(s)| ≤ ( 3
2e(s1)B)2

n+1−1e3×2ns for m = 0, 1. This concludes the
proof of lemma B.3.

Step 3: Case ‖V−(s)‖L2
ρ

+ ‖V+(s)‖L2
ρ

= o(‖Vnull(s)‖L2
ρ
)

In order to show that V ≡ 0, it is enough to show that Vnull ≡ 0 or
equivalently that ∀i, j ∈ {1, .., N}, V2,ij ≡ 0.

For this purpose, we derive form (69) an equation satisfied by V2,ij as
s→ −∞ :

V ′
2,ij(s) = l(s)V2,ij(s) +

∫

F (V )
H2,ij

‖H2,ij‖2
L2

ρ

ρdy. (73)

We have to estimate the last term of (73):
- if i = j, then H2,ij(y) = y2

i − 2 and

|
∫

F (V )H2,iiρdy| ≤ C

∫

V 2ρdy + C

∫

V 2|y|2ρdy, (74)

- if i 6= j, then H2,ij(y) = yiyj and

|
∫

F (V )H2,ijρdy| ≤ C

∫

V 2|y|2ρdy. (75)

The hypothesis of this step implies that
∫

V 2ρdy ≤ 2

∫

V 2
nullρdy. (76)

It remains then to bound
∫

V 2|y|2ρdy. This will be done through this lemma,
which is analogous to lemma A.3:

Lemma B.4 There exists δ0 > 0 and an integer k′ > 5 such that for all
δ ∈ (0, δ0), ∃s0 ∈ R such that ∀s ≤ s0,

∫

V 2|y|k′
ρdy ≤ c0(k

′)δ4−k′ ∫

V 2
nullρdy.

Proof: We will argue similarly as in the proof of lemma A.3. Let I(s) =
(

∫

V 2|y|k′
ρdy

)1/2
and use the notation X(s) =

(

∫

V 2
null|y|k

′
ρdy

)1/2
. From

(69), we derive the following equation for I(s):

1

2

d

ds
(I(s)2) =

∫

V.LV |y|k′
ρdy + l(s)I(s)2 +

∫

V F (V )|y|k′
ρdy.

Since v is bounded by M , we can assume |V | ≤ M + 1 = M ′ and get
∫

V F (V )|y|k′
ρdy ≤M ′C

∫

V 2|y|k′
ρdy. We can also assume that |l(s)| ≤ 1

12 .
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As for lemma A.3, we can show that for all δ > 0
∫

V.LV |y|k′
ρdy ≤ k′

2 (k′+N−2)I(s)(δ2−k′/2
(∫

V 2ρdy
)1/2

+δ2I)+(1− k
4 )I(s)2.

Combining these bounds with (76), we get:
I ′(s) ≤ −θI + dδ2−k′/2z with θ = k′

4 − 1− 1
12 −M ′C − k′

2 (k′ +N − 2)δ2 and
d = k′(k′ +N − 2).

It is clear that there exist an integer k ′ > 5 and δ0 > 0 such that
∀δ ∈ (0, δ0), θ ≥ 1. Hence,

I ′(s) ≤ −I(s) + dδ2−k′/2X(s). (77)

Let us derive a differential equation satisfied by X.
From (69), we obtain:

1

2

d

ds
(X(s)2) = l(s)X(s)2 +

∫

Pnull(F (V ))Vnullρdy.

By Schwartz’s inequality, we have:

|
∫

Pnull(F (V ))Vnullρdy| ≤
(∫

Pnull(F (V ))2ρdy
)1/2 (∫

V 2
nullρdy

)1/2

≤
(∫

F (V )2ρdy
)1/2

X(s).
Since V → 0 as s→ −∞ uniformly on compact sets, we have:
∫

F (V )2ρdy ≤ C2
∫

V 4ρdy = C2
∫

|y|≤δ−1 V 4ρdy + C2
∫

|y|≥δ−1 V 4ρdy

≤ ε2
∫

V 2ρdy + C2M ′2δk′ ∫

V 2|y|k′
ρ ≤ 4ε2X2 + C2M ′2δk′

I2 for all ε > 0,
provided that s ≤ s0(ε, δ).

Thus,
(∫

F (V )2ρdy
)1/2 ≤ 2εX + CM ′δk′/2I.

Since |l(s)| ≤ 1
12 , we combine all the previous bounds to get:

|X ′(s)| ≤ (2ε+
1

12
)X(s) + CM ′δk′/2I(s). (78)

With ε = 1/12, (77) and (78) yield:

∀s ≤ s1

{

|X ′(s)| ≤ 1
4X(s) + CM ′δk′/2I(s)

I ′(s) ≤ −I(s) + dδ2−k′/2X(s).

Now, we conclude the proof of lemma A.3:
Let γ(s) = I(s)− 2dδ2−k′/2X(s). Let us assume γ(s) > 0 and show that

γ′(s) < 0.
γ′(s) = I ′ − 2dδ2−k′/2X ′

≤ (−I + dδ2−k′/2X) + 2dδ2−k′/2(1
4X(s) + CM ′δk′/2I)

≤ I(−1 + 1
2 + 2CM ′dδ2 + 1

4 ) = I(−1
4 + 2CM ′δ2d)

If we choose δ0 such that ∀δ ∈ (0, δ0), −1
4 +2CM ′δ2d < 0, then γ(s) > 0

implies I(s) > 0 and γ ′(s) < 0. Since γ(s) → 0 as s→ −∞ (because V → 0

38



uniformly on compact sets), we conclude that for some s2 ∈ R, ∀s ≤ s1,
γ(s) ≤ 0. Since d = k′(k′ +N − 2), lemma B.4 is proved.

Lemma B.4 allows us to bound
∫

V 2|y|2ρdy. Indeed, for fixed δ ∈ (0, δ0)
and s ≤ s0, we have:
∫

V 2|y|2ρdy ≤
∫

|y|≤δ−1 V 2|y|2ρdy +
∫

|y|≥δ−1 V 2|y|2ρdy
≤ δ−2

∫

|y|≤δ−1 V 2ρdy + δk′−2
∫

|y|≥δ−1 V 2|y|k′
ρdy

≤ δ−2
∫

V 2ρdy + c0(k
′)δ2

∫

V 2ρdy = C(δ, k′)
∫

V 2ρdy.
With this bound, (74) and (75), equation (69) yields: ∀s ≤ s0,

V ′
2,ij(s) = l(s)V2,ij(s) + a2,ij(s)‖Vnull(s)‖2

L2
ρ

where a2,ij is bounded.
According to (70), there exist then B > 0 and s1 ≤ s0 such that ∀s ≤ s1,

∀i, j ∈ {1, ..., N},
|a2,ij(s)| ≤ B, |V2,ij(s)| ≤ es.

We claim that the following lemma yields V ≡ 0:

Lemma B.5 ∀n ∈ N, ∀s ≤ s1, ∀i, j ∈ {1, ..., N},
|V2,ij(s)| ≤ (8N 2(N + 1)2e(s1)B)2

n−1e2
ns where e(s1) = e−

∫ s1
∞

l(t)dt.

Indeed, this lemma yields ∀s ≤ s1, ∀i, j ∈ {1, ..., N}, V2,ij(s) = 0 for some
s2 ≤ s1. Hence, ∀s ≤ s2, ∀y ∈ R

N , Vnull(y, s) = 0, and by the hypothesis of
this step, ∀s ≤ s3, ∀y ∈ R

N , V (y, s) = 0 for some s3 ≤ s3. The uniqueness
of the solutions to the Cauchy problem: ∀s ≥ s3, V satisfies equation (69)
and V (s3) = 0 yields V ≡ 0 in R

N+1.
We escape the proof of lemma B.5 since it is completely analogous to

the proof of lemma B.3.

C Proof of i) of Proposition 3.7

We proceed in 4 steps: in Step 1, we derive form the fact that ‖v(s)‖L2
ρ
∼

‖vnull(s)‖L2
ρ

an equation satisfied by vnull(s) as s→ −∞ . Then, we find in

Step 2 c > 0, C > 0 and s0 ∈ R such that c|s|−1 ≤ ‖v(s)‖L2
ρ
≤ C|s|−1 for

s ≤ s0. In Step 3, we use this estimate to derive a more accurate equation
for vnull. We use this equation in Step 4 to get the asymptotic behaviors of
vnull(y, s), v0(s) and v1(s).

Step 1: An ODE satisfied by vnull(y, s) as s→ −∞
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This step is very similar to Step 3 in Appendix B where we handled the
equation (69) instead of (38) as in the present context.

From (38) we have by projection:

v′2,ij(s) =

∫

f(v)
H2,ij(y)

‖H2,ij‖2
L2

ρ

ρ(y)dy (79)

We will prove the following proposition here:

Proposition C.1 i) ∀i, j ∈ {1, ..., N},

v′2,ij(s) =
p

2κ

∫

v2
null(y, s)

H2,ij(y)

‖H2,ij‖2
L2

ρ

ρ(y)dy + o(‖vnull(s)‖2
L2

ρ
). (80)

as s→ −∞ .
ii) There exists a symmetric N ×N matrix A(s) such that ∀s ∈ R,

vnull(y, s) = yTA(s)y − 2tr(A(s)) (81)

and c0‖A(s)‖ ≤ ‖vnull(s)‖L2
ρ
≤ C0‖A(s)‖ (82)

for some positive constants c0 and C0. Moreover,

A′(s) =
4p

κ
A2(s) + o(‖A(s)‖2) as s→ −∞. (83)

Remark: ‖A‖ stands for any norm on the space of N ×N symmetric ma-
trices.
Remark: The interest of the introduction of the matrix A(s) is that it
generalizes to N ≥ 2 the situation of N = 1. Indeed, if N = 1, then it
is obvious that vnull(y, s) = yv2(s)y − 2v2(s) and that (80) implies v′2(s) =
4p
κ v2(s)

2 + o(v2(s)
2). Let us remark that in the case N = 1, we get imme-

diately v2(s) ∼ − κ
4ps as s→ −∞, which concludes the proof of Proposition

3.7. Unfortunately, we can not solve the system (83) so easily if N ≥ 2.
Nevertheless, the intuition given by the case N = 1 will guide us in next
steps in order to refine the system (83) and reach then a similar result (see
Step 2).

Proof of Proposition C.1:
Let us remark that ii) follows directly form i). Indeed, we have by

definition of H2,ij and v2,ij (see (44) and (45)):

vnull(y, s) =
∑

i≤j

v2,ij(s)H2,ij(y) =
N
∑

i=1

v2,ii(s)(y
2
i − 2) +

∑

i<j

v2,ij(s)yiyj . If we

define A(s) = (aij(s))i,j by

aii(s) = v2,ii(s), and for i < j, aij(s) = aji(s) =
1

2
v2,ij(s), (84)
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then (81) follows. (82) follows form the equivalence of norms in finite dimen-

sion N(N+1)
2 . (83) follows from (80) by simple but long calculations which

we escape here.
Now, we focus on the proof of i). For this purpose, we try to estimate

the right-hand side of equation (79).
As in Step 3 of Part 3, this will be possible thanks to the following

lemma:

Lemma C.1 There exists δ0 > 0 and an integer k′ > 4 such that for all
δ ∈ (0, δ0), ∃s0 ∈ R such that ∀s ≤ s0,

∫

v2|y|k′
ρdy ≤ c0(k

′)δ4−k′ ∫

v2
nullρdy.

Proof: The proof of lemma B.4 holds for lemma C.1 with the changes V → v,
F → f and l(s) → 0.

Now we estimate
∫

f(v)H2,ijρdy:
Since f(v) = p

2κv
2 + g(v) where |g(v)| ≤ C|v|3, we write:

∫

f(v)H2,ijρdy =
p

2κ

∫

v2
nullH2,ijρdy + (I) + (II) (85)

where

(I) =
p

2κ

∫

(v2 − v2
null)H2,ijρdy (86)

and (II) =

∫

g(v)H2,ijρdy. (87)

The proof of Proposition C.1 will be complete if we show that (I) and (II)
are o(‖vnull(s)‖L2

ρ
). Since H2,ij(y) = y2

i − 2 if i = j and H2,ij(y) = yiyj if
i 6= j, it is enough to show that for all ε > 0, I1, I2, II1 and II2 are lower
that ε‖vnull(s)‖L2

ρ
for all s ≤ s0(ε), where

I1 =
∫

|v2 − v2
null|ρdy, I2 =

∫

|v2 − v2
null||y|2ρdy,

II1 =
∫ |g(v)|ρdy, II2 =

∫ |g(v)||y|2ρdy.

We start with I1: Since
∫

v2ρdy ∼
∫

v2
nullρdy,

I1 =
∫

(v2
+ + v2

−)ρdy ≤ ε
∫

v2
nullρdy if s ≤ s1(ε).

For I2, we consider δ ∈ (0, δ0), and write:
I2 ≤ ∫

|y|≤δ−1 |v2 − v2
null||y|2ρdy +

∫

|y|≥δ−1 |v2 − v2
null||y|2ρdy := I21 + I22.

We first estimate I21:
Since v = v−+vnull+v+, we have v2−v2

null = (v++v−)2+2vnull(v++v−).
Hence,
I21 ≤

∫

|y|≤δ−1(v+ + v−)2|y|2ρdy + 2
∫

|y|≤δ−1 |vnull(v+ + v−)||y|2ρdy
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≤ δ−2
∫

(v+ + v−)2ρdy + 2
(∫

v2
null|y|4ρdy

)1/2 (∫
(v+ + v−)2ρdy

)1/2
.

Since
∫

v2ρdy ∼
∫ ∫

v2
nullρdy, we have

∫

(v+ + v−)2 ≤ δ3
∫

v2
nullρdy if s ≤ s2(δ).

Since the null subspace of L in finite dimensional, all the norms on it are
equivalent, therefore, there exists C4(N) such that:
∫

v2
null|y|4ρdy ≤ C4(N)2

∫

v2
nullρdy.

Therefore, I21 ≤ (δ + 2C4(N)δ3/2)
∫

v2
nullρdy if s ≤ s2(δ).

For I22, we write:
I22 ≤

∫

|y|≥δ−1 |v2 − v2
null||y|2ρdy ≤ δk′−2

∫

v2|y|k′
ρdy + δk′−2

∫

v2
null|y|k

′
ρdy

≤ c0(k
′)δ2

∫

v2
nullρdy + δk′−2Ck′(N)2

∫

v2
nullρdy

by lemma C.1 and the equivalence of norms for vnull. Collecting all the
above estimates, we get
I2 ≤ (δ + 2C4(N)δ3/2 + c0(k

′) + δk′−2Ck′(N)2)
∫

v2
nullρdy for s ≤ s2(δ). If

δ = δ(ε) is small enough, then
I2 ≤ ε

∫

v2
nullρdy for s ≤ s3(ε).

Now, we handle II1 and II2 in the same time: we consider δ ∈ (0, δ0)
and write for m = 0 or m = 2:
|
∫

|g(v)||y|mρdy ≤ C
∫

|v|3|y|mρdy
≤ C

∫

|y|≤δ−1 |v|3|y|mρdy +C
∫

|y|≥δ−1 |v|3|y|mρdy
≤ Cε′δ−m

∫

|y|≤δ−1 v2ρdy + CMδk′−m
∫

|y|≥δ−1 v2|y|k′
ρdy

≤ (Cε′δ−m + CMc0(k
′)δ4−m)2

∫

v2
nullρdy

where we used the fact that v → 0 as s→ −∞ in L∞(B(0, δ−1)), |v(y, s)| ≤
M , lemma C.1 and

∫

v2ρdy ≤ ∫

v2
nullρdy.

Now, we can choose δ = δ(ε) and then ε′ = ε′(ε) such that for s ≤ s5(ε)
∫

|g(v)||y|mρdy ≤ ε
∫

v2
nullρdy.

Setting s0(ε) = min(s1(ε), s3(ε), s5(ε)), we have: ∀ε > 0, ∀s ≤ s0(ε),
I1 + I2 + II1 + II2 ≤ 4ε

∫

v2
nullρdy. Therefore (I)+ (II) = o(‖vnull(s)‖L2

ρ
) as

s→ −∞ .
Thus, combining this with (79) and (85) concludes the proof of Propo-

sition C.1.

Step 2: ‖v(s)‖L2
ρ

behaves like 1
|s| as s→ −∞

In this step, we show that although we can not derive directly from (80)
the asymptotic behavior of vnull(s) (and then the one of v(s)), we can use
it to show that ‖v(s)‖L2

ρ
behaves like 1

|s| as s → −∞ . More precisely, we
have the following Proposition:

Proposition C.2 If ‖v−(s)‖L2
ρ
+ ‖v+(s)‖L2

ρ
= o(‖vnull(s)‖L2

ρ
), then for −s
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large enough, we have
c

|s| ≤ ‖v(s)‖L2
ρ
≤ C

|s|
for some positive constants c and C.

Proof: Since ‖v(s)‖L2
ρ
∼ ‖vnull(s)‖L2

ρ
, and because of (82), it is enough

to show that
c

|s| ≤ ‖A(s)‖ ≤ C

|s| (88)

for −s large. The proof is completely parallel to section 3 of Filippas and
Liu [4]. Therefore, we give only its main steps.

We first give a result from the perturbation theory of linear operators
which asserts that A(s) has continuously differentiable eigenvalues:

Lemma C.2 Suppose that A(s) is a N × N symmetric and continuously
differentiable matrix-function in some interval I. Then, there exist contin-
uously differentiable functions λ1(s), ..., λN (s) in I, such that for all j ∈
{1, .., N},

A(s)φ(j)(s) = λj(s)φ
(j)(s),

for some (properly chosen) orthonormal system of vector-functions
φ(1)(s), ..., φ(N)(s).

The proof of this lemma is contained (for instance) in Kato [10] or Rellich
[13].

We consider then λ1(s), ..., λN (s) the eigenvalues of A(s). It is well-

known that
N
∑

i=1

|λi| is a norm on the space of N × N symmetric matrices.

We choose this norm to prove (88). From (83), we can derive an equation
satisfied by (λi(s))i:

Lemma C.3 The eigenvalues of A(s) satisfy ∀i ∈ {1, ..., N}

λ′i(s) =
4p

κ
λ2

i (s) + o

(

N
∑

i=1

λ2
i (s)

)

.

The proof of lemma 3.3 in [4] holds here with the slight change: s → +∞
becomes s→ −∞ and s large enough becomes −s large enough.

Now, we claim that with the introduction of Λi(σ) = −λi(−σ), we have:
- ∀i ∈ {1, ..., N}

Λ′
i(σ) =

4p

κ
Λ2

i (σ) + o

(

N
∑

i=1

Λ2
i (σ)

)

as σ → +∞,
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-∀σ ≥ σ0,
∑

i

|Λi(σ)| 6= 0 (Indeed, if not, then for all i, Λi ≡ 0, λi ≡ 0,

and then A(s), vnull(s) and v(s) are identically zero.)
Section 3 of [4] yields (directly and without any adaptations) that for all

σ ≥ σ1,
c

σ
≤
∑

i

|Λi(σ)| ≤ C

σ
.

Since ‖A(s)‖ =
∑

i

|λi(s)| =
∑

i

|Λi(−s)|, this concludes the proof of (88)

and the proof of Proposition C.2.

Step 3: A new ODE satisfied by vnull(y, s)
In this step, we show that since ‖v‖L2

ρ
behaves like 1

|s| , then all the Lq
ρ

norms are in some sense equivalent as s→ −∞ for this particular v. Then,
we will do a kind of center-manifold theory for this particular v to show that
‖v+(s)‖L2

ρ
+‖v−(s)‖L2

ρ
is in fact O(‖vnull(s)‖2

L2
ρ
) and not only o(‖vnull(s)‖L2

ρ
).

These two estimates are used then to rederive a more accurate equation
satisfied by vnull(y, s).

Lemma C.4 If ‖v+(s)‖L2
ρ

+ ‖v−(s)‖L2
ρ

= o(‖vnull(s)‖L2
ρ
), then

i) for every r > 1, q > 1, there exists C = C(r, q) such that

(∫

vr(y, s)ρdy

)1/r

≤ C

(∫

vq(y, s)ρdy

)1/q

for −s large enough.
ii) ‖v+(s)‖L2

ρ
+ ‖v−(s)‖L2

ρ
= O(‖vnull(s)‖2

L2
ρ
) as s→ −∞ .

Proof of i) of lemma C.4: The crucial estimate is an a priori estimate of
solutions of (38) shown by Herrero and Velazquez in [9]. This a priori
estimate is a version of i) holding for all bounded (in L∞) solutions of (38),
but with a delay time; although they proved their result in the case N = 1
for solutions defined for s ∈ [0,+∞), their proof holds in higher dimensions
with s ∈ R.

Lemma C.5 (Herrero-Velazquez) Assume that v solves (38) and |v| ≤
M <∞. Then for any r > 1, q > 1 and L > 0, there exist s∗0 = s∗0(q, r) and
C = C(r, q, L) > 0 such that

(
∫

vr(y, s+ s∗)ρdy
)1/r

≤ C

(
∫

vq(y, s)ρdy

)1/q

for any s ∈ R and any s∗ ∈ [s∗0, s
∗
0 + L].
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Set s∗1 = s∗0(2, r) and s∗2 = s∗0(q, 2). For −s large enough, we write
according to lemma C.5 and Proposition C.2:

(
∫

vr(y, s)ρdy)1/r ≤ C1
(∫

v2(y, s− s∗1)ρdy
)1/2 ≤ C2/(s− s∗1)

≤ C3/(s+ s∗2) ≤ C4
(∫

v2(y, s+ s∗2)ρdy
)1/2 ≤ C5 (

∫

vq(y, s)ρdy)1/q. Thus, i)
of lemma C.4 follows .

Proof of ii) of lemma C.4: We argue as in Step 2 of Appendix A, and
use the same notations: x(s) = ‖vnull(s)‖L2

ρ
, y(s) = ‖v−(s)‖L2

ρ
, z(s) =

‖v+(s)‖L2
ρ

and N(s) = ‖V 2‖L2
ρ
. We have already derived (in the proofs of

lemmas A.3 and B.4) two differential inequalities satisfied by x and z. By
the same techniques (see also [3]), we can show that

z′ ≥ 1

2
z − CN

|x′| ≤ CN

y′ ≤ −1

2
y + CN.

By i) of lemma C.4, we have N(s) ≤ C‖v(s)‖2
L2

ρ
= C(x2(s) + y2(s) + z2(s))

for large −s.
Since x, y, z → 0 as s→ −∞ , we can write for −s large:

z′ ≥ 1

3
z − C(x+ y)2

|x′| ≤ C(x+ y + z)2

y′ ≤ −1

3
y + C(x+ z)2.

The conclusion then follows form the following ODE lemma by Filippas and
Liu:

Lemma C.6 (Filippas-Liu) Let x(s), y(s) and z(s) be absolutely contin-
uous, real valued functions which are non negative and satisfy

i) (x, y, z)(s) → 0 as s→ −∞,
ii) ∀s ≤ s0











ż ≥ c0z − c1(x+ y)2

|ẋ| ≤ c1(x+ y + z)2

ẏ ≤ −c0y + c1(x+ z)2.

for some positive constants c0 and c1. Then,
either (i) x, y, z → 0 exponentially fast as s→ −∞,
or (ii) for all s ≤ s1, y + z ≤ b(c0, c1)x

2 for some s1 ≤ s0.
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Proof: see lemma 4.1 in [4].

Now, using lemma C.4, we derive a new equation satisfied by vnull:

Proposition C.3 ∀i, j ∈ {1, ..., N},

v′2,ij(s) =
p

2κ

∫

v2
null(y, s)

H2,ij(y)

‖H2,ij‖2
L2

ρ

ρ(y)dy +O(‖vnull(s)‖3
L2

ρ
).

as s→ −∞ .
Moreover,

A′(s) =
4p

κ
A2(s) +O(

1

s3
) as s→ −∞.

The proof of Proposition 4.1 in [4] holds here with the usual changes: s →
+∞ becomes s→ −∞ .

Step 4: Asymptotic behavior of vnull(y, s), v0(s) and v1(s)
Setting A(σ) = −A(−σ), we see that

A′(σ) =
4p

κ
A2(σ) +O(

1

σ3
) as σ → +∞.

Therefore, Proposition 5.1 in [4] yields (directly and without any adap-
tations) the existence of δ > 0 and a N × N orthonormal matrix Q such
that

A(σ) = − κ

4pσ
A0 +O(

1

σ1+δ
)

where

A0 = Q

(

IN−k 0
0 0

)

Q−1

for some k ∈ {0, 1, ..., N − 1}. Together with (81), this yields the behavior
of vnull(y, s) announced in i) of Proposition 3.7.

It also yields

‖vnull(s)‖L2
ρ

=

(∫

v2
null(y, s)ρ(y)dy

)1/2

=

(∫

(yTA(s)y − 2trA(s))2ρ(y)dy

)1/2

= − κ

4ps

(∫

(yTA0y − 2trA0)
2ρ(y)dy

)1/2

+O

(

1

|s|1+δ

)

.
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With the change of variables, y = Qz, we get since Q is orthonormal:

‖vnull(s)‖L2
ρ

= − κ

4ps





∫

(

N−k
∑

i=1

(z2
i − 2)

)2

ρ(z)dz





1/2

+O

(

1

|s|1+δ

)

= − κ

4ps

(

N−k
∑

i=1

∫

(z2
i − 2)2ρ(z)dz

)1/2

+O

(

1

|s|1+δ

)

= − κ

ps

√

N − k

2
+O

(

1

|s|1+δ

)

where we used the fact that (y2
i − 2)i is an orthogonal system with respect

to the measure ρdy.

Since ‖v(s)‖L2
ρ

= ‖vnull(s)‖L2
ρ
+O

(

‖vnull(s)‖2
L2

ρ

)

(ii) of lemma C.4), we

get

‖v(s)‖L2
ρ

= − κ

ps

√

N − k

2
+O

(

1

|s|1+δ

)

. (89)

Integrating (38) with respect to ρdy, we find

v′0(s) = v0(s) +

∫

f(v)ρdy.

Since |f(v)| ≤ Cv2, we get from (89)

v′0(s) = v0(s) +O(
1

s2
) as s→ −∞.

Therefore, it follows that

v0(s) = O(
1

s2
) as s→ −∞.

Using lemma C.1, we have: for all η ∈ (0, δ0),
∫

v2|y|k′
ρdy ≤ c0(k

′)η4−k′
∫

v2
nullρdy ≤ 2c0(k

′)η4−k′
∫

v2ρdy.

Therefore,
∫

v2|y|ρdy ≤ ∫

|y|≤η−1 v2|y|ρdy +
∫

|y|≥η−1 v2|y|ρdy
≤ η−1

∫

v2ρdy + ηk′−1
∫

v2|y|k′
ρdy

≤ (η−1 + 2c0(k
′)η3)

∫

v2ρdy.
If we fix η > 0, then

∫

v2|y|ρdy ≤ C(η, k′)
∫

v2ρdy. (90)
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Integrating (38) with respect to yiρdy, we find

v′1,i(s) =
1

2
v1,i(s) +

∫

f(v)
yi

2
ρdy.

Since |f(v)| ≤ Cv2, we get from (90) and (89)

v1(s) = O(
1

s2
) as s→ −∞.

This concludes the proof of i) of Proposition 3.7.
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