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Abstract: In this paper, we consider the semilinear wave equation with a power nonlinearity
in one space dimension. We exhibit a universal one parameter family of functions which stand for
the blow-up profile in selfsimilar variables at a non characteristic point, for general initial data.
The proof is done in selfsimilar variables. We first characterize all the solutions of the associated
stationary problem, as a one parameter family. Then, we use energy arguments coupled with
dispersive estimates to show that the solution approaches this family in the energy norm, in the
non characteristic case, and to a finite decoupled sum of such a solution in the characteristic
case. Finally, in the case where this sum is reduced to one element, which is the case for non
characteristic points, we use modulation theory coupled with a nonlinear argument to show the
exponential convergence (in the selfsimilar time variable) of the various parameters and conclude
the proof. This step provides us with a result of independent interest: the trapping of the solution
in selfsimilar variables near the set of stationary solutions, valid also for non characteristic points.
The proof of these results is based on a new analysis in the selfsimilar variable.
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1 Introduction

1.1 The problem and known results

We consider the following one dimensional semilinear wave equation

0Zu = 02, u + |ulP~tu,
u(0) = up and u(0) = uy,



where u(t) : x € R — wu(x,t) € R, ugp € H ., and wy € L with [[0]2, =
loc,u

loc,u loc,u

sup/ [v(2)Pdz and [lol|f, = Jlvllf.  +[IVola
a€R |x_a|<1 loc,u loc,u loc,u

The Cauchy problem for equation (1) in the space HL  x L2

loc,u loc,u
speed of propagation and the wellposedness in H! x L?. See for instance Ginibre, Soffer

and Velo [7], Ginibre and Velo [8], Lindblad and Sogge [12] (for the local in time well-
posedness in H! x L2). The existence of blow-up solutions for equation (1) is a consequence
of the finite speed of propagation and ODE techniques (see for example Levine [11] and
Antonini and Merle [4]). More blow-up results can be found in Caffarelli and Friedman
[5], Alinhac [1] and [2], Kichenassamy and Littman [9], [10] and Shatah and Struwe [21]).
Note that an important part of the literature on blow-up in the wave framework is devoted
to quasilinear wave equations (where the nonlinearity occurs in the diffusion term). Such
equations may develop “geometric” blow-up (see Alinhac [1], [2], [3]).

follows from the finite

Most of the previous literature considered blow-up for the wave equation from the point
of view of prediction. Indeed, most of the papers gave sufficient conditions to have blow-up
or constructed special solutions with a prescribed behavior (see [9] and [10] for example).
As we did in our earlier work [18], [17] and [19], we adopt in this paper a different point of
view and aim at describing the blow-up behavior for any blow-up solution. More precisely,
this paper is dedicated to the blow-up profile in selfsimilar variables.

If w is a blow-up solution of (1), we define (see for example Alinhac [1]) a continuous
curve I' as the graph of a function z — T'(x) such that u cannot be extended beyond the
set

Dy = {(z,t) [t <T(x)}. (2)

The set D, is called the maximal inﬂuegce domain of w. From the finite speed of propa-
gation, T"is a 1-Lipschitz function. Let 7' be the infimum of T'(z) for all z € R. The time
T and the surface I" are called (respectively) the blow-up time and the blow-up surface of
U.

Let us first introduce the following non degeneracy condition for I'. If we introduce for all
r € RN, ¢t <T(z) and § > 0, the cone

Cots ={(&7) # (2,8) |0 <7 <t —6[§ —xlf}, (3)
then our non degeneracy condition is the following: xg is a non characteristic point if
3do = do(wo) € (0,1) such that u is defined on Cy 72,50 (4)

It is an open problem to tell whether condition (4) holds for all space-time blow-up points.
Let us recall our result about the blow-up rate (valid also in higher dimensions under the
condition

4
N >2 1 <p.=14+-—-):
>2and 1 <p<p. +N—1) (5)

Given some (x,7Tp) such that 0 < Ty < T'(xg), we introduce the following self-similar
change of variables:
T — X0

2
Weo 1o(y,8) = (To = t)r~tulz, 1), y = 72—, 5= —log(Th —1). (6)




If To = T(zo), then we simply write wy, instead of w,, 7(4,)- This change of variables
transforms the backward light cone with vertex (xg,Tp) into the infinite cylinder (y,s) €
B x [—1log Ty, +00) where B = B(0,1). The function wg, 7, (we write w for simplicity)
satisfies the following equation for all y € B and s > —logTj:

2 C2(p+1) p—1.  P+3 o, a2
Oi,w = Lw w12 1)2w + " w - —— 18310 2y, w (7)
1 9 oy -2
where Lw = Eﬁy (p(1 — y*)oyw) and p(y) = (1 —y*)r1. (8)

This equation will be studied in the space

1
= {oe Hbo< IR-10) | o= [ (a4 )7 1= 1)+ ) sy < 40} 0)

which is the energy space for w. Note that H = Hg X Lf, where

1
Ho = {r € Hipo(=1,1) | ||r3, = /1 (r(1 = y?) +1?) pdy < +o0}. (10)

This is the blow-up bound we obtain in [17] (see also Proposition 2.2 in [18] for a state-
ment):

Uniform bounds on solutions of (7). If u is a solution of (1) with blow-up surface
I':{z—T(x)} and xg € R, then for all s > —logT(xo) + 1,

(E1) E(wg,(s)) = Exo >0 as s — 0. X

(E2) There exists Cy > 0 such that for all s > so+ 1, / wey (y, 8)2p(y)dy < Cj.
-1

+oo pl N2
(E3) / / Wp(y)dsldyﬁo as s — oo.
s -1 -
(E4) There exists Cy > 0 such that for all s > so+ 1,

s+1 1
/S /_1 {0y, (1= y?) + wi, + Oswi, + [wag [P} (y, 8")p(y)dyds” < Co.
If in addition xo is non characteristic (in the sense (4)), then for all s > —log T (xo) + 4,

0 <eo(p) < HwCBO(S)HHl(—Ll) + Haswwo(s)HLQ(—l,l) <K (11)

where wy, is defined in (6) and K depends only on p and on an upper bound on T (x),
1/T (o), do(wo) and the initial data in H _  x L?

loc,u*

Remark: Note that the positivity of E(wgs,(s)) is the only delicate point in making the
analysis of [17] work for characteristic points. See Appendix A.

A natural question then is to know if wy,(y, s) has a limit or not, as s — oo (that is
as t — T'(xo)).
In the context of Hamiltonian systems, this question is delicate, and there is no natural
reason for such a convergence, since equation (1) is time reversible. See Martel and Merle
[13] for the case of the L? critical Korteweg de Vries equation, and Merle and Raphaél [14]



for the case of the L? critical nonlinear Schrédinger equation.
For the case of the heat equation

dpu = Au + |uP~ u (12)

where v : (z,t) € 2 x [0,7) — R and Q = RY or Q is a bounded domain of RY, p > 1
and (N —2)p < N + 2, the structure in selfsimilar variables is similar to that of the wave
equation (1). However, the blow-up time 7" is unique for equation (12). It is the time when
the solution leaves the Cauchy space. What we call the blow-up set then is the set of all
xo € Q such that u(z,t) does not remain bounded as (z,t) approaches (xg,T"). Unlike the
wave equation case, the blow-up set is a subset of RV and not R¥*!. As in (7), we can
define a w(y, s) in selfsimilar variables. We know from Giga and Kohn [6] that this w(y, s)
approaches a universal function (actually a constant), which turns to be the unique non
zero stationary solution (up to a sign change) in the selfsimilar variable. Note that in the
heat equation case, the set of stationary solutions is made of three isolated solutions.

This paper is organized around two main results. We present each of them in a
subsection.

1.2 Convergence to the set of stationary solutions

We first classify all Hy stationary solutions of (7) in one dimension. More precisely, we
prove the following proposition in Subsection 2.3:

Proposition 1 (Classification of all stationary solutions of (7) in one dimension)
(i) Consider w € Hy a stationary solution of (7). Then, either w = 0 or there exist
de (—1,1) and w = £1 such that w(y) = wk(d,y) where

T € et G £ o A
) € (L ) = ro I = (GE) 0
(ii) It holds that
E(0) =0 andVd € (-1,1), E(k(d,-)) = E(—k(d,-)) = E(ko) >0 (14)
where
1
Blo(s) = [ (50wr+ 50w -+ E5 - ) gy (19

Remark: Note that the set of stationary solutions consists of 3 connected components,
one of them is the null singleton, and the two others are symmetric with respect to each
other, and depend on one parameter. In the proof, we use the fact that NV = 1. In higher
dimensions, we are unable to classify all stationary solutions of (7) in Hy. Of course,
we already know that +r(d,w.y) is an Hy stationary solution of (7) for any |d| < 1 and
w € RN with |w| = 1, but we are unable to say whether there are others or not. This
missing information prevents us from extending our results to higher dimensions. Note
that H' C Ho. Thus, the result holds in H' as well.



Remark: The functional E(w(s)) defined in (15) is a Lyapunov functional for equation
(7). Indeed, we know from Antonini and Merle [4] that if w(y, s) is a solution to (7) defined
for all (y,s) € R x [s1, s2], then,

S9 1
Blw(sa)) - Bw(en) = -2 [ [ 0t A dyas. 10

Then, we consider xyp € R and show that wg,(y, s) defined in (6) approaches a non
null connected component of the stationary solutions’ set in the non characteristic case,
strongly in the H' x L?(—1,1) norm, and in the characteristic case, a decoupled sum of
stationary solutions. More precisely, we prove the following:

Theorem 2 (Strong convergence related to the set of stationary solutions) Con-
sider u a solution of (1) with blow-up curve I' : {x — T'(x)}.
(A) Non characteristic case: If xo € R is non characteristic (in the sense (4)), then,
there exists w*(zo) € {—1,1} such that:
(A.) 0 a1 105 ) — 0" (@0)(d, ) 13 1.1) + [9stg 211y — 0 a5 5 — o0,
(A.it) E(wy,(s)) — E(ko) as s — oo.
(B) Characteristic case: If xo € R is characteristic, then, there exist k(zg) € N,
w; = %1 and continuous d;(s) = tanh (;(s) € (—1,1) fori=1, ...,k such that:

k(zo)
. Wao () w; k(d;(s),
(BZ) (8511)360(5) >_ zz; ( ( ) ) — 0 as s — 0.

(B.1i) |Gi(s) — (j(s)] — 00 as s — oo fori # j. "
(B.iii) E(wg,(s)) — k(xzo)E(ko) as s — 0o.

Remark: When k(zg) = 0, the sum in (B.i) has to be understood as 0.

A natural question now in the non characteristic case is to see whether w,, (s) converges
to some k(dso(70)) as s — oo for a given d(z¢) € (—1,1) (in fact, with the method we
use to answer this question, we treat also the characteristic case when k(zg) = 1). This
question will be addressed in the next subsection.

1.3 Trapping near the set of non zero stationary solutions

In this part, we work in the space H defined in (9), which is a natural choice (the energy
space in w). We consider w € C([s*,00), H) a solution to equation (7), where w may be
equal to wy, defined in (6) from u, a blow-up solution to equation (1), with no restriction
on xg. In particular, g may or may not be a characteristic point.

In the following, we show that if w(s*) is close enough to some non zero stationary solution
and satisfies an energy barrier, then w(s) converges to a neighboring stationary solution
as s — 00. More precisely, we have the following:

Theorem 3 (Trapping near the set of non zero stationary solutions of (7)) There
exist positive €y, o and Coy such that if w € C([s*,00),H) for some s* € R is a solution
of equation (7) such that

Vs > 5%, E(w(s)) > E(ko), (17)



and

(o ) - (5, = 5

for some d* € (—1,1), w* = £1 and €* € (0, €], where H and its norm are defined in (9)
and k(d,y) in (13), then there exists do € (—1,1) such that

|doo — d*| < Coe*(1 — d*?)

and for all s > s*:

H< 18”8(;)(5) ) —w ( g(dw') >HH < CoetemHols=s"), (19)

Remark: If w = w,, where xy is some non characteristic point of u, a blow-up solution
to (1), one sees from (A.ii) of Theorem 2 and the monotonicity of the Lyapunov functional
E(w) that condition (17) is already satisfied and can be dropped down from the statement
of Theorem 3. More generally, when x( is characteristic and

k(zo) =1, (20)

we see from part B in Theorem 2 that conditions (17) and (18) hold for sg large. In [20],
we will see from Theorem 2 that (20) cannot occur with xy characteristic.

Remark: The condition (17) is necessary. Indeed, if the solution converges to some
k(dso, -), then we see from the monotonicity of the functional E(w(s)) that

Vs > 509, E(w(s)) > lim E(w(s)) = E(k(dso,*))-

§—00

Using (14), we see that (17) follows. In particular, the following function

)=, T

1+ 5+ dy) 7T

2
* — 1 S\To—1 d
w(y7s) ( +€) P H(71+es

which is a particular solution to (7) (use (31) below) is a heteroclinic orbit connecting
k(d,-) as s — —oo to 0 as s — oo and satisfies E(w*(s)) < E(ko) for any s € R.
Remark: Note that ¢ is independent of d* in this theorem. This remarkable fact is very
important in the characteristic case, as we show in a forthcoming paper [20]. One could
think of using the Lorentz transform to reduce the analysis to the case d* = 0, which
would give a uniform €. This doesn’t work, because the Lorentz transform mixes time
and space. In our proof, we work uniformly in |d*| < 1 in the space H (9) which is well
adapted to the measure of the distance between two solutions to equation (7), including
in the characteristic case, and leads to exponential estimates.

Now, if w = w,, where xo is non characteristic, then Theorems 2 and 3 apply (use
(16) to derive (17) from (A.ii) in Theorem 2), and we obtain the convergence of w, to
some non zero stationary solution in the norm of H. Using the uniform estimates (11),
we directly get the following result:



Corollary 4 (Blow-up profile near a non characteristic point) If u a solution of
(1) with blow-up curve I' : {x — T(x)} and ¢ € R is non characteristic (in the sense (4)),
then there exist doo(x0) € (—1,1), |w*(z0)| =1 and s*(xg) > —logT(xo) such that for all
s> s*(x0), (19) holds with € = ey, where Cy and €y are given in Theorem 3. Moreover,

[z (5) = W (20)R(doo (20), Y) |l 1 (—1,1) + 1950 (8)l| £2(~1,1) = 0 as s — o0

Remark: The sign w*(x¢) is given by Theorem 2. From condition (18) in Theorem 3, the
time s*(x¢) is completely explicit and characterized by the fact that

(320 ) <0 (1)), =

Remark: Theorem 3 and Corollary 4 are a fundamental step towards new blow-up results
by the authors in a new paper [20]. We prove there that the set of non characteristic points
Iy is open and that Vo € Iy, T'(z) = doo(z) defined in (19). This gives a geometrical
interpretation for d.(x) as the slope of the blow-up curve. For the moment, we are
unable to prove this theorem in higher dimensions. The main difficulty comes from the
fact that we are unable to classify all H! stationary solutions of (7) in higher dimensions,
even in the radially symmetric case. Nevertheless, we hope to carry this program in higher
dimensions with the same approach, avoiding the lack of information on the stationary
solutions by using some extra arguments.

s*(zg) = inf inf
s>—logT(xo) |d|<1

This paper is organized as follows. In section 2, we give some basic properties of
equation (7) and prove Proposition 1 which characterizes the set of stationary solutions.
In Section 3, we use energy methods to prove Theorem 2. Then, in Section 4, we study
the linearized operator of equation (7) around a non zero stationary solution. That study
is far from being trivial, since this linearized operator is not self-adjoint. Finally, Section
5 is devoted to the proof of Theorem 3 (note that Corollary 4 is a direct consequence
of Theorems 2 and 3). The proof of Theorem 3 is the most delicate part in the proof,
because of the non self-adjoint character of the linear operator, and because every non
zero stationary solution of (7) is non isolated. This difficulty will be overcome by using
similar concepts to those used for the Korteweg de Vries equation (Martel and Merle [13])
and the nonlinear Schrodinger equation (Merle and Raphaél [14]). See section 5 for more
details.

2 Preliminaries

This section is divided in 3 subsections.

- In Subsection 2.1, we give some dispersive estimates of equation (7).

- In Subsection 2.2, we give some properties of the Lorentz transform which keeps equation
(1) invariant.

- In Subsection 2.3, we prove Proposition 1 which characterizes the set of stationary
solutions.



2.1 Dispersive and spectral properties for equation (7)

We first recall from [4] the following result which gives the boundedness for E and its
variation:

Proposition 2.1 (Boundedness of the Lyapunov functional for equation (7))
(i) Consider w(y,s) a solution to (7) defined for all (y,s) € (—1,1) x [—log T, +o0) such
that (w, Osw)(—logT) € H' x L?>(—1,1). For all s > —logT, we have

0 < E(w(s)) < E(w(—logT))

and

[e'e) 1 _
/1 T/1 (Dsw(y, 5))° 1p£y;2dyds < pTlE(w(—logT)).
og —

Remark: Note that with this proposition, the analysis of [17] extends immediately to the
case where w = wy, with x¢ characteristic, and the estimates (E1)-(E4) of page 3 are fully
justified.

Proof of Proposition 2.1: See Antonini and Merle [4] and Appendix A. |

In the following, we give Hardy-Sobolev identities in the space Hy (10):

Lemma 2.2 (A Hardy-Sobolev type identity) For all h € Hy, it holds that

Loy VY
([ v 2a) < clip, (21)
g < Ol (22)
_1
51— 7 ey < Clhllg, (28)

Proof of (21): Let us recall from [17] the following Hardy type inequality

1
‘[hUQQM’d<0/‘ w+c[ﬁwwfa—ﬁmw=om%0

(see the appendix in [17] for a proof). Using the fact that fﬁyy)Q =p+y° 1p£y) we get (21).

y2 )
Proof of (22) and (23): Let us use the following change of variables

1

¢ = 51og G Y y) (that is y — tanh &) and h(€) = A(y)(1 — y?) 7.

Then,

[ vt = [ wert = [herias < o [ @)

-y

AN
K
N
\H
—
>
V)
+
>
A
S—
¥
5y
~__
Nl

1 _
1(1 = 4?) 7| poe(—1,1) = [Pl oo ()



Note from (21) that

[ieras = [ nwrowas= [ "D 4y < cynig,, (24
T2 ! - " h(y)?oly) ) )

[ heteras < a (/h (1~ )ly >dy+/_ D2 dy) < Collilfs (29

which concludes the proof of (22) and (23) and Lemma 2.2. [ |

The Legendre operator

2

. s
Lw =20y (p(1 — y)9yw) where ply) = (1 - y*)7,

involved in the expression of equation (7) has the following properties:

Proposition 2.3 (Properties of the operator £ (8)) The operator L is self-adjoint
n L%. For each n € N, there exists a polynomial h,, of degree n such that

Lhy, = yphy where v, = —n <n + p_—i—if) (26)

The family {hn | n € N} is orthonormal and spans the whole space L. When n =0 and
n =1, the eigenfunctions are hg = cy and hy = c1y for some positive ¢y and c1, and

2 1
Lcg =0, Lay= —Mcly. (27)

p—1
Proof: The proof is straightforward and classical. One can show that for some positive ¢,
hn = 25 (p(1 = y*)"). L

We claim the following:

Lemma 2.4 Consider u € L% such that Lu € Lf, and

1 1
/ IU(y)p(y)dy = / lu(y)yp(y)dy = 0. (28)
Then, f_ll ulupdy < v [u’pdy where vo = —2(3;%11).
Proof. From (28) and (27), we have
1
g = w1 = 0 where 4, = / whypdy. (29)
-1

Therefore, using (26), we write u = Y 2 5 Uph, and Lu = Y 7 o YplUphy,. Using the
orthogonality of the polynomials h; and the fact that v, < o for all n > 2, we write

1 0 0 1
/ ulupdy = s <v2 Y iip =72 / u?pdy.
-1 n=2 n=2 -1

This concludes the proof of Lemma 2.4. |



2.2 Invariance of equation (7)

In this section, we consider u(z,t) a solution of (1) defined in the cone

{(&7) | t1 <7 <to—[§—wol} (30)

for some t; < tp and xyp € R. Using the transformation (7), we see that w = wg, 4, is a
solution of (7) defined for all |y| < 1 and s € [—log(to—t1), +00). Equation (1) is invariant
under translations in time and space, scaling and the Lorentz transformation. Through
the selfsimilar transformation (7), this provides us with 4 invariant transformations for
equation (7). More precisely, the following transformations of w(y, s) are also solutions to
(7):

- For any a € R, the function w;(y,s) defined for all s € [—log(top — t1),+00) and y €
(—ae® —1,—ae® + 1) by

wi(y, s) = w(y + ae’, s).

- For any b < tg — t1, the function wa(y,s) defined for all s > —log(ty — t1 — b) and
ly| <1+ be’ by

wa(y, s) = (1+bes)_p%1w < 8—log(1+bes)> . (31)

Yy
1+ bes’
- For any ¢ € R, the function ws(y, s) defined for all |y| < 1 and s € [—log(tg—t1) —c¢, +0)
by

U)g(y, 5) = w(ya s+ C)‘
- The transposition in selfsimilar variables of the Lorentz transform which will be given in
this section.

Let us recall the invariance of equation (1) under the Lorentz transform:

Lemma 2.5 (Invariance of equation (1) under the Lorentz transform)

(1) Consider u(x,t) a solution of equation (1) defined in the cone (30). For anyd € (—1,1),
the function U = Zy(u) defined by

T+ dt

V1—d? "

Qt t+dx

Uz’ t") = u(z,t) where ' = = —
(o) = el Vi-&
is also a solution of (1) defined in the set

xo + dio and ' — to + dxg
Vi—d? O VI—&
(ii) For all di and dy in (—1,1), we have Zg, o Zg, = Zg, a4, where

{(@' ) | a1 —d? +da’ <t <ty — |2' — z(|} where zj =

di + do

dy wdy = AT
e

(32)

Remark: From (ii) of this proposition, we deduce that Z; o0 Z_4; = Zy = Id for all
de (—1,1).

10



Proof: Everything is straightforward, except may be for the composition identity. Consider
then dy,dz € (—1,1) and define

+ djt t+ dix
U= Zguby Ut =u(z,t Wherex':xiandt’zi,

x + dgt, a4+ — t+ dz.%'/

an —_— .
1 —d3 V1 —d3

and U= Z4,U by U(" t") =U(z',t') where 2" =

Then,

W tdt _atditfdy(ttdi) T Mg @+ t(dy*dy)

V1 —d3 1—d3)(1—d? (1-d})(1-di) /1 — (dy x da)?
5 VA -d&)(1—d}) bl (dy * d2)

. (1-d3)(1—-d?) _ dy+ds |2
since 7(1fd2d1)21 =1- (Hljl;d?l) .
Similarly, we have ¢ = (t + x(dy * d2)) /\/1 — (dy *d2)?. Since U(z",t") = U(2',t') =
u(z,t), this implies that Zg, o Zg, = Zg, +d,- [ |

Through the selfsimilar transformation (6), the Lorentz transform provides a one dimen-
sional group which keeps invariant equation (7). More precisely,

Lemma 2.6 (The Lorentz transform in similarity variables) Consider w(y,s) a
solution of equation (1) defined for all |y| < 1 and s € (sg, s1) for some sg and s1 in R,
and introduce for any d € (—1,1), the function W = Ty(w) defined by

1
(1—d?)r7 Y +d 1+dY
W(Y,S) = —wl(y,s) wherey = and s =5 —1o . 33
Then W(Y,S) = Tg(w) is also a solution of (7) defined for all |Y] < 1 and

Se (so—i— %logif—ﬂ,sl — %log}f—ﬂ)

Remark: From (ii) in Lemma 2.5, we have Ty, o Ty, = Tg 44, and Tgo T_4 = Ty = Id
where the law * is defined in (32).

Remark: If w(y) is a stationary solution of (7), then the function W(Y') = 73(w) depends
only on Y and is also a stationary solution of (7).

Proof: Note that the domain of definition of W (Y, S) follows directly from (33). Remains
to check that it is a solution to (7).

Let us define W (Y, S) by

I— ~
W(Y,8) = (to — )71 U, ), V = ”; f,“ and § = —log(ty — t'), (34)
-
h iy ! (35)
wnere o) = —F/—, = —,
TV YT - &
+ dt t+dx
Uzt =u(z,t), 2’ = a; Lt = 36
B Y e Y - (36)
u(z,t) = (1— t)fﬁw(y, s), y= . git and s = —log(1 —t). (37)



Using the selfsimilar transformation (6), the Lorentz transform (36) and then again (6),
we see that u and U are solutions to (1), and then W(Y S) is a solution to (7). In the
following, we will prove that W = W, Y =Y and S = S, which will conclude the proof.
Using (37) and (34), we write

S

r=ye S, t=1—¢e" o' =zo+Ye ®, t' =tg—e ",
~ o~ o~ 25 2s
W(Y,S)=e »1U(2,t') and w(y,s) = e r—Tu(z,t).

Using the Lorentz transform (36), we write

o pe=8 - & e ¥ +d(1—e%) _g l1—e?+dye”®
Y,S “Tw ,s,YeS—HU:y , to—e 7 = .
W(,S) = () 0 N 0 Ni=re

Using (35), this gives

. 1—d N _
S =s—log Y S

2
d oo (I—dy)rr
ﬁ, Y = 1— dy and W(Y,S) = mﬂ](y,S). (39)

Therefore,
Y +d o W V1-a?
14+dY Vi—d? 1+dy

Thus, using (33) and (39), we see that W = W, Y =Y and § = S. Since W(Y,5) is a
solution to (7), the same holds for W (Y, S). This concludes the proof of Lemma 2.6. W

(1—dy)1+dY)=1-d? y=

For further purpose, we need to understand precisely the effect of the transformation
T4 defined in (33) on the operator Lw which appears in (7) (regardless of the fact that w is
a solution of (7) or not). In (i) of the following Lemma, we transform all the terms (linear
and nonlinear) of equation (7). In (ii), we show that in fact, the linearized operator of
equation (7) around the constant solution kg (13) transforms into the linearized operator of
the same equation around k(d,y), the transformation of k¢ by the Lorentz transformation
in similarity variables. More precisely, we claim the following:

Lemma 2.7 (Transformations of the linearized operator of (7) around k)
Consider a general w(y, s) not necessarily a solution to (7) and W = Tqw defined in (33).
Then, it holds that:

(i) (Nonlinear version)

02w — (L’w — ?;Efj)lgw + [w|P~tw — g%?agw — 2y8§75w)

2p
1+dY)r1
= ((1+d2))ppl {Q%SW - (EW ?(PH)W + WP tw — pfi’(?sW _ 2Y8§,75W)] ‘
— pP—

(40)
(i) (The linearized operator around k)

2w — (Ew + 2p+ 1)w s 38510 — 29072 Sw)
2p_
_ d+d¥)rt <8§SW _ <£W+¢(d Y)W — 73 W 2Y8YSW)>
(1—d2)r1 p—1

12



2 1 2 1 1—d?

Remark: If we consider w(y, s) = w(y), then it holds for W = 7w that

cuy) + 22 Do) = WV ey ppwrwey) )
p =

where W = 7w is given in (33).

Proof of Lemma 2.7
(i) Using (37), (36) and (34), we write

02w — (Cw — ?ngg)lg)w + w|P~tw — ;%?8511) — 2y8§75w)

=1 =01 (9fu— 0Fu— [ulP~tu)
2

= (1= (9B, U~ 92, U ~ [UPD)
2p

= (=) |2 — (LW - 22w (WPt — EE0sW - 2v 62 W) |
(43)
Using (36), we see that t = (¢ — dz’)/v/1 — d?. Therefore, using (37) and (35), we write
1—t -0 v d —x0)  1+dY
to—t’_ tog —t a (to_t/),/l_dQ _‘/1—d2'

Using (43), this concludes the proof of (i) of Lemma 2.7.
(ii) Using (33), we write

2p
o ol = AEVT (2 ) A=)
(1—a2)p1 U (p—1)? (1+dY)? ’

which shows the same factor as in (40). Subtracting this from (40), we get the conclusion
of Lemma 2.7. [ |

In the following, we show that the transformation defined in (33) is continuous from
Ho to Hp defined in (10).

Lemma 2.8 (Continuity of 7; in Hy) There exists Co > 0 such that for alld € (—1,1)
and w € Hy, we have

1
a]llwllwo < [ Ta(w) 1, < Collw]lny- (44)

Proof: We only prove the second inequality of (44), since the first one follows by applying
the second one to T_4(w) and using the fact that 7;07_4; = Id (see the remark following
Lemma 2.6).

If we consider W = 7w defined in (33), then we see that

1 1
2d  (1—d2)r1 1—d2)p-1t! Y +d
HW(Y)=— ( )L 1w(y) + (—Lzayw(y) where y = :
Pl ydayyrmt (14 dy)rit 1+dY

13



Using (10) and (33), we write

(1—d? T Y +d\? 2
IWIZ, < c/ " w( - )u—y%ﬁwx

- 14dy)iT \L+dY
(1—d2)rT Y +d\* 2
+ C/m - v <1+dy) (1-Y?)r1tlgy,
p—
2 2
+ C )t Y G D R
+de1+4 YU\1+dY ‘
Performing the change of variables y = 1{:&‘51/, we get
1 2 1—d? ! 2 1
w3 < C 1 -yt 2 __d C’/ 1—y?)p1 1t R
Wik, < € [ 0= G ogmdn+C [ (=7 ) s
+ C / )Tt (9w (y))? dy. (45)
Using the fact that
¥(d,y) € (L1 Jy+d +[1—d*|+ (1 —y%) < C(1+dy), (46)
and (21), we see that
1 2
21
Wik, < [ (=27 wPdy + Clulf, < Cllulf,
and the conclusion follows. |

2.3 Characterization of the stationary solutions in self-similar variables

In this section, we prove Proposition 1 which characterizes all Hg solutions of
" 2(p+1)

(p—1)
the stationary version of (7). Note that since 0 and %k are trivial solutions to equation

(7), we see from Lemma 2.6 that +73x0 = £x(d,y) are also stationary solutions to (7).
Let us introduce the set

p (p(1— y2)w') w+ [wP w =0, (47)

S =10, k(d,-), —r(d,-) | |d| <1}. (48)

Now, we prove Proposition 1 which states that there are no more solutions of (47) in H
other than the set S. We first prove (ii) since it is shorter and then prove (i).

(ii) Since we clearly have from the definition of E(k(d,-)) (15), E(0) = 0, we only
compute E(£k(d,-)). Since k(d, y) is a solution to equation (47), we multiply the equation
by k(d,y)p(y) and integrate it with respect to y € (—1,1) to get

1 1 1
- [ ot - o) - T [ oy [ s oy <o

14



Therefore, we see from (15) that E(x(d,-)) = 26);:”[_11 rk(d,y)PTp(y)dy. Making the
y+d

change of variables Y = Trdy We see that

B 1 » -1 » 1
E(r(d,-) = 3P /1 R(d, y)"ply)dy = h%“ /lp(Y)dY = E(ko) >0,

! 1
5/_1 |0y, y)|2(1 = y?)p(y) + ((]fjll)é /_llf(d,y)2p(y)dy = 2 p(xy).

Thus, (14) follows.

(i) Consider w € Hp a non zero solution of (47). Let us prove that there is some
d € (—1,1) such that w = +k(d, -). For this purpose, consider

&= %log <14__’Z> (that is y = tanh ¢) and w(&) = w(y)(1 — y2)ﬁ. (50)

Remark first from (24) and (25) that w € H'(R). Let us prove that if w # 0 is solution
to (47) is equivalent to w # 0 is a solution to

4
wee + |0P 0 — ——— = 0. 51
ge + [0l p_ 17 (51)
Indeed, we have
_ 2y 21 2y L +1
wﬁ:—pfl(l—y)”*erwy(l—y)”* ;
2 1 2 1
wee = | ———y(1 —y? p—l] 11—y )w— ——y(1 —yH)r 1w
= || 0t R
2yp L4 1
p— - Y )T wy + wyy (1 —y?) 7T (1 —3?)?
2(1 — y?) 49 2(p+1) 1
:<[_ sl e 1] K e LU R Gl g KU L
Thus,
4
0 b+ |w[P~

RS I

-t o (p+1) - 2(p+1) -
(7 2 = 2y 1= 47) ol

which proves the equivalence.
It is classical that all non zero solutions of (51) in H'(R) are

Ko

cosh7T (€ + &)

w(E) =+ for & € R. (52)

15



Thus, for d = tanh§y € (—1,1) and y = tanh &, we write.

w(§) = £kKo [1 — tanh(& + 50)2] = = +kyg

1_ y+d 2
1+ dy

This means by (50) that w(y) = £k(d, y), which concludes the proof of Proposition 1. W

_1
| _ [ tanh€ + tanh & 2| p-t
1+ tanh & tanh &

_1
p—1

_ ]2 _ 2] p—1 1
CEUS )T st - )7

= :|:I£0

::EI{0|:

3 Energy estimates and convergence to the set of stationary
solutions

This section is devoted to the proof of Theorem 2. In a pedagogical approach, we treat
the non characteristic case first, and then the general case. Indeed, in this first case, we
will replace the use of an averaging property of the equation (useful in the general case)
by the use of the finite speed of propagation.

3.1 The non characteristic case

We prove part A of Theorem 2 in this section. Note first that using the continuity of
the Lyapunov functional E(w) (15) in the space H' x L?(—1,1) and (14), (A.ii) directly
follows from (A.i). Thus, we only prove (A.i). Consider zp € R a non characteristic point
and introduce

W = Wy = Way T(zg)-
From (11) (proved in [18]), the Sobolev injection and Proposition 2.1, we have the following
bounds:

Lemma 3.1 (Boundedness of w(s) [18]) There exists K > 0 such that for all s >

_ log T(ZO)}
0 <eo(p) < l[ws)llur-1,1) + 10sw(s)ll2-11) < K, (54)
lw(s)llLoe(-11) < K, (55)
and
> ' 2 Py)
/ / (Osw(y,s)) sdyds < K. (56)
—log T'(xz0) /-1 1-y
We will show that there exists w(zg) € {—1,1} such that
inf flw(:,s) = w(@o)r(d; )l (-1,1) + 195wl L2(—1,1) — 0 as s — oo. (57)

|d|<1

It is a remarkable fact for a dispersive equation that a solution converges strongly to a
stationary solution (as in the case of a dissipative equation). We first have the following
reduction:

16



Proposition 3.2 In order to prove (57), it is enough to prove that

U;jrelfs |w(s) = @[ gr(—1,1) + 05wl p2(~1,1) — 0 as s — oo, (58)

where S (48) is the set of all Hy stationary solutions to (7).

Proof: From Proposition 1 and (48), we know that S = S; U Sy U {0} where S; =
{k(d,-) | |d| < 1} and Sz = {—k(d,-) | |d| < 1}. From the Sobolev injection, positiv-
ity and (13), we have

fori=1, 2, dgi(_1,1)(5:,0) > Cdpec(—1,1)(51,0) > C‘é&fl [%(d, )| oo (=1,1) = Co > 0.
dpi(~1,1)(S1, 82) = Cdpeo(—11)(S1,82) > Cdpes(—1,1)(51,0) = Co > 0.

Since (w(s),dsw(s)) is continuous as a function of s in H' x L?(—1,1) and its norm is
bounded from below by (54), we see that (58) implies (57). This concludes the proof of
Proposition 3.2. ]

We now prove (58), which by Proposition 3.2, will conclude the proof of (57) and Part
A of Theorem 2. We proceed by contradiction and assume that there exist ¢g > 0 and a
sequence s,, — 0o such that

&]féfs HUJ(STL) — wHHl(—l,l) + ]\85w(sn)]]L2(_1,1) > €0 > 0. (59)

We proceed in 2 steps:

- In Step 1, we show that w(s,) converges in L>°(—1,1) to some w* € S. This step
will be a consequence of the existence of the Lyapunov functional £ (15) and compactness
related to the uniform bounds we have in (54).

- In Step 2, using the space-time localization of the original energy for the function
u(t), we find an estimate on w(s,) which contradicts (59). This step is remarkable, in the
setting of Hamiltonian systems (for example, this fact is false for L? critical NLS and L?
critical KdV; see [14] and [13]).

Step 1: Convergence of w(s,) to a stationary solution in L>*(—1,1)
From (54), we there is a subsequence (still denoted by s,) and w* € H'(—1,1) such
that
J10(50) — w11y — 0 a5 1 — .

We have the following:

Lemma 3.3
(i) For any M > 0, we have

w(y, $n +5) —w*(y) — 0 as n — oo, uniformly for |y| <1 and |s| < M.

(11) We have w* € S.

17



Proof:
(i) From (54) and (56), we have for all M > 0,

/ w(y, s + ) — w () dy
lyl<1—

$mt+ M 1/2
/ w(y, ) — w* () 2dy + Co / ( / (Dsw(sn + 5, y)) dy) as’
ly|<1—+F Sn— lyl<1—4

Sn+M 1/2
/ lw(y, sp) — w*(y )lzdy +C(M </ / (Osw(sp +8',y)) pdy> -0
|y\<lfﬁ Sn—

as n — oo. From the fact that HUHZOO (lyl<1—) < CM)[[ol p2(iyj<1-

IN

IN

737 HwHHl(‘yKl_zM)’

we see that w(y, s, +s) — w*(y) — 0 as n — oo, uniformly for |y| < 1 — 7 and |s| < M.

Since from (54), we have ||w(y, sy, + s) — w*(y)”C%(_1 N < (Y, (i) follows.

(ii) Here, we use the fact that w(y, s) is a weak solution of (7), i.e. for any C* function
©(y, s) compactly supported in (—1,1) x (s1,00) and some s; € R,

I = /(ﬁ(w)w 2((5+11)) we + [w]P~ 1w<ﬂ> ppdyds

+3 1
/8 w { s — 7190 + pay(lww)} pdyds = 0 (60)
(see below for a proof of this fact).
For o1 (y) € C* compactly supported in [—l—i—ﬁ, 1—%], consider p(y, s) = v1(y)p2(s—sp)
where pg € C*°, supp @2 € [—2,2] and / w2 = 1 and apply (60).
R

Sn+2
Since / / (9sw(y,s"))*dyds’ — 0 from (56), we use (i) of this lemma and the
Sn y|<1f—

Cauchy—Schwartz 1nequahty to get as n — oc:

/_11 {w*&m + < ?Igpjl;) + [w P )‘Pl} pdy = 0. (61)

Since w* € H'(—1,1), we obtain from classical elliptic regularity theory that w* €
C?(—1,1), therefore, w* satisfies equation (47), which is the conclusion of (ii) of Lemma
3.3. Remains to prove (60).

Proof of (60): Let us remark from the definition of w given in (6) that

2 1 3 82 _ 82 _ p—1
st = (Ew 2P Y - ]ilasw - 2ya§sw> _ (O — 05w — [ul"" )
D — ’ (

(p—1)? T—t)_% 7

and thus for all C*° function ¢(y,s) compactly supported in (—1,1) x (s1,00), for some
s1 € R, we have

[ / (B2 — ud? b — [ufP~ ) drdt (62)
C
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where C = {(z,t) | T —e' <t < T, |z —xo| < T —t} and ¢(x,t) is C*° compactly

Zo

supported in C and defined by ¥(z,t) = ¢(y,s)e” = lp(y), where y = %% and s =

—log(T —t).
The Duhamel representation for u (where ug € H} . and uy € L2 ):

T+t—T
u(z,t) = % (uo(z +1t) +ug(x —t)) + ; / ur + = / / |u[P~ u(z, T)dzdr  (63)

t+7

yields that u is also a weak solution of (1), hence, I = 0. Let us briefly recall the proof of
this fact. Making the change of variables

(&, n) = u(x,t), P(&,n) =p(x,t) with =2+t and n =2 — ¢,
we write

1

I = 2/(—4&(5,77)8?7712(5,77)—@1’111(5,77)@[3(5,77)) dédn,

W6n) = 5 (u0(€) +uolm) + / w o / / Pz, 7)dzdr
n+

Integrating by parts and using Fubini’s identity, we get

. e .
4 / A€, )02, (€, m)ded = 2 / (ag /0 /+ |urp‘1u(z,f>dzd7> Oy (&, m)dedn
777—
£€—n

= 2/ (/O JuP~ (€ — T,T)dT) By (€, m)dedn = / (P La(e, 7)d(E, n)dedn.

Hence, I = 0 and (60) is proved. This concludes the proof of Lemma 3.3. |

Step 2: H' control through the localization in the u variable
The following lemma allows us to conclude the proof of Theorem 2 in the non charac-
teristic case:

Lemma 3.4 For n large, we have
* €0
[w(sn) — w*l|g1(—1,1) + [[0sw(sn)lp2(—1,1) < 5

where € is defined in (59).

Indeed, taking n large, we have from this lemma a contradiction with (59), hence, (58)
holds and by Proposition 3.2, (57) holds and so does Theorem 2 in the non characteristic
case.

Proof of Lemma 8.4: We claim it as a consequence of the localization of the energy
in the u variable (finite speed of propagation) and the scaling factor coming from the
self-similar transformation (6).

For B = B(eg) > 0 to be chosen later large enough, consider
Wa(y,s) = w(y,s + sn — B). (64)

From (54) and the previous step, we know that for all n € N
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e W, and w* are solutions to equation (7),
o forall s >0, [Wn(s)[lg1(-1,1) + 10sWn(s)llL2(-1,0) + 0™ 1 (—1,0) < €,

[ ]
sup [[Wn(s) — w*||peo(—1,1) < €n — 0. (65)
s€[0,B]

Introducing u,, and u defined as in the selfsimilar transformation (7) by

gt 7) e = (-0 e (1),

-7

(66)

un(€,7) = (1 — 1) m1W, (

1—171

we see that

e u, and u* are solutions of (1) defined in {({,7) |0 <7 <1and [{| <1—7},

o [[un(0)]| g1 (—1,1) +|0run(0) [ L2(—1,1) + [[w*(0) | 71 (~1,1) < Co (note that Cp is indepen-
dent from B),

o Sup, (o, lun(7) — w*(7)l Lo () <1—7) = C(B)en — 0 where 75 = 1 — 7P,

Consider for 7 € [0, 78], vn(7) = up(7) — u*(7). We have:

° (82

- — Ogg)vn = fn where sup, (g 1, | fa(7)l| Lo (je|<1-r) = C(B)en — 0 as n — oo,

e there is Cy > 0 such that for all n, I(0) < Cy where

10)= [ (e + 0rnie ) de

Let us prove that for n large, I(75) < 2Cy. Indeed, we have by a direct computation, for
all 7 € [0, 78],

v [ e < CB)VIG)

which leads by integration in time for €, small enough, to I(75) < 2Cj.

Note that we have from (66),

deun(e,m) = (1=7)7 71 '0,W, (2, —log(1 - 7))

(67)
2 7
Orun(&,7) = (=) 7 (0 W+ 5.0, W + 525 Wa) (15, —log(1 - 7)),
and the same holds for v*. Using (66) and (67), we obtain
. _2B B , _2B B
10y Wn(B) = 9yw*(B)|L2(—1,1) < e #=1 2 [|0zvn(7B)l L2(g]<rp) < Coe #~1 2,  (68)
where C) is independent from B, and similarly, using (65)
_2B B
10sWn(B)ll12(-1,1y < € 71 2 (10-0n(78)ll2(g) <) + [10vn(TB) |l L2 (1) <))
2
——|[Wp(B) — w*|| foo(—
+ p_lHW (B) — w*||poo(~1,1)
_ 2B
< Cye » 1 + Cey. (69)
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Therefore, since W,,(y, B) = w(y, s,) by (64), we have from (65), (68) and (69)
_ 2B
lw(sn) = w1 -1,1) + 10sw(sn)llL2(-1,1) < Coe™ 71 + C(B)en.

Taking B = B(ey) and n large enough, we get to the conclusion of Lemma 3.4. |

3.2 The characteristic case

Let us now consider z( a characteristic point and introduce sp = —logT'(zp). The known
facts are limited in the non characteristic case. Nevertheless, thanks to Appendix A,
Section 2 of [17] applies and we know for w = wy, that (E1)-(E4) cited in page 3 hold.
Note that the proof we present works of course in the non characteristic case.

We proceed in two Parts:

- In Part 1, we show that all the terms in the Lyapunov functional are bounded
(Proposition 3.5), and then, we prove a local convergence result under a non vanishing
condition (Proposition 3.8).

- In Part 2, we conclude the proof of Theorem 2 in the characteristic case.

Part 1: Local convergence under a non vanishing condition
Improving (E1)-(E4), we now claim that each term of the Lyapunov functional E(w)
is bounded separately:

Proposition 3.5 (Boundedness of each term of F(w) and convergence)
(i) There is a Cy > 0 such that for all s > so + 3,

1
| @62 1)+ (s + duuls)? 4 w(e) ) p < Co

1 / ! 2 2 p+1 ! o 1! 2 p+1
) = dyw(s)“(1—y p+/ws p+= Osw(s)’p = ——Fy as s — 00.
1 2
p+1 E )
(iii) p+1/1 [w(y, s)| p— e 55— 00
Remark: Part (i) of this proposition gives a different proof of the result of [18] when
k = 1. However, the dependence of the bound on initial data is less clear here. Note that

in the characteristic case, our new estimate is stronger than that of [18]. In addition, the
energy partition we obtain in (ii) and (iii) is the same as for a stationary solution (see

(49)).
Let us first establish two preliminary lemmas:

Lemma 3.6 There is a Cy > 0 such that for all s > so + %,

L w(y, 5)?
/ll(gy;p(y)dyéc“o.
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Proof. From the Hardy-Sobolev estimate (21) and (E4), we obtain

3 s+ w(y, 3/)2 ’
Vs > sg + =, ———2-p(y)ds'dy < Cy (70)
2 s % - Yy

2
for some Cj > 0. Thus, there is s1(s) € [s — 3, s] such that /1(3/_’8;) p(y)dy < 2C,. We
then have from (E3) and (70)

L w Y, S 2 wOsw y7
/ 1(_ é p(y)dy :/ 1( dy+2/ / (y)dyds’,
-1 -1
< 2C)+ </ / 2 p y)ds +/ / (y)ds') <
and the conclusion of Lemma 3.6 follows. [ |

We now have from the proof of (E4) given in [17] a refinement of these estimates:

Lemma 3.7 There are si(s) and sa(s) defined for s > so + 1 such that:

(i) |s1(s) — s| + |s2(s) —s| = 0 as s — oo.
sa2(s)+1 1 p+1 9
(m)/ / [w(y, s)] E and
p+1 p—l
2(s)+1
p+1 9 p+1
0 1—y 8 —F
/ [ (3ot a0+ gty oo+ 2 utse) - Pl
as s — oo.

Proof: Remark from [17] (identity (11) page 1152) that we have for all s; > so and
s2 2 5o+ 1,

so+1 1 so+1 1 1 s2+1
o [ st [ o]
o | / wi Pt = [ Blug)ds 3| o]

so+1 5 _— P
/ / {8510(3/, 5)2p — Oswydywp — dswwydyp + waswp} .
-1 2(p—1)

Then, using (E3), we claim that for s > sg + 1, there are s1(s) and sa(s) such that (i) in
1 1
Lemma 3.7 holds, / (Osw(s1(s )))2 py2 — 0 and /1(8Sw(52(5) + 1))21 —py2 — 0 as

s+1
s — 00. Indeed, if n(s / / (Osw(s

as s — 0o. Therefore, considering s1(s) € [s,s + \/ | such that

[ @t = o /5+F / sw(sl))Ql_prds’
e 2=

22

ds then (E3) implies that n(s) — 0




we conclude for s;(s). Taking sa(s) = s1(s+ 1) — 1 closes the proof.
1 so+1

w@swp} — 0 and

S1

Now, using (E2), (E3) and (E4), we see that [/
-1

so+1 _
/ / {—85w(y, s)2p — OswyOywp — OswwyOyp + P wasw,o} -0
-1

5-p
2(p—1)
as § — OQ.

sa+1
Since E(w(s)) — Foo and [s1(s)—s|+][s2(s)—s| — 0 as s — oo, we get / E(w(s))ds —

S1
so+1
E, and the conclusion follows for / lw(y, s)|P™ p. Using the definition of F(w(s))
S1
(15), we conclude the proof of Lemma 3.7. [ |

Let us prove Proposition 3.5 now.
Proof of Proposition 3.5: We proceed by a priori estimates. Using E(w(s)), it is

e 1 +1
enough to prove that / <3 w(y,s)?(1 —y%) + iasw(y, s)2 + (;) 1)2w(y, s)2> p(y)dy
—1 J—

is bounded and converges to p + 1 Foo as s — o0.

We have from Lemma 3.7 and (E3) that for all ¢y € (0, 2 o 1)2) there is s¢, > so + 5
such that for all s > s,,, we have:

s2(s—2)+1 pl 1 1 41 +1
2 N2(1 — 42) + =0,w> b L o r_ LEO@
/51(3_2) /_1 <28yw(y’s) L=yt g0t p—12" ply)ds p—1

5 (71)
/ . / Osw y’ pds'dy < 8o(eo), (72)

and [s1(s) — s| + [s2(s) — s| < dp(eg), where small dy will be fixed later dependent of €.

We now claim for all s > s,

1 1
70 ) 21_ 2 785 ) 2
'/_IQyW(yS)( v+ w(yS)p+(p_1)2wp o

which concludes the proof of Proposition 3.5.

Proof of (713): From (71), we know that for all s > s, there is s3(s) € [s1(s—2), s2(s—
2) 4 1] such that,

1 2 2
Oyw(s3) 9 Osw(s3) p+1 9 p+1 €0
‘(1 72 81)/_1 [ 2 1=y 2 (p— 1)2w(83> P <=

therefore,

1 2 2
Oyw(s3) 9y Osw(ss3) p+1 9 p+1 €0
YT (1 — _gr- <
‘/_ [ 5 (1-y)+ 5t = 1)2w(53) P 1EOO <3 + Codo, (74)
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where s3 € [s — 3,5 — 1].
If we impose that Codp < ¢, then (73) holds for s3. Let us prove (73) for all 5" € [s3, s] if
€o is small enough and &g 1s small enough in terms of €.

By contradiction, assume that (73) holds for all ' € [s3, s4] and that for s’ = s4, we have
equality in (73), where s4 € [s3, s]. Then, from (23) and (73), we have for all s’ € [s3, s4],
||w(s’)(1—y2)1)%1 e < Co(Ex+1). Thus, using the derivative of the Lyapunov functional
(16) and Lemma 3.6, we have for all s’ € [s3, s4],

d b1 N2 oy, Lo o9 p+1l o
T {/_1 (28yw(y,s) (1—y )+§85w +7(p_1)2w )p]
1 2 1
e e
1 8511)2 1/2
—‘v-Co(/ll_yQ,O) .

p—1
Integrating in time between s3 and s4, we obtain from (74) and (72),

1
< Co/ 1810 +Co/ |8w||w| C/
11— 1

€0 . b g,uw? 12 €0 1/2
60<2+Co(50+00(50+00/ (/ 1 2p) S5+CO(50+50 )
S3 -1 Yy

Therefore, we obtain a contradiction by taking dy = €3 and €y small enough. Thus, (73) is

proved. This concludes the proof of Proposition 3.5. |
Note in addition that from Proposition 3.5 and (23), there is Cp > 0 such that

Vs> so+3and y € (~1,1), w(y,s)(1 - y*)7T| < Co. (75)

From the dispersion property of the flow (16), we are able to prove that any recurrent
nonlinear object in the dynamics as s — oo is a stationary solution. Considering the space
variable £ which allows us to write easily decoupling properties:

1 1+y . _ g\ L

€= §log 1) € R (i.e. y = tanh¢) and w(, s) = w(y, s)(1 — y*)»-1, (76)
-y

we have the following:

Proposition 3.8 (Local convergence under a non vanishing condition) Consider

1
a sequence (Yn,sn) and eg > 0 such that s, — 0o and |w(yn, sn)|(1 — y2)»=1 > €. Then,
there is &g € R and wg = +1 such that up to a subsequence:

(i) (€ + &ny 5 + $n) — wo—pn 0 (77)
cosh?=1 (& — &o)
. 1 14+ yn
as n — 0o, uniformly on compact sets of |&| + |s| where &, = 3 log (1 )
—Yn
(i) var >0, | (s 5n) — wor(dn, y) [P pdy — 0 (78)
{ylle—&nl<ar}
as n — 0o, where
d, = tanh &, and &, is such that &, + &, = —&o. (79)
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Remark: We have for alln € N, 1/C < }:ZZL < C.

Proof of Proposition 3.8: Arguing as for (24) and (25), we see from (76), Proposition 3.5,
Lemma 3.6 and (E3), that there is Cp > 0 such that

VS Z S0 + 35 HwHHl(R) S COv (80)
/ / dswidsdeé < Cy. (81)
s* R

Recall from (52) that the corresponding set of stationary solutions in H!(R) in the w
variable (to the stationary solution in Hy in the w variable) is

KO

:t 2
coshr=1(§ — &o)

where & € R. (82)
Proposition 3.8 reduces then to prove that up to a subsequence (also denoted by s,) and
for some w* # 0, a stationary solution (that is a solution of equation (51)), we have

[W(€ + &ny s 4 sn) — 0" (§)] — 0 as n — oo (83)

uniformly on compact sets |£] + |s] < M.

Indeed, if (83) holds, then (i) of Proposition 3.8 follows from the fact that a non zero
stationary solution w* is given by (82).

As for (ii) of Proposition 3.8, remark from (75) and (79) that

/ [w(y, sn) — wok(dn, y) [P pdy
{ylle—€n|<M}

1 1
w(y, sn)(1 = y?)71 — wor(dn, y)(1 — y?)7 7 |?

S CO/ 2 dy

{ylle—€al<M} 1=y

2
K

< C'o/ DE, 5n) — wo———g | de

|€—&n|<M coshr=1(§ + &)

2
_ Ko

< CO/ w(§n+§75n)_w0 2 d£_>0

|€|<M coshr=1 (& — &)

as n — oo using (77). Thus, we just need to prove (83).

Proof of (83): The proof is similar to the one of Lemma 3.3. From (80), there is a
subsequence s, and w* € H'(R) such that

W(E + &y sn) — w(€) in C(|¢] < M) for all M > 0. (84)
Remark from (76) and the hypotheses of Preposition 3.8 that

|@W(&n, sn)| > €0, thus |[@*(0)| > € and w* # 0. (85)
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Moreover, (80) and (81) give for all M > 0 and |s| < M

/ (D + €50 + 5) — @*(€) 2
|§l<M

Sn+M 1/2
/ [5(En + €, 50) — 0" (€)]2dE + Co / ( / (O (En + €, s’))st) as’
|E|l<M sn—M |&|l<M

Sn+M 1/2
< / D(En + €, 50) — @*(€)[2de + Cov/AT ( / / (O (. s’>>2d§ds') 0
|€| <M sSn—M R

as n — oo, and from the fact that

IN

HwH%OO(MKM) < Collwl| L2 (ej <41y 10| 11 (e <21 11)

we have (83) with w* defined in (84). Remains to prove that @w*(§) corresponds to a
stationary solution. Let us remark from similar computations to page 15 that

1 3 1
(1-— y2)pi1+1 {—&iw - itl w — 2y82 w+ Lw —2 (p+1) w+ |w\p1w]

(p—1)2
02, p+ 3 S S
= _COSh2 <ta h2£ — ) 3 w — 2tanh£8§sw + wgg — mw + ”U)|p lw

and thus for all ¢(§, s) C*° with compact support included in {s > s*},

———0spdéds — <p+:1)’ — tanh? g) @ + O¢ (2 tanh? g)) dswdéds
p—

(p—1
3 1
= / Osp — p+ ¥ o+ p@ (2y,0g0)} Oswpdyds

+ /<wg055—4 )2wg0+|w]p_1wg0> déds

(p+1) p— _
+ /<£(g0)w 2(p )2 5 W + |[wl 11U<P) ppdyds =0 (86)

with ¢(y,s) = ¢(&,s). The fact that the latter expression is zero follows from the same
computations to the non characteristic case (see Step 1 in subsection 3.1).
Consider now an arbitrary ¢1(£) C*° compactly supported. Apply identity (86) with

?(&58) = P1(§ — &n)Pa(s — sn)

where @2 € C2°, supp @2 € [—2,2] and [ g2 = 1.
Sn+2

Since we know from (81) that /
Sn—2

Cauchy-Schwartz inequality to get as n — oo

_ % — —* 4 — % —
/w 8§£g01+/<]w P~ 1 —(p_1)2w >g01:0.
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From the fact that w* € H!(R) and classical elliptic regularity theory, we have w* € H3.
Therefore, w* € C%(R) and w* satisfies

4
D2 4 |t P L — w* =0 for £ € R,
e ] (p—1)2

which concludes the proof of Proposition 3.8. |

Part 2: Conclusion of the proof of Theorem 2 in the non characteristic case
From (E1), we know that Fo, > 0. If E, = 0, then from Proposition 3.5, we have
|lw(s)||x — 0 as s — oo and the conclusion is valid with & = 0. Assume from now on that

Es > 0.

Step 1: Localization of the energy packets
Remark first from Proposition 3.5, Lemma 3.6 and (23), that there is Cy > 0 and
81 > 8o + 3 such that for all s > sq,

1 w(s)? dsw(y, s)? 1
Rt b - o < WPHp > —
/_11_y2p+/_1 1—y2 p+ llw(s)(1 — y?) 7 || < Co and / S|P p = Co

1 2 1 1
ﬂm&m%%s/mww</gwﬁﬁmrfw4%£S%mmﬂ%wmemm

there exists ¢y € (0, %) such that for all s > s1,

() (1 — 27 52 > 260, (87)
In particular, if we define
A(s) = {& | [0(¢,9)] > o} and A(s) = {£ | d(¢, A(s)) < 1},
then, for all s > st, A(s) # 0 and A(s) # 0. We now have the following:

Lemma 3.9 There is k € N*, so and po > 0 such that for all s > so,
(i) A(s) = UF_ | (&i(s) — pi(s), &i(s) + pi(s)) where &(s) is a continuous function of s,

€i(s) = &j(s)| — oo fori# j and pi(s) — po (88)
as s — O0.
(1)
W€+ Ei(5),5) — wi——a—| = 0
coshr-1(¢)

uniformly on compact sets of |€|, where w; = £1.
(i1i) For all € > 0, there exist M. > 0 and s > so such that if s > s. and inf i |€E—=&(s)| >
i

M., then |w(§,s)| < e.

Ly
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Proof:

(1)-(ii) Note first that A(s) is an open set of R, that is a disjoint union of open intervals.
Let k(s) € N be the number of connected components of A(s). Let us show that for s
large enough,

Ex
kis) <2——— + 1. 89
Let us assume by contradiction that for some m > P (e )—1—1 there are s, — 00, {10 <

&m,n in R and positive 1 ..., 15 » such that (&, — i n, &in+in) are disjoint and A(sn) D)
Y1 (&in— iy EimFitin)- By definition of A(s,), there exist §in € (Gin—1, Eint1)NA(sy)

such that [w({],,,sn)| > €. Therefore, it follows from Proposition 3.5 that up to a

subsequence and for all i = 1, ...,m,

Ko

coshT (& —x;)

|0 (& + &y sn+8) —wi | — 0 uniformly for [+ |s| < M (90)

for some z; € R and w; = £1. Moreover, since (& n — fin,&in + fin) is a connected
component of A(s) with center &; ,,, we use (90) and the fact that

$>60 iff — pgy < € < pg for some pg = pg(eg) >0
cosh?=1(¢)

to derive that for all i = 1,...,m
® I, = 07

® (i — gy + 1 (use the fact that for any 6 > 0 and n large enough, we have fl(sn) N
(gi,n - 2(:“’6 + 1)7 gi,n + 2(:“6 + 1)) - (gl,n - (/’LIO + 5)) gi,n + (NE) + 5)))7
o [&in —&jn| — 00 asn — oo, for i # j.

p+1
d§ =

Ko
coshp%l(f)
Ko

2
cosh?=1 (&)
1
—7E(/£0) and, from Proposition 3.5 and (90), take n > ng(M) such that the inter-

100p — 1
vals (&in — M, & n + M) are disjoint for ¢ = 1,...,m and

2 1 1
2(p+1) (E v B Ko> / |w(y, sn)[P* pdy = / (&, 50) [P dE

Making the change of variables y = tanh &, we see from (49) that /
R

p+1

1
2 1
gﬂ/ p(y)dy = ME(/@O). Fix then M > 0 such that / d¢ <
—1

p—1 |€|>M

p—1 100
e 2 2p+1)
Ko p
3] LA Y B(ro)
Z £-&, n|<M " ; R COShp%g 100 p—1
2(p+1) 2
m2 22D )1 - 2),
hence, m < 190 E(no) + o5, which is a contradiction. Thus, (89) holds.
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Let us show now that k(s) is constant for s large, that is, k(s) = k € N*. We proceed
by contradiction and consider s,, — oo and d,, € (—1,1) such that k(s, +0y) < k(sp) = m.
Making the same construction for s, as we did for the previous proof, defining in particular
i < ... <&mn in R, we see that (90) holds with z; = 0. Applying (90) with s = 6,, €
(—1,1), we see that A(s, + d,) has at least m connected components inherited from those
of A(s,) (here we use the fact that ¢ < %). Contradiction. Thus, k(s) = k € N* for
s > so for some so large enough.

We are now able to define for all s > s9, &1(s) < ... < &k(s), pi(s) such that (88) holds.
Note that (90) now writes

|w (€ +&i(s),s +0) — wi(s)ﬁig\ — 0 as s — oo uniformly for |¢] + |o| < M

cosh»=1(§)

for some w;(s) = +1. In particular, §;(s) is a continuous function of s and w;(s) is constant
for s large. This concludes the proof of (i) and (ii) of Lemma 3.9.

(iii) This estimate follows by contradiction considering some €; € (0,%2) and (&, sn)

such that s, — 0o, min—1,__x [ — &i(sn)| — o0 and |w(&,, sn)| > €1. Applying Propo-

sition 3.8 and the fact that e; < 52, we see that dist(£,,A(s,)) < Mi(er), which is a

contradiction. This concludes the proof of Lemma 3.9. |
Using the fact that
[€i(s) — &j(s)| = o0 as s — oo for i # j, (91)
we have the following:

Claim 3.10 If
di(s) = —tanh &;(s), (92)

then we have as s — 0o:

1 p+1 T

/_1 ‘ p— (Z/_ H(di(s)’y)p-&-lp)

1 k Z_Q A .
/1 (Zwiayﬁ(di(8)7y)> (1 — y2)p_ (Z/ (ayﬁ(di(S),y))2(1 . yg)p> . 07
B =1 -

1 k 2 k 1
/. ( 1wm<d@-<s>,y>> p- (Z JRECE

i= i=1""

k

!
o

wiﬁ(di(s)a y)
1

!

1 k

1 k k
/ ( wmdi(s),y)) (Zwmwi(s),y)p)p— | > stdstsorte —
-1 1 i=1

i= = -1

e

Proof.: We only prove the first inequality since the two others follow in the same way. Since

k(d;(s),y) becomes ——"——— by the transformation (76), we use the linear character

cosh?=T (§-¢i(s))
of (76) to get

k

Z wi’{(di(s)v y)
=1

L2




Since we know from (91) that

k p+1 k p+1
/ wi LKO - LHO d§ — 0
R \[iZ1  coshr=T(§ —&(s)) i=1 |coshP=1(§ = &(s))
as s — 00, we just use again (76) to conclude the proof of Claim 3.10. |

Step 2: Conclusion of the proof
We want to prove that

q(y,s) = w(y, s sz i(s),y) = 0

in the energy norm. Using Step 1, we first prove the convergence in L’;H. From (iii) in
Proposition 3.5, this implies the quantization of E,. Then, using the weak convergence
of ¢(s) to 0 is the energy space and the convergence of the norm in (ii) of Proposition 3.5,
we prove the strong convergence.

Let us prove now the following:

Claim 3.11 (Convergence in Lﬁ“) As s — 00,

/|w Zwl «(s), )P p — 0 and /|w Zwl «(s),y)>p — 0. (93)

Proof: Remark first that the Holder inequality and the LP*! estimate imply the L? esti-
mate. Let us then prove the LPT! estimate.

For all € > 0, there are from (iii) of Lemma 3.9 M, > 0 and s, such that if s > s, and
Vi=1,.k, |§—¢&(s)] > M., then

1

1 €
w(y, )1 =y*)rt < o,

k k
K(di(s), y)| (1 — 27T = — | < £
; g ’ ;coshpl(s—fxs)) 2
k
[y, s) = S win(di(s),y)| (1 — )71 < e (94)
=1

where y = tanh . Therefore, for s > s,

lw(s) wik(d;( |p+1 < / wik(di( ’p+1
/ Z {y IVi, €& (s)| > M} Z
k
+ / H |P+1
Z {y [l1€-¢&i(s \<M} Z

i=1

< P 1/|UJ Y, s z lwl (dl S) )|
> 1_

! Z/ [w(y,5) = winldi(s),1) "o+ o(1)
{y l16—&i(s)[<Mc}
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(from (94) and the fact that |£;(s) — &(s)] — oo as s — oo for i # j). Therefore, for s
large,

I8 sz (NI

IN

Ce™! (HU} )17, +-§£:|| HH0> +o(1)
< CoePt+0(1) < 2C06p 1
(from (23) and (ii) in Lemma 3.9). Letting ¢ — 0 allows us to conclude.

As a consequence, we have the following energy constraint:

Corollary 3.12 (Quantization of the limit of E(w(s))) It holds that Es = kE(ko),
where k € N* was introduced in Lemma 3.9.

Indeed, on one hand, we have from Proposition 3.5

1

2 1

/ lw(s)[PHp — (p+1)EOo as s — 00.
-1 p—

On the other hand, from Claims 3.11 and 3.10, and (49), we have

1 1/ k Pt ko1
lim [ Jw(s)P™p = lim (ZK(C&(S%M) p= lim Z/ K(di(s), )" p

s—oo | ¢ s—=o0 J_q i=1 71
1
: 2(p+1)
_ K2 / pHl LE
Jim E / o P = (K0),
and the corollary follows. |

We now have the following:
Claim 3.13 If we define I(s) by

k

(L k p+1 1
/1 (2’81/11) - ;wiayﬁ(di(S))P(l — %)+ »_1) |w — ;wm(di(s))]z n 2(85w)2> N

then we have I(s) — 0 as s — oo.

Proof. Note first that

3 [ oo+ 5L [t S [owtsPo+ a6) + K(s) (99)

(p—1)
where
1 é i (p+1) - :
Y (Zwﬁw(%(s%y)) (1=yio+ 2 | (Zwm@(s),y)) .
i=1 i=1
k k
= — w wik(d;(s —y? 72(p+1) w wik(d;(s
K(S) - /ay 8y (; 7 (dz( )vy)) (1 Y )P (p—1)2/ (; 7 (dz( ))) p-
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Using Claim 3.10 and (49), we see that

k
CESY| (5@ 0200 = 20+ PPl ) o)

(p—1)?
1
= 2D gy 1 o01). (96)
p—1
We claim " .
K(s) — —2(p+1)E(/i0) as s — 00. (97)
p—
Indeed, from integration by parts and the fact that x(d;(s),-) is a solution of (47), we have
1 2(p+1)
K = [ul [Z (500 (widr(ai(e) )1 = 7)0) = TP inta(o), y>)] p
i=1

k
- —/w(s) [Zwm(di(s),y)p] p-
i=1

Therefore, from (49), Holder’s inequality and Claims 3.11 and 3.10, we write

k
_/ [Z wik(d;i( ] [Z Wik p+o(1)
1

- —Z/ WPt (1) = —k/ -+ of1) = 2 25D B(r) +o(1),
which concludes the proof of (97).
Using (95), Proposition 3.5, (96) and (97), we write

p+1 (P+1) (P+1) _pt1 _

I(s) — p— Eoo+l<: 1E( 0) 2krp_1E(/fo)—p_1(Eoo kE(ko)) =0

by Claim 3.12, which proves Claim 3.13. |

Claim 3.13 together with Corollary 3.12 conclude the proof of Theorem 2 in the char-
acteristic case (use Lemma 3.9 and (92) for the continuity of d;(s) ; use (88) and (92) to
derive estimate (B.ii)). [ ]

4 The linearized operator around a non zero stationary so-

lution

In this section, we study the properties of the linearized operator of equation (7) around
the stationary solution x(d,y) (13).

a > for all s € [sg,00) by
q2

(el )= () + (i) o
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If we introduce ¢ = (q1,¢2) =



then we see from equation (7) that ¢ satisfies the following equation for all s > sy (for the
proof in a more general case, see the proof of (ii) of Proposition 5.1 below) :

() =n (8 (G ) )

where

a2
( Lai +9(d,y)ar — B2 — 2y ) ’ (100)

Falqr) = |6(d, ) + @ [P~ Y (k(d, ) + q1) — k(d,)? — pr(d, )P~ 1qu,

L, ¥(d,-) and k(d,-) are defined respectively in (8), (41) and (13). In this section, we
study the linear operator Ly in the energy space H defined in (9). Note from (9) that we
have

lall = [¢ (g,9)]"* < +o0 (101)

where the inner product ¢ is defined by

¢(q,7) = ¢ << o > : < " >> = /1 (@1r1 + 17 (1 = v%) + qara) pdy. (102)

q2 T2 1

Using integration by parts and the definition of £ (8), we have the following identity

1
P(q,7) = /_1 (1 (=Lr1 +71) + g2r2) pdy. (103)

One of the major difficulties in the proof of the convergence in Theorem 3 comes from the
fact that the linear operator Ly is not self-adjoint. In particular, standard spectral theory
does not apply. Nevertheless, using a modified version of Proposition 2.3, one can directly

show that

1
)\nzl—nand,un:—2(p+1)—n, n €N,

are eigenvalues of Ly and that the corresponding eigenfunctions are polynomials of degree
n that span the whole space H. Note that Ly has one positive direction (A = 1) and one
null direction (A = 0), and the rest of the spectrum is negative (A < —1). Then, one can
expand the solution ¢ according to the positive, null and negative part of the spectrum.
The general strategy is to obtain properties of Ly with the hope to extend them to the
nonlinear equation (99). From the Hamiltonian structure of the original equation or the
non self-adjoint character of Ly, few examples are known in the literature where this
strategy works. Indeed, the problem we are looking to is related to the so called existence
and asymptotic stability of blow-up profile in the energy space (for L? critical generalized
KdV, see Martel and Merle [13] and for L? critical NLS equation, see Merle and Raphaél
[14]). In this section,

- We first show that A = 1 and A = 0 are eigenvalues of Ly and compute explicitly the
corresponding eigenfunctions (Lemma 4.2).
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- Then, we compute explicitly eigenfunctions of L} (the adjoint of L4 with respect to
the inner product ¢) for A = 1 and A\ = 0, which will give projections on the corresponding
eigenspace of Lg.

- Finally, subtracting from the solution the projections on eigenspaces of A = 1 and
A = 0, we obtain the projection on the negative part of the spectrum. However, to control
that part, no spectral theory will be used, because of the weakness and the technical
character of such an approach in the Hamiltonian context. Instead, we use a different
approach based on the nonlinear equation (99) and its dispersive relation. See similar
results in the context of KAV and NLS equations in the references.

4.1 The conjugate operator L}

In the following, we compute L.

Lemma 4.1 (The conjugate operator of L; with respect to the inner product
¢) For any |d| < 1, the operator L} conjugate of Lg with respect to ¢ is given by

< Ry(r2)
L = r 104
d ( 7o > ( —Lry 1+ B+ 2yrh — 0 ey ) (104)

for any (r1,12) € (D(L))?, where r = Ry(ry) is the unique solution of
—Lr+1r = Lry+Y(d,y)ra. (105)

Remark: The domain D(L) of £ defined in (8) is the set of all r € L?, such that Lr € L?).

Proof of Lemma 4.1: By definition of L%, we have for all ¢ = (¢1,¢2) and r = (ry,72)
in H,

Using (100) and (103), we write for arbitrary (qi1,¢2) and (r1,r2) in H,

. q2 "
¢ (La(g),r) = ¢ (( Lai +9(d,y)q — B go — 2ygh ) ’ < T2 ))

! p+3 /
= / @ (—Lri+m)+ (Lo +¥(d,y)q — » 142~ 2yqy | 2 | pdy.
_1 -

Integrating by parts, we write

1 1
-2 / ygarapdy = 2 [ qo(rap+yroyp +yrap’) dy
-1 1
1
4 yp
= 2/ G2 ( T2p +yryp — yra >dy
1 2 (p—1)(1-y?

8T2

1
p+3 / )
= g2 | 2 ro + 2yry — ————————— | pdy. 107
/_12<p—12 2T h-na-»)” (107)
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Therefore, since L is self-adjoint, we get

1

6 (Lag)r) = / g1 (Cra +0(d, y)r) p

-1

1
p+3 , 8 79
— 2 — . (1
+ /1qQ< ﬁrl—i-n—l—p_lrg—i- Yry TR p. (108)

Now, we define Ry : Lf,(—l,l) — Lg(—l,l) by (105). Note that Ry is well defined,
whenever ro and Lro are in L/QJ (or ro € D(L)), since Hy equipped with the inner product

1

1
< UV >y = / (' ()’ () (1 = v*) + u(y)v(y)) ply)dy = / (—Lu(y) +u(y))v(y)p(y)dy

—1 —1
(109)
is a Hilbert space. Using (105), (108) and (103), we see that

1
¢ (La(q),r) = /1 q1 (—LRq(r2) + Ra(r2)) p

1
p+3 / 8 79
+ /q2<—£r1—|—7‘1+ ro + 2yry — p
1 p—1 2 - (1-9?)

- ol Rq(r2) ,
q2 ’ —,67"1 + T1 + %72 + 2y'l"é — ﬁ(liiiﬂ) ’

Using the characterization of L} by (106), we get (104). This concludes the proof of
Lemma 4.1. |

4.2 Nonnegative directions of L,

Let us now find nonnegative directions of Ly;. We claim the following;:

Lemma 4.2 (Nonnegative eigenvalues and eigenfunctions for L,;)
(i) For all |d| < 1, X =1 and A = 0 are eigenvalues of the linear operator Lq and the
corresponding eigenfunctions are respectively

(1+dy) 7" yte
_Dp p— _1 - 92 7
Fiy) = (1 —d*) < ’ 2z ) and Fii(y) = (1= d*) 77 | (1 4+dy)r 1t
(1+dy) » 0
(110)
(ii) Moreover, it holds for some Cy > 0 and any A € {0,1} that
1 d d 0
vld| <1, Co <|[[FXlln < Co and [|0aFy|[# < T2 (111)

Proof :
(i) Since we know Proposition 1 and (31) that for any (b,d) € (—1,1)?, the function

2

1 (14 bed +dy) 71
Gpaly, s) = k(1 — d?)r—1 ( . 112
b,a(y,5) = kKo( ) ( —12?1’_6‘1(1+be5+dy)_p%1_1 > (112)
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is a particular solution to equation (7) put in the following vectorial form

9 (w . (113)
Os \ wo Lw — (; *1)13w1 + |wy [P wy — @wg 2yoywe |’

it follows that 9,Go,q and 04Gg 4 are particular solutions to the linearized equation around
Go,q = k(d,-), which is precisely ds(wi,w2) = Lq(w1,ws2) by definition of Ly (100). Since
we have from (112)

2kpe’ o L (1—|—dy)7p3171
WhGodaly,s) = — 1—d%)r1 ,
bGo,a(Y, s) p—l( ) < (1+dy)_1’31_1
1
dar(d, 2ko(1 — d?) 1" —prl
DuCoaly,s) — ( Odn( y) ) _ 20 pl) < éy+d)(1+dy) )1,14)

this concludes the proof of (i).
(ii) We first give the following claim:

Claim 4.3 Consider for some o > —1 and 8 € R the following integral

B 1 (1 - y2)a
1) = /1 T dyp™

Then, there exists K(a, 3) > 0 such that the following holds for all d € (—1,1),
(i) ifa+1—B>0, then + < I(d) < K,

(i) if a +1— 3 =0, then + < I(d)/|log(1 — d?)| < K,

(iii) if a +1— 3 <0, then + < I(d)(1 — d*)~(e+V+8 < K.

Proof: Since I(d) is continuous, positive and even, it is enough to show the desired estimate
as d — —1. Note first that (i) follows from the Lebesgue theorem. For (ii) and (iii), we

perform the following change of variables y =1 + d+lz and write
—2d
(14 d)eti=68 /dJrl d+1 2%
I(d)=—"——— 2 @ dz. 115

In the case (iii), we just use the Lebesgue theorem to see that I(d)(1 4 d)~(@+D)+F
29 [° 1+ —“—5dz. In the case (ii), note that the integral in (115) behaves like 2¢|log <d+1> |
to get the result and conclude the proof of Claim 4.3. |

Using (46) together with the definition of F¢ (110) and straightforward computations,
we see that for A\=1o0r 0,7=1or 2 and |[d| < 1,

1

_I2\p—1 )

Py < o= 0, Fi ()| < C%
(14dy)p=T (Lrdy) 7T

1 P B

8Fd, < Cm’ 82 Fd. < C%

|04 )\,z(y)| = (1+dy)% ‘ dy A,z(y)| hS (1+dy)%+1
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Using this and Claim 4.3, we see that the upper bounds in (111) holds. For the lower
bounds, we just write from Lemma 2.8

1
d d d
X = [[EX o = a!\%(ﬂ,l)llno-

Since we see from (110) that Ty(Fy{}) = 1 —dy and T4(Fg,) = y, we get the lower bounds
in (111) holds. This concludes the proof of Lemma 4.2. [ ]

4.3 Nonnegative directions of L) and corresponding projections for L,
Let us now find the eigenfunctions of L} associated to the eigenvalues A = 1 and A = 0.

Lemma 4.4 (Eigenfunctions of L} associated with the eigenvalues A = 1 and
A=0)

(i) (Existence) For all |d| < 1 and A € {0,1}, there exists Wil € H continuous in terms
of d such that L} (Wf) = /\W)C\l where

1— 12 y+d
W1d,2(?/) = Cl(d)—iﬂv Wéi,z(y) = Co(d)—iﬂa (116)
(1 +dy)r- (1+dy)r-
Wf\i,1 1s uniquely determined by
p+3 8 ro
—Lr+r= <)\—p_1>r2—2yré+p_11_y2 (117)
with re = W)‘i? and the C function cy(d) > 0 fized by the relation
S(WH, FY) = 1. (118)
(ii) (Orthogonality) For all |d| < 1 and X € {0,1}, we have p(WZ, FL ) =0.
(i7i) (Normalization) There exists Cy > 0 such that for A\=1 or 0 and |d| < 1,
C
Wil < Co and 0aW I < 75 (119)

Proof:

(ii) This is a standard orthogonality relation between eigenfunctions of Lgq and L7 for
different eigenvalues.

(i) We restrict ourselves to the proof of existence of (W¢,, W{,) such that (116) and (117)
hold with ¢y (d) = 1. Indeed: S

- The fact that W{ € ‘H will follow from (iii).

- The condition (118) follows directly from (116) and (117) as we show now:

Using (103) and (117), we write

1
o (Wir) = [ ((—ewi+ W) B+ Wia ) oy
1 d
p+ 3> d d ! 8 Wis d
= A——— | Wy, —2yWyy + —— : EY 1 pdy(120
/1 << p_1 A2 A\,2 p—1(1—¢?) 1P (120)

1
[ WaELpdy
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When A = 1, we use (107), Lemma 4.2 (in particular the fact that Ff‘fl = Fldz) and (116)
to write

1
3p+1
¢<W1dvF1d) = /1W1d,2<§ F11+2yF11>de

— cl(d)(l_d2)p”1/1( 1—y? 1 <1+dy+2(p+1)/( 1)>pdy

1 (14 dy)1t (1+dy)r—11?

which shows the integral of a positive function on (—1,1). Therefore, one can fix ¢;(d)
such that ¢ (Wld, Fld) = 1. Using Claim 4.3, we see that for A = 1, the following holds:

0 < ex(d) < C(1 — d?)7T and |c4(d)| < C(1 — d?)rT . (121)
When A = 0, we use (120), Lemma 4.2 and (116) (note in particular that W&Q(y) =

%Fo 1(y)) to write

(i) |
B (1—Cod(j))p1 [/1 ( p+3 Ry 1)( )) (Fgl)zpder/lF&lZ(yp)’dy}
@ ! + 3 8 A2
B (1_d2>p ) /1< ) ( D1 —¢?) +1_(p—1)(y1—y2)> F5f12pdy

14 ! +d)?
= c(d)(1 —d*)7 _1/ WD Ly
P “1(1+dy)rT y

showing a positive integral. Therefore, one can fix ¢y(d) such that ¢ (ng, Fgl) = 1. Using
Claim 4.3, we see that (121) holds.

We now start the proof of the existence of (W/{{l, Wf\l’z) satisfying (116) and (117). The
following claim allows us to conclude:

Claim 4.5
(i) For any ro € Ho, the equation (117) has a unique solution r € Hy (10) such that

17ll7o < Cllrzllo,- (122)

(i1) For any |d| <1, A € R and r € Hy, we have the following equivalence:
L%(r) = Ar if and only if the function e ry(y) is a solution to the equation

8 aw
—11—y

2w = Lw 4 Y(d, y)w — ij?@sw - 2y82 (123)

and ry is a solution to (117).

Indeed, let us first use this claim to conclude the proof of (i) of Lemma 4.4. We first
consider the case d = 0.

Case d = 0. One can check by hand that e=*(1 —y?) and y are solutions to (123) (one
may use (27) when A = 0). Therefore, from Claim 4.5, the function (Wg’l, Wf\)g) where
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WPo(y) =1—y% Wgs(y) =y and W/\ | is the unique solution of (117) with 7y = W/\ 5 18
an eigenfunction of L corresponding to the eigenvalue A.

Case d # 0. From the case d = 0, consider (q1,¢q2) € H where

q2(y) = 1 —y” (vespectively ga(y) = y) (124)

an eigenfunction of L{j corresponding to the eigenvalue A = 1 (respectively A = 0). If we
introduce

w(y, s) = e a(y), (125)
then we see from (ii) of Claim 4.5 that w is a solution to equation (123) with d = 0. If we
introduce W(Y S) = Tqw defined by (33), then we see from Lemma 2.7 and the fact that

1‘%;"2 = (1+d1{:)13%1 8SW that W (Y, S) satisfies equation (123) too. Since by (125), (33) and
(1-d?)»

(124), we see that

1
(1 —d?)p1 <Y+d 1+dY)
W(Y,S) = w ;S —log ———
R C R L
CB2VPET (o 1Y N
_ (1 d)21€>\(Slgm)q2<Y—i—d>:e_/\S(l d)212 (Y—l—d)
(1+dY)r1 1+dY (1+dy)emt* T\ +dY
which is of the form e Qo (Y) with Q2(Y) = ¢o (f:ycil) (1+ dy)_p%‘w‘ with
1—y? d
Q4w) = (1 —d?)———L o (respectively Q4(y) = — 25—,
(1+dy)r1 (1+dy)r1

using (i) of Claim 4.5, we see that (Q¢, Q%) where Q% (y) is uniquely determined by the
equation (117) with ro = Qg is an eigenvalue of L7 for the eigenvalue A. Remains to prove
Claim 4.5 to conclude the proof of (i) of Lemma 4.4.

Proof of Claim 4.5: Note first that (ii) is classical and straightforward from the ex-
pression of L (104).
(i) If ro € Hp and

T2

B s
f:<“p—1) i L Y g (126)

then we write from the Cauchy-Schwartz inequality and the Hardy estimate (21) for all

h € Hy,
1

‘ / 1 fhpl Clrallyallbll 3 +C (le s + |

Clirallrg 11l

Therefore, the linear form h — f_ll f(Wh(y)p(y)dy is in the dual of Ho and [|f|[3;, <
C||7r2||#,- Since Hp equipped with the inner product defined in (109) is a Hilbert space,
there is a unique r € Hy such that

IN

W\\m) I \/—yHm

IN

1
Vh € Ho, <rh>p,= /1 FWh)py)dy and [[r]lny < £l < Cllrallng-  (127)
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Using (109), we see that r is the unique solution of equation (117) and (122) follows from
(127). This concludes the proof of Claim 4.5. [ |

(iii) (Normalization) Since Wil and 8dW§\l71 are solutions to equation (117) respec-
tively with ro = W/‘\{Q and ry = 8dW/‘\172, we see from (i) in Claim 4.5 that for A =1 or 0
and |d| < 1,

WSl < CollWislirg and [10aW Sl < ColloaW s - (128)

Using (46) together with the definition of T/Vlfg, (121) and straightforward computations,
we see that for A =1 or 0 and |d| < 1,

_1 _1

Wi < e g, W < =BT

‘ ,\,2(?4)| > (de)pigl ‘ Y ,\,2(?4)| = (de)pigﬁl
1 1 2 %[—1
oW < U= 52 yyd < o=t
|0a )\,Q(y)| = (de)% ‘ dyy A,z(y)| = (de)%ﬂ

Since we have from this, Claim 4.3 and the definition of the norm in Hy, ||Wf\ig||7-(0 +(1—

d2)||8dW>‘\1’2||HO < Cp, we see that (119) follows from (128). This concludes the proof of
Lemma 4.4. [

4.4 Expansion of ¢ with respect to the eigenspaces of L,

In the following, we expand any ¢ € H with respect to the eigenspaces of L, partially
computed in Lemma 4.2. We claim the following:

Definition 4.6 (Expansion of ¢ with respect to the eigenspaces of L;) Consider
q € H and introduce for A\=1 and A =0

m(q) = ¢ (Wiﬁ q) (129)
where WAd is the eigenfunction of L} computed in Lemma 4.4, and 74 (q) = q_ defined by

¢ = m{(a) F{'(y) + 7§ (0) F§' (y) + 7 (q). (130)

Applying the operator 7§ to (130), we write

() = (@) (FD + mA(@m(FL) + 7 (@)

Since
TU(F) = 0x (131)
by (118) and (ii) of Lemma 4.4, this yields
o1, q-) = (v () = 0. (132)
Therefore, we have
7l(q) e HL = {r eH | nl(r) =nl(r) = o} . (133)



Remark: Note that if ¢ € H?, then 7% (¢) = ¢ (just use (130) and (133)) and Lyq €
H?. Indeed, using the definition of 7¢ (129), (106) and Lemma 4.4, we write 7¢(Lqq) =
10) (Wf\l,qu) =0 (LZWf,q) =9 (/\W)‘\i,q) = M&l(q) = 0. Moreover Wd_(Ff) =0for \=0
or 1 (just use (130) with ¢ = F{ and (131)).

Remark: Note that ﬂf\l(q) is the projection of ¢ on the eigenfunction of L, associated to
A, and that 7¢ (q) is the negative part of gq.

4.5 Equivalent norms on H and H¢ adapted to the dispersive structure

For the proof of the main theorem, we will need to prove in some sense dispersive estimates
on g_ = 7% (g) when ¢ is a solution to (99). In order to achieve this, we need to manipulate
a function of ¢_ (equivalent to the norm ||g_|lx = #(q_, q—)*/? in H?) which will capture

the dispersive character of the equation (99). Such a quantity will be

1
ealq,r) = /1 (=(d, )y + qiri (1 = y?) + qora) pdy (134)

= /_1 (—q1 (Lr1 +9(d,y)r1) + gor2) pdy (135)

where ¢(d,y) is defined in (100). This bilinear form is in fact the second variation of
E(w(s)) defined in (141) around (d,y) (13), the stationary solution of (7), and can be
seen as the energy norm in H¢ (space where it will be definite positive). More precisely,
we have the following:

Proposition 4.7 (Equivalence in H? of the H norm and the energy norm) There
exists Cy > 0 such that for all |d| < 1, the following holds:
(i) (Equivalence of norms in H%) For all ¢_ € H%,

1 2 2
Co o=l < ¢a(q—,q-) < Collg-|1% -

(ii) (Equivalence of norms in H) For all ¢ € H,

o Nl < (|mi@)] + [méta)| + veaTamsa)) < Colaly

where pq is given in (134) and q is expanded as in (130).

Remark: Note that ¢4 is not positive in H (for example, ¢4((1,0), (1,0)) = — [ ¢pdy <
0). In particular, its quadratic form cannot be considered as a norm in H. However, we
will show that it is definite positive on the space H%, uniformly for |d| < 1, which gives
the control of the norm by ¢, (independent of d). A remarkable fact, is that the constant
Cy is independent of d. In the following, we reduce the proof of Proposition 4.7 to the
proof of the fact that the following approximation of ¢4 defined for € > 0 is nonnegative:
1
2(p+1
Pac(q,7) = palg,r) — 6/ (@11 (1 —y?) + (I()pl))qm + qar2) pdy (136)
—1 -
2(p+1) (1- )
(p—1)* (1+dy)?

- /1 @ (—(1 —€)Lry + (—(1 —e)y(d,y) —

-1

) ) pd(as)

1
-9 / dorapdy.
-1
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We claim that the following lemma directly implies Proposition 4.7:

Lemma 4.8 (Reduction of the proof of Proposition 4.7) There exists ¢ € (0,1)
such that for all |d| <1 and q— € HL, @a.e, (9, q-) > 0 where @q ., is defined in (136).

Remark: One could choose other approximations of ¢4, but our choice (136) is particu-
larly well adapted for the proof, as it gives a simple form after the Lorentz transform in
similarity variables given in Lemma 2.6. See the proof of Lemma 4.10 below.

Indeed, let us first assume Lemma 4.8 and prove Proposition 4.7.

Lemma 4.8 implies Proposition 4.7
Proof of (i): For the upper bound, just note that since we easily have

(1-d*)(1-y%
(14 dy)?

<1, hence |¢(d,y)| <

1 — g2

we see from the definitions of ¢4 (134) and the Hardy-Sobolev estimate (21) that for any
|d| <1 and ¢ and r in H,

q1

V1 =2

For the lower bound, fix € = ¢y defined in Lemma 4.8, take |d| < 1, ¢_ € H% and write

1

17—1/2 < CollqllnlIrl#- (138)

2
L3

lealq, r)l < llgllmllrlln +C

2
L3

1
2(p+1
0< Pae (q-q-) = ealqg—,q-) — 60/ <q,1’2(1 — )+ o+ (]() 1)3613,1) pdy.
_1 -

(139)
Therefore,
Lo 2 2 2 2
¢ (q-,q-) > aoeo/ (210 =y*) + ¢ 1 + ¢ 2) pdy = ageollq— |7
—1
for some positive o which is the conclusion of (i).
Proof of (ii): Using the definition of ¢ (102) and (130), we write
2 2
lal = ola,0) = (w4(@)) " 1FUG + (wd(a)) I F G + lla- e
Using (111), we get the following equivalence of norms:
1 1
= lally < 37 |m@)| + -l < C lalle. (140)
A=0

Since ¢_ € H? by (133), we can use (i) to conclude. This concludes the proof of Proposition
assuming Lemma 4.8. |

Let us now prove Lemma 4.8.

Proof of Lemma 4.8: We proceed in 3 parts:
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- In Part 1, we find a subspace of H of codimension 2 where ¢4 . is nonnegative.

- In Part 2, we find a plane in H, where ¢4, is negative and which is orthogonal to
H® with respect to Pde-

- In Part 3, we proceed by contradiction and prove that ¢, is nonnegative on HE.

Part 1 : ¢4, is nonnegative on a subspace of codimension 2
We claim the following:

Lemma 4.9 (¢4 is nonnegative on a subspace of codimension 2) There ezists
e1 > 0 such that for all |d| <1 and € € (0, €1], a, is nonnegative on the subspace

1 1
B={oen | [ Taawwir= [ Tawwwa=of )
where T_q is defined in (33).

Proof. Define from (26) €, = min (1,W> > 0 and fix € € (0,€1]. We consider
PEREE

(u1,u2) € Fa, and write from (137)

pac(uu) = [l (~(0—Lu+ |~(1 - v(dy) — B D [ wn) py)dy
+ (1=¢) [u3p(y)dy.
(142)
If Uy = 7_4uy, then uy = 73U; and we have from (33) and (42),
_ @ d2)P1 with » = Y Hd
ui(y) = (1+dy)p : Ui(z) with z = L+ dy’
Loa(y) + v(d praly) = (dz)p<w1<z>+2(p_+ oia)).
(1+ dy) 1
p(y)dy = (L+dy) Pt ,; p(z)dz,
(1 —d?)r=
0 = /Ul(z)p(z)dz:/Ul(z)z,o(z)dz. (143)

Therefore, we see from (142) and Lemma 2.4 (use (143)) that

Pde(u,u) = /_11 U ((1 —€) LUy — <2§f_+11) + Z(?pflg e> U1> p(z)dz

1
S / Bply)dy.

-1

A\

1 1
(-G -+ on=2200) [ vty -0 [ oty o0

since € < €1 hence —(1 —€)ya + (71 — ?I(f;)lg) €) > 0and 1 —e > 0. This concludes the proof

of Lemma 4.9. [
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Part 2 : ¢, is negative on a plane orthogonal to H

We need to find Vod’6 and Vld’6 linearly independent in H such that cpdﬁ(V)ii “.r) =0 for
any r € H%. Since we know from the definition of H% (133) that

vreHY, (W r) =ad(r) =0 and p(WE,r) = nd(r) = 0,
a convenient way to conclude is to find Vld’6 and Vod’6 such that

VgeH, d(Wi q) = pac(Vi™, q) and (W q) = 0ac (V< q). (144)

Then, we will show that ¢4 is negative on the plane spanned by Vld’6 and Vbd’e. Consider
e > 0 going to zero and take |d| < 1. We claim the following:

Lemma 4.10 There ezists ea > 0 such that for all € € (0, €3] and |d| < 1:
(i) There exist continuous functions V/\d’6 for A € {0,1} such that (144) holds.
(i) Moreover, it holds that

vt - (i) - @)

Ssu
b Wiy (y)

|d|<1

— 0 (145)

Ho

+ | ) + 2P ()|
0

H

as € — 07 where a1 (d) is continuous, ag > 0, Wf{z and F¢ are defined in (116) and (110).
(iit) The bilinear form @q. is negative on the plane of H spanned by Vbd’e and Vld’e.

Remark: Note that in this lemma, we find explicit solutions for V)fl *“ which was not the
case for KAV and NLS (see [13] and [14]).

Proof of Lemma 4.10: We proceed in 3 steps:
- In Step 1, we find a PDE satisfies by V/\d *“ and transform it with the Lorentz transform
in similarity variables defined in (33).
- In Step 2, we solve the transformed PDE and find the asymptotic behavior of V/\d “ as
€ — 0, uniformly in |d| < 1, which gives (i) and (ii).
- In Step 3, we use that asymptotic behavior to show that ¢4, is negative on the plane
spanned by Vld’6 and Vbd’e, which gives (iii).

Step 1: Reduction to the solution of some PDE
(i) From the definitions of g (137) and ¢ (103), we see that in order to satisfy (144),
it is enough to take
d7
Vis =Wia/(1—¢) (146)

and to prove the existence of V;\i 1 solution to

2p(p+1) (1-d?
(p—1)? (1+dy)?
In the following, we use use the Lorentz transform (33) and transform this equation to

make it ready to solve using the spectral properties of £ stated in Proposition 2.3. More
precisely, we have the following:

—(1- e)EV;{’f + <—(1 —e)(d,y) — e ) V/\dj = —EW/{{l + Wil. (147)
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Claim 4.11 (Reduction to an explicitly solvable PDE) Consider VAd’f and introduce
~d,e '
GV defined by

Wy = TaVif (148)
where T_q is defined in (33). Then,
(i) V/\d’f is a solution to (147) if and only if ﬁf’el s a solution to the equation

2
(-aeii o+ (- + PR o) = i =

and vy, = —% is defined in (26).

(ii) The linear form h — f_ll f/{lhp is continuous on Ho and for some Cy > 0, we have

T (LWs, - Wi,) (149)

vd € (=1,1), [l < ColWH|ln < C§.

Proof:
(i) Using (33) and Lemma 2.6, we see that
1
d,e 1—d*)rT d,e y+d
Viily) = ((1 . 121@)‘7’1(2) with z = T dy (150)
y P
d,e d,e (1 B dQ)p%_'_l d,e 2(]9 + 1) d,e
EVA,1(?J)+¢(day)V>\,1(Q) = (1+d )%_ﬂ U>\,1(Z)7L p—1 U)\71(Z) :
y)7-
Since (11__d52)2 = (114:;;)2 and 1 = _2(511) (see (26)), we see that equations (147) and (149)

are equivalent.

(ii) Note from (33) that for all V; and V5 in Lg,

! _ g2
/1‘/1()/)‘/2( Y)dy = / 11_(2 1(y)v2(y)p(y)dy (151)

where v; = 7_,V;. Therefore, using (149) and (151), we have for any h € Hy,

1 1
/ f>\ p(z)dy = /1(£W)C\l,1 - W,{l,1>HP = —/ (%Wf\i,layH(l - y2) + W)C\IJH)P

where H = 7jh. Therefore, using the continuity of 7; in Hy (see Lemma 2.8) and the
bound on ||[W¢|# (119), we see that

'/ {E )dy’ < WEillrol H llrto < CollWillnllRllrg < CFlIAlIo-

which closes the proof of Claim 4.11.

Step 2: Solution of equation (149) and asymptotic behavior as € — 0
We prove (i) and (ii) of Lemma 4.10 in this step.
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Proof of (i): Note first that since
Ta(z) = F, (152)

by definition of 7y (33) and F§ (110), we have from the definition of f¢ (149), (151), the
expression of ¢ (103) and Lemma 4.4: for all |d| < 1,

1 1
| ez = [ (eWhio) - Whe) B @swdy = -6 (153)
-1 1

We have the following claim which follows directly from Proposition 2.3:

Claim 4.12 (Solution of equation (149)) Consider
n=0

where hy, are the eigenfunctions of L defined in Proposition 2.53. Then, for any € € (0, %),
the following equation

2(p+1)
(1= Lo+ (o + e =1 (154)
has a unique solution in Ho given by
- f
v = 2T hn (155)

n=0"Tn — 71+ 6((1)—1)2 - ’Yn)
where v, < 0 are the eigenvalues of L introduced in Proposition 2.3.

From this claim and (ii) in Claim 4.11, we see that for all € € (0, 3), |[d| <1 and A=1 or
A = 0, equation (149) has a solution ﬁf’i. Using (i) in Claim 4.11, we see that equation
(147) has a solution V/\d’f given by (148), which closes the proof of (i) of Lemma 4.10.

Proof of (ii): )
When A = 1, we see from (153), (29) and (27) that (f{), = f,ll fd(2)zp(2)dz = 0.
Therefore, we see from Claim 4.12 and the definition of f{ (149) that for ¢ small enough,

rd
sup Hfifi — v < CEHfld’EHH’ < Cpe where v*(2) = Z (fl)” hin(2)
ldj<1!l ™ Ho 0 vy M
is the unique solution of
1
Lo(z) — mv(z) = fi(z) with / v(z)zp(z)dz = 0. (156)
~1
Therefore, we see from (148) and Lemma 2.8 that for € small enough,
sup Hfo’f -V " < Cye, (157)
0

ld]<1
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where V* = Tyv* is the unique solution of

1
LV (y) + $(d,y)V(y) = LW, — Wi, with /

» V(y)FSfl(y)(p(y)dy =0

1+ dy)?

(note that this equation is the version of (147) with e = 0 and use (151) together with
(152) to get the orthogonality condition). Since

—LWiy + Wi = LWy + 9(d, y) Wi, and LES, +¢(d,y)Fg, =0

(use the fact that L (W{) = W and Lq(F{) = 0 from Lemmas 4.4 and 4.2), we see from
uniqueness that V*(y) = =W (y) + a1 (d) F§, (y) where

p(y)
wd d 7d
/ 12y )(1+d y// 1+ dy)2™
is continuous. Thus, the first identity in (145) follows from (157), (146) and (116)
When A\ = 0, we see from (153), (29) and (27) that (fg) f fd(2)zp(2)dz = —1.

Therefore, since hi(y) = c1y by (27), we see from Claim 4.12 and ( i) in Clalm 4.11 that
for € small enough,

1
o = ol = Cohere (B — 1) [1) v20(y)dy 0w

~d, a2
Hvoi( )+ ?Z‘

(note from (26) that v = —% < 0). Since the estimate for V/\QE follows from (146)
and (116), we see that (145) follows from (158), (148) and (152). This closes the proof of
(i) and (ii) in Lemma 4.10.

Step 3: Sign of ¢, on the plane spanned by Vld’E and VOUZ’6

Proof of (iii): We finish the proof of Lemma 4.10 here, by proving that ¢gq . is negative
on the plane of H spanned by Vld’6 and Vod’e. It is enough to find €4 such that for all
0<e<e and|d <1,

@d’e(vlje’ Vljé) SOd,e(Vlj€a VOZ,E)
a,c(VI" Vo) wae(Vg Ve )

)

0ac (Ve Vi) < 0 and > 0. (159)

In the following, we will estimate g0d76(V/\d “, Vf “) as € — 07, uniformly for |d| < 1, using
the asymptotic behavior of V/\Ul’6 given in (145).

- First, using (144) and the expression of ¢ (103), we write gpd75(V)fl’€, Ve = gb(V)fl’ﬁ, W
for A, € {0,1}. Since ¢(F¢, Wl‘f) = 0y, by Lemma 4.4, taking A = 0 and p € {0,1}, we
see from (145) and the continuity of ¢ in H that

sup enpde(VOd6 Vde) + agéou‘ —0ase—0. (160)

|d|<do

Now, taking A = 1 = 1, we see from (145) that

sup

_1d
Sup P (VP V) — <W1d, ( WVflV;’z ))‘ —0ase— 0. (161)
>ao )
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Using (103) again together with (117), we write

o (Wt (2 )) = [ watw) (W80 = W )+ Wi )l

1,2
1 d
_ d p+3. 4 d’ 8 Wis(y)
= /_1 Wis(y) (p— 1W172(y) +2yWis (y) — 11—y p(y)dy
1 Wd ( )2 1
1,2\Y 8
= / —= <p+ 3 -1 2> p(y)dy —/ Wi (y)* (yp(y))'dy
-1 P Yy -1
4 ! p(y)
= ——— [ Wi (y)? dy. 162
-1/, 1,2(?4) 1— 2 Y (162)
Using (160), (161) and (162), we see that
P (VEVEY) ~ =22 and (163)
€

(VIS VE) a4, V) dag [N )
de 1rde de vrdey | ™ Wis(y) 5dy
de,E(vaVO’) Spd,E(‘/O’7‘/O7) G(p—l) ' 1_y

as € — 0 uniformly for |d| < 1. Hence, since ag > 0, (159) follows for € small and positive

-1

and |d| < 1, which implies that ¢4, is negative in the plane spanned by Vod’E and Vld’e.
This concludes the proof of Lemma 4.10. |

Part 3: End of the proof of Lemma 4.8:
From Lemmas 4.9 and 4.10, we define ¢ = min(ey, €2) € (0,1). We will now prove by
contradiction that (g, is negative on H< for all |d| < 1.

From Lemma 4.10 and (144), for all |d| < 1 and € € (0, €], we write the definition of
H? (133) as follows:
He = {7’ eH | pa (vair) = 0 for all A € {0, 1}} . (164)
We proceed by contradiction and assume that
there is r € H% such that ¢ (r,7) < 0. (165)
Since the determinant in (163) is not zero, we see from (164) that r ¢ span (Vld’e, Vod’€>.
Therefore, the vector subspace
E; = span (Vld’e, Vbd’e, 7")
is of dimension 3. Hence, since the subspace Ea (141) is of codimension 2, there exists a
non zero u € B N Esy.
On the one hand, since u € Fs, we have from Lemma 4.9 that
©d,e (u,u) > 0. (166)

On the other hand, since ¢4 ¢ is negative on E; by (iii) of Lemma 4.10, we must have from
(164) and (165),

©de (u,u) < 0.
This contradicts (166). Thus, (165) does not hold, and ¢4, is nonnegative on H<. This
concludes the proof of Lemma 4.8 and Proposition 4.7. |
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5 Trapping near the set of stationary solutions

We prove Theorem 3 in this section. Note that in this section, we work in the space H,
which is a natural choice. Indeed, if (w,dsw) € H, then the Lyapunov functional E(w)
(15) is well defined, thanks to the Hardy-Sobolev inequality of Lemma 2.2.

We proceed in 3 steps, each of them making a separate subsection.

- In subsection 5.1, assuming that (18) holds for some s* € R, d* € (—1,1), w* = +1
and €* > 0 small enough and independent of d*, we use modulation theory to introduce a
parameter d(s) adapted to the linearized operator of equation (7) around the stationary
solution x(d, -) (see section 4).

- In subsection 5.2, under the a priori estimate that ||(w(s), dsw(s)) — (k(d(s),-),0)|lx
is small, we project the linearized equation of (7) around k(d(s),-) and derive from the
energy barrier (17) the smallness of the unstable direction with respect to the stable.

- In subsection 5.3, we use the two first steps and prove Theorem 3 by showing the
convergence of (w(s),dsw(s)) to some K(dx, ) as s — oo in the norm of H.

5.1 Modulation theory

In this section, we use modulation theory and introduce a parameter d(s) adapted to the
dispersive property of the equation (7) whenever (18) holds. We claim the following:

Proposition 5.1 (Modulation of w with respect to x(d,-))

There exists €1 > 0 and K1 > 0 such that if (w,0sw) € C([s*,00),H) for some s* € R is a
solution to equation (7) which satisfies (18) for some |d*| < 1, w* = +1 and €* < €1, then
the following is true:

(i) (Choice of the modulation parameter) There exists d(s) € C'([s*,00),(—1,1))
such that for all s € [s*,00),

70 (a(s)) = 0 (167)
where 7 is defined in (129), ¢ = (q1,qz2) is defined for all s € [sg,0) by

( g%(;)ﬂ > - ( g(d(sm) > + ( Z;Ezg > : (168)

hog (11950 ) — 10w (155 )|+ late e < e (169)

(ii) (Equation on ¢) For all s € [s*,00):

5 ()= () (S ) 20 (0747) o

whereLd<q1 ) = <q2 p+3 / )7
7 Lgr +(d,y)a — 5502 — 2y,

fd(ql) = ‘H(d’ ) + qﬂpil("q‘(dv ) + QI) - K“(da ,)p - pl“f(dv ')pil(JL
L, (d,) and k(d,-) are defined respectively in (8) and (41) and (13).

Moreover,

(171)
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Remark: We recall from (129) that ¢ is the projection on F¢ (110), the null eigenspace
of Lg span by (04r(d,y),0) by (110) and (114). In particular, the modulation term (i.e.
containing d’(s)) in (170) is proportional to Fy.

Proof of Proposition 5.1:
Up to replacing w(y, s) by —w(y, s), we can assume that w* =1 in (18).
(i) In (18), we see that there is a parameter d* € (—1, 1) which makes the distance between
the solution (w(s*), dsw(s*)) and a particular element of the family of stationary solutions
{(k(d,y),0) | |d| < 1} small. Now, we would like to sharpen the decomposition and find
for all s € [s*,0%] for some o* > s* a different parameter d(s) close to d* which not
only makes the difference between (w(s),dsw(s)) and k(d(s),-) small, but also satisfies
the orthogonality condition (167).

From (129), we see that condition (167) becomes ® ((w(s), dsw(s)),d) = 0 where & €
C(H x (—1,1),R) is defined by

B(v,d) = ¢ (v — (w(d, -),0),Wg> (172)

and ¢ and W are given in (103) and Lemma 4.4. The implicit function theorem allows
us to conclude. Indeed,
- Note first that we have

®((k(d",-),0),d") =0. (173)

- Then, we compute from (172), the expressions of Jgk(d,y) (114) and F¢ (110) and the
orthogonality relation (118),

Dy®(v,d)(u) = ¢(u, W) for all u € H,

0a2(v,d) = —0 ((Dan(d, ), 0, W) + 6 (v = (n(d.),0), W)

= (p_j(ﬁf_cp) +6 (v (5(d,),0), 078 .

Using the continuity of ¢ in H, the bound (119), and the fact that

1 1+d;
¥,y € (~1,1), [n(d1,) = Ko, ey < Colty — bl where 0 = 3 tog (1541) (7

(see below for the proof of (174)), we see that if

14d 14 d* .
hog (155) —tow (155 )|+ o= (s, .0y <

for some €; > 0 small enough independent of d*, then we have

Co
1—d?

|Dy®(v,d)|| < Co and 0 < < 0;®(v, d) < (175)

1
Co(1 —d?)
Now, if we introduce ¥ € C'(H x R,R) defined by

V(v,0) = ®(v,d) where d = tanh 0,
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then, since § = 3 log <i+j> and tanh’(f) = 1 — tanh(6)?, we see from (173) and (175)
that the implicit function theorem applies to ¥ and we get the existence of d(s) for all
s € [s*,0%) for some 0* < co. Assume by contradiction that o* < +o00. Applying the
implicit function theorem around (v,d) = ((w(sn), dsw(sy)),d(sn)) where s, = o* — L,
and the uniform continuity of (w(s), dsw(s)) from [, — 1y, o« + 10| to H for some 79 > 0,
we see that for n large enough, we can define d(s) for all s € [sp,s, + €] for some
€0 > 0 independent of n. Therefore, for n large enough, d(s) exists beyond o*, which is a
contradiction. Thus, 0* = oo and (i) is proved.

Remains to prove (174).

Proof of (174):
Case d; = 0: Since k(dz,-) = Tg,ko by (33),we see from Lemma 2.8 that for all dy €

(—=1,1), |&(dz, )lHe < lollH, < C. Therefore, ||k (dz, -) — ko, is a bounded C* function
1 1+d
of 6, = 3 log ﬁ which is zero when dj is zero. This directly implies (174).
B 2

Case d; # 0: Using the remark after Lemma 2.6, we see that x(dz, -) —x(d1, ) = Ty, (k(da*
(—=d1)) — ko). Using the continuity estimate of 7y, in Hy (see Lemma 2.8) and the case
d1 = 0, we see that

Ir(di,-) = w(da, ) I3 < Collr(da * (=di),-) = rollry < Col]
1+ (dg * (—dl))
1-— (dg * (—dl))

do — dy tanh 69 — tanh 6;
2 (A1) = T = T tanh 0, tanh g, (R0 =00,

we see that § = 6 — 6y, which concludes the proof of (174) and (i) of Proposition 5.1.

~ 1
where 0 = 3 log (
from (32)

), or equivalently, tanhf = dy * (—dy). Since we have

(ii) is a direct consequence of the equation (7) satisfied by w put in vectorial form:

osw = v (176)

2(p+1) 1 p+3
w+ | wP™rw — ——v — 2ydyv 177

and the fact that (k(d,-),0) is a stationary solution of (176)-(177), that is k(d,-) is a
solution of

Osv = Lw—

2(p+1)
(p—1)?

Lk(d,-) — k(d,-) + |k(d, )P k(d,-) =0 (178)

(see Proposition 1).
Indeed, since we have from (168), the definition of £ (8) and f4(q1) (171)

w(y,s) = q(y,s)+ r(d(s),y),
Lw(y,s) = Laqi(y,s)+ Lr(d(s),y),
lwlPw(y,s) = falqr) + #(d(s), y)? + pr(d, »)" ' q1(y, 5),

and from (176) and (168) v = J;w = g2, we see that equation (170) follows immediately
from (176)-(178). This concludes the proof of Proposition 5.1. [ ]
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5.2 Projection on the eigenspaces of the operator L,

Given s > s* and following the previous section, we make in this subsection the following
a priori estimate:
lg(s)lln <€ (179)

for some € > 0. From (167), we will expand ¢ according to the spectrum of the linear
operator L as in (130):

a(y, 8) = ar()F{) (y) + - (y, 9) (180)
where
ai(s) = 77(q), ao(s) =5 (q) =0, a_(s) = /pa (4—rq-) (181)
and

g = < g:; ) =74 (q) =n¢ ( ‘q]; > . (182)

From (180) and Proposition 4.7, we see that for all s > s,

() < la-(s)ln < Coa(s),
(183)
o (laa(9)[+a(s) < la(s)ll < Co (Jen(s)] + a—(s))

for some Cy > 0. In the following proposition, we derive from (170) differential inequalities
satisfied by a1(s), a—(s) and d(s):

Proposition 5.2 There exists €2 > 0 such that if w a solution to equation (7) satisfying
(167) and (179) at some time s for some € < €2, where q is defined in (168), then:
(i) (Control of the modulation parameter)

d'| < Co(1 —d?)(ar®+a_?). (184)
(7i) (Projection of equation (170) on the different eigenspaces of L;)

lar —a1| < Co(ar® +a?), (185)

1 ' 4 [ p 3/2
R +-a %) < —— 2 dy + C, 2402 186
( +2a > ) _1q_721_y2 Y+ Co(an” +a_?) (186)

for some R_(s) satisfying

IR_(s)| < Co(ar® + a_2)"2" where p = min(p, 2) > 1. (187)
(iii) (Additional relation)
d [ 4 i P 2
— < ——a_ . 1
Is /_lqu_ £ +C'0/_1q_,21_y2 + Coay (188)

(iv) (Energy barrier) If moreover (17) holds, then

a1(s) < Coa—(s). (189)
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Remark: Here, (186) and (188) are coming from the relations we use in [17] to bound
uniformly (w(s),dsw(s)) in H' x L?(—1,1). Identities (186) and (188) together will be
fundamental to control the dynamics of the infinite dimensional part ¢_ of the solution,
and allow us thus to overcome the difficulty coming from the non self-adjoint character of
the linear operator Lgy. Such a use of conservation laws to control the dynamics is in the
same spirit as the case of NLS (Viriel identity and the mass ejection law; see Merle and
Raphaél [15] and [16]).

Proof of Proposition 5.2: Before the proof, let us give the following nonlinear estimate:
Claim 5.3 (Nonlinear estimates) For ally € (—1,1),

|fd(s) (‘h (yv S))| < mM (K‘(d(s)v y)p_2|Q1 (ya 5)|2a CO|q1 (ya 3)|p) ) (190)

Fas)(@1(y,9))| < mM (k(d(s),y)"*|q1(y, 5)*, Colar (y, s) ") (191)

where mM = min if 1 < p <2 and mM = max if p > 2, and

Q1 |,€(d ) +q1‘p+1 ,{(d .)P+1
f — / d /: 9 o 9
a(qr) ; fa(q')dq . e

—w(d, Va1 — Snd, )" gt (192)
Proof: Introducing & = q1/k(d(s),y) and considering the cases where |£| < 1 and |{] > 1,

we directly get (i). Since (ii) follows from (i) by integration, this concludes the proof of
Claim 5.3. ]

(i)-(ii) We proceed in 2 steps:

- In Step 1, we project equation (170) with the projector 7r§ (129) for A\ =0and A =1
and derive the smallness condition on d’ (184) and the equation satisfied by a; (185).

- In Step 2, we write an equation satisfied by (¢—1,¢—2) which is the difficult part
in this non self-adjoint framework. We claim that (186) follows from the existence of the
Lyapunov functional E(w) (15) for equation (7). Here, the Lyapunov functional structure
will be revealed by the quadratic form ¢g (134).

Step 1: Projection of equation (170) on the modes A =0 and A =1
Projecting equation (170) with the projector 7r§ (129) for A =0 and A = 1, we write

w00 =@y +ai (G ) -aemt () s

- Since a(s) = 7 (q) = ¢(W¢, g) by (181) and the definition of 7¢ (129), we write
ah\(s) = 78(0sq) + d'(s)$(0aW5, q)
Using (119) and (183), we get

Co

—sld|(laa] + o). (194)

[ (@:0) - 0(s)]| <

- Using (i) of Lemma 4.4, the definition of 7¢ (129), the duality relation (106) and (181),
we write

w4 (La(@) = ¢ (WE, La(@)) = 6 (L3 (W3) 1) = 26 (W5.0) = And(@) = Aan(s). (195)
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- Using (46), the definition of Wf\l’Q (116) and (121), we have
¥(d.y) € (=1,1)%, [W{s(y)| < Cr(d,y) (196)

Therefore, using the definitions of 7§ (129) and ¢ (102), and Claim 5.3, we see that

(G )=/
¢ r d 197
Tr)\<fd(Q1) =%/, (d,y) | falqr)| p(y)dy (197)
! 1
S CO/1/<&<d73/)p—1q1<y78)2pdy+005{p>2}/1n(d’ y)‘ql(yjs)’ppdy
< C'OH(hHigﬂHl-i(day)Hi;l + 005{p22}||Q1”1£5+1||/£(d, y)||L§+1 (198)

where d¢,>0) is 0 if 1 < p < 2 and 1 otherwise. Therefore, using (49), (197), (198), Lemma
2.2, (179) and (183), we get

0 1
™ ( falqr) )' = C/_1 k(d,y) [ fala)| p(y)dy. < Co (ar(s)® +a—(s)?) . (199)

- Using (114), (110) (131) and (121), we write

8H(d, ) . 2K _ %%
(D ) et () = e (aw)

- Using (193), (194), (195), (199), (200) and the fact that ap = afy = 0 by (181), we get
for A\=0,1

2/’3:0 / CO ’ 9 9
2 T
(p—l)(l—d2)|d| = 1_d2\d\(|a1|+a,)+00(a1 +a_?),
C
ai(s) = an(s)] < Tl (aal +a-) + Co (en +a-?).

Using the smallness condition (179) and (183), we obtain (184) and (185) for e small
enough.

Step 2: Differential inequality on a_
In the following Lemma, we project equation (170) on the negative modes, which gives
a partial differential inequality satisfied by ¢_:

Claim 5.4 (Preliminary estimates) There exists e3 > 0 such that if € < e3 in the
hypotheses of Proposition 5.2, then

-~ Lata) (. )H < ol +a 2 (200)
H
1
©d ((J—,wd ( ;d(ql) >> —/1(]2fd(Q1)de‘ < Colan®+a-2)*,  (202)
1 1
'/ g falq)pdy — j/ fd(@l)ﬂdy‘ < Cp(an? +04—2)2 (203)
—1 S -1

where Fy(q1) is defined in (192).
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Remark: Note that the term in (203) cannot be controlled directly and has to be seen
as a time derivative.

Assuming now Claim 5.4, we are able to conclude the proof of the differential inequality
(186) satisfied by a_.

Proof of (186) assuming Claim 5.4:
In fact, the whole proof is based on the fact that the derivative of a2 is related to the
quadratic form ¢g(q—, Lq(q—)) defined in (134), which inherits the properties of the Lya-
punov functional defined in (15) (and give an almost self-adjoint behavior).
Note from the definition we took for ar— (181) that

a—(s)® = galg-(s), 4-(s))

Using the definition (134) of ¢4, we have by differentiation

1 1
a-la- = pi(g-,0sq-) — 5d () / 1 Ot (d,y)q” 1 p- (204)

Using the Holder inequality, the Hardy-Sobolev estimate of Lemma 2.2 and (183), we write

1
‘/ Da(d, v)a> 1p

< ||adw<d,y>||L%1||q7,1||ig+1 < Collda(d: )| psy o ()% (205)
P

b*@

C/(1 + dy)? for all (d,y) € (—1,1)? by (41), using Claim 4.3, we see

Since |adw(da y)‘ <
| et < C/(1— d?). Therefore, using (204), (205), and the bound (184)
p

that [|94¢(d, y)|
on |d'(s)|, we get
o?
—d? ~
From (206), the continuity of ¢4 (138), Claim 5.4, (183), we write

la— .o — pa(q-,05q-)| < Co\d’\ < Op(ar® + a_?)% (206)

d 1
oo~ pala- Lata ) - 4 [ Falaps

¢ <q,3sq — La(g-) == < (J)”d(m) >>‘

Colar® +a_232 ¢ ||lg_|ln(ar® + a_?)3? < Co(ar? + a_2)*/2. (207)

IN

Co(ar? + oz,?)?’/2 +

IN

On the one hand, using the expressions of Ly (171) and ¢4 (135), we have

q-,2 qg-.1
— L — = b , El
#a(9-rLalg-)) = ¢d (( Lq 1 +9(dy)g1 — g o —2yqd , ) ( -2 ))

1
= _/1q’2 (Lg—1 +v¥(d,y)q-1) pdy

1
+3
+ / <£q_,1 +(d,y)g-1 — %q_g - 2yq’,2> q-2p(y)dy

-1

pto 3 ! ’ p+3 1
= — q apdy — /ly(tﬁ,z) pdy = — 7 lqz,zpder 5 (p—yp)dy

4 /1 2 /1 > Yp } 4 [ty p
p—l[—1 ? 1 =y p—1J7 -2 (208)
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Using (207) and (208), we see that estimate (186) holds with

1
R (s) = - / Fula)pdy, (209)

Using (ii) of Claim 5.3, Lemma 2.2 and condition (179) (considering first the case p > 2
and then the case 1 < p < 2), we see that (187) holds. Remains to prove Claim 5.4 to
conclude the proof of (i)-(ii) of Proposition 5.2.

Proof of Claim 5.4:
Proof of (201): We first project equation (170) using the negative projector 7¢ introduced
in Definition 4.6:

w0 = (Lag) +xt (Y=ot () e

- We will use the notation (182) here. Differentiating (180) and using the expansion (130)
with 0sq, we write

Osq(y,s) = ol (s)F{(y) + on(s)d (s)0aF{ (y) + Bsq—(y, 5), (211)
Osq(y,s) = w1 (9sq) F{(y) + m§ (0sq) Fi (y) + 7% (9sq) - (212)

Making the difference between (211) and (212) and using (111), we get

[ @.0)| + 121

[ 0c0) - 209, < o (| 0u0) ~ i) R

Using (194), (167) and (184), we obtain

(NI

| 0.0) = 0w 9)], < Colad +a-2)5. (213)

- Applying the operator Ly to (180) and using the fact that LyF = F{ (see Lemma 4.2),
we obtain
Lagq = a1(s)F{ + La(q-) - (214)

Since 7 (F') = 0 and 7 (L4(q_)) = La(q_) (see the remark after Definition 4.6 and note
in particular that Lg(g—) € H? because ¢_ € H%), we get from (214)

©? (La(q)) = La(q-)- (215)
- Using (114), (110) and the remark after Definition 4.6, we write
Oar(d,y) 2K _
d ak\a,y __ _ g1l d (pd) _
F<0 ) po1t =) w (r) =o. (216)

Using (210), (213), (215) and (216), we write

0
fa(q)

Dsq— — Lg(q_) — 7 ( )H < Co(an? + a_2)*2,
H
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This concludes the proof of (201).
Proof of (202): Recall from (180) and (130) that we have

a(y.s) = ar(s)F(y) +q-(y, ), (217)

(S ) = AORG ARG+ (G ) e

where 3)(s) = 7§ < (}d((h)

the bound on the norm of F¢ (111), (138) and (183) that

¢a (qmd_ < (J)”d(ql) >) - /_11 qud(q1)pdy‘
7 (q_’ﬂd < (])cd(%) >> o <q’ ( (J)Cd((h) ))‘
(pd(Fld’< (J)”d(m) >)‘

Since we have from the expression (134) of ¢4, the fact that |Fldz(y)\ < Ck(d,y) and (199),

oo (7. (S )= | [ Fttasia] < ciarva). @

1
Iﬁl(S)Hlﬁo(S)!SCo/ r(dy)lfal@)lpdy < Co(ar® +a-?), (220)

-1

). Note from the definition (134) and the bilinearity of ¢4,

IN

Co (len| + [e—]) (I81] + [Bol) + [eal

this gives (202).

Proof of (203): Since g2 = 0sq1 + d'94r(d,y) by (168), we use (192) to write
1 1 1
/lqud(m)pdyz /183q1fd(m)pdy+d’(5)/l3df<(d,y)fd(m)pdy

1 1
— d/ fd(qﬂpderd'(s)/ (Qar(d, y) fa(qr) — OaFa(qr)) pdy

T ds / Fala p+d/() / Oar(d, )k (d, y)P a1y, s)pdy.  (221)

Since we have ||04x(d, y)r(d,y)P 2| pr1 < Co/(1 — d?), from the definitions of dyx(d,y)
Ly~

(114), F¢ (110) and Claim 4.3, we use the Holder inequality and the Hardy-Sobolev
inequality of Lemma 2.2 to derive that

1
Co
-2
[ oty s ots| < Ll < gl @22

Using (183) and (184), we see that (221) and (222) give (203). This concludes the proof
of Claim 5.4 as well as (i)-(ii) of Proposition 5.2. [ ]
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(iii) This inequality is a consequence of the coercivity of the quadratic form ¢4 on the
space H? stated in Proposition 4.7.
From equation (170) and the definition of Ly (171), we write

d ! 1 1
s / q1q2p = / ©0sq1p + / 0105q2p
SJ -1 -1

1 1
= /lqu—d’(S)/lqzﬁdﬁ(d,y)p

1
+3
+ / a (£q1 +Y(d,y)q1 — i 142 — 2y0ya2 + fd(cn)) p. (223)
-1 -

- First, note from (183) that

1 1 1
/ o+ / (= / 3 < Colof +a?). (224)
-1 — —

- Using (180), the Hardy estimate (22) and the bound (111), we write
) + Cga12.
)

1 1 1 1
2 P 2 P 2 d\2_ P 2 P
<2 2 F — <2
/_1QQ1—y2 o /_1 q_’21—y2 e /_1( 1’1) 1—y2 - /_1(]_’21—
(225)

- From the expression of ¢4 (135), (180), the definition of a— (181), the continuity estimate
(138), the bound (111) on F{ and (183), we write

[ a3 (1) ((5) ()
: m((/’w ) -on(()(5°)

< 9 2 ! 2 p Cror 2
< _Toa_(s) + 71q,721_y2+ 01

- Since ||04k(d, y)HLg < Cp/(1 —d?) from the definition of dgk(d,y) and Claim 4.3, we use
the Cauchy-Schwartz inequality, (184), (224) and (179) to write for € small enough,

y +C(](O(1 —|—|Oél|05 )

1/2

#6) [ wountnots| < cleo) ([ do) ool

< Colar+a 2P < 1(1)0(a1 Fal?). (226)
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- Using integration by parts, the fact that |yd,p(y)| < C{OEZ)Q, the Cauchy-Schwartz in-

equality, the Hardy-Sobolev estimate (21), (224) and (225), we write

p+3 [1 1
‘—1 q1q2p — 2 / q1y9yq2p
p—= -1 -1

1 1 1
p+3
= ‘2/ @0yq1yp + <2—>/ Q2Q1P+2/ 72q1Y0yp
-1 p—1 -1 -1
! p
C/ (!qQHﬁyqﬂerlngqlll_ 2)
. y

! 2 P 1/2 ! 2 2 ! 2 P 12
< _ "
< c(/quzw 1_y2) Ul@yq” 1 y>p+/1q11_y2]

1 1 2
1/2 a”
< ot +a?) ([ ol +oad <1006 [ o oot S
-1 - -1

p
1— 2 100

IN

- Using (49), Claim 5.3, the Holder inequality and Lemma 2.2, (183) and (179), we write
for e small enough (note that p+ 1 > 2 and use (179)),

1 1 1
/1qlfd(q1)p< 005{p>2}/ k(d, y)p_QlcnlngrCo/1 [P p
— -1 —
< Cubgpan ) 2 lar 2 + Collas 2511 < Colallf < ghg(an? + a2,
(227)
Collecting (223)-(227) concludes the proof of (iii) of Proposition 5.2.

(iv) Using the definition of ¢(y,s) (168), we can make an expansion of E(w(s)) (15)
for ¢ — 0 in H and get after from straightforward computations

1
B(w(s) = B(x(d.) + geata.) = | Falan)ody (28)
where ¢4 and Fg(q1) are defined in (134) and (192). Note in particular that there is no
linear term, since x(d, -) is a stationary solution to (7), hence, a critical point of E(w(s)).
Moreover, as we announced right after (134), the second variation of E(w(s)) around
k(d,-) is given by ¢g4.

Since we have (209), (187), (179) and (183)

1 = _
\ / ﬂ(ql)pdy' < Cll(s)|E < G (a2 +a2) (229)
1

where p = min(p, 2), we claim that the conclusion follows from the fact that
04(q,q) < Coa® — Cray? (230)

for some Cy > 0. Indeed, from (17), (228), (230) and (229), we see that taking e small
enough so that CeP~! < %, we get

2
R

Co C1
2 4

0 < E(u(s)) — E(x(d.) < ( el
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which yields (189). Remains to prove (230).
Proof of (230): Since Lq(F{) = F{ by Lemma 4.2, calculation (208) holds with ¢_ replaced
by F{, and we get from Claim 4.3 for some C; > 0,

4 1 2 p
d pdy _ d

Since we have from the decomposition (180), the definition of a— (181), the continuity of
4 (138), the bound on F{ (111), (183) and (231),

va(a.q) = @ala—,q-) +2000a(FY, q-) + onpa(F{, Ffl) (232)
02
< 0472 + ?00412 + C’la,Q — 2010&12, (233)
1
this yields (230) and concludes the proof of Proposition 5.2. [ |

5.3 Exponential decay of the different components

We prove Theorem 3 in this subsection. Let us first introduce a more adapted notation
and rewrite Proposition 5.2.
If we introduce

1 1+d
0(s) = 5 log ( + Ei;) a(s) = a1(s)? and b(s) = a_(s)? + 2R_(s) (234)
(note that d(s) = tanh(6(s ))) then we see from (187), and (183) that if (179) holds, then
|b—a_ 2% < CoeP~L(a1? + a_?), hence

9 , 1 101 1

—a_ - —a<b< —a_ — 2

0% 100 <" 100% T 100° (235)
for € small enough. Therefore, using Proposition 5.2, estimate (179), (183) and the fact
that 0'(s) = %, we derive the following:
Corollary 5.5 (Relations between a, b, § and f_ll q1q2p) There exist positive €4, Ky
and K5 such that if w is a solution to equation (7) such that (167) and (179) hold at some
time s for some € < €4, where q is defined in (168), then using the notation (234), we
have:
(i)(Size of the solution)

[;4((1(5) +b(s)) < [la(s)[3; < Ka(a(s) +b(s)) < Kjé, (236)
10/(s)| < Kala(s) +b(s)) < Killa(s)F, (237)

1
/_1 q1g2p| < Ky(a(s) +b(s)) (238)
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and (235) holds.
(i) (Equations)

ga—K4eb§a’ < ga+K4eb, (239)
8 ! p
vos -5 1ﬁJFQF+K¢m+®, (240)
d [* 3 ! )
= < —Sh+ K 2 Ka. 241
ds/_1Q1q2p < —pbt 4/_1q_,21_y2+ 1a (241)

(i7i) (Energy barrier) If (17) holds, then
a(s) < Ksb(s). (242)

At this level, we still don’t have exponential decay of a and b. However, with this corollary
and the following analysis, we are ready to prove Theorem 3.

Proof of Theorem 3: Consider w € C([s*,00), H) for some s* € R a solution of equation
(7) such that (17) and (18) hold for some d* € (—1,1), w* = £1 and €* € (0,¢]. Up
to replacing w(y,s) by —w(y,s), we can assume that w* = 1 in (18). Consider then
e = 2Ky K€" where K; is given in Proposition 5.1 and Ky will be fixed later. If

€ <€ and € < ¢y, (243)

then we see that Proposition 5.1, Corollary 5.5 and (235) apply respectively with €* and
e. In particular, there is a maximal solution d(s) € C([s*,00),(—1,1)) such that (167)
holds for all s € [s*,00) where ¢(y, s) is defined in (168) and

1 1 *
0067) =01 s < K with 0 = g (1551). (244)

If in addition we have
Ko > 1 hence, € > 2K€", (245)

then, we can give two definitions:
- We define first from (244) and (245) s7 € (s*, 00) such that for all s € [s*, s7],

lg(s)lln <€ (246)

and if s] < oo, then |g(s7)||x = €.
- Then, we define s4 € [s*, s7] as the first s € [s¥, s]] such that

b(s)
a(s) > 5K, (247)

(@5

where K} is introduced in Corollary 5.5, or s = s} if (247) is never satisfied on [s*, s7].
We proceed in 3 steps:

- In Step 1, using (247), we integrate the equations (240)-(241) on the time interval [s*, s3]
and obtain for some positive Kg, pug and f(s)

* * 1
Vs € [s%, 51, EII(JII% < f < KgllallF and f' < —2p6f.
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- In Step 2, integrating the equation (239) satisfied by a on the time interval [s3, s7], we
obtain some exponential estimate.

- In Step 3, we conclude the proof by showing first that s] — s5 < o¢ for some oy, then
5] = oo. Then, integrating the equation obtained in Step 1, we conclude.

In the 3 steps, we use the notation C; for an arbitrary constant.

Step 1: Integration of the equations on [s*, s3]
We claim the following:

Claim 5.6 There exist positive eg, jig, K¢ and f € C([s*,s3],RT) such that if € < e,
then for all s € [s*, s3]:
(1)

1

57(5) bls) < 2f(s) and J'(s) < ~2pa (s),

(i)
la(s)llr < Kolla(s™) e o) < KeRyere om0,
Proof:
(i) By definition of s3, we see that
b

Vs € [s%, 53], a(s) < 2 (248)
K,
where a(s) and b(s) are defined in (234). Since [s*, s5] C [s*, s7], the interval where (246)
is satisfied, we can apply Corollary 5.5. Therefore, using equations (240) and (241), we
write for all s € [s*, s3],

ot

8 1
b/(s) S —E . q3721 — y2 -+ Clﬁb(S), (249)
d ! 2 ! P
- < —Zp K 2 250
ds/_lqlqu < 5(s)+ 4/_1q_,21_y2 (250)

for some Cy > 0 and €* small enough. We claim that

£(5) = b(s) s [ e
satisfies the desired property, where 7g > 0 will be fixed small independent of €. Using
(238), we see that if 7 is small enough, then we get for all s € [s*, s3],

%b(s) < f(s) < 2b(s), (251)

and using (248) and the equivalence of norms (236), we obtain for some C3 > 0

oo las)IB < £(5) < Calla(s) (252)
3

Then, using (249), (250) and (251), we have for all s € [s*, s3],

! 2 _ 8 _ o P e _Ne
f(S)S—(5?76—016>b(3) <p—1 K4776)/_1q_,21_y2§ 103 (s)(253)
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if ng is small enough independent of €, and € is small enough. Using (251), (244) and (253),
this concludes the proof of (i).

(ii) Integrating equation (253), we get for all s € [s*, s3], f(s) < f(s*)ef%ﬁ(s*s*). Using
(252), this concludes the proof of Claim 5.6. [ |

Step 2: Integration of the equations on [s}, s7]
We claim the following:

Claim 5.7 (i) There exists e; > 0 such that for all o > 0, there exists K7(c) > 0 such
that if € < €7, then

Vs € [s5, min(s5 + o, s7)], [|q(s)||x < K7||q(5*)||He*“6(S*S*) < KoK yetehols—s)

where pg has been introduced in Claim 5.6.
(11) There exists es > 0 such that if € < eg, then

(s—s3) 1
Vs € (s5,8], b(s) <a(s)(5Kie 2 +— (254)
4K

where K4 and Ks have been introduced in Corollary 5.5.

Proof:
(i) Using equations (239) and (240), we see that for all s € [s5, min(s} + o, s7)],

(a+b) < 3(a+0b), hence a(s) + b(s) < €37 (a(s}) + b(s}))

for € small enough. Therefore, we see from (236) that [|¢(s)|x < Kie's lg2(s3)]|#. Using
(ii) in Claim 5.6 with s = s3 gives the conclusion.
(ii) By definition of s, (246) is satisfied for all s € [s3, s7], hence, Corollary 5.5 applies
and equations (239) and (240) hold.
Let us first prove that

Vs € (s3,81], a(s) > 2(12 (255)
where K is introduced in Corollary 5.5. We need to assume that s5 < s7, otherwise the
set (s3,s7] is empty. Let g =a — ﬁ where a and b are defined in (234). From equations
(239) and (240), we write for some C7 > 0 and for all s € [s3, s7],

a > ga — Creb, V' < Cre(a+1b), (256)
b
g’:(a—ﬁ)’ > 2a—C’16b—%6(@4—1))2016(14—51&)9—#@

for € small enough. Since by definition of s3, we have g(s3) > 0 (remember that s < s7),
(255) follows. Using (256) and (255), we obtain for € small enough,

Vs € (s5,57], d'(s) > ga — 5K4C1ea > a(s) hence a(s) > e* *2a(s}). (257)

If g2(s3) = 0, then w(y, s5) = k(d(s3),y) by (168), and from the uniqueness of solutions
to equation (7), we have w(y,s) = k(d(s3),y) and ¢(y,s) = 0 for all s > s3, hence
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a(s) = b(s) = 0 by (236) and (254) holds trivially.
Now, if ¢(s3) # 0, we can define h = 2 for all s € (s3,s7] and derive from (256) and (257)
for all s € (s, s7],

B b'a — ba < Cie(a+b)a — ba < —g-i-clﬁ

a? - a?

for € small enough. Integrating this equation gives

Using (255) and taking e small enough gives (254) and concludes the proof of Claim 5.7.1

Step 3: Conclusion of the proof
We use Step 1 and 2 to conclude the proof of Theorem 3 here.
Let us first fix og > 0 such that

20 1 1
<

5K, 2 +— < ——. 258
4 + 4K5 — 2K5 ( )

where K4 and K35 are introduced in Corollary 5.5. Then, we impose the condition
€ = 2K K€" where Ky = max (2, K¢, K7(00)) (259)

and the constants are defined in Proposition 5.1 and Claims 5.6 and 5.7. Finally, we fix

€y = min <1, €1,—— fori e {4, 6, 7, 8}) (260)

2K K1

and the constants are defined in Proposition 5.1, Corollary 5.5, Claims 5.6 and 5.7.
Now , if €* < ¢y, then Corollary 5.5 and Steps 1 and 2 apply. We claim that for all
s € [s%, s7],

o)l < Kolla(s")llwe 0~ < KoIyeresols=) = Ecmmols=) (1)
Indeed, if s € [s*, min(s5 + 00, s7)], then, this comes from (ii) of Claim 5.6 or (i) of Claim
5.7 and the definition of ky (259).
Now, if s5 + 09 < s] and s € [s5 + 00, s7], then we have from (254) and the definition of
00, b(s) < % on the one hand. On the other hand, from (iii) in Corollary 5.5, we have
a(s) < Kxb(s), hence, a(s) = b(s) =0 and from (236), ¢(y,s) =0, hence (261) is satisfied
trivially.
In particular, we have for all s € [s%,57], [lq(s)[lx < §, hence, by definition of s}, this
means that s} = co. Therefore, from (261) and (237), we have

2
Vs > 5% lg(s)|ln < 26 —H6(s=5") and |0/(s)] < Kf%eﬂ%(s*s*). (262)
Hence, there is 0 € R such that 6(s) — 0 as s — oo and

Vs > 5%, [ — 0(s)] < Crer2e™216(5757) — Cpe2e=2me(s=57) (263)
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for some positive C; and Cy. Taking s = s* here and using (244), we see that |, — 0*| <
Coe*. If doo = tanh ., then we see that |de — d*| < C3(1 — d*?)e*
Using the definition of ¢ (168), (174), (262) and (263), we write

(et )= (67,

5)
(
)
(s)

w(s) ) _ ( Ald(s),) N
- H( dsw(s 0 H+ [k(d(s), ) = K(doo, )9y,
< ”q $ ||H + C|9 (5)| < 046*6_#6(8_5*)'
This concludes the proof of Theorem 3. .

A Positivity of the Lyapunov functional F(w)

We prove Proposition 2.1 here. In [17], the proof is given in the “non characteristic”
case, that is when w = w,, defined from some solution u(z,t) to (1) where zp is a
non characteristic point of u. That proof naturally extends to the case where the set
[—1,1] x [-1log T, 4+00) is in the interior of the domain of definition of w. Let us then focus
on the remaining case. Note from (16) and [17] that we only need to prove the positivity
of E(w(s)).

Let us introduce for all 0 > 1/(T — %) and |z| <1+ %7

=(1 —es : - ds= log(1 + —eo 264
= — p—1 = = — .
wn(z, J) ( n ) w(ya S)a Yy 1 e anda s o Og( n ) ( )

n

For a given n, since by definition, wy,(y, s) is defined for all |y| < 2 for s large, we see
that E(wy(s)) — 0 as s — oo. Thus, since by hypothesis, we have (w,dsw)(—logT) €
H' x L?(—1,1), we obtain for all s € (—logT + 2,00) and for all n large enough,

0 < E(wp(s)) < Ep. (265)

One has to prove in a certain sense that E(wy(sy)) — E(w(so)) = Ep where s, — so.
Using [17], we have for all s € (—logT + 1,00) and n € N,

s+1
/ / ((@ywn)*(1 = y) + [wa"* + (Dswn)? + wy) p < C(Eo +1).
s —1
By convergence in energy space, we obtain for all § > 0 and s € (—logT + 1, 00),
s+1
/ / (0,0)2(1 — ) + |wP*! + w? + (Bsw)?) p < C(Bo + 1),
y|<1-0

Thus,
/s+1 / | ((Oyw)*(1 = y?) + [w|PT! + w? + (Osw)?) p < C(Ep + 1). (266)
yl<1

We have by the Lebesgue theorem,

Vs € (—logT +2,00), / E(wp(T T—>/ E(w
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which proves for all s > —log T'+2, E(w(s)) > 0 from (265). Indeed, for all s € (—log T +
2,00) and |y| < 1 for n large (depending on s),

((0ye0n)* (1 = 22) + w0 + [wa [P + (Dwa)?) (2, 0)p(2)
< Co((0,w)(L — 1) +w? + [w* + (9w)?) (3, 5)p(y)

where (z,0) and (y, s) are linked by (264), therefore, we have

s+1 s+1
/ E(wy)dr, — / E(w)dr.

Using (265) and the monotonicity of E(w) (16), we have the conclusion. [ ]
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