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Abstract: We first describe all positive bounded solutions of
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where (y,s) € RY xR, 1 < p and (N — 2)p < N + 2. We then obtain for

blow-up solutions u(t) of

%:Au—i—up

uniform estimates at the blow-up time and uniform space-time comparison
with solutions of u' = uP.

1 Introduction

We consider the following nonlinear heat equation:

S = Autfuftu in Qx[0,T) (1)
w = 0 on O0N2x[0,7T)

where u(t) € H'(Q2) and Q = RY (or Q is a convex domain).
We assume in addition that

1 <p, (N—=2)p <N +2and u(0) >0.
In this paper, we are interested in blow-up solutions u(t) of equation (1):
u(t) blows-up in finite time T if u exists for ¢ € [0,7) and thrr% lu()|lgr =

+00. In this case, one can show that u has at least one blow-up point, that
is a € Q such that there exists (an,ty)nen satisfying (an,t,) — (a,T) and



|u(an,tn)] — +00. We aim in this work at studying the blow-up behavior
of u(t). In particular, we are interested in obtaining uniform estimates on
u(t) at or near the singularity, that is estimates “basically” independent of
initial data.

We will give two types of uniform estimates: the first one holds especially
at the singular set (Theorem 1) and the other one consists in surprising
global estimates in space and time (Theorem 3). It will be deduced from
the former by some strong control of the interaction between regular and
singular parts of the solution. Various applications of this type of estimates
will be given in [12].

For the first type of estimates, we introduce for each a € Q (a may be a
blow-up point of u or not) the following similarity variables:

N =
s = —log(T —1t) (2)
1
wa(yvs) = (T_t)ﬁu(xﬂf)
wy (= w) satisfies Vs > —log T, Yy € Dy s:
ow 1 w
-7 _ = = p—1
s Aw 2y.Vw P + |w|P w (3)
where
Dos={yeRY | a+ye®? e Q}. (4)

We introduce also the following Lyapunov functional:
1 1 1
E(w) == | |Vw|?*pd 7/ 2d——/ LRy 5
() = 5 [ IVuPpdy+ 5o [lwPody = = [1ol* pay  (5)

e lul?/4
where ply) = (- (6)
and the integration is done over the definition set of w.

The study of u(t) near (a,T) where a is a blow-up point is equivalent
to the study of the long time behavior of w,. Note that D, , # RY in the
case ) # RN. This in fact is not a problem since we know from [8] that
a ¢ 99 in the case Q is C*%, and therefore, for a given a € Q, D, s — RV
as s — +00. Let a € Q) be a blow-up point of w.

If Q is a bounded convex domain in RY or @ = R¥, then Giga and Kohn
prove in [7] that:

Vs > —logT, |lwa(y,s)llr>~,,) < C orequivalently
__1
Vi e [OvT)a ||u(x7t)HL°°(Q) < C(T_t) Pt
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They also prove in [7] and [8] (see also [6]) that for a given blow-up point

a € €,
lim w,(y,s) = tlin%(T — t)P_ilu(a +yvT —tt) =k

s——+00

1
where k = (p — 1)~ 71, uniformly on compact subsets of RY. The result is
pointwise in a. Besides, for a.e y, liril Vwe(y,s) = 0.
S—T00

Let us denote L>(D, s) by L>.

In this paper, we first obtain uniform (on a and in some sense on
u(0)) sharp estimates on w,, and we find a precise long time behavior for
llwa(s)||Loe, [|[Vwea(s)||e and ||Awg(s)]|~ (global estimates).

Theorem 1 (Optimal bound on u(t) at blow-up time) Assume that
is a convex bounded C*® domain in RN or Q = RY. Consider u(t) a blow-
up solution of equation (1) which blows-up at time T. Assume in addition
w(0) > 0 and u(0) € HY(Q). Then

1

(T = )7 u(t) | ey = £ = (p— 1) 77 ast —T
and
] 1 41
(T = )71 | Au(t) | (@) + (T = ) P12 || Vu(t) || L) — 0 as t = T,
or equivalently for any a € €,
lwa(s)||Lee — K as s — 400

and
|Awg (s)|| e + [|[Vwa(s)||Le — 0 as s — +o0.

Remark: We can point out that we do not consider local norm in w variable
such as L%(du) with dp = e~ lvl?/ 4dy as a center manifold theory for equation
(3) would suggest. Instead, we use L> norm which yields results uniform
with respect to € Q. Indeed, we have from (2) that Va,b € Q, V(y,s) € Dy,

wb(y7 S) = wa(y + (b - a’)e%7 8)7

which yields ||wq||pee = ||wpl|lzee, [|[Vwallre = ||Vwp|pe and ||Awg|pe =
[Awp || o).

One interest of Theorem 1 is that in fact, its proof yields the following
compactness result:



Theorem 1’ (Compactness of blow-up solutions of (1)) Assume that
Q is a convex bounded C*® domain in RN or Q = RY. Consider (un)nen @
sequence of nonnegative solutions of equation (1) such that for some T > 0
and for all n € N, uy, is defined on [0,T) and blows-up at time T. Assume
also that ||u,(0)| g2 (q) is bounded uniformly in n. Then

1
sup(T = 1) 77 |[un (1) | () — & as t — T
neN

and

] 1 41
sup (7 = 77 A (1) (@) + (T = 7TV (0) | v = 0

ast —T.

Remark: The same results can be proved for the following heat equation:
ou
T V.(a(x)Vu) + b(x) f(u), u(0) >0

where f(u) ~ uP as u — 400, (a(x)) is a symmetric, bounded and uniformly
elliptic matrix, b(x) is bounded, and a(x) and b(z) are C*.

Let us point out that this result is optimal. One way to see it is by the
following Corollary which improves the local lower bound on the blow-up
solution given in [8] by Giga and Kohn.

Corollary 1 (Lower bound on the blow-up behavior for equation
(1)) Assume that Q is a convex bounded C* domain in RY or Q = RV,
Then for all nonnegative solution u(t) of (1) such that u(0) € HY(Q) and u(t)
blows-up at time T, and for all ey € (0,1), there exists to = to(ep,up) < T
such that if for some a € Q and some t € [tg,T) we have

1

0 <wu(a,t) <(1—eo)r(T —t) » 1, (8)
then a is not a blow-up point of u(t).

Remark: The result is still true for a sequence of nonnegative solutions u,,
blowing-up at T" > 0 and satisfying the assumptions of Theorem 1’, with a
to independent of n.

Remark: & is the optimal constant giving such a result. The result of [8]
was the same except that (1 — e¢p)x was replaced by €y small and it was
required that (8) is true for all (z,t) € B(a,r) x [T —r2,T) for some r > 0
(no sign condition was required there).



The proof of Theorem 1 relies strongly on the caracterization of all con-
nections between two critical points of equation (3) in L{.. Due to [6], the
only bounded global nonnegative solutions of the stationary problem asso-
ciated to (3) in RY are 0 and x, provided that (N — 2)p < N + 2. Here we
classify the solutions w(y, s) of (3) defined on R" x R and connecting two of

the cited critical points between them, and we obtain the surprising result:

Theorem 2 (Classification of connections between critical points
of (3)) Assume that 1 < p and (N — 2)p < N + 2 and that w is a global
nonnegative solution of (3) defined for (y,s) € RN xR bounded in L. Then
necessarily one of the following cases occurs:
i)w=0 orw=k,

or ii) there exists sg € R such that ¥(y,s) € RN x R, w(y,s) = (s — s0)
where .

p(s) = k(1 +e) »-T. (9)

Note that ¢ is the unique global solution (up to a translation) of

s = T P
p—1

satisfying p — Kk as s — —oo and ¢ — 0 as s — 400.

Remark: This result is in the same spirit as the result of Berestycki and
Nirenberg [1], and Gidas, Ni and Nirenberg [5]. Here, the moving plane
technique is not used, even though the proof uses some elementary geomet-
rical transformations. It is unclear whether the result holds without a sign
condition or not. The assumption w is bounded in L and is defined for s
up to 400 is not really needed, in the following sense:

Corollary 2 Assume that 1 < p and (N —2)p < N + 2 and that w a
nonnegative solution of (3) defined for (y,s) € RN x (—o0,s*) where s* is
finite or s* = 400. Assume in addition that there is a constant Cy such that
Va € RN, Vs < s*, Ey(w(s)) < Cy, where

E,(w(s)) = E(w(. + ae?,s)) (10)
and E is defined in (5). Then, one of the following cases occurs:

i)w=0 orw=k,
or ii) Isg € R such that ¥(y, s) € RN x (—o0,5*), w(y,s) = ¢(s — so) where

pls) = k(1 + )77,



or i) Isg > s* such that ¥(y, s) € RN x (—o0, s*), w(y, s) = V(s —sq) where

W(s) = k(1 — ) 7T,
Theorem 2 has an equivalent formulation for solutions of (1):

Corollary 3 (A Liouville theorem for equation (1)) Assume that 1 <
p and (N —2)p < N + 2 and that u is a nonnegative solution in L> of (1)
defined for (z,t) € RN x (=00, T). Assume in addition that 0 < u(z,t) <

1

C(T —t) » 1. Then u = 0 or there exist Ty > T such that ¥(z,t) €

RY x (=00, T), u(z,t) = k(Ty —t) 71,
Remark: u = 0 or u blows-up in finite time Ty > T'.

The third main result of the paper shows that near blow-up time, the
solutions of equation (1) behave globally in space like the solutions of the
associated ODE:

Theorem 3 Assume that Q is a convex bounded C** domain in RN or

Q =RN. Consider u(t) a nonnegative solution of equation (1) which blows-

up at time T > 0. Assume in addition that u(0) € HY(RYN) if Q = RV,

Then Ve > 0, AC, > 0 such that Vt € [%,T), YV € Q,

u _ |ulP~ | < elulP + C.. (11)
ot

Remark: (11) is true until the blow-up time. Let us point out that the

result is global in time and in space. The same result holds for a sequence

uy, as before (Theorem 1’). For clear reasons, the result is optimal.

Remark: Let us note that the result is still true for equation

ou
ot
where f(u) ~ uP as u — 400, (a(x)) is a symmetric, bounded and uniformly
elliptic matrix, b(z) is bounded, and a(x) and b(z) are C*.
The conclusion in this case is

O b ()| < el )|+ C

= V.(a(z)Vu) + b(x) f(u)

It is unclear whether Theorems 1, 2 and 3 hold without a sign condition.
Remark: v = uP is a reversible equation. Therefore the non reversible
equation behaves like a reversible equation near and at the blow-up time.



Theorem 3 localizes the equation. In particular, it shows that the interac-
tions between two singularities or one singularity and the “regular” region
are bounded up to the blow-up time.

Note that Theorem 3 has obvious corollaries. For example:
If = is a blow-up point, then

- u(x,t) — 400 as (z,t) — (x0,T") (In other words, u is a continuous
function in R of (z,t) € Q x (0,T)).

- dep > 0 such that for all x € B(zo,€¢) and t € (T' — €9, 1), we have
%(m,t) > 0.

Let us notice that theorems 1 and 3 have interesting applications in the
understanding of the asymptotic behavior of blow-up solutions u(t) of (1)
near a given blow-up point zg. Various points of view has been adopted in
the literature ([8], [2], [9], [14]) to describe this behavior. In [12], we sharpen
these estimates and put them in a relation.

In the second section, we see how Theorems 1 and 3 are proved using
Theorem 2. The third section is devoted to the proof of Theorem 2.

2 Optimal blow-up estimates for equation (1)

In this section, we assume that Theorem 2 holds and prove Theorems 1 and
1’, Corollary 1 and Theorem 3. The first three are mainly a consequence of
compactness procedure and Theorem 2. Theorem 3 follows from Theorem
1 and scaling properties of equation (1) used in a suitable way.

2.1 L*™ estimates for the solution of (1)

We prove Theorems 1 and 1’ and Corollary 1 in this subsection.

Proof of Theorem 1: Let u(t) be a nonnegative solution of equation (1)
defined on [0, 7'), which blows-up at time T and satisfies u(0) € H!(Q2). It is
clear that the estimates on w, for all a € Q follow from the estimates on u
by (2). In addition, the estimates on u follow from the estimates on w, for
a particular a € Q still by (2). Hence, we consider a € € a blow-up point of
u and prove the estimates on this particular w, defined by

we(y, ) = e_ﬁu(a +ye 2, T —e®).
Note that we have Va,b € Q, V(y, s) € Dy,

wy(y, ) = wa(y + (b—a)e?, s).



We proceed in three steps: in a first step, we show that w,, Vw, and Aw,
are uniformly bounded (without any precision on the bounds). Then, we
show in Step 2 that blow-up for equation (1) must occur inside a compact
set K C Q and that u, Vu and Awu are bounded in Q\K. We finally find
the optimal bounds on w, through a contradiction argument.

Let us recall the expression of the energy E(w) introduced in (5), since
it will be useful for further estimates:

1 1 1
E a) = 5§ a2 7/ a2 - ap—i—l 12
(w) = 5 [ IVwalPody + 5o [ hualPody = =5 [ walpdy (12

where p is defined in (6) and integration is done over the definition set of w.
By means of the transformation (2), (12) yields a local energy for equation

(1):

2 _N 1 1 r—a
furlw) = 17T E [ER0@P - @)l o
1 2 _N T —a
t oottt P e (13)

Without loss of generality, we can suppose a = 0. We recall that the notation
L> stands for L>°(Dy ).

Step 1: Preliminary estimates on w

Lemma 2.1 (Giga-Kohn, Uniform estimates on w) There ezists a
positive constant M such that Vs > —logT + 1, Vy € Do,

lwo (y, 8)| + [Vwo(y, s)| + |[Awo(y, s)| + [VAwq(t,s)| < M
ow
and |$(?J, s)| < M(1+ |yl).

Let us recall the main steps of the proof:
Since u(0) > 0, we know from Giga and Kohn [8] that there exists B > 0
such that
vVt € [0,T), Ve € Q, |u(x,t)| < B(T —t) »1. (14)
In order to prove this, they argue by contradiction and construct by
scaling properties of equation (3) a solution of

0 = Av+oPinRY
> 0
v(0) > 3



which does not exist if (N —2)p < N+ 2 and p > 1.

The estimate on wy is equivalent to (14).

For sg > —logT + 1 and yo € Dys,, consider W(y',s") = wo(y’ +
yoez,so+s'). Then W (0,0) = wo(yo, s0) and W satisfies also (3). If Yoe
(which is in Q) is not near the boundary, then we have |W(y’,s)| < M for
all (v/,s") € B(0,1) x [—1,1]. By parabolic regularity (see lemma 3.3 in [7]
for a statement), we obtain |[VW (0,0)|+|AW(0,0)|+|VAW (0,0)] < M' =
M'(M). If yoe~ 2 is near the boundary, then lemma 3.4 in [7] allows to get
the same conclusion. Since this is true for all (yo, sp), we have the bound
for Vwg, Awy and VAwy.

The estimate on % follows then by equation (3).

Step 2: No blow-up for u outside a compact

Proposition 2.1 (Uniform boundedness of u(x,t) outside a com-
pact) Assume that Q = RY and u(0) € H'(RY), or that Q is a convex
bounded C*% domain. Then there exist C >0, t; < T and K a compact set
of Q such that ¥t € [t1,T), Vo € Q\K, |u(x,t)|+ |Vu(z, t)|+ |Au(z, t)] < C.

Proof: Case Q =R and u(0) € H*(R"Y): Giga and Kohn prove in [8] that,
uniform estimates on &+ (13) give uniform estimates in LS, on the solution
of (1). More precisely,

Proposition 2.2 (Giga-Kohn) Let u be a solution of equation (1)

i) If for all x € B(x0,6), Ex1—1,(u(ty)) < o, then Yo € B(xy, 2) Vt €
(to';T,T), lu(t, z)| < n(a)(T—t)_ﬁ where n(a) < ca?, 0 >0, and c and 0
depend only on p.

i) Assume in addition that Yz € B(wo,6), |u(®FL, z)] < M. There
exists o9 = oo(p) > 0 such that if o < og, then Vx € B(m0,4) vVt €
(2t LT, u(t,x)| < M* where M* depends only on M, §, T and to.

Proof: see Proposition 3.5 and Theorem 2.1 in [§]. |
Now, since u(0) € HY(RY), we have u(t) € H'(RY) for all t € [0,T).
Therefore, for fixed tg and o < 09, (13), (6) and the dominated convergence
theorem yield the existence of a compact Ko C RY such that Yz € RV \ Ko,
Evirto(ulto)) < o
Hence, ii) of Proposition 2.2 applied to u(. + x1,.) for z; € Ky and with
§ = 1, asserts the existence of a compact K; C R such that Vo € RV\ K7,
Vt € (t0+T T), lu(z,t)| < M*.
Parabolic regularity (see lemma 3.3 in [7] for a statement) implies the
estimates on Vu and Au on Q\K with a compact K containing K.




Case Q is a bounded convex C*® domain: The main feature in the proof
of the estimate on |u(z, )| is the result of Giga and Kohn which asserts that
blow-up can not occur at the boundary (Theorem 5.3 in [8]). The bounds
on Vu and Au follow from a similar argument as before (see lemma 3.4 in

[71)-

Step 3: Conclusion of the proof

The result has been proved pointwise. Therefore, the question is in some
sense to prove it uniformly.

We want to prove that ||wg(s)||z~ — K as s — +oc.

From [7] and [8], we know that |w;(0, s)| — K as s — +o0 if b is a blow-up
point. Since [Jwo(s)||r= > |wo(ae?, s)| = |w,(0, s)|, this implies that

liminf ||wo(s)||Le > K
§—+00

. 15
and lminf [ (s) [z + [ Vuo(s) | + [Aug()p~ 2. 7

The conclusion will follow if we show that
timsup fawo(s)z= + [Vwo()lc~ + [Awo(s)ze <r. (16)

S$——+00

Let us argue by contradiction and suppose that there exists a sequence
($n)nen such that s, — 400 as n — +oo and

nEI—iI-loo lwo(sn)|lLee + ||[Vwo(sn)||Lee + ||Awo(sn )|z~ = k + 3¢9 where €y > 0.

We claim that (up to extracting a subsequence), we have

either  lm |lwo(sp)llze = K+e€o
n—-4oo

or lim ||[Vwo(sn)|lzee = €0 (17)
n—-4oo

or lm |[Awo(sp)|lze = €o.
n—-+4o0o

From Proposition 2.1 and the scaling (2), we deduce for n large enough the
existence of yr(lo), yg) and y,(f) in Dy, such that

lwo(sn) |z = |wo<y,2°)fn>|,
or |Vuwo(sa)llze = |[Vuwo(yl,sn)l, (18)
or |Awg(sa)llze = |Aw(ys, sn)].

10



Let y,, = yq(f ) where i is the number of the case which occurs. Since Yn €
Dy, , (4) implies that y,e~*»/? € Q. Therefore, we can use (2) and define

for each n € N

vn(y7 S) = wyne*Sn/Q (y7 s+ Sn)
Stsn S+sn
= e p-1 u(ye_ +2 + yne_sn/2’ T — 6_(8+S"))

= wo(y +yne? s+ 5,) (19)

We claim that (v,) is a sequence of solutions of (3) which is compact in
C3? (RN x R). More precisely,
Lemma 2.2 (v,)nen 18 a sequence of solutions of (3) with the following
properties:

i) lim [v,(0,0)] =K+ € or lim |Vv,(0,0)] =€

n——+o0o n—-+00

or lim |Av,(0,0)| = €.

n—-+4o0o

it) YR > 0, Ing € N such that Yn > ny,
- vn(y, 8) is defined for (y,s) € B(0,R) x [-R, R],
- n, > 0 and ||vp|| oo (B(0,R)x [~ R,R)) < B where B is defined in (14).
- Im(R) > 0 such that vl cso,r)x [~ rR) < M(R)-

Proof. i) vy satisfies (3) since w, ,—s,/2 does the same. From (19), (17) and
(18), we obtain 7): nl—1>I—|r—loo |vn,(0,0)] = Kk + € or nll)riloo |V, (0,0)] = e
or nEI—il—loo |Avy, (0,0)] = €.

i) Let R > 0.

If Q = RV, then it is obvious form (19) that v, is defined for (y,s) €
B(0,R) x [-R, R] for large n.

If ©Q is bounded, then we can suppose that up to extracting a subse-
quence, ype /% converges to Y, € Q as n — 4oo0. In fact yo € Q.
Indeed, since u(ngo)e_sn/Q,T —e %) = ePSTnlvn(O, 0) — 400 as n — +oo (or
|Vu(y£1)e_8"/2,T —e )| = es"(ﬁ+%)|VUn(0, 0)| — o0, or
\Au(yg)e_S”/Q,T —e )| = es”(ﬁﬂ)\Avn(O, 0)] — +00), in all cases, Yoo
is a blow-up point of u. Therefore, Step 2 implies that y., € K and that
B(Yoo,00) C 2 for some §p > 0. Together with (19), this implies that v, is
defined for (y,s) € B(0,R) x [-R, R] for large n.

From (19), (14) and the fact that v > 0, it directly follows that v, (y, s) >
0 and [|vp|| oo (50, R)x [~ R,R) < B- )

From lemma 2.1 and (19), it directly follows that V(y,s) € B(0,R) X
[= R, R), [vn(y, )|+ |Voa(y, s)|+|Ava(y, 8)|+ [V Ava(y, s)| < M and |Gz <

11



M x(14+R). Since w > 0, parabolic estimates and strong maximum principle
imply that [|vallcs(p(o,r)x|—r,r) < M(R) for some m(R) > 0. Just take
m(R) =M x (1+R

Now, using the compactness property of (v,,) shown in lemma 2.2, we
find v € C?(RY x R) such that up to extracting a subsequence, v,, — v as
n — +oo in C2 (RY x R). From lemma 2.2, it directly follows that

i) v satisfies equation (3) for (y,s) € RV x R

ii) v> 0 and [[v]| poogrxp) < B

iii) |[v(0,0)| = k + € or |Vv(0,0)| = € or |Av(0,0)| = €p with ¢y > 0.

By Theorem 2, i) and i) imply v =0 or v = k or v = ¢(s — sg) where
o(s) =k(l+e* )_P_il In all cases, this contradicts ii). Thus, Theorem 1 is
proved. |

Proof of Theorem 12 The proof of Theorem 1’ is similar to the proof of
Theorem 1. Let us sketch the main differences.

Step 1: One can remark that a uniform estimate on E(wy, 4(s0)) where
so = —log T' is needed. Since ||ugl| 2(q) is uniformly bounded, we have the
conclusion.

Step 2: One can use a uniform version of Giga and Kohn’s estimates,
as they are stated (for example) in [11].

Step 3: Same proof.
Proof of Corollary 1. Let us prove Corollary 1 now. We argue by con-

tradiction and assume that for some ¢y > 0, there is ¢, — T and (ay), a
sequence of blow-up points of u in €2 such that

¥n €N, 0 < ultn, tn) < (1— e)i(T —ty) 7 1.

Let us give two different proofs:

Proof 1: Consider the following solution of equation (3):

vn(y, $) = wq, (y,s — log(T — ty,)).

From Proposition 2.1, a,, € K, since it is a blow-up point of u. As before,
we can use a compactness procedure on v, to get a nonnegative bounded
solution v of (3) defined for (y, s) € RY xR such that |v(0,0)| < (1—¢p)x and
v, — v in CF,.. Therefore, Theorem 2 implies that v = 0 or v = (s — s0)
for some s € R. In particular, E(v(0)) < E(k). Since E(v,(0)) — E(v(0))
as n — +o00, we have for n large E(w,, (—log(T —t,))) = E(v,(0)) < E(k),

12



and in particular a,, can not be a blow-up point of u (we have from [6], for
any blow-up point a of u, E(wy(s)) > E(k) for all s > —logT). From this
fact, a contradiction follows.

Proof 2: It is a more elementary proof based on Theorem 3. Since
ap is a blow-up point and that the blow-up set is closed and bounded (see
Proposition 2.1), we can assume that a,, — a where a is a blow-up point.

We know from Theorem 3 that for some Cég, we have Vo € Q, Vt €

2
0w ) w0 (e.t) < Dpute )+ C g (20)

—

(oo, T) (see next subsection for a
). Let n > 0 such that

In particular, u(z,t) — +o0 as (z,t) —
proof of Theorem 3 and this fact(22)-(23

~—

V(z,t) € B(0,n) x (T'—n,T), C2 < ?up(x,t). (21)

€2

_0

2
For large n, a, € B(ac,n) and t, € [T —n,T). Therefore (20) and (21)
yield

Vt € [tn, T), %(an,t) < (1 —I—Gg)up(an,t).

1
Since 0 < u(an,tn) < k(1 —€o)(T —t,) P~1, we get by direct integration:
Vt € [tn, min(T,T*(ep))),

T—1 Tp-1
0< o) < n{ Tty — ()=t |
with T*(eg) = t,, + WO)T(I?W > T if ¢y < €1(p) for some positive €1(p).

Thus, a, is not a blow-up point and a contradiction follows.

2.2 Global approximated behavior like an ODE

We prove Theorem 3 in this subsection. It follows from Theorem 1 and
propagation of flatness (through scaling arguments) observed in [14].

Let us first show how to derive the consequences of Theorem 3 announced
in the introduction:
If ¢ is a blow-up point of u(t), then

u(z,t) — 400 as (z,t) — (x9,7T) (22)
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and Jep > 0 such that V(z,t) € B(zg,€9) x (T — €0, T), %(az,t) > 0. (23)
Proof of (22) and (23):
From Theorem 3 applied with € > 0, there exists C. such that V(z,t) €

Q x [%,T)
—(z,t) > (1 — e)uP(z,t) — C.. (24)
Let A be an arbitrary large positive number satisfying
(1—€)AP —C. > 0. (25)

From the continuity of u(x,t), there exist e; > 0 and ez > 0 such that
Va € B(xg,€1),
u(z, T — ez) > A. (26)

From (24) and (25), we have Yz € B(xg,€1), %(aj,T —€) > 0. Now
we claim that V(z,t) € B(xg,€e1) x (T — €2,T), u(z,t) > A (which yields
(22) and (23) also, by (24) and (25)). Indeed, if not, then there exists
(z1,t1) € B(xp,€1) X (T —ez,T) such that u(zq,t1) < A. From the continuity
of u, we get ty € (T — €2,11] such that V¢ € (T — €a,t2), u(x1,t) > A and
u(x1,te) = A. From (24) and (25), we have Vt € (T — €9, t2), %(azl,t) > 0,
therefore, u(z1,t2) > u(xi,T — €2) > A by (26). Thus, a contradiction
follows, and (22) and (23) are proved.

We now prove Theorem 3.

Proof of Theorem 3. Let us argue by contradiction and suppose that for
some €y > 0, there exist (z,,t,)nen a sequence of elements of Q x [%,T)
such that Vn € N,

|Au(zy, tn)] > €o|u(xn, t)|P + n. (27)

Since [[Au(t)| pe(q) is bounded on compact sets of [£,T), we have that
t, — T as n — +o0o. We can also assume the existence of o, € ) such that
Ty — Too @8 M — +00. Indeed, if not, then either d(x,,dQ) — 0 (if Q is
bounded) or |z,| — 400 (if @ = RY) as n — 400, and in both cases, (27)
is no longer satisfied for large n, thanks to Proposition 2.1.

We claim that x, is a blow-up point of u. Indeed, if not, then parabolic
regularity implies the existence of a positive § such that
u(., )l w200 (Bz,s)) < C for some positive C', which is a contradiction by
(27).

Theorem 1 implies that u(zy, tn)(T—tn)P+1 is uniformly bounded, there-
fore, we can assume that it converges as n — +oo.
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Let us consider two cases:

- Case 1: w(@p,tn)(T —t,)P T — kK > 0 ((xn,t,) is in some sense in the
singular region “near” (x,7T)). From (27), it follows that |[[Au(ty)||pe >
|Au(zy, tn)| > € (%l)p (T - tn)_P%l with ¢, — T', which contradicts Theo-
rem 1. )

- Case 2: u(zp,tn) (T —ty)P~T — 0 ((@y,ty) is in the transitory region be-
tween the singular and the regular sets).

Let us first define (t(xy,)), such that t(z,) < t,, t(z,) — T and

1

WX, t(xp)) (T — t(xy))P~T = Ko (28)
p+1
where kg € (0, k) satisfies Vt > 0, Va € €, ga7t(/£0t_1’+1) < ﬁiﬂ_%}ﬁ <%

and o is defined in Proposition 2.2.

Step 1: Existence of ¢(z,)
1
Since z is a blow-up point of u, thn% U(Too, t)(T — t)P—1 = k. It follows
that for any 6 > 0 small enough, there exists a ball B(z,0’) such that

1
Vo € B(2oo,d'), 67 Tu(x, T —§) > 3’3#. Since x, — T as n — +00, this

implies that
K+ Ko

Vn > nq, 5P+1u(:1:n,T—5) > 5

(29)

for some n; = ni(0) € N. Since u(zp,t,) (T — tn)ﬁ — 0, we have the
existence of ts(x,) € [T — 6,t,] C [T — 6,T) such that u(zy,ts(x,))(T —

1
ts(x,))P~T = Ko, for all n > ny(d), where ny(d) € N. Since 0 was arbitrarily
small, it follows from a diagonal extraction argument that there exists a
subsequence t(z,) — T as n — +oo such that t(z,) < ¢, and

W@, H(n)) (T — t(wn)) 7T = Ko.

Now, we claim that a contradiction follows if we prove the following
Proposition:

Proposition 2.3 Let

On(6,7) = (T = t(wn)) 7 Tu(n + /T = t(wn), t(an) + 7(T — t(x))). (30)

Then, vy, is a solution of (1) for T € [0,1), and there ezists ny € N such that
Vn > ng,
vr € [0,1), [Ava(0,7)] < Flon(0,7)P" (31)
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Indeed, from (31) and (30), we obtain: Vn > ng, Vt € [t(xy,),T),
(141
Ay, )] = (T = t(a) G| Agv, 0, 7(t, )|
< LT = () 7T [0a (0, 7(E0)P = Flu(wn, )P with 7(t,n) = =22,
which contradicts (27), since t,, > t(zy,). Thus, Theorem 3 is proved.

Step 2: Flatness of v,

In this Step we prove Proposition 2.3.

We claim that the following lemma concludes the proof of Proposition
2.3:

Lemma 2.3 i) Yoy > 0, VA > 0, Ing(dp, A) € N such that Yn > ns(dy, A),
for all |§] < A and T € [0 ,4] [vn(€,0) — Ko| < do, [Vevn(&,7)] < 6o and

[Agun(€,7)] < do.
ii) Ye > 0, VA > 0, 3ng(e, A) € N such that Vn > ng, Y7 € [0,1), for
€] < 4. on(&,7) = 0(r)] < € [Voa(&,7)] < € and |Avy(§,7)] < € where
1

. .\ Pl Tp1 . do AP oith 4
(1) =k (—) -7 is a solution of 57 = 0P with v(0) = Kg.

)
Indeed, if € is small enough and n is large enough, then V7 € [0,1), v,,(0,7) >
50(0) = 5 and |Av,(0,7)] < ()" § < $loa(0,7)PP.

Proof of lemma 2.3: i) Let §p > 0 and A > 0. From (28) and (30), we
have: for all [¢| < A and 7 € [0, 3]:
UH(O,O) = Ko,

[0n(£,0) = 0 (0,0)| < (T = t(xn)) 71 "2 Al Vuu(t(2n) | 1 2
Von(&,7) = (T = H(n)) 712V (20 + &3/T = 1(@n), twn) + 7(T = ()
= ()7 <t<xn> < - t( P x
Vu (a:n +&VT — t(xn),t — t(xn))) and
Avp(€,7) = (T = t(w)) 7T (mn + €T = H@n), Hwn) + 7(T — t(zy)))
= ()7 (T = (o) + 7 (T = )T
Au(mn—Ff\/ —t(zp), t(zy) + 7(T —t(:cn)))

SincelT <3, t(zn) — T as n — +o0, and (T — t)P_ilJr%HVu(t)HLoo(Q) +
(T — t)ﬁ—‘rlHAu(t)HLoo(Q) — 0 ast — T (Theorem 1), ¢) is proved.

i1) From 4) and continuity arguments, it follows that for all |£] < A,
Ee.1 (vn(0)) < 2&¢1(ko) < 0¢ for n large enough, by definition of xg. There-
fore, from Proposition 2.2 (applied with 6 = 1 and using translation invari-
ance), we have V7 € [3,1), V|¢| < 4, [v,(&,7)| < M (p).
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By classical parabolic arguments, we get

Vr € [3,0), VIel < 2, fonl + [Vl + [Aval < M) (32)

Now, using i), (32) and classical estimates for the heat flow, we get for

all € > 0: V[¢| < %, V1 € [0,1), |[Vun(&,7)| < € and |Av,(§,7)] < € if
n > ns(e, A).

Since v, is a solution of equation (1), combining this with 7) and ODE

estimates yields for all € > 0: V|¢| < 4, ¥r € [0,1), [v,(€,7) — 0(7)| < € if

n > ng(e, A). This concludes the proof of ii). [ |

3 Classification of connections between critical

points of equation (3) in L.
We prove Theorem 2 and Corollaries 2 and 3 in this section.

We first prove Theorem 2, and then we show how Corollaries 2 and 3
can be deduced from Theorem 2.

Proof of Theorem 2: We assume that 1 < p and (N —2)p < N + 2,
and consider w(y, s) a nonnegative global bounded solution of (3) defined
for (y,s) € RN x R. Our goal is to show that w depends only on time s.

We proceed in 5 steps.

In Step 1, we show that w has a limit w4, as s — F00, where wi is
a critical point of (3), that is wie = 0 or Wi = k. We focus then on the
non trivial case, that is w_o =k and wys = 0.

In Step 2, we investigate the linear problem around x, as s — —o0, and
show that w would behave at most in three ways.

In Step 3, we show that among these three ways we have the situation
w(y, s) = @(s — sp) with ¢(s) = k(1 + es)_P_il. We then show (respectively
in Step 4 and in Step 5) that the two other ways actually can not occur, we
find in fact a contradiction through a blow-up argument for w(s) using the
geometrical transformation:

a — wqy defined by we(y, s) = w(y + ae?, s) (33)
(w, is also a solution of (3)) and a blow-up criterion for equation (3).

Step 1: Behavior of w as s — +o0

This step can be found in Giga and Kohn [6]. The results are mainly
consequences of parabolic estimates and the gradient structure of equation
(3). Let us recall them briefly. We first restate lemma 2.1 of section 2:
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Lemma 3.1 (Parabolic estimates) There is a positive constant M such
that ¥(y,s) € RN x R,

0
0s)] + [Vawly. )|+ | Ay, o)| < M and |52 (0.5)] < M(1+ ]y

Lemma 3.2 (Stationary solutions) Assume p < (N + 2)/(N — 2) or
N < 2. Then the only nonnegative bounded global solutions in RN of

1
0=Aw— Ey.Vw — ]% + Jw|Ptw (34)
are the trivial ones: w =0 and w = k.

Proof: The following Pohozaev identity can be derived for each bounded
solutions of equation (3) in RY (see Proposition 2 in [6]):

p—1
(N 2= p(N = 2)) [ [Vulpdy+ 25~ [ yITulpdy = 0.
Hence, for (N — 2)p < N + 2, w is constant. Thus, w =0 or w = k. |

Lemma 3.3 (Gradient structure) Assumep < (N+2)/(N—2) or N <
2. We define for each w solution of (3)

_ 1 2 1 2 1 p+1
B(w) =5 [ IVoltpdy+ 5o [ ulpdy lwltpdy (35)

p+1Jr
e lul?/4
where p(y) = A (36)
Then, Vs1,s2 € R,
52 ow |2
| ] |Fe| pdvds = Blu(si) - Bw(s) (37)
s1 JrN | Os

Outline of the proof: (see Proposition 3 in [6] for more details).
One may multiply equation (3) by %—15,0 and integrate over the ball
B(0,R) with R > 0. Then, using lemma 3.1 and the dominated conver-

gence theorem yields the result. |

Proposition 3.1 (Limit of w as s — +00) Assumep < (N +2)/(N —2)

or N < 2. Let w be a bounded nonnegative global solution of (3) in RN*1,

Then w4 (y) = liIJP w(y, s) exists and equals 0 or k. The convergence is
S—T 00

uniform on every compact subset of RN . The corresponding statements hold
also for the limit w_o(y) = lim w(y,s).
S——00
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Outline of the proof: (see Propositions 4 and 5 in [6] for more details).

Let (s;) be a sequence tending to +oo, and let w;(y,s) = w(y,s +
sj). From lemma 3.1, (w;) converges uniformly on compact sets to some
Wioo(y, s) and Vw; — Vw,o a.e. Assuming that s;4q —s; — 400, one can
use lemma 3.3 to show that w; does not depend on s. Therefore, w4 =0
Or Wioo = K by lemma 3.2. The continuity of w then asserts that w, ., does
not depend on the choice of the subsequence (s;). The analysis in —oo is
completely parallel. |

According to (37) (with s; — —oo and s9 — +00), there are only two
cases:
- E(w_oo) — E(w4oo) = 0: hence, 8—1;’ = 0. Therefore, w is a bounded global
solution of (34). Thus, w = 0 or w = K according to lemma 3.2. This case
has been treated by Giga and Kohn in [6].
- B(w_o0) — E(wjoo) > 0: since E(k) = (3 —Iﬁ)/@pﬂ [ pdy > 0= E(0), we
have (W_oo, Wioo) = (K,0). It remains to treat this case in order to finish
the proof of Theorem 2.

In the following steps, we consider the case

(W_00, Wioco) = (K, 0).

Step 2: Classification of the behavior of w as s — —o0:
Since w is globally bounded in L*° and w — k as s — —oo, uniformly
on compact subsets of RY, we have lim |w — &|| rz = 0 where Lf) is the
S§——00

L2-space associated to the Gaussian measure p(y)dy and p is defined in (36).
In this part, we classify the Lf, behavior of w — k as s — —oo. Let us

introduce v = w — k. From (3), v satisfies the following equation: V(y, s) €
]RN+1,

ov
35 = Lv+ f(v) (38)

1
where Lv = AU—§y.VU+U and f(v) = [v+&|P"H(v+rK)—KP—prP~ v, (39)

Since w is bounded in L*, we can assume |v(y, s)| < M, and then |f(v)| <
Cv? with C = C(M).
L is self-adjoint on D(L) C Lf). Its spectrum is
spec(L) = {1 — %\m € N},

and it consists of eigenvalues. The eigenfunctions of £ are derived from
Hermite polynomials:

19



o N=1:

All the eigenvalues of £ are simple. For 1 — 5 corresponds the eigen-
function -
2 m!
h = —  _(—1)ym 40
m(Y) > n!(m_%)!( )"y (40)
n=0

hy, satisfies [ hyphp,pdy = 2"n!d,,,,. Let us introduce
km = hm/”hmH%g' (41)

o N >2:
We write the spectrum of £ as

mi+...+mpy

spec(L) = {1 — 5

|mq,...,mn € N}
For (my,...,my) € N the eigenfunction corresponding to
1 _ mi+...+my iS
2
Yy — h‘ml (yl)“'th (yN)7
where h,, is defined in (40). In particular,

*1 is an eigenvalue of multiplicity 1, and the corresponding eigenfunc-
tion is
Hy (y) =1, (42)

*% is of multiplicity IV, and its eigenspace is generated by the orthog-
onal basis {H1;(y)|t = 1,..., N}, with Hy ;(y) = h1(y;); we note

Hy(y) = (H11(y), - Hin (), (43)
*0 is of multiplicity w, and its eigenspace is generated by the or-

thogonal basis {H27Zj(y)|z,j = 1, ...,N,i S ]}, with Hg,ii(y) = hg(yi),
and for 7 < j, Ho;j(y) = h1(yi)hi1(y;); we note

Hy(y) = (Ha,i5(y),i < j). (44)

Since the eigenfunctions of £ constitute a total orthonormal family of
Lg, we expand v as follows:

2
v(y,s) = Y vm(s).-Hm(y) +v_(y,s) (45)

m=0
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where

vo(s) is the projection of v on Hy,

v1,i(s) is the projection of v on Hy;, vi(s) = (v1,i($),...,v1,n(s)), H1(y) is

given by (43),

v2,4(s) is the projection of v on Hyj, i < j, va(s) = (v2,45(s),% < j), Ha(y)

is given by (44),

v_(y,s) = P_(v) and P_ the projector on the negative subspace of L.
With respect to the positive, null and negative subspaces of £, we write

U(Q? 5) = U+(y75) +Unull(y75) +U—(y75) (46)

where . (y,5) = P+(v) = Xk, v (5). Hin (3),
Unatt(Y, 8) = Pru(v) = wva(s).Ha(y), Py and P,y are the Lg projectors
respectively on the positive subspace and the null subspace of L.

Now, we show that as s — —oo, either vg(s), v1(s) or va(s) is predomi-
nant with respect to the expansion (45) of v in L%. At this level, we are not
able to use a center manifold theory to get the result (see [3] page 834-835
for more details). In some sense, we are not able to say that the nonlinear
terms in the function of space are small enough. However, using similar
techniques as in [3], we are able to prove the result. We have the following:

Proposition 3.2 (Classification of the behavior of v(y, s) as s —» —c©
) As s — —o0, one of the following situations occurs:

i) [o1(8) + llvnai (v, $)l L2 + llv—(y, $)ll 2 = o(vo(s)),

ii) vo($)] + llvnu(y, s) £z + llv-(y; $)ll Lz = o(Jvi(s))),

iii) 1[04 (. ) 122 + 10— (3 )l = 0([vmate (s 9)122)-

Proof: See Appendix A.

Now we handle successively the three cases suggested by proposition 3.2
to show that only case i) occurs.

In case i), we end up to show that w(y,s) = ¢(s — sg) for some sy € R,
where ¢ is defined in (9). In cases i) and #ii), we show that the solutions
satisfy through an elementary geometrical transformation a blow-up con-
dition for equation (3) considered for increasing s, which contradicts their
boundedness, and concludes the proof of Theorem 2.

Step 3: Case i) of Proposition 3.2: Jsy € R such that w(y,s) =
¢(s — s0)

Proposition 8.3 Suppose that [v1(s)| + [vnua(y. 9z + o (,9)5 =
o(vo(s)) as s — —oo, then there exists so € R such that:
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i) Ve >0, vo(s) = —557€" % + 0(e=9%) as s — —o0,

i) V(y,s) € RVt w(y, s) = p(s — s9) where p(s) = k(1 + es)_P_il.

Remark: This proposition asserts that if a solution of (38) behaves like a
constant independent of y (that is like vg(s)), then it is exactly a constant.

Proof: i) See Step 3 of Appendix A and take sg = — log(—@).

We remark that we already know a solution of equation (38) which be-
haves like 7). Indeed, ¢(s — sg) — k = (p(s — s9) — K)ho is a solution of (38)
which satisfies

o(s —s9) — k= _Lles—so +0(e?79%) as s — —o0.
p J—
From a dimension argument, we expect that for each parameter, there is at
most one solution such that:
K Ss—S0
~———e¢ as s — —oo.
vo(s) T -

(if for example, center manifold analysis applies). We propose to prove this
fact.

In other words, our goal is to show that

V(y, 5) € RN+17U(y7 5) = 90(8 - 30) - K.

Since (38) is invariant under translations in time, we can assume so = 0
without loss of generality.
For this purpose, we introduce

Viy,s) =v(y,s) — (e(s) — k) = wly,s) — @(s). (47)
From (3), V satisfies the following equation:
ov
— = (L+1(s)V+F(V)
s
Where E = A — %yv + 1, Z(S) = —% and

F(V) = |p+V [P~ p+V) =P —peP~ V. Note that Vs < 0, | (V)| < C|V|?
where C = C(M) and M > ||v||fe.
We know from Step 3 in Appendix A that

Vo(s)l + [Vi(s)] = O(e® ), [Viuan() 12 = o(e®) as s — —oc.

The following Proposition asserts that ¥V = 0, which concludes the proof of
Proposition 3.3:
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Proposition 3.4 Let V be an L™ solution of

%—Z = (L+Us)V +F(V)

defined for (y,s) € RY x R such that V. — 0 as s — 0o uniformly on
compact sets of RN,

Vo(s)| + [Vi(s)| = O(e*~9*) and Vo (s)l 12 = o(€®) as s — —oc.
Then V = 0.

Proof: see Appendix B.

Step 4: Irrelevance of the case where v;(s) is preponderant
In this case i7) of Proposition 3.3, we use the main term in the expansion
of v(s) as s — —oo to find ag and sg such that

[ o s0p(w)dy > (15)

where wyg, is defined in (33). Since w > 0, we find that (48) implies that
W, (which is also a solution of (3)) blows-up in finite time S > s¢ (and so
does w), which contradicts the fact that w is globally bounded. It is in fact
mainly the only place where the hypothesis

w >0
is used. More precisely, let us state the following Proposition:

Proposition 3.5 (A blow-up criterion for equation (3)) Consider
W >0 a solution of (3) and suppose that for some sg € R,
J Wy, so)p(y)dy > [ kpdy = k. Then W blows-up in finite time S > s.

Proof: 'We argue by contradiction and suppose that W is defined for all
s € [sg,+00). If V.=W — k, then V satisfies equation (38). Let us define

() = [ V(. 9p(w)dy.

Integrating (38) with respect to pdy, we obtain

4(s) = 20(s) + [ £(V(y,5))pdy
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where f(x) = (k+2)P — kP — pP~ 1z for Kk +2 > 0.

It is obvious that f is nonnegative and convex on [—k,+00). Since W =
k+V >0,p>0and [pdy =1, we have the following Jensen’s inequality:

[ 1V @Dy = £ V. s)pdy) = FCals).

Therefore,
20(s) = 20(s) + f(20(s)). (49)

Since f(x) > 0 for x > 0 (f is strictly convex and f(0) = f/(0) = 0) and
20(sg) > 0 by the hypothesis, by classical arguments, we have Vs > s,
2p(s) > 0, therefore, Vs > sg, z0(s) > 0. By direct integration, we have

Vs > 50,
z20(s)  dg o dx
5 — 50 < / - = / -
20(s0) f(z) 20(s0) f(z)
Since ﬁ ~ R 88 s — 400, a contradiction follows and Proposition 3.5 is
proved. |

Proposition 3.6 (Case where vi(s) is preponderant) Suppose that
00 ($)] + [[vnun (y; $)l| Lz + lv—(y, 5)ll2 = o(Jvi(s)]), then:

i) 3C1 € RN\{0} such that vo(s) ~ B|Ci|*se® and vi(s) ~ C1e®? as
§ — —00.

i) Jag € RN, Jsg € R such that [we,(y,s0)p(y)dy > K where wg,
introduced in (33) is a solution of equation (3) defined for (y,s) € RY x R
satisfying
||wao||L°°(]RN><]R) < B.

From Proposition 3.5, 4i) is a contradiction.
Remark: w, has a geometrical interpretation in terms of w(y, s). Indeed,
from w(y, s), we introduce u(x,t) (as in (2)) defined for (x,t) € RV x (—o0,0)
by:
Y

x = s s = —log(—t), u(z,t) = (—t)_P_ilw(y,s).

Now, if we define w,(y, s) from u(x,t) by (2) as

v = yj__t s = —log(—t), Wa(y,s) = (—)7 Tu(z,1),

then, W, = w,.

24



Proof of Proposition 3.6: i) follows from Step 3 in Appendix A.

Therefore, we prove ii). It is easy to check that w, satisfies (3). More-
over, from (33) we get |[wqlpoo@nxr) = |wl|poo@yxr) < B. We want to
show that there exist a € RY and sg € R such that [ wq(y,so)p(y)dy > .
From (33), we have:
Jwaly, s)pdy = [ w(y + ae™’?, s)pdy.
Let us note o = ae®2. The conclusion follows if we show that there exist
s0 € R and a(sg) € RY such that [w(y + a(so), so)pdy > k.

For this purpose, we search an expansion for [w(y+a, s)pdy as s — —oo

and o — 0.
_ly=al® 0\2

Jwly +a,s)pdy = [w(y,s)p(y — )dy =k + [v(y, s) Gwrdy
= ke [oly.s)p(y)e Py

— e oy, $)nly ) (1+ %+ 22 1 — ©)eSH de) dy
—ﬂ+(1+0(\a| ) (vo(s) + awvi(s) + (1))

where (1) = =% [ dyo(y, s)p(y) 148" [ de(1 - €)eF.
Using Schwartz’s inequality, we have

(1< (ol i) (1 dy =8 plo) (7 dsta - 9e))

1/2

lof? 4 1 P! 2\ /2
< Io(e)lag x 5 ( 1 dvlyl*ot) (13 de1 - ')

al? 1/2
< los)llzz x 55 (S dylyl*pw)el?) " = Cla|v(s)] 2.
Therefore, using the fact that ||v(s)\|L§ ~ 2lv1(s)| = O(e*/?) and i), we
get:
[w(y + a, s)pdy = k + vo(s) + a.vy(s) + O(|af?e/?)
= K + 2|Cy|2se® + o(se®) + a.Cre®/? + of|ale®/?).

Now, if we make a = a(s) = —%% and take —s large enough, then
Jw(y + a(s),s) — k > 2a(s).Cre¥/? = 5/2 —|C1| > 0, and the existence of
ap and sg is proved.

This concludes the proof of Proposition 3.6. |

Step 5: Irrelevance of the case where v3(s) is preponderant

As in the previous part, we use the information given by the linear theory
at —oo to find a contradiction in the case where iii) holds in Proposition
3.2.

Proposition 3.7 (Case where vs(s) is preponderant) Assume that
Jos (@ )ls + No- (9 5)123 = oo (4, 5) | 3), then:
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i) there exists 6 > 0, k € {0,1..., N — 1} and @ an orthonormal N x N
matrix such that

Unull(ya S) = yTA(S)y - 2tTA(S)

where A(s) = —JI;AO—FO(

%z@(hgk0>Ql

and In_y is the (N — k) x (N — k) identity matriz. Moreover,

ool = X 0 (k). o) = Oy an o) = 0%

i) Jag € RY, 3sg € R such that [wa,(y,s0)p(y)dy > k where wg, defined
in (33) is a solution of equation (3) satisfying ||waq || oo @N xr) < B-

m) as s — —oo,

From i) and Proposition 3.5, a contradiction follows.

Proof of i) of Proposition 3.7

The first part of the proof follows as before the ideas of Filippas and
Kohn in [3]. Then, we carry on the proof similarly as Filippas and Liu did
in [4] for the same equation when the null mode dominates as s — +oo.
Since the used techniques are the same than in [3] and [4], we leave the
proof in Appendix C.

Proof of ii) of Proposition 3.7

We proceed exactly in the same way as for the proof of i) of Proposition
3.6. w, satisfies equation (3), and the L> bound on w, follows as before.

By setting o = ae®/2, the proof reduces then to find sg and a = a(sg)
such that [w(y + a(so), so)pdy > k.

For this purpose, we search an expansion for [w(y+a, s)pdy as s — —oo

and o — 0.
ly—e? a\Q

fw(y+a S)pdy = Jw(y,s)p(y — )dy =k + [v(y, s) wrdy

—rte 4f< $)py)e s dy
5

a.y)? a.y)3 .y
—kte (y,)p(y) (1+ %2 + O 4+ G0 (1 - €)% dg ) dy.
We write
/w(y+a,s)pdy:ﬁ+(f)+(ff), (50)
where

2
Y

(1) = &5 (00(9) + a1 (9) +e~ 5 J oty s)oly) S f3 de(1 — €%

ENC
and (11) = 3¢~ [ o(y, 5)(ay)?ply)dy.
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From i) of Proposition 3.7 and Schwartz’s inequality, we have

C . alef

(D= 5 +C5 (51)

s

Since v = v_ + Upyy + vy = V_ + Upyy + 1.y + vo, we have from the
orthogonality of v_ and vy + v4:

(1) = 25 [ oy, s)(y)2pdy

2 |

=5 (vo()JXazz “py +v1(s). [ ylawy)®pdy) +
|2
= v0(5)0(Jaf?) + E?JTQN)—WMWMM%@
o2 _lof?
= 0 ({8) + 552 T (7 Aoy — 2t Ao) ()2 pdy
for some § > 0, according to i) of Proposition 3.7, with

Ao=Q<IN0’“ 0)@‘

With the change of variable y = Q 7'z (Q is an orthonormal matrix) we
write:

(1) =0 ({85) + =

therefore,

2
\

EH

”k‘

f vnull(a'y)zpdy

\aQ

N—
Z 22— 2) x (Qav.2)*p(2)dz,

i o !
4p| g/z - 2)(Qa.2) pdz+0<‘ |1+5>+O<W>. (52)

Gathering (50), (51) and (52), we write:
Jw(y + o, s)pdy

al? al?
— 4p]s Z/z —2)(Qa.2)? ,odz+0( )+O<|l’1’+5>+0<u>.

Now, if we take o = a(s) = —+zQ 'e! where e! = (1,0, ...,0), then

‘S|1/4

K 1

If we take —s large enough, and a(s) = e~%/2a(s), then

/w(y + a(s)e’’?,s) > k.
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This concludes the proof of i) of Proposition 3.7 and the proof of The-
orem 2.

We now prove Corollaries 1 and 2:

Proof of Corollary 2:

We consider w a nonnegative solution of (3) defined for (y,s) € RV x
(—00, s*) where s* € RU {+o0}. We assume that there is a constant Cj
such that

Va e RN, Vs < s*, E,(w(s)) < Co (53)

where F, is defined in (10).

Through some geometrical transformations, we define below 0, a solution
of (3) defined on RY x R, which satisfies the hypotheses of Theorem 2. Then,
we deduce the characterization of w from the one given in Theorem 2 for w.

Let us define u(t) a solution of (1) by:

€T 1

v —log(=t), u(z,t) = (=t) »Tw(y,s) (54)

where (z,t) € RY x (—o0,T*) with T* = —e™*" if s* is finite and T* = 0 if
s* = 400. Then we introduce w a solution of (3):

¥ = e s = —log(I" — 1), (y,5) = (T" ~ )7 Tu(a,t)  (55)

defined for (y, s) € RY x R. We have then ¥(y, s) € RY x (—o0, s*),

Y
V14 T*es

We claim that @ € L®(RY xR). Indeed, from (53), (54) and 7) of Proposition
2.2, we have V(z,t) € RN x (—o00, T*), Ju(z,t)| < M(CO)(T*—t)_P_il. Hence,
(55) implies that V(y, s) € RY x R, |w(y, s)| < M(Cp).

Since w is nonnegative, w is also nonnegative, and then, by Theorem 2
we have:
either w =0, or w = kK

w(y,s) = (1+ T*es)_v_ilzi;( ,s —log(1 4 T"e%)). (56)

or w(y,s) = ¢(s — sp) for some sp € R, where p(s) = x(1 + es)_zﬁ.
Therefore, by (56), we have:

P |
either w =0, or w(y,s) = k(1 —e’~ %) »— 1T
1

or w(y,s) = (1— es_s*)_z’%/ﬁ (1 + exp(s — log(1 — e*~%" — 30))) P

1

=K (1 +ef(e™%0 — e_s*)) T
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Since sg is arbitrary in R, this concludes the proof of Corollary 2.

Proof of Corollary 3:

Let u(z,t) be a nonnegative solution of (1) defined for (z,t) € RV x
(—o0,T) which satisfies |u(z,t)| < C(T — t)_P+1. We introduce w(y, s) =
wo(y, s) where wy is defined in (2). Then, it is easy to see that w satisfies all
the hypotheses of Theorem 2. Therefore, either w = 0 of there exists tg > 0
such that V(y,s) € RN w(y,s) = x(1 + toes)_ﬁ. Thus, either u = 0 or
u(z,t) = k(T +to — t)_ﬁ. This concludes the proof of Corollary 3.

A Proof of Proposition 3.2

We proceed in 3 steps: In Step 1, we give a new version of an ODE lemma
by Filippas and Kohn [3] which will be applied in Step 2 in order to show
that either vy, or vy is predominant in Lf, as s — —oo. In Step 3, we
show that in the case where vy is predominant, then either vy(s) or v (s)
predominates the other.

Step 1: An ODE lemma

Lemma A.1 Let x(s), y(s) and z(s) be absolutely continuous, real valued
functions which are non negative and satisfy

i) (z,y,2)(s) = 0 as s = —o0, and Vs < sy, z(s) +y(s) + z(s) # 0,

i1) Ye > 0, Isg € R such that Vs < sg

2 > coz—e€(x+vy)
[ < e(z+y+2) (57)
y < —coy+e(z+2).

Then, either x +y = o(z) or y+ z = o(x) as s — —o0.

Proof. Filippas and Kohn showed in [3] a slightly weaker version of this

lemma (with in the conclusion z,y,z — 0 exponentially fast instead of

x4+ 1y =o0(z)). We adapt here their proof to get the proof of lemma A.1.
By rescaling in time, we may assume cy = 1.

Part 1: Let ¢ > 0. We show in this part that either:
Jso(€) such that Vs < s9, z(s) + y(s) < Cex(s), (58)
or dsa(e) such that Vs < s9, x(s) + y(s) < Cez(s). (59)

We first show that Vs < sg(€), B(s) < 0 where 8 =y — 2¢(z + 2).
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We argue by contradiction and suppose that there exists s, < so(€) such
that B(sx) > 0. Then, if s < s, and ((s) > 0, we have form (57)
B(s) =9 —2e(i 4 2) < —y +e(z +2) + 263 (x +y + 2) — 2e(z — e(z + 7)) <
—e(1 — 4e — 8€®)x — €(3 — 2¢ — 8¢2)z < 0.
Therefore, Vs < s., B(s) > B(s.) > 0, which contradicts 3(s) — 0 as
s — —oo . Thus
Vs < sple), y < 2¢(x + 2). (60)

Therefore, (57) yields

z > %2—2633

|| < 2e(z+2) (61)

Let v(s) = 8ex(s) — z(s). Two cases arise then:

Case 1: 3sg < sp(e) such that v(s2) > 0.

Suppose then v(s) = 0 and compute 5(s).
Y(s) = 8ei — 2 < 16€*(x + 2) — 32 + 2ex = —2(s)(§ — 2 — 16€%).
Since z(s) > 0 (otherwise z(s) = 0, z(s) = 0 and then y(s) = 0 by (60),
which is excluded by the hypothesis), we have

v(s) =0= 5(s) <O0.

Since 7y(s2) > 0, this implies Vs < s9, v(s) > 0, i.e. 8ex(s) > z(s). Together
with (60), this yields (58).

Case 2: Vs < sp(€), v(s) <0 ie. 8ex < z(s).
In this case, (61) yields

1 1
Vs < sole), 2> 1% and & < (2¢ + Z)Z

Therefore, we get by integration:

2(s) > & / " A(0)dt and 2(s) < (2 + ©) / Tt
1) 1)
which yields z(s) < (8¢ 4 1)z(s). We inject this in (61) and get
z(s) < 2¢(x + z) < 2€z(2 4 8¢). Again, by integration:
x(s) < 2e(2+8¢) [°_ z(t)dt < 8e(2+48€)z(s). Together with (60), this yields
(59).

Part 2: Let e < &. Then either (58) or (59) occurs.

For example, (58) occurs, that is Jsa(€) < sg such that Vs < s9, 24+ y <
Cex. Let € < e be an arbitrary positive number. Then, according to Part
1, either Vs < 55, z +y < Ceé'x for some shH(€'),
or Vs < sh, y + & < C€¢'z for some sH(€).
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Ounly the first case occurs. Indeed, if not, then for s < min(ss,s5),
r < Cez < CeéCexr < C?¢%x since € < e. Since (Ce)? < 1, we have z = 0
and z =y = 0 for s < min(sg, s5), which is excluded by the hypotheses.

Do the same if (59) occurs.

This concludes the proof of lemma A.1. |

Step 2: Competition between v, v,,; and v_

In this step we show that either [[v_(s)|zz + [[v+(s)llz2 = o(l[vnun(s)l£2)
(which is case iii) of Proposition 3.2) or
[0 ()l L2+ 1vnu(s)ll 22 = o(llv4-(s)llz2) (which yields case @) or i) of Propo-
sition 3.2) in Step 3).

This situation is exactly symmetric to the one in section 4 in Filippas and
Kohn’s paper [3]. Indeed, we are treating the same equation (38), but we
have [[v(s)|[zee — 0 as s — —oo whereas in [3], [[v(s)||L — 0 as s — +o0.
Nevertheless, the derivation of the differential inequalities satisfied by v_,
Unu and vy in [3] is still valid here with the changes: “s — +00” becomes
s — —oo and “s large enough” becomes “—s large enough”. Therefore, we
claim that [3] implies:

Lemma A.2 Ve > 0, Jsg € R such that for a.e. s < sg:

i > (3-€z—e(x+y)
lz] < e(z+y+2)
y < —(% —e)y+e(x+2)
where z(s) = |v(s)llrz, (s) = llvnuu(s)llzz and y(s) = [lo—(s)llzz +

|||y|§v2(s)||L% for a fized integer k.

Now, since [lv(s)|Lee — 0 as s — —oo, we have (z,y,2)(s) — 0 as
s — —oo. We can not have x(s1) + y(s1) + 2(s1) = 0 for some s; € R,
because this implies that Yy € RY, v(y,s1) = 0, and from the uniqueness
of the solution to the Cauchy problem of equation (38) and v(s1) = 0, we
have V(y, s) € RN xR, v(y, s) = 0, which contradicts £+ v — 0 as s — +o0.
Applying lemma A.1 with ¢y = %, we get:
either [l (s)]1 12 + [0+ (5) 3 = o(lomut(5)122)
or [[o—(s)llz2 + lvnun(s)l 2 = o([[v+(s)ll2)-

Step 3: Competition between vy and v

In this step, we focus on the case where ||v_(s)||L§ + ||vnuu(s)||Lg =

o(Her(s)Hsz). We will show that it leads either to case i) or case ii) of
Proposition 3.2.

31



Let us first remark that lemma A.1 implies in this case that
Ve >0, z(s) = Hv+(s)||L% = O(e(%_e)) as s — —0o. (62)

Now, we want to derive from (38) the equations satisfied by vy and v;.
We must estimate [ f(v(y,s))km(yi)p(y)dy for m = 0,1 and i = 1,..N (see
(41) for k). Let us give this crucial estimate:

Lemma A.3 There exists 69 > 0 and an integer k' > 4 such that for all
5 € (0,0), 3so € R such that ¥s < s, [v2|y|¥ pdy < co(k")0*F 2(s)2.

, 1/2
Proof: Let I(s) = ( [ 2|yl pdy) / . We first derive a differential inequality

satisfied by I(s). If we multiply (38) by v|y|* p and integrate over RV, we
obtain: 1d
532U = [vLollpdy+ [or@)lyl" pdy.
Since v is bounded by M, we get fvf(v)|y|k/pdy < MC’f112|y|klpdy.
After some calculations, we show that
JvLoly¥ pdy < E(k+ N —=2) [ |y/F 20?pdy + (1 — §)I(s)>.
Using Schwartz’s inequality, we find:

’ f 1/2
J oyl =2pdy < 1(s) (f o2 [yl¥ ~*pdy) "

, 1/2
Let us bound (f vyl _4pdy) / .If k' >4 and 6 > 0, then

" 1/2 i 1/2 i
(o2l *pdy) " < (ot 02wl 40dy) " + (fiyzst o2yl ~*pdy)
< 32F2 ([ v?pdy) V2 4 521
< 262K /24(s) 4 621 since ([ v2pdy)l/2 ~ (f v_%paly)l/2 = 2(s) as s — —c0.

Combining all the previous bounds, we obtain:
I'(s) < —0I +d6*>*/22 with 6 = & —1 - MC — (k' + N — 2)6* and
d=FKk +N —2).

We claim that there exist an integer &' > 4 and dy > 0 such that V¢ €
(0,09), 6 > 1. Hence,

1/2

I'(s) < —I(s) + d> % /22(s). (63)

Now, we will derive a differential inequality satisfied by z in order to couple
it with (63), and then prove lemma A.3.

We project (38) onto the positive subspace of £, we multiply the result
by vy p and then, we integrate over RV to get:

1d

o (els)) = / Loy vy pdy + / Py (f(v))vs pdy.
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Since (Spec £) NRY = {1,1}, we have [ Loy.vipdy > $2(s)2.
Using Schwartz’s inequahty, we obtain:
P oy < (] Py (f(w))pdy) " ([ v2 py) "

< ([ F(0)2pdy) ' =(s).

Smce v — 0 as s — —oo uniformly on compact sets, we have:
[ f(0)2pdy < C? [vipdy = C? f|y‘§5,1 vipdy + C? f|y‘25,1 vt pdy
< e [v?pdy + C2M25¥ fv2|y|k/p < 4€222 + C2M26F 12 for all € > 0, pro-
vided that s < sg(e, 9).
Thus, ( f(v)dey)1/2 < 2ez+ CMSF /2T
Combining all the previous estimates, we obtain:

2'(s) > =2z(s) — 2ez — CM(SkI/2I(s). (64)

With € = 1/8, (63) and (64) yield:

Vs < sg { 2'(s)

N)I»i

12(s) — CM&* 121 (s)
—1I(s) 4 d6> ¥ /2z(s).

IN IV

I'(s)

Now, we are ready to conclude the proof of lemma A.3:

Let v(s) = I(s) — 2d0%7%'/22(s). Let us assume ~(s) > 0 and show that
v (s) < 0.

Y (s) = I' —2d6?7F/22 < (—1 +ds>7F/22) — 2d82~F /2 (12 — CMS¥'/2T)
< I(—1+1+20Mds?) = I(—3 + 20 M§2d)

If we choose 0y such that V§ € (0,0p), —3 + 2CM4%d < 0, then y(s) > 0
implies I(s) > 0 and +'(s) < 0. Since v(s) — 0 as s — —oo (because v — 0
uniformly on compact sets), we conclude that for some s; € R, Vs < sy,

v(s) <0. Since d = k'(K' + N — 2), lemma A.3 is proved. [ |
Using lemma A3, we try to estimate [ f(v)knm(yi)pdy.
Since |f(v) — £v?| < C(M)v3, we write:
_ Db 2 3
f)pdy = 5= [ v"pdy +O( | v°pdy). (65)

For all e > 0, 6 > 0 and s < sg, we write:

| [ vPpdy| < | fiy1<5-1 VP pdyl + | fiy55-1 v pdy|

< | fyjzsr o]+ MO¥ [v21yl¥ pdy < | <51 v*pddy| + Meo(K)54=(s)2
We fix § > 0 small enough such that Mco(k')6* < 5. Then, we take s < s1(e)
such that |f‘y|§5_1 v3pdy| < I lyl<o-1 v2pdy < ifvzpdy (because v — 0 in
L>(B(0,6)))-
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Since [v?pdy ~ 2(s)? as s — —o0, we get for s < sa(e), | [v3pdy| <

€z(s)?. Therefore, equation (38) and (65) yield:

vp(s) = vo(s) + %»Z(Sf(l +a(s)) (66)
where a(s) — 0 as s — —o0.
Using the same type of calculations as for [wv3pdy, we can prove that
[v%k1(yi)pdy = O(z(s)?). Therefore, (38) yields the following vectorial
equation:

1
vi(s) = 5ui(s) + B(s)z(s)’ (67)
where 3 is bounded.
From (62), (66), (67) and standard ODE techniques, we get:

Ve > 0, vo(s) = O(e'=9%) and vy (s) = Crez + O(e179%).
Since 2z(s)? = vo(s)? + 2|v1(s)|?, we write (66) as
vh(s) = vo(s) + 5| C1 e (1 + a(s) +7(s)
where (s) = O(e*(179)%). Therefore,
Ve > 0, vo(s) = ]—;|C'1|2ses(1 +o(1)) + Coe® + 0(e2179%)  (68)

as § — —00.

Two cases arise:

i) If C # 0, then vy(s) ~ Crez > B|Cy[2se® ~ vo(s). This is case ii) of
Proposition 3.2.

i) If C; = 0, then |z(s)| < Ce=9%, and (67) yields v; = O(e?~9%).
From (68), we have vy(s) = Cpe® + O(e~9%).
We claim that Cy < 0 (If not, then the function F(s) = e *uvg(s) goes
to Cyp > 0 as s — —oo and is increasing if s < sg. Therefore, Vs < sq,
vo(s) > Cpe® > 0. Since v is bounded and k + v > 0, we have from
Proposition 3.5 Vs € R, [(k + v(y, s))pdy < k, that is vg(s) < 0.

Hence, Vs < sq, vo(s) = 0 and z(s) = v/2|vi(s)|. Then, (67) implies that
Vs < sg, v1(s) = 0 and z(s) = 0. Since [v?pdy ~ z(s), we have v = 0 and
w = k in a neighborhood of —oo and then on RY x R which contradicts
w— 0 as s — +00).
Thus, vo(s) ~ Coe® > Ce?>=9)% > |y (s)|. This is Case i) of Proposition 3.2.

This concludes the proof of Proposition 3.2. |
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B Proof of Proposition 3.4

Let us recall Proposition 3.4:

Proposition B.1 Let V' be an L™ solution of

oV
Fs = (L+1Us)V+F(V) (69)
defined for (y,s) € RNV x R, where £L = A — %y.V +1, I(s) = —%

and F(V) =[p+ VP p+ V) — ¢P —ppP~'V.
Assume that V. — 0 as s — Fo00 uniformly on compact sets of RY,

Vo(s)| + [Vi(s)] = O(e®~9%) and Vit (s)ll Lz = o(€”) as s — —oo. (70)
Then V = 0.

In order to show that V = 0 in R¥*! we proceed in three steps: in Step
1, we do an L% analysis for V as s — —oo , similarly as in Part 2 of section
2 to show that either [[V(s)|zz ~ [[Vi-(s)llzz or [[V(s)llzz ~ [Vauu(s)ll 2.
Then, we treat these two cases successively in Steps 2 and 3 to show that
V=0

Step 1: L% analysis for V as s — —o0

Lemma B.1 As s — —oo , either
i) IV=(s)llez + [Vaau(s)l 2 = o([IV5-(s)l| £2)
or 1) [IV=(s)llrz + IV(s)ll 2 = o([[Vauu (s)ll £2)-

Proof. One can adapt easily the proof of Filippas and Kohn in [3] here.
Indeed, V satisfies almost the same type of equation (because [(s) — 0 as
s — —oo , and |[F(V)| < CV?), and V — 0 as s — —oo uniformly on
compact sets. Therefore, we claim that up to the change of “s — —oco ” into
“s — +00”, section 4 of [3] implies

Lemma B.2 Ve > 0, dsg € R such that for a.e. s < sg:

Z > 3-Z—-eX+Y)
X| < (X+Y+2)
V < —E -V +eX+2)

where Z(s) = |[Vi(s)llrz, X(s) = [Vauu(s)llrz and Y(s) = [[V_(s)llrz +
|||y|%V2(s)||L% for a fized integer k.
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Since ||V (s)|[e — 0 as s — —oo and V' is bounded in L*°, we have
(X,Y,Z)(s) — 0 as s — —oo. Similarly as in Step 2 of Appendix A, we can
not have X (s) + Y (s) + Z(s) = 0 for some s € R. Therefore, the conclusion
follows from lemma A.1, in the same way as in Step 2 of Appendix A.

Step 2: Case V()13 + [Viut(s)l123 = oIV (5)]l12)

Since (69) and (38) are very similar (the only real difference is the pres-
ence in (69) of I(s) which goes to zero as s — —oo ), one can adapt without
difficulty all the Step 3 of Appendix A and show that Vy and V; satisfy
equations analogous to (66) and (67): Vs < sg

{Vo’(S) = Vo(s)(1+1(s)) + ao(s)(Vo(s)* + 2 Vi(s)[?)

. (71)
VIs) = V()3 +1U(s)) +ar(s)(Vals)? + 2Vi(s)])

where ag and aq are bounded.
According to (70), there exist B > 0 and s; < sg such that Vs < s;

lao(s)] < B, |a1(s)| < B, |Vo(s)| < eZand |Vi(s)| < 2. (72)

We claim then that the following lemma yields V = 0:

Lemma B.3 Vn € N, Vs < sq, [V,(s)| < (%6(81)3)2H_163X2n718 form =10
s1

and m =1, where e(s1) = e S uwd

Indeed, the lemma yields that Vs < sy Vp(s) = Vi(s) = 0 for some s3 < s7.
Since ||V (s)llrz ~ [[Vi(s)llrz as s — —oo , we have Vs < s3, Vy € RY,
V(y,s) =0 for some s3 < so. The uniqueness of the solution of the Cauchy
problem: Vs > s3, V satisfies equation (69) and V(s3) = 0 yields V =0 in
]RN+1.

Proof of lemma B.3: We proceed by induction:

- n = 0, the hypothesis is true by (72).

- We suppose that for n € N, we have
Vs < s1, [Vin(s)| < (%e(sl)B)2n_le3X2nils for m = 0,1. Let us prove that
Vs < 51, [Vin(s)] < (Ge(s1)B)¥" 132" for m = 0, 1.
Let F,(s) = Vm(s)e_(l_%)s_ffool(t)dt. From (71) and the induction hy-
pothesis, we have: Vs < sy,

m s1
|F).(s)] < e~ g 3(3e(s1)B)?2"~Le3x2"s . By the induction
hypothesis, lim F,(s) = 0. Hence, Vs < s1,
S§——00

[Fn(s)l = | 2o Frn(0)do| < 2 |F,(0)|do
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< 3e(s1)B(3e(s1)B)?" 2 5 e gg
= 3x2n—2(1—%)(36(81)3)2n+1_1e(3X2n_(1_ Vs,

Since 3 x 2" — (1 — %) > 2 and I(s) < 0, this yields
Vs < s1, [Vin(s)] < (%6(81)3)2"+1—163x2"s for m = 0,1. This concludes the
proof of lemma B.3. |

l3

Step 3: Case |[V_(s) 1z + [IV4-(s)ll2 = o(|Vaurr(s)l] £2)

In order to show that V = 0, it is enough to show that V,,; = 0 or
equivalently that Vi,j € {1,..,N}, V5,; = 0.

For this purpose, we derive form (69) an equation satisfied by V5 ;; as
§— —00 :

Vi 4s(s) = 1(3)Vass(s) + / F(V) 220 oq (73)

We have to estimate the last term of (73):
- if i = j, then Ha;;(y) = y? — 2 and

I/F(V)Hmpdyl < C/Vzpdy+C/V2lyl2pdy, (74)

- if i # j, then H3;;(y) = yiy; and

| [ PO Haipdyl < © [ VEylody. (75)

The hypothesis of this step implies that

/ VZpdy < 2 / Vupdy. (76)

It remains then to bound [ V2|y|?pdy. This will be done through this lemma,
which is analogous to lemma A.3:

Lemma B.4 There exists g > 0 and an integer k' > 5 such that for all
5 € (0,80), Iso € R such that Vs < so, [ V2]y¥ pdy < co(K")6** [ V2, 0dy.
Proof: We will argue similarly as in the proof of lemma A.3. Let I(s) =
/ 1/2 , 1/2
(f V2|y|k pdy) / and use the notation X (s) = (f V2o lyl® ,ody) / . From
(69), we derive the following equation for I(s):
Ld
2ds
Since v is bounded by M, we can assume |[V| < M + 1 = M’ and get
[VEW)|y|¥ pdy < M'C [ V2]y|¥ pdy. We can also assume that |I(s)| < L.

(I6s)2) = [ VLVl pdy + U5 + [ VEW)Iyl¥ py.
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As for lemma A.3, we can show that for all § > 0
VLV pdy < 5 (W+N=2)1(5)(62 /2 (] V2pdy) /> +621)+(1-5)1(s)?.
Combining these bounds with (76), we get:
I'(s) < =01 +do> ¥z witho =K —1 - L — M'C— E(K + N —2)6% and
d=FKFk + N —2).
It is clear that there exist an integer k¥’ > 5 and §y > 0 such that
Vo € (0,00), @ > 1. Hence,

I'(s) < —I(s) 4+ d6>F2X (s). (77)

Let us derive a differential equation satisfied by X.
From (69), we obtain:

%%(X(S)Q) = 1(s)X (s)* + /Pnuu(F(V))Vnullde-

By Schwartz’s inequality, we have:
[ Paat(F (V) Vautipy| < ([ P F(V))2pdy)' " ( V2, ply) 2
< (f F(V)2pdy)'"* X (s).
Since V' — 0 as s — —oo uniformly on compact sets, we have:
[F(V)2pdy < C? [Vipdy = C? Jiyi<s-1 Vipdy + C? Jiyzs-1 V4pdy
< € [V2pdy + C2M"?6F [V2]y|F'p < 462 X2 + C2M"™26¥ T2 for all € > 0,
provided that s < sg(e, 6).
Thus, ( F(V)2,0dy)1/2 < 2eX + CM'SF/2T.
Since |I(s)| < 5, we combine all the previous bounds to get:

1X'(s)] < (2€ + 1—12)X(s) +CM'6F 21 (s). (78)

With € = 1/12, (77) and (78) yield:

/ 1 15k'/2
ngsl{ 1X'(s)] 1X(s) +CM'8¥21(s)

—I(s) 4+ d6* ¥ 12X (s).

INIA

I'(s)

Now, we conclude the proof of lemma A.3:
Let v(s) = I(s) — 2d0%*/2X (s). Let us assume ~(s) > 0 and show that

7' (s) < 0.

7,(3) = I — 2482 K /2x’
(=1 +d&?7F/2X) + 2d5*F'/2(1 X (s) + CM'§¥ /%)
I(-1+ 1 4+20M'ds% + 1) = I(—1 + 2CM'52q)

If we choose & such that V§ € (0,0p), —F +2CM’'6%d < 0, then y(s) > 0
implies I(s) > 0 and +/(s) < 0. Since y(s) — 0 as s — —oo (because V' — 0

<
<
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uniformly on compact sets), we conclude that for some sg € R, Vs < sq,
v(s) < 0. Since d = k¥'(K' + N — 2), lemma B.4 is proved. ]

Lemma B.4 allows us to bound [ V2|y|?pdy. Indeed, for fixed & € (0, dg)
and s < sg, we have:

IV2yPedy < [y <51 VIyIPody + fiy=5-1 V 0yl pdy
<672 ly|<6-1 V2pdy + 6% Jiyz6-1 V2{y[¥ pdy
<672 [V2pdy + co(K)0% [ VZpdy = C(6,k") [ V?pdy.
With this bound, (74) and (75), equation (69) yields: Vs < s,

Vaii(s) = U(s)Vaj(s) + a2,z’j(8)||Vnuu(8)||%g

where ag ;; is bounded.
According to (70), there exist then B > 0 and s < sg such that Vs < s,
Vi,j € {1,..,N},
|ag,ij(s)| < B, [Va,i5(s)| < €”.

We claim that the following lemma yields V = 0:

Lemma B.5 Vn € N, Vs < sy, Vi,j € {1,...,N},
Vaij(s)] < BN2(N +1)%(s1)B)2" "' where e(sy) = ¢ Jo 1O,

Indeed, this lemma yields Vs < sq, Vi,j € {1,..., N}, V3;;(s) = 0 for some
sy < s51. Hence, Vs < s9, Yy € R, Vi,uu(y,s) = 0, and by the hypothesis of
this step, Vs < s3, Yy € RY, V(y,s) = 0 for some s3 < s3. The uniqueness
of the solutions to the Cauchy problem: Vs > s3, V satisfies equation (69)
and V(s3) = 0 yields V = 0 in RVFL.

We escape the proof of lemma B.5 since it is completely analogous to
the proof of lemma B.3.

C Proof of i) of Proposition 3.7

We proceed in 4 steps: in Step 1, we derive form the fact that [lv(s)|| 2z ~
||vnu”(s)||L% an equation satisfied by v,,;(s) as s — —oo . Then, we find in
Step 2 ¢ > 0, C > 0 and s¢ € R such that ¢|s|7! < ||U(S)||Lg < Cls|~! for
s < sg. In Step 3, we use this estimate to derive a more accurate equation
for v,. We use this equation in Step 4 to get the asymptotic behaviors of

Unutt (Y, 8), vo(s) and v1(s).

Step 1: An ODE satisfied by v,,;(y,s) as s = —c0
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This step is very similar to Step 3 in Appendix B where we handled the
equation (69) instead of (38) as in the present context.
From (38) we have by projection:

/ Hy Z]
Vg Zj /f ||H2 7,]” (y)dy (79)

We will prove the following proposition here:

Proposition C.1 i) Vi,j € {1,..., N},

Hy5(y) 2
h(8) = g f Vo T o + o) ()
as s — —oo .

i1) There exists a symmetric N x N matriz A(s) such that Vs € R,

Unull(@/? 5) = yTA(S)y - 2tT(A(S)) (81)
and collA(s)]| < [[vpau(s)llzz < CollA(s)]| (82)

for some positive constants cq and Cy. Moreover,
4
Al(s) = —pAQ(s) + o(|[A(s)|?) as s — —oc. (83)
K

Remark: ||A| stands for any norm on the space of N x N symmetric ma-
trices.
Remark: The interest of the introduction of the matrix A(s) is that it
generalizes to N > 2 the situation of N = 1. Indeed, if N = 1, then it
is obvious that vy, (y, s) = yva(s)y — 2va(s) and that (80) implies vh(s) =
%vg(s)z + o(va(s )2) Let us remark that in the case N = 1, we get imme-
diately va(s) ~ 4p5 as § — —oo, which concludes the proof of Proposition
3.7. Unfortunately, we can not solve the system (83) so easily if N > 2.
Nevertheless, the intuition given by the case N = 1 will guide us in next
steps in order to refine the system (83) and reach then a similar result (see
Step 2).

Proof of Proposition C.1:

Let us remark that i) follows directly form 7). Indeed, we have by
definition of Hs;; and vg;; (see (44) and (45)):

N

Unall y7 ZU2 zy H2 Jij ) = Zvlii( - 2 + ZU2 zy yzy] If we
i<j i=1 1<j

define A(s) = (aij(é’))m by

1

Sv2ij(s),  (84)

a;i(s) = v2,4(s), and for i < j, ai;(s) = aji(s) = 5
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then (81) follows. (82) follows form the equivalence of norms in finite dimen-
. N(N41)
sion —=—. (83)
we escape here.
Now, we focus on the proof of i). For this purpose, we try to estimate
the right-hand side of equation (79).
As in Step 3 of Part 3, this will be possible thanks to the following
lemma:

follows from (80) by simple but long calculations which

Lemma C.1 There exists g > 0 and an integer k' > 4 such that for all
5 € (0,8), 3so € R such that Vs < so, [v2|y|* pdy < co(K')6*F [ 02, pdy.

Proof: The proof of lemma B.4 holds for lemma C.1 with the changes V' — v,
F — fand I(s) — 0. [ |

Now we estimate [ f(v)Ha;pdy:
Since f(v) = £v? + g(v) where [g(v)| < Clv|?, we write:

[ 1@ty = L [ 2ot +m+an  (s5)

where
(0 = & [~ ) Haipdy (56)
and (1) = [ glv)Ha.ijpdy. (87)

The proof of Proposition C.1 will be complete if we show that (I) and (I1)
are o([[vpun(s)]|13). Since Haij(y) = y7 — 2if i = j and Hay;(y) = yuy; if
i # j, it is enough to show that for all € > 0, Iy, Is, 111 and I15 are lower
that eanu”(s)HL% for all s < s¢(€), where

L= | |’U2 - ’Uguzz‘dea L= | |’U2 - ’U%utuPde,
I = [|g(v)|pdy, I, = [lg(v)|ly|*pdy.

We start with I1: Since [v2pdy ~ [v2,,0dy,
I = [(v} +v2)pdy < € [v2 pdy if s < s1(e).

For I, we consider ¢ € (0,dp), and write:
I < [ <51 107 = onullylPpdy + [iys5-1 [v2 = vi,ullylPedy := To1 + Ins.
We first estimate Ioq:

Since v = v_ +Vpu+v4, we have v —v2 ;= (v +v_ )%+ 20 (V4 +v-).
Hence,
I < [y <51 (v +0-)2ylPpdy +2 [ <51 [vnun(v+ +v-)[[y|*pdy
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< 572 [(vs +v_)2pdy + 2 ( 02ulyl*pdy)"? (f (vs +v_)2pdy) .

Since [v2pdy ~ [ [v2,,pdy, we have
J(or +v)? <8 [ofypdy if s < 55(0).
Since the null subspace of £ in finite dimensional, all the norms on it are
equivalent, therefore, there exists C4(N) such that:
J o2 lyltpdy < Co(N)? [ 02, pdy.
Therefore, Iy < (6 + 2C4(N)§3/2) [v2 ,,pdy if s < s9(6).

For Iyy, we write:
Iy < [iyzs-1 107 = vllylPody < 8872 [ o2 [y|¥ pdy + ¥ =2 [ o2y lyl¥ pdy
< co(K)0? [v2 ypdy + 88 ~2Cr(N)? [ 02, pdy
by lemma C.1 and the equivalence of norms for wv,,;. Collecting all the
above estimates, we get
Iy < (6 +2C4(N)832 + co(K') + 8% ~2Cp (N)?) [ 02, pdy for s < s5(5). If
0 = d(e) is small enough, then
I < e [v2 ,pdy for s < s3(e).

Now, we handle II; and I in the same time: we consider § € (0,d¢)
and write for m =0 or m = 2:
| [ 1g@)lyl™pdy < C [ |v]*|y|™ pdy
< C fiy<s-1 [0PYI™pdy + C Jy55-1 [0 [y pdy
< Ceo ™ f|y‘§5_1 v2pdy + C MK —m f‘y|25_1 2 |yl¥ pdy
< (C6™™ + CMco(K)6*™)2 [ w2, pdy
where we used the fact that v — 0 as s — —oo in L®(B(0,57 1)), Jv(y, s)| <
M, lemma C.1 and [v?pdy < [ 02, pdy.
Now, we can choose 6 = §(€) and then € = ¢/(¢) such that for s < s5(e)
Jlg@)llyl™pdy < € [ V2, updy.

Setting sg(€) = min(sy(€), s3(€), s5(€)), we have: Ve > 0, Vs < sg(e),
I+ Iy + 11 + I3 < 4e [v2 j;pdy. Therefore (I)+ (1) = ollvnun(s)lr2) as
§— —00 .

Thus, combining this with (79) and (85) concludes the proof of Propo-
sition C.1. |

Step 2: ||v(s)||L§ behaves like ﬁ as s — —00

In this step, we show that although we can not derive directly from (80)
the asymptotic behavior of v,,,;(s) (and then the one of v(s)), we can use
it to show that |[v(s)|| 1z behaves like |—i‘ as s — —oo . More precisely, we

have the following Proposition:

Proposition C.2 If [lv—(s)[|rz + [v1(s)llzz = o([[onun(s)ll12), then for —s
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large enough, we have

c C
e < o(s)llrz < o]

for some positive constants ¢ and C.

Proof: Since ||U(S)||L% ~ ||Unu”(8)||L%, and because of (82), it is enough
to show that

FEILCIE % (35)

for —s large. The proof is completely parallel to section 3 of Filippas and
Liu [4]. Therefore, we give only its main steps.

We first give a result from the perturbation theory of linear operators
which asserts that A(s) has continuously differentiable eigenvalues:

Lemma C.2 Suppose that A(s) is a N x N symmetric and continuously
differentiable matriz-function in some interval I. Then, there exist contin-
uously differentiable functions \1(s),...,An(s) in I, such that for all j €
{1,..,N},

A(s)¢V (s) = Aj(5)0)(s),
for some (properly chosen) orthonormal system of vector-functions

¢ (s), ..., s (s).

The proof of this lemma is contained (for instance) in Kato [10] or Rellich
[13].
We consider then Ai(s),...,An(s) the eigenvalues of A(s). It is well-
N

known that Z [Ai| is @ norm on the space of N x N symmetric matrices.
i=1

We choose this norm to prove (88). From (83), we can derive an equation

satisfied by (A;(s));:

Lemma C.3 The eigenvalues of A(s) satisfy Vi € {1,...,N}

4
Xi(s) = ~EX(s) (Z X(s )
The proof of lemma 3.3 in [4] holds here with the slight change: s — +o0
becomes s — —oo and s large enough becomes —s large enough.

Now, we claim that with the introduction of A;(0) = —\;(—0), we have:
-Vie{l,..,N}

AN(o) = 4pA2 <ZA2 )asa—>+oo,
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Yo > og, Z |A;(0)] # 0 (Indeed, if not, then for all i, A; = 0, \; =0,
and then A(s), vpu(s) and v(s) are identically zero.)

Section 3 of [4] yields (directly and without any adaptations) that for all
o 2 01,

¢
.

~ <Y IAilo)] <

Since [|A(s)| = Z Ai(s)] = Z |Ai(—s)|, this concludes the proof of (88)
and the proof of lgroposition C.ZQ. |

Step 3: A new ODE satisfied by v,,;(y, s)

In this step, we show that since ||v|| 12 behaves like |—i‘, then all the L]
norms are in some sense equivalent as s — —oo for this particular v. Then,
we will do a kind of center-manifold theory for this particular v to show that
loy-() | £z +llv— ()| 2 is in fact O(|[vnun(s)]Z2) and not only o(||vnu(s)|z)-
These two estimates are used then to rederive a more accurate equation
satisfied by v, (y, 8)-

Lemma C.d If [[v; ()2 + lo—(5)ll 2 = o(l[vmua(3)]112), then
i) for every r > 1, ¢ > 1, there exists C = C(r,q) such that

(o) < (fm)

for —s large enough.
i) Jog(s)llzz + lv-(s)llzz = Olvnun(s)lI7;) as s — —o0 .

Proof of i) of lemma C.4: The crucial estimate is an a priori estimate of
solutions of (38) shown by Herrero and Velazquez in [9]. This a priori
estimate is a version of i) holding for all bounded (in L) solutions of (38),
but with a delay time; although they proved their result in the case N =1
for solutions defined for s € [0, +00), their proof holds in higher dimensions
with s € R.

Lemma C.5 (Herrero-Velazquez) Assume that v solves (38) and |v| <
M < co. Then for anyr > 1, ¢ > 1 and L > 0, there exist s§ = si(q,r) and
C =C(r,q,L) > 0 such that

(/ V" (y, s + 8*)pdy) v <C </ v (y, 8)pdy) v

for any s € R and any s* € [sj, s§ + L.

44



Set s7 = s4(2,7) and s3 = s((q,2). For —s large enough, we write
according to lemma C.5 and Proposition C.2:
(J 0" (y. s)pdy) /" < Co (f v?(y.s = si)pdy)* < Co/(s — s1)
< Cy/(s +53) < Cu ([ *(y, s+ si)pdy) * < C5 ([ v(y. s)pdy) /2. Thus, i)
of lemma C.4 follows .

Proof of ii) of lemma C.4: We argue as in Step 2 of Appendix A, and
use the same notations: x(s) = ||vnuu(s)||L§, y(s) = ||v_(s)||Lg, z(s) =
||U+(s)||L§ and N(s) = HV2||L§. We have already derived (in the proofs of
lemmas A.3 and B.4) two differential inequalities satisfied by = and z. By
the same techniques (see also [3]), we can show that

, 1

2’| < CON
1
y < —§y+ON.

By i) of lemma C.4, we have N(s) < C|lv(s)||22 = C(22(s) + y*(s) + 22(s))
P
for large —s.
Since x,y,z — 0 as s — —oo , we can write for —s large:

Z/

v

1
gZ — C(IIZ’ + y)2

|2’ Clz+y+ 2)?

IN

1
y < —gy +C(x+ z)2.

The conclusion then follows form the following ODE lemma by Filippas and
Liu:

Lemma C.6 (Filippas-Liu) Let z(s), y(s) and z(s) be absolutely contin-
uwous, real valued functions which are non negative and satisfy
i) (x,y,2)(s) = 0 as s = —o0,

i1) Vs < sq
2 > coz—ci(z +y)?
i < clr+y+2)?
7 < —coy+a(z+2)>

for some positive constants cqg and cy. Then,
either (i) x,y,z — 0 exponentially fast as s — —o0,
or (i) for all s < s1, y+ z < b(co, c1)x? for some 51 < sq.
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Proof: see lemma 4.1 in [4].

Now, using lemma, C.4, we derive a new equation satisfied by v,

Proposition C.3 Vi,j € {1,..., N},

p Hyi;(y)
vé,ij(s) = % /v%ull(y7 S) ||H2,Zj]||%2 p(y)dy + O(HUTLU”(S)”%%)
)

as § — —oo .
Moreover,

4 1
Al(s) = ;pA2(s) + 0(8—3) as s — —o0.

The proof of Proposition 4.1 in [4] holds here with the usual changes: s —
+00 becomes s — —o0 .

Step 4: Asymptotic behavior of v,,;(y,s), vo(s) and v (s)
Setting A(c) = —A(—0), we see that

A(o) = %A%U) + O(%) as o — +o0.

Therefore, Proposition 5.1 in [4] yields (directly and without any adap-
tations) the existence of § > 0 and a N x N orthonormal matrix @ such

that
K

4dpo

Aon(INO"“ 8)@‘1

for some k € {0,1,...,N — 1}. Together with (81), this yields the behavior
of v (y, s) announced in ¢) of Proposition 3.7.
It also yields

Alo) = Ao + O(

pEw))

where

1/2
omans)lzz = ([ vt otw)dy)
1/2

= ([ A~ 2ra()*pt)a

_ _i(/(TA —2tA)2()d)1/2+O< ! )
= Taps \J W Aoy =2t doply)dy BEZIA
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With the change of variables, y = @)z, we get since @ is orthonormal:

Nk 9 1/2 1
||'Unull(5)||L% = _& (/ < (222 —2)> P(Z)dz) + O (W)
N—k 1/2
_ _&@ /<23—2>2p<z>dz) +0(7753)

B Kk |N—k ) ( 1 )

- ps 2 | s|1+5
where we used the fact that (y? — 2); is an orthogonal system with respect
to the measure pdy.

Since [|[v(s)llzz = llvnuu(s)llrz + O (||Unuzz(8)||%g) (i) of lemma C.4), we

get
Kk [N—k 1
[o(s)llrz = s\ T +0 <W> - (89)

Integrating (38) with respect to pdy, we find
vh(s) = vo(s) + [ F(@)pdy.
Since |f(v)| < Cv?, we get from (89)
v (s) = vo(s) + O(S%) as s — —00.
Therefore, it follows that

vo(s) = 0(8—2) as s — —00.

Using lemma C.1, we have: for all n € (0,0d¢),

/ Vyl¥ pdy < co(K)n* / V2 updy < 2co(Kn** / v pdy.

Therefore,
Jlylpdy < [fiy1<p-1 Vlylody + fjy5n-1 0% lylpdy
<07 [o?pdy + 0¥t [ o2yl pdy
< (7 4 2c0(K)n*) [ v?pdy.
If we fix n > 0, then

/v2|y|pdy < C(n, k’)/v2pdy- (90)
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Integrating (38) with respect to y;pdy, we find

1 i
vy (s) = 501,1'(8) + /f(v)%pdy.
Since |f(v)| < Cv?, we get from (90) and (89)
v1(s) = (8—2) as s — —oo.

This concludes the proof of i) of Proposition 3.7.
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