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1 introduction

We are interested in the following nonlinear heat equation:

u = Au+uP (1)
u(0) = wy >0,

where u is defined for (z,t) € RN x [0,7), 1 < p, (N —2)p < N +2 and
up € HI(RN).

In this paper, we deal with blow-up solutions of equation (1) w(t) which
blow-up in finite time 7" > 0: this means that u exists for all ¢ € [0,7),
tan%|]u(t)]]H1 = 400 and }LH%HU(ZL/)HLOO = +o00. Let us consider such a

solution. We aim at studying the blow-up behavior of u(t) as ¢t — T. In
particular, we are interested in obtaining uniform estimates on w(¢) and
deducing from these estimates the asymptotic shape of the singularities.
One can show that in this case, u(t) has at least one blow-up point, that
is zg € R such that there exists (z,,t,)nen satisfying (z,,t,) — (x0,T)
and |u(xy,ty)| — 400 as n — +o0.
For each a € RY, we introduce the following self-similar transformation:

r—a

Yy = VT—t
s = —log(T —1) (2)
we(y,s) = (T —t)rTu(z,t).

Then, we see that w, = w satisfies Vs > —log T, Vy € RY:

ow 1 w
— =Aw— ~y.Vw — —— P
s w 2wa p_1+w (3)



The study of u(t) near (z¢,7") where x is a blow-up point is equivalent
to the study of the long time behavior of w,, as s — +o0.
Giga and Kohn prove in [10] that there exists €y > 0 such that

1
Vs > —logT, g < ||wg,(s)||pe < —
€0

or equivalently:
1 1 _
VE € [0,T), (T — ) 77 < u(t)l|z < —(T — ) 7.
€0

At this level, no other uniform estimates were known.

In [16], we proved the following Liouville Theorem for equation (3):

Let w be a nonnegative solution of (3) defined for (y,s) € RN x R such
that w € L®(RN x R). Then, necessarily one of the following cases occurs:

w=0 orw=k or 3sg € R such that w(y,s) = ¢(s — s0) (4)

1

where (s) = k(1 + es)_ﬁ and k= (p—1)" 1.

From this theorem we derived in [16] the following uniform estimates of
order zero:

Consider a solution w of (3) defined for s > —logT (such that u(t)
blows- up at time T'). Then,

lw(s)|lpee — K and ||Vw(s)||p~ + ||Aw(s)|| — 0 as s — +o0. (5)

We also derived from this result the following localization theorem:
Ve >0, 3Cc > 0 such that Vt € [£,T), Yz € RV,

ou

Y

< eu? .
En <eu’ + Ce (6)

These estimates are still insufficient to yield precise estimates on blow-
up profile. But, we have a compactness property on wg(s) uniformly with
respect to a € RN, which allows us to claim the following result from lin-
earization around the limit set as s — +o0:

Theorem 1 (Refined L> estimates for w(s) and u(t) at blow-up)
There exist positive constants C1, Cy and Cs such that if u is a solution of



(1) which blows-up at time T > 0 and satisfies u(0) € H'(RY), then Ve > 0,
there exists so(€) > —logT such that
i) Vs > sg, Ya € RY,

lwa(s)le < w4+ (BE+0L, [Vua(s)lee < S,
IV2wa(s)lle < 2, IVPwa(s)lze < S,

where kK = (p — 1)_1ﬁ,
i)Vt >T —e 0,

1
@l < (5 + (32 + iy ) (T — 1777,
_(;_‘_i)
. T— —172
[Viu() |l < ’(HOQ(Tﬁ
fori=1,23.

Remark: If v : RN — R is regular, Viv stands for the differential of order
N

i of v. For all y € RV, we define |Vu(y)|? = Z(ajv(y))Q, V2u(y)| =
=1
‘ZTV%(y)z‘ o; B
i Yk 43
sup and [V3u(y)| = sup =05 0 (y))|.
2€RN |Z|2 a,B,7yeERN ik |Oé| |ﬁ| |7| Ik

In addition, [|v[|z= = sup |v(y)| and [|[Viv|[L~ = sup [V'o(y)].
yERN yeRN

In fact, we can see from the proof of Theorem 1 that sg(e) depends only
on the size of initial data. We have the following result:

Theorem 1’ (Compactness) Consider (u,)neny @ sequence of nonnegative
solutions of equation (1) such that for some T > 0 and for all n € N, u,, is
defined on [0,T) and blows-up at time T. Assume also that ||un(0)| g2 @)
is bounded uniformly in n. Then, Ye > 0, there exists to(e) < T such that
Vit € [to(e),T), ¥n € N,

_ 1

lun@llze < (4 (5 + gty (T = 0777,

. —(z=7+%)
[Viun ()] < o Tt FTtE

| log(T—1)|2

where C; are defined in Theorem 1.

Remark: In the case N = 1, Herrero and Veldzquez [12] (Filippas and
Kohn [6] also) prove some estimates related to Theorem 1, using a Sturm



property first used by Chen and Matano [4] (the space oscillations number
is a decreasing function of time).
Remark: The constant % appearing in the term of order one in the esti-

mates on ||w(s)||p~ and |[u(t)||r~ is optimal. Indeed, there exist solutions

Nk
2ps

Bricmont and Kupiainen [3], Filippas and Kohn [6], Merle and Zaag [17]).
Remark: From the local (in time) regularity of the solution to the Cauchy
problem, we can obtain with the same proof an analogous compactness
result when the blow-up times T;, are not the same. The assumptions are
[t (0)|| 2@~y + T3 is bounded uniformly in n. The conclusion is there is
to(€) such that Vn € N, Vt € [T, — t(€), Ty,), the inequalities hold.
Remark: Other compactness results can be shown considering for example
equations of the type:

of equation (3) such that [|w(s)| e = Kk + + o(%) as s — 400 (see

ou
A p
v u+ b(z)u

where b € C3(RY) (see [16]).

These estimates are in fact crucial for the understanding of the solution
at blow-up, especially, the shape of the singularity. Let us recall some results
on this question.

Let us consider zg € RY a blow-up point of u(t), a solution of (1),
that is a point 79 € RY such that there exists (z,,t,) — (zo,T) such that
u(zp,t,) — +00 as n — +oo. The question is to see whether wu(t) (or wy,(s)
defined in (2)) has a universal behavior as t — T (or s — +00).

First, Giga and Kohn prove in [10] and [11] (see also [9]) that for a given
blow-up point zg € RV,

1
lim wy,(y,s) = im (T —t)7Tu(zo + yvVT — t,t) = K (7)
s— 400 t—T
uniformly on compact subsets of R™V. The result is pointwise in 2. Besides,
for a.e. y, liin Vwg,(y,s) = 0.
S— 100

Filippas and Liu [7] (see also Filippas and Kohn [6]) and Velazquez [18], [19]
(see also Herrero and Veldzquez [12], [14]) classify the behavior of w(y, s)
(= Wy, (y,s)) for |y| bounded. They prove that one of the following cases
occurs:

- Case 1: non degenerate rate of blow-up:
there exists k € {0,1,..., N — 1} and a N x N orthonormal matrix @ such



that

VR >0, sup
lyl<R

wraw9) = [+ 5 (V=) = 37 ) || = 0 ()

pPS

as s — +oo where 0 > 0,
_ In—p O —1

and Iy_g is the (V — k) x (N — k) identity matrix,

- Case 2: degenerate rate of blow-up: VR > 0, sup |w(y,s) — k| <
ly|<R

C(R)e™“® for some ¢y > 0.

This yields a blow-up behavior classification in a small range scale. In
some sense and from a physical point of view, these results do not show
the transition between the singular zone (w > « where o« > 0) and the
regular one (w ~ 0) well.

Using the renormalization theory, Bricmont and Kupiainen showed in [3]
the existence of a solution of (3) such that

Vs > sg, Yy € RY, ’w(y,s) — fo <%)’ < % (10)

1

where fo(z) = (p— 1+ %V:P) "~! (see also [1]). We show in [17] the
same result through a reduction to a finite dimensional problem. We also
obtained there a stability result of this behavior with respect to initial data.
This gives a result in an intermediate scale z = %, which is more satisfactory
since it separates the blow-up region (w > « > 0) and non-blow-up ones
(w =~ 0).

In [20], the second author showed that the behavior in the initial variable x
is known in the case where (10) occurs. More precisely, u(z,t) — u*(z) as
t — T uniformly on compact sets of RV\{0} and

() ~ [ 8p|log |||
(p —1)%zf?
Therefore, except in the small range variable (which does not precise

from a physical or analytical point of view the singular behavior), no result
of classification was known.

=
] as x — 0. (11)

In a first step, we use the estimates of Theorem 1 on Vw and V2w in a
crucial way, and the results of Filippas and Liu, and Veldzquez concerning



the classification of blow-up behaviors for |y| bounded to establish a blow-up
profile classification theorem in the variable z = % (which is the intermedi-
ate scale that separates the regular and singular parts in the non degenerate
case):

Theorem 2 (Existence of a blow-up profile in the intermediate
scale for solutions of (1))

Let u(t) be a solution of (1) which blows-up at time T > 0 and satisfies
w(0) € HYRN). Let 2y be a blow-up point of u(t). Then, there exist
k€ {0,1,..,N} and an orthonormal N x N matriz Q such that

VKo >0, sup [wso(v/5.5) — fu(2)l — 0 as s — +oo,  (12)
|z|<Ko

where )

Fulz) = <p 1+ %ZTAICZ> " (13)

and Ay, is defined in (9).

Remark: Velazquez in [19] obtained a related profile existence result. He
extended the |y| bounded convergence of [18] to the larger set |y| < Ko/s,
by estimating the effect of the convective term —%y.Vw in the equation
(3), in LP? spaces with a Gaussian measure. However, the convergence that
he obtains depends strongly on the considered blow-up point zy. Let us
point out that the convergence we have in Theorem 2 can be shown to be
independent of xy. Indeed, by using the uniform estimates of Theorem 1,
we can give a uniform version of the result of [7] and [18], and obtain thanks
to our techniques a convergence independent of z¢ in Theorem 2. However,
we use the result of [7] and [18] in this paper, since this shortens the proof.
We also notice that the proof yields that if the case (12) occurs, then (8)
occurs with the same Ay (if £ = N, then take Ay = 0) and conversely. See
also Theorem 3.

Remark: In the case k = IV, this theorem yields k as asymptotic “profile” of
w(s) in the variable z = %: this is a degenerate blow-up behavior. Indeed,

in this case, the scale % is not good for describing the blow-up behavior.
One must refine this scale and exhibit other blow-up profiles in different
scales y ~ exp [(%) 3} for k = 2,3, ... (see for instance [3], [18]). However,
we suspect these profiles to be unstable with respect to initial data.

One interesting problem that follows from Theorem 2 is to find a re-
lationship between the different notions of profile in the scales: |y| < C,



z = % < C and |x — xg| small. We show in the following theorem that all
these descriptions are equivalent in the case of a solution u(t) of (1) that
blows-up at some point £y € RY in a non degenerate way (which is supposed
to be the generic case):

k=0and A, = Iy.

This answers many questions which were underlined on this problem in
preceding works.

Theorem 3 (Equivalence of different notions of blow-up profiles)

Let xg € RN be an isolated blow-up point of u(t) solution of (1) such
that ug € HY(RN). The following blow-up behaviors of u(t) near xo or
w(s) = Wy, (s) (defined in (2)) are equivalent:

w(y, s) — [H—l-i(N— %\ylz)H = o(é) as s —

A) vV
(A) VR > 0, sup 205

lyI<R

+oo where k = (p — 1)_P_i1,

(B) 3eg > 0 such that |w(y,s) - fo(%

\?/Jg) — 0 as s — +00

, ) ’Lm(\y|§eoes/2)
with fo(z) = (p— 1+ L 22) 75T,
(C) 3ep > 0 such that if |z — xo| < €0, then u(x,t) — u*(z) ast — T

1
* 8p|log |xt—xo| | p—1
and u*(z) ~ [7@_1)2‘%_%‘2 as x — xg.

Remark: In [19], Veldzquez shows that (A) = (B) = (C) by estimating
the local effect to the term —%y.Vw in equation (3) in LP with Gaussian
measure. The classification of [19] also yields that (C) = (A). Let us point
that the estimates in our proof are quite elementary and rely on localization
effect and uniform estimates. In addition, one can show from our proof and
our uniform techniques that the convergence speeds in (A), (B) and (C)
depend only on each other and on a bound on the C'? norm of initial data (
and not on the initial data itself).

Remark: In fact, (A) (or (B) or (C)) imply that z¢ is an isolated blow-
up point. It is conjectured that the equivalence holds (in the case of the
(supposed to be) generic blow-up rate).

Remark: The techniques we introduce in the proof of Theorem 3 allow us
to obtain the same results as Veldzquez in the case where (8) occurs with
k<N.

Section 2 is devoted to the proof of the uniform estimates on w (The-
orems 1 and 1’). Section 3 deals with results on profiles (Theorems 2 and
3).



2 L™ estimates of order one for solutions of (3)

2.1 Formulation and reduction of the problem

We prove Theorems 1 and 1’ in this section. Let us first show Theorem 1.
Theorem 1’ follows from similar arguments.

Proof of Theorem 1: We consider u(t) a blow-up solution of (1) which
blows-up at time T" > 0.

We can assume from regularizing effect of the heat flow that T" < 1,
up € C3(RY)N H(RY). We are interested in finding L> estimates of order
one for wg (= w) defined in (2). In [16], we have already proved L estimates
of order zero for w stated in (5). Note that with obvious simple adaptations
of the proof of (5), we have the following result:

lw(s)|Loe — & and [[Vw(s)l|ze + [|Vw(s) e + [VPw(s)[ze — 0 (14)

as s — +00.

We now want to refine the estimates (14). More precisely, we want to
show that there exist positive constants C'1, Co and C3 depending only on
p such that Ve > 0, 3sg(e) such that Vs > sg(e),

[[w(s)]| 2o~
IV2w(s)] Lo

o+ (B (V- DOL, [Tuls)lo

= IV3w(s) Lo

s

(15)

< <
< <

3/2

~

V)

For this purpose, we take an arbitrary ¢ € (0,¢9) (where ¢ < 1 is
small enough) that we consider as fixed now, and introduce the following
definitions:

Definition 2.1 For all A > 0 and s > —logT, we define V4(s) as being
the set of all w € W3 (RN) satisfying:

Jwllge <+ ([Vollze < 5
5/4
V2wl < 4, V3w < 4.

and .
vaerY, - 21y < / VRuly+ a)o(y)dy

in the sense of symmetric N x N matrices, where the norms are introduced
in the remark after Theorem 1,
(= 25+ (N 4D, 1) = T2 2B, a0 = o +e, (16)
cole) = — €, ci1(e) = — €/, c2(€) = — + ¢,
2p /P 2p



_lw?
Iy is the N x N identity matriz and p(y) = ﬁ. (17)
T
Definition 2.2 For all s > —logT, we define

Va(s) = {w € C([—=log T,s), W3°(RN)) | Vr € [=log T, s), w(r) € Va(r)}.

Let us remark that condition (16) is in some sense a lower bound on V2w(a).
Indeed, if w € V4(s), then we have Ya € RY,

[, VRuly + @p()dy - V(o) < C'(N)[TPulex (18
A A5/4
and ;IN > Vw(a) > — %2 + C*(N)W] In (19)

where C*(N) = [ lylp(y)dy.

Proof of (18) and (19): Using a Taylor expansion, we have: Vy € R,

V2w(y + a) — V2w(a) = [} V3w(a + ty)(y)dt. Hence,

IV2w(y + a) — VZw(a)| < |y|||V3w||re < |y|‘235—//;. This yields (18) and (19)

by integration (use [ p(y)dy =1). [ |
Notice that the lower bound on V?w(a) is (consider the order 1) inde-

pendent of A, which will be crucial in the proof.

Theorem 1 is in fact a consequence of the following proposition:

Proposition 2.1 (Reduction) There exist A(p) > 0 and €o(p) € (0,1)
such that for all € € (0, €), there exists S(A, €) so that the following property
18 true:

Assume that w is a solution of (3) defined for all time s > —logT and
satisfying w(—logT) € HYRN). Assume in addition that w € V() for
some § > S(A,€), then:

Jw(s) € OVas),

ii) Vs > —log T, w(s) € Va(s).

Proposition 2.1 implies Theorem 1:

Let € € (0,e0), A = A(p) and S(A,¢€) defined in Proposition 2.1. Our
strategy is to find ng(e) = np € N such that Vs > —log T, w(s+mng) € Va(s).
Indeed, one can easily check the following result:

Lemma 2.1 Assume for all ¢ € (0,1), there ezists no(e) € N such that
Vs > —log T, w(s +no) € Va(s). Then, (15) is satisfied with
K

Cy =
1=,

+4y/p, Cy=2A(p) and C3 = 2A(p)>/*.



Let us consider W = w(. + n). Then, W satisfies (3) for all s > —logT
and W(—1logT) = w(n —logT) € H'(RY) from the solving of the initial
value problem for w.

We claim the following: for n large, we have w(. +n) € Va(S(4,¢)).
Indeed, let

5= 1 min Co C1 (&) A A5/4
Taar o) MM\ SAg VsA o S(A.9 S(A.9 S(4, 72
(20)
where C*(N) is defined in (19). (14) implies that there exists ng € N
such that Vn > ng, Vs € [~log T, S(A, )], [|w(s +n)|[re <k +0 < K+ £,

IVw(stn)llze <6 < 3%, [[V2w(stn)llze <6 < £ and [|[VPw(s+n)|r= <
A5/4

0 < £,
— 4g3/2
Let s € [~logT,S(A,¢)] and a € RY. According to (18), we have
Jan V20(y + a, s +n)p(y)dy
> — ([V%w(a,s + )|+ C*(N)[V3u(s + n) 1) I > — (6 + C*(N)8) Iy >
—45In. Thus, w(. +ng) € Va(S(A,€)). Applying Proposition 2.1, we see
from i) that

Vs € [—logT,+00), w(s+ng) € Va(s).
This concludes the proof of Theorem 1. |

Proof of Theorem 1.

For all n € N, we introduce w, = wy o defined from u, by (2). Then,
by simple obvious adaptations of the proof of Theorem 1’ in [16], we claim
that sup ||wy,(s)|[z~ — & and sup || Viwn(s)|[p=~ — 0 as s — 400 for i = 1,2

neN neN

and 3.

Hence, there exists ng € N such that Vn € N, Vs € [—logT,S(A,¢)],
lwn (s +no)|lLe < k46 and | Viw, (s + no)|[z~ < 6 for i = 1,2,3 where
J is defined in (20). Hence, as for the proof of Theorem 1, we get Vn € N,
wy(. +no) € Va(S(A,€)). Thus,

Vn €N, Vs € [—logT,+00), wy(s+ng) € Va(s)
by ii) of Proposition (2.1). This concludes the proof of Theorem 1’. [ |

Therefore, the question reduces to prove Proposition 2.1.
Proof of Proposition 2.1:

i) = i1): By contradiction, we assume that there exists s > —logT
such that w(s) & Va(s). Let s’ be the lowest s satisfying this. Then,
s >8> 5(A¢), w e Vy(s') and w(s’) € OVa(s"). This contradicts 7).

10



Proof of i): Let us argue by contradiction. We suppose that for all
A > 0, there is a sequence s, — oo and a solution of (3) w, defined
for all s > —logT such that w,(—logT) € H(RY), Vs € [~logT),s,],
wp(s) € Va(s) and wy,(sy,) € OVa(sy).
Let us denote w,, by w to simplify the notations. We claim the following

Proposition 2.2 (Characterization of dV4(s,)) There exists y, € RN
such that one of the following cases must occur:

Case 1: w(Yn, Spn) = kK + o,

Case 2: |Nw(yn, sp)| = 2

Sn
Case 3: there exists a unitary p, € RN such that
c2

8072; fRN v2w(y + Yns Sn)p(y)dygon - e
Case 4: [V2u(yn, su)] = &

Sn’
5/4
Case 5: |V3w(yn,8n)| = —fg/z .

Proof:

Let us remark that since w(—logT) € H'(RV), we can assume from the
regularizing effect of the heat flow that w(—logT,y) — 0 and
Viw(—logT,y) — 0 as |y| — 4oo for i = 1,2 and 3. Hence, we have by
classical estimates w(y, s) — 0 and Viw(y, s) — 0 as |y| — +oo uniformly in
5 € [sp, sn + 1]. Hence, by Lebesgue’s Theorem, [ V2w(y + a, s)p(y)dy — 0
as |a| — +o0.

This insures that one of the five cases of Proposition 2.2 occurs. |

We now use the classification of Proposition 2.2 and consider in the
following subsection all the five cases in order to reach a contradiction.
Let us notice that we reduce to the case

yn = 0.

Indeed, from (2) and the translation invariance of (1), we define for all
y € RY and s > —logT":
W(y,s) = w(y+yne 2 ,5). (21)

We still have:
- W is solution of (3) defined for s € [—1log T, +00),
- Wi(s) € Vu(s) for all s € [—logT, s,],
- Wi(sp) € OVa(sn).

We will denote W by w and ¢,, by .

We now claim that there exist €p(p) > 0 and A(p) > 0 such that for all

€ € (0,€p), there is S(A,¢€) such that all the cases 1, 2, 3, 4 and 5 do not
occur if s, > S(A,€), which will conclude the proof of Proposition 2.1.

11



2.2 Proof of the boundary estimates

There exist €g(p) and Ag(p) such that Ve € (0,€p), VA > Ag(p), 35S = S(A,¢€)
such that Cases 1,2,3,4 and 5 do not occur if s,, > S(A,€).

Let us show the following lemma

Lemma 2.2 (Taylor expansions) Assume that w(s) € Va(s). Then,

Vy € RN:
_Z - - )< _ — . -
Iy ( F O ) S i) = w(0,5) — yVu(0,5) < Syl
(22)
1 7y 1 5 A%/
w(y7 S) - w(07 8) - va(()? 8) - 3Y \Y w(O,s)y < _‘y’ ~3/2 (23)
2 6 s3/
N A
[ Tty — Vu(o.5)] < )%, 29
and |w(y,s) —w(0,s)| < 25
[w(y, s) —w(0,s)] f‘ yl (25)

where C*(N) = [ |ylp(y)dy

Proof: By a Taylor expansion of w(y, s) to the second order near y = 0, we
write: w(y, s) —w(0,s) —y.Vw(0,s) = fol(l — )y V2w(ty, s)ydt. Using (19)
we get the first inequality.

The second and the forth inequalities are obtained in the same way by
expanding w(y, s) respectively until the third and the first order, and using

[V3w(s)|lee < 47 and [[Veo(s)||p < .
For the third inequality, we write for all y € RY, Vw(y, s) — Vw(0, s) =

y.fol V2w(ty, s)dt. Using |[V2w(s)||f= < 4, we obtain

IVw(y, s) — Vw(0,s)| < \y|% Integrating this inequality with respect to

pdy, we get the conclusion. |

Case 1: w(s,) can not reach x + &
n

For all e > 0 and A > 0, there exists S1(A,€) such that if s, > S1(A,¢€),
Case 1 in Proposition 2.2 does not occur.

Proof.: This estimate is in fact crucial and it follows from a blow-up
argument.
Assume that
w(0,8,) = K+ 2. (26)

Sn

12



Since w(s,) € Va(sn), we have [lw(sp)|[re < &+ 2 and 0 is a global
maximum for w(s,). Therefore, Vw(0, s,,) = 0. Hence, (22) yields

wlysn) > n+ 2 = 3 (2 + 04 P and
Ci C * 5/4
fwlyssnp(wdy =+ 2 = 3 (& + CX (N4 ) FlyPol)dy

=K+ Co_sﬂ — NC*(N )Aj//: =K+ = —NC""(N)%//;1 > k for s, large
n n STL

* /
(sn > Si(A,€) = W)
This contradicts the global (in time) existence of w. Indeed, we have the
following blow-up criterion for nonnegative solutions of (3):

Lemma 2.3 (A blow-up criterion for nonnegative solutions of (3))
Consider W > 0 a solution of (3) and suppose that for some sy € R,
I Wy, so)p(y)dy > k, then W blows-up in finite time S > s.

Proof: See Proposition 3.5 in [16]. [ |

Therefore, w blows-up in finite time S, which is a contradiction for s,, >
S1(A,€).

Thus, Case 1 of Proposition 2.2 can not occur.

Case 2: |Vw(s,)| can not reach \/c—;—

n

There exist ea(p) > 0 such that Ve € (0,e2(p)), VA > 0, 352(A, €) such
that if s, > Sa(A,€), then Case 2 in Proposition 2.2 can not occur.

Proof: 1t follows from the bounds of w(s,) and Vw(s,).
In this case, |Vw(0, sp)| = \/— Using (22) with

Un = (2D + e)ﬁ@iéﬁ’i? we get:
W(Yn,5n) = 0+ (24/p+ 6)\/%\/6—;—” -3 (E—i + C*(N )Af//;l> (2P + €)*sn
=k +2pe+ O (2) + O (\/Ls—n) as n — +o00. Therefore, if € < e2(p) for some

ea(p) > 0, then w(yn, sn) > Kk + pe + O (\/i—n) Hence,

Co 1
£t L sl 2 Ko+ pet <¢5>
which is a contradiction if s, > S2(A, €) for some Sa(A4,€).

Thus, Case 2 of Proposition 2.2 can not occur.

Case 3: oT [n VZw(y, sn)p(y)dye > -5

13



Ve > 0, VA > 0, 353(A,€) such that if s, > S3(A,¢€), then Case 3 in
Proposition 2.2 does not occur.

Proof: We assume that o7 [on VZw(y, sp)p(y)dye = —2 for some uni-
tary ¢ € RY. We proceed in two steps: in Step 1, we derive a differential
equation on [ V2w(y,s)p(y)dy. In Step 2, we conclude the proof by a con-
tradiction between this equation and the fact that w is globally defined in
time.

Step 1: Equation on [ V2uw(y,s)p(y)dy
We recall that w is a solution of

ow P

— =Lw—- —— P 27

s w p— w~+ w (27)
where £L = A — %y.V + 1 is a self-adjoint operator on D(L) C L%(RN) with
p defined in (17). The spectrum of £ consists of eigenvalues

specﬁz{l—%|m€N}.

Let us recall that in dimension 1, the eigenvalues are simple and the eigen-

function corresponding to 1 — 7 is

I3

(%]
1 j,m—2j
P (y) :] Om(—l) ym (28)

where h,,, satisfies [ hpyhjpdy = %5,%]-.
In dimension N, we write the spectrum of L as

mi+ ... +my

— {1
spec £ = { 5

| mi,...,my € N} (29)

For (my,...,my) € N, the eigenfunction corresponding to 1 — L;m]\’ is

Y = Py (Y1) Py (Y)- (30)
Since the eigenfunctions of £ constitute a total orthonormal family of

Lg(RN ), we can write

wls) = wn(s) + wn(s)y + (G5 wals)y — trus(s) ) +w-ws) (31

where:
- wos) = [ w(y, s)py)dy € R (cigenvalue 1),

14



-wi(s) = [w(y,s)p(y)dy € RY (eigenvalue 3),
-wa(s) = [w(y,s)M(y)p(y)dy is a N x N symmetric matrix (eigenvalue 0)
. 1 1
Wlth sz(y) = Zyiyj — 5(57;7]', (32)

-w_ = P_(w) and P_ is the Lf, projector on the negative subspace of L.

Our purpose is to write an equation satisfied by wa(s). We claim the
following:

Lemma 2.4 (Equation satisfied by ws(s)) For n large enough, we have:
i) wi(s) = [ Vly,s)py)dy and wy(s) = [ Vwly s)ply)dy,
i6) w1 (3n)| < = fwa(sn)| < 2, ¥y €RY, Ju—(y,50)] < C(N) 477 (1+

3
ly|?) and 8o < wo(s,) < Kk where §g = W for some C(N) > 0.
iii)
whsn) = (puns)r = L Y (o)
p—1

+ p(p = Lywo(s)" ™ [2wa(s,)” +wisa) @ walsa)]  (33)

|w1(sn)] 1
+ O( 83/2 +0 W .

Proof. see Appendix A.

Remark: - If 4 and v are in RY, then we recall that u ® v is the N x N
matrix such that (v ®v),; ; = w;v; and O(f) stands for a function which is
bounded by C(A,p,¢)f as n — +oo.

Step 2: Conclusion for Case 3
Let m(s) = ¢Tws(s)¢. Then, m is C', and since w(s) € Va(s) for all

s € [—logT, sy,|, we have: m(s,) = —g—i and Vs € [—log T, s,], m(s) > —<2.
Thus,
C9 ’ Co
n) = —— and n) < = 34
m(s) =~ and m'(s,) < 5 (34)
Multiplying (33) by ¢’ on the left and ¢ on the right, we find:
m(s0) = (pwo(sa)?~! = 227) m(s,)

(o= V(5,2 [2m(s)? + (wr(su)0] +0 (22520 ) 40 ().
Therefore, since (w1 (sy,).¢)? > 0, we have

-1
m(sn)

pr(Sn)p_l — - Z

p—1 —m/(sp) + 2p(p — Dwo(sn)P~*m(sy)?

15



+0 (7“’13(;*;)') +0 (%) )
With (34), we obtain
2

1 Sn ( c2 26
L IR SN VS | p—222
(p 1 + o Do +2(p — Dwo(sn) 2

N O(\wigf;)!>+0<85%>))p_ . (35)

Now, we claim that the following lemma yields the conclusion:

v

wo(sn)

Lemma 2.5 There exists positive constants C(A,p,€) and C'(A,p,€) such
that

00, 5) — ] < T2 (36)
!
and  |wi(sn)| < @. (37)

Indeed, if we inject (36) and (37) in (35), then we get
1
wo(sn) > (57 + 2 (—% + 200 - 1)s 2% + o (&))", which yields
wo(sn) > K+ 2 (CQ - 2ip) i +o0 é . Since ¢y > zip, we obtain
wo(sp) > K
for s, large enough, which contradicts by lemma 2.3 the fact that w is
globally defined on [—log T, +00).
Proof of lemma 2.5:

1

We derive from i) of lemma 2.4 and (35): wo(sy,) > (ﬁ +0 (é)) -1 _

k+ O (i) Since w is globally defined for s € [—logT, +0o0), lemma 2.3
gives wo(s,) < k. Hence,

wo(sp) =k + 0O <i> . (38)

Sn

Integrating (22) with respect to pdy, we obtain: |wg(sy) — w(0,s,)| <
0 (i) Together with (38), this gives (36).

Now, we claim that |Vw(0, sp,)| < g with
B = /2¢2(3co + C(A, p,¢€)). Indeed, if not, then we use the left inequality
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of (22) and write for g,, = g%:

W(Yn, Sn) = w(0, 8p) + Gn.Vw(0, s,) — % (5—2 4 C*(N)?SM) |2

> CErd g B g (02 +CH(N );ﬁf) =

C28n c5

Sn

) . Therefore,

2¢
K + “ > w(sn)|| L > K+ 3_0

n

if s, is large enough, which is a contradiction. Hence, |Vw(0, sy)| <

B

S 5

Using (24), we find wy(s,)] < CE2D with C'(A,p,e) = B + C*(N)A.

This concludes the proof of lemma 2.5. |
Thus, Case 3 can not occur.

Case 4: |V2w(s,)| =~ can not reach SA

There exists Ay(p) such that for all A > A4, and € > 0, 3S4(A, €) such
that if s, > Si(A,€), then Case 4 of Proposition 2.2 can not occur.

Proof. Tt follows from the bounds on w and V3w. We have |V2w(0, s,,)| =
SA. Hence, there exists 79 € {—1,1} and a unitary vector 1, € R" such
that ¥ V2w(0, s,)tbn = 7705- Let us notice that if A > %, then we have
from (19) np = 1 for n large enough.

Using (23) with ¢, = m Al—‘/%wn where 71 € {—1,1} is chosen so that
Un-Vw(0,s,) > 0, we write:

“ ~ ~ ~ /
W(Gins $n) > w(0, 5n) + G- Vw (0, 8,) + 255 V2w(0, 8,) G — 317 |3Aj !

Sn

3/2 a5/4
>0+0+ \fs —&W‘jiﬁ = @. If A > 36k2, then we have
¢
Kt 2 > |w(sn)||Lee > 2K
STL
which is a contradiction for s, large enough. |

Thus, Case 4 can not occur.

Case 5: |V3w(s,)| L~ can not reach AS//;

We first give a crucial uniform ODE comparison result for w in V4(s).
Such a result has been shown in [16] for a fixed solution (see (6)). We claim
that these estimates are in fact uniform for w € V4 (s).

We have the following proposition:
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Proposition 2.3 (ODE like behavior in Vy4(s)) For a given A > 0,

vn > 0, 3C, > 0 such that for all s* > —logT, for all solution w of (3)
defined for all s > —logT and satisfying w € Va(s*), we have Yz € RV,
vt € [0,t*],

%(m,t) —u(x, )| < nu(z, )P + O,

where t* =T — e~ and u(x,t) = (T — t)ﬁw (\/%, —log(T — t))
Proof: Tt is mainly the same as in [16] (Theorem 3), and it uses a compactness
procedure. See Appendix B. |

Now, we begin the treatment of Case 5.

We have

3 A5/4
IV2w(0, sp)| = s and Vs € [—1log T, s,], w(s) € Va(s). (39)

Since w(sy) € Va(sy), we have 0 < w(0, s,) < £+ {£. Therefore, we can
assume that
w(0, $5,) — a € [0, k] as n — +o0.
We will consider the case where a is small in Part I, and let the case where

it is not small for Part II. We first claim the following lemma:

Lemma 2.6 VS > 0, sup  |w(0,8) — pa(s —sp)| — 0 as n — 40
SE[sn—5,5n]
where p, is the solution of

{ ph(s) = —288 o (s)p
©a(0) = a,
1
al—p p—1
that is pq(s) = K <1 + ( 1~ 1) 68) if a>0, and ¢o(s) = 0.
p—
(40)

Proof: Let z,(s) = w(0, s), then we have from (3) Vs € [s,, — S, s

{ 2 (s) + 28 — 2 (s)P = Aw(0, )

Zn(Sn) — a.

Since Vs € [s, — S, sn), w(s) € Va(s), we get |Aw(0,s)| < N||[V2w(s)|r=~ <
NTA. Hence, Vn > 0, we have for n large enough and s € [s,, — S, sy, ]:

2 () + 28 = 2 (s)7| <

{ |zn(sn) —al <.
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Therefore, by classical continuity arguments on ordinary differential equa-
tions, w(0,s) = z,(s) — @a(s — sn) as n — +o0, uniformly on [s,, — 5, sp].
This concludes the proof of lemma 2.6. |

Part I: Case where a < §(p)

There exists 6(p) € (0,k) and Ss(p) such that if A > 1, s, > S5(p) and
a < 0(p), then Case 5 of Proposition 2.2 can not occur.

This result follows from local estimates in new variables (£, 7) defined
below and scaling arguments. We assume a < d(p) where §(p) will be fixed

later small enough, lower than £.

Step 1: Setting of the problem
For each n € N, we introduce s}, = max{ AU{s € [, 5] |
Let us remark that w(0,s),) < x and if s, > %, then w(0, s7,)

(

I g
v
S
inad

wlz =

We have the following lemma:

Lemma 2.7 There exists S(6) — 400 as § — 0 such that for n large
enough, S(0) < s, — s7, < .

Proof: Since s;, > %, we have s, — s;, < .
We get from (40) S > 0 such that Vs 6 [ S 0] a<pq(s) < fand S — +oo
as a — 0. Hence, S — 400 as § — 0, since a < .

Since w(0,s) — @q(s — sp) as n — +oo uniformly on [s, — S5, s,] by
lemma 2.6, we obtain for n large enough Vs € [s,, — 5, s,], w(0,s) < §
Thus, s}, < s, —S. This concludes the proof of lemma 2.7. [ |

Let us define for each n € N, £ e RN and 7 € [—1,1),

S,

(&) = B_ﬁu<f€_%7T+(T—1)6_S%>
Si-logl-7)) ()

— (-7 T (\/fT

where u is defined from w by (2) (take a = 0), and introduce 7, € [0 1]

defined by s/, —log(1 — 7,,) = s,,. Then, v, satisfies: V¢ € RV, V7 € [-1,1)
ov

Pn Ay, + P, 42

AN (42)
From (39) and the definition of s/,, we get: v,,(€,0) = w(§, s,),
un(0,0) < 5, [[Vun(0)[ze < 4,

4 43

Vol < 4 IVnOl. < 4@
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Note that if s;, > 2, then v,(0,0) = §
Step 2: Estimates in v variable

We claim the following lemmas:

Lemma 2.8 (First estimate) For n large enough, we have:
i) V7 € [~Lm], VIE) < 250" wa(6,7) < C(p).
4 i
ii) For all i =1,2,3, V7 € [=1 7., V|¢| < 3s1/*, |Viva(¢,7)] < C'(p).

Lemma 2.9 (Refined estimate) Assume that s;, > . Then,

i) V7 € 0,7a], VIE| < s, § < ua,7) < C(p).
it) There exist positive constants Cg(p), C7(p) and Cg(p) such that if A > 1
then V1 € [0, 75,):

/1/4

viel < enl < S (14)
/1/4 C A

vig < 2 (Ve n)| < HPA (45)
/1/4 A5/4

V|£ 43 ) UTL(§7 )| S ( /3?/2 (46)

Proof of lemma 2.8:
i) By Proposition 2.3, we have: Vi > 0, Vo € RV, Vt € [0,T — e~*")

gz: (x,t) —u(z, t)?| < nu(z,t)? +C).

Therefore, we get from (41): Vi > 0, we have for n large enough: V¢ € RY,
V1 e [—1, 7]

8vn _psy
Dt (6P| < (6 T+ Cre <ol TP ). D)
Using a Taylor expansion and (43), we get for n large enough: V|¢| < 23/1/ 4
2c1 3K
\vn(i,O) - UH(O,O)’ = T/4 and Un(g O) < Z (48)

We take n = n(p) > 0 small enough such that v,(7) and V;(7) defined by

3
0(0) = Vo(0) = S e = (L + 1, and V= (1= )V} =
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are well defined for all 7 € [—1,1] and satisfy max (V;(7),v,(7)) < 2vp(1) =
C(p)-
Hence, for n large enough: V|¢| < 25/n1/4,

V7 € [0,7], vn(&,7) < vy(7), and V7 € [-1,0], v, (&, 7) < Vi(7).  (49)

Therefore, v,(§,n) < C(p) for all T € [-1,7,]. This concludes the proof of

i1) We use a classical result (see Theorem 3 p. 406 in Friedman [8], see
also Douglis and Nirenberg [5]):

Lemma 2.10 Assume that h solves

Oh

E = Ah + a({,T)h
for (&,7) € D where D = B(0,3) x (—70,7:) and 70,7+ € [5,1]. Assume in
addition that ||a| L~ + |a|a,p is finite, where

‘a’ D= sup |a(£77_) _a(ElaT/”
T ememen (€ =€+ | = T|Y2)"

and a € (0,1). Then,
IRllc2(pry + [V2hla,pr < KRl 1o ()

where K = K (HaHLoo(D) + \a!a,D) and D' = B(0,1) x [-7 + 1, T«).

Since vy, is bounded on B(0, 252/4) x [~1,7,] (see 7)), and since v,, and Vv,

satisfy

vy,
8—1;_ = Avn + al(€7 T)Un
and 9y
Un
or =A (an) + ag (57 T)V’Un
/4

for all (&,7) € B(0,2s,'") x [=1,7,], with ag = pa; = pvE~!, it is enough to

prove that |v”‘1,B(o,2sﬁ/4)x(—%,Tn) is finite and to apply lemma 2.10 succes-

sively to v, and Vv, in order to conclude the proof of 7).
For this purpose and from translation invariance, we restrict ourselves
to |£] < 3 and write for all ({,7) € D = B(0,3) x (—=1,7,), vn, = h1 + h

where:
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- hy is a solution of

O = Ay for (§,7) €D
hi(&,7) = wvp(§,7) for || =3 and 7 € (—1,7,)
h1(£7_1) = Un(gv _1) fOI' |£| < 37

- hy is a solution of

B2 = Ahat f() for (67) €RN X (-Lm) g
hao(€,—1) = O0forall £ € RY
with
f(&7) =va(&,7)Liemepy < C(p)- (51)

From maximum principle, h9 is bounded by C(p) on R™, hence on D. There-

fore, hy is bounded by C(p) also. Applying lemma 2.10 with h = hy and

a = 0, we see that in particular |hy|; pr < C(p) where D' = B(0,1)x[—2, 7).
We have from (50): V(¢,7) € RN x [~1,7,),

ho(&,7) = /T e(T_”)Af(cr)da. (52)

-1

We claim that
|h2|1,RN><[—1,Tn) < C(p), (53)

which concludes the proof.

Proof of (53):
Let us recall that for all ¢ € LOO(]RN): ||eTAg0||Loo < |lellzoe,
C
< —

, c o .
Vel < —lpl, and el < Cliells. (5)

In order to prove (53), it is enough to estimate |Vhy(§, 7)| and

[oln) 2l for all ¢ € RY and 7,71, 75 € [~1, 7).

By (52), (54) and (51), we have:
[Vha(€,7)| = |7, VeT=2 f(o)do| < [Ty S| f(0) | 1edo
<2C(p)VT+1<C(p).

Now, we take 7o < 71 and introduce 73 = max (—1, 72 — /71 — 72). Then,

|h(£ﬂ'17)_l—_hT(2£772)| =(r — 7-2)—% f_Tll e(Tl—U)Af(g)dg — f121 e(TQ_")Af(a)da‘

< T+ 11+ 111 with I = (1 —72)"2 [T [|em =2 f(0)| = do,
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IT = (71 = 73) 72 [72 el =2 f(0)]| L do and

11 = [T [en =02 f(0) — =2 (o) do.

From (54) and (51), we have:
1o 1
I <(n—m)72 [ Cp)do = C(p)(r1 —72)"2(11 — 73)

< Cp)(r1 —12) 73 (1 — T2 + /Tl —72) < C(p).
Similarly, IT < C(p). [ |

For 111, we write
1 = (r1 = 79) "% [ do | [7177 e f(0)don|

<(r—7)7% [T do [177 Ldoy by (54),

T2—0 01

< (r1—7) 72 [T do SRR

< C(m —1)3 (13 + )12 — 13) "1 < C(r1 —72)3 x 2% (V7 — 7)) = C.
Thus, V&€ € RY, V7,7 € [-1,70),
1
|ha(&,71) = ha(§m2)| < Ol — 72 2.
This concludes the proof of (53) and the proof of lemma 2.8 also. |

Proof of lemma 2.9
In this case, v,,(0,0) = §.
i) As in lemma 2.6, (47) and (48) yield sup |on(§,7) —v(T)] = 0
l€1<sn/* re[0,m]
as n — —+o00, where v is the solution of

1

V(1) = v(1)P, v(0) = g, that is v(7) = K (21”_1 - T)_ﬁ .
Since V7 € [0,1], v(7) > %, we have for n large enough:
viel < s/ vr e [0.1), 7 < val6,). (55)

i) of lemma 2.8 yields the upper bound.

i1) Let us recall the following lemma:

Lemma 2.11 Assume that z(,7) satisfies V|¢| < 4By, V7 € [0, 7]+

% <Az + Az +p,
2(570) < 20, Z(§77-) < B2

where T, < 1. Then, V|¢| < By, V1 € [0, 7],

32
2(€,7) < e <z0 + o+ CBQe—Tl> .
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Proof. See Appendix C. |

Estimate on Vv, (&, 7):
We estimate h(&,7) = |V, (€, 7).a] where a is a unitary vector of RY.

From (42), Kato’s inequality, (43) and lemma 2.8, we see that V|{| < s ,1/ 4
V1 € [0,7y],
9h < Ah+pvE~th < Ah + pC(p)P~th,
{ hE.0) < - h(Em) < C'(p) (57)

Using lemma 2.11, we get: V|¢] < s” , VT € [0, 7],

S/1/2
h(g,m) < PP <\/3— (p)e” )

which yields (44) since ¢; < &t 2,/p.

Estimate on V2v,(&,7):
We estimate 0(¢,7) = |a? V20, (€, 7)a| where a is a unitary vector in R,
From (42) and Kato’s inequality, we have: V¢ € RY, ¥r € [0,1),
00

5 < < AO 4 poP710 + p(p — 1022V, |2

n/
Using (44), lemma 2.8, 4) of lemma 2.9 and (43), we claim that V|¢| < S”:t 4,
V1 € [0, 7],
B < A0+ )0+ Clp) P,
0(£,0) < A 0(¢,7) < C'(p)

By lemma 2.11, we obtain, V|{| < " r e [0, 7],

427

0l6,m) < 7 (;JFC( )06( i +CC (pe” /1§2>.

n STL
Since A > 1, this yields (45).

Estimate on V3v,(&,7):
We estimate v(&,7) = |V3u,(&,7)(e, 3,7)| where o, 3 and v are unitary
vectors in RV,

From (42) and Kato’s inequality, we have: V¢ € RY, V7 € [0, 1),

ov

5 < Avepui v+ 3p(p = Dup Vo[Vl 4+ p(p = Dlp = 2Jof [ Vou .
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11/4
Using (44), (45), lemma 2.8, ) of lemma 2.9 and (43), we get: V|{| < 225,
V7 € [0, 7y].

% < A+ Clp)y + O(p)C 000,

v(€.0) < A v(E.7) < C'(n).

/11/4
sn/

Applying again lemma 2.11, we obtain: V|| < 22—, V7 € [0, 1),

Ad/A Cs(p)* + Cs(p)C7(p) _al”
v(E,T) < WP (W +C(p) ( e ) +CC (p)e” T .
Since A > 1, this yields (46).
This concludes the proof of lemma 2.9. |

Step 3: Conclusion of the proof
From (41), we have

V3w(0,5n) = (1 — 1) 712 V3,,(0,7,), (58)

where 7, is defined by s, —log(1 — 7,,) = sp,.

-If s, =%, then 1 — 7, = eSn=sn — ¢~ % Hence, (58) and lemma 2.8
yield:

1

Vo0, 5,)| < e F 7T ).
This contradicts (39) for s, large enough.

- If 57, > %, then we have by lemma 2.7 57, — s, < —S(0) for n large
enough. Therefore, (58) and lemma 2.9 yield

3
w0, < APCEEE I E) (2)T s
[ 3/2

5/4 —S(é)(ﬁ#)( 5 )
A Cs(p)e rhe s :

IN

Since S(§) — +oo as § — 0, we fix §(p) > 0 such that

Culpye SO < L

Therefore, (59) yields |si/2V3w(O, sn)| < %/4. This contradicts (39).
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Thus, Case 5 can not occur if a < §(p).

Part II: Case where a > 4(p)

There exists Ag(p) > 0 and S¢(p) such that for all A > Ag(p), if sp >
Se(p), then Case 5 of Proposition 2.2 can not occur if a > 0(p).

This follows from linear estimates on w, for the spectrum of the linear
part of the equation on V3w is fully negative.
Let us remark that in this case, we have:
) 0
Vs € [sn — 1, 8,], Y|yl < ﬁ,— <w(y,s) < k+ 1. (60)
461 4
Indeed, the upper bound follows from the fact that w(s) € Va(s). For the
lower bound, we notice that since a > J, we have from lemma 2.6 and (40):
Vs € [sn — 1,85], w(0,s) > % for s, large enough. Therefore, we have by
&
(25): wly,s) > w(0,s) — Ly > § — 5L =4
From (39), we have the existence of a, 3, ¥ € RY such that |a| = |f] =

|7 =1 and
5 A5/4
[V2w(0, sn) (v, B,7)| = 3/2 (61)
Sn

Our strategy is to derive from (3) an equation on g(y, s) = V3w(y, s)(a, 3,7)
and to do a priori estimates on it in order to contradict (61). We in fact
define

G(y,s) = F(y.s)x(y;8),  F(y,s) = lg(y,s)| = [V?w(y, s)(e, 5,7)], (62)

x(¥,8) = xo (8561/'?) (63)

and yo € C([0,+00),RT) satisfies xo(z) = 1 for |z| < 1, xo(z) = 0 for
|z| > 2.

From (3), we see that

2= (e-Fameert - )
+ oo = Dy, s (oY) (5" V2w + (5.Vw) (4 VPwo)
+ (’y.Vw)(aTV2wﬂ))

+ p(p—1)(p — 2wy, s)P > (@.Vw)(8.-Vw)(y.Vw).
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We see from (39) and definition 2.1 that for sn large enough, we have:
-Vy €RN, Vs € [s, — 1,8,], pw(y,s)P 1 — L < 1

—O<f<cl() +2\/_foralle€(01)
Therefore, F’ satlsﬁes the following inequality: Yy € RY, Vs € [sn, — 1, sp],

OF 5 C(p)A
— < (L—-2)F+ 3(3/)2

<] w(y 572 + Sy, =2

53/2

Hence, by (63) and (60), G satisfies the following inequality: Yy € RY,
Vs € [sp — 1, sy
98 < (L-3G+50 xw(y, s)P 4+ Ghxw(y, )"+ (54 Ax+5y.Vx) -
2V. (FVX)
5/4

<(L-3G+CmYR +Cm)imL,, oy~ 2VA(FV).

Using an integral formulation of this 1nequality between s, —n and s,
where n(p) is fixed such that

€ (0,1) and o > & SN
n pa—
R EM —e ) T 512e (121 —e )~ 47
we obtain
G(0,8,) < T+ 11+ 1T +1V (65)
where
1= [ene ] ©)
II = U dte(sn t)(C—%)O(p) (xt‘\;;)} (0),
_ n Sn—t ﬁ—é A5/4
1T = [f , dtetn D0 (p) A BT {| |>8C1 }] (0) and

V= [-2 [, dtetsr 0 E=DY (V)] (0).
Let us recall that the kernel of £ is: Vs > 0,

e

e_g — |2
n(l—eo) 2" <_ |Z(1 - e‘8|) ) (%0

and that for all ¢ € L®(RY),

EN[7Y

Dy, z) =

N
e Diglim < gl [ DTl < ~Z ol (67)

From (67), (62) and (39), we have
_n _n 5/4
I<e ZHG(sn—n)Hnge Z(sn{W’

27



Again, by (67), we have

Sn (sn—t)
IT < fsn—n e ¢ (p) (:‘3721) <C(p) (sié—;)lgmn <C(p) (si{—;)lgm by (64).

By (66), we have:

(sn—t)

e I |z|? A5/4
HE = ] e ey f{|x|>”}dxexp( Tetemy) CO) i

For |z| > % and t € [s, — 1, s,], we have

T 2 T 2 T 2
P (—4(1_6','(5n,t))) - P (_8(1—e|f|<5nft>>)e"p (‘su = t)))
52 T 2 _t T 2
< exp (_512c§(1t—e—n)) exp (_8(1—e|*|(5n*t))) Se iexp (_ 8(1—e|*|(5n*t))) from
(64).
Therefore,
A/ F sy dz kR
T < CO)G 2 Jaln ) Gy exp (~ 5 )
5/4,—
= C(p)‘é_in)d;g Sp— ndtdee ‘XlQ
5/4 /te
= O ey < Op) L by (o4)
From (66) and 1ntegrat10n by parts, we have:
IV <C(N) [, \/7||F(t)V><(t)||Loo. From (62), (39) and (63), we
have F'(z,t) < 3/2 and |Vy| <7 . Therefore,
5/4 s, 5/4 5/4
IV < §45 [ " 7 < _C(A 5C\/ < O by (64).

From (65) and (62), we then get

/4 _n
1900, 52)| = G(0,50) < 257 (e7F + Cp)e™F + E= ) +C () 525
Now, we take A > As(p) such that C(p)(A+ 1) < (e_g — e_g) A5/4,

and s, > S5(p) such that

W(e‘%—FC( )e - +\/8—_) < < 33/2 If s, > S5(p), then we have :
ﬂ

|V3w(0, s,) (v, B,7)] = g(0,5,)| < e 6 j//; % This contradicts (61).

Thus, Case 5 can not occur if a > §(p).

3 Blow-up profile notions for equation (1)

In this section, we prove Theorems 2 and 3.

Let us first show the existence of a profile in the intermediate variable z =
y

N
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Proof of Theorem 2:
The theorem is a consequence of:

- the behavior of the solution w(y, s) for y bounded,

- the pointwise estimates on Aw(y,s) in Theorem 1, which will enable
us to treat this term in equation (3) as a perturbation.

Let u(t) be a solution of (1) which blows-up at time 7" > 0 and satisfies
u(0) € HY(RY). Let xg be a blow-up point of u(t) and consider w,, defined
by (2). We just write w for wyg,.

The proof is in two steps:

Step 1: Reduction of the problem
According to Filippas and Liu [7] and Veldzquez [18],
- either YR > 0, sup |w(y, s) — k| < C(R)e™* for some § > 0,
ly|<R
- or there exists k € {0,..., N — 1} and a N x N orthonormal matrix ¢ such

1 1
that VR > 0, sup |w(y,s) — [/@ + o ((N —k)— —yTAky>H =0 (—)
ly|<R 2ps 2 s
as s — +oo where

4=Q ( o o ) Q! (68)

and Iy_y is the (N — k) x (N — k) identity matrix.
By direct calculations, we summarize both cases by:

Y a _ (1
VR0, s ol s) ~ f (%) ~Y=0 (S) (69)
where
12 = _
fu(z2) = <p 14 -1 4p1) zTAkz> . a= LNQP k), (70)

k€ {0,1,...,N} and Ay is defined in (68) (take Ax = 0).
We claim now that (69) implies that the convergence is uniform on larger
sets:

Proposition 3.1 (Convergence extension to space-time parabolas)
Assume that w is a solution of (3) which satisfies (69). Then, VK > 0,

sup |w(zv/s,s) — fr(z)] — 0 as s — +o0.
|2|<Ko
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It is immediate that Theorem 2 is a direct consequence of Proposition 3.1.
Thus, we now focus on the proof of Proposition 3.1.

The main feature in the proof is an a priori estimate on

aly ) = wly, ) = () (71)

We consider the equation satisfied by ¢ as a perturbation of a hyperbolic

equation (the size of the perturbation is crucially controlled by Theorem 1).
We claim the following result:

Proposition 3.2 (Hyperbolic estimate on ¢(y, s) for A < |y| < Kg+/s)
Assume (69). Then, for any Ko > 0, there exist Ao(Ko) > 0 and B(Kp) > 0
such that for all A > Ay, there exists So(Ko, A) with the following property:
Ifwe SN=1 59> Sy, then

s—s 5350
Vs € [so, s1], ]q(Ae#lw,s)] < Bes
0
where s1 > sq is defined by
Ae T = Ko\ /51 (72)

Let us first show how this proposition concludes the proof of Proposition
3.1.

Remark: We notice that it directly follows from Proposition 3.2 that for
So larger, we have

s=s 2BK¢
Vs € [so, $1], |q(A6421w,3)| < Ve 0.

(73)
Indeed, we have Vs € [sq,s1], Ae7" < Koyvs < Kyy/s1. Therefore,
s—s s—s 2

lg(Ae 2w, s)| < BESO0 < ngo ik If Ko and A are fixed, then it is easy

to see that s; ~ sg as sg — +o0o. One might take So(Ky, A) larger to have
. . s=sq 2BK?

2L <2, which yields |g(Ae™2 w, s)| < =5°

We now prove Proposition 3.1.

Let Ky > 0 and € > 0. Fix A > Ay(Kj) so that 2]?453 <e.
By (69), there exists sp2(e) such that

Vs > so2, Y]yl < A, [q(y,s)| < e (74)
Let so3(Ko, A) > Sy be defined by A6503;SO = Ky+/S03. We claim that

Vs > max (s02(€), s03(Ko, 4)), V|y| < Kov/s, lq(y,s)| < e.
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Indeed, if |y| < A, then the conclusion follows from (74). If A < |y| < Ko+/s,
we define so(|y|, s) by |y| = Ae 2", By construction of sg3(Ky, A), we have
so(yl, s) > So(Ko, A). We also have sg < s < s1, since Ae 2" = ly| < Kov/s

and de" 7" = Ko./51. Applying the remark (73) coming after Proposition

s—s 2
3.2 gives |q(y,s)| = |q(AeT0 %,s)] < 2}%{0 < e. This is the conclusion of

Proposition 3.1 and that of Theorem 2 also. Let us now prove proposition
3.2.

Step 2: Hyperbolic estimates: Proof of Proposition 3.2
Define

B(Ky) =3(Ja| + 1+ Cy) |1+ (75)

_pb
(p—DKG |7
4p

with Cy = C5 + 3||2.V f(2)|| 1=, Cj is the constant given by Theorem 1 such
that |[Aw(s)||f~ < €= and a is defined in (70).

We consider A > Ay(Kp) and sg > So(Ko, A) (Ap(Kop) and Sp(Ko, A)
will be defined later).

Let w € S¥=1 and introduce

y(A,w, s0,8) = Ae™2"w and h(A,w,s0,8) = q(y(A,w,so,s),s). (76)

For simplicity, we will just write y(s) and h(s). Let us define so4(Kp, A)
(independent of w) such that Vsg > soa(Ko, A), s1 (introduced in (72)) is
well defined and satisfies s1 < 2sg, and

la|+1 B
< R
S0 S0

[h(s0)| = |q(Aw, s0)| < (77)

by definition of B(Kp) (This follows directly from (69)).
The proof of Proposition 3.2 reduces now to prove that Vsg > So(Ky, A),

Vs € [so, s1], |h(s)] < B%. We proceed by a priori estimates.
We suppose by contradiction the existence of some s, € [sg, s1] such that

s—s0 BeS*—50
Vs € [so, $«), |h(s)] < and |h(sy)| = . (78)
S0 S0
Since f is a solution of 0 = —1y.V fi(z) — J;,’“T(Zl) + fr(2)?, we derive from

(71) and (3) an equation satisfied by ¢: Vy € R, Vs > —logT"

%~ v+ (v (%) - ) e+ N@ ()
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where N(g) = (fe+0)" = £ — pff g and r(y.9) = bbaVri () +
Aw(y, s).
Therefore, we derive from (76) an equation satisfied by h:

-1
% = <pfk (%)p - ﬁ) h(s) + N(h) +7(y(s), s).

From (75) and homogeneity, we write Vs € [sq, 54, |[N(h)| < C*(Kp)|h|* <
C*(Ko) B> | and [r(y(s), s)| < G-
Therefore, if g(s) = |h(s)|, then g(s) satisfies:

Vs € [s0, 84], d'(s) < als)g(s)+ &4,
{ € lso. 5. 5(203 < (\§|J2%( )+ (79)
with b1
als) = b (%) SO (8)

Using Gronwall’s inequality, we write

Vs € [s0, S«), g(s) < IT+1II

I:exp(/sja>g(so)andII:C’4/S:(%Jexp</:a). (81)

We estimate in the following lemma exp ([ ) for so < o < s < s1.

where

Lemma 3.1 There exists A1(Ky) > 0 such that VA > Aq1(Ky), Isp5(Kop, A)
such that Vsg > so5(Ko, A), if so < o < s < s1, then

(5 3 so
exp /a §§e

We let the proof of this lemma to the end, and finish the proof of Proposition
3.2.

Now, we define Ag(Ky) = A1(Kp) and for each A > Ay(Kyp), So(Kp, A) =
max(so4(Ko, A), so5(Ko, A)). For A > Ap(Ky) and sg > So(Kp, A), we use
(79) and lemma 3.1 to bound I and IT (see (81)) for s € [s, s«:

D
[<(jal+1)3 1+ (”‘j)Kg] 7T e and

P S0

_P_
—1)KG |
1+(p ) 0] '

4p

(_1)K2 %1 do s— (—1)K2 %1 s—s
II§C4%[1—|—ij()}p ISSOFQS ag%c4[1_|_ P4p o}P esoo‘
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Hence, for s = s,,

_p_
|h(3*)| = g(s*) < I +1II < %(|a| + 1+C4) [1+(P—41)K§ P1 gsx=s0  _

P S0
—B%{O) —— *30 % (see (75)).

This contradicts (78) and concludes the proof of Proposition 3.2, Propo-
sition 3.1 and Theorem 2 also.

Proof of lemma 3.1
From (80), (70) and (76), we have

- pr 1 * U
a(s) = ) AP o1 + C"(Ko) B~ with

(-1

b(w) = bw? Apw and b= "

Therefore,
__p_ s
Ji a(r)dr = |7+ In (p = 14+ Hw) A2 ) T 40 () B

s0
o

=s—o+In prLHbA S ) T +C*(Kg)Z (e57%0 — ¢77%0). This implies
B p—14b(w)A2 <0 /%0 : p

that )
1
exp (f;) =e"7 < ) exp (C*(Ko)g (e57%0 — 60—80)).
Sl*SO

. 7=
Since 0 < s < s1 and Ae” 2 = Ky,/51, we have Ae™ 2 < Ky, /51 and
S—SO
Ae 2 < Ky./s1 . Therefore,
C*(Ko)K2Bs

S s—o bKG % )

exp([f)) < e [14— pfﬂ exp (#‘90)—) (note that b(w) < b, see
(82)).

We now introduce A;(Kp) > 0 such that for all A > A;(Kp),

(20*(K0)KgB 3 . .
exp T) < 5 and consider A > A;(Kj). Then, we introduce
s05(Ko, A) such that for all sg > sp5(Ko, A), s1 < 2s9. Then, for sg >
s05(Ko, A), we have

BEZ1PT .
exp (f7) < %es_” {1 + p—_ﬂ , which concludes the proof of lemma 3.1. W

2 O'—SO
p—1+b(w)A ET
5750

p—1+b(w)A2 ET

Proof of Theorem 3

The proof will follow from Proposition 3.1 and localization estimates.
We consider u(t) a solution of (1) which blows-up at time 7' > 0 at some
point zg € RY. By translation invariance, we take o = 0. We assume 0
to be an isolated blow-up point of u(t). Therefore, there exists ¢y > 0 such
that 0 is the unique blow-up point u(t) in B(0, 2¢).

33



We aim at proving the equivalence of the following behaviors for w(t)
near 0 and for wy (=w) defined in (2):

K 1 1
A) VR > 0, sup |w ,s—[m—k—N—— 2”20(—) as s —
(A) Sup (y,s) 2ps( 5191%) .

400,
(B) Jeo > 0 such that {|go(y, s)|| oo (jy|<coesr2) — 0 as s — +o0 where

Gy, s) = wl(y,s) - fo(%) (83)

and
1

132
e (s1)

=(p—-1
Jo(z)=(—-1+ p”
(C) Jeg > 0 such that if |z| < €, then u(x,t) — u*(x) as t — T and
u*(x) ~ U(x) as © — 0 where

U(x) =

[(8p|log 2] ]_ (85)

p—1)%zf?

For further purpose, we introduce a weaker version of (B) (which will be
in fact equivalent):

(B) VKo >0, [lgo(ys $)ll oo (jy<koys) — 0 as s — +oo.

The proof will be over if we prove the following implications:

(A) = (B) = (C) = (B) = (A).

We first prove some useful technical estimates. We then use them to
prove the different implications.

Part I: Preliminary results for subcritical values of w (w < k)
We crucially use the localization result proved in [16].

Lemma 3.2 Assume that 0 is the only blow-up point of u(t) in B(0,2¢q) for
some ey > 0. Consider (yn, sn) a sequence in RN x [—log T, 400) satisfying
lyn| < €0e*n/? and suppose that w(y,,sn) — 1 € (0,) and s, — +oo as
n — +oo.
If 2y = yne /2 and z, = g—s”—i, then:

i) Tp, — 0 as n — 400,

it) Vn € N, u(zp,t) — u*(zy,) ast — T and

2
u*(ﬂfn) ~ l_ ‘xn‘\zn\‘
n Zn

p—1

(P —p+ 1)_P_i1 as n — +oo.

34



Proof. We proceed by contradiction in order to prove that x,, — 0 as n —
+o00. If not, then we have x,, > § > 0 for some subsequence z,/. Since
u(t) does not blow-up for 0 < |z| < €, there exists C(6) > 0 such that if
t € [%,T) and § < |z| < €, then |u(z,t)| < C(5). Therefore, (2) implies
that 0 < w(yy, Spr) < e_P_f,lC(é) — 0 as n — +o0, which contradicts the
fact that [ > 0. Thus, x,, — 0 as n — +o0.

Let us find an equivalent of u*(xy,).
We define for each (¢,7) € RN x [0,1)

vp(&,T) = e_%u(xn+£e_57n,T+(T—1)6_5")
= a-nrwdets (36)

N sy, — log(1 —7)).
Then v, satisfies: V¢ € RN, V7 € [0,1)

9vn

or
According to (6), Ve > 0, 3C. > 0 such that

= Av, +vP.

B2(0,7) = va(0,7)7| < €0 (0,7)7 + Cee 71,7 € [0,1),
vp(0,0) — L.
Let us define first v(7) as the solution of

V(1) —u(T)? =0, v(0) =1,

1
that is v(r) = (I' P —7(p— 1)) 7 1.
Thus, if we denote v,(0,7) by yn(7), we have: Ve > 0, there exists ng(e)
such that Vn > ng(e)

Yn(T) —yn(T)P] < e(yh +1), VT €[0,1)
|yn(0) _l| < e

Since v(0) < v(1) < v(1) < +oo, it follows from continuity results on
ordinary differential equations that sup |y, (7)—v(7)| < d(e) with 6(e) — 0
7€[0,1)

as € — 0. In particular,
1

lini v (0,7) = thrr%yn(t) —o(l) = (ll_p —p+ 1) "1 as n — +oo.

T—

From (86), we have u*(z,) = thn% u(zp,t) = lim1 e%vn(o, 7). Therefore,

1

e_%u*(wn) ~ (ll_p —p+ 1)_‘771 as n — +00. (87)
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Since

we get
Sp ~ 2 |log [l (89)
Zn
and then
e |, |2 o
er—1 ~ NN as n — +00.
222 ‘log -
Combining this with (87) concludes the proof of lemma 3.2. [ |
Corollary 3.1 Under the assumptions of lemma 3.2, if + (x") —1lasn—

+o00, then w(yn, sn) — fol "n) — 0, where fy is defined in (84).

Proof. Let us show that * (m”)) — 1 implies that fo(

o1 72) — [. From (85)

and lemma 3.2, we get

P —p+l  (p-1)
al[ ™ 4p [log ]

as n — +00. (90)

22 ‘10g

We claim that s
log | ~ 22 (1)
Indeed, (90) and (89) imply that 2z, ~ C(p’ llog |z, ||. Using (88), we get

from this |z,|e ~ C(p,1)y/Tlog [zn]] Wthh gives |log |z, || ~ .
Combining (90), (89) and (91) gives

dp(IP —p+1)
n - 2 )
(r—1)

that is fo(zn) — [ as n — +oo (by (84)). [ |

Part II: Proof of Theorem 3
Now, we are able to prove the equivalence.

(A) = (B):
One can easily see from (84) that VR > 0,

36
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. Y Nk 1
By (A), it follows that VR > 0, sup |w(y,s) — fo(—=) — — :o(—).
(A) sup [ty )~ fol- 7o) = 35 = o]
Proposition 3.1 applied with £ = 0 (and A = Iy) yields by (83): VK >
0, lgo (¥ )l oo (jy|< ko v/5) — 0 as s — +o0, which is (B).

(B’) = (C):
Since 0 is the only blow-up point of u in B(0, 2¢p), we can define u*(x) =
tlin% u(z,t) for all 0 < |z| < €. Let (z,,) be any sequence tending to zero in

RY. Let us prove that u*(z,) ~ U(x,) as n — -+oo where U is defined in
(85).

Fix rg > 0. If n is large enough, we can uniquely define s,, — 400 and
UYn by roe_sn/2\/s_ = |x,| and y, = zpesn/2. Since z, = % =rg > 0,
it follows from (B’) and (83) that w(yn,s,) — fo(ro) € (0,k). Applying
lemma 3.2 yields

u*(n) ~ {&] B (fo(ro)l_p -p+ 1)_1311 :

From (84), we have fo(rg)!™ — (p—1) = %r%. Therefore,

1

@—1ﬂmm1_?7

|2

8p \log e

u*(n) ~ [

which is equivalent to U(x,,) by (85).
(C) = (B):
We want to prove that [|qo(y, s)|| pec(jyj<eesrzy = 0 as s — +oo. We

proceed by contradiction and assume the existence of € > 0, s,, — 400 and
[yn| < €ge®n/? such that

|90(Yn, sn)| > € as n — +o0. (92)

We can assume that w(y,,s,) — 11 and fy (\5/—;‘—”) — lg. According to
Theorem 1 and (84), 1,12 € [0, k]. Note that (92) yields

llh —la] > e (93)

Let us consider three cases:
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Case 1: 13 € (0,k). From (93), w(yn,sn) — fo (\;’—;’—n) does not go to 0.

u (zn)
U(zn)

Hence, from lemma 3.2 and corollary 3.1, z, = ype **/2 — 0 and
does not go to 1 as n — +oo. This contradicts (C).

Case 2: l; = k. Note that (93) implies that I < k —e. We claim the
existence of g/, such that

] < 10l and () 50) = (fo (H * ) (91)

for large n. Indeed, w and fy are continuous, and we have

w(ymsn) - % <f0 <\§Z—n> +/€> >0

1 esn/2
w(ﬂeoeS"/Q,sn) ~5 <fo <|?;—n\€0 \/s_> + /{) <0
n n

for large n (use (84) and write w(%eoesnﬂ, Sp) = e_%u(%eo, T — e *n)

< C’(eo)e_% since u(t) does not blow-up for || = €q).

We can assume that w(yl,, s,) — 1} € [0, ] (Theorem 1) and fj (\%—n) —

I € [0,k]. Since fy is decreasing and |y,| < |y,,|, we get I}, < Iy < k. Using
(94), we get I} = 3(l4 + k) € [5,K) and |l — I}| = £k — 1] > 0.

Yn
(\/ﬁ) does not go to 0. Hence, from lemma 3.2 and

and

Therefore, w(yl,, sn)— fo

corollary 3.1, !, = y/,e~*"/?> — 0 and 15((5,%)) does not go to 1 as n — +o0.
This contradicts (C).

Case 3: 1y = 0. Note that (93) implies that lo > e. We claim the
existence of y/, such that

1 Yn
[Yn| > !yH and w(y;,sn) = §f0 <\/8—> (95)

for large n. Indeed, w and fy are continuous,

. 1 Yn la €
1 nyon) — J - - g__,
Jm lw(y Sn) 2f0<\/§>] 5 <5

and 1
QU(O, Sn) - §f0(0) -

| =
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(w(0, s,,) — K according to (7), smce 0 is a blow-up point for u(t)). We can
assume that w(y},, sn) = % fo ( ) — 1} < 5 asn — 4o0. Since [y,| > |y;,],

we have fo( ) fo( ”n) and 2l; > Iy > € > 0. Therefore, I} € (0, %)

and w(yrm Sn) - fO (
3.1, ), =y, 'e~n/2 — (0 and U((x )) does not go to 1 as n — +4oo0. This
contradicts (C).
(B) = (A):

According to (69), there exists k € {0,1, ..., N} and a N x N orthonormal
matrix ¢ such that

VR >0, sup |w(y,s)— fk (%) ~ Y=y (1> (96)

ly|<R 5 s

) — —1] < 0. According to lemma 3.2 and corollary

where fi, and a are defined in (70).
Applying Proposition 3.1, we see that VK > 0,

sup |w(zv/s,s) — fr(z)| — 0 as s — +oo.
|2|<Ko

Together with (B), this gives fr = fo. Therefore, kK = 0 and a = ]g—:
Thus, (96) yields (A).

This concludes the proof of Theorem 3. |

A  Proof of lemma 2.4

i): - According to (32), Vi,j € {1,..., N},
w2 Z,J( ) f (3/7 )(4?/2% 5,]) p( )dy-
2 . .
Just remark that (4yzy] 5 ,]) ply) = % and do two integrations by
parts to get ws(s) = [ V2w ( y,8)p(y)dy. The estimate for w; is similar.

i1): The estimates on w; and wy follow directly from i) since

IVw(sn) e < $A= and [[V2w(sp)|z= < 2.
- By (23)’ we write: Vy € RN? 'UJ(y,Sn) = ’LU(O7 Sn) + wa((), Sn) +
5y V2w (0, sn)y + ¢(y, sn) where

1 A5/
9y, sn)l < 5ol (97)
According to (31), (30) and (28),
w. =P ()= P_(§) = 6. (98)



with notations similar to (31). From (31) and (97), we have |¢m(sn)| <
C'(N)4 = 3/2 > form = 0,1, 2. Therefore, (31) yields |¢—(y, sn)| < C(N )A5/4(

/
lyl3). Using (98), we get [w_(y,s,)| < C(N >A§/;‘<1 +yP).

- Since w(s) is well defined for all s > —logT" and satisfies (3), lemma
2.3 implies that wy(s,) < k. Let us show that wy(sy) > dg =

We proceed by contradiction and assume that wg(s,) < do.

o c2+/Sn
ey A5

—¢2 (use i) and Proposition 2.2), and n € {—1,1} is chosen so that

w1 (8p).Yn < 0. Therefore, from (31) and the bounds on wy, wy, wy and w_,

we get:

WG, 5n) = wo(sn) + wi(sn).Gn + (557w (50 — trws(sn) ) +w_(y, s0)

C”(N) a4 [ 353/

+ 53/2 64C(N)3A15/4

n

Co
128C(N)2A5/2"

Consider ¢, = ¢ where ¢ is unitary and satisfies @7 wo(s,)p =

c%sn
3 160(N)2A5/2 Sn

<dg+0-— 2

= dp — W+O( ) :—50—1-0( ) < 0 for s, large enough. This
contradicts the fact that w is nonnegative. Thus, wo(sy) > do.

iii): Since M (y) defined in (32) is the matrix of eigenfunctions corre-
sponding to the null eigenvalue of £, we find the following equation if we
multiply (27) by M (y)p(y), integrate the expression over RY and use (31):

wh(sn) = —

L) + [ wly,sn)? My)ply)dy.

Thus, we focus on the computation of [w(y,s,)?M(y)p(y)dy. Since 0 <
do < wo(sp) < kand 0 < w(y,s,) < k+ 1, we can Taylor expand w(y, s,,)
around wo(sy) until the third order and use (31) to write:
Jw(y,sn)PM(y)p(y)dy =1+ 11 + 111 + 1V +V + VI where

I = [wo(sn)"M(y)p(y)dy = 0,

IT = [ pwo(sn)P~V (y, sn) M (y)p(y)dy,

I1T = [ PoPwn (5P =2V (3, 50)* M (1) (y)dy.

1V = [ PE==2 g (s,)P =V (3, 50)° M (y)p(y)dy

V=0 ([IV(y,sn)l'|M(y)lp(y)dy) and

V(y, sn) = wi(sn).y + (1

2yTw2(sn)y — trwg(sn)> + w_(y, Sn). (99)

Using (99), the orthogonality (in L%(RN )) of y and M (y) on one hand, and
M(y) and w_(y, s,) on the other, we write:
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1T = pwo(sa)"™ [ (55" wa(sa)y — trws(sa) ) M(y)p(y)dy
= pwo(s,)P twa(s,) by integration by parts.

From (99), we have:
IIT = E2-tpy(s,)7~2 {(’wl(sn).y)2 + (3 wa(sa)y — trus(s.)”
Fw_(y, 5n)2 + 2wi(sp).y (%yT’u)2(Sn)y — trwg(sn)) + 2w (sn).yw—(y, sn)

+2 3y wa(sn)y — trws(sa) ) w-(y, s.)| M(y)p(y)dy.
Using i), parity and simple but long calculations (based on integration by
parts, (32) and (17)) that we omit, we find:

vV — p(pz—l)wo(sn)l’—2 [le(sn) ® wi(sn) + 4wz (sn)? + O ( ) +0
+0 (12820) 40 (L) . Hence,

11T = p(p — Dwo(sn)P~? [wi(sn) @ wi(sy) + 2wz (sn)?*] + O (M>

co(2)

As for ITI, one can expand V (y,s,)? and V(y,s,)?*, and use i) to get:
V=0 ( 5/2) +0 (—'”;3(;;") and V = O ( 5/2> +0 (—“’Sg(fg)).

Sn Sn

Gathering all the previous bounds on I, II, ITI, IV and V yields #ii).
This concludes the proof of lemma 2.4. |

B Proof of Proposition 2.3

n [16], the same result has been proved in the case of one fixed solution
(Theorem 3). Hence, we should adopt here the same strategy as for the
proof of Theorem 3 in [16]. In fact, we will focus only on points which
are different from [16] (energy estimates and a compactness procedure), and
summarize the other arguments. We give the proof in two steps. We first
use a compactness procedure and then proceed by contradiction in a second
step in order to conclude the proof.

Step 1: Compactness Procedure

We proceed by contradiction and assume that for some 79 > 0 and
for all £ € N, there are s; > —logT, wy solution of (3) defined for all
s > —logT and satisfying wy € Va(s}), z) € RY and t;, € [0,tf] such
that |Aug(zr, tr)| > noug(z, tx)? + k where t§ = T — e~k and uy(z,t) =
(T = )7 Twy, (i, —log(T — 1)).
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Let us introduce Uy (z,t) = ug(x + zk, t) and Wi(y,s) = e_p%lUk(ye—é,T_
e~?). Therefore, Uy, is a solution of (1), Wy is a solution of (3),

Vs € [—logT,si], Wi(s) € Va(s), (100)
and |AU(0,tr)| > noUr(0,tx)? + k (101)
where ¢, € [0,¢7].
We first notice that
t — T as k — +o0.

Indeed, if not, then t;r < T — &g where dy > 0 for some subsequence t.
Therefore, (100) implies that |[AU(0,tx)| < C(T — do) for k' large enough,
which contradicts (101).

From (101) and (100), we have
1 1 1
Ur(0,t;) < (M)p < (A)p w Therefore,

B ™/ log(T—ty)|
Wi(0,85) = (T — )7 TU(0, 1) — 0 as k — +o0o (102)
where s = —log(T — t). From Definition 2.1, (100) and compactness

procedure, we derive the existence of U solution of (1) in C?(RY x [0,T))
such that Uy, — U as k — 400 in C2(K) for all compact subset of RY x [0, T').

Step 2: Energy estimates on U
We claim that U blows-up at time 7" at the point x = 0.
Let us first introduce the following localized energy for wu:

Ju(@) [P o

Eap(u) = t%_%ﬂ/g‘v“(ﬂ?w
1 2 N
-1 [ @l

where p is introduced in (17).
It was proved in [11] that if the energy is small at some point a € RY, then
u does not blow-up at a. More precisely,

_p+1
X

+ )da (103)

Vit

Proposition B.1 (Giga-Kohn) Let u be a solution of equation (1).
i) If for all x € B(x,6), Ex1—1,(u(ty)) < o, then Yo € B(xg, g), vVt €

(to';T,T), lu(t, z)| < n(o)(T —t)_ﬁ where n(a) < ca?, 0 >0, and c and 0

depend only on p.
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i) (Merle) Assume in addition that Yz € B(xo,9), [u(2EL, 2)| < M.
There exists og = og(p) > 0 such that if o < o0g, then Vx € B(wo,%),
vVt € (tO;T,T), lu(t,x)] < M* where M* depends only on M, §, T and tg.

Proof: see Proposition 3.5 and Theorem 2.1 in [11] (see also [15]). |

Suppose that U(z,t) does not blow-up at (z,t) = (0,T"), then [11] shows
that & -+ (U(t)) — 0 as t — T. Therefore, we choose tg > T such that
Eo, 71—t (U(to)) < G where o is introduced in Proposition B.1. From a
continuity argument in x, there is Ry > 0 such that if |z| < Ry, then
Enitsy (U(ty)) < 2.

Since Ug(tg) — Ul(to) as k — 0 in C?(K) for all K compact subset and
| Uk (to)|lwi.e < C(to) by (100), we have for all |x| < Ry, E17—t, (Ug(to)) <
oo for k large enough. From (100), we have ||Uy (%) |Le < C(to) for k
large enough.

Applying Proposition B.1, we get for k large enough: V|z| < Ry, Vt €
(%,T), |Ug(x,t)| < M(tg, Ry). By parabolic regularity (see lemma 2.10
and its proof for a sketch of the technique), we get

3to+T
4

vt € ( 7T)7 |AUk(07t)| < M/(tO)
for k large enough, which contradicts (101). Therefore, U blows-up at time
T at x = 0.

Step 3: Conclusion of the proof
We now follow the same ideas as for the Theorem 3 in [16]. We claim
the existence of tz, <t such that

# — T and Wi (0, s,) = (T — £,) 7T Uy(0,t,) = o (104)

where s}, = —log(T —t}), ko € (0, k) satisfies Vt > 0, Va € RY, ga,t(/‘iot_P_il)

Ko _ Ko

T 2(p-1) ptl ;

at © =0, U(0,t)(T —t)»~T — k as t — T by [11]. Hence, if 6 > 0 is small
1

enough, then §7=1U (0,7 —¢) > 3’“‘%1. Since Uk (0, T —§) — U(0,T — ) as

k — +oo, we get 5ﬁ Ur(0, T —0) > @ for k large enough.

By (102) and continuity arguments, we have the existence of t:&k €T -

1
6, tx] such that (T'—5, )7 TUk(0,ts,) = ro. The existence of ¢}, follows then
from a diagonal process.

< % and oy is defined in Proposition B.1. Since U blows-up
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Let us define for all ¢ € RN and 7 € [0, 1),
w(6r) = (= )70 (6T~ ot 7@ - 1) . (10)

1
Then, vy, is a solution of (1), and v(§,0) = (T —t}.) P 1 U (&\/T — 1), t},) =
Wi(&, s).), where s}, = —log(T — t}.) < s;. Since t} + %(T —t) <t <t
(the second estimate is true by construction, and the first follows from (102),

(104) and techniques similar to those in lemma 2.7), it follows from (100)
and (104) that v(0,0) = ko and

Cp)er Cp)A
Vol < P
| log(T —t,.))| [ log(T —17,)]

(106)
and for k large enough and for all [¢| < 4|log(T — t,)|*/4, & 1(vk(0)) <
2&¢1(ko) < 0o . Therefore, from Proposition B.1 (applied with 6 = 1 and
using translation invariance), we have V7 € [3,1], V|¢| < 2|log(T — )M,

e (&, 7)| < M(p).
Now using arguments similar to those of lemma 2.8, we get

3
VT € [07 Z]a vak(T)HLO" <

3
vre [ 1), Vgl =< [log (T — t3)[V*, ok| + [Vok| + [V>0x] < M(p). (107)

By arguments similar to those of lemma 2.9, we get from (106) and (107)
for k large enough,

sup |A¢vg(0,7)] — 0 as k — 4o00.
7€[0,1]

Therefore, since vy is a solution of (1), we have
vr e [0,1), w(0,7) > 3
for k large enough. Hence

Vr € [0,1), |Aevp(0,7)| < %vk(O,T)p (108)

for k large enough, and this yields a contradiction.

Indeed, taking 7, = tzlf:f;ﬁ, we get from (108) and (105): Vk > ko,
k
__p
|AUR(0, )| = (T" = 13,) 71 [Agvg (0, 73|

< B(T - t;)_%vk(o,m)p = B U(0,t)P, which contradicts (101).

This concludes the proof of Proposition 2.3.
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C Proof of lemma 2.11

Define x1(§) = Xxo(57-) where xq is defined in (63). Then, V¢ € RV,

£
2B,
C C
Vi)l < B, Hlez2m) and [Ax1(§)] < B2 =21} (109)
Let Z(&,7) = x1(&)e Mz(€,7). Then, we have from (56): V¢ € RV, Vr €
[0, 7],
9z —AT _9,—AT
{ e S AZ 4 p+ze M Axy —2e7 V. (2Vx1), (110)

Z(§70) S 205 Z(gaT) S BQ-

We now take |{| < B; and use an integral formulation of (110) to write
Z(& 1) <IT+1I+1III+ 1V where

I = (eTAZ(O)) (&), II = [Jdse™ 8y, IIT = [] dsel™")2e 22(s)Ax;
and IV = —2 [ dse(T=)2e ™2V, (2(s)Vx1).

From the maximum principle and (110), we have I < zg and II <
g ds < p.

The treatment of 111 and IV is similar. However, handling I'V is a bit
more delicate.
By an integration by parts, we have:
IV =2 [] dse VelT=982(5)Vxy
[€—=|
=92 fOT dse—?s fdg; (— 2((57—_905))) (4;(:1‘;))5])\]/22’(.%7 s)Vxi(z).
From (110) and (109), we obtain: )
[€—=|

, o] _o i cB
IV < fO ds f{\$\2231} dx T—i (4:(7—5))N/2 ?Z

le=a)?
Since ¢ < B17 lz| > 231 and 0 < 7 —s5 < 1, we have ¢ 40— =
le=x|?  _ |e—a|? le==|> B2
e 80-s¢ 830—9) < ¢ 3-s1¢ s . Therefore,
—le—=|?
[§—x| e 30—5)

ds
VT— sf{\$\>231}d$\/7 s (4m(T—s))N/2
2
[1X]eXPdx < OBye= %

2

Similarly, we obtain: I11 < CBge_BTl.

CB —; T
IV < =52e Jo

< Bt

\/TT

Combining the bounds on I, II, II] and IV, we get the conclusion of
lemma 2.11. |
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