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Abstract

We construct a solution to the complex Ginzburg-Landau equation, which blows
up in finite time T only at one blow-up point. We also give a sharp description
of its blow-up profile. The proof relies on the reduction of the problem to a finite
dimensional one, and the use of index theory to conclude. Two major difficulties arise
in the proof: the linearized operator around the profile is not self-adjoint and it has a
second neutral mode. In the last section, the interpretation of the parameters of the
finite dimensional problem in terms of the blow-up time and the blow-up point gives
the stability of the constructed solution with respect to perturbations in the initial
data.
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1 Introduction and statement

The complex Ginzburg-Landau equation appears in various physical situations. In partic-
ular it appears in the theory of superconductivity, the description of several instabilities
in fluid dynamics (in particular the plane Poiseuille flow). It can be seen as a generic
amplitude equation near the onset of instabilities that lead to chaotic dynamics in fluid
mechanical systems, as well as in the theory of phase transitions and superconductivity.
We refer to Popp et al. [21] and the references therein for the physical background.

We are concerned in this paper with the following Ginzburg-Landau equation:

ut = (1 + iβ)∆u+ (1 + iδ)|u|p−1u− γu

u(., 0) = u0 ∈ L∞(RN ,C), (1)

where u(t) : x ∈ R
N → u(x, t) ∈ C, p > 1 and the constants β, δ and γ are real. The

Cauchy problem for equation (1) can be solved in a variety of spaces using semi-group
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theory as in the case of the heat equation (see for instance [5, 8, 9] for existence results
and [19] for some uniqueness results). In particular for an initial data u0 ∈ L∞(RN ,C),
there exists a time T1 > 0 and a unique solution u ∈ C([0, T1];L

∞(RN ,C)) to (1). This
solution can be prolonged to [0,∞) if there is no blow-up.

An extensive literature is devoted to the study of the “twin” equation

ut = (1 + iβ)∆u− (1 − iδ)|u|p−1u− γu (2)

with the negative sign in front of the nonlinear term (global existence of weak solution
[6, 10], existence of traveling wave solutions (see Tang [22] for example) are available in
this case). The major difference between the two equations can be seen from the associated
ODEs

u′ = (1 + iδ)|u|p−1u and u′ = −(1 − iδ)|u|p−1u. (3)

We see that the ODE associated to equation (1) exhibits finite-time blow-up.
To our knowledge, the question of the existence of a blow-up solution for equation (1)

remained open so far. In this paper, we will prove the existence of such solutions under
some conditions on β and δ. Classical methods based on energy-type estimates (Levine
[11] and Ball [1]) break down. However, there have been some strong evidence that blow-
up can occur. In their paper, Popp et al. [21] give such an evidence through a formal
study and numerical simulations.

We also point out that (2) may have blow-up in the focusing case, namely βδ > 0.
In [20] (see also [4]), Plechac and Sverak give some evidence for the existence of a radial
solution which blows up in a self-similar way. Their argument is based on matching a
numerical solution in an inner region with an analytical solution in an outer region. As
explained in [20], addressing the blow-up question for the complex Ginzburg-Landau equa-
tion is important not only for the equation itself , but also because the Ginzburg-Landau
equation has common fundamental features with the Navier-Stokes equation, making it a
lab model for the study of the singular behavior for Navier-Stokes.

In this paper, we justify the formal method of Popp et al. [21] and construct a solution
u(x, t) of (1) that blows up in some finite time T , in the sense that

lim
t→T

‖u(t)‖L∞(RN ) = +∞,

with the same profile and the same range of parameters (see section 3.3 in [21] where the
case p = 3 is treated, but the analysis extends naturally to other values of p > 1). More
precisely, this is our existence result:

Theorem 1 (Existence of a blow-up solution for equation (1)) Consider (β, δ) ∈
R

2 such that
p− δ2 − βδ(p + 1) > 0. (4)

Then, equation (1) has a solution u(x, t) which blows up in finite time T > 0 only at the
origin. Moreover,
(i) for all t ∈ [0, T ),

∥

∥

∥

∥

∥

(T − t)
1+iδ
p−1 | log(T − t)|−iµu(x, t) −

(

p− 1 +
b|x|2

(T − t)| log(T − t)|

)− 1+iδ
p−1

∥

∥

∥

∥

∥

L∞(RN )

≤ C0

1 +
√

| log(T − t)|
(5)
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where

b =
(p − 1)2

4 (p− δ2 − βδ − βδp)
> 0 and µ = − 2bβ

(p− 1)2
(1 + δ2); (6)

(ii) for all x 6= 0, u(x, t) → u∗(x) ∈ C2(RN\{0}) and

u∗(x) ∼ |2 log |x||iµ
[

b

2

|x|2
| log |x||

]− 1+iδ
p−1

as x→ 0. (7)

Remarks:
1) Note that no smallness assumptions are made on β or δ. We just assume (4). In
particular, when β = 0, the result is valid for all δ ∈ (−√

p,
√
p). This answers a conjecture

by Zaag [23] where the result was proved only for small δ.
2) Note that the norm as well as the phase blow up in (7).
3) The result holds with the same proof when the reaction term in (1) is replaced by f(u)
which is equivalent to (1+ iδ)|u|p−1u as |u| → ∞. For simplicity, we prove the result when
the nonlinear term is exactly (1 + iδ)|u|p−1u, that is when γ = 0 in (1).
4) We will only give the proof when N = 1. Indeed, the computation of the eigenfunctions
of Lβ,δ (defined in (22)) and the projection of (21) on the eigenspaces become much more
complicated when N ≥ 2. Besides, the ideas are exactly the same.
5) The blow-up in Theorem 1 can be seen as a blow-up based on the heat equation. This
is different from the blow-up solutions proposed by [20] for equation (2) where the blow-up
mechanism is based on the focusing Schrödinger part and is self-similar.
6) Note that the constructed solution satisfies

∀t ∈ [0, T ), ‖u(t)‖L∞ ≤ Cv(t) where v(t) = (p− 1)−
1

p−1 (T − t)−
1

p−1

is the the solution of
v′ = vp with lim

t→T
v(t) = +∞.

In the heat equation blow-up literature, such a solution is called of “Type 1” (see Matano
and Merle [12]).

Our proof uses some ideas developed by Merle and Zaag in [14] and Bricmont and
Kupiainen in [3] for the semilinear heat equation

ut = ∆u+ |u|p−1u.

In [23], Zaag adapted that method to the case of the following complex-valued equation,
where no gradient structure exists:

ut = ∆u+ (1 + iδ)|u|p−1u

and where δ is small enough. One may think that the method used in [14], [3] and [23]
should work the same for (1) perhaps with some technical complications. This is not
the case, since the fact that β 6= 0 breaks any symmetry in the problem and makes the
diffusion operator associated to (1) not self-adjoint. Moreover, note from (4) that we will
allow β and δ to take large values as long as the constant b defined in (6) is positive. In
other words, the method we present here is not based on a simple perturbation of the
semilinear heat equation as in [23].
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More precisely, the proof relies on the understanding of the dynamics of the selfsimilar
version of (1) (see equation (11) below) around the profile (5). More precisely, we proceed
in 2 steps:

- In Step 1, we reduce the question to a two-dimensional problem : We show that it
is enough to control a two-dimensional variable in order to control the solution (which is
infinite dimensional) near the profile. Two difficulties arise here: The linearized operator
is not self-adjoint and there is a new zero eigenvalue coming from the complex character
of the solution (modulation is needed to control this new neutral mode).

- In Step 2, we proceed by contradiction to solve the two-dimensional problem and
conclude using index theory.

As in [14] and [23], it is possible to make the interpretation of the two-dimensional
variable in terms of the blow-up time and the blow-up point. This allows us to derive the
stability of the profile (5) in Theorem 1 with respect to perturbations in the initial data.
More precisely, we have the following:

Theorem 2 (Stability of the solution constructed in Theorem 1) Let us denote
by û(x, t) the solution constructed in Theorem 1 and by T̂ its blow-up time. Then, there
exists a neighborhood V0 of û(x, 0) in L∞ such that for any u0 ∈ V0, equation (1) has a
unique solution u(x, t) with initial data u0, and u(x, t) blows up in finite time T (u0) at
one single blow-up point a(u0). Moreover, estimate (5) is satisfied by u(x− a, t) and

T (u0) → T̂ , a(u0) → 0 as u0 → û0 in L∞(RN ,C).

Remarks:
1) This stability result is more general than stated. Indeed, from our proof, we can show
that not only is our solution stable, but also any solution which is trapped in some shrink-
ing neighborhood of the profile in the selfsimilar variables. See section 6 for a precise
statement. Even though we don’t show that any solution satisfying (5) is trapped in this
shrinking neighborhood, we believe that this gap is small in comparison with the the sta-
bility proof inside this trap.
2) This stability result gives a physical legitimacy to the solution we construct. In partic-
ular, we suspect that a numerical simulation of equation (1) should lead to the profile (5).
3) Following remark 6 after Theorem 1, we note that all the solutions u(x, t) with initial
data u0 ∈ V0 are all of Type 1, since they all satisfy (5).

Some authors write the complex Ginzburg-Landau in the nonlinear Schrödinger equa-
tion style. Following that choice, we have this corollary:

Corollary 3 (Blow-up solutions in the NLS style) Theorems 1 and 2 yield stable
blow-up solutions for:
(i) the following perturbed defocusing Schrödinger equation with ν > 0 and ν ′ > 0

ut = (ν ′ + i)∆u+ (ν − i)|u|p−1u if p− 1

ν2
+
p+ 1

νν ′
> 0, (8)

(ii) the focusing Schrödinger equation with ν > 0 and ν ′ > 0

ut = (ν ′ + i)∆u+ (ν + i)|u|p−1u if p− 1

ν2
− p+ 1

νν ′
> 0. (9)
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In both cases, the solutions blow up only at one point and the blow-up profile is given by
(5) after appropriate scaling.

To prove the corollary, we notice that the condition (4) becomes p− δ2

ν2 − β
ν′
δ
ν (p+1) > 0 for

the equation ut = (ν ′ + iβ)∆u+ (ν + iδ)|u|p−1u with ν > 0 and ν ′ > 0. Note in particular
that for the defocusing Schrödinger equation

ut = i∆u− i|u|p−1u,

a small perturbation of the type ν(∆u+ |u|p−1u) yields blow up solutions of heat equation
type with ν very small. However, for the focusing Schrödinger, we need a big enough
perturbation to get a blow-up solution of the heat equation type.

Following our results, many problems remain open, like determining sufficient and/or
necessary conditions that yield Type 1 blow-up. There is also the question of taking an
arbitrary blow-up solution of (1) and determining its blow-up behavior. If such a solution
is of Type 1, we expect that the classification of all Type 1 solutions of (1) defined for all
(x, t) ∈ R

N × (−∞, T ) for some T > 0 would play an important role. As a matter of fact,
in the case of the pure heat equation

β = δ = 0 and (N − 2)p < N + 2,

such a classification was done (in the form of a Liouville Theorem) by Merle and Zaag in
[15] and [16] (see also Nouaili [17]), yielding uniform estimates for blow-up solutions. The
existence of a Lyapunov functional in this case was essential in the proof. When

β = 0 and δ 6= 0,

there is no Lyapunov functional, and the method of [15] and [16] breaks down. Never-
theless, Nouaili and Zaag obtained a classification in [18] for small δ and not so large
solutions.

We proceed in 6 sections to prove Theorems 1 and 2. In Section 2, we use a formal
argument to derive the profile in (5). Since the formal argument cannot be justified, we
adopt a different strategy and make a new formulation of the problem in Section 3. Then,
we give the proof of Theorem 1 in Section 4 (section 5 is devoted to the proof of a technical
lemma which is central in the step of reduction to a finite dimensional problem). Finally,
we prove Theorem 2 in Section 6.

The second author wishes to thank the Courant Institute of New York University for
the hospitality in January 2003, when this work was started.

2 A formal approach

Given an arbitrary T > 0, we introduce the following self-similar transformation of equa-
tion (1)

w(y, s) = (T − t)
1+iδ
p−1 u(x, t), y =

x√
T − t

, s = − log(T − t). (10)
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If u(x, t) satisfies (1) for all (x, t) ∈ R
N × [0, T ) (with γ = 0), then w(y, s) satisfies for all

(y, s) ∈ R
N × [− log T,+∞) the following equation

∂w

∂s
= (1 + iβ)∆w − 1

2
y.∇w − 1 + iδ

p− 1
w + (1 + iδ)|w|p−1w. (11)

Thus, constructing a solution u(x, t) for equation (1) that blows up at T like (T − t)
− 1+iδ

p−1

reduces to constructing a global solution w(y, s) for equation (11) such that

0 < ǫ0 < lim sup
s→∞

‖w(s)‖L∞(RN ) <
1

ǫ0
.

Let us try to find a solution for equation (11) of the form

w(y, s) = eiµ log s
∞
∑

j=0

1

sj
wj(

y√
s
). (12)

Let us denote z = y√
s
. By looking at the leading order, we find that w0 should satisfy

−1

2
z.∇w0 −

1 + iδ

p− 1
w0 + (1 + iδ)|w0|p−1w0 = 0. (13)

Hence, modulo a phase, there exists b > 0 such that

w0(z) = κ

(

1 +
b

p− 1

|y|2
s

)− 1+iδ
p−1

where κ = (p− 1)−
1

p−1 . (14)

At the order 1
s , we get

F (z) ≡ −iµw0 +
1

2
z.∇w0 + (1 + iβ)∆w0 −

1

2
z.∇w1 −

1 + iδ

p− 1
w1 +

+(1 + iδ)

[

p+ 1

2
|w0|p−1w1 +

p− 1

2
|w0|p−3w2

0w1

]

= 0.

Computing F (z = 0), we get

−iµκ+ (1 + iβ)∆w0(0) + (1 + iδ)ℜw1(0) = 0.

Taking the real part and the imaginary part, we deduce that

ℜw1(0) =
2κb

(p− 1)2
(1 − δβ) and µ = − 2bβ

(p− 1)2
(1 + δ2).

Expanding w1 in powers of z, namely w1(z) = w1(0) + γz + αz2 + O(z3) and expanding
F (z) in powers of z, we get that

γ = 0

by looking at the term of order z and that

iµκ
(1 + iδ)b

(p− 1)2
− κ

(1 + iδ)b

(p− 1)2
+ (1 + iβ)6κ

1 + iδ

(p − 1)

(

1 + iδ

(p − 1)
+ 1

)

b2

(p− 1)2
+

+(1 + iδ)ℜα − α+ (1 + iδ)
b

2(p − 1)2
[(p+ 1)w1(0) + (p− 1 + 2iδ)w1(0)] = 0
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by looking at the term of order z2. Taking the real part, we see that α and ℑw1(0)
disappear and we get an equation only involving b, µ and ℜw1(0), namely

− µκδb

(p− 1)2
− κb

(p− 1)2
+
(

p− (p+ 1)βδ − δ2
) 6κb2

(p − 1)4
+

b

(p− 1)2
[δ2 − p]ℜw1(0) = 0. (15)

Writing µ and ℜw1(0) in terms of b, we deduce that

b =
(p− 1)2

4 (p− δ2 − βδ − βδp)
.

3 Formulation of the problem

The preceding calculation is purely formal. We know of no proof that the expansion (12)
can be continued to all orders (see Berger and Kohn [2]). However, the formal expansion

in (12) provides us with the profile of the function (w(y, s) = eiµ log s
(

w0

(

y√
s

)

+ ....
)

).

Our idea for the actual proof is then to linearize equation (11) around that profile and
prove that the linearized equation as well as the nonlinear equation have a solution that
goes to zero as s→ ∞. Let us introduce q(y, s) and θ(s) such that

w(y, s) = ei(µ log s+θ(s)) (ϕ(y, s) + q(y, s))

where ϕ(y, s) = ϕ0

(

y√
s

)

+
a

s
(1 + iδ) ≡ κ−iδ

(

p− 1 + b
|y|2
s

)− 1+iδ
p−1

+
a

s
(1 + iδ),

a =
2κb

(p− 1)2
(1 − δβ),

(16)
κ is defined in (14) and b and µ are defined in (6) (in order to guarantee that only one
couple (q, θ) satisfies (16), an additional constraint is needed; see (51) below.

Note that ϕ0(z) = w0(z) defined in (14) has been exhibited in the formal approach and
satisfies equation (13), which makes ϕ(y, s) an approximate solution of (11). If w satisfies
equation (11), then q satisfies the following equation

∂q

∂s
= Lβq −

(1 + iδ)

p− 1
q + L(q, θ′, y, s) +R∗(θ′, y, s) (17)

where

Lβq = (1 + iβ)∆q − 1

2
y.∇q,

L(q, θ′, y, s) = (1 + iδ)
{

|ϕ+ q|p−1(ϕ+ q) − |ϕ|p−1ϕ
}

− i
(µ

s
+ θ′(s)

)

q,

R∗(θ′, y, s) = R(y, s) − i
(µ

s
+ θ′(s)

)

ϕ with

R(y, s) = −∂ϕ
∂s

+ (1 + iβ)∆ϕ− 1

2
y.∇ϕ− (1 + iδ)

p− 1
ϕ+ (1 + iδ)|ϕ|p−1ϕ.

(18)
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Our aim is to find θ ∈ C1([− log T,∞),R) such that equation (17) has a solution q(y, s)
defined for all (y, s) ∈ R

N × [− log T,∞) such that

‖q(s)‖L∞ → 0 as s→ ∞.

From (16), one sees that the variable z = y√
s

plays a fundamental role. Thus, we will

consider the dynamics for |z| > K and |z| < 2K separately for some K > 0 to be fixed
large.

3.1 The outer region where |y| > K
√

s

Let us consider a non-increasing cut-off function χ0 ∈ C∞(R+, [0, 1]) such that χ0(ξ) = 1
for ξ < 1 and χ0(ξ) = 0 for ξ > 2 and introduce

χ(y, s) = χ0

( |y|
K
√
s

)

(19)

where K will be fixed large. Let us define

qe(y, s) = e
iδ

p−1
sq(y, s) (1 − χ(y, s)) . (20)

qe is the part of q(y, s) for |y| > K
√
s. As we will explain in subsection 5.3, the lin-

ear operator of the equation satisfied by qe is negative, which makes it easy to control
‖qe(s)‖L∞(R). This is not the case for the part of q(y, s) for |y| < 2K

√
s, where the linear

operator has two positive eigenvalues, a zero eigenvalue in addition to infinitely many neg-
ative ones. Therefore, we have to expand q with respect to these eigenvalues in order to
control ‖q(s)‖L∞(|y|<2K

√
s). This requires more work than for qe. The following subsection

is dedicated to that purpose. From now on, K will be a fixed constant which is chosen
such that ‖ϕ(s′)‖L∞(|y|≥K

√
s′) is small enough, namely ‖ϕ0(z)‖p−1

L∞(|z|≥K) ≤ 1
4C(p−1) (see

subsection 5.3 for more details). We point out for instance that K goes to infinity when
b goes to zero.

3.2 The inner region where |y| < 2K
√

s

If we linearize the term L(q, θ′, y, s) in equation (17), then we can write (17) as

∂q

∂s
= Lβ,δq − i

(µ

s
+ θ′(s)

)

q + V1q + V2q̄ +B(q, y, s) +R∗(θ′, y, s) (21)

where

Lβ,δq = Lβq + (1 + iδ)ℜq,

V1(y, s) = p+1
2 (1 + iδ)

(

|ϕ|p−1 − 1
p−1

)

, V2(y, s) = (p−1)
2 (1 + iδ)

(

|ϕ|p−3ϕ2 − 1
p−1

)

,

B(q, y, s) = (1 + iδ)
{

|ϕ+ q|p−1(ϕ+ q) − |ϕ|p−1ϕ− |ϕ|p−1q − (p−1)
2 |ϕ|p−3ϕ (ϕq̄ + ϕ̄q)

}

(22)
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with Lβ and R∗(θ′, y, s) defined in (18).
Note that the term B(q, y, s) is built to be quadratic in the inner region |y| ≤ 2K

√
s.

Indeed, we have for all K > 1 and s ≥ 1,

sup
|y|≤2K

√
s

|B(q, y, s)| ≤ C(K)|q|2. (23)

Note also that R(y, s) measures the defect of ϕ(y, s) from being an exact solution of (11).
However, since ϕ(y, s) is an approximate solution of (11), one easily derives from (13) the
fact that

‖R(s)‖L∞ ≤ C

s
. (24)

Therefore, if θ′(s) goes to zero as s→ ∞, we expect the term R∗(θ′, y, s) to be small, since
(18) and (24) yield

|R∗(θ′, y, s)| ≤ C

s
+ |θ′(s)|. (25)

Therefore, since we would like to make q go to zero as s → ∞, the dynamics of equation
(21) are influenced by the asymptotic limit of its linear term,

Lβ,δq + V1q + V2q̄,

as s→ ∞. In the sense of distributions (see the definitions of V1 and V2 (22) and ϕ (16))
this limit is Lβ,δq. We would like to find a basis where Lβ,δ is diagonal or at least in
Jordan blocks’ form. In order to do so, we first deal with Lβ.

3.3 Spectral properties of Lβ
Here, we take N ≥ 1 and starting from subsection 3.4, we will restrict to N = 1. We
consider the Hilbert space L2

|ρβ |(R
N ,C) which is the set of all f ∈ L2

loc(R
N ,C) such that

∫

RN

|f(y)|2|ρβ(y)|dy < +∞,

where

ρβ(y) =
e
−

|y|2
4(1 + iβ)

(4π(1 + iβ))N/2
and |ρβ(y)| =

e
−

|y|2
4(1 + β2)

(

4π
√

1 + β2
)N/2

. (26)

We can diagonalize Lβ in L2
|ρβ |(R

N ,C). Indeed, we can write it in divergence form

Lβq =
1

ρβ
div (ρβ∇q) .

We notice that Lβ is formally “self-adjoint” with respect to the weight ρβ. Indeed, for any
v and w in L2

|ρβ |(R
N ,C) satisfying Lβv and Lβw in L2

|ρβ |(R
N ,C), it holds that

∫

vLβwρβdy =

∫

wLβvρβdy. (27)

9



If we introduce for each α = (α1, ..., αN ) ∈ N
N the polynomial

fα(y) = cαΠN
i=1Hαi

(

yi
2
√

1 + iβ

)

(28)

where Hn is the standard one dimensional Hermite polynomial and cα ∈ C is chosen so
that the term of highest degree in fα is ΠN

i=1y
αi
i , then we get a family of eigenfunctions of

Lβ, “orthogonal” with respect to the weight ρβ, in the sense that for any different α and
ζ in N

N ,

Lβfα = −|α|
2
fα, (29)

∫

RN

fα(y)fζ(y)ρβ(y)dy = 0. (30)

Moreover, the family fα is a basis for L2
|ρβ |(R

N ,C) considered as a C vector space. All the

facts about the operator Lβ and the family fα can be found in Appendix A.

3.4 Spectral properties of Lβ,δ
In the sequel, we will assume that N = 1. Now, with the explicit basis diagonalizing Lβ,
we are able to write Lβ,δ in a Jordan blocks’ form. More precisely,

Lemma 3.1 (Jordan blocks’ decomposition of Lβ,δ) For all n ∈ N, there exist two
polynomials

hn = ifn +

n−1
∑

j=0

dj,nfj where dj,n ∈ C (31)

and h̃n = fn + δifn +

n−1
∑

j=0

d̃j,nfj where d̃j,n ∈ C (32)

of degree n such that

Lβ,δhn = −n
2
hn, Lβ,δh̃n = (1 − n

2
)h̃n + cnhn−2 (33)

with cn ∈ C (and we take hk ≡ 0 for k < 0). The term of highest degree of hn (resp. h̃n)
is iyn (resp. (1 + iδ)yn).

Remark: We notice that c0 = c1 = 0, which means that h̃0 and h̃1 are also eigenfunctions
for Lβ,δ. On the contrary, c2 6= 0. When n ≥ 3, we expect that cn 6= 0, however, we
didn’t try to prove it and actually this fact is not necessary for our proof. When n ≥ 2, we
also notice that Span {hn−2, h̃n} is the characteristic space associated to the eigenvalue
1 − n/2.

Proof of Lemma 3.1: Let us first remark that in the basis (ifn, fn)n∈N, the operator
Lβ,δ is an infinite upper triangular matrix. Indeed, since the term of highest degree in fn
is yn, which is real, we can expand

ℜfn = fn +

n−1
∑

j=0

aj,nfj and ℜ (ifn) =

n−1
∑

j=0

bj,nfj

10



where aj,n and bj,n are complex. Therefore, by definition (22) of Lβ,δ, we have

Lβ,δ (ifn) = Lβ (ifn) + (1 + iδ)ℜ (ifn)

= −n
2
ifn + (1 + iδ)

n−1
∑

j=0

bj,nfj

= −n
2
ifn +

n−1
∑

j=0

ℜ((1 + iδ)bj,n)fj + ℑ((1 + iδ)bj,n)fj (34)

and

Lβ,δfn = Lβfn + (1 + iδ)ℜfn

= −n
2
fn + (1 + iδ)



fn +
n−1
∑

j=0

aj,nfj





=
(

1 − n

2

)

fn + δifn +
n−1
∑

j=0

ℜ((1 + iδ)aj,n)fj + ℑ((1 + iδ)aj,n)ifj. (35)

Thus, Lβ,δ is an infinite upper triangular matrix in the basis (ifn, fn)n∈N, and its diagonal
is

0, 1, −1

2
,

1

2
, −1, 0, ...− n

2
, 1 − n

2
, ....

We first consider λ = 0 or λ = 1. Looking for eigenfunctions for Lβ,δ as a linear combina-
tion of the two first basis elements (if0 and f0) yields h̃0(y) ≡ (1+iδ) and h̃1(y) ≡ (1+iδ)y
respectively.
Taking λ = −n

2 , we remark that it occurs first in the diagonal of Lβ,δ at the position of
the column of Lβ,δ(ifn) (see (34)) and then at the column of Lβ,δ(fn+2) (see (35) and note
that 1 − n+2

2 = −n
2 ).

Looking for an eigenfunction for λ = −n
2 as a combination of ifn and the preceding vectors

in the basis yields the existence of hn of the form (31) such that Lβ,δhn = −n
2hn.

Taking advantage of the second occurrence of λ = −n
2 as 1 − n+2

2 (in the column of
Lβ,δ(fn+2)), we look for an eigenfunction as a combination of fn+2 and the preceding vec-
tors in the basis (ifn+1, ifj and fj for 0 ≤ j ≤ n). If this is possible, then there is some
h̃n+2 of the form (32), that is

h̃n+2 = fn+2 + δifn+2 +

n+1
∑

j=0

d̃j,n+2fj where d̃j,n+2 ∈ C, (36)

such that Lβ,δh̃n+2 = −n
2 h̃n+2. If this is not possible, then we can define h̃n+2 of the form

(36) (hence of the form (32)) such that Lβ,δh̃n+2 = −n
2 h̃n+2 + cn+2hn (Jordan blocks’

decomposition).
Since the term of highest degree of fj is yj, (31) and (32) yield the degree and the term
of highest degree of hn and h̃n. This concludes the proof of Lemma 3.1.

For the small values of n, we have the following expressions for hn and h̃n:

11



Lemma 3.2 (The basis vectors of degree less or equal to 4) We have

h0(y) = i, h̃0(y) = (1 + iδ)

h1(y) = iy, h̃1(y) = (1 + iδ)y

h2(y) = iy2 + β − i(2 + δβ), h̃2(y) = (1 + iδ)
(

y2 − 2 + 2δβ
)

,

h4(y) = iy4 + y2(6β + id4,2) + c4,0 + id4,0

h̃4(y) = (1 + iδ)y4 + y2
(

12(βδ − 1) + id̃4,2

)

+ c̃4,0 + id̃4,0.

Moreover, Lβ,δh̃0 = h̃0, Lβ,δh̃1 = 1
2 h̃1 and Lβ,δh̃2 = 2β(1 + δ2)h0 = 2iβ(1 + δ2).

Proof: The proof is straightforward though a bit lengthy. One has to start from (31) and
(32) and identify the missing coefficients thanks to (33).

We also have the following corollary for Lemma 3.1:

Corollary 3.3 (Basis for the set of polynomials) The family (hn, h̃n)n∈N is a basis
of C[X], the R vector space of complex polynomials.

3.5 Decomposition of q

For the sake of controlling q in the region |y| < 2K
√
s, we will expand the unknown

function q (and not just χq where χ is defined in (19)) with respect to the family fn and
then with respect to the family hn. We start by writing

q(y, s) =
∑

n≤M
Qn(s)fn(y) + q−(y, s) (37)

where fn is the eigenvalue of Lβ defined in (28), Qn(s) ∈ C, q− satisfies

∫

q−(y, s)fn(y)ρβ(y)dy = 0 for all n ≤M

and M is a fixed even integer satisfying

M ≥ 4(
√

1 + δ2 + 1 + 2 max
i=1,2, y∈R, s≥1

|Vi(y, s)|), (38)

with Vi defined in (22). From (30), we have

Qn(s) =

∫

q(y, s)fn(y)ρβ(y)dy
∫

fn(y)2ρβ(y)dy
≡ Fn(q(s)). (39)

The function q−(y, s) can be seen as the projection of q(y, s) onto the subset of the spec-
trum of Lβ which is smaller than (1−M)/2. We will call it the infinite dimensional part of
q and we will denote it q− = P−,M (q). We also introduce P+,M = Id−P−,M . Notice that
P−,M and P+,M are projections. In the sequel, we will denote P− = P−,M and P+ = P+,M .
The complementary part q+ = q − q− will be called the finite dimensional part of q. We

12



will expand it with respect to the Jordan decomposition of Lβ,δ (see Lemma 3.1) and write
therefore

q+(y, s) =
∑

n≤M
Qn(s)fn(y) =

∑

n≤M
qn(s)hn(y) + q̃n(s)h̃n(y) (40)

where qn(s), q̃n(s) ∈ R. Finally, we notice that for all s, we have
∫

q−(y, s)q+(y, s)ρβ(y)dy = 0.

Our purpose is to project equation (21) in order to write an equation for qn and q̃n. For
that, we need to write down the expression of qn(s) and q̃n(s) in terms of Qn(s). Since

the matrix of (hn, h̃n)n≤M in the basis (ifn, fn) is upper triangular (see (31) and (32)),
the same holds for its inverse. Thus, we derive from (40)

qn(s) = ℑQn(s) − δℜQn(s) +

M
∑

j=n+1

Aj,nℑQj(s) +Bj,nℜQj(s) ≡ Pn,M (q(s))

q̃n(s) = ℜQn(s) +

M
∑

j=n+1

Ãj,nℑQj(s) + B̃j,nℜQj(s) ≡ P̃n,M (q(s))

(41)

where all the constants are real. Note that the coefficients of ℑQn and ℜQn in the
expression of qn and q̃n are explicit. This comes from the fact that the same holds for the
coefficients of ifn and fn in the expression of hn and h̃n (see (31) and (32)).
Note that the projectors Pn,M (q) and P̃n,M (q) are well-defined thanks to (39). We will
project equation (21) on the different modes hn and h̃n. Note that from (37) and (40), it

holds that

q(y, s) =





∑

n≤M
qn(s)hn(y) + q̃n(s)h̃n(y)



+ q−(y, s). (42)

We should keep in mind that this decomposition is unique.

4 Proof of the existence result

This section is devoted to the proof of the existence result (Theorem 1). We proceed in 4
steps, each of them making a separate subsection.

- In the first subsection, we define a shrinking set VA(s) and translate our goal of
making q(s) go to 0 in L∞(R) in terms of belonging to VA(s). We also exhibit a two
parameter initial data family for equation (21) whose coordinates are very small (with
respect to the requirements of VA(s)), except the two first q̃0 and q̃1.

- In the second subsection, we solve the local in time Cauchy problem for equation
(21) coupled with some orthogonality condition.

- In the third subsection, using the spectral properties of equation (21), we reduce our
goal from the control of q(s) (an infinite dimensional variable) in VA(s) to the control of
its two first components (q̃0(s), q̃1(s)) (a two-dimensional variable) in [− A

s2
, A
s2

]2.
- In the fourth subsection, we solve the finite dimensional problem using index theory

and conclude the proof of Theorem 1.
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We could work in the set of even functions to construct a blow-up solution. However,
since we need to prove the stability of the constructed solution in the set of all functions
with no evenness assumption, we have to handle general functions.

4.1 Definition of a shrinking set VA(s) and preparation of initial data

Let us first introduce the following:

Proposition 4.1 (A set shrinking to zero) For all K > 1, A ≥ 1 and s ≥ e, we
define VA(s) as the set of all r ∈ L∞(R) such that

‖re‖L∞(R) ≤ AM+2

√
s
,

∥

∥

∥

r−(y)
(1+|y|)M+1

∥

∥

∥

L∞(R)
≤ AM+1

s
M+2

2

,

|rj |, |r̃j | ≤ Aj

s
j+1
2

for all 3 ≤ j ≤M, |r̃0|, |r̃1| ≤ A

s2
,

|r̃2| ≤ A5 log s
s2

, |r1| ≤ A4

s2
,

|r2| ≤ A2

s2
, |r0| ≤ 1

s2
,

(43)

where re is defined as in (20), r−, rn and r̃n are defined in (42). Then, we have for all
s ≥ 1 and r ∈ VA(s),

(i) ‖r‖L∞(|y|<2K
√
s) ≤ C(K)A

M+1√
s

and ‖r‖L∞(R) ≤ C(K)AM+2
√
s

.

(ii) for all y ∈ R, |r(y)| ≤ CAM+1 log s
s2 (1 + |y|M+1).

Proof: Take r ∈ VA(s) and y ∈ R.

(i) If |y| ≥ 2K
√
s, then we have from the definition of re (20), |r(y)| = |re(y)| ≤ AM+2√

s
.

Now, if |y| < 2K
√
s, since we have for all 0 ≤ j ≤ M , |rj | + |r̃j | ≤ C AM+1

s
j+1
2

from (43) (use

the fact that M ≥ 4), we write from (42)

|r(y)| ≤





∑

j≤M
|rj ||hj(y)| + |r̃j ||h̃j(y)|



+ |r−(y)| (44)

≤ C
∑

j≤M

AM+1

s
j+1
2

(1 + |y|)j +
AM+1

s
M+2

2

(1 + |y|)M+1

≤ C
∑

j≤M

AM+1

s
j+1
2

(1 +K
√
s)j +

AM+1

s
M+2

2

(1 +K
√
s)M+1 ≤ C

(KA)M+1

√
s

,

which gives (i).
(ii) Just use (44) together with the fact that for all 0 ≤ j ≤ M , |rj | + |r̃j| ≤ CAM+1 log s

s2

from (43). This ends the proof of Proposition 4.1.

Initial data (at time s = s0 ≡ − log T ) for the equation (21) will depend on two real
parameters d0 and d1 (besides s0) as given in the following proposition:

Proposition 4.2 (Decomposition of initial data on the different components)
For all A ≥ 1, there exists T1(A) ∈ (0, 1/e) such that for all T ≤ T1:
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(i) P0,M (iχ(2y, s0)) 6= 0 and the following function is well defined:

ψs0,d0,d1(y) = A
s20

(d0(1 + iδ) + d1(1 + iδ)y + d2i)χ(2y, s0) where s0 = − log T,

d2(s0, d0, d1) = −d0P0,M ((1 + iδ)χ(2y, s0)) + d1P0,M ((1 + iδ)yχ(2y, s0))

P0,M (iχ(2y, s0))
(45)

and χ is defined in (19).
(ii) There exists a quadrilateral DT ⊂ [−2, 2]2 such that the mapping (d0, d1) →

(ψ̃0, ψ̃1) (where ψ stands for ψs0,d0,d1) is linear, one to one from DT onto [− A
s20
, A
s20

]2 and

maps ∂DT onto ∂[− A
s20
, A
s20

]2 . Moreover, it is of degree 1 on the boundary.

(iii) For all (d0, d1) ∈ DT , ψe ≡ 0, ψ0 = 0, |ψi| + |ψ̃j | ≤ CAe−γs0 for some γ > 0 and

for all 1 ≤ i ≤M and 2 ≤ j ≤M . Moreover,
∥

∥

∥

ψ−(y)
(1+|y|)M+1

∥

∥

∥

L∞(R)
≤ C

A

s
M
2

+2
0

.

(iv) For all (d0, d1) ∈ DT , ψs0,d0,d1 ∈ VA(s0) with strict inequalities except for (ψ̃0, ψ̃1).

Remark: In some sense, ψs0,d0,d1 is reduced to its components on h̃0 and h̃1. In N
dimensions, one has to take d0 ∈ R and d1 ∈ R

N , because the finite dimensional problem
we reduce to is in R

N+1.
Proof of Proposition 4.2: For simplicity, we write ψ instead of ψs0,d0,d1 . Note first from
Proposition 4.1 that (iv) follows from (ii) and (iii) by taking s0 = − log T large enough
(that is, T small enough). Thus, we only prove (i), (ii) and (iii). Consider some K ≥ 1,
A ≥ 1 and T ≤ 1/e. Note that s0 = − log T ≥ 1.

(i) The proof of (i) is a direct consequence of (iii) of the following claim:

Lemma 4.3 There exist γ = 1
32(1+β2)

> 0 and T2 < 1/e such that for all K ≥ 1 and

all T ≤ T2, if g is given by (1 + iδ)χ(2y, s0), (1 + iδ)yχ(2y, s0) or iχ(2y, s0), then
∥

∥

∥

g−(y)
(1+|y|)M+1

∥

∥

∥

L∞(R)
≤ C

s
M
2

0

and all gi and g̃i for 0 ≤ i ≤ M are less than Ce−γs0 , ex-

cept:
(i) |g̃0 − 1| ≤ Ce−γs0 when g = (1 + iδ)χ(2y, s0),
(ii) |g̃1 − 1| ≤ Ce−γs0 when g = (1 + iδ)yχ(2y, s0),
(iii) |g0 − 1| ≤ Ce−γs0 when g = iχ(2y, s0).

Proof: In all cases, we write

g(y) = p(y)+r(y) where p(y) = (1+iδ), (1+iδ)y or i and r(y) = p(y)(χ(2y, s0)−1). (46)

From the uniqueness of the decomposition (42) and Lemma 3.2, we see that p− ≡ 0 and
all pi and p̃i are zero except

p̃0 = 1 when p(y) = 1+ iδ, p̃1 = 1 when p(y) = (1+ iδ)y and p0 = 1 when p(y) = i. (47)

Considering the cases 2|y| < K
√
s and 2|y| > K

√
s, we have by definition of χ (19),

1 − χ(2y, s) ≤
(

2|y|
K
√
s0

)M
,

|ρβ(y)(1 − χ(2y, s))| ≤
√

|ρβ(y)|
√

|ρβ
(

K
2

√
s0
)

| ≤ Ce
− K2s0

32(1+β2)
√

|ρβ(y)|.
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Therefore, from (46), (39) and (41), we see that

|r(y)| ≤ C(1 + |y|)
(

2|y|
K
√
s0

)M

≤ C
(1 + |y|)M+1

s
M
2

0

,

|Rj | + |rj | + |r̃j | ≤ Ce
− K2s0

32(1+β2) for all j ≤M.

(48)

Hence, using (48), (37) and the fact that |fj(y)| ≤ C(1 + |y|)M for all j ≤M , we get also

|r−(y)| ≤ C
(1 + |y|)M+1

s
M
2

0

.

Using (46) and the estimates for p(y) stated in (47) and before, this concludes the proof
of Lemma 4.3 and (i) of Proposition 4.2.

(ii) From (45), we see that

(

ψ̃0

ψ̃1

)

= G

(

d0

d1

)

where G = (gi,j)0≤i,j≤1. (49)

Using first Lemma 4.3, we see from (45) that

|d2| ≤ C(|d0| + |d1|)e−γs0 (50)

for T small enough. Using again Lemma 4.3, we see that
s20
AG → Id as s0 → ∞ (for fixed

K and A), which concludes the proof of (ii).

(iii) Since supp(ψ) ⊂ B(0,K
√
s0) by (45) and (19), we see from (20) that ψe ≡ 0.

By definition of ψ (45), we see that ψ0 = P0,M (ψ) = d0P0,M ((1+iδ)χ(2y, s0))+d1P0,M ((1+
iδ)yχ(2y, s0)) + d2P0,M (iχ(2y, s0)) which is zero by definition of d2 (45).
Using the fact that |di| ≤ 2 and the bound on d2 (50), we see that the estimates on ψi, ψ̃j
and ψ− in (iii) follow from (45) and Lemma 4.3. This concludes the proof of Proposition
4.2.

4.2 Local in time solution for the problem (21)-(51)

In the following, we find a local in time solution for equation (21) coupled with the con-
dition

P0,M (q(s)) = 0. (51)

Proposition 4.4 (Local in time solution for problem (21)-(51) with initial data
(45)) For all A ≥ 1, there exists T3(A) ∈ (0, 1/e) such that for all T ≤ T3, the following
holds:
For all (d0, d1) ∈ DT , there exists smax > s0 = − log T such that the problem (21)-(51)
with initial data at s = s0,

(q(s0), θ(s0)) = (ψs0,d0,d1 , 0)

where ψs0,d0,d1 is given by (45), has a unique solution satisfying q(s) ∈ VA+1(s) for all
s ∈ [s0, smax).
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Proof: From the solution of the local in time Cauchy problem for equation (1) in L∞(R),
there exists s1 > s0 such that equation (11) with initial data (at s = s0) ϕ(y, s0) +
ψs0,d0,d1(y), where ϕ(y, s) is given by (16) has a unique solution w(s) ∈ C([s0, s1), L

∞(R)).
Now, we have to find a unique (q(s), θ(s)) such that

w(y, s) = ei(µ log s+θ(s))(ϕ(y, s) + q(y, s)) (52)

and (51) is satisfied. Since f0 = 1 from the convention after (28) and

∫

R

ρβ(y)dy = 1 (see

Appendix A), we use (41) and (39) to write condition (51) as

P0,M (q) = ℑ(

∫

q(y, s)ρβ(y)dy)−δℜ(

∫

q(y, s)ρβ(y)dy) = ℑ((1−iδ)
∫

q(y, s)ρβ(y)dy) = 0,

or using (52),

F (s, θ(s)) ≡ ℑ((1 − iδ)

∫

(e−i(µ log s+θ(s))w(y, s) − ϕ(y, s))ρβ(y)dy) = 0.

Note that
∂F

∂θ
(s, θ) = −ℜ((1 − iδ)

∫

(e−i(µ log s+θ(s))w(y, s))ρβ(y)dy).

Moreover, from (iii) in Proposition 4.2, F (s0, 0) = P0,M (ψs0,d0,d1) = 0 and ∂F
∂θ (s0, 0) =

−ℜ((1 − iδ)
∫

(ϕ(y, s0) + ψs0,d0,d1(y))ρβ(y)dy) = −κ + O( 1√
s0

) as s0 → ∞ (for fixed K

and A). Therefore, if T is small enough in terms of A, then ∂F
∂θ (s0, 0) 6= 0, and from

the implicit function theorem, there exists s2 ∈ (s0, s1) and θ ∈ C1([s0, s2),R) such that
F (s, θ(s)) = 0 for all s ∈ [s0, s2)). Defining q(., s) ∈ L∞(R) by (52) gives a unique solution
of problem (21)-(51) for all s ∈ [s0, s2). Now, since we have from (iv) of Proposition

4.2, q(s0) ∈ VA(s0)
⊂
6= VA+1(s0), there exists s3 ∈ (s0, s2) such that for all s ∈ [s0, s3),

q(s) ∈ VA+1(s). This concludes the proof of Proposition 4.4.

4.3 Reduction to a finite dimensional problem

In the following, we reduce the problem to a finite dimensional one:

Proposition 4.5 (Control of q(s) in VA(s) by (q̃0(s), q̃1(s))) There exist A4 ≥ 1 such
that for all A ≥ A4, there exists T4(A) ∈ (0, 1/e) such that for all T ≤ T4, the following
holds:
If (q, θ) is a solution of (21)-(51) with initial data at s = s0 = − log T given by (45) with
(d0, d1) ∈ DT , and q(s) ∈ VA(s) for all s ∈ [s0, s1] with q(s1) ∈ ∂VA(s1) for some s1 ≥ s0,
then:

(i) (Smallness of the modulation parameter) For all s ∈ [s0, s1], |θ′(s)| ≤
C A5 log s

s2
.

(ii) (q̃0(s1), q̃1(s1)) ∈ ∂[− A
s21
, A
s21

]2.

(iii) (Transverse crossing) There exists m ∈ {0, 1} and ω ∈ {−1, 1} such that

ωq̃m(s1) =
A

s21
and ω

dq̃m
ds

(s1) > 0.

17



Remark: In N dimensions, q̃0 ∈ R and q̃1 ∈ R
N . In particular, the finite dimensional

problem is of dimension N + 1. This is why in initial data (45), one has to take d0 ∈ R

and d1 ∈ R
N .

The idea of the proof of Proposition 4.5 is to project equation (21) on the different com-
ponents of the decomposition (42). More precisely, we claim that Proposition 4.5 is a
consequence of the following:

Proposition 4.6 There exists A5 ≥ 1 such that for all A ≥ A5, there exists s5(A) such
that the following holds for all s0 ≥ s5:
Assume that for all s ∈ [τ, s1] for some s1 ≥ τ ≥ s0, q(s) ∈ VA(s) and q0(s) = 0, then the
following holds for all s ∈ [τ, s1]:
(i) (Smallness of the modulation parameter):

|θ′(s)| ≤ C
A5 log s

s2
.

(ii) (ODE satisfied by the expanding modes): For m = 0 and 1, we have

|q̃′m −
(

1 − m

2

)

q̃m| ≤
C

s2
.

(iii) (Control of null and negative modes):

|q̃2(s)| ≤ τ2

s2
|q̃2(τ)| + C

A4

τs2
(s− τ),

|q1(s)| ≤ e−
(s−τ)

2 |q1(τ)| +
C A3

s2
,

|q2(s)| ≤ e−(s−τ)|q2(τ)| +
C

s2
,

|qj(s)| ≤ e−
j(s−τ)

2 |qj(τ)| +
C Aj−1

s
j+1
2

for all 3 ≤ j ≤M,

|q̃j(s)| ≤ e−
(j−2)(s−τ)

2 |q̃j(τ)| +
C Aj−1

s
j+1
2

,

∥

∥

∥

q−(s)

1 + |y|M+1

∥

∥

∥

L∞
≤ e−

M+1
4

(s−τ)
∥

∥

∥

q−(τ)

1 + |y|M+1

∥

∥

∥

L∞
+ C

AM

s
M+2

2

,

‖qe(s)‖L∞ ≤ e
− (s−τ)

2(p−1) ‖qe(τ)‖L∞ +
CAM+1

√
τ

(1 + s− τ) .

The idea of the proof of Proposition 4.6 is to project equations (21) and (17) according to
the decomposition (42). However, because of the number of parameters in our problem (p,
δ and β) and the coordinates in (42), the computations become too long. That is why a
whole section (the next one) is devoted to the proof of Proposition 4.6. Let us now derive
Proposition 4.5 from Proposition 4.6.

Proof of Proposition 4.5 assuming Proposition 4.6:
We will take A4 ≥ A5. Hence, we can use the conclusions of Proposition 4.6.

The proof of (i) follows from (i) in Proposition 4.6. Indeed, by choosing T4 small
enough, we can make s0 = −log T bigger than s5(A).
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To prove (ii), we notice that from Proposition 4.1 and the fact that q0(s) = 0, it is
enough to prove that for all s ∈ [s0, s1],

‖qe‖L∞(R) ≤ AM+2

2
√
s
, ‖ q−(y)

(1+|y|)M+1 ‖L∞(R) ≤ AM+1

2s
M+2

2

,

|qj|, |q̃j | ≤ Aj

2s
j+1
2

for all 3 ≤ j ≤M, |q̃2| ≤ A5 log s

s2
− 1

s3
,

|q1| ≤ A4

2s2
, |q2| ≤ A2

2s2
.

(53)
Define σ = logA and take s0 ≥ σ (that is, T ≤ e−σ = 1/A) so that for all τ ≥ s0 and
s ∈ [τ, τ + σ], we have

τ ≤ s ≤ τ + σ ≤ τ + s0 ≤ 2τ hence
1

2τ
≤ 1

s
≤ 1

τ
≤ 2

s
. (54)

We consider two cases in the proof.

Case 1: s ≤ s0 + σ.
Note that (54) holds with τ = s0. Using (iii) of Proposition 4.6 and estimate (iii) of

Proposition 4.2 on the initial data q(., s0) (where we use (54) with τ = s0), we write

|q̃2(s)| ≤ CAe−γ
s
2 + C

A4

s3

2

logA,

|q1(s)| ≤ CAe−γ
s
2 +

C A3

s2
,

|q2(s)| ≤ CAe−γ
s
2 +

C

s2
,

|qj(s)| ≤ CAe−γ
s
2 +

C Aj−1

s
j+1
2

for all 3 ≤ j ≤M,

|q̃j(s)| ≤ CAe−γ
s
2 +

C Aj−1

s
j+1
2

for all 3 ≤ j ≤M,

∥

∥

∥

q−(s)

1 + |y|M+1

∥

∥

∥

L∞
≤ C

A
(

s
2

)M
2

+2
+ C

AM

s
M+2

2

,

‖qe(s)‖L∞ ≤ CAM+1

√

s
2

(1 + logA) .

Thus, if A ≥ A6 and s0 ≥ s6(A) (that is T ≤ e−s6(A)) for some positive A6 and s6(A), we
see that (53) holds.

Case 2: s > s0 + σ.
Let τ = s − σ > s0. Applying (iii) of Proposition 4.6 and using the fact that q(τ) ∈

VA(τ), we write (we use (54) to bound any function of τ by a function of s, except for the
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first line which requires a more delicate treatment):

|q̃2(s)| ≤ τ2

s2
A5 log τ

τ2
+ C

A4

τs2
σ,

|q1(s)| ≤ e−
σ
2
A4

(

s
2

)2 +
C A3

s2
,

|q2(s)| ≤ e−σ
A2

(

s
2

)2 +
C

s2
,

|qj(s)| ≤ e−
jσ
2

Aj

(

s
2

)
j+1
2

+
C Aj−1

s
j+1
2

for all 3 ≤ j ≤M,

|q̃j(s)| ≤ e−
(j−2)σ

2
Aj

(

s
2

)
j+1
2

+
C Aj−1

s
j+1
2

for all 3 ≤ j ≤M,

∥

∥

∥

q−(s)

1 + |y|M+1

∥

∥

∥

L∞
≤ e−

M+1
4

σ AM+1

(

s
2

)
M+2

2

+C
AM

s
M+2

2

,

‖qe(s)‖L∞ ≤ e
− σ

2(p−1)
AM+2

√

s
2

+
CAM+1

√

s
2

(1 + σ) .

For all the coordinates except q̃2(s), it is clear that if A ≥ A7 and s0 ≥ s7(A) for some
positive A7 and s7(A), then (53) is satisfied (remember that σ = logA). For q̃2(s), (53)
will be satisfied if

A5 log(s − σ)

s2
+ C

A4

(s− σ)s2
σ ≤ A5 log s

s2
− 1

s3
. (55)

Since for fixed A, we have

A5 log(s− σ)

s2
+ C

A4

(s− σ)s2
σ = A5 log s

s2
+ (CA4 −A5)

σ

s3
+O

(

1

s4

)

as s → ∞, we see that if A ≥ A8 and s0 ≥ s8(A) for some positive A8 and s8(A), then
(55) is satisfied, hence (53) is satisfied for q̃2(s).

Conclusion of (ii): If A ≥ max(A6, A7, A8) and s0 ≥ max(s6(A), s7(A), s8(A)), then
(53) is satisfied. Since we know that q(s1) ∈ ∂VA(s1), we see from the definition of VA(s)
(Proposition 4.1) that (q̃1(s1), q̃2(s1)) ∈ ∂[− A

s21
, A
s21

]2. This concludes the proof of (ii) of

Proposition 4.5.

(iii) From (ii), there is m = 0 or 1 and ω = ±1 such that q̃m(s1) = ω A
s21

. Using (ii) of

Proposition 4.6, we see that

ωq̃′m(s1) ≥ (1 − m

2
)ωq̃m(s1) −

C

s21
≥ (1 −m/2)A− C

s21
.

Taking A large enough gives ωq̃′m(s1) > 0 and concludes the proof of Proposition 4.5
assuming Proposition 4.6 is true. It remains to prove Proposition 4.6 to finish the proof
of Proposition 4.5. This will be done later in Section 5.
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4.4 Proof of the finite dimensional problem and Proof of Theorem 1

We prove Theorem 1 using the previous subsections. We proceed in two parts:

- In Part 1, we solve the finite dimensional problem and prove the existence of A ≥ 1,
T > 0, (d0, d1) ∈ DT such that problem (21)-(51) with initial data at s = s0 = − log T ,
(ψs0,d0,d1 , 0) given by (45) has a solution (q(s), θ(s))d0,d1 defined for all s ∈ [s0,∞) such
that

q(s) ∈ VA(s) and |θ′(s)| ≤ C
A5 log s

s2
for all s ∈ [− log T,+∞). (56)

- In Part 2, we show that the solution constructed in Part 1 provides a blow-up solution
of equation (1) which satisfies all the properties stated in Theorem 1, which concludes the
proof.

Part 1: Solution of the finite dimensional problem
We take A = A4 and T = min(T1(A), T3(A), T4(A)) so that Propositions 4.2, 4.4 and

4.5 apply. We will find the parameter (d0, d1) in the set DT defined in Proposition 4.2. We
proceed by contradiction and assume from (iv) of Proposition 4.2 that for all (d0, d1) ∈
DT , there exists s∗(d0, d1) ≥ − log T such that qd0,d1(s) ∈ VA(s) for all s ∈ [− log T, s∗]
and qd0,d1(s∗) ∈ ∂VA(s∗). From (ii) of Proposition 4.5, we see that (q̃0(s∗), q̃1(s∗)) ∈
∂[− A

s∗2 ,
A
s∗2 ]2 and the following function is well defined:

Φ : DT → ∂[−1, 1]2

(d0, d1) → s2∗
A (q̃0, q̃1)d0,d1 (s∗).

(57)

From (iii) of Proposition 4.5, Φ is continuous. If we manage to prove that Φ is of degree 1
on the boundary, then we have a contradiction from the degree theory. Let us prove that.

Using (ii) and (iv) of Proposition 4.2 and the fact that q(− log T ) = ψd0,d1 , we
see that when (d0, d1) is on the boundary of the quadrilateral DT , (q̃0, q̃1)(− log T ) ∈
∂[− A

(log T )2 ,
A

(log T )2 ]2 and q(− log T ) ∈ VA(− log T ) with strict inequalities for the other

components. Applying the transverse crossing property of Proposition 4.5, we see that
q(s) leaves VA(s) at s = − log T , hence s∗(d0, d1) = − log T . Using (ii) of Proposition
4.2, we see that the restriction of Φ to the boundary is of degree 1. A contradiction then
follows. Thus, there exists a value (d0, d1) ∈ DT such that ∀s ≥ − log T , qd0,d1(s) ∈ VA(s).
Using (i) of Proposition 4.5, we get the bound on θ′(s). This concludes the proof of (56).

Part 2: Proof of Theorem 1
Here, we use the solution of problem (21)-(51) constructed in Part 1 to exhibit a

blow-up solution of equation (1) and prove Theorem 1.

(i) Consider (q(s), θ(s)) constructed in Part 1 such that (56) holds. From (56) and
Proposition 4.1, we see that θ(s) → θ0 as s→ ∞ such that

|θ(s) − θ0| ≤ CA5

∫ ∞

s

log τ

τ2
dτ ≤ C

A5 log s

s
and ‖q(s)‖L∞(R) ≤

C0(K,A)√
s

.

Introducing w(y, s) = ei(µ log s+θ(s))(ϕ(y, s) + q(y, s)), we see from the beginning of section
3 that w is a solution of equation (11) that satisfies for all s ≥ − log T and y ∈ R,

|w(y, s) − eiθ0+iµ log sϕ(y, s)| ≤ C‖q(s)‖L∞ + C|θ(s) − θ0| ≤
C0√
s
.
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Introducing

u(x, t) = e−iθ0κiδ(T − t)
1+iδ
p−1 w

(

s√
T − t

,− log(T − t)

)

,

we see from (10) and the definition of ϕ (16) that u is a solution of equation (1) defined
for all (x, t) ∈ R × [0, T ) which satisfies (5).

If x0 = 0, then we see from (5) that |u(0, t)| ∼ κ(T − t)
− 1

p−1 as t → T . Hence, u blows
up at time T at x0 = 0. It remains to prove that when x0 6= 0, x0 is not a blow-up point.
The following result from Giga and Kohn [7] allows us to conclude:

Proposition 4.7 (Giga and Kohn - No blow-up under some threshold) For all
C0 > 0, there is η0 > 0 such that if v(ξ, τ) solves

|∂tv − (1 + iβ)∆v| ≤ C0(1 + |v|p)

and satisfies

|v(ξ, τ)| ≤ η0(T − t)
− 1

p−1

for all (ξ, τ) ∈ B(a, r)× [T − r2, T ) for some a ∈ R and r > 0, then v does not blow up at
(a, T ).

Indeed, since we see from (5) and (16) that

sup
|x−x0|< |x0|

2

(T − t)
1

p−1 |u(x, t)| ≤
∣

∣

∣

∣

∣

ϕ0

(

|x0|/2
√

(T − t)| log(T − t)|

)∣

∣

∣

∣

∣

+
C

√

| log(T − t)|
→ 0

as t → T , x0 is not a blow-up point of u from Proposition 4.7. This concludes the proof
of (i) of Theorem 1.
Proof of Proposition 4.7: Although Giga and Kohn give in [7] the proof only when β = 0,
their argument remains valid for other values of β, simply because the semigroup and the
fundamental solution generated by (1 + iβ)∆v have the same regularizing effect indepen-
dently from β.

(ii) Using the techniques of [13], we derive the existence of a blow-up profile u∗ ∈
C2(R∗) such that u(x, t) → u∗(x) as t→ T , uniformly on compact sets of R

∗. The profile
u∗ is singular at the origin. In the following, we would like to find its equivalent as x→ 0.
In comparison with the case β = 0 treated in [23], no new idea is needed. Therefore,
we just give the key argument. The reader is invited to see Section 4 in [23] for details.
Consider K0 > 0 to be fixed large enough later. If x0 6= 0 is small enough, we introduce
for all (ξ, τ) ∈ R × [− t0(x0)

T−t0(x0) , 1),

v(x0, ξ, τ) = (T − t0(x0))
1+iδ
p−1 | log(T − t0(x0))|−iµu(x, t)

where x = x0 + ξ
√

(T − t0(x0)) , t = t0(x0) + τ(T − t0(x0)),
(58)

and t0(x0) is uniquely determined by

|x0| = K0

√

(T − t0(x0))| log(T − t0(x0))|. (59)
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From the invariance of equation (1) under dilations, v(x0, ·, ·) is also a solution of (1) on
its domain. From (58), (59) and (5), we have

sup
|ξ|<2| log(T−t0(x0))|1/4

|v(x0, ξ, 0) − ϕ0(K0)| ≤
C

| log(T − t0(x0))|1/4
→ 0 as x0 → 0

where ϕ0 is defined in (16). Using the continuity with respect to initial data for equation
(1) associated to a space-localization in the ball B(0, |ξ| < | log(T − t0(x0))|1/4), we show
as in Section 4 of [23] that

sup
{|ξ|<| log(T−t0(x0))|1/4, 0≤τ<1}

|v(x0, ξ, τ) − v̂K0(τ)| ≤ ǫ(x0) → 0 as x0 → 0,

where v̂K0(τ) =
(

(p − 1)(1 − τ) + bK2
0

)− 1+iδ
p−1 is the solution of the PDE (1) with constant

initial data ϕ0(K0) (it is also a solution of the associated ODE given in (3)). Making
τ → 1 and using (58), we see that

u∗(x0) = lim
t→T

u(x, t) = (T − t0(x0))
− 1+iδ

p−1 | log(T − t0(x0))|iµ lim
τ→1

v(x0, 0, τ)

∼ (T − t0(x0))
− 1+iδ

p−1 | log(T − t0(x0))|iµv̂K0(1)

as x0 → 0. Since we have from (59)

log(T − t0(x0)) ∼ 2 log |x0| and T − t0(x0) ∼
|x0|2

2K2
0 | log |x0||

as x0 → 0, this yields (7) and concludes the proof of Theorem 1, assuming Proposition
4.6.

5 Proof of Proposition 4.6

In this section, we prove Proposition 4.6. We just have to project equations (17) and (21)
to get equations satisfied by the different coordinates of the decomposition (42). More
precisely, the proof will be carried out in 3 subsections,

- In the first subsection, we deal with equation (21) (which is accurate up to second
order terms) to write equations satisfied by qj and q̃j. Then, we prove (i), (ii) and (iii)
(except the two last identities) of Proposition 4.6.

- In the second subsection, we first derive from equation (21) an equation satisfied by
q− and prove the last but one identity in (iii) of Proposition 4.6.

- The third subsection is the shortest. We project equation (17) (which is simpler than
(21)) to write an equation satisfied by qe and prove the last identity in (iii) of Proposition
4.6.

5.1 The finite dimensional part: q+

We proceed in 2 parts:
- In Part 1, we project equation (21) to get equations satisfied by qj and q̃j.
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- In Part 2, we prove (i) and (ii) of Proposition 4.6, together with the estimates
concerning qj and q̃j in (iii).

Part 1: The projection of equation (21) on the eigenfunctions of the oper-
ator Lβ,δ

In the following, we will find the main contribution in the projections Pn,M and P̃n,M of
the six terms appearing in equation (21): ∂sq, Lβ,δq, −i

(µ
s + θ′(s)

)

q, V1q+V2q̄, B(q, y, s)
and R∗(θ′, y, s). Most of the time, we give two estimates of error terms, depending on
whether we use or not the fact that q(s) ∈ VA(s).

First term:
∂q

∂s
.

From (41) and (39), its projection on hn and h̃n is q′n(s) and q̃′n(s) respectively:

Pn,M (
∂q

∂s
) = q′n and P̃n,M(

∂q

∂s
) = q̃′n. (60)

Second term: Lβ,δq.
We claim the following:

Lemma 5.1 (Projection of Lβ,δq on hn and h̃n for n ≤M)
If n ≤M − 2, then

∣

∣

∣
Pn,M (Lβ,δq) −

(

−n
2
qn(s) + cn+2q̃n+2

)∣

∣

∣
≤ C

∥

∥

∥

∥

q−
1 + |y|M+1

∥

∥

∥

∥

L∞

where cn was defined in (33).
If M − 1 ≤ n ≤M , then

∣

∣

∣Pn,M (Lβ,δq) +
n

2
qn(s)

∣

∣

∣ ≤ C

∥

∥

∥

∥

q−
1 + |y|M+1

∥

∥

∥

∥

L∞

.

If n ≤M , then the projection of Lβ,δq on h̃n satisfies

∣

∣

∣P̃n,M (Lβ,δq) −
(

1 − n

2

)

q̃n

∣

∣

∣ ≤ C

∥

∥

∥

∥

q−
1 + |y|M+1

∥

∥

∥

∥

L∞

.

If in addition q(s) ∈ VA(s), then the error estimates can be bounded from Proposition 4.1
as follows (for (e), note that (38) implies that M ≥ 8):

Corollary 5.2 For all A ≥ 1, there exists s9(A) ≥ 1 such that for all s ≥ s9(A), if
q(s) ∈ VA(s), then:
a) for n = 0, we have

|P0,M (Lβ,δq) − c2q̃2| ≤ C
AM+1

s
M+2

2

.

b) for 1 ≤ n ≤M − 1, we have

∣

∣

∣Pn,M (Lβ,δq) +
n

2
qn(s)

∣

∣

∣ ≤ C
An+2

s
n+3

2

.
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c) for n = M , we have

∣

∣

∣

∣

PM,M (Lβ,δq) +
M

2
qM (s)

∣

∣

∣

∣

≤ C
AM+1

s
M+2

2

.

d) for 3 ≤ n ≤M , we have

∣

∣

∣
P̃n,M(Lβ,δq) −

(

1 − n

2

)

q̃n

∣

∣

∣
≤ C

An+1

s
n+2

2

.

e) for n = 0, 1 or 2, we have

∣

∣

∣P̃n,M (Lβ,δq) −
(

1 − n

2

)

q̃n

∣

∣

∣ ≤ C

s3
.

Proof of Lemma 5.1: Using (42), we write

Lβ,δq = Lβ,δ





∑

n≤M
qn(s)hn(y) + q̃n(s)h̃n(y)



 + Lβ,δq−(y, s) ≡ L1 + L2

Using Lemma 3.1, we write

L1 =
∑

n≤M
−n

2
qnhn + q̃n

(

(1 − n

2
)h̃n + cnhn−2

)

=
∑

n≤M−2

(

−n
2
qn + cn+2q̃n+2

)

hn +

M
∑

n=M−1

−n
2
qnhn +

∑

n≤M
q̃n

(

1 − n

2

)

h̃n.

Using the obvious fact that when a function is of the form w =
∑M

n=0 wnhn + w̃nh̃n, its
projections on hn and h̃n are respectively wn and w̃n, we see that the projection of L1 on
h̃n is

(

1 − n
2

)

q̃n, whereas its projection on hn is −n
2 qn + cn+2q̃n+2 if n ≤M − 2 and −n

2 qn
if M −1 ≤ n ≤M . Now, let us deal with L2 = Lβ,δq−. By definition (22) of Lβ,δ, we have

Lβ,δq− = Lβq− + (1 + iδ)ℜq−. (61)

Since Lβ is “self-adjoint” with respect to ρβ (see (27)), we use (39), (27) and (29) to write
the projection of Lβq− on any fn for n ≤M (up to a multiplication factor)

∫

Lβq−fnρβdy =

∫

Lβfnq−ρβdy = −n
2

∫

fnq−ρβdy

and this is zero thanks to the “orthogonality” relation (30) and to the fact that q− contains
no fj with j ≤ M in its decomposition on the fj (see (37)). Thus, we see from (61) that
the projection of Lβ,δq− is equal to the projection of (1 + iδ)ℜq−, which is controlled by

C
∥

∥

∥

q−
1+|y|M+1

∥

∥

∥

L∞
. This proves Lemma 5.1.

Third term: −i
(µ
s + θ′(s)

)

q.
It is enough to project iq. Since the projection of iq− is zero, we see from (42) that it is
enough to project ihn and ih̃n for all n ≤ M . Since we know from Lemma 3.1 that the
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term of highest degree in hn is iyn and in h̃n is (1 + iδ)yn, we can expand ihn and ih̃n as
follows:

ihn = δhn − h̃n +

n−1
∑

j=0

cj,nhj + c̃j,nh̃j

ih̃n = (1 + δ2)hn − δh̃n +

n−1
∑

j=0

dj,nhj + d̃j,nh̃j

where the coefficients are real. Therefore, we get the following projections:

Lemma 5.3 (Projection of the term −i
(µ
s + θ′(s)

)

q on hn and h̃n for n ≤ M) Its
projection on hn is given by

Pn,M

(

−i
(µ

s
+ θ′(s)

)

q
)

= −
(µ

s
+ θ′(s)

)



δqn + (1 + δ2)q̃n +
M
∑

j=n+1

cn,jqj + dn,j q̃j



 .

Its projection on h̃n is given by

P̃n,M

(

−i
(µ

s
+ θ′(s)

)

q
)

= −
(µ

s
+ θ′(s)

)



−qn − δq̃n +

M
∑

j=n+1

c̃n,jqj + d̃n,j q̃j



 .

for some real coefficients cn,j, c̃n,j, dn,j and d̃n,j.

If in addition q(s) ∈ VA(s), then the error estimates can be bounded from Proposition 4.1
as follows:

Corollary 5.4 For all A ≥ 1, there exists s10(A) ≥ 1 such that for all s ≥ s10(A), if
q ∈ VA(s) and |θ′(s)| ≤ CA5 log s

s2
, then:

a) for 1 ≤ n ≤M , we have

∣

∣

∣
Pn,M

(

−i
(µ

s
+ θ′(s)

)

q
)∣

∣

∣
≤ C

An

s
n+3

2

;

b) for 1 ≤ n ≤M , we have

∣

∣

∣P̃n,M

(

−i
(µ

s
+ θ′(s)

)

q
)∣

∣

∣ ≤ C
An

s
n+3

2

;

c) for n = 0,
∣

∣P0,M (−i
(µ
s + θ′(s)

)

q)
∣

∣+
∣

∣

∣
P̃0,M (−i

(µ
s + θ′(s)

)

q)
∣

∣

∣
≤ C

s2
.

Fourth term: V1q + V2q̄.
We claim the following:

Lemma 5.5 (Projection of V1q and V2q̄ on hn an h̃n)
(i) It holds that

|Vi(y, s)| ≤ C
(1 + |y|2)

s
for all y ∈ R and s ≥ 1, (62)
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and for all k ∈ N
∗,

Vi(y, s) =
k
∑

j=1

1

sj
Wi,j(y) + W̃i,k(y, s) (63)

where Wi,j(y) is an even polynomial of degree 2j and W̃i,k(y, s) satisfies

for all s ≥ 1 and |y| ≤
√
s,
∣

∣

∣
W̃i,k(y, s)

∣

∣

∣
≤ C

(1 + |y|2k+2)

sk+1
.

(ii) The projections of V1q and V2q̄ on hn and h̃n satisfy for all s ≥ 1,

|Pn,M (V1q)| + |P̃n,M (V1q)| (64)

≤ C

s

M
∑

j=n−2

(|qj | + |q̃j|) +

n−3
∑

j=0

C

s
n−j

2

(|qj| + |q̃j|) +
C

s

∥

∥

∥

∥

q−
1 + |y|M+1

∥

∥

∥

∥

L∞

.

and the same holds for V2q̄.

Remark: If n ≤ 2, the first sum in (64) runs for j = 0 to M and the second sum doesn’t
exist.

If in addition q(s) ∈ VA(s), then the error estimates can be bounded from Proposition 4.1
as follows:

Corollary 5.6 For all A ≥ 1, there exists s11(A) ≥ 1 such that for all s ≥ s11(A), if
q(s) ∈ VA(s), then:
a) for 3 ≤ n ≤M , we have

|Pn,M (V1q)| + |P̃n,M (V1q)| ≤ C
An−2

s
n+1

2

;

b) for n = 0, 1 or 2, we have

|Pn,M (V1q)| + |P̃n,M (V1q)| ≤
C

s2
.

Proof of Lemma 5.5:
(i) The estimates of V1q and V2q̄ are the same, so we only deal with V1q. Let F (u) =
(p+1)

2 (1 + iδ)
[

|u|p−1 − 1
p−1

]

, where u ∈ C and consider z = y√
s
. Note that from (16) and

(22), we have

V1(y, s) = F (ϕ(y, s)) where ϕ(y, s) = ϕ0

(

y√
s

)

+
a

s
(1 + iδ).

Note that there exist positive constants c0 and s0 such that |ϕ0(z)| and |ϕ(y, s)| = |ϕ0(z)+
a
s (1 + iδ)| are both larger than 1/c0 and smaller than c0, uniformly in |z| < 1 and s ≥ s0.
Since F (u) is C∞ for 1

c0
≤ |u| ≤ c0, we expand it around u = ϕ0(z) as follows: for all

s ≥ s0 and |z| < 1,
∣

∣

∣
F
(

ϕ0(z) +
a

s
(1 + iδ)

)

− F (ϕ0(z))
∣

∣

∣
≤ C

s
,

∣

∣

∣

∣

∣

∣

F
(

ϕ0(z) +
a

s
(1 + iδ)

)

− F (ϕ0(z)) −
n
∑

j=1

1

sj
Fj (ϕ0(z))

∣

∣

∣

∣

∣

∣

≤ C

sn+1
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where Fj(u) are C∞. Hence, we can expand F (u) and Fj(u) around u = ϕ0(0) and write
for all s ≥ s0 and |z| < 1,

∣

∣

∣F
(

ϕ0(z) +
a

s
(1 + iδ)

)

− F (ϕ0(0))
∣

∣

∣ ≤ Cz2 +
C

s
,

∣

∣

∣

∣

∣

∣

F
(

ϕ0(z) +
a

s
(1 + iδ)

)

− F (ϕ0(0)) −
n
∑

l=1

c0,lz
2l −

n
∑

j=1

n−j
∑

l=0

cj,l
sj
z2l

∣

∣

∣

∣

∣

∣

≤ C|z|2n+2 +

n
∑

j=1

C

sj
|z|2(n−j)+2 +

C

sn+1
.

Since F (ϕ0(0)) = F (κ) = 0 and z = y√
s
, this yields estimates (62) and (63) for V1, when

s ≥ s0 and |y| < √
s. Since V1 is bounded, (62) is also valid when |y| ≥ √

s, and then
when s ≥ 1.

(ii) Note first from (41) that it is enough to prove the bound (64) for the projection
of Viq onto fn to get the same bound for Pn,M(Viq) and P̃n,M (Viq). Since in addition, the
proof for V2q̄ is the same as for V1q, we only prove (64) for the projection of V1q onto fn.
Using (42) and (39), we see that this projection is given (up to a multiplication factor) by

∫

fnV1qρβ =

∫

fnV1q−ρβ +
M
∑

j=0

qj

∫

fnhjV1ρβ +
M
∑

j=0

q̃j

∫

fnh̃jV1ρβ. (65)

Using (62), the first term can be bounded by

∫

|fn|
(

1 + |y|2
s

)

|q−||ρβ | ≤
C

s

∥

∥

∥

∥

q−
1 + |y|M+1

∥

∥

∥

∥

L∞

. (66)

Now, we deal with the second term. We only focus on the terms involving hj since the
estimates are the same for the terms involving h̃j .
If j ≥ n− 2, we use (62) to write |

∫

fnhjV1ρβ| ≤ C/s.
If j ≤ n− 3, then we claim that

∣

∣

∣

∣

∫

fnhjV1ρβ

∣

∣

∣

∣

≤ C

s
n−j

2

(67)

(this actually vanishes if j and n have different parities). It is clear that (64) follows from

(65), (66) and (67). Let us prove (67) then. Note that k ≡
[

n−j−1
2

]

(which is in N
∗ since
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j ≤ n− 3) is the largest integer such that j + 2k < n. We use (63) to write

∫

fnhjV1ρβ =

∫

|y|<√
s
fnhjV1ρβ +

∫

|y|>√
s
fnhjV1ρβ

=

k
∑

l=1

1

sl

∫

|y|<√
s
fnhjW1,lρβ +O

(

1

s[
n−j−1

2 ]+1

∫

(1 + |y|n−j+1)|fn||hj ||ρβ |dy
)

+

∫

|y|>√
s
fnhjV1ρβ

=
k
∑

l=1

1

sl

∫

RN

fnhjW1,lρβ +O

(

1

s[
n−j−1

2 ]+1

)

−
k
∑

l=1

1

sl

∫

|y|>√
s
fnhjW1,lρβ

+

∫

|y|>√
s
fnhjV1ρβ

Since deg(hjW1,l) = j + 2l ≤ j + 2k < n = deg fn, fn is “orthogonal” to hjW1,l thanks to
(30) and

∫

RN

fnhjW1,lρβ = 0.

Since |ρβ(y)| ≤ Ce−cs when |y| > √
s, the integrals over the domain {|y| > √

s} can be
bounded by

Ce−cs
∫

|y|>√
s
|fn||hj |(1 + |y|2k)

√

|ρβ(y)|dy ≤ Ce−cs.

Using that
[

n−j−1
2

]

+ 1 ≥ n−j
2 , we deduce that (67) holds. Hence, we have proved (64)

and this concludes the proof of Lemma 5.5.

We need further refinements when n = 2 for the terms P̃2,M (V1q) and P̃2,M (V2q̄). More
precisely:

Lemma 5.7 (Projection of V1q and V2q̄ on h̃2)
(i) It holds that

∀s ≥ 1 and |y| <
√
s,

∣

∣

∣

∣

Vi(y, s) −
1

s
Wi,1(y)

∣

∣

∣

∣

≤ C

s2
(

1 + |y|4
)

, (68)

where

W1,1(y) =
(p+ 1)(1 + iδ)

8 (βδ(p + 1) + δ2 − p)
(y2 − 2 + 2βδ) =

(p+ 1)

8 (βδ(p + 1) + δ2 − p)
h̃2(y),

W2,1(y) = (1+iδ)
8(βδ(p+1)+δ2−p)

(

y2(2iδ + p− 1) − 4iδ − 2p + 2 + 4iβδ2 + 2βδ(p − 1)
)

.

(69)
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(ii) The projections of V1q and V2q̄ on h̃2 satisfy

∣

∣

∣P̃2,M (V1q) − q̃2(s)

s

(p+ 1)
(

2βδ3 − 14βδ − 8δ2 + 8
)

8 (βδ(p + 1) + δ2 − p)

∣

∣

∣

∣

∣

(70)

+
∣

∣

∣P̃2,M (V2q̄) − q̃2(s)

s

(1 + δ2) (8(p − 1) − 2δβ(p + 5))

8 (βδ(p + 1) + δ2 − p)

∣

∣

∣

∣

(71)

≤ C

s

M
∑

j=0

|qj| +
C

s

M
∑

j=0, j 6=2

|q̃j| +
C

s

∥

∥

∥

∥

q−
1 + |y|M+1

∥

∥

∥

∥

L∞

+
C

s2

∥

∥

∥

∥

q

1 + |y|M+1

∥

∥

∥

∥

L∞

.

Remark: The denominators in (70) and (71) are non zero thanks to condition (4).

If in addition q(s) ∈ VA(s), then the error estimates can be bounded from Proposition 4.1
as follows:

Corollary 5.8 For all A ≥ 1, there exists s12(A) ≥ 1 such that for all s ≥ s12(A), if
q(s) ∈ VA(s), then

∣

∣

∣

∣

∣

P̃2,M (V1q) −
q̃2(s)

s

(p+ 1)
(

2βδ3 − 14βδ − 8δ2 + 8
)

8 (βδ(p + 1) + δ2 − p)

∣

∣

∣

∣

∣

≤ C
A4

s3

and
∣

∣

∣

∣

P̃2,M (V2q̄) −
q̃2(s)

s

(1 + δ2) (8(p− 1) − 2δβ(p + 5))

8 (βδ(p + 1) + δ2 − p)

∣

∣

∣

∣

≤ C
A4

s3
.

Proof of Lemma 5.7:
(i) One has to do the computations in the proof of (63) in Lemma 5.5 explicitly in order
to prove (68) and (69). This is a simple but lengthy computation that we omit.

(ii) Using (68) and (42), we see that

V1q =
1

s
W1,1q +O

(

q(1 + |y|4)
s2

)

=
q̃2(s)

s
W1,1h̃2 +

1

s
W1,1

M
∑

j=0

qjhj +
1

s
W1,1

M
∑

j=0, j 6=2

q̃jh̃j +
1

s
W1,1q− +O

(

q(1 + |y|4)
s2

)

where the O is uniform with respect to |y| < √
s. When projecting this on h̃2 (use (41)

and (39) for the definition of that projection), we write (using the definition (69) of W1,1)
∣

∣

∣

∣

P̃2,M (V1q) −
q̃2(s)

s

(p + 1)

8 (βδ(p + 1) + δ2 − p)
P̃2,M

(

(

h̃2

)2
)∣

∣

∣

∣

≤ C

s

M
∑

j=0

|qj| +
C

s

M
∑

j=0, j 6=2

|q̃j| +
C

s

∥

∥

∥

∥

q−
1 + |y|M+1

∥

∥

∥

∥

L∞

+
C

s2

∥

∥

∥

∥

q

1 + |y|M+1

∥

∥

∥

∥

L∞

.

Therefore, the problem is reduced to projecting the polynomial
(

h̃2

)2
on h̃2. Since the

polynomial is of degree 4, we can expand it on the basis (hn, h̃n)n≤4 using Lemma 3.2 to
get

(

h̃2

)2
= δ(1 + δ2)h4 + (1 − δ2)h̃4 + ah2 +

(

2βδ3 − 14βδ − 8δ2 + 8
)

h̃2 + bh0 + ch̃0
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for some real numbers a, b and c. Thus,

P̃2,M

(

(

h̃2

)2
)

=
(

2βδ3 − 14βδ − 8δ2 + 8
)

.

This controls (70).
The bound on (71) can be proved similarly. Thus, we only give a sketch. When projecting
V2q̄ on h̃2, we get

∣

∣

∣

∣

P̃2,M (Vsq̄) −
q̃2(s)

s
P̃2,M

(

W2,1
¯̃h2

)

∣

∣

∣

∣

≤ C

s

M
∑

j=0

|qj| +
C

s

M
∑

j=0, j 6=2

|q̃j| +
C

s

∥

∥

∥

∥

q−
1 + |y|M+1

∥

∥

∥

∥

L∞

+
C

s2

∥

∥

∥

∥

q

1 + |y|M+1

∥

∥

∥

∥

L∞

.

The polynomial W2,1
¯̃
h2 can be expanded on the basis (hn, h̃n)n≤4 using Lemma 3.2:

8
(

βδ(p + 1) + δ2 − p
)

1 + δ2
W2,1

¯̃
h2

= δ(3 − p)h4 + (p − 1)h̃4 + ah2 + (8(p− 1) − 2δβ(p + 5)) h̃2 + bh0 + ch̃0

for some real numbers a, b and c. Thus,

P̃2,M

(

W2,1
¯̃
h2

)

=
1 + δ2

8 (βδ(p + 1) + δ2 − p)
(8(p − 1) − 2δβ(p + 5)) .

This proves the bound on (71) and concludes the proof of Lemma 5.7.

Fifth term: B(q, y, s).
We have the following lemma:

Lemma 5.9 The function B = B(q, y, s) can be decomposed for all s ≥ 1 and |q| ≤ 1 as

sup
|y|<√

s

∣

∣

∣

∣

∣

∣

∣

B −
M
∑

l=0

∑

0≤j,k≤M+1
2≤j+k≤M+1

1

sl

[

Bl
j,k(

y√
s
)qj q̄k + B̃l

j,k(y, s)q
j q̄k
]

∣

∣

∣

∣

∣

∣

∣

≤ C|q|M+2 +
C

sM+1
, (72)

where Bl
j,k is an even polynomial of degree less or equal to M and the rest B̃l

j,k(y, s)
satisfies

∀s ≥ 1 and |y| <
√
s,
∣

∣

∣B̃l
j,k(y, s)

∣

∣

∣ ≤ C
(1 + |y|M+1)

s
M+1

2

.

Moreover,

∀s ≥ 1 and |y| <
√
s, |Bl

j,k(
y√
s
) + B̃l

j,k(y, s)| ≤ C.

On the other hand, in the region |y| ≥ √
s, we have

|B(q, y, s)| ≤ C|q|p̄ (73)

for some constant C where p̄ = min(p, 2).
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Proof: We just give a sketch of the proof. We recall from (22) that B is given by

B(q, y, s) = (1+iδ)

{

|ϕ+ q|p−1(ϕ+ q) − |ϕ|p−1ϕ− |ϕ|p−1q − (p− 1)

2
|ϕ|p−3ϕ (ϕq̄ + ϕ̄q)

}

.

We notice that in the region |y| ≤ √
s and for s ≥ C where C is a fixed constant, ϕ is

bounded from above and from below. Using a Taylor expansion in terms of q and q̄, we
see that B can be written as

∀s ≥ 1 and |y| <
√
s,

∣

∣

∣

∣

∣

∣

∣

B −
∑

0≤j,k≤M+1
2≤j+k≤M+1

[

Ej,k(ϕ)qj q̄k
]

∣

∣

∣

∣

∣

∣

∣

≤ C|q|M+2. (74)

Expanding Ej,k(ϕ) in terms of the variable 1
s , we get

∣

∣

∣

∣

∣

Ej,k(ϕ) −
M
∑

l=0

1

sl
Elj,k(ϕ0)

∣

∣

∣

∣

∣

≤ C

sM+1

then expanding in z = y√
s
, we deduce that

∣

∣

∣

∣

∣

∣

Elj,k(ϕ0) −
M/2
∑

i=0

bl,ij,k|z|2i
∣

∣

∣

∣

∣

∣

≤ C|z|M+2

We denote Bl
j,k(z) =

∑M/2
i=0 bl,ij,k|z|2i and B̃l

j,k(y, s) = Elj,k(ϕ0)−Bl
j,k. Hence (72) holds and

Lemma 5.9 is proved.

Using lemma 5.9, we have the following estimate:

Lemma 5.10 (The quadratic term B(q, y, s)) For all A ≥ 1, there exists s13(A) such
that for all s ≥ s13, if q(s) ∈ VA(s), then:

a) the projection of B(q, y, s) on hn and on h̃n, for n ≥ 3 satisfies

|Pn,M (B(q, y, s))| + |P̃n,M (B(q, y, s))| ≤ C
An

s
n
2
+1
. (75)

b) for n = 0, 1 or 2, we have

|Pn,M (B(q, y, s))| + |P̃n,M (B(q, y, s))| ≤ C

s3
. (76)

Proof: We will only prove estimate (75) since (76) is easier and can be proved in the same
way. It is enough to prove estimate (75) for the projection on fn since it implies the same
estimate for Pn,M and P̃n,M through (41). We write

∫

fnB(q, y, s)ρβdy =

∫

|y|<√
s
fnB(q, y, s)ρβdy +

∫

|y|>√
s
fnB(q, y, s)ρβdy.
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Using lemma 5.9, we deduce that

∣

∣

∣

∣

∣

∣

∣

∫

|y|<√
s
fnB(q, y, s)ρβ −

∫

|y|<√
s
fnρβ

M
∑

l=0

∑

0≤j,k≤M+1
2≤j+k≤M+1

1

sl

[

Bl
j,k(

y√
s
)qj q̄k + B̃l

j,k(y, s)q
j q̄k
]

∣

∣

∣

∣

∣

∣

∣

≤ C

∫

|y|<√
s
|fn||ρβ |(|q|M+2 +

1

sM+1
).

Let us write

Bl
j,k(

y√
s
) =

M/2
∑

i=0

bl,ij,k(
y√
s
)2i

qj = (

M
∑

m=0

qmhm + q̃mh̃m + q−)j and qk = (

M
∑

r=0

qrhr + q̃rh̃r + q−)k

where bl,ij,k are the coefficients of the polynomial Bl
j,k. Using the fact that ‖q(s)‖L∞ ≤ 1

(which holds for s large from the fact that q(s) ∈ VA(s) and (i) of Proposition 4.1), we
deduce that

|qj − qj+| ≤ C(|q−|j + |q−|)
Using that q(s) ∈ VA(s) and the fact that s ≥ 2A2, we deduce that in the region y ≤ √

s,
we have |q−| ≤ 1√

s
( A√

s
)M+1(1 + |y|)M+1 and that

|qj − (

M
∑

m=0

qmhm + q̃mh̃m)j| ≤ C

(

A√
s

)M+1 1√
s
(1 + |y|)jM+j .

In the same way, we have

|qk − (

M
∑

m=0

qmhm + q̃mh̃m)k| ≤ C

(

A√
s

)M+1 1√
s
(1 + |y|)kM+k,

hence, the contribution coming from q− is controlled by the right-hand side of (75). More-
over for all j, k and l, we have

∣

∣

∣

∣

∣

∫

|y|<√
s
fnρβB

l
j,k(

y√
s
)qj+q̄

k
+ −

∫

fnρβB
l
j,k(

y√
s
)qj+q̄

k
+

∣

∣

∣

∣

∣

≤ Ce−cs. (77)

To compute the second term on the left hand side of (77), we notice that Bl
j,k(

y√
s
)qj+q̄

k
+

is a polynomial in y and that the coefficient of the term of degree n is controlled by the
right-hand side of (75) since q ∈ VA.
Moreover, using that s ≥ 2A2, we infer that |q| ≤ 1√

s
(1 + |y|)M+1 in the region |y| < √

s

and hence for all j, k and l, we have

∣

∣

∣

∣

∣

∫

|y|<√
s
fnρβ

1

sl
B̃l
j,k(y, s)q

j q̄k

∣

∣

∣

∣

∣

≤ C
1

sl+
M+1+j+k

2
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and
∣

∣

∣

∣

∣

∫

|y|<√
s
fnρβ(|q|M+2 +

1

sM+1
)

∣

∣

∣

∣

∣

≤ C
1

s
M+2

2

.

The terms appearing in these two inequalities are controlled by the right hand side of
(75).
Using the fact that ‖q(s)‖L∞ ≤ 1 and (18), we remark that |B(q, y, s)| ≤ C. Since
|ρβ(y)| ≤ Ce−cs for |y| > √

s, it holds that

∣

∣

∣

∣

∣

∫

|y|>√
s
fnB(q, y, s)ρβdy

∣

∣

∣

∣

∣

≤ Ce−cs.

This concludes the proof of Lemma 5.10.

Sixth term: R∗(θ′, y, s).
In the following lemma, we expand R∗(θ′, y, s) as a power series of 1/s as s→ ∞, uniformly
for |y| < √

s:

Lemma 5.11 (Power series of R∗ as s→ ∞) For all n ∈ N,

R∗(θ′, y, s) = Πn(θ
′, y, s)) + Π̃n(θ

′, y, s) (78)

where

Πn(θ
′, y, s) =

n−1
∑

k=0

1

sk+1
Pk(y) − iθ′(s)

(

a

s
(1 + iδ) +

n−1
∑

k=0

ek
y2k

sk

)

(79)

and

∀|y| <
√
s,
∣

∣

∣Π̃n(θ
′, y, s))

∣

∣

∣ ≤ C(1 + s|θ′(s)|)
(

1 + |y|2n
)

sn+1
, (80)

where Pk is a polynomial of degree 2k for all k ≥ 1.
In particular,

sup
|y|≤√

s

∣

∣

∣

∣

∣

R∗(θ′, y, s) −
1
∑

k=0

1

sk+1
Pk(y) + iθ′

[

κ+
(1 + iδ)

s

(

a− bκ

(p− 1)2
y2

)]

∣

∣

∣

∣

∣

≤ C

(

1 + |y|4
s3

)

+ C|θ′|y
4

s2
. (81)

Proof: Using the definition of ϕ (16), the fact that ϕ0 satisfies (13) and (18), we see that
R∗ is in fact a function of θ′, z = y√

s
and s that can be written as

R∗(θ′, y, s) = −z
s
.∇zϕ0(z) −

a

s2
(1 + iδ) +

(1 + iβ)

s
∆zϕ0(z) (82)

− a(1 + iδ)2

(p− 1)s
+
(

F
(

ϕ0(z) +
a

s
(1 + iδ)

)

− F (ϕ0(z))
)

− i
µ

s

(

ϕ0(z) +
a

s
(1 + iδ)

)

− iθ′(s)
(

ϕ0(z) +
a

s
(1 + iδ)

)

with F (u) = (1 + iδ)|u|p−1u.
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Since |z| < 1, there exist positive c0 and s0 such that |ϕ0(z)| and |ϕ0(z) + a
s (1 + iδ)| are

both larger that 1/c0 and smaller that c0, uniformly in |z| < 1 and s > s0. Since F (u) is
C∞ for 1

c0
≤ |u| ≤ c0, we expand it around u = ϕ0(z) as follows
∣

∣

∣

∣

∣

∣

F
(

ϕ0(z) +
a

s
(1 + iδ)

)

− F (ϕ0(z)) −
n
∑

j=1

1

sj
Fj (ϕ0(z))

∣

∣

∣

∣

∣

∣

≤ C
1

sn+1
,

where Fj(u) are C∞. Hence, we can expand Fj(u) around u = ϕ0(0) and write
∣

∣

∣

∣

∣

∣

F
(

ϕ0(z) +
a

s
(1 + iδ)

)

− F (ϕ0(z)) −
n
∑

j=1

n−j
∑

l=0

cj,l
sj
z2l

∣

∣

∣

∣

∣

∣

≤
n
∑

j=1

C

sj
|z|2(n−j)+2 +

C

sn+1
.

Similarly, we have the following
∣

∣

∣

∣

∣

∣

z

s
.∇zϕ0(z) −

|z|2
s

n−2
∑

j=0

djz
2j

∣

∣

∣

∣

∣

∣

≤ C

s
|z|2n,

∣

∣

∣

∣

∣

∣

1

s
∆zϕ0(z) −

1

s

n−1
∑

j=0

bjz
2j

∣

∣

∣

∣

∣

∣

≤ C

s
|z|2n and

∣

∣

∣

∣

∣

∣

ϕ0(z) −
n−1
∑

j=0

ejz
2j

∣

∣

∣

∣

∣

∣

≤ C|z|2n.

Recalling that z = y√
s

and using (82), we get to the conclusion of (79). Estimate (81) is

obtained in the same way by performing explicit computations.

Using the “orthogonality” relation between the fj (30), we easily derive from Lemma
5.11 bounds on Fj(R

∗)(θ′, s), the projection of R∗(θ′, y, s) defined in (18) on fj:

Lemma 5.12 (Projection of R∗ on the eigenfunctions of Lβ)
It holds that Fj(R

∗)(θ′, s) ≡ 0 when j is odd, and |Fj(R∗)(θ′, s)| ≤ C 1+s|θ′(s)|
s

j
2+1

when j is

even and j ≥ 4.
If j = 0, then

F0(R
∗)(θ′, s) = −iθ′(s)

(

κ+O

(

1

s

))

+

{

(1 + iδ)

(

a− 2(1 + iβ)
κb

(p − 1)2

)

− iµκ

}

1

s

+ O

(

1

s2

)

= −iθ′(s)
(

κ+O

(

1

s

))

+O

(

1

s2

)

with the choice of a and µ made in (16).
If j = 2, then

F2(R
∗)(θ′, s) = θ′(s)

(

(δ − i)κ

4(βδ(p + 1) + δ2 − p)

1

s
+O

(

1

s2

))

+O

(

1

s3

)

+

{

− κb

(p− 1)2

[

6bδ2
(1 + iδ)

(p − 1)2
− iµ(1 + iδ) − 6b

(p − 1)2
(1 + iβ)

+ 1 + iδ − 6b

(p− 1)
(1 + iδ)(1 + iβ) − 12ibδ

(1 + iβ)

(p − 1)2

]

− ba

(p− 1)2
[

(p− 1)(1 + iδ) + 3iδ + iδ3 − δ2 + 1
]

}

1

s2
.
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Proof: Since R∗ is even in the y variable and fj is odd when j is odd, Fj(R
∗)(θ′, s) ≡ 0

when j is odd. Now when j is even, we apply Lemma 5.11 with n = [ j2 ] and write

R∗(θ′, y, s) = Π j
2
(θ′, y, s) +O

(

1 + s|θ′(s)| + |y|j

s
j
2
+1

)

where Π j
2

is a polynomial in y of degree less than j−1. Using the definition (39) of Fj(R
∗),

we write |Fj(R∗)| ≤ C
∣

∣

∫

RN R
∗fjρβdy

∣

∣ and

∫

RN

R∗fjρβdy =

∫

|y|<√
s
R∗fjρβdy +

∫

|y|>√
s
R∗fjρβdy

=

∫

|y|<√
s
Π j

2
fjρβdy +O

(

∫

|y|<√
s

1 + sθ′(s) + |y|j

s
j
2
+1

fjρβdy

)

+

∫

|y|>√
s
R∗fjρβdy

=

∫

RN

Π j
2
fjρβdy +O

(

1 + sθ′(s)

s
j
2
+1

)

+

∫

|y|>√
s
R∗fjρβdy −

∫

|y|<√
s
Π j

2
fjρβdy. (83)

First, note that
∫

RN Π j
2
fjρβdy = 0 because fj is orthogonal to all polynomials of degree

less that j − 1 (see (30)). Then, note that both integrals over the domain {|y| > √
s} are

controlled by
∫

|y|>√
s

(

|R∗(θ′, y, s)| + 1 + |y|j
)

(1 + |y|j)ρβ(y)dy.

Using the bound (25) on R∗ and the fact that |ρβ(y)| ≤ Ce−cs for |y| > √
s, we can bound

this integral by

C(1 + |θ′(s)|)
∫

RN

(1 + |y|j)2ce−cs
√

ρβ(y)dy = C(j)(1 + |θ′(s)|)e−cs.

Using (83) yields the result for j ≥ 4, j even. If j = 0 or j = 2, one has to refine Lemma
5.11 in a straightforward but long way and then do as we did for general j. We omit the
details. This concludes the proof of Lemma 5.12.

Using the definition (41) of the coordinates Pj,M (R∗) and P̃j,M (R∗) in terms of Fj(R
∗),

we have the following estimates:

Corollary 5.13 (Projection of R∗ on the eigenfunctions of Lβ,δ)
If j is even and j ≥ 4, then Pj,M(R∗)(θ′, s) and P̃j,M (R∗)(θ′, s) are O

(

1+s|θ′|
s

j
2+1

)

.

If j is odd, then Pj,M (R∗)(θ′, s) and P̃j,M(R∗)(θ′, s) are O

(

1+s|θ′|
s

j+3
2

)

.

If j = 0, then P0,M (R∗)(θ′, s) = −θ′(s)
(

κ+O
(

1
s

))

+ O
(

1
s2

)

and P̃0,M (R∗)(θ′, s) =

O
(

θ′(s)
s

)

+O
(

1
s2

)

(with the choice of a and µ made in (16)).
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If j = 2, then P2,M (R∗) = O
(

1
s2

)

+O
(

θ′(s)
s

)

and

P̃2,M (R∗) = θ′(s)

(

κδ

4(βδ(p + 1) + δ2 − p)

1

s
+O

(

1

s2

))

+O(
1

s3
) +

{

−ba(p− δ2)

(p− 1)2

− κb

(p− 1)2

[

6bδ2

(p − 1)2
+ µδ − 6b

(p − 1)2
+ 1 − 6b

(p − 1)
(1 − δβ) +

12bδβ

(p− 1)2

]}

1

s2

= θ′(s)

(

κδ

4(βδ(p + 1) + δ2 − p)

1

s
+O

(

1

s2

))

+O

(

1

s3

)

with the choice of b, a and µ made in (16).

Part 2: Proof of Proposition 4.6, except the last two identities
In this part, we consider A ≥ 1 and take s large enough so that Part 1 applies.

(i) From Part 1, taking the projection of (21) on h̃0, we see that for all s ∈ [τ, s1],

∣

∣q′0 − c2q̃2 + κθ′(s)
∣

∣ ≤ C

s2
+ C

|θ′(s)|
s

where c2 = 2β(1 + δ2)

was given in (33) and computed in Lemma 3.2. Since q(s) ∈ VA(s) and q0(s) = 0 for all
s ∈ [τ, s1], this yields

∣

∣

∣

∣

θ′(s) − 2
β(1 + δ2)

κ
q̃2(s)

∣

∣

∣

∣

≤ C

s
|q̃2(s)| +

C

s2
. (84)

Using Proposition 4.1 to bound q̃2, we get |θ′(s)| ≤ CA5s−2 log s and conclude the proof
of (i) of Proposition 4.6, provided that s0 is large enough.

(ii) This is a direct consequence of Part 1, provided that s0 is large enough.

(iii) Estimate of q̃2(s): We use Part 1 and the fact that q ∈ VA to project the different
terms of (21) on h̃2 :

P̃2,M (∂q∂s ) = q̃′2.
|P̃2,M (Lβ,δq)| ≤ C

s3
.

|P̃2,M (−i
(µ
s + θ′(s)

)

q)−µδ q̃2s | ≤ C
s3/2 |q̃2(s)|+C A3

s3 (here we have used (i) of Proposition
4.6; we recall that the value of µ was introduced in (16)).

|P̃2,M (V1q) −
q̃2(s)

s

(p+ 1)
(

2βδ3 − 14βδ − 8δ2 + 8
)

8 (βδ(p + 1) + δ2 − p)
| ≤ C

A4

s3
.

|P̃2,M (V2q̄) −
q̃2(s)

s

(1 + δ2) (8(p − 1) − 2δβ(p + 5))

8 (βδ(p + 1) + δ2 − p)
| ≤ C

A4

s3
.

|P̃2,M (B(q, y, s))| ≤ C
s3

.

|P̃2,M (R∗(θ′s, y, s)) − q̃2(s)

s

4βδ(1 + δ2)

8 (βδ(p + 1) + δ2 − p)
| ≤ C

A

s3
(here, we have used Lemma

5.13 and (84)). Adding all these contributions gives −2 as the coefficient of q̃2(s)
s in the

the following equation satisfied for all s ∈ [τ, s1]:

|q̃′2 +
2

s
q̃2| ≤ C

A4

s3
≤ C

A4

τs2
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for s0 large enough. Integrating this differential inequality between τ and s gives the
desired estimate on q̃2.

Estimate of q1, q2, qj and q̃j for 3 ≤ j ≤ M : Using Part 1 and the fact that q(s) ∈
VA(s), we see that for all s ∈ [τ, s1], we have

|q′1 + 1
2q1| ≤ C A3

s2
, |q2 + q′2| ≤ C

s2
,

|q′j + j
2qj| ≤ C Aj−1

s
j+1
2

, |q̃′j + j−2
2 qj| ≤ C Aj−1

s
j+1
2

.

Integrating these differential inequalities between τ and s1 gives the desired estimates.

5.2 The infinite dimensional part : q−

Here, we prove the last but one identity in (iii) of Proposition 4.6. As in the previous
subsection, we proceed in two parts:

- In Part 1, we project equation (21) using the projector P− defined in (42).
- In Part 2, we prove the estimate on q− contained in (iii) of Proposition 4.6.

Part 1: Projection of equation (21) using the projector P−
In the following, we will project equation (21) term by term.

First term:
∂q

∂s
.

From (41) and (39), its projection is

P−(
∂q

∂s
) =

∂q−
∂s

. (85)

Second term: Lβ,δq.
We have the following:

Lemma 5.14 (Projection of Lβ,δq)

P−(Lβ,δq) = Lβ(q−(s)) + P−[(1 + iδ)ℜq−]

Third term: −i
(µ
s + θ′(s)

)

q.
Since P− commutes with the multiplication by i, we deduce that

P−[−i
(µ

s
+ θ′(s)

)

q] = −i
(µ

s
+ θ′(s)

)

q−.

Fourth term: V1q + V2q̄.
We have the following:

Lemma 5.15 (Projection of V1q and V2q̄)
The projections of V1q and V2q̄ satisfy for all s ≥ 1

∥

∥

∥

∥

P−(V1q)

1 + |y|M+1

∥

∥

∥

∥

L∞

≤ (||V1||L∞ +
C

s
)

∥

∥

∥

∥

q−
1 + |y|M+1

∥

∥

∥

∥

L∞

+

M
∑

n=0

C

s
M+1−n

2

(|qn| + |q̃n|) (86)

and the same holds for V2q̄.
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Using the fact that q(s) ∈ VA(s), we get the following:

Corollary 5.16 For all A ≥ 1, there exists s14(A) such that for all s ≥ s14, if q(s) ∈
VA(s), then

∥

∥

∥

∥

P−(V1q)

1 + |y|M+1

∥

∥

∥

∥

L∞

≤ ||V1||L∞

∥

∥

∥

∥

q−
1 + |y|M+1

∥

∥

∥

∥

L∞

+ C
AM

s
M+2

2

and the same holds for V2q̄.

Proof of Lemma 5.15: We just give the proof for V1q since the proof for V2q̄ is similar.
From subsection 3.5, we write q = q+ + q− and

P−(V1q) = V1q− − P+(V1q−) + P−(V1q+).

Moreover, we claim that the following estimates hold
∥

∥

∥

∥

V1q−
1 + |y|M+1

∥

∥

∥

∥

L∞

≤ ||V1||L∞

∥

∥

∥

∥

q−
1 + |y|M+1

∥

∥

∥

∥

L∞
∥

∥

∥

∥

P+(V1q−)

1 + |y|M+1

∥

∥

∥

∥

L∞

≤ C

s

∥

∥

∥

∥

q−
1 + |y|M+1

∥

∥

∥

∥

L∞

Indeed, the first one is obvious. To prove the second one, we use (62) to show that

|Pn,M (V1q−)| + |P̃n,M (V1q−)| ≤ C

s

∥

∥

∥

∥

q−
1 + |y|M+1

∥

∥

∥

∥

L∞

.

To control P−(V1q+) =
∑

n≤M P−
(

V1(qnhn + q̃nh̃n)
)

(use (40)), we argue as follows.

If M − n is odd, we take k = M−1−n
2 in (63), hence

P−
(

V1(qnhn + q̃nh̃n)
)

=

k
∑

j=1

1

sj
P−
(

W1,j(qnhn + q̃nh̃n)
)

+P−
(

(qnhn + q̃nh̃n)W̃1,k

)

Since 2k+n ≤M , we deduce that P−(W1,j(qnhn+ q̃nh̃n) = 0 for all 0 ≤ j ≤ k. Moreover,
using that

∣

∣

∣
W̃1,k

∣

∣

∣
≤ C

(1 + |y|2k+2)

sk+1

and applying Lemma A.3, we deduce that
∥

∥

∥

∥

∥

∥

P−
(

V1(qnhn + q̃nh̃n)
)

1 + |y|M+1

∥

∥

∥

∥

∥

∥

L∞

≤ C
(|qn| + |q̃n|)
s

M+1−n
2

(87)

If M − n is even, we take k = M−n
2 in (63) and use that

∣

∣

∣W̃1,k

∣

∣

∣ ≤ C
(1 + |y|2k+1)

sk+
1
2

to deduce that (87) holds. This ends the proof of Lemma 5.15.

Fifth term: B(q, y, s).
Using (23), we have the following estimate from Lemmas 5.9 and A.3:
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Lemma 5.17 For all K ≥ 1 and A ≥ 1, there exists s15(K,A) such that for all s ≥ s15,
if q(s) ∈ VA(s), then

∥

∥

∥

∥

P−(B(q, y, s))

1 + |y|M+1

∥

∥

∥

∥

L∞

≤ C(M)

[

(

AM+2

√
s

)p̄

+
A[5+(M+1)2]

s

]

1

s
M+1

2

(88)

where p̄ = min(p, 2).

Proof: The proof is very similar to the proof of the previous lemma. From Lemma 5.9, we
deduce that for all s there exists a polynomial BM of degree M in y such that for all y
and s, we have

|B −BM (y)| ≤ C

[

(

AM+2

√
s

)p̄

+
A[5+(M+1)2]

s

]

(1 + |y|M+1)

s
M+1

2

. (89)

Indeed, we can take BM (y) to be the polynomial

BM = P+,M







M
∑

l=0

∑

0≤j,k≤M+1
2≤j+k≤M+1

1

sl

[

Bl
j,k(

y√
s
)qj+q̄

k
+

]






.

The fact that B − BM (y) is controlled by the right-hand side of (89) is a consequence of
the following estimates in the outer region and in the inner region.
First, in the region where |y| ≥ √

s, we have from Lemma 5.9,

|B| ≤ C|q|p̄ ≤ C

(

AM+2

√
s

)p̄

and from the proof of Lemma 5.10, we know that for 0 ≤ n ≤M ,

|Pn,M (BM (q, y, s))| + |P̃n,M (BM (q, y, s))| ≤ C
An

s
n
2
+1

Besides, in the region |y| ≤ √
s, we can use the same argument as in the proof of Lemma

5.9 to deduce that the coefficient of degree k ≥M + 1 of the polynomial

M
∑

l=0

∑

0≤j,k≤M+1
2≤j+k≤M+1

1

sl

[

Bl
j,k(

y√
s
)qj+q̄

k
+

]

−BM

is controlled by C Ak

s
k
2 +1

and hence

∣

∣

∣

∣

∣

∣

∣

M
∑

l=0

∑

0≤j,k≤M+1
2≤j+k≤M+1

1

sl

[

Bl
j,k(

y√
s
)qj q̄k

]

−BM

∣

∣

∣

∣

∣

∣

∣

≤ C
A2M+2

s
M+3

2

(1 + |y|M+1)

in the region |y| ≤ √
s.

Moreover, using that |q| ≤ C AM+1√
s

in the region |y| ≤ √
s, we deduce that for s ≥ 2A2, we

have
M
∑

l=0

∑

0≤j,k≤M+1
2≤j+k≤M+1

1

sl

[

B̃l
j,k(

y√
s
)qj q̄k

]

≤ C
A2M+2

s
M+3

2

(1 + |y|M+1)
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Finally, to control the term |q|M+2, we use that in the region |y| ≤ √
s, we have the

following two estimates |q| ≤ C AM+1√
s

and |q| ≤ A5 1

s
3
2
(1 + |y|M+1) if s ≥ 2A2. Hence

|q|M+2 ≤ C
A5

s3/2

(

AM+1

√
s

)M+1

(1 + |y|M+1)

This ends the proof of estimate (89) and we conclude the proof of (88) by applying Lemma
A.3.

Sixth term: R∗(θ′, y, s).
We claim the following:

Lemma 5.18 If |θ′(s)| ≤ C
s3/2 then the following holds

∥

∥

∥

∥

P−(R∗(θ′, y, s))
1 + |y|M+1

∥

∥

∥

∥

L∞

≤ C
1

s
M+3

2

Proof: Taking n = M
2 + 1 (remember that M is even), we write from Lemma 5.11

R∗(θ′, y, s) = Πn(θ
′, y, s)) + Π̃n(θ

′, y, s). Since 2n − 2 = M , we see from subsection 3.5
that

|Π̃n(θ
′, y, s))| ≤ C

(

1 + |y|2n−2
)

sn
C

(

1 + |y|M+1
)

s
M+3

2

(90)

in the region |y| < √
s. It is easy to see, using (25) and the definition of Πn that (90)

holds for all y ∈ R and s ≥ 1. Then applying Lemma A.3, we conclude easily.

Part 2: Proof of the last but one identity in (iii) of Proposition 4.6 (estimate
on q−)

If we apply the projection operator P− to the equation (21) satisfied by q, we see that
q− satisfies the following equation:

∂q−
∂s

= Lβq−+P−[(1+iδ)ℜq−]+P−[−i
(µ

s
+ θ′(s)

)

q+V1q+V2q̄+B(q, y, s)+R∗(θ′, y, s)].

Here, we have used the important fact that P−[(1 + iδ)ℜq+] = 0.
Unlike the estimates on qn and q̃n where we use the properties of the operator Lβ,δ, here
we use the operator Lβ. The fact that M is large as fixed in (38) is crucial in the proof.
Using the kernel of the semigroup generated by Lβ, we get for all s ∈ [τ, s1],

q−(s) = e(s−τ)Lβq−(τ)

+

∫ s

τ
e(s−s

′)LβP−[(1 + iδ)ℜq−]ds′

+

∫ s

τ
e(s−s

′)LβP−
[

−i
(µ

s
+ θ′(s′)

)

q + V1q + V2q̄ +B(q, y, s) +R∗(θ′, y, s′)
]

ds′.

41



Using Lemma A.2, we get
∥

∥

∥

q−(s)
1+|y|M+1

∥

∥

∥

L∞
≤ e−

M+1
2

(s−τ)
∥

∥

∥

q−(τ)
1+|y|M+1

∥

∥

∥

L∞

+

∫ s

τ
e−

M+1
2

(s−s′)
√

1 + δ2
∥

∥

∥

∥

q−(s′)
1 + |y|M+1

∥

∥

∥

∥

L∞

ds′

+

∫ s

τ
e−

M+1
2

(s−s′)

∥

∥

∥

∥

∥

∥

P−
[

−i
(µ

s′
+ θ′(s′)

)

q + V1q + V2q̄ +B(s′) +R∗(s′)
]

1 + |y|M+1

∥

∥

∥

∥

∥

∥

L∞

Assuming that q(s′) ∈ VA(s′), the results from Part 1 yield (use (i) of Proposition 4.6 to
bound |θ′(s′)|)
∥

∥

∥

q−(s)
1+|y|M+1

∥

∥

∥

L∞
≤ e−

M+1
2

(s−τ)
∥

∥

∥

q−(τ)
1+|y|M+1

∥

∥

∥

L∞

+

∫ s

τ
e−

M+1
2

(s−s′)
(
√

1 + δ2 +
∥

∥|V1| + |V2|
∥

∥

L∞

) ∥

∥

∥

q−(s′)
1 + |y|M+1

∥

∥

∥

L∞
ds′

+

∫ s

τ
e−

M+1
2

(s−s′)
[

A[(M+1)2]

(s′)
M+3

2

+
A(M+2)p̄

(s′)
p̄−1
2

1

(s′)
M+2

2

+
AM

(s′)
M+2

2

]

ds′

Since we have already fixed M in (38) such that

M ≥ 4(
√

1 + δ2 + 1 + 2 max
i=1,2, y∈R, s≥1

|Vi(y, s)|),

using Gronwall’s lemma we deduce that

e
M+1

2
s
∥

∥

∥

q−(s)
1+|y|M+1

∥

∥

∥

L∞
≤ e

M+1
4

(s−τ)e
M+1

2
τ
∥

∥

∥

q−(τ)
1+|y|M+1

∥

∥

∥

L∞

+e
M+1

2
s2

M+3
2

[

A[(M+1)2]

s
M+3

2

+ A(M+2)p̄

s
p̄−1
2

1

s
M+2

2

+ AM

s
M+2

2

]

which concludes the proof of the last but one identity in (iii) of Proposition 4.6.

5.3 The outer region : qe

Here, we finish the proof of Proposition 4.6 by proving the last inequality in (iii). Since
q(s) ∈ VA(s) for all s ∈ [τ, s1], it holds from Proposition 4.1 and (i) of Proposition 4.6 that

‖q(s)‖L∞(|y|<2K
√
s) ≤ C

AM+1

√
s

and |θ′(s)| ≤ CA5 log s

s2
. (91)

Then, we derive from (17) an equation satisfied by qe:

∂qe
∂s

= Lβqe − 1
p−1qe + (1 − χ)e

iδ
p−1

s
{

L(q, θ′, y, s) + R̃(θ′, y, s)
}

−e
iδ

p−1
sq(s)

(

∂sχ+ (1 + iβ)∆χ+
1

2
y.∇χ

)

+ 2e
iδ

p−1
s(1 + iβ) div (q(s)∇χ) .

(92)
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Writing this equation in its integral form and using the maximum principle satisfied by
eτLβ (see Lemma A.1 below), we write

‖qe(s)‖L∞ ≤ e−
s−τ
p−1 ‖qe(τ)‖L∞

+

∫ s

τ
e−

s−s′

p−1

(

‖(1 − χ)L(q, θ′, y, s′)‖L∞ + ‖(1 − χ)R̃(θ′, y, s′)‖L∞

)

ds′

+

∫ s

τ
e−

s−s′

p−1

∥

∥

∥

∥

q(s′)

(

∂sχ+ (1 + iβ)∆χ+
1

2
y.∇χ

)∥

∥

∥

∥

L∞

ds′

+

∫ s

τ
e
− s−s′

p−1
1

√

1 − e−(s−s′)
‖q(s′)∇χ‖L∞ds′.

Let us bound the norms in the three last lines of this inequality.
First of all, we have from (19) and (91)

∥

∥

∥

∥

q(s′)

(

∂sχ+ (1 + iβ)∆χ+
1

2
y.∇χ

)∥

∥

∥

∥

L∞

≤ C(1 +
1

K2s′2
)‖q(s′)‖L∞(|y|<2K

√
s′)

≤ C
AM+1

√
s′

, (93)

‖q(s′)∇χ‖L∞ ≤ C

K
√
s′
‖q(s′)‖L∞(|y|<2K

√
s′) ≤ C

AM+1

s′
(94)

for s′ large enough.
Second, note that the residual term (1−χ)R∗ is small as well. Indeed, recalling the bound
(24) on R, we write from the definition of R∗ (18) and (91):

∥

∥(1 − χ)R∗(θ′, y, s′)
∥

∥

L∞ ≤ C

s′
+ |θ′(s′)| ≤ C

s′
(95)

for s′ large enough.
Third, the term (1−χ)L(q, θ′, y, s′) given in (18) is less than ǫ|qe| with ǫ = 1

2(p−1) . Indeed,

it holds from (91) that

‖(1 − χ)L(q, θ′, y, s′)‖L∞

≤ C‖qe(s′)‖L∞

(

‖ϕ(s′)‖p−1

L∞(|y|≥K
√
s′)

+ ‖q(s′)‖p−1

L∞(|y|≥K
√
s′)

+
1

s′
+ |θ′(s′)|

)

≤ 1
2(p−1)‖qe(s′)‖L∞

(96)

whenever K and s′ are large (in order to ensure that ‖ϕ(s′)‖L∞(|y|≥K
√
s′) is small, see

(16)). Notice that it is only here that we need the fact that K is big enough. Using
estimates (91), (93), (94), (95) and (96), we write

‖qe(s)‖L∞ ≤ e−
s−τ
p−1 ‖qe(τ)‖L∞

+

∫ s

τ
e−

s−s′

p−1

(

1

2(p− 1)
‖qe(s′)‖L∞ +

CAM+1

√
s′

+
AM+1

s′
1

√

1 − e−(s−s′)

)

.
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Using Gronwall’s inequality, we end-up with

‖qe(s)‖L∞ ≤ e
− (s−τ)

2(p−1) ‖qe(τ)‖L∞ +
CAM+1

√
τ

(

s− τ +
√
s− τ

)

which concludes the proof of Proposition 4.6.

6 Stability of the profile (5)

As announced in the introduction, our technique proves the stability not only of the
solution constructed in Theorem 1, but of any solution trapped in some neighborhood of
the profile in selfsimilar variables. More precisely, we have the following:

Theorem 2’ Consider û(x, t) a solution of equation (1) which blows up at some time
T̂ > 0 at one single blow-up point â such that û(x− â, t) satisfies (5) with T = T̂ . Assume
in addition that

∀s ≥ ŝ0, q̂T̂ ,â(s) ∈ VÂ(s)

for some positive ŝ0, K̂ and Â, where q̂T̂ ,â is defined by

ŵT̂ ,â(y, s) = ei(µ log s+θ̂
T̂ ,â

(s))(ϕ(y, s) + q̂T̂ ,â(y, s)),

P0,M (q̂T̂ ,â(s)) = 0, (97)

ŵT̂ ,â(y, s) = (T̂ − t)
1+iδ
p−1 û(x, t), y =

x− â
√

T̂ − t
, s = − log(T̂ − t)

and ϕ is the profile defined in (16).
Then, there exists a neighborhood V0 of û0 ≡ û(x, 0) in L∞ such that for any u0 ∈ V0,
equation (1) has a unique solution u(x, t) with initial data u0, and u(x, t) blows up in finite
time T (u0) at one single blow-up point a(u0). Moreover, for all s ≥ s0, qT (u0),a(u0)(s) ∈
VK̂,A(s) for some A ≥ 3Â independent from u0, where qT (u0),a(u0)(y, s) can be defined from
u(x, t) as in (97). Finally, estimate (5) is satisfied by u(x− a(u0), t) and

T (u0) → T̂ , a(u0) → â as u0 → û0.

This section is devoted to the proof of Theorem 2’ (which is a generalization of Theorem
2). The proof is the same as in the case β = δ = 0 treated in [14]. For the reader’s
convenience, we give a sketch of the proof here (we recommend however the reading of the
stability section of [14] first, in a pedagogical approach).

The sketch of the proof is given in 3 steps:

- In Step 1, we replace the parameters (d0, d1) by new ones: the blow-up time and
point. More precisely, using the modulation technique of the existence proof, we define
wT,a and qT,a for (u0, T, a) close to (û0, T̂ , â) as in (97).

- In Step 2, given an arbitrary u0 close to û0, our goal is to prove that for some
(T, a) = (T (u0), a(u0)), qT,a(s) is trapped in VK̂,A(s) for all s large enough and some
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A ≥ Â. Recalling the reduction to a 2 dimensional problem from the existence problem,
we show that we reduce to the control of P̃j,M(qT,a(s)) for j = 0 and 1.

- In Step 3, we solve the two dimensional problem by contradiction. Giving the behavior
of P̃j,M(q̂T,a(s)) for j = 0 and 1 and (T, a) close to (T̂ , â) is crucial to find a contradiction
through index theory.

Step 1: Interpretation of the 2 parameters in terms of the blow-up time
and point

If in the existence proof, we had to finetune 2 parameters d0 and d1 in (45) in order
to guarantee that q(s) stays in VA(s) for any s ≥ s0 for some s0, here our parameters will
be (T, a) in some neighborhood of (T̂ , â). More precisely, given initial data u0 close to û0,
we define u(x, t) the local solution of equation (1). Then, given any (T, a) close to (T̂ , â),
we introduce

wT,a(y, s) = (T − t)
1+iδ
p−1 u(x, t), y =

x− a√
T − t

, s = − log(T − t). (98)

Given any s1 ≥ ŝ0, we see that wT,a is close to ŵT̂ ,â, provided that (u0, T, a) is close to

(û0, T̂ , â). More precisely, we have the following:

Proposition 6.1 (Continuity with respect to initial data on a finite time inter-
val) For all s1 ≥ ŝ0 and δ1 > 0, there exist V1 a neighborhood of û0 and ǫ1 > 0 such
that for all u0 ∈ V1, equation (1) with initial data u0 has a unique solution defined for all

t ∈ [0, T̂ − e−s1

2 ]. Moreover, for all (a, T ) such that

|a− â| + |T − T̂ | < ǫ1,

the function wT,a (98) is well defined for all s ∈ [− log T, s1] and

sup
s∈[− log T,s1]

‖wT,a(s) − ŵT̂ ,â(σ)‖L∞ < δ1 where σ = s− log(1 − (T − T̂ )es).

Remark: All the quantities having a hat are defined from û.
Idea of the proof: This is just the continuity with respect to initial data of solutions of
equation (1) when time belongs to a finite interval (here [0, T̂ − e−s1

2 ]).

Now, we can make modulation theory to define qT,a(y, s) as in the 2 first lines of (97).
More precisely, we have the following:

Proposition 6.2 (Modulation theory) There exists ŝ1 ≥ ŝ0 such that for all s1 ≥ ŝ1,
there exist V2 and ǫ2 > 0 such that for all u0 ∈ V2, for all (T, a) ∈ B((T̂ , â), ǫ2) and
s ∈ [ŝ1, s1], there exists θT,a(s) (C1 in terms of s) such that if qT,a(y, s) is defined by

wT,a(y, s) = ei(µ log s+θT,a(s))(qT,a(y, s) + ϕ(y, s)), P0,M (qT,a(s)) = 0 (99)

where ϕ is defined in (16), then

∀s ∈ [ŝ1, s1], qT,a(s) ∈ V2Â(s).
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Idea of the proof: This proposition is analogous to Lemma 4.4. Using Proposition 6.1, one
has to apply the implicit function theorem to the function

F (v, s, θ) ≡ ℑ((1 − iδ)

∫

(e−i(µ log s+θ)v(y) − ϕ(y, s))ρβ(y)dy) = 0, (100)

near the point (v, s, θ) = (ŵT̂ ,â(σ), σ, θ̂T̂ ,â(σ)) for s large enough.

Step 2: Reduction to a finite dimensional problem
The two parameters T and a in qT,a replace d0 and d1 in (45) in the existence proof.

Then, given u0 ∈ V0 ∩V1, if we prove that for some A ≥ Â, s̃0 and (T, a) = (T (u0), a(u0)),
we have qT,a(s) ∈ VA(s) for all s ≥ s̃0, then, as in the proof of Theorem 1, T , a will be
respectively the blow-up time and the blow-up point of u(x, t), and u will have the profile
(5).
As in Proposition 4.5, we reduce the problem to a finite dimensional one:

Proposition 6.3 (Control of q(s) in VA(s) by (q̃0(s), q̃1(s))) There exists A3 such that
for all A ≥ A3, there exist ŝ3, V3 a neighborhood of u0 and ǫ3 > 0 such that for all T ≤ T3,
the following holds:
If u0 ∈ V3 and |T − T̂ | + |a − â| ≤ ǫ3 and qT,a(s) ∈ VA(s) for all s ∈ [s0, s1] with
qT,a(s1) ∈ ∂VA(s1) for some s1 ≥ s0, then:

(i) (Smallness of the modulation parameter) For all s ∈ [s0, s1], |θ′T,a(s)| ≤
C A5 log s

s2
.

(ii) (q̃0(s1), q̃1(s1))T,a ∈ ∂[− A
s21
, A
s21

]2.

(iii) (Transverse crossing) There exists m ∈ {0, 1} and ω ∈ {−1, 1} such that

ωq̃m(s1) =
A

s21
and ω

dq̃m
ds

(s1) > 0.

Proof: Propositions 6.3 and 4.5 are essentially the same. They both follow from Proposi-
tion 4.6. The only difference is in the data at s = s0. Therefore, in the case s ≥ s0 + σ
where σ = logA, we don’t use the data at s = s0 and the proof is the same. On the
contrary, in the case s ≤ s0 + σ, the proof is different. Indeed, in Proposition 4.5, we take
(d0, d1) ∈ DT , so that data at time s = s0 is very small and stays small up to s = s0 + σ,
whereas in Proposition 6.3, the fact that q(s) does not touch the boundary of VA(s) for
s ≤ s0 +σ follows directly from the continuity result of Proposition 6.2 by taking A ≥ 3Â.

Step 3: Solution of the 2 dimensional problem
As in the existence proof, we derive from Steps 1 and 2 the existence of some large

A ≥ 3Â, ŝ4 ≥ ŝ0, a neighborhood V4 of û0 and a rectangle D̂ ⊂ R
2 containing (T̂ , â) such

that for all u0 ∈ V0, we will be able to find (T, a) ∈ D̂ such that qT,a(s) ∈ VA(s) for all

s ≥ ŝ1. We proceed by contradiction, and assume that for all (T, a) ∈ D̂, there exists
s∗(T, a) ≥ ŝ4 such that qT,a(s) ∈ VA(s) for all s ∈ [ŝ4, s∗] and qT,a(s∗) ∈ ∂VA(s∗). Using
Proposition 6.3, we see that the following function is well defined and continuous:

Φu0 : D̂T → ∂[−1, 1]2

(T, a) → s2∗
A (q̃0, q̃1)T,a (s∗).
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If one proves that the degree of Φu0 on the boundary of D̂ is not zero, then a contradiction
follows from index theory and the proof is terminated. From the continuity of the degree
and Step 1, it is enough to show this for u0 = û0. This comes from the following Proposition
which is analogous to Lemma B.2 page 186 in [14] concerning the case β = δ = 0. Here,
we only give the expansion of P̃j,M(q̂T,a)(s). Other estimates (in particular concerning the
derivatives with respect to T and a) are omitted here. They are completely analogous to
[14]. The following lemma allows us to conclude

Lemma 6.4 (Expansion of P̃j,M(q̂T,a)(s) for (T, a) close to (T̂ , â) and j = 0 and 1)
There exist c0 = c0(p, β, δ) ∈ R and ŝ5 ≥ ŝ1 such that for all s ≥ ŝ5, for all (T, a) ∈ R

2

satisfying |τ | ≤ 1
2 and |α| ≤ 1

2 , where τ = (T − T̂ )es and α = (a− â)e
s
2 , we have

|P̃0,M (q̂T,a(s)) −
c0
s2

− τ
κ

p− 1
| ≤ C

(

log s

s5/2
+

|τ |
s

+ τ2 +
α2

s
+ |α| log s

s2
+ |α|3

)

,

|P̃1,M (q̂T,a(s)) +
2bκ

(p− 1)2
α

s
| ≤ C

(

log s

s3
+

|τ |
s

+
α4

s
+ τ2 + |α| log s

s2

)

.

Indeed, as in [14], taking τ and α
s of the size of 1

s2
, we see that Φû0 is a linear function

(up to some perturbation) whose degree on the boundary is −1. By continuity, Φu0 has
the same degree, which yields a contradiction and proves the stability result. It remains
to prove Lemma 6.4.

Proof of Lemma 6.4: Using the definition of ŵT,a, (98), we write

ŵT,a(y, s) = (1 − τ)−
1+iδ
p−1 ŵT̂ ,â(z, σ)

where

z =
y + α√
1 − τ

, σ = s− log(1 − τ), τ = (T − T̂ )es and α = (a− â)e
s
2 .

Using the definition of q̂T,a (99), this gives

q̂T,a(y, s) = eiψI

where

I = (1 − τ)−
1+iδ
p−1 q̂T̂ ,â(z, σ) + (1 − τ)−

1+iδ
p−1 ϕ(z, σ) − ϕ(y, s),

ψ = µ log σ − µ log s+ θ̂T̂ ,â(σ) − θ̂T,a(s).

The application of the implicit function theorem to F (v, s, θ) (100) gives an expansion of
θ̂T,a(s) − θ̂T̂ ,â(σ) in terms of s− σ and ŵT,a(y, s) − ŵT̂ ,â(z, σ), which gives after straight-
forward computations analogous to [14]

|eiψ − 1| ≤ Cτ2 + C
|τ |
s

+ C|α| log s
s2

+ C
α2

s
+ C|α|3. (101)

Proceeding as in [14], we make the expansion of I and obtain its projections on h̃0 and
h̃1. Gathering the information on ψ and I concludes the proof of Lemma 6.4, Theorems
2’ and 2.
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A Spectral properties and the semigroup generated by the
operator Lβ

We aim at defining a semi-group for the operator Lβ and showing some of its properties.
For that, we introduce the more general operator defined for all z ∈ C, ℜz > 0,

L̃zw = z∆w − 1

2
y.∇w =

1

ρz
div(ρz∇w)

where ρz(y) = e−
|y|2

4z /(4πz)N/2. Let us remark that this problem in analytical in terms of

the z variable. Therefore, it is enough to solve it for z ∈ R
∗
+ and to deduce its properties

for general z by holomorphic extension. As a matter of fact, when z ∈ R
∗
+, we have

∫

RN

ρβ(y)dy = 1,

moreover, the operator L̃z is well known. It is self-adjoint with respect to the weight ρz
in the sense that

∫

RN

u(y)L̃zw(y)ρz(y)dy =

∫

RN

w(y)L̃zu(y)ρz(y)dy. (102)

In one space dimension (N = 1), the eigenfunctions fn of L̃z are dilations of the standard
Hermite polynomials Hn(y):

fn(y) = Hn(
y

2
√
z
) where L̃zHn = −n

2
Hn.

If N ≥ 2, its eigenfunctions fα(y1, ..., yN ) where α = (α1, ..., αN ) ∈ N
N is a multi-index

are given by

fα(y) = ΠN
i=1fαi(yi) = ΠN

i=1Hαi(
yi

2
√
z
).

The family fα is orthogonal in the sense that for all α and ζ in N
N ,

∫

fαfζρzdy = δα,ζ

∫

f2
αρzdy. (103)

The semigroup generated by L̃z is well defined and has the following kernel:

esL̃z(y, x) =
1

[4πz(1 − e−s)]N/2
exp






−

∣

∣

∣x− ye−
s
2

∣

∣

∣

2

4z(1 − e−s)






.

Using the holomorphic extension, it is clear that all the above properties hold for all z ∈ C

such that ℜz > 0. The following two lemmas will be used to prove some decay

Lemma A.1 a) The semigroup satisfies the maximum principle:

‖esLβϕ‖L∞ ≤ ‖ϕ‖L∞ .

b) Moreover, we have

‖esLβdiv(ϕ)‖L∞ ≤ C√
1 − e−s

‖ϕ‖L∞

where C only depends on β.
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Lemma A.2 There exists a constant C such that if φ satisfies

∀x ∈ R |φ(x)| ≤ (1 + |x|M+1)

then for all y ∈ R, we have

|esLβP−(φ(y))| ≤ Ce−
M+1

2
s(1 + |y|M+1)

Moreover, we have the following useful lemma about P−

Lemma A.3 For all k ≥ 0, we have
∥

∥

∥

∥

P−(φ)

1 + |y|M+k

∥

∥

∥

∥

L∞

≤ C

∥

∥

∥

∥

φ

1 + |y|M+k

∥

∥

∥

∥

L∞

Remark: Even though (102) and (103) hold for all z, one should bear in mind that L̃z
and Lβ are neither self-adjoint nor Hermitian with respect to the weight ρz. Moreover, we
can’t say that family (fα)α∈N is orthogonal, because the symmetric bilinear form

(u, v) →
∫

uvρz

is not even positive.
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