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1 introduction

We are interested in the following nonlinear heat equation:
{

ut = ∆u+ up

u(0) = u0 ≥ 0,
(1)

where u is defined for (x, t) ∈ R
N × [0, T ), 1 < p, (N − 2)p < N + 2 and

u0 ∈ H1(RN ).
In this paper, we deal with blow-up solutions of equation (1) u(t) which

blow-up in finite time T > 0: this means that u exists for all t ∈ [0, T ),
lim
t→T

‖u(t)‖H1 = +∞ and lim
t→T

‖u(t)‖L∞ = +∞. Let us consider such a

solution. We aim at studying the blow-up behavior of u(t) as t → T . In
particular, we are interested in obtaining uniform estimates on u(t) and
deducing from these estimates the asymptotic shape of the singularities.

One can show that in this case, u(t) has at least one blow-up point, that
is x0 ∈ R

N such that there exists (xn, tn)n∈N satisfying (xn, tn) → (x0, T )
and |u(xn, tn)| → +∞ as n→ +∞.

For each a ∈ R
N , we introduce the following self-similar transformation:

y = x−a√
T−t

s = − log(T − t)

wa(y, s) = (T − t)
1

p−1u(x, t).

(2)

Then, we see that wa = w satisfies ∀s ≥ − log T , ∀y ∈ R
N :

∂w

∂s
= ∆w − 1

2
y.∇w − w

p− 1
+ wp. (3)
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The study of u(t) near (x0, T ) where x0 is a blow-up point is equivalent
to the study of the long time behavior of wx0 as s→ +∞.
Giga and Kohn prove in [10] that there exists ε0 > 0 such that

∀s ≥ − log T, ε0 ≤ ‖wx0(s)‖L∞ ≤ 1

ε0

or equivalently:

∀t ∈ [0, T ), ε0(T − t)−
1

p−1 ≤ ‖u(t)‖L∞ ≤ 1

ε0
(T − t)−

1
p−1 .

At this level, no other uniform estimates were known.
In [16], we proved the following Liouville Theorem for equation (3):
Let w be a nonnegative solution of (3) defined for (y, s) ∈ R

N × R such
that w ∈ L∞(RN × R). Then, necessarily one of the following cases occurs:

w ≡ 0 or w ≡ κ or ∃s0 ∈ R such that w(y, s) = ϕ(s− s0) (4)

where ϕ(s) = κ(1 + es)−
1

p−1 and κ = (p− 1)−
1

p−1 .

From this theorem we derived in [16] the following uniform estimates of
order zero:

Consider a solution w of (3) defined for s ≥ − log T (such that u(t)
blows- up at time T ). Then,

‖w(s)‖L∞ → κ and ‖∇w(s)‖L∞ + ‖∆w(s)‖L∞ → 0 as s→ +∞. (5)

We also derived from this result the following localization theorem:
∀ε > 0, ∃Cε > 0 such that ∀t ∈ [T

2 , T ), ∀x ∈ R
N ,

∣

∣

∣

∣

∂u

∂t
− up

∣

∣

∣

∣

≤ εup +Cε. (6)

These estimates are still insufficient to yield precise estimates on blow-
up profile. But, we have a compactness property on wa(s) uniformly with
respect to a ∈ R

N , which allows us to claim the following result from lin-
earization around the limit set as s→ +∞:

Theorem 1 (Refined L∞ estimates for w(s) and u(t) at blow-up)
There exist positive constants C1, C2 and C3 such that if u is a solution of
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(1) which blows-up at time T > 0 and satisfies u(0) ∈ H 1(RN ), then ∀ε > 0,
there exists s0(ε) ≥ − log T such that

i) ∀s ≥ s0, ∀a ∈ R
N ,

‖wa(s)‖L∞ ≤ κ+ (Nκ
2p + ε)1

s , ‖∇wa(s)‖L∞ ≤ C1√
s
,

‖∇2wa(s)‖L∞ ≤ C2
s , ‖∇3wa(s)‖L∞ ≤ C3

s3/2 ,

where κ = (p− 1)−
1

p−1 ,
ii) ∀t ≥ T − e−s0 ,

‖u(t)‖L∞ ≤
(

κ+ (Nκ
2p + ε) 1

| log(T−t)|

)

(T − t)−
1

p−1 ,

‖∇iu(t)‖L∞ ≤ Ci
(T−t)

−( 1
p−1 + i

2 )

| log(T−t)|i/2

for i = 1, 2, 3.

Remark: If v : R
N → R is regular, ∇iv stands for the differential of order

i of v. For all y ∈ R
N , we define |∇v(y)|2 =

N
∑

j=1

(∂jv(y))
2, |∇2v(y)| =

sup
z∈RN

∣

∣

∣zT∇2v(y)z
∣

∣

∣

|z|2 and |∇3v(y)| = sup
α,β,γ∈RN

∣

∣

∣

∣

∣

∣

∑

i,j,k

αi

|α|
βj

|β|
γk

|γ|∂
3
i,j,kv(y)

∣

∣

∣

∣

∣

∣

.

In addition, ‖v‖L∞ = sup
y∈RN

|v(y)| and ‖∇iv‖L∞ = sup
y∈RN

|∇iv(y)|.

In fact, we can see from the proof of Theorem 1 that s0(ε) depends only
on the size of initial data. We have the following result:

Theorem 1’ (Compactness)Consider (un)n∈N a sequence of nonnegative
solutions of equation (1) such that for some T > 0 and for all n ∈ N, un is
defined on [0, T ) and blows-up at time T . Assume also that ‖un(0)‖H2(RN )

is bounded uniformly in n. Then, ∀ε > 0, there exists t0(ε) < T such that
∀t ∈ [t0(ε), T ), ∀n ∈ N,

‖un(t)‖L∞ ≤
(

κ+ (Nκ
2p + ε) 1

| log(T−t)|

)

(T − t)
− 1

p−1 ,

‖∇iun(t)‖L∞ ≤ Ci
(T−t)

−( 1
p−1

+ i
2
)

| log(T−t)|
i
2

where Ci are defined in Theorem 1.

Remark: In the case N = 1, Herrero and Velázquez [12] (Filippas and
Kohn [6] also) prove some estimates related to Theorem 1, using a Sturm
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property first used by Chen and Matano [4] (the space oscillations number
is a decreasing function of time).
Remark: The constant Nκ

2p appearing in the term of order one in the esti-
mates on ‖w(s)‖L∞ and ‖u(t)‖L∞ is optimal. Indeed, there exist solutions

of equation (3) such that ‖w(s)‖L∞ = κ + Nκ
2ps + o

(

1
s

)

as s → +∞ (see

Bricmont and Kupiainen [3], Filippas and Kohn [6], Merle and Zaag [17]).
Remark: From the local (in time) regularity of the solution to the Cauchy
problem, we can obtain with the same proof an analogous compactness
result when the blow-up times Tn are not the same. The assumptions are
‖un(0)‖H2(RN ) + Tn is bounded uniformly in n. The conclusion is there is
t′0(ε) such that ∀n ∈ N, ∀t ∈ [Tn − t′0(ε), Tn), the inequalities hold.
Remark: Other compactness results can be shown considering for example
equations of the type:

∂u

∂t
= ∆u+ b(x)up

where b ∈ C3(RN ) (see [16]).

These estimates are in fact crucial for the understanding of the solution
at blow-up, especially, the shape of the singularity. Let us recall some results
on this question.

Let us consider x0 ∈ R
N a blow-up point of u(t), a solution of (1),

that is a point x0 ∈ R
N such that there exists (xn, tn) → (x0, T ) such that

u(xn, tn) → +∞ as n→ +∞. The question is to see whether u(t) (or wx0(s)
defined in (2)) has a universal behavior as t→ T (or s→ +∞).

First, Giga and Kohn prove in [10] and [11] (see also [9]) that for a given
blow-up point x0 ∈ R

N ,

lim
s→+∞

wx0(y, s) = lim
t→T

(T − t)
1

p−1u(x0 + y
√
T − t, t) = κ (7)

uniformly on compact subsets of R
N . The result is pointwise in x0. Besides,

for a.e. y, lim
s→+∞

∇wx0(y, s) = 0.

Filippas and Liu [7] (see also Filippas and Kohn [6]) and Velázquez [18], [19]
(see also Herrero and Velázquez [12], [14]) classify the behavior of w(y, s)
(= wx0(y, s)) for |y| bounded. They prove that one of the following cases
occurs:

- Case 1: non degenerate rate of blow-up:
there exists k ∈ {0, 1, ..., N − 1} and a N ×N orthonormal matrix Q such
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that

∀R > 0, sup
|y|≤R

∣

∣

∣

∣

wx0(y, s) −
[

κ+
κ

2ps

(

(N − k) − 1

2
yTAky

)]∣

∣

∣

∣

= O

(

1

s1+δ

)

(8)
as s→ +∞ where δ > 0,

Ak = Q

(

IN−k 0
0 0

)

Q−1 (9)

and IN−k is the (N − k) × (N − k) identity matrix,
- Case 2: degenerate rate of blow-up: ∀R > 0, sup

|y|≤R
|w(y, s) − κ| ≤

C(R)e−ε0s for some ε0 > 0.
This yields a blow-up behavior classification in a small range scale. In
some sense and from a physical point of view, these results do not show
the transition between the singular zone (w ≥ α where α > 0) and the
regular one (w ' 0) well.
Using the renormalization theory, Bricmont and Kupiainen showed in [3]
the existence of a solution of (3) such that

∀s ≥ s0, ∀y ∈ R
N ,

∣

∣

∣

∣

w(y, s) − f0

(

y√
s

)
∣

∣

∣

∣

≤ C√
s

(10)

where f0(z) =
(

p− 1 + (p−1)2

4p |z|2
)− 1

p−1
(see also [1]). We show in [17] the

same result through a reduction to a finite dimensional problem. We also
obtained there a stability result of this behavior with respect to initial data.
This gives a result in an intermediate scale z = y√

s
, which is more satisfactory

since it separates the blow-up region (w > α > 0) and non-blow-up ones
(w ' 0).
In [20], the second author showed that the behavior in the initial variable x
is known in the case where (10) occurs. More precisely, u(x, t) → u∗(x) as
t→ T uniformly on compact sets of R

N\{0} and

u∗(x) ∼
[

8p| log |x||
(p− 1)2|x|2

]

1
p−1

as x→ 0. (11)

Therefore, except in the small range variable (which does not precise
from a physical or analytical point of view the singular behavior), no result
of classification was known.

In a first step, we use the estimates of Theorem 1 on ∇w and ∇2w in a
crucial way, and the results of Filippas and Liu, and Velázquez concerning
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the classification of blow-up behaviors for |y| bounded to establish a blow-up
profile classification theorem in the variable z = y√

s
(which is the intermedi-

ate scale that separates the regular and singular parts in the non degenerate
case):

Theorem 2 (Existence of a blow-up profile in the intermediate
scale for solutions of (1))
Let u(t) be a solution of (1) which blows-up at time T > 0 and satisfies
u(0) ∈ H1(RN ). Let x0 be a blow-up point of u(t). Then, there exist
k ∈ {0, 1, .., N} and an orthonormal N ×N matrix Q such that

∀K0 > 0, sup
|z|≤K0

|wx0(z
√
s, s) − fk(z)| → 0 as s→ +∞, (12)

where

fk(z) =

(

p− 1 +
(p− 1)2

4p
zTAkz

)− 1
p−1

(13)

and Ak is defined in (9).

Remark: Velázquez in [19] obtained a related profile existence result. He
extended the |y| bounded convergence of [18] to the larger set |y| ≤ K0

√
s,

by estimating the effect of the convective term − 1
2y.∇w in the equation

(3), in Lp spaces with a Gaussian measure. However, the convergence that
he obtains depends strongly on the considered blow-up point x0. Let us
point out that the convergence we have in Theorem 2 can be shown to be
independent of x0. Indeed, by using the uniform estimates of Theorem 1,
we can give a uniform version of the result of [7] and [18], and obtain thanks
to our techniques a convergence independent of x0 in Theorem 2. However,
we use the result of [7] and [18] in this paper, since this shortens the proof.
We also notice that the proof yields that if the case (12) occurs, then (8)
occurs with the same Ak (if k = N , then take AN = 0) and conversely. See
also Theorem 3.
Remark: In the case k = N , this theorem yields κ as asymptotic “profile” of
w(s) in the variable z = y√

s
: this is a degenerate blow-up behavior. Indeed,

in this case, the scale y√
s

is not good for describing the blow-up behavior.

One must refine this scale and exhibit other blow-up profiles in different

scales y ' exp
[(

k−1
2k

)

s
]

for k = 2, 3, ... (see for instance [3], [18]). However,

we suspect these profiles to be unstable with respect to initial data.

One interesting problem that follows from Theorem 2 is to find a re-
lationship between the different notions of profile in the scales: |y| ≤ C,
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z = |y|√
s
≤ C and |x− x0| small. We show in the following theorem that all

these descriptions are equivalent in the case of a solution u(t) of (1) that
blows-up at some point x0 ∈ R

N in a non degenerate way (which is supposed
to be the generic case):

k = 0 and Ak = IN .

This answers many questions which were underlined on this problem in
preceding works.

Theorem 3 (Equivalence of different notions of blow-up profiles)
Let x0 ∈ R

N be an isolated blow-up point of u(t) solution of (1) such
that u0 ∈ H1(RN ). The following blow-up behaviors of u(t) near x0 or
w(s) = wx0(s) (defined in (2)) are equivalent:

(A) ∀R > 0, sup
|y|≤R

∣

∣

∣

∣

w(y, s) −
[

κ+
κ

2ps
(N − 1

2
|y|2)

]∣

∣

∣

∣

= o

(

1

s

)

as s →

+∞ where κ = (p− 1)
− 1

p−1 ,

(B) ∃ε0 > 0 such that
∥

∥

∥w(y, s) − f0(
y√
s
)
∥

∥

∥

L∞(|y|≤ε0es/2)
→ 0 as s → +∞

with f0(z) = (p− 1 + (p−1)2

4p |z|2)−
1

p−1 ,

(C) ∃ε0 > 0 such that if |x − x0| < ε0, then u(x, t) → u∗(x) as t → T

and u∗(x) ∼
[

8p| log |x−x0|
(p−1)2 |x−x0|2

]
1

p−1 as x→ x0.

Remark: In [19], Velázquez shows that (A) =⇒ (B) =⇒ (C) by estimating
the local effect to the term − 1

2y.∇w in equation (3) in Lp with Gaussian
measure. The classification of [19] also yields that (C) =⇒ (A). Let us point
that the estimates in our proof are quite elementary and rely on localization
effect and uniform estimates. In addition, one can show from our proof and
our uniform techniques that the convergence speeds in (A), (B) and (C)
depend only on each other and on a bound on the C2 norm of initial data (
and not on the initial data itself).
Remark: In fact, (A) (or (B) or (C)) imply that x0 is an isolated blow-
up point. It is conjectured that the equivalence holds (in the case of the
(supposed to be) generic blow-up rate).
Remark: The techniques we introduce in the proof of Theorem 3 allow us
to obtain the same results as Velázquez in the case where (8) occurs with
k < N .

Section 2 is devoted to the proof of the uniform estimates on w (The-
orems 1 and 1’). Section 3 deals with results on profiles (Theorems 2 and
3).
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2 L
∞ estimates of order one for solutions of (3)

2.1 Formulation and reduction of the problem

We prove Theorems 1 and 1’ in this section. Let us first show Theorem 1.
Theorem 1’ follows from similar arguments.

Proof of Theorem 1: We consider u(t) a blow-up solution of (1) which
blows-up at time T > 0.

We can assume from regularizing effect of the heat flow that T < 1,
u0 ∈ C3(RN )∩H1(RN ). We are interested in finding L∞ estimates of order
one for w0 (= w) defined in (2). In [16], we have already proved L∞ estimates
of order zero for w stated in (5). Note that with obvious simple adaptations
of the proof of (5), we have the following result:

‖w(s)‖L∞ → κ and ‖∇w(s)‖L∞ + ‖∇2w(s)‖L∞ + ‖∇3w(s)‖L∞ → 0 (14)

as s→ +∞.
We now want to refine the estimates (14). More precisely, we want to

show that there exist positive constants C1, C2 and C3 depending only on
p such that ∀ε > 0, ∃s0(ε) such that ∀s ≥ s0(ε),

‖w(s)‖L∞ ≤ κ+ (Nκ
2p + (N + 1)ε) 1

s , ‖∇w(s)‖L∞ ≤ C1√
s

‖∇2w(s)‖L∞ ≤ C2
s , ‖∇3w(s)‖L∞ ≤ C3

s3/2 .
(15)

For this purpose, we take an arbitrary ε ∈ (0, ε0) (where ε0 ≤ 1 is
small enough) that we consider as fixed now, and introduce the following
definitions:

Definition 2.1 For all A > 0 and s ≥ − log T , we define VA(s) as being
the set of all w ∈W 3,∞(RN ) satisfying:

‖w‖L∞ ≤ κ+ c0
s , ‖∇w‖L∞ ≤ c1√

s

‖∇2w‖L∞ ≤ A
s , ‖∇3w‖L∞ ≤ A5/4

s3/2 .

and

∀a ∈ R
N , − c2

s
IN ≤

∫

RN
∇2w(y + a)ρ(y)dy

in the sense of symmetric N ×N matrices, where the norms are introduced
in the remark after Theorem 1,

c0(ε) =
Nκ

2p
+ (N + 1)ε, c1(ε) =

κ√
p

+ 2ε
√
p, c2(ε) =

κ

2p
+ ε, (16)
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IN is the N ×N identity matrix and ρ(y) =
e−

|y|2
4

(4π)N/2
. (17)

Definition 2.2 For all s ≥ − log T , we define
V̂A(s) = {w ∈ C([− log T, s),W 3,∞(RN )) | ∀τ ∈ [− log T, s), w(τ) ∈ VA(τ)}.

Let us remark that condition (16) is in some sense a lower bound on ∇2w(a).
Indeed, if w ∈ VA(s), then we have ∀a ∈ R

N ,

|
∫

RN
∇2w(y + a)ρ(y)dy −∇2w(a)| ≤ C∗(N)‖∇3w‖L∞ (18)

and
A

s
IN ≥ ∇2w(a) ≥ −

[

c2
s

+ C∗(N)
A5/4

s3/2

]

IN (19)

where C∗(N) =
∫

|y|ρ(y)dy.
Proof of (18) and (19): Using a Taylor expansion, we have: ∀y ∈ R

N ,
∇2w(y + a) −∇2w(a) =

∫ 1
0 ∇3w(a+ ty)(y)dt. Hence,

|∇2w(y + a) −∇2w(a)| ≤ |y|‖∇3w‖L∞ ≤ |y|A5/4

s3/2 . This yields (18) and (19)
by integration (use

∫

ρ(y)dy = 1).
Notice that the lower bound on ∇2w(a) is (consider the order 1

s ) inde-
pendent of A, which will be crucial in the proof.

Theorem 1 is in fact a consequence of the following proposition:

Proposition 2.1 (Reduction) There exist A(p) > 0 and ε0(p) ∈ (0, 1)
such that for all ε ∈ (0, ε0), there exists S(A, ε) so that the following property
is true:
Assume that w is a solution of (3) defined for all time s ≥ − log T and
satisfying w(− log T ) ∈ H1(RN ). Assume in addition that w ∈ V̂A(ŝ) for
some ŝ ≥ S(A, ε), then:
i) w(ŝ) 6∈ ∂VA(ŝ),
ii) ∀s ≥ − log T , w(s) ∈ V̂A(s).

Proposition 2.1 implies Theorem 1:

Let ε ∈ (0, ε0), A = A(p) and S(A, ε) defined in Proposition 2.1. Our
strategy is to find n0(ε) = n0 ∈ N such that ∀s ≥ − log T , w(s+n0) ∈ VA(s).
Indeed, one can easily check the following result:

Lemma 2.1 Assume for all ε ∈ (0, 1), there exists n0(ε) ∈ N such that
∀s ≥ − log T , w(s+ n0) ∈ VA(s). Then, (15) is satisfied with

C1 =
κ

2p
+ 4

√
p, C2 = 2A(p) and C3 = 2A(p)5/4.
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Let us consider W = w(. + n). Then, W satisfies (3) for all s ≥ − log T
and W (− log T ) = w(n − log T ) ∈ H1(RN ) from the solving of the initial
value problem for w.

We claim the following: for n large, we have w(. + n) ∈ V̂A(S(A, ε)).
Indeed, let

δ =
1

4(1 + C∗(N))
min

(

c0
S(A, ε)

,
c1

√

S(A, ε)
,

c2
S(A, ε)

,
A

S(A, ε)
,

A5/4

S(A, ε)3/2

)

(20)
where C∗(N) is defined in (19). (14) implies that there exists n0 ∈ N

such that ∀n ≥ n0, ∀s ∈ [− log T, S(A, ε)], ‖w(s + n)‖L∞ ≤ κ+ δ ≤ κ+ c0
4s ,

‖∇w(s+n)‖L∞ ≤ δ ≤ c1
4
√

s
, ‖∇2w(s+n)‖L∞ ≤ δ ≤ A

4s and ‖∇3w(s+n)‖L∞ ≤
δ ≤ A5/4

4s3/2 .

Let s ∈ [− log T, S(A, ε)] and a ∈ R
N . According to (18), we have

∫

RN ∇2w(y + a, s+ n)ρ(y)dy
≥ −

(

|∇2w(a, s + n)| + C∗(N)‖∇3w(s+ n)‖L∞
)

IN ≥ − (δ + C∗(N)δ) IN ≥
− c2

4s2
IN . Thus, w(. + n0) ∈ V̂A(S(A, ε)). Applying Proposition 2.1, we see

from ii) that
∀s ∈ [− log T,+∞), w(s+ n0) ∈ VA(s).

This concludes the proof of Theorem 1.

Proof of Theorem 1’:
For all n ∈ N, we introduce wn = wn,0 defined from un by (2). Then,

by simple obvious adaptations of the proof of Theorem 1’ in [16], we claim
that sup

n∈N

‖wn(s)‖L∞ → κ and sup
n∈N

‖∇iwn(s)‖L∞ → 0 as s→ +∞ for i = 1, 2

and 3.
Hence, there exists n0 ∈ N such that ∀n ∈ N, ∀s ∈ [− log T, S(A, ε)],

‖wn(s + n0)‖L∞ ≤ κ + δ and ‖∇iwn(s + n0)‖L∞ ≤ δ for i = 1, 2, 3 where
δ is defined in (20). Hence, as for the proof of Theorem 1, we get ∀n ∈ N,
wn(.+ n0) ∈ V̂A(S(A, ε)). Thus,

∀n ∈ N, ∀s ∈ [− log T,+∞), wn(s+ n0) ∈ VA(s)

by ii) of Proposition (2.1). This concludes the proof of Theorem 1’.

Therefore, the question reduces to prove Proposition 2.1.
Proof of Proposition 2.1:

i) =⇒ ii): By contradiction, we assume that there exists s ≥ − log T
such that w(s) 6∈ VA(s). Let s′ be the lowest s satisfying this. Then,
s′ ≥ ŝ ≥ S(A, ε), w ∈ V̂A(s′) and w(s′) ∈ ∂VA(s′). This contradicts i).
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Proof of i): Let us argue by contradiction. We suppose that for all
A > 0, there is a sequence sn → +∞ and a solution of (3) wn defined
for all s ≥ − log T such that wn(− log T ) ∈ H1(RN ), ∀s ∈ [− log T, sn],
wn(s) ∈ VA(s) and wn(sn) ∈ ∂VA(sn).
Let us denote wn by w to simplify the notations. We claim the following

Proposition 2.2 (Characterization of ∂VA(sn)) There exists yn ∈ R
N

such that one of the following cases must occur:
Case 1: w(yn, sn) = κ+ c0

sn
,

Case 2: |∇w(yn, sn)| = c1√
sn

,

Case 3: there exists a unitary ϕn ∈ R
N such that

ϕT
n

∫

RN ∇2w(y + yn, sn)ρ(y)dyϕn = − c2
sn

,

Case 4: |∇2w(yn, sn)| = A
sn

,

Case 5: |∇3w(yn, sn)| = A5/4

s
3/2
n

.

Proof:
Let us remark that since w(− log T ) ∈ H1(RN ), we can assume from the

regularizing effect of the heat flow that w(− log T, y) → 0 and
∇iw(− log T, y) → 0 as |y| → +∞ for i = 1, 2 and 3. Hence, we have by
classical estimates w(y, s) → 0 and ∇iw(y, s) → 0 as |y| → +∞ uniformly in
s ∈ [sn, sn + 1]. Hence, by Lebesgue’s Theorem,

∫

∇2w(y + a, s)ρ(y)dy → 0
as |a| → +∞.

This insures that one of the five cases of Proposition 2.2 occurs.

We now use the classification of Proposition 2.2 and consider in the
following subsection all the five cases in order to reach a contradiction.

Let us notice that we reduce to the case

yn = 0.

Indeed, from (2) and the translation invariance of (1), we define for all
y ∈ R

N and s ≥ − log T :

W (y, s) = w(y + yne
s−sn

2 , s). (21)

We still have:
- W is solution of (3) defined for s ∈ [− log T,+∞),
- W (s) ∈ VA(s) for all s ∈ [− log T, sn],
- W (sn) ∈ ∂VA(sn).

We will denote W by w and ϕn by ϕ.
We now claim that there exist ε0(p) > 0 and A(p) > 0 such that for all

ε ∈ (0, ε0), there is S(A, ε) such that all the cases 1, 2, 3, 4 and 5 do not
occur if sn ≥ S(A, ε), which will conclude the proof of Proposition 2.1.
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2.2 Proof of the boundary estimates

There exist ε0(p) and A0(p) such that ∀ε ∈ (0, ε0), ∀A ≥ A0(p), ∃S = S(A, ε)
such that Cases 1,2,3,4 and 5 do not occur if sn ≥ S(A, ε).

Let us show the following lemma

Lemma 2.2 (Taylor expansions) Assume that w(s) ∈ VA(s). Then,
∀y ∈ R

N :

−1

2
|y|2

(

c2
s

+ C∗(N)
A5/4

s3/2

)

≤ w(y, s) − w(0, s) − y.∇w(0, s) ≤ 1

2
|y|2A

s
,

(22)
∣

∣

∣

∣

w(y, s) − w(0, s) − y.∇w(0, s) − 1

2
yT∇2w(0, s)y

∣

∣

∣

∣

≤ 1

6
|y|3A

5/4

s3/2
, (23)

∣

∣

∣

∣

∫

∇w(y, s)ρ(y)dy −∇w(0, s)

∣

∣

∣

∣

≤ C∗(N)
A

s
, (24)

and |w(y, s) − w(0, s)| ≤ c1√
s
|y| (25)

where C∗(N) =
∫

|y|ρ(y)dy.

Proof: By a Taylor expansion of w(y, s) to the second order near y = 0, we
write: w(y, s)−w(0, s)−y.∇w(0, s) =

∫ 1
0 (1− t)yT∇2w(ty, s)ydt. Using (19)

we get the first inequality.
The second and the forth inequalities are obtained in the same way by

expanding w(y, s) respectively until the third and the first order, and using

‖∇3w(s)‖L∞ ≤ A5/4

s3/2 and ‖∇w(s)‖L∞ ≤ c1√
s
.

For the third inequality, we write for all y ∈ R
N , ∇w(y, s) −∇w(0, s) =

y.
∫ 1
0 ∇2w(ty, s)dt. Using ‖∇2w(s)‖L∞ ≤ A

s , we obtain
|∇w(y, s) −∇w(0, s)| ≤ |y|As . Integrating this inequality with respect to
ρdy, we get the conclusion.

Case 1: w(sn) can not reach κ+ c0
sn

For all ε > 0 and A > 0, there exists S1(A, ε) such that if sn ≥ S1(A, ε),
Case 1 in Proposition 2.2 does not occur.

Proof: This estimate is in fact crucial and it follows from a blow-up
argument.

Assume that
w(0, sn) = κ+

c0
sn
. (26)

12



Since w(sn) ∈ VA(sn), we have ‖w(sn)‖L∞ ≤ κ + c0
sn

and 0 is a global
maximum for w(sn). Therefore, ∇w(0, sn) = 0. Hence, (22) yields

w(y, sn) ≥ κ+ c0
sn

− 1
2

(

c2
sn

+ C∗(N)A5/4

s
3/2
n

)

|y|2 and

∫

w(y, sn)ρ(y)dy ≥ κ+ c0
sn

− 1
2

(

c2
sn

+ C∗(N)A5/4

s
3/2
n

)

∫

|y|2ρ(y)dy

= κ + c0−Nc2
sn

− NC∗(N)A5/4

s
3/2
n

= κ + ε
sn

− NC∗(N)A5/4

s
3/2
n

> κ for sn large

(sn ≥ S1(A, ε) = 2N2C∗(N)2A5/2

ε2 ).
This contradicts the global (in time) existence of w. Indeed, we have the
following blow-up criterion for nonnegative solutions of (3):

Lemma 2.3 (A blow-up criterion for nonnegative solutions of (3))
Consider W ≥ 0 a solution of (3) and suppose that for some s0 ∈ R,
∫

W (y, s0)ρ(y)dy > κ, then W blows-up in finite time S > s0.

Proof: See Proposition 3.5 in [16].

Therefore, w blows-up in finite time S, which is a contradiction for sn ≥
S1(A, ε).

Thus, Case 1 of Proposition 2.2 can not occur.

Case 2: |∇w(sn)| can not reach c1√
sn

There exist ε2(p) > 0 such that ∀ε ∈ (0, ε2(p)), ∀A > 0, ∃S2(A, ε) such
that if sn ≥ S2(A, ε), then Case 2 in Proposition 2.2 can not occur.

Proof: It follows from the bounds of w(sn) and ∇2w(sn).
In this case, |∇w(0, sn)| = c1√

sn
. Using (22) with

ŷn = (2
√
p+ ε)

√
sn

∇w(yn,sn)
|∇w(yn,sn)| , we get:

w(ŷn, sn) ≥ 0 + (2
√
p+ ε)

√
sn

c1√
sn

− 1
2

(

c2
sn

+C∗(N)A5/4

s
3/2
n

)

(2
√
p+ ε)2sn

= κ+ 2pε+O
(

ε2
)

+O
(

1√
sn

)

as n→ +∞. Therefore, if ε ≤ ε2(p) for some

ε2(p) > 0, then w(ŷn, sn) ≥ κ+ pε+O
(

1√
sn

)

. Hence,

κ+
c0
sn

≥ ‖w(sn)‖L∞ ≥ κ+ pε+O

(

1√
sn

)

,

which is a contradiction if sn ≥ S2(A, ε) for some S2(A, ε).
Thus, Case 2 of Proposition 2.2 can not occur.

Case 3: ϕT
∫

RN ∇2w(y, sn)ρ(y)dyϕ > − c2
sn

13



∀ε > 0, ∀A ≥ 0, ∃S3(A, ε) such that if sn ≥ S3(A, ε), then Case 3 in
Proposition 2.2 does not occur.

Proof: We assume that ϕT
∫

RN ∇2w(y, sn)ρ(y)dyϕ = − c2
sn

for some uni-

tary ϕ ∈ R
N . We proceed in two steps: in Step 1, we derive a differential

equation on
∫

∇2w(y, s)ρ(y)dy. In Step 2, we conclude the proof by a con-
tradiction between this equation and the fact that w is globally defined in
time.

Step 1: Equation on
∫

∇2w(y, s)ρ(y)dy
We recall that w is a solution of

∂w

∂s
= Lw − p

p− 1
w + wp (27)

where L = ∆ − 1
2y.∇ + 1 is a self-adjoint operator on D(L) ⊂ L2

ρ(R
N ) with

ρ defined in (17). The spectrum of L consists of eigenvalues

spec L = {1 − m

2
| m ∈ N}.

Let us recall that in dimension 1, the eigenvalues are simple and the eigen-
function corresponding to 1 − m

2 is

hm(y) =

[m
2

]
∑

j=0

1

j!(m − 2j)!
(−1)jym−2j (28)

where hm satisfies
∫

hmhjρdy = 2m

m! δmj .
In dimension N , we write the spectrum of L as

spec L = {1 − m1 + ...+mN

2
| m1, ...,mN ∈ N}. (29)

For (m1, ...,mN ) ∈ N, the eigenfunction corresponding to 1 − m1+...+mN
2 is

y → hm1(y1)...hmN
(yN ). (30)

Since the eigenfunctions of L constitute a total orthonormal family of
L2

ρ(R
N ), we can write

w(y, s) = w0(s) + w1(s).y +

(

1

2
yTw2(s)y − trw2(s)

)

+ w−(y, s) (31)

where:
- w0(s) =

∫

w(y, s)ρ(y)dy ∈ R (eigenvalue 1),
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- w1(s) =
∫

w(y, s) y
2ρ(y)dy ∈ R

N (eigenvalue 1
2),

- w2(s) =
∫

w(y, s)M(y)ρ(y)dy is a N ×N symmetric matrix (eigenvalue 0)

with Mi.j(y) =
1

4
yiyj −

1

2
δi,j , (32)

- w− = P−(w) and P− is the L2
ρ projector on the negative subspace of L.

Our purpose is to write an equation satisfied by w2(s). We claim the
following:

Lemma 2.4 (Equation satisfied by w2(s)) For n large enough, we have:
i) w1(s) =

∫

∇w(y, s)ρ(y)dy and w2(s) =
∫

∇2w(y, s)ρ(y)dy,

ii) |w1(sn)| ≤ c1√
sn

, |w2(sn)| ≤ A
sn

, ∀y ∈ R
N , |w−(y, sn)| ≤ C(N)A5/4

s
3/2
n

(1+

|y|3) and δ0 ≤ w0(sn) ≤ κ where δ0 =
c32

128C(N)2A5/4 for some C(N) > 0.

iii)

w′
2(sn) =

(

pw0(sn)p−1 − p

p− 1

)

w2(sn)

+ p(p− 1)w0(sn)p−2
[

2w2(sn)2 + w1(sn) ⊗ w1(sn)
]

(33)

+ O

(

|w1(sn)|
s
3/2
n

)

+O

(

1

s
5/2
n

)

.

Proof: see Appendix A.
Remark: - If u and v are in R

N , then we recall that u ⊗ v is the N × N
matrix such that (u⊗ v)i,j = uivj and O(f) stands for a function which is
bounded by C(A, p, ε)f as n→ +∞.

Step 2: Conclusion for Case 3
Let m(s) = ϕTw2(s)ϕ. Then, m is C1, and since w(s) ∈ VA(s) for all

s ∈ [− log T, sn], we have: m(sn) = − c2
sn

and ∀s ∈ [− log T, sn], m(s) ≥ − c2
s .

Thus,

m(sn) = − c2
sn

and m′(sn) ≤ c2
s2n
. (34)

Multiplying (33) by ϕT on the left and ϕ on the right, we find:

m′(sn) =
(

pw0(sn)p−1 − p
p−1

)

m(sn)

+p(p− 1)w0(sn)p−2
[

2m(sn)2 + (w1(sn).ϕ)2
]

+O

(

|w1(sn)|
s
3/2
n

)

+O

(

1

s
5/2
n

)

.

Therefore, since (w1(sn).ϕ)2 ≥ 0, we have

pw0(sn)p−1 − p
p−1 ≥ −1

m(sn)(−m′(sn) + 2p(p− 1)w0(sn)p−2m(sn)2
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+O

(

|w1(sn)|
s
3/2
n

)

+O

(

1

s
5/2
n

)

).

With (34), we obtain

w0(sn) ≥ ( 1

p− 1
+
sn

c2
(− c2

ps2n
+ 2(p− 1)w0(sn)p−2 c

2
2

s2n

+ O

(

|w1(sn)|
s
3/2
n

)

+O

(

1

s
5/2
n

)

))
1

p−1

. (35)

Now, we claim that the following lemma yields the conclusion:

Lemma 2.5 There exists positive constants C(A, p, ε) and C ′(A, p, ε) such
that

|w(0, sn) − κ| ≤ C(A, p, ε)

sn
(36)

and |w1(sn)| ≤ C ′(A, p, ε)
sn

. (37)

Indeed, if we inject (36) and (37) in (35), then we get

w0(sn) ≥
(

1
p−1 + sn

c2

(

− c2
ps2

n
+ 2(p− 1)κp−2 c22

s2
n

+ o
(

1
s2
n

)))

1
p−1

, which yields

w0(sn) ≥ κ+ 2
(

c2 − κ
2p

)

1
sn

+ o
(

1
sn

)

. Since c2 >
κ
2p , we obtain

w0(sn) > κ

for sn large enough, which contradicts by lemma 2.3 the fact that w is
globally defined on [− log T,+∞).

Proof of lemma 2.5:

We derive from ii) of lemma 2.4 and (35): w0(sn) ≥
(

1
p−1 +O

(

1
sn

))
1

p−1 =

κ + O
(

1
sn

)

. Since w is globally defined for s ∈ [− log T,+∞), lemma 2.3

gives w0(sn) ≤ κ. Hence,

w0(sn) = κ+O

(

1

sn

)

. (38)

Integrating (22) with respect to ρdy, we obtain: |w0(sn) − w(0, sn)| ≤
O
(

1
sn

)

. Together with (38), this gives (36).

Now, we claim that |∇w(0, sn)| ≤ B
sn

with

B =
√

2c2(3c0 + C(A, p, ε)). Indeed, if not, then we use the left inequality
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of (22) and write for ŷn = B
c2

∇w(0,sn)
|∇w(0,sn)| :

w(ŷn, sn) ≥ w(0, sn) + ŷn.∇w(0, sn) − 1
2

(

c2
sn

+ C∗(N)A5/4

s
3/2
n

)

|ŷn|2

≥ κ− C(A,p,ε)
sn

+ B2

c2sn
− 1

2

(

c2
sn

+ C∗(N)A5/4

s
3/2
n

)

B2

c22

= κ+ 3c0
sn

+O

(

1

s
3/2
n

)

. Therefore,

κ+
c0
sn

≥ ‖w(sn)‖L∞ ≥ κ+
2c0
sn

if sn is large enough, which is a contradiction. Hence, |∇w(0, sn)| ≤ B
sn

.

Using (24), we find |w1(sn)| ≤ C′(A,p,ε)
sn

with C ′(A, p, ε) = B + C∗(N)A.
This concludes the proof of lemma 2.5.

Thus, Case 3 can not occur.

Case 4: ‖∇2w(sn)‖L∞ can not reach A
sn

There exists A4(p) such that for all A ≥ A4, and ε > 0, ∃S4(A, ε) such
that if sn ≥ S4(A, ε), then Case 4 of Proposition 2.2 can not occur.

Proof: It follows from the bounds on w and ∇3w. We have |∇2w(0, sn)| =
A
sn

. Hence, there exists η0 ∈ {−1, 1} and a unitary vector ψn ∈ R
N such

that ψT
n∇2w(0, sn)ψn = η0

A
sn

. Let us notice that if A > κ
2p , then we have

from (19) η0 = 1 for n large enough.

Using (23) with ŷn = η1

√
sn

A1/4ψn where η1 ∈ {−1, 1} is chosen so that
ŷn.∇w(0, sn) ≥ 0, we write:

w(ŷn, sn) ≥ w(0, sn) + ŷn.∇w(0, sn) + 1
2 ŷ

T
n∇2w(0, sn)ŷn − 1

6 |ŷn|3 A5/4

s
3/2
n

≥ 0 + 0 + sn

2
√

A
A
sn

− s
3/2
n

6A3/4
A5/4

s
3/2
n

=
√

A
3 . If A ≥ 36κ2, then we have

κ+
c0
sn

≥ ‖w(sn)‖L∞ ≥ 2κ

which is a contradiction for sn large enough.
Thus, Case 4 can not occur.

Case 5: ‖∇3w(sn)‖L∞ can not reach A5/4

s
3/2
n

We first give a crucial uniform ODE comparison result for w in VA(s).
Such a result has been shown in [16] for a fixed solution (see (6)). We claim
that these estimates are in fact uniform for w ∈ V̂A(s).

We have the following proposition:
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Proposition 2.3 (ODE like behavior in VA(s)) For a given A > 0,
∀η > 0, ∃Cη > 0 such that for all s∗ ≥ − log T , for all solution w of (3)
defined for all s ≥ − log T and satisfying w ∈ V̂A(s∗), we have ∀x ∈ R

N ,
∀t ∈ [0, t∗],

∣

∣

∣

∣

∂u

∂t
(x, t) − u(x, t)p

∣

∣

∣

∣

≤ ηu(x, t)p + Cη

where t∗ = T − e−s∗ and u(x, t) = (T − t)
1

p−1w
(

x√
T−t

,− log(T − t)
)

.

Proof: It is mainly the same as in [16] (Theorem 3), and it uses a compactness
procedure. See Appendix B.

Now, we begin the treatment of Case 5.
We have

|∇3w(0, sn)| =
A5/4

s
3/2
n

, and ∀s ∈ [− log T, sn], w(s) ∈ VA(s). (39)

Since w(sn) ∈ VA(sn), we have 0 ≤ w(0, sn) ≤ κ+ c0
sn

. Therefore, we can
assume that

w(0, sn) → a ∈ [0, κ] as n→ +∞.

We will consider the case where a is small in Part I, and let the case where
it is not small for Part II. We first claim the following lemma:

Lemma 2.6 ∀S > 0, sup
s∈[sn−S,sn]

|w(0, s) − ϕa(s− sn)| → 0 as n → +∞

where ϕa is the solution of
{

ϕ′
a(s) = −ϕa(s)

p−1 + ϕa(s)
p

ϕa(0) = a,

that is ϕa(s) = κ

(

1 +

(

a1−p

p− 1
− 1

)

es
)− 1

p−1

if a > 0, and ϕ0(s) ≡ 0.

(40)

Proof: Let zn(s) = w(0, s), then we have from (3) ∀s ∈ [sn − S, sn]
{

z′n(s) + zn(s)
p−1 − zn(s)p = ∆w(0, s)

zn(sn) → a.

Since ∀s ∈ [sn − S, sn], w(s) ∈ VA(s), we get |∆w(0, s)| ≤ N‖∇2w(s)‖L∞ ≤
NA
s . Hence, ∀η > 0, we have for n large enough and s ∈ [sn − S, sn]:

{

∣

∣

∣z′n(s) + zn(s)
p−1 − zn(s)p

∣

∣

∣ ≤ η

|zn(sn) − a| ≤ η.
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Therefore, by classical continuity arguments on ordinary differential equa-
tions, w(0, s) = zn(s) → ϕa(s− sn) as n → +∞, uniformly on [sn − S, sn].
This concludes the proof of lemma 2.6.

Part I: Case where a ≤ δ(p)

There exists δ(p) ∈ (0, κ) and S5(p) such that if A ≥ 1, sn ≥ S5(p) and
a ≤ δ(p), then Case 5 of Proposition 2.2 can not occur.

This result follows from local estimates in new variables (ξ, τ) defined
below and scaling arguments. We assume a ≤ δ(p) where δ(p) will be fixed
later small enough, lower than κ

5 .

Step 1: Setting of the problem:
For each n ∈ N, we introduce s′n = max{ sn

2 }∪{s ∈ [ sn
2 , sn] | w(0, s) ≥ κ

2}.
Let us remark that w(0, s′n) ≤ κ and if s′n >

sn
2 , then w(0, s′n) = κ

2 .

We have the following lemma:

Lemma 2.7 There exists S(δ) → +∞ as δ → 0 such that for n large
enough, S(δ) ≤ sn − s′n ≤ sn

2 .

Proof: Since s′n ≥ sn
2 , we have sn − s′n ≤ sn

2 .
We get from (40) S > 0 such that ∀s ∈ [−S, 0], a ≤ ϕa(s) ≤ κ

5 and S → +∞
as a→ 0. Hence, S → +∞ as δ → 0, since a ≤ δ.

Since w(0, s) → ϕa(s − sn) as n → +∞ uniformly on [sn − S, sn] by
lemma 2.6, we obtain for n large enough ∀s ∈ [sn − S, sn], w(0, s) ≤ κ

4 .
Thus, s′n ≤ sn − S. This concludes the proof of lemma 2.7.

Let us define for each n ∈ N, ξ ∈ R
N and τ ∈ [−1, 1),

vn(ξ, τ) = e−
s′n

p−1u

(

ξe−
s′n
2 , T + (τ − 1)e−s′n

)

= (1 − τ)
− 1

p−1w

(

ξ√
1 − τ

, s′n − log(1 − τ)

)

(41)

where u is defined from w by (2) (take a = 0), and introduce τn ∈ [0, 1]
defined by s′n − log(1 − τn) = sn. Then, vn satisfies: ∀ξ ∈ R

N , ∀τ ∈ [−1, 1)

∂vn

∂τ
= ∆vn + vp

n. (42)

From (39) and the definition of s′n, we get: vn(ξ, 0) = w(ξ, s′n),






vn(0, 0) ≤ κ
2 , ‖∇vn(0)‖L∞ ≤ c1√

s′n
,

‖∇2vn(0)‖L∞ ≤ A
s′n
, ‖∇3vn(0)‖L∞ ≤ A5/4

s
′3/2
n

.
(43)
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Note that if s′n >
sn
2 , then vn(0, 0) = κ

2 .

Step 2: Estimates in v variable

We claim the following lemmas:

Lemma 2.8 (First estimate) For n large enough, we have:

i) ∀τ ∈ [−1, τn], ∀|ξ| ≤ 2s
′1/4
n : vn(ξ, τ) ≤ C(p).

ii) For all i = 1, 2, 3, ∀τ ∈ [− 1
4 , τn], ∀|ξ| ≤ 3

2s
′1/4
n , |∇ivn(ξ, τ)| ≤ C ′(p).

Lemma 2.9 (Refined estimate) Assume that s′n >
sn
2 . Then,

i) ∀τ ∈ [0, τn], ∀|ξ| ≤ s
′1/4
n , κ

4 ≤ vn(ξ, τ) ≤ C(p).
ii) There exist positive constants C6(p), C7(p) and C8(p) such that if A ≥ 1
then ∀τ ∈ [0, τn]:

∀|ξ| ≤ s
′1/4
n

4
, |∇vn(ξ, τ)| ≤ C6(p)

√

s′n
, (44)

∀|ξ| ≤ s
′1/4
n

42
, |∇2vn(ξ, τ)| ≤ C7(p)A

s′n
, (45)

∀|ξ| ≤ s
′1/4
n

43
, |∇3vn(ξ, τ)| ≤ C8(p)A

5/4

s
′3/2
n

. (46)

Proof of lemma 2.8:
i) By Proposition 2.3, we have: ∀η > 0, ∀x ∈ R

N , ∀t ∈ [0, T − e−sn)

∣

∣

∣

∣

∂u

∂t
(x, t) − u(x, t)p

∣

∣

∣

∣

≤ ηu(x, t)p +Cη.

Therefore, we get from (41): ∀η > 0, we have for n large enough: ∀ξ ∈ R
N ,

∀τ ∈ [−1, τn]

∣

∣

∣

∣

∂vn

∂τ
− vn(ξ, τ)p

∣

∣

∣

∣

≤ ηvn(ξ, τ)p + Cηe
− ps′n

p−1 ≤ η (vn(ξ, τ)p + 1) . (47)

Using a Taylor expansion and (43), we get for n large enough: ∀|ξ| ≤ 2s
′1/4
n

|vn(ξ, 0) − vn(0, 0)| ≤ 2c1

s
′1/4
n

and vn(ξ, 0) ≤ 3κ

4
. (48)

We take η = η(p) > 0 small enough such that vη(τ) and Vη(τ) defined by

vη(0) = Vη(0) =
3κ

4
, v′η = (1 + η)vp

η + η, and V ′
η = (1 − η)V p

η − η.
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are well defined for all τ ∈ [−1, 1] and satisfy max (Vη(τ), vη(τ)) ≤ 2v0(1) =
C(p).

Hence, for n large enough: ∀|ξ| ≤ 2s
′1/4
n ,

∀τ ∈ [0, τn], vn(ξ, τ) ≤ vη(τ), and ∀τ ∈ [−1, 0], vn(ξ, τ) ≤ Vη(τ). (49)

Therefore, vn(ξ, η) ≤ C(p) for all τ ∈ [−1, τn]. This concludes the proof of
i).

ii) We use a classical result (see Theorem 3 p. 406 in Friedman [8], see
also Douglis and Nirenberg [5]):

Lemma 2.10 Assume that h solves

∂h

∂τ
= ∆h+ a(ξ, τ)h

for (ξ, τ) ∈ D where D = B(0, 3) × (−τ0, τ∗) and τ0, τ∗ ∈ [12 , 1]. Assume in
addition that ‖a‖L∞ + |a|α,D is finite, where

|a|α,D = sup
(ξ,τ),(ξ′,τ ′)∈D

|a(ξ, τ) − a(ξ′, τ ′)|
(

|ξ − ξ′| + |τ − τ ′|1/2
)α

and α ∈ (0, 1). Then,

‖h‖C2(D′) + |∇2h|α,D′ ≤ K‖h‖L∞(D)

where K = K
(

‖a‖L∞(D) + |a|α,D

)

and D′ = B(0, 1) × [−τ0 + 1
4 , τ∗).

Since vn is bounded on B(0, 2s
′1/4
n )× [−1, τn] (see i)), and since vn and ∇vn

satisfy
∂vn

∂τ
= ∆vn + a1(ξ, τ)vn

and
∂∇vn

∂τ
= ∆(∇vn) + a2(ξ, τ)∇vn

for all (ξ, τ) ∈ B(0, 2s
′1/4
n )× [−1, τn], with a2 = pa1 = pvp−1

n , it is enough to
prove that |vn|1,B(0,2s

′1/4
n )×(− 3

4
,τn)

is finite and to apply lemma 2.10 succes-

sively to vn and ∇vn in order to conclude the proof of ii).
For this purpose and from translation invariance, we restrict ourselves

to |ξ| < 3 and write for all (ξ, τ) ∈ D = B(0, 3) × (−1, τn), vn = h1 + h2

where:
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- h1 is a solution of










∂h1
∂τ = ∆h1 for (ξ, τ) ∈ D

h1(ξ, τ) = vn(ξ, τ) for |ξ| = 3 and τ ∈ (−1, τn)
h1(ξ,−1) = vn(ξ,−1) for |ξ| < 3,

- h2 is a solution of

{

∂h2
∂τ = ∆h2 + f(x, t) for (ξ, τ) ∈ R

N × (−1, τn)
h2(ξ,−1) = 0 for all ξ ∈ R

N (50)

with
f(ξ, τ) = vn(ξ, τ)p1{(ξ,τ)∈D} ≤ C(p). (51)

From maximum principle, h2 is bounded by C(p) on R
N , hence onD. There-

fore, h1 is bounded by C(p) also. Applying lemma 2.10 with h = h1 and
a = 0, we see that in particular |h1|1,D′ ≤ C(p) whereD′ = B(0, 1)×[− 3

4 , τn).
We have from (50): ∀(ξ, τ) ∈ R

N × [−1, τn),

h2(ξ, τ) =

∫ τ

−1
e(τ−σ)∆f(σ)dσ. (52)

We claim that
|h2|1,RN×[−1,τn) ≤ C(p), (53)

which concludes the proof.

Proof of (53):
Let us recall that for all ϕ ∈ L∞(RN ): ‖eτ∆ϕ‖L∞ ≤ ‖ϕ‖L∞ ,

‖∇eτ∆ϕ‖L∞ ≤ C√
τ
‖ϕ‖L∞ , and ‖ ∂

∂τ
eτ∆ϕ‖L∞ ≤ C

τ
‖ϕ‖L∞ . (54)

In order to prove (53), it is enough to estimate |∇h2(ξ, τ)| and
|h2(ξ,τ1)−h2(ξ,τ2)|

|τ1−τ2|1/2 for all ξ ∈ R
N and τ, τ1, τ2 ∈ [−1, τn).

By (52), (54) and (51), we have:

|∇h2(ξ, τ)| =
∣

∣

∣

∫ τ
−1 ∇e(τ−σ)∆f(σ)dσ

∣

∣

∣ ≤
∫ τ
−1

C√
τ−σ

‖f(σ)‖L∞dσ

≤ 2C(p)
√
τ + 1 ≤ C(p).

Now, we take τ2 < τ1 and introduce τ3 = max (−1, τ2 −
√
τ1 − τ2). Then,

|h(ξ,τ1)−h(ξ,τ2)|√
τ1−τ2

= (τ1 − τ2)
− 1

2

∣

∣

∣

∫ τ1
−1 e

(τ1−σ)∆f(σ)dσ −
∫ τ2
−1 e

(τ2−σ)∆f(σ)dσ
∣

∣

∣

≤ I + II + III with I = (τ1 − τ2)
− 1

2
∫ τ1
τ3

‖e(τ1−σ)∆f(σ)‖L∞dσ,
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II = (τ1 − τ2)
− 1

2
∫ τ2
τ3

‖e(τ2−σ)∆f(σ)‖L∞dσ and

III =
∫ τ3
−1

∣

∣

∣e(τ1−σ)∆f(σ) − e(τ2−σ)∆f(σ)
∣

∣

∣ dσ.

From (54) and (51), we have:

I ≤ (τ1 − τ2)
− 1

2
∫ τ1
τ3
C(p)dσ = C(p)(τ1 − τ2)

− 1
2 (τ1 − τ3)

≤ C(p)(τ1 − τ2)
− 1

2 (τ1 − τ2 +
√
τ1 − τ2) ≤ C(p).

Similarly, II ≤ C(p).

For III, we write

III = (τ1 − τ2)
− 1

2
∫ τ3
−1 dσ

∣

∣

∣

∫ τ1−σ
τ2−σ

∂
∂σ1

eσ1∆f(σ)dσ1

∣

∣

∣

≤ (τ1 − τ2)
− 1

2
∫ τ3
−1 dσ

∫ τ1−σ
τ2−σ

C
σ1
dσ1 by (54),

≤ (τ1 − τ2)
− 1

2
∫ τ3
−1 dσ

C(τ1−τ2)
(τ2−σ)

≤ C(τ1 − τ2)
1
2 (τ3 + 1)(τ2 − τ3)

−1 ≤ C(τ1 − τ2)
1
2 × 2 × (

√
τ1 − τ2)

−1 = C.
Thus, ∀ξ ∈ R

N , ∀τ1, τ2 ∈ [−1, τn),

|h2(ξ, τ1) − h2(ξ, τ2)| ≤ C|τ1 − τ2|
1
2 .

This concludes the proof of (53) and the proof of lemma 2.8 also.

Proof of lemma 2.9:
In this case, vn(0, 0) = κ

2 .
i) As in lemma 2.6, (47) and (48) yield sup

|ξ|≤s
′1/4
n ,τ∈[0,τn]

|vn(ξ, τ) − v(τ)| → 0

as n→ +∞, where v is the solution of

v′(τ) = v(τ)p, v(0) =
κ

2
, that is v(τ) = κ

(

2p−1 − τ
)− 1

p−1 .

Since ∀τ ∈ [0, 1], v(τ) ≥ κ
2 , we have for n large enough:

∀|ξ| ≤ s′1/4
n , ∀τ ∈ [0, 1),

κ

4
≤ vn(ξ, τ). (55)

i) of lemma 2.8 yields the upper bound.

ii) Let us recall the following lemma:

Lemma 2.11 Assume that z(ξ, τ) satisfies ∀|ξ| ≤ 4B1, ∀τ ∈ [0, τ∗]:
{

∂z
∂τ ≤ ∆z + λz + µ,
z(ξ, 0) ≤ z0, z(ξ, τ) ≤ B2

(56)

where τ∗ ≤ 1. Then, ∀|ξ| ≤ B1, ∀τ ∈ [0, τ∗],

z(ξ, τ) ≤ eλτ

(

z0 + µ+ CB2e
−B2

1
4

)

.
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Proof: See Appendix C.

Estimate on ∇vn(ξ, τ):
We estimate h(ξ, τ) = |∇vn(ξ, τ).α| where α is a unitary vector of R

N .

From (42), Kato’s inequality, (43) and lemma 2.8, we see that ∀|ξ| ≤ s
′1/4
n ,

∀τ ∈ [0, τn],
{ ∂h

∂τ ≤ ∆h+ pvp−1
n h ≤ ∆h+ pC(p)p−1h,

h(ξ, 0) ≤ c1√
s′n
, h(ξ, τ) ≤ C ′(p). (57)

Using lemma 2.11, we get: ∀|ξ| ≤ s
′1/4
n
4 , ∀τ ∈ [0, τn],

h(ξ, τ) ≤ epC(p)p−1

(

c1
√

s′n
+ CC ′(p)e−

s
′1/2
n
4

)

which yields (44) since c1 ≤ κ√
p + 2

√
p.

Estimate on ∇2vn(ξ, τ):
We estimate θ(ξ, τ) = |αT∇2vn(ξ, τ)α| where α is a unitary vector in R

N .
From (42) and Kato’s inequality, we have: ∀ξ ∈ R

N , ∀τ ∈ [0, 1),

∂θ

∂τ
≤ ∆θ + pvp−1

n θ + p(p− 1)vp−2
n |∇vn|2.

Using (44), lemma 2.8, i) of lemma 2.9 and (43), we claim that ∀|ξ| ≤ s
′1/4
n
4 ,

∀τ ∈ [0, τn],






∂θ
∂τ ≤ ∆θ + C(p)θ + C(p)C6(p)2

s′n
,

θ(ξ, 0) ≤ A
s′n
, θ(ξ, τ) ≤ C ′(p)

By lemma 2.11, we obtain, ∀|ξ| ≤ s
′1/4
n
42 , ∀τ ∈ [0, τn],

θ(ξ, τ) ≤ eC(p)

(

A

s′n
+ C(p)

C6(p)
2

s′n
+ CC ′(p)e−

s
′1/2
n
43

)

.

Since A ≥ 1, this yields (45).

Estimate on ∇3vn(ξ, τ):
We estimate ν(ξ, τ) = |∇3vn(ξ, τ)(α, β, γ)| where α, β and γ are unitary
vectors in R

N .
From (42) and Kato’s inequality, we have: ∀ξ ∈ R

N , ∀τ ∈ [0, 1),

∂ν

∂τ
≤ ∆ν + pvp−1

n ν + 3p(p− 1)vp−2
n |∇vn||∇2vn|+ p(p− 1)|p− 2|vp−3

n |∇vn|3.
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Using (44), (45), lemma 2.8, i) of lemma 2.9 and (43), we get: ∀|ξ| ≤ s
′1/4
n
42 ,

∀τ ∈ [0, τn].











∂ν
∂τ ≤ ∆ν + C(p)ν + C(p)

(C6(p)3+C6(p)C7(p))
s
′3/2
n

,

ν(ξ, o) ≤ A5/4

s
′3/2
n

, ν(ξ, τ) ≤ C ′(p).

Applying again lemma 2.11, we obtain: ∀|ξ| ≤ s
′1/4
n
43 , ∀τ ∈ [0, 1),

ν(ξ, τ) ≤ eC(p)

(

A5/4

s
′3/2
n

+ C(p)

(

C6(p)
3 + C6(p)C7(p)

)

s
′3/2
n

+ CC ′(p)e−
s
′1/2
n
45

)

.

Since A ≥ 1, this yields (46).

This concludes the proof of lemma 2.9.

Step 3: Conclusion of the proof
From (41), we have

∇3w(0, sn) = (1 − τn)
(

1
p−1

+ 3
2

)

∇3vn(0, τn), (58)

where τn is defined by s′n − log(1 − τn) = sn.

- If s′n = sn
2 , then 1 − τn = es

′
n−sn = e−

sn
2 . Hence, (58) and lemma 2.8

yield:

|∇3w(0, sn)| ≤ e−
sn
2

(

1
p−1

+ 3
2

)

C ′(p).

This contradicts (39) for sn large enough.

- If s′n > sn
2 , then we have by lemma 2.7 s′n − sn ≤ −S(δ) for n large

enough. Therefore, (58) and lemma 2.9 yield

|s3/2
n ∇3w(0, sn)| ≤ A5/4C8(p)e

(s′n−sn)
(

1
p−1

+ 3
2

)

(

sn

s′n

)
3
2

(59)

≤ A5/4C8(p)e
−S(δ)

(

1
p−1

+ 3
2

)

(

sn

sn/2

)3/2

.

Since S(δ) → +∞ as δ → 0, we fix δ(p) > 0 such that

C8(p)e
−S(δ)

(

1
p−1

+ 3
2

)

23/2 ≤ 1

2
.

Therefore, (59) yields |s3/2
n ∇3w(0, sn)| ≤ A5/4

2 . This contradicts (39).
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Thus, Case 5 can not occur if a ≤ δ(p).

Part II: Case where a ≥ δ(p)

There exists A6(p) > 0 and S6(p) such that for all A ≥ A6(p), if sn ≥
S6(p), then Case 5 of Proposition 2.2 can not occur if a ≥ δ(p).

This follows from linear estimates on w, for the spectrum of the linear
part of the equation on ∇3w is fully negative.

Let us remark that in this case, we have:

∀s ∈ [sn − 1, sn], ∀|y| ≤ δ
√
s

4c1
,
δ

4
≤ w(y, s) ≤ κ+ 1. (60)

Indeed, the upper bound follows from the fact that w(s) ∈ VA(s). For the
lower bound, we notice that since a ≥ δ, we have from lemma 2.6 and (40):
∀s ∈ [sn − 1, sn], w(0, s) ≥ δ

2 for sn large enough. Therefore, we have by

(25): w(y, s) ≥ w(0, s) − c1√
s
|y| ≥ δ

2 − δ
√

s
4c1

c1√
s

= δ
4 .

From (39), we have the existence of α, β, γ ∈ R
N such that |α| = |β| =

|γ| = 1 and

|∇3w(0, sn)(α, β, γ)| =
A5/4

s
3/2
n

. (61)

Our strategy is to derive from (3) an equation on g(y, s) = ∇3w(y, s)(α, β, γ)
and to do a priori estimates on it in order to contradict (61). We in fact
define

G(y, s) = F (y, s)χ(y, s), F (y, s) = |g(y, s)| = |∇3w(y, s)(α, β, γ)|, (62)

χ(y, s) = χ0

(

8c1|y|
δ
√
s

)

(63)

and χ0 ∈ C∞([0,+∞),R+) satisfies χ0(z) = 1 for |z| ≤ 1, χ0(z) = 0 for
|z| ≥ 2.

From (3), we see that

∂g

∂s
=

(

L− 3

2
+ pw(y, s)p−1 − p

p− 1

)

g

+ p(p− 1)w(y, s)p−2
(

(α.∇w)(βT∇2wγ) + (β.∇w)(γT∇2wα)

+ (γ.∇w)(αT∇2wβ)
)

+ p(p− 1)(p− 2)w(y, s)p−3(α.∇w)(β.∇w)(γ.∇w).
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We see from (39) and definition 2.1 that for sn large enough, we have:
- ∀y ∈ R

N , ∀s ∈ [sn − 1, sn], pw(y, s)p−1 − p
p−1 ≤ 1

4 ,
- 0 < κ√

p ≤ c1(ε) ≤ κ√
p + 2

√
p for all ε ∈ (0, 1).

Therefore, F satisfies the following inequality: ∀y ∈ R
N , ∀s ∈ [sn − 1, sn],

∂F

∂s
≤ (L − 5

4
)F +

C(p)A

s3/2
w(y, s)p−2 +

C(p)

s3/2
w(y, s)p−3.

Hence, by (63) and (60), G satisfies the following inequality: ∀y ∈ R
N ,

∀s ∈ [sn − 1, sn]
∂G
∂s ≤ (L− 5

4)G+ C(p)A

s3/2 χw(y, s)p−2+ C(p)

s3/2 χw(y, s)p−3+F (∂χ
∂s +∆χ+ 1

2y.∇χ)−
2∇. (F∇χ).

≤ (L − 5
4 )G+ C(p) (A+1)

s3/2 +C(p)A5/4

s3/2 1{|y|≥ δ
√

s
8c1

} − 2∇.(F∇χ).

Using an integral formulation of this inequality between sn − η and sn

where η(p) is fixed such that

η ∈ (0, 1) and
δ2

512c21(1 − e−η)
≥ δ2

512c1(1)2(1 − e−η)
>

1

4
, (64)

we obtain
G(0, sn) ≤ I + II + III + IV (65)

where
I =

[

eη(L− 5
4
)G(sn − η)

]

(0),

II =
[

∫ sn
sn−η dte

(sn−t)(L− 5
4
)C(p) (A+1)

t3/2

]

(0),

III =

[

∫ sn
sn−η dte

(sn−t)(L− 5
4
)C(p)A5/4

t3/2 1{|x|≥ δ
√

t
8c1

}

]

(0) and

IV =
[

−2
∫ sn
sn−η dte

(sn−t)(L− 5
4
)∇.(F∇χ)

]

(0).

Let us recall that the kernel of L is: ∀s > 0,

es(L−
5
4
)(y, x) =

e−
s
4

(4π(1 − e−s))N/2
exp

(

−|ye− s
2 − x|2

4(1 − e−s)

)

(66)

and that for all ϕ ∈ L∞(RN ),

‖es(L− 5
4
)ϕ‖L∞ ≤ e−

s
4 ‖ϕ‖L∞ , ‖es(L− 5

4
)∇ϕ‖L∞ ≤ C(N)√

1 − e−s
‖ϕ‖L∞ . (67)

From (67), (62) and (39), we have

I ≤ e−
η
4 ‖G(sn − η)‖L∞ ≤ e−

η
4

A5/4

(sn−η)3/2 .
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Again, by (67), we have

II ≤
∫ sn
sn−η dte

− (sn−t)
4 C(p) (A+1)

t3/2 ≤ C(p) (A+1)
(sn−η)3/2 η ≤ C(p) (A+1)

(sn−η)3/2 by (64).

By (66), we have:

III =
∫ sn
sn−η dt

e−
(sn−t)

4

(4π(1−e−(sn−t)))
N/2

∫

{|x|≥ δ
√

t
8c1

} dx exp
(

− |x|2
4(1−e−(sn−t))

)

C(p)A5/4

t3/2 .

For |x| ≥ δ
√

t
8c1

and t ∈ [sn − η, sn], we have

exp
(

− |x|2
4(1−e−(sn−t))

)

= exp
(

− |x|2
8(1−e−(sn−t))

)

exp
(

− |x|2
8(1−e−(sn−t))

)

≤ exp
(

− δ2t
512c21(1−e−η)

)

exp
(

− |x|2
8(1−e−(sn−t))

)

≤ e−
t
4 exp

(

− |x|2
8(1−e−(sn−t))

)

from

(64).
Therefore,

III ≤ C(p)A5/4e−
sn
4

(sn−η)3/2

∫ sn
sn−η dt

∫ dx

(4π(1−e−(sn−t)))
N/2 exp

(

− |x|2
8(1−e−(sn−t))

)

= C(p)A5/4e−
sn
4

(sn−η)3/2

∫ sn
sn−η dt

∫

dXe−|X|2

= C(p)A5/4e−
sn
4

(sn−η)3/2 η ≤ C(p)A5/4e−
sn
4

(sn−η)3/2 by (64).

From (66) and integration by parts, we have:
IV ≤ C(N)

∫ sn

sn−η
dt√

1−e−(sn−t)
‖F (t)∇χ(t)‖L∞ . From (62), (39) and (63), we

have F (x, t) ≤ A5/4

t3/2 and |∇χ| ≤ C√
t
. Therefore,

IV ≤ CA5/4

(sn−η)2

∫ sn
sn−η

dt√
1−e−(sn−t)

≤ C A5/4

(sn−η)2
C
√
η ≤ C A5/4

(sn−η)2
by (64).

From (65) and (62), we then get:

|g(0, sn)| = G(0, sn) ≤ A5/4

(sn−η)3/2

(

e−
η
4 + C(p)e−

sn
4 + C√

sn−η

)

+C(p) (A+1)

(sn−η)3/2 .

Now, we take A ≥ A5(p) such that C(p)(A + 1) ≤
(

e−
η
5 − e−

η
4

)

A5/4,

and sn ≥ S5(p) such that
1

(sn−η)3/2

(

e−
η
5 + C(p)e−

sn
4 + C√

sn−η

)

≤ e−
η
6

s
3/2
n

. If sn ≥ S5(p), then we have :

|∇3w(0, sn)(α, β, γ)| = |g(0, sn)| ≤ e−
η
6

A5/4

s
3/2
n

< A5/4

s
3/2
n

. This contradicts (61).

Thus, Case 5 can not occur if a ≥ δ(p).

3 Blow-up profile notions for equation (1)

In this section, we prove Theorems 2 and 3.
Let us first show the existence of a profile in the intermediate variable z =
y√
s
.
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Proof of Theorem 2:
The theorem is a consequence of:

- the behavior of the solution w(y, s) for y bounded,
- the pointwise estimates on ∆w(y, s) in Theorem 1, which will enable

us to treat this term in equation (3) as a perturbation.
Let u(t) be a solution of (1) which blows-up at time T > 0 and satisfies

u(0) ∈ H1(RN ). Let x0 be a blow-up point of u(t) and consider wx0 defined
by (2). We just write w for wx0 .

The proof is in two steps:

Step 1: Reduction of the problem
According to Filippas and Liu [7] and Velázquez [18],

- either ∀R > 0, sup
|y|≤R

|w(y, s) − κ| ≤ C(R)e−δs for some δ > 0,

- or there exists k ∈ {0, ..., N − 1} and a N ×N orthonormal matrix Q such

that ∀R > 0, sup
|y|≤R

∣

∣

∣

∣

w(y, s) −
[

κ+
κ

2ps

(

(N − k) − 1

2
yTAky

)]∣

∣

∣

∣

= o

(

1

s

)

as s→ +∞ where

Ak = Q

(

IN−k 0
0 0

)

Q−1 (68)

and IN−k is the (N − k) × (N − k) identity matrix.
By direct calculations, we summarize both cases by:

∀R > 0, sup
|y|≤R

|w(y, s) − fk

(

y√
s

)

− a

s
| = o

(

1

s

)

(69)

where

fk(z) =

(

p− 1 +
(p− 1)2

4p
zTAkz

)− 1
p−1

, a =
κ(N − k)

2p
, (70)

k ∈ {0, 1, ..., N} and Ak is defined in (68) (take AN = 0).
We claim now that (69) implies that the convergence is uniform on larger

sets:

Proposition 3.1 (Convergence extension to space-time parabolas)
Assume that w is a solution of (3) which satisfies (69). Then, ∀K0 > 0,

sup
|z|≤K0

|w(z
√
s, s) − fk(z)| → 0 as s→ +∞.
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It is immediate that Theorem 2 is a direct consequence of Proposition 3.1.
Thus, we now focus on the proof of Proposition 3.1.

The main feature in the proof is an a priori estimate on

q(y, s) = w(y, s) − fk(
y√
s
). (71)

We consider the equation satisfied by q as a perturbation of a hyperbolic
equation (the size of the perturbation is crucially controlled by Theorem 1).
We claim the following result:

Proposition 3.2 (Hyperbolic estimate on q(y, s) for A ≤ |y| ≤ K0
√
s)

Assume (69). Then, for any K0 > 0, there exist A0(K0) > 0 and B(K0) > 0
such that for all A ≥ A0, there exists S0(K0, A) with the following property:
If ω ∈ SN−1, s0 ≥ S0, then

∀s ∈ [s0, s1], |q(Ae
s−s0

2 ω, s)| ≤ B
es−s0

s0

where s1 ≥ s0 is defined by

Ae
s1−s0

2 = K0
√
s1. (72)

Let us first show how this proposition concludes the proof of Proposition
3.1.
Remark: We notice that it directly follows from Proposition 3.2 that for
S0 larger, we have

∀s ∈ [s0, s1], |q(Ae
s−s0

2 ω, s)| ≤ 2BK2
0

A2
. (73)

Indeed, we have ∀s ∈ [s0, s1], Ae
s−s0

2 ≤ K0
√
s ≤ K0

√
s1. Therefore,

|q(Ae
s−s0

2 ω, s)| ≤ B es−s0

s0
≤ BK2

0
A2

s1
s0

. If K0 and A are fixed, then it is easy
to see that s1 ∼ s0 as s0 → +∞. One might take S0(K0, A) larger to have
s1
s0

≤ 2, which yields |q(Ae
s−s0

2 ω, s)| ≤ 2BK2
0

A2 .
We now prove Proposition 3.1.

Let K0 > 0 and ε > 0. Fix A ≥ A0(K0) so that
2BK2

0
A2 ≤ ε.

By (69), there exists s02(ε) such that

∀s ≥ s02, ∀|y| ≤ A, |q(y, s)| ≤ ε. (74)

Let s03(K0, A) ≥ S0 be defined by Ae
s03−S0

2 = K0
√
s03. We claim that

∀s ≥ max (s02(ε), s03(K0, A)), ∀|y| ≤ K0
√
s, |q(y, s)| ≤ ε.
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Indeed, if |y| ≤ A, then the conclusion follows from (74). If A ≤ |y| ≤ K0
√
s,

we define s0(|y|, s) by |y| = Ae
s−s0

2 . By construction of s03(K0, A), we have

s0(|y|, s) ≥ S0(K0, A). We also have s0 ≤ s ≤ s1, since Ae
s−s0

2 = |y| ≤ K0
√
s

and Ae
s1−s0

2 = K0
√
s1. Applying the remark (73) coming after Proposition

3.2 gives |q(y, s)| = |q(Ae
s−s0

2
y
|y| , s)| ≤

2BK2
0

A2 ≤ ε. This is the conclusion of
Proposition 3.1 and that of Theorem 2 also. Let us now prove proposition
3.2.

Step 2: Hyperbolic estimates: Proof of Proposition 3.2:
Define

B(K0) = 3(|a| + 1 + C4)

[

1 +
(p− 1)K2

0

4p

]
p

p−1

(75)

with C4 = C5 + 1
2‖z.∇f(z)‖L∞ , C5 is the constant given by Theorem 1 such

that ‖∆w(s)‖L∞ ≤ C5
s and a is defined in (70).

We consider A ≥ A0(K0) and s0 ≥ S0(K0, A) (A0(K0) and S0(K0, A)
will be defined later).

Let ω ∈ SN−1 and introduce

y(A,ω, s0, s) = Ae
s−s0

2 ω and h(A,ω, s0, s) = q (y(A,ω, s0, s), s) . (76)

For simplicity, we will just write y(s) and h(s). Let us define s04(K0, A)
(independent of w) such that ∀s0 ≥ s04(K0, A), s1 (introduced in (72)) is
well defined and satisfies s1 ≤ 2s0, and

|h(s0)| = |q(Aω, s0)| ≤
|a| + 1

s0
<
B

s0
(77)

by definition of B(K0) (This follows directly from (69)).
The proof of Proposition 3.2 reduces now to prove that ∀s0 ≥ S0(K0, A),

∀s ∈ [s0, s1], |h(s)| ≤ B es−s0

s0
. We proceed by a priori estimates.

We suppose by contradiction the existence of some s∗ ∈ [s0, s1] such that

∀s ∈ [s0, s∗), |h(s)| <
Bes−s0

s0
and |h(s∗)| =

Bes∗−s0

s0
. (78)

Since fk is a solution of 0 = − 1
2y.∇fk(z) − fk(z)

p−1 + fk(z)
p, we derive from

(71) and (3) an equation satisfied by q: ∀y ∈ R
N , ∀s ≥ − log T :

∂q

∂s
= −1

2
y.∇q +

(

pfk

(

y√
s

)

− 1

p− 1

)

q +N(q) + r(y, s)
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where N(q) = (fk + q)p − fp
k − pfp−1

k q and r(y, s) = 1
2

y
s3/2∇fk

(

y√
s

)

+

∆w(y, s).
Therefore, we derive from (76) an equation satisfied by h:

dh

ds
=

(

pfk

(

y(s)√
s

)p−1

− 1

p− 1

)

h(s) +N(h) + r(y(s), s).

From (75) and homogeneity, we write ∀s ∈ [s0, s∗], |N(h)| ≤ C∗(K0)|h|2 ≤
C∗(K0)

Bes−s0

s0
|h| and |r(y(s), s)| ≤ C4

s .
Therefore, if g(s) = |h(s)|, then g(s) satisfies:

{

∀s ∈ [s0, s∗], g′(s) ≤ α(s)g(s) + C4
s ,

g(s0) ≤ (|a|+1)
s0

(79)

with

α(s) = pfk

(

y(s)√
s1

)p−1

− 1

p− 1
+ C∗(K0)

Bes−s0

s0
. (80)

Using Gronwall’s inequality, we write

∀s ∈ [s0, s∗], g(s) ≤ I + II

where

I = exp

(
∫ s

s0

α

)

g(s0) and II = C4

∫ s

s0

dσ

σ
exp

(
∫ s

σ
α

)

. (81)

We estimate in the following lemma exp (
∫ s
σ α) for s0 ≤ σ ≤ s ≤ s1.

Lemma 3.1 There exists A1(K0) > 0 such that ∀A ≥ A1(K0), ∃s05(K0, A)
such that ∀s0 ≥ s05(K0, A), if s0 ≤ σ ≤ s ≤ s1, then

exp

(
∫ s

σ
α

)

≤ 3

2
es−σ

[

1 +
(p− 1)K2

0

4p

]
p

p−1

.

We let the proof of this lemma to the end, and finish the proof of Proposition
3.2.

Now, we defineA0(K0) = A1(K0) and for each A ≥ A0(K0), S0(K0, A) =
max(s04(K0, A), s05(K0, A)). For A ≥ A0(K0) and s0 ≥ S0(K0, A), we use
(79) and lemma 3.1 to bound I and II (see (81)) for s ∈ [s0, s∗]:

I ≤ (|a| + 1) 3
2

[

1 +
(p−1)K2

0
4p

]

p
p−1 es−s0

s0
and

II ≤ C4
3
2

[

1 +
(p−1)K2

0
4p

]

p
p−1 ∫ s

s0

dσ
σ e

s−σ ≤ 3
2C4

[

1 +
(p−1)K2

0
4p

]

p
p−1 es−s0

s0
.
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Hence, for s = s∗,

|h(s∗)| = g(s∗) ≤ I + II ≤ 3
2(|a| + 1 + C4)

[

1 +
(p−1)K2

0
4p

]

p
p−1 es∗−s0

s0
=

B(K0)
2

es∗−s0

s0
(see (75)).

This contradicts (78) and concludes the proof of Proposition 3.2, Propo-
sition 3.1 and Theorem 2 also.

Proof of lemma 3.1:
From (80), (70) and (76), we have

α(s) = p

p−1+b(ω)A2 es−s0
s1

− 1
p−1 + C∗(K0)B

es−s0

s0
with

b(ω) = bωTAkω and b =
(p− 1)2

4p
. (82)

Therefore,
∫ s
σ α(τ)dτ =

[

τ + ln
(

p− 1 + b(ω)A2 eτ−s0

s1

)− p
p−1 + C∗(K0)

Beτ−s0

s0

]s

σ

= s−σ+ln

(

p−1+b(ω)A2 eσ−s0
s1

p−1+b(ω)A2 es−s0
s1

)

p
p−1

+C∗(K0)
B
s0

(es−s0 − eσ−s0). This implies

that

exp (
∫ s
σ ) = es−σ

(

p−1+b(ω)A2 eσ−s0
s1

p−1+b(ω)A2 es−s0
s1

)

p
p−1

exp
(

C∗(K0)
B
s0

(es−s0 − eσ−s0)
)

.

Since σ ≤ s ≤ s1 and Ae
s1−s0

2 = K0
√
s1, we have Ae

σ−s0
2 ≤ K0

√
s1 and

Ae
s−s0

2 ≤ K0
√
s1 . Therefore,

exp (
∫ s
σ ) ≤ es−σ

[

1 +
bK2

0
p−1

]

p
p−1

exp
(

C∗(K0)K2
0Bs1

A2s0

)

(note that b(ω) ≤ b, see

(82)).
We now introduce A1(K0) > 0 such that for all A ≥ A1(K0),

exp
(

2C∗(K0)K2
0B

A2

)

≤ 3
2 and consider A ≥ A1(K0). Then, we introduce

s05(K0, A) such that for all s0 ≥ s05(K0, A), s1 ≤ 2s0. Then, for s0 ≥
s05(K0, A), we have

exp (
∫ s
σ ) ≤ 3

2e
s−σ

[

1 +
bK2

0
p−1

]

p
p−1

, which concludes the proof of lemma 3.1.

Proof of Theorem 3:
The proof will follow from Proposition 3.1 and localization estimates.

We consider u(t) a solution of (1) which blows-up at time T > 0 at some
point x0 ∈ R

N . By translation invariance, we take x0 = 0. We assume 0
to be an isolated blow-up point of u(t). Therefore, there exists ε0 > 0 such
that 0 is the unique blow-up point u(t) in B(0, 2ε0).
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We aim at proving the equivalence of the following behaviors for u(t)
near 0 and for w0 (=w) defined in (2):

(A) ∀R > 0, sup
|y|≤R

∣

∣

∣

∣

w(y, s) −
[

κ+
κ

2ps
(N − 1

2
|y|2)

]∣

∣

∣

∣

= o

(

1

s

)

as s →
+∞,

(B) ∃ε0 > 0 such that ‖q0(y, s)‖L∞(|y|≤ε0es/2) → 0 as s→ +∞ where

q0(y, s) = w(y, s) − f0(
y√
s
) (83)

and

f0(z) = (p− 1 +
(p− 1)2

4p
|z|2)−

1
p−1 , (84)

(C) ∃ε0 > 0 such that if |x| ≤ ε0, then u(x, t) → u∗(x) as t → T and
u∗(x) ∼ U(x) as x→ 0 where

U(x) =

[

8p| log |x||
(p− 1)2|x|2

]

1
p−1

. (85)

For further purpose, we introduce a weaker version of (B) (which will be
in fact equivalent):

(B’) ∀K0 > 0, ‖q0(y, s)‖L∞(|y|≤K0
√

s) → 0 as s→ +∞.

The proof will be over if we prove the following implications:

(A) =⇒ (B’) =⇒ (C) =⇒ (B) =⇒ (A).

We first prove some useful technical estimates. We then use them to
prove the different implications.

Part I: Preliminary results for subcritical values of w (w < κ)
We crucially use the localization result proved in [16].

Lemma 3.2 Assume that 0 is the only blow-up point of u(t) in B(0, 2ε0) for
some ε0 > 0. Consider (yn, sn) a sequence in R

N × [− log T,+∞) satisfying
|yn| ≤ ε0e

sn/2 and suppose that w(yn, sn) → l ∈ (0, κ) and sn → +∞ as
n→ +∞.
If xn = yne

−sn/2 and zn = |yn|√
sn

, then:

i) xn → 0 as n→ +∞,
ii) ∀n ∈ N, u(xn, t) → u∗(xn) as t→ T and

u∗(xn) ∼
[

|xn|2
2z2

n

∣

∣log
|xn|
zn

∣

∣

]− 1
p−1

(

l1−p − p+ 1
)− 1

p−1 as n→ +∞.
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Proof: We proceed by contradiction in order to prove that xn → 0 as n →
+∞. If not, then we have xn′ > δ > 0 for some subsequence xn′ . Since
u(t) does not blow-up for δ ≤ |x| ≤ ε0, there exists C(δ) > 0 such that if
t ∈ [T2 , T ) and δ ≤ |x| ≤ ε0, then |u(x, t)| ≤ C(δ). Therefore, (2) implies

that 0 ≤ w(yn′ , sn′) ≤ e
− sn′

p−1C(δ) → 0 as n → +∞, which contradicts the
fact that l > 0. Thus, xn → 0 as n→ +∞.
Let us find an equivalent of u∗(xn).
We define for each (ξ, τ) ∈ R

N × [0, 1)

vn(ξ, τ) = e−
sn

p−1u(xn + ξe−
sn
2 , T + (τ − 1)e−sn)

= (1 − τ)
1

p−1w(
yn + ξ√
1 − τ

, sn − log(1 − τ)). (86)

Then vn satisfies: ∀ξ ∈ R
N , ∀τ ∈ [0, 1)

∂vn

∂τ
= ∆vn + vp

n.

According to (6), ∀ε > 0, ∃Cε > 0 such that
{

∣

∣

∣

∂vn
∂τ (0, τ) − vn(0, τ)p

∣

∣

∣ ≤ εvn(0, τ)p + Cεe
− psn

p−1 ,∀τ ∈ [0, 1),

vn(0, 0) → l.

Let us define first v(τ) as the solution of

v′(τ) − v(τ)p = 0, v(0) = l,

that is v(τ) =
(

l1−p − τ(p− 1)
)− 1

p−1 .
Thus, if we denote vn(0, τ) by yn(τ), we have: ∀ε > 0, there exists n0(ε)
such that ∀n ≥ n0(ε)

{

|y′n(τ) − yn(τ)p| ≤ ε(yp
n + 1), ∀τ ∈ [0, 1)

|yn(0) − l| ≤ ε.

Since v(0) ≤ v(τ) ≤ v(1) < +∞, it follows from continuity results on
ordinary differential equations that sup

τ∈[0,1)
|yn(τ)−v(τ)| ≤ δ(ε) with δ(ε) → 0

as ε→ 0. In particular,

lim
τ→1

vn(0, τ) = lim
t→T

yn(t) → v(1) =
(

l1−p − p+ 1
)− 1

p−1 as n→ +∞.

From (86), we have u∗(xn) = lim
t→T

u(xn, t) = lim
τ→1

e
sn

p−1 vn(0, τ). Therefore,

e
− sn

p−1u∗(xn) ∼
(

l1−p − p+ 1
)− 1

p−1 as n→ +∞. (87)
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Since
|xn|
zn

=
√

sne−sn , (88)

we get

sn ∼ 2

∣

∣

∣

∣

log
|xn|
zn

∣

∣

∣

∣

(89)

and then

e
sn

p−1 ∼




|xn|2

2z2
n

∣

∣

∣log
|xn|
zn

∣

∣

∣





− 1
p−1

as n→ +∞.

Combining this with (87) concludes the proof of lemma 3.2.

Corollary 3.1 Under the assumptions of lemma 3.2, if u∗(xn)
U(xn) → 1 as n→

+∞, then w(yn, sn) − f0(
yn√
sn

) → 0, where f0 is defined in (84).

Proof: Let us show that u∗(xn)
U(xn) → 1 implies that f0(

yn√
sn

) → l. From (85)

and lemma 3.2, we get

l1−p − p+ 1

z2
n

∣

∣

∣log
|xn|
zn

∣

∣

∣

∼ (p− 1)2

4p |log |xn||
as n→ +∞. (90)

We claim that
|log |xn|| ∼

sn

2
. (91)

Indeed, (90) and (89) imply that zn ∼ C(p,l)√
sn

|log |xn||. Using (88), we get

from this |xn|e
sn
2 ∼ C(p, l)

√

|log |xn|| which gives |log |xn|| ∼ sn
2 .

Combining (90), (89) and (91) gives

z2
n → 4p(l1−p − p+ 1)

(p− 1)2
,

that is f0(zn) → l as n→ +∞ (by (84)).

Part II: Proof of Theorem 3

Now, we are able to prove the equivalence.

(A) =⇒ (B’):
One can easily see from (84) that ∀R > 0,

sup
|y|≤R

∣

∣

∣

∣

f0(
y√
s
) −

(

κ− κ

4ps
|y|2

)∣

∣

∣

∣

= O

(

1

s2

)

.
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By (A), it follows that ∀R > 0, sup
|y|≤R

∣

∣

∣

∣

w(y, s) − f0(
y√
s
) − Nκ

2ps

∣

∣

∣

∣

= o

(

1

s

)

.

Proposition 3.1 applied with k = 0 (and Ak = IN ) yields by (83): ∀K0 >
0, ‖q0(y, s)‖L∞(|y|≤K0

√
s) → 0 as s→ +∞, which is (B’).

(B’) =⇒ (C):
Since 0 is the only blow-up point of u in B(0, 2ε0), we can define u∗(x) =

lim
t→T

u(x, t) for all 0 < |x| ≤ ε0. Let (xn) be any sequence tending to zero in

R
N . Let us prove that u∗(xn) ∼ U(xn) as n → +∞ where U is defined in

(85).
Fix r0 > 0. If n is large enough, we can uniquely define sn → +∞ and

yn by r0e
−sn/2√sn = |xn| and yn = xne

sn/2. Since zn = |yn|√
sn

= r0 > 0,

it follows from (B’) and (83) that w(yn, sn) → f0(r0) ∈ (0, κ). Applying
lemma 3.2 yields

u∗(xn) ∼




|xn|2

2r20

∣

∣

∣log
|xn|
r0

∣

∣

∣





− 1
p−1

(

f0(r0)
1−p − p+ 1

)− 1
p−1

.

From (84), we have f0(r0)
1−p − (p− 1) = (p−1)2

4p r20. Therefore,

u∗(xn) ∼




(p− 1)2|xn|2

8p
∣

∣

∣log
|xn|
r0

∣

∣

∣





− 1
p−1

which is equivalent to U(xn) by (85).

(C) =⇒ (B):
We want to prove that ‖q0(y, s)‖L∞(|y|≤ε0es/2) → 0 as s → +∞. We

proceed by contradiction and assume the existence of ε > 0, sn → +∞ and
|yn| ≤ ε0e

sn/2 such that

|q0(yn, sn)| ≥ ε as n→ +∞. (92)

We can assume that w(yn, sn) → l1 and f0

(

yn√
sn

)

→ l2. According to

Theorem 1 and (84), l1, l2 ∈ [0, κ]. Note that (92) yields

|l1 − l2| ≥ ε. (93)

Let us consider three cases:
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Case 1: l1 ∈ (0, κ). From (93), w(yn, sn) − f0

(

yn√
sn

)

does not go to 0.

Hence, from lemma 3.2 and corollary 3.1, xn = yne
−sn/2 → 0 and u∗(xn)

U(xn)

does not go to 1 as n→ +∞. This contradicts (C).

Case 2: l1 = κ. Note that (93) implies that l2 ≤ κ − ε. We claim the
existence of y′n such that

|yn| ≤ |y′n| and w(y′n, sn) =
1

2

(

f0

(

y′n√
sn

)

+ κ

)

(94)

for large n. Indeed, w and f0 are continuous, and we have

w(yn, sn) − 1

2

(

f0

(

yn√
sn

)

+ κ

)

> 0

and

w(
yn

|yn|
ε0e

sn/2, sn) − 1

2

(

f0

(

yn

|yn|
ε0
esn/2

√
sn

)

+ κ

)

< 0

for large n (use (84) and write w( yn

|yn|ε0e
sn/2, sn) = e

− sn
p−1u( yn

|yn|ε0, T − e−sn)

≤ C(ε0)e
− sn

p−1 since u(t) does not blow-up for |x| = ε0).

We can assume that w(y′n, sn) → l′1 ∈ [0, κ] (Theorem 1) and f0

(

y′
n√
sn

)

→
l′2 ∈ [0, κ]. Since f0 is decreasing and |yn| ≤ |y′n|, we get l′2 ≤ l2 < κ. Using
(94), we get l′1 = 1

2(l′2 + κ) ∈ [κ
2 , κ) and |l′2 − l′1| = 1

2 |κ− l′2| > 0.

Therefore, w(y′n, sn)−f0

(

y′
n√
sn

)

does not go to 0. Hence, from lemma 3.2 and

corollary 3.1, x′n = y′ne
−sn/2 → 0 and u∗(x′

n)
U(x′

n) does not go to 1 as n → +∞.

This contradicts (C).

Case 3: l1 = 0. Note that (93) implies that l2 ≥ ε. We claim the
existence of y′n such that

|yn| ≥ |y′n| and w(y′n, sn) =
1

2
f0

(

y′n√
sn

)

(95)

for large n. Indeed, w and f0 are continuous,

lim
n→+∞

[

w(yn, sn) − 1

2
f0

(

yn√
sn

)]

= − l2
2
≤ − ε

2
,

and

w(0, sn) − 1

2
f0(0) →

κ

2
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(w(0, sn) → κ according to (7), since 0 is a blow-up point for u(t)). We can

assume that w(y′n, sn) = 1
2f0

(

y′
n√
sn

)

→ l′1 ≤ κ
2 as n→ +∞. Since |yn| ≥ |y′n|,

we have f0

(

y′
n√
sn

)

≥ f0

(

yn√
sn

)

and 2l′1 ≥ l2 ≥ ε > 0. Therefore, l′1 ∈ (0, κ
2 )

and w(y′n, sn)− f0

(

y′
n√
sn

)

→ −l′1 < 0. According to lemma 3.2 and corollary

3.1, x′n = y′ne
−sn/2 → 0 and u∗(x′

n)
U(x′

n) does not go to 1 as n → +∞. This

contradicts (C).

(B) =⇒ (A):
According to (69), there exists k ∈ {0, 1, ..., N} and a N×N orthonormal

matrix Q such that

∀R > 0, sup
|y|≤R

|w(y, s) − fk

(

y√
s

)

− a

s
| = o

(

1

s

)

(96)

where fk and a are defined in (70).
Applying Proposition 3.1, we see that ∀K0 > 0,

sup
|z|≤K0

∣

∣w(z
√
s, s) − fk(z)

∣

∣→ 0 as s→ +∞.

Together with (B), this gives fk ≡ f0. Therefore, k = 0 and a = Nκ
2p .

Thus, (96) yields (A).

This concludes the proof of Theorem 3.

A Proof of lemma 2.4

i): - According to (32), ∀i, j ∈ {1, ..., N},
w2,i,j(s) =

∫

w(y, s)
(

1
4yiyj − 1

2δi,j
)

ρ(y)dy.

Just remark that
(

1
4yiyj − 1

2δi,j
)

ρ(y) = ∂2ρ
∂yi∂yj

and do two integrations by

parts to get w2(s) =
∫

∇2w(y, s)ρ(y)dy. The estimate for w1 is similar.

ii): The estimates on w1 and w2 follow directly from i) since
‖∇w(sn)‖L∞ ≤ c1√

sn
and ‖∇2w(sn)‖L∞ ≤ A

sn
.

- By (23), we write: ∀y ∈ R
N , w(y, sn) = w(0, sn) + y.∇w(0, sn) +

1
2y

T∇2w(0, sn)y + φ(y, sn) where

|φ(y, sn)| ≤ 1

6

A5/4

s
3/2
n

|y|3. (97)

According to (31), (30) and (28),

w− = P−(w) = P−(φ) = φ− (98)
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with notations similar to (31). From (31) and (97), we have |φm(sn)| ≤
C ′(N)A5/4

s
3/2
n

form = 0, 1, 2. Therefore, (31) yields |φ−(y, sn)| ≤ C(N)A5/4

s
3/2
n

(1+

|y|3). Using (98), we get |w−(y, sn)| ≤ C(N)A5/4

s
3/2
n

(1 + |y|3).

- Since w(s) is well defined for all s ≥ − log T and satisfies (3), lemma

2.3 implies that w0(sn) ≤ κ. Let us show that w0(sn) ≥ δ0 =
c32

128C(N)2A5/2 .

We proceed by contradiction and assume that w0(sn) < δ0.

Consider ŷn = η
c2
√

sn

4C(N)A5/4ϕ where ϕ is unitary and satisfies ϕTw2(sn)ϕ =

− c2
sn

(use i) and Proposition 2.2), and η ∈ {−1, 1} is chosen so that
w1(sn).ŷn ≤ 0. Therefore, from (31) and the bounds on w0, w1, w2 and w−,
we get:

w(ŷn, sn) = w0(sn) + w1(sn).ŷn +
(

1
2 ŷ

T
nw2(sn)ŷn − trw2(sn)

)

+ w−(y, sn)

≤ δ0 + 0 − 1
2

c22sn

16C(N)2A5/2
c2
sn

+ C′′(N)A
sn

+ C(N)A5/4

s
3/2
n

(

1 +
c32s

3/2
n

64C(N)3A15/4

)

= δ0 − c32
64C(N)2A5/2 +O

(

1
sn

)

= −δ0 +O
(

1
sn

)

< 0 for sn large enough. This

contradicts the fact that w is nonnegative. Thus, w0(sn) ≥ δ0.

iii): Since M(y) defined in (32) is the matrix of eigenfunctions corre-
sponding to the null eigenvalue of L, we find the following equation if we
multiply (27) by M(y)ρ(y), integrate the expression over R

N and use (31):

w′
2(sn) = − p

p− 1
w2(sn) +

∫

w(y, sn)pM(y)ρ(y)dy.

Thus, we focus on the computation of
∫

w(y, sn)pM(y)ρ(y)dy. Since 0 <
δ0 ≤ w0(sn) ≤ κ and 0 ≤ w(y, sn) ≤ κ + 1, we can Taylor expand w(y, sn)
around w0(sn) until the third order and use (31) to write:
∫

w(y, sn)pM(y)ρ(y)dy = I + II + III + IV + V + V I where
I =

∫

w0(sn)pM(y)ρ(y)dy = 0,
II =

∫

pw0(sn)p−1V (y, sn)M(y)ρ(y)dy,

III =
∫ p(p−1)

2 w0(sn)p−2V (y, sn)2M(y)ρ(y)dy,

IV =
∫ p(p−1)(p−2)

6 w0(sn)p−3V (y, sn)3M(y)ρ(y)dy
V = O

(∫

|V (y, sn)|4|M(y)|ρ(y)dy
)

and

V (y, sn) = w1(sn).y +

(

1

2
yTw2(sn)y − trw2(sn)

)

+ w−(y, sn). (99)

Using (99), the orthogonality (in L2
ρ(R

N )) of y and M(y) on one hand, and
M(y) and w−(y, sn) on the other, we write:
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II = pw0(sn)p−1
∫

(

1
2y

Tw2(sn)y − trw2(sn)
)

M(y)ρ(y)dy

= pw0(sn)p−1w2(sn) by integration by parts.

From (99), we have:

III = p(p−1)
2 w0(sn)p−2

∫

[

(w1(sn).y)2 +
(

1
2y

Tw2(sn)y − trw2(sn)
)2

+w−(y, sn)2 + 2w1(sn).y
(

1
2y

Tw2(sn)y − trw2(sn)
)

+ 2w1(sn).yw−(y, sn)

+2
(

1
2y

Tw2(sn)y − trw2(sn)
)

w−(y, sn)
]

M(y)ρ(y)dy.

Using ii), parity and simple but long calculations (based on integration by
parts, (32) and (17)) that we omit, we find:

IV = p(p−1)
2 w0(sn)p−2

[

2w1(sn) ⊗ w1(sn) + 4w2(sn)2 +O
(

1
s3
n

)

+ 0

+O

(

|w1(sn)|
s
3/2
n

)

+O

(

1

s
5/2
n

)]

. Hence,

III = p(p− 1)w0(sn)p−2
[

w1(sn) ⊗ w1(sn) + 2w2(sn)2
]

+O

(

|w1(sn)|
s
3/2
n

)

+O

(

1

s
5/2
n

)

.

As for III, one can expand V (y, sn)3 and V (y, sn)4, and use i) to get:

IV = O

(

1

s
5/2
n

)

+O

(

|w1(sn)|
s
3/2
n

)

and V = O

(

1

s
5/2
n

)

+O

(

|w1(sn)|
s
3/2
n

)

.

Gathering all the previous bounds on I, II, III, IV and V yields iii).
This concludes the proof of lemma 2.4.

B Proof of Proposition 2.3

In [16], the same result has been proved in the case of one fixed solution
(Theorem 3). Hence, we should adopt here the same strategy as for the
proof of Theorem 3 in [16]. In fact, we will focus only on points which
are different from [16] (energy estimates and a compactness procedure), and
summarize the other arguments. We give the proof in two steps. We first
use a compactness procedure and then proceed by contradiction in a second
step in order to conclude the proof.

Step 1: Compactness Procedure
We proceed by contradiction and assume that for some η0 > 0 and

for all k ∈ N, there are s∗k ≥ − log T , wk solution of (3) defined for all
s ≥ − log T and satisfying wk ∈ V̂A(s∗k), xk ∈ R

N and tk ∈ [0, t∗k] such
that |∆uk(xk, tk)| ≥ η0uk(xk, tk)

p + k where t∗k = T − e−s∗k and uk(x, t) =

(T − t)
1

p−1wk

(

x√
T−t

,− log(T − t)
)

.
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Let us introduce Uk(x, t) = uk(x+xk, t) and Wk(y, s) = e
− s

p−1Uk(ye
− s

2 , T −
e−s). Therefore, Uk is a solution of (1), Wk is a solution of (3),

∀s ∈ [− log T, s∗k], Wk(s) ∈ VA(s), (100)

and |∆Uk(0, tk)| ≥ η0Uk(0, tk)p + k (101)

where tk ∈ [0, t∗k].

We first notice that

tk → T as k → +∞.

Indeed, if not, then tk′ ≤ T − δ0 where δ0 > 0 for some subsequence tk′ .
Therefore, (100) implies that |∆Uk(0, tk′)| ≤ C(T − δ0) for k′ large enough,
which contradicts (101).

From (101) and (100), we have

Uk(0, tk) ≤
(

∆Uk(0,tk)
η0

)
1
p ≤

(

A
η0

)
1
p (T−tk)

− 1
p−1

| log(T−tk)|
1
p
. Therefore,

Wk(0, sk) = (T − tk)
1

p−1Uk(0, tk) → 0 as k → +∞ (102)

where sk = − log(T − tk). From Definition 2.1, (100) and compactness
procedure, we derive the existence of U solution of (1) in C 2(RN × [0, T ))
such that Uk → U as k → +∞ in C2(K) for all compact subset of R

N×[0, T ).

Step 2: Energy estimates on U
We claim that U blows-up at time T at the point x = 0.
Let us first introduce the following localized energy for u:

Ea,t(u) = t
2

p−1
−N

2
+1
∫
[

1

2
|∇u(x)|2 − 1

p+ 1
|u(x)|p+1

]

ρ(
x− a√

t
)dx

+
1

2(p− 1)
t

2
p−1

−N
2

∫

|u(x)|2ρ(x− a√
t

)dx (103)

where ρ is introduced in (17).
It was proved in [11] that if the energy is small at some point a ∈ R

N , then
u does not blow-up at a. More precisely,

Proposition B.1 (Giga-Kohn) Let u be a solution of equation (1).
i) If for all x ∈ B(x0, δ), Ex,T−t0(u(t0)) ≤ σ, then ∀x ∈ B(x0,

δ
2), ∀t ∈

( t0+T
2 , T ), |u(t, x)| ≤ η(σ)(T − t)−

1
p−1 where η(σ) ≤ cσθ, θ > 0, and c and θ

depend only on p.
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ii) (Merle) Assume in addition that ∀x ∈ B(x0, δ), |u( t0+T
2 , x)| ≤ M .

There exists σ0 = σ0(p) > 0 such that if σ ≤ σ0, then ∀x ∈ B(x0,
δ
4),

∀t ∈ ( t0+T
2 , T ), |u(t, x)| ≤M ∗ where M ∗ depends only on M , δ, T and t0.

Proof: see Proposition 3.5 and Theorem 2.1 in [11] (see also [15]).

Suppose that U(x, t) does not blow-up at (x, t) = (0, T ), then [11] shows
that E0,T−t (U(t)) → 0 as t → T . Therefore, we choose t0 > T such that
E0,T−t0 (U(t0)) ≤ σ0

4 where σ0 is introduced in Proposition B.1. From a
continuity argument in x, there is R0 > 0 such that if |x| ≤ R0, then
Ex,T−t0 (U(t0)) ≤ σ0

2 .
Since Uk(t0) → U(t0) as k → 0 in C2(K) for all K compact subset and
‖Uk(t0)‖W 1,∞ ≤ C(t0) by (100), we have for all |x| ≤ R0, Ex,T−t0 (Uk(t0)) ≤
σ0 for k large enough. From (100), we have ‖Uk

(

t0+T
2

)

‖L∞ ≤ C(t0) for k

large enough.
Applying Proposition B.1, we get for k large enough: ∀|x| ≤ R0, ∀t ∈
( t0+T

2 , T ), |Uk(x, t)| ≤ M(t0, R0). By parabolic regularity (see lemma 2.10
and its proof for a sketch of the technique), we get

∀t ∈ (
3t0 + T

4
, T ), |∆Uk(0, t)| ≤M ′(t0)

for k large enough, which contradicts (101). Therefore, U blows-up at time
T at x = 0.

Step 3: Conclusion of the proof
We now follow the same ideas as for the Theorem 3 in [16]. We claim

the existence of t′k < tk such that

t′k → T and Wk(0, s
′
k) = (T − t′k)

1
p−1Uk(0, t

′
k) = κ0 (104)

where s′k = − log(T−t′k), κ0 ∈ (0, κ) satisfies ∀t > 0, ∀a ∈ R
N , Ea,t(κ0t

− 1
p−1 )

=
κ2
0

2(p−1) −
κp+1
0

p+1 ≤ σ0
2 and σ0 is defined in Proposition B.1. Since U blows-up

at x = 0, U(0, t)(T − t)
1

p−1 → κ as t → T by [11]. Hence, if δ > 0 is small

enough, then δ
1

p−1U(0, T − δ) ≥ 3κ+κ0
4 . Since Uk(0, T − δ) → U(0, T − δ) as

k → +∞, we get δ
1

p−1Uk(0, T − δ) ≥ κ+κ0
2 for k large enough.

By (102) and continuity arguments, we have the existence of t′δ,k ∈ [T −
δ, tk] such that (T − t′δ,k)

1
p−1Uk(0, t

′
δ,k) = κ0. The existence of t′k follows then

from a diagonal process.
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Let us define for all ξ ∈ R
N and τ ∈ [0, 1),

vk(ξ, τ) = (T − t′k)
1

p−1Uk

(

ξ
√

T − t′k, t
′
k + τ(T − t′k)

)

. (105)

Then, vk is a solution of (1), and vk(ξ, 0) = (T − t′k)
1

p−1Uk(ξ
√

T − t′k, t
′
k) =

Wk(ξ, s
′
k), where s′k = − log(T − t′k) ≤ s∗k. Since t′k + 3

4(T − t′k) ≤ tk ≤ t∗k
(the second estimate is true by construction, and the first follows from (102),
(104) and techniques similar to those in lemma 2.7), it follows from (100)
and (104) that vk(0, 0) = κ0 and

∀τ ∈ [0,
3

4
], ‖∇vk(τ)‖L∞ ≤ C(p)c1

√

| log(T − t′k)|
, ‖∇2vk(τ)‖L∞ ≤ C(p)A

| log(T − t′k)|
,

(106)
and for k large enough and for all |ξ| ≤ 4| log(T − t′k)|1/4, Eξ,1(vk(0)) ≤
2Eξ,1(κ0) ≤ σ0 . Therefore, from Proposition B.1 (applied with δ = 1 and
using translation invariance), we have ∀τ ∈ [ 1

2 , 1], ∀|ξ| ≤ 2| log(T − t′k)|1/4,
|vk(ξ, τ)| ≤M(p).

Now using arguments similar to those of lemma 2.8, we get

∀τ ∈ [
3

4
, 1), ∀|ξ| ≤ | log(T − t′k)|1/4, |vk| + |∇vk| + |∇2vk| ≤M(p). (107)

By arguments similar to those of lemma 2.9, we get from (106) and (107)
for k large enough,

sup
τ∈[0,1]

|∆ξvk(0, τ)| → 0 as k → +∞.

Therefore, since vk is a solution of (1), we have

∀τ ∈ [0, 1), vk(0, τ) ≥
κ0

2

for k large enough. Hence

∀τ ∈ [0, 1), |∆ξvk(0, τ)| ≤
η0

2
vk(0, τ)

p (108)

for k large enough, and this yields a contradiction.

Indeed, taking τk =
tk−t′k
T−t′

k
, we get from (108) and (105): ∀k ≥ k0,

|∆Uk(0, tk)| = (T − t′k)
− p

p−1 |∆ξvk(0, τk)|
≤ η0

2 (T − t′k)
− p

p−1 vk(0, τk)p = η0

2 Uk(0, tk)p, which contradicts (101).

This concludes the proof of Proposition 2.3.
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C Proof of lemma 2.11

Define χ1(ξ) = χ0(
ξ

2B1
) where χ0 is defined in (63). Then, ∀ξ ∈ R

N ,

|∇χ1(ξ)| ≤
C

B1
1{|ξ|≥2B1} and |∆χ1(ξ)| ≤

C

B1
2 1{|ξ|≥2B1}. (109)

Let Z(ξ, τ) = χ1(ξ)e
−λtz(ξ, τ). Then, we have from (56): ∀ξ ∈ R

N , ∀τ ∈
[0, τ∗],

{

∂Z
∂τ ≤ ∆Z + µ+ ze−λτ∆χ1 − 2e−λτ∇.(z∇χ1),
Z(ξ, 0) ≤ z0, z(ξ, τ) ≤ B2.

(110)

We now take |ξ| ≤ B1 and use an integral formulation of (110) to write
Z(ξ, τ) ≤ I + II + III + IV where

I =
(

eτ∆Z(0)
)

(ξ), II =
∫ τ
0 dse

(τ−s)∆µ, III =
∫ τ
0 dse

(τ−s)∆e−λsz(s)∆χ1

and IV = −2
∫ τ
0 dse

(τ−s)∆e−λs∇. (z(s)∇χ1).

From the maximum principle and (110), we have I ≤ z0 and II ≤
µ
∫ τ
0 ds ≤ µ.

The treatment of III and IV is similar. However, handling IV is a bit
more delicate.
By an integration by parts, we have:
IV = 2

∫ τ
0 dse

−λs∇e(τ−s)∆z(s)∇χ1

= 2
∫ τ
0 dse

−λs
∫

dx
(

− (ξ−x)
2(τ−s)

)

e
− |ξ−x|2

4(τ−s)

(4π(τ−s))N/2 z(x, s)∇χ1(x).

From (110) and (109), we obtain:

IV ≤
∫ τ
0 ds

∫

{|x|≥2B1} dx
|ξ−x|
τ−s

e
− |ξ−x|2

4(τ−s)

(4π(τ−s))N/2
CB2

B1
2 .

Since |ξ| ≤ B1, |x| ≥ 2B1 and 0 ≤ τ − s ≤ 1, we have e
− |ξ−x|2

4(τ−s) =

e
− |ξ−x|2

8(τ−s) e
− |ξ−x|2

8(τ−s) ≤ e
− |ξ−x|2

8(τ−s) e−
B1

2

8 . Therefore,

IV ≤ CB2
B1

e−
B1

2

8
∫ τ
0

ds√
τ−s

∫

{|x|≥2B1} dx
|ξ−x|√

τ−s
e
−|ξ−x|2
8(τ−s)

(4π(τ−s))N/2

≤ CB2
B1

e−
B1

2

8
∫ τ
0

ds√
τ−s

∫

|X|e−|X|2dX ≤ CB2e
−B1

2

4 .

Similarly, we obtain: III ≤ CB2e
−B1

2

4 .

Combining the bounds on I, II, III and IV , we get the conclusion of
lemma 2.11.

45



References

[1] Berger, M., and Kohn, R., A rescaling algorithm for the numerical
calculation of blowing-up solutions, Comm. Pure Appl. Math. 41,
1988, pp. 841-863.

[2] Bricmont, J., Kupiainen, A., et Lin, G., Renormalization group and
asymptotics of solutions of nonlinear parabolic equations, Comm.
Pure Appl. Math. 47, 1994, pp. 893-922.

[3] Bricmont, J., and Kupiainen, A., Universality in blow-up for nonlin-
ear heat equations, Nonlinearity 7, 1994, pp. 539-575.

[4] Chen, X., Y., and Matano, H., Convergence, asymptotic periodicity,
and finite-point blow-up in one-dimensional semilinear heat equa-
tions, J. Diff. Eqns. 78, 1989, pp. 160-190.

[5] Douglis, A., and Nirenberg, L., Interior estimates for elliptic systems
of partial differential equations, Comm. Pure Appl. Math. 8, 1955,
pp 503-538.

[6] Filippas, S., and Kohn, R., Refined asymptotics for the blowup of
ut − ∆u = up, Comm. Pure Appl. Math. 45, 1992, pp. 821-869.

[7] Filippas, S., and Liu, W., On the blow-up of multidimensional semi-
linear heat equations, Ann. Inst. Henri Poincaré 10, 1993, pp. 313-
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