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1 The results

We are concerned in this paper with blow-up solutions of

{

∂u
∂t = ∆u + |u|p−1u in R

N × [0, T )
u(., 0) = u0 in R

N (1)

where u : (x, t) ∈ R
N × [0, T ) → R, u0 ∈ L∞(RN ), T > 0, with

p > 1 and (3N − 4)p < 3N + 8. (2)

Some more general condition can be consider, see [MZ] for details.
The Cauchy problem for system (1) can be solved (for example) in

L∞(RN , R). If the maximal solution u(t) is defined on [0, T ) with T < +∞,
then

lim
t→T

‖u(t)‖L∞ = +∞.

We say that u(t) blows-up at time T . If a ∈ R
N satisfies |u(xn, tn)| → +∞

as n → +∞ for some sequence (xn, tn) → (a, T ), then a is called a blow-up
point of u. The set of all blow-up points of u(t) is called the blow-up set of
u(t) and will be denoted by S.

The existence of blow-up solutions for systems of the type (1) has been
proved by several authors (Friedman [Fri65], Fujita [Fuj66], Levine [Lev73],
Ball [Bal77],..). Many authors has been concerned by the asymptotic be-
havior of u(t) at blow-up time, near blow-up points. See reference in [MZ].
Consider u(t) a solution of (1) which blows-up at time T at a point a ∈ R

N .
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The study of the behavior of u(t) near (a, T ) has been done through the
introduction of the following similarity variables :

y =
x − a√
T − t

, s = − log(T − t), wa(y, s) = (T − t)
1

p−1 u(x, t). (3)

It is readily seen from (1) that wa (or simply w) satisfies the following
equation : ∀s ≥ − log T , ∀y ∈ R

N ,

∂w

∂s
= ∆w − 1

2
y.∇w − w

p − 1
+ |w|p−1w. (4)

The following Lyapunov functional is associated with (4) :

E(w) =

∫

Wa,s

(

1

2
|∇w|2 +

|w|2
2(p − 1)

− |w|p+1

p + 1

)

ρ(y)dy (5)

where

ρ(y) =
e−

|y|2

4

(4π)N/2
. (6)

In the case (2) (equation (1)), Giga and Kohn showed in [GK85], [GK87]
and [GK89] that

∀x ∈ R
N , ∀t ∈ [0, T ), |u(x, t)| ≤ C(T − t)

− 1

p−1 (7)

for some constant C > 0. They also showed that

wa(y, s) → κ ≡ (p − 1)−
1

p−1 as s → +∞, (8)

uniformly on compact sets. See reference in for refinement of these results.

We now claim the following theorem which classifies all connections in
L∞

loc between critical points of (4). This Theorem is in some sense a classifi-
cation of “critical points at infinity” (in a parabolic sense) for equation (4).
Note that this Theorem is valid not only for p satisfying (2) but for all
subcritical p, that is under the condition

p > 1 and (N − 2)p < N + 2. (9)
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Theorem 1 (Liouville Theorem for equation (4)) Assume (9) and
consider w a solution of (4) defined for all (y, s) ∈ R

N × R such that w ∈
L∞(RN × R, R

M ). Then necessarily one of the following cases occurs :
i) w ≡ 0,
ii) w ≡ ±κ,
iii) ∃s0 ∈ R, such that w(y, s) = ±ϕ(s − s0) where

ϕ(s) = κ(1 + es)
− 1

p−1 .

This Theorem has an equivalent formulation for solutions of (1) via the
transformation (3).

Corollary 1 (A Liouville Theorem for equation (1)) Assume that (9)
holds and that u is a solution in L∞ of (1) defined for (x, t) ∈ R

N ×(−∞, T ).

Assume in addition that |u(x, t)| ≤ C(T − t)
− 1

p−1 . Then u ≡ 0 or there exist

T0 ≥ T such that ∀(x, t) ∈ R
N × (−∞, T ), u(x, t) = ±κ(T0 − t)

− 1

p−1 .

Theorem 2 (Uniform estimates with respect to u0) Assume
condition (2) holds and consider u a solution of (1) that blows-up at time
T < T0 and satisfies ‖u(0)‖C2(RN ) ≤ C0. Then, there exists C(C0, T0) such

that ∀t ∈ [0, T ), ‖u(t)‖L∞(RN ) ≤ Cv(t) where v(t) = κ(T − t)−
1

p−1 is the
solution of

v′ = vp and v(T ) = +∞.

Remark : We suspect that this result is true with no condition on T .
Let us remark that we suspect this Theorem to be valid in the case (9).

Theorems 1 and 2 have important consequences in the understanding of
the blow-up behavior for equation (1) in the case (2). We have the following
localization result which compares (1) with the associated ODE

u′ = up.

Theorem 3 (Uniform ODE Behavior) Assume that (2) holds and con-
sider T ≤ T0 and ‖u0‖C2(RN ) ≤ C0. Then, ∀ε > 0, there is C(ε, C0, T0) such

that ∀x ∈ R
N , ∀t ∈ [0, T ),

∣

∣

∣

∣

∂u

∂t
(x, t) − |u|p−1u(x, t)

∣

∣

∣

∣

≤ ε|u(x, t)|p + C.
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Remark : Note that the condition u(0) ∈ C2 in Theorems 2 and 3 is not
restrictive, because of the regularizing effect of the heat equation.

We now present in section 2 the proof of the Liouville Theorem 1 in the
scalar case. Section 3 is devoted to the control of ‖u(t)‖L∞ (Theorem 2)
and the ODE behavior (Theorem 3) uniformly with respect to initial data.

2 Liouville Theorem for equation (4)

In this section, we prove Theorem 1. Let us first introduce the following
functional defined for all W ∈ H1

ρ (RN )

I(W ) = −2E(W ) +
p − 1

p + 1

(
∫

RN

|W (y)|2ρ(y)dy

)
p+1

2

(10)

where E is defined in (5), and the following blow-up criterion valid for
vectorial solutions of (4) :

Proposition 2.1 (Blow-up criterion for vectorial solutions of (4))
Let w be a solution of (4) which satisfies

I(w(s0)) > 0 (11)

for some s0 ∈ R. Then, w blows-up at some time S > s0.

Remark : This Proposition and the fact that I(κ) = 0 yield informations
on the solutions of (4) close to κ in the energy space.
In the following, we will prove Proposition 2.1 and then give a sketch of the
arguments of the proof of the Liouville Theorem, since they are the same as
those in [MZ98a]. Only the arguments related to the new blow-up criterion
will be expanded.

Proof of Proposition 2.1 : We proceed by contradiction and suppose that
w is defined for all s ∈ [s0,+∞). According to (4) and (5), we have ∀s ≥ s0,

d

ds

∫

|w(y, s)|2ρdy = 2

∫
(

−|∇w(y, s)|2 − |w(y, s)|2
p − 1

+ |w(y, s)|p+1

)

ρdy

= −4E(w(s)) +
2(p − 1)

p + 1

∫

|w|p+1ρdy

≥ −4E(w(s0)) +
2(p − 1)

p + 1

(
∫

|w|2ρdy

)
p+1

2
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where we used Jensen’s inequality (
∫

ρdy = 1) and the fact that E is de-
creasing in time.

If we set

z(s) =

∫

|w(y, s)|2ρdy, α = −4E(w(s0)) and β =
2(p − 1)

p + 1
, (12)

then this reads :

∀s ≥ s0, z′(s) ≥ α + βz(s)
p+1

2 . (13)

With (12) and (10), the condition (11) reads : α + βz(s0)
p+1

2 > 0. By a
classical argument, we have from this and from (13)

∀s ≥ s0, z′(s) > 0 and α + βz(s)
p+1

2 > 0.

Using a direct integration, we obtain :

∀s ≥ s0, s − s0 ≤
∫ z(s)

z(s0)

dx

α + βx
p+1

2

≤
∫ +∞

z(s0)

dx

α + βx
p+1

2

= C(z(s0)) < +∞

since p > 1. Thus, a contradiction follows and Proposition 2.1 is proved.

Proof of Theorem 1 : We assume p > 1 and p < N+2
N−2 if N ≥ 3, and

consider w ∈ L∞(RN × R, R) a solution of (4). We proceed in two parts in
order to show that w depends only on s :
- In Part I, we show from the dissipative character of the equation that w has
a limit w±∞ as s → ±∞ with w±∞ a critical point of (4), that is w±∞ ≡ 0, κ

or −κ. We then focus on the nontrivial case (w−∞, w+∞) = (κ, 0) and show
from a linear study of the equation around κ that w goes to κ as s → −∞
in three possible ways.
- In Part II, we show that one of these three ways corresponds to w(y, s) =

ϕ(s − s0) for some s0 ∈ R where ϕ(s) = κ(1 + es)−
1

p−1 . In the two other
cases, we find a contradiction from nonlinear informations :

- the blow-up criterion of Proposition 2.1 (for w close to κ),
- the following geometrical transformation :

a ∈ R
N → wa defined by wa(y, s) = w(y + ae

s
2 , s) (14)

which keeps (4) invariant (thanks to the translation invariance of equation
(1)).
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Part I : Possible behaviors of w as s → ±∞
We proceed in two steps : First, we find limits w±∞ for w as s → ±∞.

In a second step, we focus on the linear behavior of w as s → −∞, in the
case w−∞ = κ.

Step 1 : Limits of w as s → ±∞

Proposition 2.2 (Limits of w as s → ±∞) w+∞(y) = lim
s→+∞

w(y, s) ex-

ists and is a critical point of (4). The convergence holds in L2
ρ, the L2 space

associated to the Gaussian measure ρ(y)dy where ρ is defined in (6), and
uniformly on each compact subset of R

N . The same statement holds for
w−∞(y) = lim

s→−∞
w(y, s).

Proof : See Step 1 in section 3 in [MZ98a].

Proposition 2.3 (Stationary problem for (4)) The only nonnegative
bounded global solutions in R

N of

0 = ∆w − 1

2
y.∇w − w

p − 1
+ |w|p−1w (15)

are the constant ones : w ≡ 0, w ≡ −κ and w ≡ κ.

Proof : One can derive the following Pohozaev identity for each bounded
solution of equation (4) in R

N (see Proposition 2 in [GK85]) :

(N + 2 − p(N − 2))

∫

|∇w|2ρdy +
p − 1

2

∫

|y|2|∇w|2ρdy = 0. (16)

Hence, for (N − 2)p ≤ N + 2, w is constant. Thus, w ≡ 0 or w ≡ κ or
w ≡ −κ.

¿From Propositions 2.2 and 2.3, we have w±∞ ≡ 0 or w±∞ ≡ κ or
w±∞ ≡ −κ. Since E is a Lyapunov functional for w, one gets from (5) and
(4) :

−
∫ +∞

−∞
ds

∫

RN

∣

∣

∣

∣

∂w

∂s
(y, s)

∣

∣

∣

∣

2

ρdy = E(w+∞) − E(w−∞). (17)

Therefore, since E(κ) = E(−κ) > 0 = E(0), there are only two cases :
- E(w−∞) − E(w+∞) = 0. This implies by (17) that ∂w

∂s ≡ 0, hence w is a
stationary solution of (4) and w ≡ 0 or w ≡ κ or w ≡ −κ by Proposition
2.3.
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- E(w−∞)−E(w+∞) > 0. This occurs only if w+∞ ≡ 0 and w−∞ ≡ κ or −κ.
It remains to treat this case. Since (4) is invariant under the transformation
w → −w, it is enough to focus on the case :

(w−∞, w+∞) ≡ (κ, 0). (18)

Step 2 : Linear behavior of w near κ as s → −∞
Let us introduce v = w−κ. From (4), v satisfies the following equation :

∀(y, s) ∈ R
N+1,

∂v

∂s
= Lv + f(v) (19)

where Lv = ∆v − 1

2
y.∇v + v and f(v) = |v + κ|p−1(v + κ) − κp − pκp−1v.

(20)

Since w is bounded in L∞, we assume |v(y, s)| ≤ C and |f(v)| ≤ C|v|2.
L is self-adjoint on D(L) ⊂ L2

ρ. Its spectrum is

spec(L) = {1 − m

2
| m ∈ N}, (21)

and it consists of eigenvalues. The eigenfunctions of L are derived from
Hermite polynomials :

• N = 1 :
All the eigenvalues of L are simple. For 1 − m

2 corresponds the eigen-
function

hm(y) =

[m
2

]
∑

n=0

m!

n!(m − 2n)!
(−1)nym−2n. (22)

• N ≥ 2 :
We write the spectrum of L as

spec(L) = {1 − m1 + ... + mN

2
|m1, ...,mN ∈ N}.

For (m1, ...,mN ) ∈ N
N , the eigenfunction corresponding to

1 − m1+...+mN
2 is

h(m1 ,...,mN) : y −→ hm1
(y1)...hmN

(yN ), (23)
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where hm is defined in (22). In particular,

*1 is an eigenvalue of multiplicity 1, and the corresponding eigenfunc-
tion is

H0(y) = 1, (24)

*1
2 is of multiplicity N , and its eigenspace is generated by the orthog-

onal basis {H1,i(y)|i = 1, ..., N}, with H1,i(y) = h1(yi); we note

H1(y) = (H1,1(y), ...,H1,N (y)), (25)

*0 is of multiplicity N(N+1)
2 , and its eigenspace is generated by the or-

thogonal basis {H2,ij(y)|i, j = 1, ..., N, i ≤ j}, with H2,ii(y) = h2(yi),
and for i < j, H2,ij(y) = h1(yi)h1(yj); we note

H2(y) = (H2,ij(y), i ≤ j). (26)

Since the eigenfunctions of L constitute a total orthonormal family of
L2

ρ, we expand v as follows :

v(y, s) =

2
∑

m=0

vm(s).Hm(y) + v−(y, s) (27)

where
v0(s) is the projection of v on H0,
v1,i(s) is the projection of v on H1,i, v1(s) = (v1,i(s), ..., v1,N (s)), H1(y) is
given by (25),
v2,ij(s) is the projection of v on H2,ij, i ≤ j, v2(s) = (v2,ij(s), i ≤ j), H2(y)
is given by (26),
v−(y, s) = P−(v) and P− is the projector on the negative subspace of L.

With respect to the positive, null and negative subspaces of L, we write

v(y, s) = v+(y, s) + vnull(y, s) + v−(y, s) (28)

where v+(y, s) = P+(v) =
∑1

m=0 vm(s).Hm(y),
vnull(y, s) = Pnull(v) = v2(s).H2(y), P+ and Pnull are the L2

ρ projectors
respectively on the positive subspace and the null subspace of L.

Now, we show that as s → −∞, either v0(s), v1(s) or v2(s) is predom-
inant with respect to the expansion (27) of v in L2

ρ. At this level, we are
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not able to use a center manifold theory to get the result (see [FK92] page
834-835 for more details). In some sense, we are not able to say that the
nonlinear terms in the function of space are small enough. However, using
similar techniques as in [FK92], we are able to prove the result. We have
the following :

Proposition 2.4 (Linear classification of the behaviors of w as s →
−∞) As s → −∞, one of the following cases occurs :
i) |v1(s)| + ‖vnull(y, s)‖L2

ρ
+ ‖v−(y, s)‖L2

ρ
= o(v0(s)),

∀s ≤ s0, v′0(s) = v0(s) + O
(

v0(s)
2
)

(29)

and there exists C0 ∈ R such that

‖v(y, s) − C0e
s‖H1

ρ
= o(es), (30)

and ∀ε > 0,

v0(s) = C0e
s + O(e(2−ε)s) and v1(s) = O(e(2−ε)s). (31)

ii) |v0(s)|+‖vnull(y, s)‖L2
ρ
+‖v−(y, s)‖L2

ρ
= o(v1(s)) and ∃C1 ∈ R

N\{0} such

that ‖v(y, s) − e
s
2 C1.y‖H1

ρ
= o(e

s
2 ), v1(s) ∼ C1e

s/2 and v0(s) ∼ p
κ |C1|2es,

iii) ‖v+(y, s)‖L2
ρ

+ ‖v−(y, s)‖L2
ρ

= o(‖vnull(y, s)‖L2
ρ
) and there exists l ∈

{1, ..., N} and Q an orthonormal N × N matrix such that
∥

∥

∥

∥

∥

v(Qy, s) − κ
4ps

(

2l −
l
∑

i=1

y2
i

)
∥

∥

∥

∥

∥

H1
ρ

= o(1
s ),

vnull(Qy, s) = κ
4ps

(

2l −
l
∑

i=1

y2
i

)

+ O
(

1
s1+δ

)

, v1(s) = O
(

1
s2

)

and v0(s) =

O
(

1
s2

)

for some δ > 0.

Proof : See Propositions 3.5, 3.6, 3.9 and 3.10 in [MZ98a]. Although only L2
ρ

norms appear in those Propositions, one can see that the proof of Proposition
3.5 in [MZ98a] can be adapted without difficulties to yield H 1

ρ estimates (see
section 6 in [FK92] for a similar adaptation).

Part II : Conclusion of the proof
The crucial point is to note that I(κ) = 0 where I is defined in (10).

Thus, the use of the geometrical transformation w → wa (see (14)) and the
blow-up argument of Proposition 2.1 applied to wa(s) will introduce some
rigidity on the behavior of w(s) as s → −∞.
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We proceed in two steps :
- In Step 1, we show that if the case i) of Proposition 2.4 occurs, then
w(y, s) = ϕ(s − s0) for some s0 ∈ R.
- In Step 2, we show by means of Proposition 2.1 and the transformation
(14) that cases ii) and iii) of Proposition 2.4 yield a contradiction.

Step 1 : Case i) of Proposition 2.4 : the relevant case

Proposition 2.5 Assume that case i) of Proposition 2.4 occurs, then :
i) C0 < 0,

ii) ∀y ∈ R
N , ∀s ∈ R, w(y, s) = ϕ(s − s0) where ϕ(s) = κ(1 + es)

− 1

p−1 and

s0 = − log
(

− (p−1)C0

κ

)

.

Proof :
i) We proceed by contradiction in order to eliminate successively the cases
C0 = 0 and C0 > 0.
- Suppose C0 = 0, then one can see from (29) and (31) that ∀s ≤ s1,
v0(s) = 0 for some s1 ∈ R. Since ‖v(s)‖L2

ρ
∼ v0(s) as s → −∞, we have

∀s ≤ s2, ∀y ∈ R
N , v(y, s) = 0 and w(y, s) = κ for some s2 ∈ R. From the

uniqueness of the solution of the Cauchy problem for equation (4), we have
w ≡ κ in all R

N ×R, which contradicts the fact that w → 0 as s → +∞ (see
(18)). Hence, C0 6= 0.
- Suppose now that C0 > 0. We will prove that

I(w(s)) = −2E(w(s)) +
p − 1

p + 1

(
∫

RN

|w(y, s)|2ρ(y)dy

)
p+1

2

> 0 (32)

for some s ∈ R, which is the blow-up condition of Proposition 2.1, in con-
tradiction with the global boundedness of w.

Since w = κ + v and κ is a critical point of E : H1
ρ(RN ) → R (see

Proposition 2.3), we have

E(w(s)) = E(κ) + O
(

‖v(s)‖2
H1

ρ

)

=
κ2

2(p + 1)
+ O

(

‖v(s)‖2
H1

ρ

)

. (33)

For the second term in (32), we use w = κ + v and write
∫

|w(y, s)|2ρdy = κ2 + 2κ
∫

v(y, s)ρdy +
∫

|v(y, s)|2ρdy

= κ2 + 2κv0(s) +
∫

|v(y, s)|2ρdy. Therefore,
p−1
p+1

(∫

|w(y, s)|2ρdy
)

p+1

2 = κ2

p+1 +κv0(s)+O(‖v(s)‖2
L2

ρ
). Combining this with

(33) and using (31) and (30), we end up with

I(w(s)) ∼ κv0(s) ∼ κC0e
s > 0 as s → −∞

10



which is the blow-up condition of Proposition 2.1. Contradiction. Thus,
C0 < 0.

ii) Let us introduce V (y, s) = w(y, s) − ϕ(s − s0) where ϕ(s) = κ(1 +

es)−
1

p−1 and s0 = − log
(

− (p−1)C0

κ

)

. Since ϕ is a solution of

ϕ′(s) = − ϕ(s)

p − 1
+ ϕ(s)p,

we see from (4) that V satisfies the following equation :

∂V

∂s
= (L + l(s))V + F (V ) (34)

where L = ∆ − 1
2y.∇ + 1, l(s) = − pes−s0

(p−1)(1+es−s0 )
and

F (V ) = |ϕ+V |p−1(ϕ+V )−ϕp−pϕp−1V . Note that ∀s ≤ 0, |F (V )| ≤ C|V |2.
Besides, we have from i) of Proposition 2.4 and the choice of s0 that

|V0(s)| + |V1(s)| = O(e(2−ε)s) and ‖Vnull(s)‖L2
ρ

+ ‖V−(s)‖L2
ρ

= o(es) (35)

as s → −∞. Using the linear classification at infinity of solutions of equation
(34) under the conditions (35) (see Proposition 3.7 in [MZ98a]), we get V ≡ 0
on R

N × R. Thus, ∀y ∈ R
N , ∀s ∈ R,

w(y, s) = ϕ(s − s0).

Step 2 : Cases ii) and iii) of Proposition 2.4 : blow-up cases
In both cases ii) and iii) of Proposition 2.4, we will find s0 ∈ R and |a0| ≤
e−

s0
2 such that I(wa0

(s0)) > 0 where I is defined in (10), which implies by
Proposition 2.1 that wa0

blows-up in finite time S > s0, in contradiction with
‖wa0

‖L∞(RN×R) = ‖w‖L∞(RN×R) < +∞. We give in the following lemma an

expansion of I(wa(s)) as s → −∞ and aes/2 → 0, which will allow us to
conclude :

Lemma 2.6
a - Assume that case ii) or iii) of Proposition 2.4 holds, then

I(wa(s)) = κ

∫

v(y, s)ρ(y − aes/2)dy + O
(

‖v(s)‖2
H1

ρ

)

as s → −∞ and aes/2 → 0. Moreover,
b - In case ii) :

∫

v(y, s)ρ(y − aes/2)dy = a.C1e
s + o (|a|es) + O(ses),
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c - In case iii) :
∫

v(y, s)ρ(y − aes/2)dy =

κ
4p|s|

l
∑

i=1

∫

(z2
i −2)(Qaes/2.z)2ρ(z)dz+O

(

1

s2

)

+O

( |a|2es

|s|1+δ

)

+O

(

|a|3e 3s
2

|s|

)

.

Proof : see **.
This lemma allows us to conclude. Indeed,
- if case ii) of Proposition 2.4 holds, then
I(wa(s)) = κa.C1e

s + o (|a|es) + O (ses). We fix s0 negative enough and
a0 = 1

|s0|
C1

|C1|
e−s0/2 to get

I(wa0
(s0)) ≥

1

2
κa0.C1e

s0 = κ
es0/2

2|s0|
|C1| > 0.

This implies by Proposition 2.1 that wa0
blows-up at time S > s0. Contra-

diction.
- If case iii) of Proposition 2.4 holds, then

I(wa(s)) = κ2

4p|s|

l
∑

i=1

∫

(z2
i − 2)(Qaes/2.z)2ρ(z)dz + O

(

1

s2

)

+ O

( |a|2es

|s|1+δ

)

+

O

(

|a|3e 3s
2

|s|

)

. We fix s0 negative enough and a0 = e−s0/2

|s0|1/4 Q−1e1 where

e1 = (1, 0, ..., 0) so that we get

I(wa0
(s0)) ≥

1

2

κ2

4p|s0|

l
∑

i=1

∫

(z2
i − 2)(

e1

|s0|1/4
.z)2ρ(z)dz =

κ2

p|s0|3/2
> 0

by (6). This implies by Proposition 2.1 that wa0
blows-up at time S > s0.

Contradiction.

This concludes the proof of Theorem 1.

3 Uniform estimates for nonlinear heat equations

In this section, we prove uniform bounds and the ODE like behavior of the
solution.

Proof of Theorem 2 : Uniform L∞ bounds on the solution

Consider u0 ∈ C2 such that ‖u0‖C2 ≤ C0 and u(t) solution of (1) with
initial data u0 blows-up at T with T < T0. We claim that there is C =
C(C0, T0) such that ‖u(t)‖L∞ is controlled by Cv(t) where v is the solution
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of the ODE v′ = vp which blows-up at the same time T as u(t). The result
mainly follows from blow-up argument giving local energy estimates and the
fact that these estimates yield L∞ estimates (from Giga-Kohn [GK87]).

Step 1 : Estimates on u(t) for small time

Lemma 3.1 (C2 bounds for small time) There is t0 = t0(C0) > 0 such
that :
i) for all t ∈ [0, t0], ‖u(t)‖L∞ ≤ 2C0,
ii) for all t ∈ [0, t0], ‖u(t)‖C2 ≤ 2C0,
iii) for all α ∈ (0, 1), ‖∆u‖Cα(D) ≤ C1(α,C0)where

‖a‖α = sup
(x,t)6=(x′ ,t′)∈D

|a(x, t) − a(x′, t′)|
(

|x − x′| + |t − t′|1/2
)α

where D = R
N × [ t02 , t0].

Proof : We start with i) and ii). Since u satisfies

u(t) = S(t)u0 +

∫ t

0
S(t − s)|u(s)|p−1u(s)ds,

we have

‖u(t)‖L∞ ≤ ‖u0‖L∞ +

∫ t

0
‖u(s)‖p

L∞ds.

Thus, by a priori estimates, we have ∀t ∈ [0, t0], ‖u(t)‖L∞ ≤ 2C0 where
t0 = 2−pC

1−p
0 .

Similarly, we obtain ∀t ∈ [0, t0], ‖u(t)‖C2 ≤ 2C0 where t0 = t0(C0).

iii) We use the following lemma :

Lemma 3.2 Assume that h solves

∂h

∂τ
= ∆h + a(ξ, τ)h

for (ξ, τ) ∈ D where D = B(0, 3) × [0, t0] and t0 ≤ T0. Assume in addition
that ‖a‖L∞ + |a|α,D is finite, where

|a|α,D = sup
(ξ,τ),(ξ′,τ ′)∈D

|a(ξ, τ) − a(ξ′, τ ′)|
(

|ξ − ξ′| + |τ − τ ′|1/2
)α (36)

and α ∈ (0, 1). Then,

‖h‖C2(D′) + |∇2h|α,D′ ≤ K‖h‖L∞(D)

where K = K
(

‖a‖L∞(D) + |a|α,D

)

and D′ = B(0, 1) × [ t0
2 , t0].

13



Proof : see Lemma 2.10 in [MZ98b].

Step 2 : Energy bounds in similarity variables
¿From the blow-up argument for equation (4) (Proposition 2.1) and the

monotonicity of the energy E, we have :

Lemma 3.3 There is C1 = C1(C0, T0) such that ∀s ≥ s0 = − log T , ∀a ∈
R

N ,
i) |E(wa(s))| ≤ C1 and

∫

|wa(y, s)|2ρ(y)dy ≤ C1,

ii)
∫ s+1
s

∫

(

|wa(y, s)|p+1 + |∇wa(y, s)|2 +
∣

∣

∂wa
∂s (y, s)

∣

∣

2
)

ρ(y)dyds ≤ C1,

iii)
∫ s+1
s

(∫

|wa(y, s)|p+1ρ(y)dy
)2

ds ≤ C1 where wa and E are defined re-
spectively in (3) and (5).

Proof : Following [GK87], we note w = wa.
i) First we have that ∀s ∈ [s0,+∞), d

dsE(wa(s)) ≤ 0, E(wa(s)) ≤
E(wa(s0)) ≤ C(C0, T0). Let us note from the blow-up result of Proposi-
tion 2.1 that ∀s ∈ [s0,+∞),

I(w(s)) = −2E(w(s)) +
p − 1

p + 1

(
∫

|w(y, s)|2ρ(y)dy

)
p+1

2

≤ 0.

Thus,
(∫

|w(y, s)|2ρ(y)dy
)

p+1

2 ≤ 2(p+1)
p−1 E(w(s)) ≤ C(C0, T0) and we have i).

ii) We have

d

ds

∫

|w(y, s)|2ρ(y)dy = −2E(w(s)) +
p − 1

p + 1

∫

|w(y, s)|p+1ρ(y)dy.

Therefore, by integration and i),
∫ s+1
s

∫

|w(y, s)|p+1ρ(y)dyds ≤ C1.
¿From the bound on

∫

|w(y, s)|2ρ(y)dy, E(w(s)) and
∫ s+1
s

∫

|w(y, s)|p+1ρ(y)dyds, we obtain the bound on
∫ s+1
s

∫

|∇w(y, s)|2ρ(y)dyds, and from the variation of the energy,
∣

∣

∣

∫ s+1
s

∫
∣

∣

∂w
∂s (y, s)

∣

∣

2
ρ(y)dyds

∣

∣

∣
≤ |E(w(s))| + |E(w(s + 1))| ≤ 2C1.

iii) We write
−
∫

|∇w(y, s)|2ρ(y)dy +
∫

|w(y, s)|p+1ρ(y)dy

=
∫

∂w
∂s (y, s)w(y, s)ρ(y)dy + 1

p−1

∫

|w(y, s)|2ρ(y)dy.

Since
∣

∣

∣

∫

|∇w(y, s)|2ρ(y)dy − 2
p+1

∫

|w(y, s)|p+1ρ(y)dy
∣

∣

∣
≤ C1, we have

∫

|w(y, s)|p+1ρ(y)dy ≤ C1

(

∫
∣

∣

∂w
∂s (y, s)

∣

∣

2
ρdy
)

1

2
(∫

|w(y, s)|2ρ(y)dy
)

1

2 + C1,
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then,
(∫

|w(y, s)|p+1ρ(y)dy
)2 ≤ C1

(

1 +
∫
∣

∣

∂w
∂s (y, s)

∣

∣

2
ρ(y)dy

)

.

Thus, by integration we have the conclusion.

Step 3 : L∞ bound in similarity variables
We have the following proposition, where L∞ bound can be derived from

energy bounds :

Proposition 3.4 (Giga-Kohn, L∞ bound on w ) Assume that we have
the bounds of lemma 3.3 on w in the interval [s, s + 1] for a given C1, then
for all δ ∈ (0, 1), there exists C2(C1, δ) such that |wa(0, s + δ)| ≤ C2.

Proof : See lemma 3.2 in [GK87].

Step 4 : Conclusion of the proof : L∞ bounds with respect to
C0 and T0

We can see that these arguments yield uniform bounds on the solution.
- On one hand, we have from Step 1,

∀t ∈ [0, t0(C0)], ‖u(t)‖L∞ ≤ 2C0. (37)

- On the other hand, we have from Proposition 3.4 and Step 2, for all
δ0 ∈ (0, 1), ∀s ∈ [s0 + δ0,+∞), ‖w(s)‖L∞ ≤ C2(C1, δ0), therefore

∀t ∈ [T (1 − e−δ0), T ), ‖u(t)‖L∞ ≤ C2

(T − t)
1

p−1

. (38)

Taking δ0 = δ0(T0, t0) such that T0(1 − e−δ0) ≤ t0
2 , and using (37) and (38)

we obtain ∀t ∈ [0, T ), ‖u(t)‖L∞ ≤ C3

(T−t)
1

p−1

where

C3(C0, T0) = max(C2(C1, δ0), 2C0T
1

p−1

0 ).

This concludes the proof of Theorem 2.

Let us prove now the uniform pointwise control of the diffusion term by
the nonlinear term, which asserts that the solution u(t) behaves everywhere
like the ODE v′ = vp.

Proof of Theorem 3 (Uniform ODE behavior) :

We argue by contradiction. Let us consider un solution of (1) with initial
data u0n such that ‖u0n(t)‖C2 ≤ C0, un(t) blows-up at time Tn < T0 and
for some ε0 > 0, the statement

|∆u| ≤ ε0|u|p + n on R
N × [0, Tn) (39)
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is not valid. Therefore, there is (xn, tn) ∈ R
N × [0, Tn) such that

|∆un(xn, tn)| ≥ ε0|un(xn, tn)|p + n. (40)

Considering ũn(x, t) = un(xn + x, t), we can assume

xn = 0.

From the uniform estimates and the parabolic regularity, we have

Tn − tn → 0 as n → +∞.

Indeed, from Theorem 2, ∃C2(C0, T0) > 0 such that ∀t ∈ [0, Tn),
‖un(t)‖L∞ ≤ C2

(Tn−t)
1

p−1

.

Introducing wn(y, s) for all y ∈ R
N and s ≥ s0n = − log Tn by

y =
x − a√
Tn − t

, s = − log(Tn − t), wn(y, s) = (Tn − t)
1

p−1 un(x, t),

we have ∀s ∈ [s0n,+∞), ‖wn(s)‖L∞ ≤ C2, where s0n = − log Tn. From
parabolic regularity applied to equations (1) and (4), there is C ′ such that
∀s ∈ [s0,+∞), ‖∆wn(s)‖L∞ ≤ C ′.
Thus, ∀t ∈ [0, Tn), ‖∆un(t)‖L∞ ≤ C′

(Tn−t)
p

p−1

.

¿From (40), we have

C ′

(Tn − tn)
p

p−1

≥ ‖∆un(tn)‖L∞ ≥ |∆un(xn, tn)| ≥ n

and Tn − tn → 0 as n → +∞.

Let us now consider two cases.
In the region where the solution un(t) is of the same order as the solution
of the ODE blowing-up at Tn (called the very singular region), the Liouville
Theorem 1 in similarity variables yields a contradiction.
For the other regions, we can control the nonlinear term by using in some
sense wellposedness for small data in some localized energy space (subcritical
behavior). This allows us to transport the information from the very singular
region everywhere.

i) Estimates in the very singular region. |un(0, tn)|(Tn−tn)
1

p−1 → δ0 6= 0
as n → +∞.

A compactness procedure and the Liouville Theorem yield a contradic-
tion. We now consider w̃n(y, s) = wn(sn +s, y) where sn = − log(Tn− tn) →
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+∞ as n → +∞.
w̃n is a solution of (4) for (y, s) ∈ R

N × [s0n − sn,+∞) such that ∀s ≥
s0n − sn + 1, ‖w̃n(s)‖L∞(RN ) ≤ C, ∀R > 0, ‖w̃n‖C2,1

α (B(0,R)×[−R,R]) ≤ C ′(R),

and
|∆w̃n(0, 0)| ≥ ε0|w̃n(0, 0)|p ≥ ε0

δp
0

2 ≥ δ′0 > 0, where for all D ⊂ R
N × R,

‖w‖
C2,1

α (D)
= ‖w‖L∞(D) + ‖∇w‖L∞(D) + ‖∇2w‖L∞(D) + ‖∇2w‖α,D

+ ‖∂w

∂t
‖L∞(D) + ‖∂w

∂s
‖α

2
,D

and ‖u‖α,D is defined in (36). Note that sn → +∞ and s0n = − log Tn ≤
− log t0(C0) by lemma 3.1. Therefore, s0n − sn → −∞. By compactness
procedure, w̃n → w as n → +∞ on compact sets of R

N × R where w is
solution of (4) for (y, s) ∈ R

N × R such that

∀s ∈ R, ‖w(s)‖L∞ ≤ C and |∆w(0, 0)| ≥ δ′0 > 0.

¿From Theorem 1, we have a contradiction, since all the globally bounded
solutions w of (4) defined on R

N×R satisfy w(y, s) = w(s) and ∆w(y, s) = 0.

ii) Estimates in the singular region : un(0, tn)(Tn − tn)
1

p−1 → 0.
We now consider the case where

u(0, tn)(Tn − tn)
1

p−1 → 0 as n → +∞. (41)

Again, by the Liouville Theorem and the local energy estimates (which
allow us to control the nonlinear term), we transport the information ob-
tained in the very singular region to obtain a contradiction in this case.

Step 1 : Compactness procedure outside the singular region
We have from Theorem 2 and its proof

∀t ∈ [0, Tn), ∀n, ‖un(t)‖L∞ ≤ C

(Tn − t)
1

p−1

and ‖un(t)‖C2 ≤ C

(Tn − t)
p

p−1

.

By a compactness procedure, we can assume that Tn → T ∗ where t0(C0) <

T ∗ ≤ T0 and un(x, t) → u(x, t) in C
2,1
loc (RN × [0, T ∗)) where ∀t ∈ [0, T ∗),

∂u
∂t = ∆u + |u|p−1u,

‖u(t)‖L∞ ≤ C1

(T ∗ − t)
1

p−1

and ‖u(t)‖C2 ≤ C1

(T ∗ − t)
p

p−1

,
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and for all D ⊂ R
N × R,

‖u‖C2,1(D) = ‖u‖L∞(D) + ‖∇u‖L∞(D) + ‖∇2u‖L∞(D) + ‖∂u

∂t
‖L∞(D).

We claim :

Lemma 3.5 u(t) blows-up at T ∗ and 0 is a blow-up point of u(t).

Let us recall the following result which asserts that the smallness of the
following weighted energy (related to the energy E(wa) defined in (5)) :

Ea,t(u) = t
2

p−1
−N

2
+1
∫
[

1

2
|∇u(x)|2 − 1

p + 1
|u(x)|p+1

]

ρ(
x − a√

t
)dx

+
1

2(p − 1)
t

2

p−1
−N

2

∫

|u(x)|2ρ(
x − a√

t
)dx

implies an L∞ bound on u(x, t) locally in space-time.

Proposition 3.6 (Local energy smallness result) There exists σ0 > 0
such that for all δ′ > 0 and θ′ > 0, ∀t′ ∈ [0, Tn − θ′], if ∀x ∈ B(0, δ′),
Ex,Tn−t′(un) ≤ σ0, then

- ∀|x| ≤ δ′, ∀t ∈ [ t′+Tn
2 , Tn), |un(x, t)| ≤ Cσθ

0

(Tn−t)
1

p−1

- Moreover, if ∀|x| ≤ δ′, |un(x, t′+Tn
2 )| ≤ M ′ then ∀|x| ≤ δ′

2 , ∀t ∈ [ t′+Tn
2 , Tn),

|un(x, t)| ≤ M ∗ where M ∗ = M∗(M ′, δ′, θ′).

Proof : See [GK89] and [Mer92] (Proposition 2.5).
Proof of lemma 3.5 : By contradiction, there is M , δ > 0 such that

∀|x| ≤ 4δ, ∀t ∈ [0, T ∗), |u(x, t)| ≤ M. (42)

¿From a stability result with respect to the initial data of this property, we
obtain a contradiction.
Indeed, from (42) and direct calculations, there is then t∗ such that ∀|x| ≤ δ,
Ex,T ∗−t∗(u(t∗)) ≤ σ0

2 . We now fix t∗. Then, for n large, ∀|x| ≤ δ,

Ex,Tn−t∗(un)(t∗) ≤ σ0, and ∀|x| ≤ δ, ∀t ∈ [0, t∗+Tn
2 ], |un(x, t)| ≤ 2M . There-

fore, form Proposition 3.6, ∀|x| ≤ δ
2 , ∀t ∈ [ t∗+Tn

2 , Tn), |un(x, t)| ≤ M ∗.

By a classical regularity argument, we have ∀|x| ≤ δ
4 , ∀t ∈ [3Tn

4 , Tn),
|∆un(0, tn)| ≤ M∗∗(M∗,M) which is a contradiction with the fact that
|∆un(0, tn)| → +∞ as n → +∞ and the fact that Tn − tn → 0. This
concludes the proof of lemma 3.5.

Step 2 : Choice of the scaling parameter
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¿From the fact that 0 is a blow-up point of u, we are able to choose a
suitable scaling parameter connecting (0, tn) and the “very singular region”
of un. We are now reduced to the same proof as in [MZ98a]. Consider κ0 ∈
(0, κ) a constant such that E0,1(κ0) ≤ σ0

2 (E0,1(0) = 0 yields the existence of
such a κ0).
Since 0 is a blow-up point of u,

u(0, t)(T ∗ − t)
1

p−1 → κR
N .

where R
N ∈ SM−1. (Note that this follows from the results of Giga and

Kohn [GK89] and Filippas and Merle [FM95]. If M = 1, then ω = ±1).

In particular, there is t0 ≥ 0 such that ∀t ∈ [t0, T
∗), |u(0, t)|(T ∗ − t)

1

p−1 ≥
3κ+κ0

4 .
Therefore, by continuity arguments, for all t ∈ [t0, T

∗), there is a n(t) such
that

∀n ≥ n(t), |un(0, t)|(Tn − t)
1

p−1 ≥ κ + κ0

2
. (43)

¿From (41) and (43), we have the existence of t̃n ∈ [0, tn] such that

|un(0, t̃n)|(Tn − t̃n)
1

p−1 = κ0 and ∀t ∈ (t̃n, tn], |un(0, t)|(Tn − t)
1

p−1 < κ0.
We will see in Step 3 that u(0, t̃n) ∼ C

(Tn−t̃n)
1

p−1

.

We have t̃n → T ∗ from (43).
Let us now consider

vn(ξ, τ) = (Tn − t̃n)
1

p−1 un(ξ
√

Tn − t̃n, t̃n + τ(Tn − t̃n)).

Step 3 : Conclusion of the proof
¿From the Liouville Theorem stated for equation (1) (Corollary 1) and

energy estimates, we show that the nonlinear term is “subcritical” on com-
pact sets of R

N × (−∞, 1]. In particular, we have vn(ξ, τ) → v(τ)ω0 where
ω0 ∈ SM−1, v′ = vp and v(0) = κ0 uniformly on compact sets of R

N×(−∞, 1]

(Note that v(τ) = κ

(

(

κ
κ0

)p−1
− τ

)− 1

p−1

and v(1) < +∞).

We have from the definition of vn that
- vn is defined for all τ ∈ [τn, 1) where τn → −∞ (since Tn − t̃n → 0) and
satisfies

∂vn

∂τ
= ∆vn + |vn|p−1vn.
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- ‖vn(τ)‖L∞ ≤ C
(Tn−t̃n)

1
p−1

[(1−τ)(Tn−t̃n)]
1

p−1

≤ C

(1−τ)
1

p−1

, ‖vn(τ)‖C2 ≤ C′

(1−τ)
p

p−1

and

|vn(0, 0)| = κ0.
We can assume vn → v in C

2,1
loc (RN × (−∞, 1)) where

∂v

∂τ
= ∆v + |v|p−1v

|v(0, 0)| = κ0 and ‖v(τ)‖L∞ ≤ C ′

(1 − τ)
1

p−1

.

¿From Corollary 1, (that is using in some sense the Liouville Theorem in
the very singular region), we have v(ξ, τ) = v(τ)ω0 for some ω0 ∈ SM−1.
Thanks to this result, we have uniformly with respect to |ξ| ≤ 2,

Eξ,1(vn(0)) → Eξ,1(v(0)) = Eξ,1(κ0) ≤
σ0

2
.

Thus, for n large, ∀|ξ| ≤ 2, Eξ,1(vn(0)) ≤ σ0, |vn(ξ, 1
2)| ≤ 2v( 1

2 ), and by
Proposition 3.6, ∀|ξ| ≤ 1

2 , ∀τ ∈ [12 , 1), |vn(ξ, τ)| ≤ M ∗.
By lemma 3.2, there is M ∗ such that ∀|ξ| ≤ 1

4 , ∀τ ∈ [34 , 1],
∣

∣

∂vn
∂t

∣

∣

1

2
,[− 1

4
, 1
4
]N×[ 3

4
,1]

+ |∆vn| 1
2
,[− 1

4
, 1
4
]N×[ 3

4
,1] ≤ M∗∗ where |a|α,D is defined in

(36).
In particular, |∆vn| and

∣

∣

∂vn
∂t

∣

∣ are uniformly continuous on (ξ, τ) ∈ B1/4 ×
[34 , 1] (with a constant independent from n). Thus, vn(0, τ) → v(τ)ω0 and
∆vn(0, τ) → ∆v(0, τ)ω0 = 0 uniformly for τ ∈ [0, 1] as n → +∞.

For τn = tn−t̃n
Tn−t̃n

∈ [0, 1], we have from (39)

|∆vn(τn, 0)| = (Tn − t̃n)
p

p−1 |∆un(0, tn)| ≥ ε0
2 |un(0, tn)|p(Tn − t̃n)

p
p−1

≥ ε0
2 |vn(0, τn)|p. Let n → +∞, we obtain

0 ≥ ε0

2

(

min
τ∈[0,1]

v(τ)

)p

≥ ε0

2
κ

p
0

which is a contradiction. This concludes the proof of Theorem 3.
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