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Abstract

We prove a Liouville Theorem for a vector valued semilinear heat equation with no
gradient structure. Classical tools such as the maximum principle or energy techniques
break down and have to be replaced by a new approach. We then derive from this
theorem uniform estimates for blow-up solutions of that equation.
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1 Introduction

This paper is concerned with blow-up solutions of the semilinear heat equation

∂tu = ∆u+ F (u), (1)

where u(t) : x ∈ RN → RM , ∆ denotes the Laplacian and F : RM → RM is not necessarily
a gradient. We say that u(t) blows up in finite time T , if u(t) exists for all t ∈ [0, T ) and

lim
t→T
‖u(t)‖L∞ = +∞.

We note that an extensive literature is devoted to the study of equation (1). Many results
were found using monotonicity properties, maximal principle (valid for scalar equations) or
energy techniques (valid when F is a gradient). See for example [Wei84], [Fuj66], [Bal77],
[Lev73]. Unfortunately, there are important classes of PDEs where these techniques break
down. For example, equations of the type (1), where F is not a gradient, or PDEs coming
from geometric flows; see for example a review paper by Hamilton [Ham95].
∗This author was supported by a grant from the french Agence Nationale de la Recherche, project

ONDENONLIN, reference ANR-06-BLAN-0185.
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In this work, we would like to develop new tools for a class of equations where classical
tools do not work, in particular, vector valued equations with no gradient structure. More
precisely, we will consider the following reaction-diffusion equation.

ut = ∆u+ (1 + iδ)|u|p−1u, u(0, x) = u0(x), (2)

where u(t) : RN → C, δ ∈ R and

p > 1 and (N − 2)p < (N + 2). (3)

Note that the nonlinearity in this equation is not a gradient. Note also that (2) is a
particular case of the Complex Ginzburg-Landau equation

∂tu = (1 + iβ)∆u+ (ε+ iδ)|u|p−1u− γu, where (x, t) ∈ RN × (0, T ), (4)

β, δ and γ real, p > 1 and ε = ±1.
This equation is mostly famous when ε = −1. It appears in the study of various physical
problems (plasma physics, nonlinear optics). It is in particular used as an amplitude
equation near the onset of instabilities in fluid mechanics (see for example Levermore and
Oliver [LO96]). In this case, Plecháč and Šverák [PŠ01] used matching techniques and
numerical simulations to give a strong evidence for the existence of blow-up solutions in
the focusing case, namely βδ > 0.
The case ε = 1 is less famous. To our knowledge, there is only the work of Popp, Stiller,
Kuznetsov and Kramer [PKK98], who use a formal approach to find blow-up solutions.
More recently, Masmoudi and Zaag [MZ08a] gave a constructive method to show the
existence of a stable blow-up solution under some conditions for the parameters.
Let us present in the following the known results for equation (2) and most importantly
the research directions and open problems. In the study of the blow-up phenomenon for
equation (2), we believe that there are two important issues:

Construction of examples of blow-up solutions: In this approach, one has to
construct examples of solutions that blow up in finite time. In particular, one has to find
conditions on initial data and/or parameters of the equation to guarantee that the solution
blows up in finite time. For equation (2), we recall the result obtained by Zaag [Zaa98]
(the range of δ has been widened in [MZ08a]):

For each δ ∈ (−√p,√p),
i) equation (2) has a solution u(x, t) on RN × [0, T ) which blows up in finite time T > 0
at only one blow-up point a ∈ RN ,
ii) moreover, we have

lim
t→T
‖(T − t)

1+iδ
p−1 u(a+ ((T − t)| log(T − t)|)

1
2 z, t)− fδ(z)‖L∞(RN ) = 0 (5)

with

fδ(z) = (p− 1 +
(p− 1)2

4(p− δ2)
|z|2)−

1+iδ
p−1 ,

2



iii) there exists u∗ ∈ C(RN\{a},C) such that u(x, t) → u∗(x) as t → T uniformly on
compact subsets of RN\{a} and

u∗(x) ∼

[
8(p− δ2)| log |x− a||

(p− 1)2|x− a|2

] 1+iδ
p−1

as x→ a.

Remark: In [MZ08a], the same result was proved for equation (4), where the linearized
operator around the expected profile is much more difficult to study.

Asymptotic behavior for any arbitrary blow-up solution: In this approach,
one takes any arbitrary blow-up solution for equation (2) and tries to describe its blow-up
behavior. More precisely, it consists in the determination of the asymptotic profile (that
is a function from which, after a time dependent scaling, u(t) approaches as t→ T ) of the
blow-up solution.
In earlier literature, the determination of the profile is done through the study of entire
solutions (defined for all time and space) of the equation. See for example Grayson and
Hamilton [GH96] for the case of the harmonic map heat flow and Giga and Kohn [GK85]
for the heat equation (that is δ = 0 in (2); there, the authors prove a Liouville Theorem
which turns to be the trivial case of the Liouville Theorem proved by Merle and Zaag in
[MZ98a] and [MZ00] and stated in Proposition 3.2 below). Let us remark that the use
of Liouville theorems was successful for elliptic equations (see Gidas and Spruck [GS81a]
and [GS81b]).
More recently, the characterization of entire solutions by means of Liouville Theorems
allowed to obtain more than the blow-up profile, namely uniform estimates with respect
to initial data and the singular point. See for the heat equation Merle and Zaag [MZ98b],
[MZ98a], [MZ00], for the modified Korteweg de Vries equation Martel and Merle [MM00],
for the nonlinear Schrödinger equation Merle and Raphael [MR04], [MR05] and for the
wave equation Merle and Zaag [MZ08b] and [MZ08b].

The existence of a Lyapunov functional is traditionally a crucial tool in the proof of
Liouville theorems, like for the heat equation [MZ00] or the wave equation [MZ08b]. One
wanders whether it is possible to prove a Liouville theorem for a system with no Lyapunov
functional. The first attempt was done by Zaag [Zaa01] for the following system

∂tu = ∆u+ vp, ∂tv = ∆v + uq, (6)

and its selfsimilar version

∂sΦ = ∆Φ− 1
2y · ∇Φ + Ψp −

(
p+1
pq−1

)
Φ,

∂sΨ = ∆Ψ− 1
2y · ∇Ψ + Φq −

(
q+1
pq−1

)
Ψ.

(7)

This is the result of [Zaa01]:

Consider p0 > 1 such that (N−2)p0 < N+2 and M > 0. Then, there exists η > 0 such
that if |p− p0|+ |q− p0| < η, then for any nonnegative (Φ,Ψ) solution of (7) such that for
all (y, s) ∈ RN × R, Φ(y, s) + Ψ(y, s) ≤ M , then either (Φ,Ψ) = (0, 0) or (Φ,Ψ) = (Γ, γ)
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or (Φ,Ψ) =
(

Γ (1 + es−s0)−
p+1
pq−1 , γ (1 + es−s0)−

q+1
pq−1

)
for some s0 ∈ R, where (Γ, γ) is the

only nontrivial constant solutions of (7) defined by

γp = Γ
(
p+ 1
pq − 1

)
and Γq = γ

(
q + 1
pq − 1

)
. (8)

Before [Zaa01], Andreucci, Herrero and Velázquez addressed the same question in
[AHV97] but could not determine explicitly the third case. In some sense, they just gave
the limits as s → ±∞ (for a statement, see the remark after Proposition 2.2 below).
The characterization of that third case is far more difficult then the rest. The lack of a
Lyapunov functional was overcome thanks to an infinite dimensional blow-up criterion.
Following system (6), it was interesting to address the case of equation (2) for δ 6= 0. Like
for system (6), there is no Lyapunov functional. On the contrary, no blow-up criterion
is available and the set of non zero stationary solutions for the selfsimilar version is a
continuum (see Proposition 2.1 below). For these two reasons, new tools have to be found,
which makes our paper meaningful.
Another reason for our work is the full Ginzburg-Landau model (4) with β 6= 0. That case
has one more difficulty since the linearized operator in selfsimilar variable becomes non
selfadjoint, as one can see from [MZ08a]. Thus, this paper is a fundamental step towards
the proof of a Liouville theorem for the full Ginzburg-Landau model (4), which we believe
to be an open problem of great importance.

1.1 A Liouville theorem for system (2)

Our aim in this paper is to prove a Liouville theorem for equation (2). In order to do so,
we introduce for each a ∈ RN , the following selfsimilar transformation:

wa(y, s) = (T − t)
(1+iδ)
p−1 u(x, t), y =

x− a√
T − t

, s = − log(T − t). (9)

If u is a solution of (2), then the function w = wa satisfies for all s ≥ − log T and y ∈ RN :

ws = ∆w − 1
2
y · ∇w − (1 + iδ)

(p− 1)
w + (1 + iδ)|w|(p−1)w. (10)

We introduce also the Hilbert space

L2
ρ = {g ∈ L2

loc(RN ,C),
∫

RN
|g|2e−

|y|2
4 dy < +∞} where ρ(y) =

e−
|y|2
4

(4π)N/2
.

If g depends only on the variable y ∈ RN , we use the notation

‖g‖2L2
ρ

=
∫

RN
|g(y)|2e−

|y|2
4 dy.

If g depends only on (y, s) ∈ RN × R, we use the notation

‖g(., s)‖2L2
ρ

=
∫

RN
|g(y, s)|2e−

|y|2
4 dy.

The main result of the paper is the following Liouville theorem which classifies certain
entire solutions (i.e. solutions defined for all (y, s) ∈ RN × R) of (10):
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Theorem 1 (A Liouville theorem for equation (10))Assuming (3), there exist δ0 > 0 and
M : [−δ0, δ0] → (0,+∞] with M(0) = +∞, M(δ) → +∞ as δ → 0 and the following
property:

If |δ| ≤ δ0 and w ∈ L∞(RN ×R,C) is a solution of (10) with ‖w‖L∞(RN×R,C) ≤M(δ),
then, either w ≡ 0 or w ≡ κeiθ0 or w = ϕδ(s− s0)eiθ0 for some θ0 ∈ R and s0 ∈ R, where

ϕδ(s) = κ(1 + es)−
(1+iδ)
(p−1) and κ = (p− 1)−

1
p−1 .

Going back to the original variables u(x, t), we rewrite this Liouville theorem in the
following:

Theorem 2 (A Liouville theorem for equation (2))Assuming (3), there exist δ0 > 0 and
M : [−δ0, δ0] → (0,+∞] with M(0) = +∞, M(δ) → +∞ as δ → 0 and the following
property:

If |δ| ≤ δ0 and u is a solution of (2) satisfying u(x, t)(T−t)
1
p−1 ∈ L∞(RN×(−∞, T ),C)

and ‖u(x, t)(T − t)
1
p−1 ‖L∞(RN×(−∞,T ),C) ≤ M(δ), then, u ≡ 0 or there exists T0 ≥ T and

θ0 ∈ R such that for all (x, t) ∈ RN × (−∞, T ), u(x, t) = κ(T0 − t)−
1+iδ
p−1 eiθ0.

Remark: This result has already been proved by Merle and Zaag [MZ98a] and [MZ00]
(see also Nouaili [Nou08]) when δ = 0. In that case, M(0) = +∞, which means that
any L∞ entire solution of (10), with no restriction on the size of its norm, is trivial (i.e.
independent of space).
When δ 6= 0, this conclusion holds only for ”small” L∞ norm (i.e. bounded by M(δ)).
We suspect that we cannot take M(δ) = +∞. In other words, we suspect that equation
(10) under the condition (3) has nontrivial solutions in L∞ with a high norm. We think
that such solutions can be constructed in the form w(y, s) = w0(y)eiωs with high ω and
high ‖w0‖L∞ , as Popp et al. did through formal arguments in page 96 in [PKK98] when
δ ∼ ±3 (which is outside our range).

Remark: Since this result was already known from [MZ98a] and [MZ00] when δ = 0, the
case δ 6= 0 may appear as a not surprising interesting perturbation technique of the case
δ = 0. If this is clearly true for the statement, it is certainly not the case for the method
and the techniques, mainly because the gradient structure breaks down and the linearized
problem is no longer selfadjoint (see the beginning of Section 2 for more details). We have
to invent new tools which are far from being a simple perturbation technique. This makes
the main innovation of our work.

Remark: One may think that our result is completely standard in the context of dy-
namical systems. It happens that already in the case δ = 0, standard methods such as
the center manifold theory do not apply in our case as pointed by Filippas and Kohn in
[FK92] page 834-835. In particular, Proposition 3.5 page 21 below, whose statement is
standard, does not follow from center manifold theory because the nonlinear term is not
quadratic in the function space L2

ρ.

1.2 Applications to type I blow-up solutions of (2)

As in previously cited blow-up recent literature ([MZ00], [MM00] and [MZ08b]), Liou-
ville theorems have important applications to blow-up for the so called ‘type I’ blow-up
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solutions of equation (2), that is, solutions satisfying

∀t ∈ [0, T ), ‖u(t)‖L∞ ≤M(T − t)−
1
p−1 ,

where T is the blow-up time. In other words, the blow-up rate is given by the associated
ODE u′ = (1 + iδ)|u|p−1u.
We know that the solution of (2) constructed in [Zaa98] is of type I (and the same holds
for the solution of Ginzburg-Landau equation (4) constructed in [MZ08a]). However, we
have been unable to prove whether all blow-up solutions of (2) are of type I or not. Note
that when δ = 0, Giga and Kohn [GK85] and Giga, Matsui and Sasayama [GMS04] prove
that all blow-up solutions are of type I, provided that p is subcritical ((N − 2)p < N + 2).
When δ 6= 0, the methods of [GK85] and [GMS04] break down because we no longer have
positivity or a Lyapunov functional.
However, following [MZ00] and [Zaa01], we can derive the following estimates for type I
blow-up solutions of (2):

Proposition 3 (Uniform blow-up estimates for type I solutions ) Assume (3), consider
|δ| ≤ δ0 and a solution u of (2) that blows up at time T and satisfies

∀t ∈ [0, T ), ‖u(t)‖L∞ ≤M(δ)(T − t)−
1
p−1 ,

where δ0 and M(δ) are defined in Theorem 1. Then,

• (i) (L∞ estimates for derivatives)

‖u(t)‖L∞(T − t)
1
p−1 → κ and ‖∇ku(t)‖L∞(T − t)

1
p−1

+ k
2 → 0

as t→ T for k = 1, 2 or 3.

• (ii) (Uniform ODE Behavior) For all ε > 0, there is C(ε) such that ∀x ∈ RN ,
∀t ∈ [T2 , T ), ∣∣∣∣∂u∂t (x, t)− (1 + iδ)|u|p−1u(x, t)

∣∣∣∣ ≤ ε|u(x, t)|p + C.

Remark: When δ = 0, this result was already derived from the Liouville theorem in
[MZ98a] and [MZ00]. It happens that adapting that proof to the case δ 6= 0 is not
straightforward, because the gradient structure is missing. However, unlike for the Liou-
ville theorem, the adaptation is mainly technical. For the reader’s convenience, we show
in Section 4 how to adapt the proof of [MZ98a] and [MZ00] in the case δ 6= 0.

Our paper is organized as follows: Section 2 and Section 3 are devoted to the proof
of the Liouville theorem (we only prove Theorem 2 since Theorem 1 follows immediately
from the selfsimilar transformation (9)). Note that Section 2 contains the main arguments
with no details and Section 3 includes the whole proof with all the technical steps. Finally,
we prove in Section 4 the applications to blow-up stated in Proposition 3.

Acknowledgment: The authors would like to thank the referee for his valuable
suggestions which (we hope) made our paper much clearer and reader friendly.
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2 The main steps and ideas of the proof of the Liouville
Theorem

In this section, we adopt a pedagogical point of view and explain the main steps and ideas
of the proof with no technical details. These details are presented in Section 3. The reader
may think that our result is an interesting perturbation of the Liouville theorem proved
in [MZ00] for δ = 0. If this is true for the statement, it is certainly not the case for the
proof for three structural reasons:
- the gradient structure breaks down when δ 6= 0, which prevents us from using any energy
method or blow-up criteria. To show blow-up, we need to find a very precise asymptotic
behavior of the solution and show “by hand” that it cannot stay bounded.
- when δ 6= 0, the linearized operator of (10) around the constant solution w ≡ κ is no
longer self adjoint and no general theory is applicable to derive eigenvalues directly. A
careful decomposition of the solution is needed instead.
- since equation (2) is invariant under rotations in the complex plane (u → ueiθ), this
generates a null eigenvalue for the linear part of equation (10), and a precise modulation
technique is needed, unlike the real valued case when δ = 0.
The proof of the Liouville theorem is the same for N = 1 and N ≥ 2 with subcritical p (see
(3)). The only difference is in the multiplicity of the eigenvalues of the linearized operator
of equation (10), which changes from 1 when N = 1 to a higher value when N ≥ 2. In
particular, one needs some extra notations and careful linear algebra in higher dimension.
For the sake of clearness, we give here the proof when N = 1. The interested reader may
find in section 4 (page 128) of [MZ00] how to get the higher dimensional case from the
case N = 1. Clearly, the following statement is equivalent to Theorem 1:

For any M > 0, there exists δ′0(M) > 0 such that for all |δ| ≤ δ′0(M), if w(y, s) is an
entire solution of (10), defined for all (y, s) ∈ R× R and

‖w(., s)‖L∞ ≤M, (11)

then w depends only on the variable s.

In the following, we will prove this latter statement. Let us consider M > 0 and w(y, s)
satisfying (11), and prove that w is trivial provided that δ is small. As in [MZ00], the
starting point is the investigation of the behavior of w(y, s) as s→ −∞.

Part 1: Behavior of w(y, s) as s→ −∞.
In the case δ = 0, the method of Giga and Kohn [GK85] proves that w(y, s) approaches
the set of stationary solutions of (10)

{
0, κeiθ|θ ∈ R

}
as s→ −∞ in L2

ρ. We would like to
do the same here, that is why we give the stationary solutions of (10) in the following.

Proposition 2.1 (L∞ stationary solutions of (10)) Consider δ 6= 0 and v ∈ L∞(RN ) a
solution of

0 = ∆v − 1
2
y · ∇v − 1 + iδ

p− 1
v + (1 + iδ)|v|p−1v. (12)

Then, either v ≡ 0 or there exists θ0 ∈ R such that v ≡ κeiθ0.
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Remark: When δ = 0, the same result holds only for subcritical p verifying (N − 2)p ≤
N + 2 and the proof due to Giga and Kohn is far from being trivial, see Theorem 1 (page
305) in [GK85].
Proof of Proposition 2.1: Consider v ∈ L∞(RN ) a solution to (12). Multiplying (12) by
vρ and integrating over RN gives after integration by parts

0 = −
∫
|∇v|2 ρ− (1 + iδ)

p− 1

∫
|v|2ρ+ (1 + iδ)

∫
|v|p+1ρ.

Since δ 6= 0, identifying the imaginary and the real parts gives
∫
|∇v|2 ρ = 0, hence ∇v ≡ 0

and ∆v ≡ 0. Plunging this in (12) yields the result.�
To prove that the solution approaches the set of stationary solutions, the method of Giga
and Kohn breaks down, since it heavily relies on the existence of the following Lyapunov
functional for equation (10) in the case δ = 0:

E(w) =
1
2

∫
|∇w|2 ρdy +

1
2(p− 1)

∫
|w|2ρdy − 1

p+ 1

∫
|w|p+1ρdy. (13)

When δ 6= 0, we don’t have such a Lyapunov functional. Fortunately, a perturbation
method used by Andreucci, Herrero and Velázquez, works here and yields the following:

Proposition 2.2 For any M > 0, there exists δ′0(M) such that if |δ| ≤ δ′0 and w is an
arbitrary solution of (10) satisfying for all (y, s) ∈ R× R, |w(y, s)| ≤M , then either
(i) ‖w(., s)‖L2

ρ
→ 0 as s→ −∞ or (ii) infθ∈R ‖w(., s)− κeiθ‖L2

ρ
→ 0 as s→ −∞.

The next parts of the strategy (parts 2 and 3) investigate case (i) and (ii) of Proposition
2.2, which are certainly not of the same degree of difficulty.

Part 2: Case where w → 0 as s→ −∞.
In this case, we have w ≡ 0. Rather than giving a proof, we simply explain here how the
proof works. For the actual proof, we rely again on the method of Andreucci, Herrero
and Velázquez (see Proposition 3.1, in section 3 of [AHV97]). Our argument is that the
stationary solution of (10), which is identically zero, is stable in L2

ρ, hence, no orbit can
escape it, except the null orbit. To illustrate this, we write from equation (10) the following
differential inequality for h(s) ≡

∫
R |w(y, s)|2 ρ(y)dy,

h′(s) ≤ − 2
p− 1

h(s) + 2
∫

R
|w(y, s)|p+1 ρ(y)dy.

Using the regularizing effect of equation (10), we derive the following delay estimate :

∀s ∈ R,
∫

R
|w(y, s)|p+1ρ(dy) ≤ C∗

(∫
R
|w(y, s− 1)|2 ρ(y)dy

) p+1
2

,

for some positive C∗. Therefore,

∀s ∈ R, h′(s) ≤ − 2
p− 1

h(s) + C(M)h(s− 1)
p+1
2 .
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Using the fact that h(s) → 0 as s → −∞ and delay ODE techniques, we show that h(s)
is driven by its linear part, hence for some ε > 0 small enough, we have

∀σ ∈ R, ∀s ≥ σ + 1, h(s) ≤ ε0e
− 2(s−σ)

p−1 .

Fixing s ∈ R and letting σ → −∞, we get that h(s) ≡ 0, hence w ≡ 0.

Now that case (i) of Proposition 2.2 has be handled, we consider case (ii) in the
following.

Part 3: Case where infθ∈R ‖w(., s)− κeiθ‖L2
ρ
→ 0 as s→ −∞.

The question to be asked here is the following: Does the solution converge to a particular
κeiθ0 as s→ −∞ or not?
The key idea is to classify the L2

ρ behavior of w as s→ −∞. We proceed in 5 steps.

Step 1: Formulation of the problem.
Note that the degree of freedom in case (ii) of Proposition 2.2 comes from the invariance

of equation (2) under the rotation (u → ueiθ). This invariance generates a zero mode
for equation (10), which is difficult to control. The idea to gain this control and show
the convergence of w(y, s) is to use a modulation technique by introducing the following
parametrization of the problem:

w(y, s) = eiθ(s)(v(y, s) + κ) with κ = (p− 1)−
1

(p−1) . (14)

A natural choice would be to take θ(s) such that ‖w(., s)− eiθ(s)κ‖L2
ρ

= infθ∈R ‖w(y, s)−
κeiθ‖L2

ρ
. This is not our choice, we will instead choose θ(s) such that we kill the neutral

mode mentioned above. More precisely, we claim the following:

Lemma 2.3 There exists s1 ∈ R and θ ∈ C1((−∞, s1],R) such that
(i) ∀s ≤ s1,

∫
( Im (v)− δ Re (v))ρ = 0, where v is defined by (14).

(ii) We have ‖v(., s)‖L2
ρ
→ 0 as s→ −∞.

(iii) For all s ≤ s1, we have
|θ′(s)| ≤ C‖v(., s)‖2L2

ρ
. (15)

With the change of variables (14), we focus in the following steps on the description of the
asymptotic behavior of v(y, s) and θ(s) as s → −∞. Using (14), we write the equation
satisfied by v(= v1 + iv2) as

∂sv = L̃v − iθs(v + κ) +G, (16)

where G = (1 + iδ)
{
|v + κ|p−1(v + κ)− κp − v

p− 1
− v1

}
, (17)

satisfies |G| ≤ C|v|2 and
∣∣∣∣G− (1 + iδ)

1
2κ
{

(p− 2)v2
1 + v2

2 + 2v1v2

}∣∣∣∣ ≤ C|v|3. (18)

A good understanding of our operator L̃v = ∆v − 1
2y · ∇v + (1 + iδ)v1 will be essential in

our analysis. The following lemma provides us with the spectral properties of L̃.
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Lemma 2.4 (Eigenvalues of L̃).
(i)L̃ is a R−linear operator defined on L2

ρ and its eigenvalues are given by

{1− m

2
|m ∈ N}.

Its eigenfunctions are given by {(1 + iδ)hm, ihm|m ∈ N} where

hm(y) =
[m

2
]∑

n=0

m!
n!(m− 2n)!

(−1)nym−2n. (19)

We have: L̃((1 + iδ)hm) = (1− m
2 )(1 + iδ)hm and L̃(ihm) = −m

2 ihm.
(ii) Each r ∈ L2

ρ can be uniquely written as

r(y) = (1 + iδ)r̃1(y) + ir̃2(y) = (1 + iδ)

(
+∞∑
m=0

r̃1mhm(y)

)
+ i

(
+∞∑
m=0

r̃2mhm(y)

)
,

where:

r̃1(y) = Re {r(y)} and r̃2(y) = Im {r(y)} − δ Re {r(y)}
and for i = {1, 2}, r̃im =

∫
r̃i(y) hm(y)

‖hm‖2
L2
ρ

ρ(y)dy. (20)

Remark: Note that the eigenvalues 1, 1/2 and 0 have a geometrical interpretation:
they come from the invariance of equation (2) to translation in time (λ = 1) and space
(λ = 1/2), dilations uλ(ξ, τ)→ λ

1
p−1u(ξ

√
λ, τλ) and multiplications by eiθ (the group S1)

for λ = 0.
Remark: Following (ii), we write each complex quantity (number or function) z as
z = z1 + iz2 and z = (1 + iδ)z̃1 + iz̃2 with zj=1,2, z̃j=1,2 ∈ R. In particular, we write

v(y, s) = (1 + iδ)ṽ1(y, s) + iṽ2(y, s),
= (1 + iδ)

∑∞
m=0 ṽ1m(s)hm(y) + i

∑∞
m=0 ṽ2m(s)hm(y).

(21)

Proof: Using the notation (21), we see that

L̃v =
(
L 0
0 L − I

)(
ṽ1

ṽ2

)
, (22)

where
Lh = ∆h− 1

2
y · ∇h+ h, (23)

is a well-known self adjoint operator of L2
ρ(R,R) whose eigenfunctions are hm (19), which

are dilation of Hermite polynomials. Thus, the spectral properties of L̃ directly derive
from those of L. The interested reader may find details in Lemma 2.2 page 590 from Zaag
[Zaa98].�

Note from this Lemma that operator L̃ has three nonnegative eigenvalues:
• λ = 1, with eigenfunction (1 + iδ)h0(y) = (1 + iδ).
• λ = 1/2, with eigenfunction (1 + iδ)h1(y) = (1 + iδ)y.
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• λ = 0, with two eigenfunctions (1 + iδ)h2(y) = (1 + iδ)(y2 − 2) and ih0(y) = i.
From (21) and (20), the coordinate of v(y, s) along the direction ih0 is

ṽ20(s) =
∫

( Im (v(y, s))− δ Re (v(y, s)))
h0(y)
‖h0‖2L2

ρ

ρ(y)

=
∫

( Im (v(y, s))− δ Re (v(y, s))) ρ(y).

Using (i) of Lemma 2.3, we see that the choice of θ(s) guarantees that

∀s ≤ s1, ṽ20(s) = 0. (24)

In the next step, we will use the spectral information of L̃ to derive the asymptotic behavior
of v, then w as s→ −∞.

Step 2: Asymptotic behavior as s→ −∞.
As s → −∞, we expect that the coordinates of v on the eigenfunctions for λ ≥ 0 will
dominate. These eigenfunctions are (1 + iδ) when λ = 1, (1 + iδ)y when λ = 1/2,
(1 + iδ)(y2 − 2) or i when λ = 0. Note that for this latter case, the direction along i,
already vanishes thanks to the choice of θ(s) (see (24)). So, if λ = 0 dominates, that is the
coordinate of v on (1 + iδ)(y2 − 2) dominates, since the linear part vanishes, the equation
is driven by the quadratic approximation ẋ ∼ −x2, that is x ∼ 1

s . Using (iii) of Lemma
2.3, we see that θ(s) has a limit as s→ −∞, hence w converges from (14). More precisely,
we have:

Proposition 2.5 There exists θ0 ∈ R such that θ(s) → θ0 and ‖w(., s) − κeiθ0‖L2
ρ
→ 0

as s→ −∞. More precisely, one of the following situations occurs as s→ −∞, for some
C0 ∈ R and C1 ∈ R∗,

(i) ‖w(., s)− {κ+ (1 + iδ)C0e
s}eiθ0‖L2

ρ
≤ Ce

3
2
s,

(ii) ‖w(., s)− eiθ0{κ+ (1 + iδ) κ
4(p−δ2)s

(y2 − 2)− i (1+δ2)δκ2

2(p−δ2)2
1
s}‖L2

ρ
≤ C log |s|

s2
,

(iii) ‖w(., s)− {κ+ (1 + iδ)C1e
s/2y}eiθ0‖L2

ρ
≤ Ce(1−ε)s.

(25)

In Step 3, we show that case (i) yields the explicit solution ϕδ(s − s0) for some s0. In
Steps 4 and 5, we rule out cases (ii) and (iii).
In comparison with the case δ = 0, we can say that the difficulty in deriving Proposition
2.5 is only technical. One should bear in mind that the difficulty level is much lower than
the obstacles we have in steps 4 and 5 to rule out cases (ii) and (iii) of Proposition 2.5.

Step 3: Case where (i) holds.
Like for step 2, there is no real novelty in this step, the difficulty is purely technical. First
we recall (i) from Proposition 2.5:

‖w(., s)− {κ+ (1 + iδ)C0e
s}eiθ0‖L2

ρ
≤ Ce

3
2
s. (26)
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Let us remark that we already have a solution ϕ̂(s)eiθ0 of (10) defined in R× (−∞, ŝ] for
some ŝ ∈ R and which satisfies the same expansion as w:

(a) if C0 = 0, just take ϕ̂ ≡ κ,
(b) if C0 < 0, take ϕ̂ ≡ ϕδ(s− s0), where s0 = − log(−C0(p−1)

κ ),
(c) if C0 > 0, take ϕ̂ ≡ ϕ∗δ(s− s0), where s0 = log(C0(p−1)

κ ),

and ϕ∗δ(s) = κ(1− es)−
(1+iδ)
(p−1)

(27)

ϕ∗δ(s) is a solution of (10) that blows up at s = 0, but is bounded for all s ≤ −1. Note
that, from (26) we have:

‖w(., s)− ϕ∗(s)eiθ0‖L2
ρ
≤ Ce

3
2
s. (28)

Since the difference between the two solutions of (10) is of order e3s/2 and the largest
eigenvalue of L̃ is 1 < 3

2 , this difference has to vanish leading to w(y, s) = ϕ̂(s)eiθ0
(remember that the largest eigenvalue matters, since s→ −∞). Since case (c) violates the
uniform bound (11), only cases (a) or (b) occur. More precisely, we have the following:

Proposition 2.6 Assume that case (i) of Proposition 2.5 holds. Then, either w ≡ κeiθ0

or there exists s0 ∈ R such that for all (y, s) ∈ R × R, w(y, s) = ϕδ(s − s0)eiθ0 for some
θ0 ∈ R.

Steps 4 and 5: Irrelevance of cases (ii) and (iii) of Proposition 2.5.
Step 4 and the following make the novelty of our work. Indeed, in the case δ = 0 treated in
[MZ00], cases (ii) and (iii) of Proposition 2.5 were ruled out thanks to a blow-up criterion
based on energy methods. Indeed, when δ = 0, Merle and Zaag used the Lyapunov
functional for equation (10) introduced in (13). More precisely, they have the following
blow-up criterion (see Proposition 2.1 page 111 in [MZ00]):

Lemma 2.7 (A blow-up criterion for equation (10) when δ = 0). Let W be a solution of
(10), (with δ = 0), which satisfies:

E(W (y, s0)) <
p− 1

2(p+ 1)

(∫
RN
|W (y, s0)|2ρ(y)dy

) p+1
2

,

for some s0 ∈ R. Then, W blows-up at some time S > s0.

Still for δ = 0, it is shown in [MZ00], when case (ii) or (iii) hold in Proposition 2.5, that

for some a0 and s0, we have

E(wa0(., s0)) <
p− 1

2(p+ 1)

(∫
wa0(y, s0)2ρ(y)dy

) p+1
2

, (29)

where
wa0(y, s) = w(y + a0e

s
2 , s), (30)

is also a solution of (10).
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A contradiction follows then since in the same time wa0 is defined for all s ∈ R from
(30) and has to blow-up by condition (29) and Lemma 2.7.
When δ 6= 0, all this collapses. No perturbation method can allow us to use in any sense
the Lyapunov functional or the blow-up criterion. We have to invent a new method to
rule out cases (ii) and (iii) of Proposition 2.5. Let us explain our strategy only for case
(ii), since it is quite similar for case (iii). From rotation invariance of equation (10), we
assume that θ0 = 0.
Our source of inspiration is the study of (10), when δ = 0 and w → κ as s→ +∞ (and not
−∞) by Herrero and Velázquez [HV93] and Velázquez [Vel92], to obtain the (supposed to
be generic) profile, starting with the following profile

w(y, s) = κ+
κ

2ps
(1− 1

2
|y|2) + o(

1
s

) as s→∞.

The convergence here takes place in L2
ρ and L∞(|y| < R) for any R > 0.

Herrero and Velázquez extended this convergence to a larger set of the form |y| ≤ K
√
s,

for any K > 0. They obtained:

sup
|y|<K

√
s

∣∣∣∣w(y, s)− f0(
y√
s

)
∣∣∣∣→ 0 as s→ +∞,

where f0 =
(

(p− 1) + (p−1)2

4p
|y|2
s |

2
)− 1

p−1 is a solution of

0 =
1
2
ξ · ∇f0(ξ)− 1

p− 1
f0(ξ) + |f0|p−1f0(ξ), where ξ =

y√
s
,

In some sense, we can say that f0 is an approximate solution of (10) when s→∞, because

‖∂sf0 −
{

∆f0 +
1
2
ξ · ∇f0 −

1
p− 1

f0 + |f0|p−1f0

}
‖L∞ = ‖∂sf0 −∆f0‖L∞ ≤

C

s
.

We note that Velázquez’s method is a kind of characteristic’s method applied to the
parabolic equation (10), where the Laplacian term is dropped down because the profile
is flat. Here, we will use ideas from Velázquez to find the profiles of the solution in the
variables y√

−s (yes/2 in Step 5). We hope to find singular profiles, which violate the

upper bound (11) on w(y, s). Our candidate of the profile is G
(

y√
−s

)
, with G(ξ) =

κ
(

1− (p−1)
4(p−δ2)

ξ2
)− (1+iδ)

(p−1) . In fact G is a solution of

0 = −1
2
· ξ∇G(ξ)− 1 + iδ

p− 1
G+ (1 + iδ)|G|p−1G.

We can note (as in the case of f0 defined below) that G is an approximate solution of (10)

(for |y| < K0
√
−s, where K0 =

√
4(p−δ2)
(p−1) ). We see also that G is singular for |y| = K0

√
−s.

Using Velázquez’s technique to extend the convergence in (ii) of Proposition 2.5 from
|y| < R to larger regions |y| < a0

√
−s, with a0 < K0, we can prove the following:

13



Proposition 2.8 Assume that case (iii) from Proposition 2.5 holds, then there exists
a0 > 0, such that:

lims→−∞ sup|y|≤a0
√
−s

∣∣∣w(y, s)−G
(

y√
−s

)∣∣∣ = 0,

where G(ξ) = κ
(

1− (p−1)
4(p−δ2)

ξ2
)− (1+iδ)

(p−1)
.

(31)

Imagine for a second that (31) holds for any arbitrary a0 < K0. Since |G(ξ)| → ∞ as
ξ → K0, we can fix a0 large enough so that |G(a0)| ≥ 3M . Taking |s0| large enough in
(31), we then see that

|w(a0

√
−s0, s0)| ≥ 2M,

which contradicts the upper bound (11). It happens that unlike the case s → ∞, where
ξ = 0 realizes the maximum of the profile f0, here ξ = 0 realizes the minimum, which
obliges us to take a0 small enough in order to use Velázquez’ method of convergence
extension. Since a0 is small in our approach, we remark from (31) that w(y, s) is flat (i.e.
close to a constant) in a large region, in the sense that

sup
|y−a02

√
−s0|≤4|s0|1/4

∣∣∣w(y, s0)−G(
a0

2
)
∣∣∣→ 0 as s0 → −∞.

Using a kind of continuity with respect to initial data for equation (10), we can show that
for any ε > 0

sup
s0≤s≤s∗0−ε

∣∣∣w(
a0

2
√
−s0, s)−Wa0(s)

∣∣∣→ 0 as s0 →∞, (32)

where s∗0 < +∞ is the lifespan of Wa0(s) the space independent solution of (10), with
Wa0(s0) ≡ G(a0

2 ). It happens that Wa0 can be computed explicitly:

Wa0(s) = κ

(
1− es−s0 (p− 1)a2

0

16(p− δ2)

)− (1+iδ)
p−1

and that it blows-up at time s = s∗0 − log
(

(p−1)a2
0

16(p−δ2)

)
> s0, because a0 is small.

Taking s∗0 = s0 − ε0, where ε0 > 0 is small enough such that |Wa0(s∗0 − ε0)| ≥ 3M , we see
from (32) that |w(a0

2

√
−s0, s

∗
0 − ε0)| ≥ 2M , which violates the upper bound (11).

Conclusion of Part 3 and the sketch of proof of the Liouville theorem:
From Step 4 and 5 we see that cases (ii) and (iii) of Proposition 2.5 are ruled out. By
Step 3, we obtain that w ≡ κeiθ0 or w ≡ ϕδ(s− s0)eiθ0 for some real s0 and θ0, where ϕδ
is defined in Theorem 1, which is the desired conclusion of Theorem 1. In Section 3, we
give the details of the proof.

3 Details of the proof of the Liouville theorem

In this section, we give the whole proof of the Liouville theorem. We only prove Theorem
1 since Theorem 2 immediately follows though the selfsimilar transformation (9). Note
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that in Section 2, we already gave a sketch of the proof stressing only the main arguments.
Thus this section is intended only to readers interested in technical details.
We adopt here the same sectioning as in Section 2: three parts and Part 3 is divided in five
steps. Hence, we recommend that the reader reads first a given step in section 2 before
reading the corresponding step in Section 3. As in Section 2, we prove Theorem 1 in its
form given in the statement around (11). We consider M > 0 and a global solution w(y, s)
of (10), defined for all (y, s) ∈ R× R such that

‖w(y, s)‖L∞ ≤M.

Our goal is to find δ′0(M) > 0, such that if |δ| ≤ δ′0(M), w depends only on the variable s.
We proceed in three parts:
In Part 1, we show that when s→ −∞, either w → 0 or w approaches the set {κeiθ|θ ∈ R}.
In Part 2, we handle the first case and show that w ≡ 0.
In Part 3, we linearize the equation around κeiθ(s), for some well chosen θ(s), and show
that either w ≡ κeiθ0 or w ≡ ϕδ(s− s0)eiθ0 for some real s0 and θ0, where ϕδ is defined in
Theorem 1, which concludes the proof.
It happens that we rely on the analysis performed by Andreucci, Herrero and Velázquez
[AHV97] for the system (7). That is the reason why we give Part 1 and Part 2 at once.

Parts 1 and 2: Behavior of w(y, s) as s→∞ and conclusion in the case
where w → 0 as s→ −∞
In these parts, we investigate the behavior of w as s→ −∞ and reach a conclusion in the
easiest case. Following what we wrote in Part 1 of Section 2, we know from Proposition
2.1 that the set of stationary solutions of (10) consists in 0 and κeiθ, where θ ∈ R. In
order to prove that w approaches this set as s→ −∞, we rely completely on the analysis
performed in [AHV97] for the system (7). Indeed, no extra arguments is necessary for
the present equation (10). That is why we only give the main arguments which make the
proof of [AHV97] hold for equation (10) and refer the interested reader to [AHV97] for
the details. Now, using the perturbation method of [AHV97], we have the following:

Proposition 3.1 (A primary classification) For any M > 0, there exists δ′0(M) such if
|δ| ≤ δ′0 and w is an arbitrary solution to (10) satisfying for all (y, s) ∈ R×R, |w(y, s)| ≤
M , then, either (i)(‖w(s)‖ ≡ 0) or (ii)

(
infθ∈R ‖w(s)− κeiθ‖ → 0

)
as s→ −∞.

Remark: This result replaces Proposition 2.2 and Part 2 in section 2.
Remark: In [AHV97], the conclusion of the authors in Theorem 2 for system (7) is more
accurate: either (Φ,Ψ) is (0, 0) or (Γ, γ) defined in (8), or

(Φ,Ψ)→ (Γ, γ) at −∞ and (Φ,Ψ)→ (0, 0) at +∞.

Using the same technique for our equation (10), we get Proposition 3.1. Indeed, due to
the fact that the set of non trivial stationary solutions is a continuum (see Proposition
2.1), we need a modulation technique to derive the case w ≡ κeiθ, this case will be treated
in Part 3.

Proof of Proposition 3.1: This Proposition follows from the arguments developed for
the twin system (7) in [AHV97], no more. To keep our paper in a reasonable length
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limit, we don’t give the proof. However, we should mention the 3 fundamental features
of (10) that one needs to check to be convinced that the proof of Andreucci, Herrero and
Velázquez works here.

• Both systems are of parabolic type involving the same linear operator

L0v =
1
ρ

div (ρ∇v) = ∆v − 1
2
y · ∇v,

if v = (1 + iδ)ṽ1 + iṽ2 with ṽ1, ṽ2 ∈ R, then

∂sṽ1 = L0ṽ1 − aṽ1 + f1(ṽ1, ṽ2)
∂sṽ2 = L0ṽ2 − bṽ2 + f2(ṽ1, ṽ2)

with a < 0, b < 0 and |fi(ṽ1, ṽ2)| ≤ C|v|α for some α > 1.

• When p = q = p0 in (7), the authors give in (3.12) and Lemma 3.2 of [AHV97]
a classification of entire solutions. In our case, when δ = 0 in (10), we have the
following Liouville theorem (see Theorem 1 in [MZ00])

Proposition 3.2 (Merle-Zaag [MZ00]; A Liouvile theorem for equation (10) with
δ = 0 and subcritical p) Assume (3) and let w ∈ L∞(RN × R,C) be a solution of

∂w

∂s
= ∆w − 1

2
y · ∇w − w

p− 1
+ |w|p−1w.

Then necessarily, one of the following cases occur:
a) w ≡ 0,
b)∃θ ∈ R such that w(y, s) = κeiθ,
c)there exists s0 ∈ R, such that for all (y, s) ∈ RN ×R, w(y, s) = ϕ(s−s0)eiθ0 where
θ0 ∈ R and

ϕ(s) = κ(1 + es)−
1
p−1 .

Remark: Note that ϕ is the unique global solution (up to a translation) of

ϕs = − ϕ

p− 1
+ ϕp,

satisfying ϕ → κ as s → −∞ and ϕ → 0 as s → ∞. The method of Andreucci,
Herrero and Velázquez in [AHV97] is in fact a perturbation method around this
result.

• The property of equation (2) saying ”small L2
ρ norm implies no blow-up locally” (note

that this property replaces the Giga-Kohn property ”small local energy implies no
blow-up locally”, which breaks down because we no longer have a gradient structure).
This the property:
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Proposition 3.3 For all M > 0, there exist positive η0, C0 and M0 such that if
|δ| ≤ 1 and v is a solution of (2) satisfying

∀t ∈ [0, 1), ‖v(t)‖L∞ ≤M(1− t)−
1
p−1 and if ∀|x0| ≤ 1, ‖wx0(., 0)‖L2

ρ
≤ η, (33)

for some 0 < η ≤ η0, where

y =
ξ − x0√

1− τ
, s = − log(1− τ), wx0(y, s) = (1− τ)

1+iδ
p−1 v(ξ, τ),

then:
(i) For all |x0| ≤ 1 and s ∈ [0,+∞),

‖wx0(., s)‖L2
ρ
≤ C0ηe

− s
p−1 . (34)

(ii) For all |x| ≤ 1 and t ∈ [0, 1), we have |v(x, t)| ≤M0.

Now, we write the following Lemma which will be useful in the proof of the propo-
sition above.

Lemma 3.4 (Regularizing effect of the operator L) Assume that ψ(y, s) satisfies

∀s ∈ [a, b], ∀y ∈ R, ψs ≤ (L+ σ)ψ and 0 ≤ ψ(y, s),

for some a ≤ b and σ ∈ R, where

Lψ = ∆ψ − 1
2
y · ∇ψ + ψ =

1
ρ

div (ρ∇ψ) + ψ. (35)

Then for any r > 1, there exists C∗ = C∗(r, σ) > 0 and s∗ = s∗(r) > 0 such that

∀s ∈ [a+ s∗, b],
(∫

R
|ψ(y, s)|rρ(y)dy

)1/r

≤ C∗‖ψ(., s− s∗)‖L2
ρ
. (36)

Proof: See Lemma 2.3 in [Vel93].�

Proof of Proposition 3.3:
Consider M > 0, |δ| ≤ 1 and a solution v of (2) such that (33) holds for some η > 0,
|x0| ≤ 1.
(i) For simplicity, we write w instead of wx0 . Since w is a solution of (10), we multiply
(10) by ∂swρ and integrate to get

I
′
(s) ≤ − 2

p− 1
I(s) +

∫
|w(y, s)|p+1ρ(y)dy, where I(s) =

∫
|w(y, s)|2ρ(y)dy. (37)

If we note w = w1 + iw2, then using Kato’s inequality (∆wi · sgn(wi) ≤ ∆|wi| with
i = 1, 2) and the fact that w is bounded, we obtain by equation (10)

∂s(|w1|+ |w2|) ≤ ∆(|w1|+ |w2|)−
y

2
· ∇(|w1|+ |w2|) + C(|w1|+ |w2|),
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for some C = C(M) > 0.
Using Lemma 3.4, we see that there exist C∗(M) > 0 and s∗ = s∗(p + 1) > 0 such
that for all s ≥ s∗ ∫

|w(y, s)|p+1ρ(y)dy ≤ C∗‖w(., s− s∗)‖p+1
L2
ρ

(38)

Now, we divide the proof in two steps:
Step 1: 0 ≤ s ≤ s∗. Using (37) and the fact that w is bounded by M > 0 (see (33)),
we get

I
′
(s) ≤ λI(s) for some λ = λ(M) > 0,

hence I(s) ≤ eλsI(0) ≤ eλsη2 ≤ C2
0

2 η
2e
− 2s
p−1 , where we define C2

0 = 2e(λ+ 2
p−1

)s∗ . This
gives (34) for 0 ≤ s ≤ s∗.
Step 2: s ≥ s∗. In this step, we argue by contradiction to prove (34) for all s ≥ s∗.
We suppose that there exists s1 > s∗, such that

I(s) < (C0η)2e
− 2s
p−1 , for all s∗ ≤ s < s1 (39)

I(s1) = (C0η)2e
− 2s1
p−1 . (40)

Let F (s) = I(s)(C0η)−2e
2s
p−1 . From (37), (38), (39) and Step 1, we have for all

s∗ ≤ s ≤ s1,

F
′
(s) ≤ C∗(C0η)−2e

2s
p−1 I(s− s∗)

p+1
2

≤ C∗(C0η)p−1e
2s
p−1 e

−(s−s∗) p+1
p−1 ≤ C∗(C0η)p−1e

p+1
p−1

s∗
e−s.

Since F (s∗) ≤ 1
2 from the step above, we integrate the last inequality to obtain

F (s1) ≤ C∗(Cη)p−1e
p+1
p−1

s∗
(
e−s

∗ − e−s1
)

+ F (s∗),

≤ C∗(Cη)p−1e
2s∗
p−1 +

1
2
≤ 3

4
,

for η ≤ η0(M) small enough. This contradicts (40). Therefore, (34) holds
(ii) Applying parabolic regularity to equation (10) and using estimate (33), we get
for all |x0| ≤ 1, R > 0 and |y| < R, |wx0(y, s)| ≤ M0e

− s
p−1 , hence for all t ∈ [0, 1),

|v(x0, t)| ≤M0, for some M0 = M0(M). This ends the proof of Proposition 3.3.�

Part 3: Case where infθ∈R ‖w(., s)− κeiθ‖L2
ρ
→ 0 as s→ −∞.

We study case (ii) of Proposition 3.1. As we wrote in Part 3 of section 2, the natural
question is to know whether w converges to a particular κeiθ0 as s → −∞ or not. A
modulation technique will be essential to classify the L2

ρ behavior for w and prove the
convergence. We proceed in five steps.

• Step 1 is intended to the modulation technique.

• In Step 2, we show that the linearized problem of (10) around κeiθ has 3 nonnegative
directions as s→ −∞ (λ = 1, 1/2 or 0), and that the component along one direction
dominates the others. This gives a kind of profile for w with a uniform convergence
on every compact sets.
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• In Step 3, we show that the case where λ = 1 dominates corresponds either to
w = κeiθ0 or w = ϕδ(s− s0)eiθ0 for some θ0 ∈ R and s0 ∈ R, where ϕδ is defined in
Theorem 1.

• Steps 4 and 5: To rule out cases where the directions λ = 1/2 or λ = 0 dominates, we
use a geometrical method where the key idea is Velázquez’s work [Vel92] to extend
the convergence from compact sets to larger zones, where the profile appears to
be singular, which violates the uniform bound (11) in w. These steps make the
innovation of our work.

Step 1: Formulation of the problem
Let us recall Lemma 2.3 from Section 2.
Lemma 2.3 There exists s1 ∈ R and θ ∈ C1((−∞, s1],R) such that
(i) ∀s ≤ s1,

∫
( Im (v)− δ Re (v))ρ = 0, where v is defined by

w(y, s) = eiθ(s)(v(y, s) + κ) with κ = (p− 1)−
1

(p−1) . (41)

(ii) We have ‖v(., s)‖L2
ρ
→ 0 as s→ −∞.

(iii) For all s ≤ s1, we have
|θ′(s)| ≤ C‖v(., s)‖2L2

ρ
. (42)

Proof of Lemma 2.3:
(i) Since infθ∈[0,2π] ‖w(., s)− κeiθ‖L2

ρ
→ 0 as s→ −∞ and ‖w(., s)− κeiθ‖L2

ρ
is continuous

as a function of θ and w, there exists θ̃(s) such that

‖g‖2L2
ρ

=
∫

RN
|g|2e−

|y|2
4 dy.

‖w(., s)− κeiθ̃(s)‖L2
ρ

= inf
θ∈[0,2π]

‖w(., s)− κeiθ‖L2
ρ
→ 0 as s→ −∞. (43)

we will slightly modify θ̃(s), so that if we define v(y, s) by (41) for some θ(s) close
to θ̃(s), then we have (i) of Lemma 2.3. We apply the implicit function theorem to
F : L2

ρ×R→ R defined by F (w, θ) =
∫ (

Im
(
we−iθ − κ

)
− δ Re

(
we−iθ − κ

))
ρ. Since we

have F
(
κeiθ̃, θ̃

)
= 0 and ∂F

∂θ = −
∫ (

Re
(
we−iθ

)
+ δ Im

(
we−iθ

)
ρ
)
, hence ∂F

∂θ

(
κeiθ̃, θ̃

)
=

−κ 6= 0, using the implicit function theorem and (43), we obtain the existence and unique-
ness of C1 θ(w) such that F (w, θ(w)) = 0 and |eiθ(w) − eiθ̃| ≤ C0‖w(., s)− κeiθ̃‖L2

ρ
.

(ii) Since, we have from (41)

‖v(., )‖L2
ρ

= ‖w(., s)− κeiθ(s)‖L2
ρ
≤ ‖w(., s)− κeiθ̃‖L2

ρ
+ κ|eiθ − eiθ̃|

≤ (1 + C0κ)‖w(., s)− κeiθ̃(s)‖L2
ρ
,

using (43), we conclude that ‖v(., s)‖L2
ρ
→ 0 as s→ −∞.

(iii) writing v = (1 + iδ)ṽ1 + iṽ2, we rewrite (16) as follows

ṽ1s = Lṽ1 + θ
′
(s)(δṽ1 + ṽ2) + G̃1 (44)

ṽ2s = (L − 1)ṽ2 − θ
′
(s)((1 + δ2)ṽ1 + δṽ2 + κ) + G̃2 (45)
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where L is given in (35),

G̃1 =
p− δ2

2κ
ṽ2

1 +
1

2κ
ṽ2

2 +O(|v|3) (46)

G̃2 = (1 + δ2)
ṽ1(δṽ1 + ṽ2)

κ
+O(|v|3). (47)

Note that (1 + iδ)G̃1 + iG̃2 = G is defined in (17).
Now, we multiply (45) by ρ and integrate over R to get∫

ṽ2sρ =
∫

div (ρ∇ṽ2)−
∫
θ
′
(s)((1 + δ2)ṽ1 + δṽ + κ)ρ+

∫
G̃2ρ.

From (20), we have ṽ2 = Im (v)− δ Re (v), we get from (i) of Lemma 2.3
∫
ṽ2sρ = 0.

Since
∫

div (ρ∇ṽ2) = 0 we obtain

θ
′
(s)
∫

((1 + δ2)ṽ1 + δṽ2 + κ)ρ =
∫
G̃2ρ. (48)

Using (47), we have ∣∣∣∣∫ G̃2ρ

∣∣∣∣ ≤ C ∫ |v|2ρ. (49)

Recalling from (ii) that lims→−∞ ‖v‖ = 0, we have∫
((1 + δ2)ṽ1 + δṽ2 + κ)ρ→

∫
κρ as s→ −∞.

Thus, the conclusion follows from (48) and (49).�

Step 2: Asymptotic behavior of v as s→ −∞.
First, we recall the decomposition (21):

v(y, s) = (1 + iδ)ṽ1(y, s) + iṽ2(y, s),
= (1 + iδ)

∑∞
m=0 ṽ1m(s)hm(y) + i

∑∞
m=0 ṽ2m(s)hm(y),

and introduce

v−(y, s) = (1 + iδ)
∞∑
m=3

ṽ1m(s)hm(y) + i

∞∑
m=1

ṽ2m(s)hm(y).

As we saw in Step 2 of Section 2, the modulation techniques gives ṽ20(s) = 0. Therefore,
we have

v(y, s) = (1 + iδ)(ṽ10(s)h0(y) + ṽ11(s)h1(y) + ṽ12(s)h2(y)) + v−(y, s)

Using ODE techniques, we are able to prove the following:

Proposition 3.5 (Classification of the behavior of v(y, s) as s→ −∞) As s→ −∞, one
of the following situations occurs:
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(i)|ṽ11(s)|+ |ṽ12(s)|+ ‖v−(., s)‖L2
ρ

= o(ṽ10(s)),

‖v(., s)− (1 + iδ)C0e
s‖L2

ρ
= O(e

3
2
s) and |θ′(s)| = O(e2s) for some C0 ∈ R.

(ii)|ṽ10(s)|+ |ṽ12(s)|+ ‖v−(., s)‖L2
ρ

= o(ṽ11(s)),

‖v(., s)− (1+ iδ)C1e
s/2y‖L2

ρ
= O(e(1−ε)s) and |θ′(s)| = O(es) for some C1 ∈ R\0 and ε >

0.

(iii)|ṽ10(s)|+ |ṽ11(s)|+ ‖v−(., s)‖L2
ρ

= o(ṽ12(s)),

‖v(., s)+(1+iδ)
κ

4(p− δ2)s
(y2−2)‖L2

ρ
= O(

log |s|
s2

) and θ
′
(s) =

(1 + δ2)δκ
2(p− δ2)

1
s2

+O(
log |s|
s3

).

Proof: As already pointed out by Filippas and Kohn in page 834-835 in [FM95] in the
case δ = 0, we can’t use center manifold theory to get the result. In some sense, we are
not able to say that the nonlinear terms in (44) and (45) are quadratic in the function
space L2

ρ. However, using ODE techniques similar to those of [MZ98a] and [FM95], we
manage to conclude. Since we add no real novelty, we leave the proof to Appendix A. �

Now, we recall Proposition 2.5 as it is a direct consequence of the Proposition above.
Proposition 2.5 There exists θ0 ∈ R such that θ(s) → θ0 and ‖w(., s) − κeiθ0‖L2

ρ
→ 0

as s→ −∞. More precisely, one of the following situations occurs as s→ −∞, for some
C0 ∈ R and C1 ∈ R∗,

(i) ‖w(., s)− {κ+ (1 + iδ)C0e
s}eiθ0‖L2

ρ
≤ Ce

3
2
s,

(ii) ‖w(., s)− eiθ0{κ− (1 + iδ) κ
4(p−δ2)s

(y2 − 2)− i (1+δ2)δκ2

2(p−δ2)2
1
s}‖L2

ρ
≤ C log |s|

s2
,

(iii) ‖w(., s)− {κ+ (1 + iδ)C1e
s/2y}eiθ0‖L2

ρ
≤ Ce(1−ε)s.

(50)

Proof of Proposition 2.5: From Proposition 3.5, we have ‖v(., s)‖L2
ρ

= o (1/|s|) in all cases.
Then using (42), we obtain |θ′(s)| ≤ C/s2. Consequently, there exists a θ0 such that
θ(s)→ θ0 as s→ −∞. Using the definition (41), we get the convergence for w.
We will just prove (ii), since the proof for (i) and (iii) is the same and even easier.
Integrating the estimate for θ

′
(see (iii) of Proposition 3.5), we get

θ(s) = θ0 −
(1 + δ2)δκ
2(p− δ2)2

1
s

+O(
log |s|
s2

) (51)

and

eiθ(s) = eiθ0
{

1− i (1 + δ2)δκ
2(p− δ2)2s

+O(
log |s|
s2

)
}

(52)

Using the fact that w(y, s) = eiθ(s)(κ+v(y, s)) (see(41)), the desired estimate follows from
(52) and the L2

ρ expansion of v from (ii) of Proposition 3.5. This concludes the proof of
Proposition 2.5.�

Step 3: Case where (i) of Proposition 2.5 holds
We prove Proposition 2.6, more precisely, we will prove that either w ≡ κeiθ0 or there
exists s0 ∈ R, such that w = ϕδ(s− s0)eiθ0 .
As we wrote in Step 3 of section 2, if ϕ̂ defined by (27), then we have

∀s ≤ ŝ, ‖w(., s)− ϕ̂(s)eiθ0‖L2
ρ
≤ Ce

3
2
s. (53)

21



Our goal is to prove that w ≡ ϕ̂ on R× (−∞, s∗]. If we introduce V = w− ϕ̂eiθ0 , then we
see from (10) V satisfies:

∂sV =
(
L̃+ l(s)

)
V +B, (54)

where

L̃V = ∆V − 1
2
y · ∇V + (1 + iδ)V , |l(s)| ≤ Ces and |B| ≤ C|V |2 for all s ≤ s1. (55)

As we saw in Lemma 19 and (22), L̃ is diagonal with respect to (Ṽ1, Ṽ2) such that V =
(1 + iδ)Ṽ1 + iṼ2 and 1 is its largest eigenvalue.

Therefore, if we define ‖V ‖v =
√∫

(Ṽ 2
1 + Ṽ 2

2 )ρ, an equivalent norm to ‖V (., s)‖L2
ρ
, then

we get from (54) and (55)

∂s‖V ‖v ≤ (1 + Ces)‖V ‖v + C‖V 2‖v.

To estimate ‖V 2‖v, it is easy to see from (54) and the fact that V is bounded that

∂s(|Ṽ1|+ |Ṽ2|) ≤ ∆(|Ṽ1|+ |Ṽ2|)−
y

2
· ∇(|Ṽ1|+ |Ṽ2|) + C(|Ṽ1|+ |Ṽ2|).

Therefore, we can apply the regularizing effect of Lemma 3.4 to |Ṽ1|+ |Ṽ2| and obtain the
existence of C∗ > 0 and s∗, such that ‖V (., s)2‖v ≤ C∗‖V (., s− s∗)‖2v. Then, we obtain

∀s ≤ s2, I
′(s) ≤ 5

4
I(s) + CI(s− s∗)2, (56)

where I(s) = ‖V (., s)‖v. Since I(s) ≤ Ce3/2s from (53), the following lemma from [MZ98a]
allows us to conclude.

Lemma 3.6 Consider I(s) a positive C1 function such that (56) is satisfied and 0 ≤
I(s) ≤ Ce3/2s for all s ≤ s2, for some s2. Then, for some s3 ≤ s2, we have I(s) = 0 for
all s ≤ s3.

Proof: By a trivial induction, we prove that

∀n ∈ N∗ and s ≤ s2 I(s) ≤
(
Ce3/4s

)2n
C

.

Taking s ≤ s3, where Ce3/4s3 = 1/2 and making n → +∞, we see that for all s ≤ s3,
I(s) = 0. �

Using Lemma 3.6, we see that V ≡ 0 on R× (−∞, s3]. Consequently, we have

∀(y, s) ∈ R× (−∞, s3], w(y, s) = ϕ̂(s)eiθ0 . (57)

From the uniqueness of the Cauchy problem for equation (10) and since w is defined for
all (y, s) ∈ R×R, ϕ̂ is also defined for (y, s) ∈ R×R and (57) holds for all (y, s) ∈ R×R.
Therefore, case (c) in (27) cannot hold and for all (y, s) ∈ R2, w(y, s) = κeiθ0 or w(y, s) =
ϕδ(s− s0)eiθ0 . This concludes the proof of Proposition 2.6 and finishes Step 3.
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Step 4: Irrelevance of the case (iii) of Proposition 2.5
As we said in step 4 of Section 2, it is enough to prove Proposition 2.8 (which we recall
here) to conclude this case:
Proposition 2.8 Assume that case (iii) from Proposition 2.5 holds, then there exists
a0 > 0, such that:

lims→−∞ sup|y|≤a0
√
−s

∣∣∣w(y, s)−G
(

y√
−s

)∣∣∣ = 0,

where G(ξ) = κ
(

1− (p−1)
4(p−δ2)

ξ2
)− (1+iδ)

(p−1)
.

(58)

Indeed, let us first use Proposition 2.8 to find a contradiction ruling out case (iii) of
Proposition 2.5, and then prove Proposition 2.8.
We define us0 by

us0(ξ, τ) = (1− τ)−
1+iδ
p−1 w(y, s) where y =

ξ + ε0
2

√
−s0√

1− τ
and s = s0 − log(1− τ). (59)

We note that us0 is defined for all τ ∈ [0, 1) and ξ ∈ R. us0 satisfies equation (2). The
initial condition at time τ = 0 is us0(ξ, 0) = w(ξ + ε0

2

√
−s0, s0). From (11), we have

∀τ ∈ [0, 1), ‖us0(., τ)‖L∞ ≤M(1− τ)−
1
p−1 . (60)

Using Proposition 2.8, we get:

sup
|ξ|<4|s0|1/4

∣∣∣us0(ξ, 0)−G(
ε0

2
)
∣∣∣ ≡ g(s0)→ 0 as s0 → −∞.

If we define v, the solution of:{
v′ = (1 + iδ)|v|p−1v,
v(0) = G

(
ε0
2

)
,

then v(τ) = κ
(

1− (p−1)ε20
16(p−δ2)

− τ
)− (1+iδ)

p−1 , which blows up at time 1− (p−1)ε20
16(p−δ2)

< 1. There-

fore, there exists τ0 < 1, such that |v(τ0)| = 2M(1 − τ0)−
1
p−1 . Now, we consider the

function z = us0 − v, then we have for all τ ∈ [0, τ0]:

∂τ |z| ≤ ∆|z|+ C(ε0)|z|. (61)

We recall Lemma 2.11 (page 1063) from [MZ98b]:

Lemma 3.7 Assume that z(ξ, τ) satisfies for all |ξ| ≤ 4B1 and τ ∈ [0, τ∗]:{
∂τz ≤ ∆z + λz + µ,
z(ξ, 0) ≤ z0, z(ξ, τ) ≤ B2,

where τ∗ ≤ 1. Then, for all |ξ| ≤ B1 and τ ∈ [0, τ∗],

z(ξ, τ) ≤ eλτ (z0 + µ+ CB2e
−B2

1/4).
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Using the fact that z is bounded for all τ ∈ [0, τ0], by B2 = B2(ε0) (use (60)), we apply this
Lemma with B1 = |s0|1/4, τ∗ = τ0, z0 = g(s0) and λ = 0. Then, we get for all τ ∈ [0, τ0],

sup
|ξ|≤|s0|1/4

|z(ξ, τ)| ≤ g(s0) + C(ε0)e−|s0|
1/2/4 → 0 as s0 → −∞.

For |s0| large enough and ξ = 0, we get: |z(0, τ0)| ≤ M

2
(1− τ0)−1/(p−1) and

|us0(0, τ0)| ≥ |v(τ0)| − |z(0, τ0)| ≥ 3M
2

(1− τ0)−
1
p−1 ,

which is in contradiction with (60). Thus case (iii) of Proposition 2.5 cannot occur.
Remains to prove Proposition 2.8.

Proof of Proposition 2.8: We note f(y, s) = G

(
y√
−s

)
, then f satisfies

−y
2
· ∇f − (1 + iδ)

(p− 1)
f + (1 + iδ)|f |p−1f = 0.

Consider some arbitrary ε0 ∈ (0, R∗), where R∗ =

√
4(p− δ2)
(p− 1)

.The parameter ε0 will be

fixed later in the proof small enough. If we note

F (y, s) = f(y, s) + (1 + iδ)
κ

2(p− δ2)
1
s
− i(1 + δ2)δκ2

(p− δ2)2

1
s
, (62)

then, we see from (iii) of Proposition 2.5 that

‖ (F (., s)− w(., s)) (1− χε0)‖L2
ρ

= O

(
log |s|
s2

)
as s→ −∞, (63)

where
χε0(y, s) = 1 if

|y|√
|s|
≥ 3ε0 and zero otherwise. (64)

The formal idea of this proof is that F solve in an approximate way the same equation
as w for s → −∞. By (63), w and F are very close in the region |y| ∼ 1. Our task is to
prove that they remain close in the larger region |y| ≤ ε0

√
−s, for some ε0 chosen later.

Let us consider a cut-off function

γ(y, s) = γ0

(
y√
−s

)
, (65)

where γ0 ∈ C∞(R) is such that γ0(ξ) = 1 if |ξ| ≤ 3ε0 and γ0(ξ) = 0 if |ξ| ≥ 4ε0. We
introduce

ν = (w − F ). (66)

We note ν = (1 + iδ)ν̃1 + iν̃2 and Z = γ(|ν̃1|+ |ν̃2|). Our proof is the same as Velázquez
[Vel92], except for the fact that we need to perform a cut-off, since our profile F (y, s)
defined by (62) is singular on the parabola y = R∗

√
−s. The cut-off function will generate

an extra term, difficult to handle. Let us present the major steps of the proof in the
following. The proof of the presented Lemmas, will be given at the end of this step.

24



Lemma 3.8 (Estimates in modified L2
ρ spaces.) There exists ε0 > 0 such that the

function Z satisfies for all s ≤ s∗ and y ∈ R:

∂sZ−∆Z+
1
2
y ·∇Z−(1+σ)Z ≤ C

(
Z2 +

(y2 + 1)
s2

+ χε0

)
−2div ((|ν̃1|+ |ν̃2|)∇γ) , (67)

where s∗ ∈ R, σ = 1/100 and χε0 is defined in (64). Moreover,

N2

2ε0
√
|s|

(Z(s)) = o(1) as s→ −∞, (68)

where the norm N q
r (ψ) is defined, for all r > 0 and 1 ≤ q <∞, by

N q
r (ψ) = sup

|ξ|≤r

(∫
|ψ(y)|qexp(−(y − ξ)2

4
)dy
)1/q

. (69)

Using the regularizing effect of the operator L, we derive the following pointwise estimate,
which allows us to conclude the proof of Proposition 2.8:

Lemma 3.9 (An upper bound for Z(y, s) in {|y| ≤ ε0
√
−s}.) We have:

sup
|y|≤ε0

√
−s
Z(y, s) = o(1) as s→ −∞.

Indeed, we have by definition of Z, for all |y| < ε0
√
−s, |w − F | = ν̄ ≤ CZ(y, s). Thus,

Proposition 2.8 follows from Lemma 3.9. Remains to prove Lemma 3.8 and Lemma 3.9.

Proof of Lemma 3.8: The proof of (67) is straightforward and a bit technical. We leave
it to Appendix B. Let us then prove (68). We take s0 < s∗ and s0 ≤ s < s∗ such that
e
s−s0

2 ≤
√
−s. We use the variation of constant formula in (67) to write

Z(y, s) ≤ Sσ(s− s0)Z(., s0)

+
∫ s

s0

Sσ(s− τ)
(
C

{
Z2 +

(y2 + 1)
τ2

+ χε0

}
− 2div ((|ν̃1|+ |ν̃2|)∇γ)

)
dτ,

where Sσ is the semigroup associated to the operator Lσφ = ∆φ − 1
2y · ∇φ + (1 + σ)φ,

defined on L2
ρ(R). The kernel of the semigroup Sσ(τ) is

Sσ(τ, y, z) =
e(1+σ)τ

(4π(1− e−τ ))1/2
exp

[
−|ye

−τ/2 − z|2

4(1− e−τ )

]
. (70)

Setting
r ≡ r(s, s0) = 2ε0e

s−s0
2 = R1e

s−s0
2 (71)
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and taking the N2
r−norm we obtain

N2
r (Z(., s)) ≤ N2

r (Sσ(s− s0)Z(., s0)) + C

∫ s

s0

N2
r (Sσ(s− τ)Z(., τ)2)dτ

+C
∫ s

s0

N2
r (Sσ(s− τ)

(
(y2 + 1)
τ2

)
)dτ

+C
∫ s

s0

N2
r (Sσ(s− τ)χε0(y, τ))dτ + C

∫ s

s0

N2
r (Sσ(s− τ)(div ((|ν̃1|+ |ν̃2|)∇γ))dτ

≡ J1 + J2 + J3 + J4 + J5.

In comparison with [Vel92], we have a new term J5 coming from the cut-off terms. There-
fore, we just recall in the following claim the estimates on J1...J4 from [Vel92], and treat
J5, which is a new ingredient in our proof:

Claim 3.10 We obtain as s→ −∞

|J1| ≤ Ce(1+σ)(s−s0) log |s0|
|s2

0|
,

|J2| ≤ C

∫ s0+((s−R0)−s0)+

s0

e(1+σ)(s−τ−R0)

(1− es−τ−R0)1/20

(
L2
r(Z(., τ)2)

)
dτ + C

e(s−s0)(1+σ)

s2
0

,

with R0 = 4ε0,

|J3| ≤ C
e(s−s0)(1+σ)

s2
0

(
1 + (s− s0)

)
,

|J4| ≤ Ce(s−s0)(1+σ)eαs, where α > 0,
|J5| ≤ Ce(s−s0)(1+σ)eβs, where β > 0.

Proof: See page 1578 in [Vel92] for J1...J4.

Now, we treat J5. We have from (70):

Sσ(s− τ) (−div ((|ν̃1|+ |ν̃2|)∇γ)) ,

= − Ce
(s−τ)(1+σ)

(1− es−τ )1/2

∫
R

exp

(
−(ye−(s−τ)/2 − λ)2

4(1− e−(s−τ))

)
div ((|ν̃1|+ |ν̃2|)∇γ)dλ,

=
Ce(s−τ)(1+σ)

(1− es−τ )1/2

∫
R
−(ye−(s−τ)/2 − λ)

2(1− e−(s−τ))
exp

(
−(ye−(s−τ)/2 − λ)2

4(1− e−(s−τ))

)
(|ν̃1|+ |ν̃2|)∇γdλ.

(72)
Since w and F are bounded for |y|√

−τ ≤ R∗/2 and supp(∇γ) ⊂ (−4ε0
√
−τ ,−3ε0

√
−τ) ∪

(3ε0
√
−τ , 4ε0

√
−τ), we have

|(|ν̃1|+ |ν̃2|)∇γ | ≤ C(|ν̃1|+ |ν̃2|)I{3ε0≤ |y|√
−τ≤4ε0}

,

≤ C(I
3ε0≤ |y|√

−τ≤4ε0
) ≤ Cχε0 .
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Using Cauchy-Schwartz inequality, we obtain:

|Sσ(s− τ) (−div ((|ν̃1|+ |ν̃2|)∇γ))| ≤ Ce(s−τ)(1+σ)

(1− es−τ )3/2
I1I2,

where,

I1 =

(∫
R

(ye−(s−τ)/2 − λ)2exp

(
−(ye−(s−τ)/2 − λ)2

4(1− e−(s−τ))

)
dλ

)1/2

,

I2 =

(∫
R

exp

(
−(ye−(s−τ)/2 − λ)2

4(1− e−(s−τ))

)
χε0dλ

)1/2

.

Doing a change of variables, we obtain I1 = C(1− e−(s−τ))3/4. Furthermore, we have:

I2
2 ≤ I3

(∫
R
χε0e

−λ
2

4 dλ

)1/2

,

where,

I3 =

(∫
exp

(
−(ye−(s−τ)/2 − λ)2

2(1− e−(s−τ))
+
λ2

4

)
dλ

)1/2

.

We introduce θ = ye−(s−τ)/2, by completing squares, we readily check that:

λ2

4
− (θ − λ)2

2(1− e−(s−τ))
= − (1 + e−(s−τ))

4(1− e−(s−τ))
(λ− 2θ

(1 + e−(s−τ))
)2 +

θ2

2(1 + e−(s−τ))
,

then we obtain:

I2
3 = C

(
(1− e−(s−τ))
(1 + e−(s−τ))

)1/2

exp
(

θ2

2(1− e−(s−τ))

)
.

Therefore,

∣∣N2
r (Sσ(s− τ)div ((ν̃1 + ν̃2)∇γ))

∣∣ ≤ C
e(s−τ)(1+σ)

(1 + e−(s−τ))1/8(1− e−(s−τ))5/8
‖χε0‖1/2I4,

where I4 = N2
r

(
exp(

y2e−(s−τ)

8((1− e−(s−τ)))
)

)
.

Let us compute I4. Using the fact that

−(y − µ)2

4
+

y2e−(s−τ)

4(1− e−(s−τ))
=

1
4

(
−
(
y(1 + e−(s−τ))−1/2 − µ(1 + e−(s−τ))1/2

)2
+ µ2e−(s−τ)

)
,
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and doing a change of variables, we obtain:∫
R

exp

(
−(y − µ)2

4
+

y2e−(s−τ)

4(1− e(s−τ))

)
dy

≤ Cexp

(
µ2e−(s−τ)

4

)∫
R

exp
(
−1

4

(
y(1 + e−(s−τ))−1/2 − µ(1 + e−(s−τ))1/2

)2
)
dy.

Hence I4 ≤ C(1 + e−(s−τ))1/8 and

N2
r (Sσ(s− τ))div ((ν̃1 + ν̃2)∇γ)) ≤ C e(s−τ)(1+σ)

(1− e−(s−τ))5/8

(∫
|λ|≥R1

√
−τ
e−

λ2

4 dλ

)
.

This gives

|J5| =
∫ s

s0

N2
r (Sσ(s− τ)(div (ν̃1 + ν̃2))) dτ ≤ C(η)e(s−s0)(1+σ)eαs0 ,

where α > 0. This concludes the proof of the claim 3.10. �
Summing up Ji=1..5, from claim 3.10 we obtain

N2
r (Z(., s)) ≤

e(s−s0)(1+σ)C log |s0|
s20

+ C

∫ s0+((s−R0)−s0)+

s0

e(s−τ−R0)(1+σ)

(1− es−τ−R0)1/20

(
N2
r (Z(., τ))

)2
dτ.

Now, we recall the following from [Vel92]:

Lemma 3.11 Let ε, C, R, σ and α be positives constants, 0 < α < 1 and assume that
H(s) is a family of continuous functions satisfying:

H(s) ≤ εes(1+σ) + C

∫ (s−R)+

0

e(s−τ)(1+σ)H(τ)2

(1− e(s−τ−R))α
dτ for s > 0.

Then there exists ξ = ξ(R,C, α) such that for any ε ∈ (0, ε1) and any s for which εes(1+σ) ≤
ξ, we have

H(s) ≤ 2εes(1+σ).

Proof: See the proof of Lemma 2.2 from [Vel92]. Note that the proof of [Vel92] is done in
the case σ = 0, but it can be adapted to some σ > 0 with no difficulty.�

We conclude thatN2
r(τ,s0)(Z(., s)) ≤ Ce(s−s0)(1+σ) log |s0|

s20
as s→ −∞. If we fix s = −e(s−s0),

then we obtain s ∼ s0, log |s| ∼ log |s0| and N2
R1
√
−s(Z(., s)) ≤ Cs1+σ log |s0|

s20
≤ C log |s|

s1−σ → 0

as s→ −∞. Since σ =
1

100
, we get N2

R1
√
−s(Z(., s)) = o(1), as s→ −∞.

This concludes the proof of Lemma 3.8.�
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Proof of Lemma 3.9.
We aim at bounding Z(y, s) for |y| ≤ R2

√
−s in terms of NR1

√
−s′(Z(s′)), where R2 = ε0

and R1 = 2ε0, for some s′ < s. Starting from equation (67), we do as in [Vel92]:

Z(., s) ≤
{
eCR0S(R0)Z(., s−R0)

}
+
{
C

∫ s

s−R0

eC(s−τ)S(s− τ)
(

(y2 + 1)
τ2

+ χε0

)
dτ

}
−
{

2
∫ s

s−R0

eC(s−τ)S(s− τ) (div ((ν̃1 + ν̃2)∇γ)) dτ
}

= M1 +M2 +M3, where R0 = 4ε0,

where S is the semigroup associated to the operator L defined in (35). The termsM1 and
M2 are estimated in the following:

Claim 3.12 (Velázquez) There exists s0, such that for all s ≤ s0

sup
|y|≤R2

√
−s
|M1| = sup|y|≤R2

√
−s
∫ s
s−R0

( |y|2+1
s2

+ χε0
)
≤ C
|s| ,

sup
|y|≤R2

√
−s
|M2| = sup|y|≤R2

√
−s |eCR0S(R0)Z(., s−R0)| = o(1) as s→ −∞.

(73)

Proof: See page 1581 from [Vel92] and Lemma 6.5 in [HV93] in a similar case.�
It remains to estimate M3. Using page (72), we write

|S(s− τ) (−div ((|ν̃1|+ |ν̃2|)∇γ))|

=

∣∣∣∣∣ Ces−τ

(1− es−τ )1/2

∫
R

exp

(
−(ye−(s−τ)/2 − λ)2

4(1− e−(s−τ))

)
div ((|ν̃1|+ |ν̃2|)∇γ)dλ

∣∣∣∣∣ ,
=

∣∣∣∣∣ Ces−τ

(1− es−τ )1/2

∫
R
−(ye−(s−τ)/2 − λ)

2(1− e−(s−τ))
exp

(
−(ye−(s−τ)/2 − λ)2

4(1− e−(s−τ))

)
(|ν̃1|+ |ν̃2|)∇γdλ

∣∣∣∣∣ ,
≤ Ces−τ

(1− es−τ )3/2

∫
R
|ye−(s−τ)/2 − λ|exp

(
−(ye−(s−τ)/2 − λ)2

4(1− e−(s−τ))

)
χε0dλ,

≤ Ces−τ
√
−τ

(1− es−τ )3/2

∫
R

exp

(
−(ye−(s−τ)/2 − λ)2

4(1− e−(s−τ))

)
χε0dλ.

We make the change of variables z = (1− e−(s−τ))−1/2(λ− e−(τ−s)/2y) and we obtain∫
R

exp

(
−(ye−(s−τ)/2 − λ)2

4(1− e−(s−τ))

)
χε0dλ ≤ (1− es−τ )1/2

∫
Σ
e−z

2/4dz,

where,

Σ =
{
z ∈ R :

∣∣∣z + e−(τ−s)/2(1− es−τ )−1/2y
∣∣∣ ≥ 3ε0(1− es−τ )−1/2

√
−τ
}
.

Since |ye−(τ−s)/2| ≤ ε0
√
−s, we readily see that Σ ⊂

{
z ∈ R : |z| ≥ ε0

√
−s
}

. Then we
conclude that

|S(s− τ) (−div ((|ν̃1|+ |ν̃2|)∇γ))| ≤ Ces−τ

(1− es−τ )
eβs, where β > 0,
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and we obtain
sup

|y|≤R2
√
−s
|M3| = o(

1
|s|

) as s→ −∞.

Putting together Mi=1..3, the proof of lemma 3.9 is complete. This concludes also the
proof of Proposition 2.8 and rules out case (iii) of Proposition 2.5.�

Step 5: Irrelevance of the case (ii) of Proposition 2.5
To conclude the proof of Theorem 1, we consider case (ii) of Proposition 2.5. We assume
as in the previous case that θ0 = 0. We claim that the following proposition allows us to
reach a contradiction in this case.

Proposition 3.13 There exists ε0 > 0 such that

lim
s→−∞

sup
|y|≤ε0e−s/2

∣∣∣w(y, s)−G(yes/2)
∣∣∣ = 0, where G(ξ) = κ(1− C1κ

−pξ)−
(1+iδ)
(p−1) . (74)

Indeed, as in the previous Step, first, we will find a contradiction ruling out case (ii) of
Proposition 2.5 and then prove Proposition 3.13.
We define us0 by

us0(ξ, τ) = (1− τ)−
1+iδ
p−1 w(y, s) where y =

ξ + ε0
2 e
−s0/2

√
1− τ

and s = s0 − log(1− τ). (75)

us0 is defined for all τ ∈ [0, 1) and ξ ∈ R. us0 satisfies equation (2). The initial condition
at time τ = 0 is us0(ξ, 0) = w(ξ + ε0

2 e
−s0/2, s0). From (11), we have

∀τ ∈ [0, 1), ‖us0(., τ)‖L∞ ≤M(1− τ)−
1
p−1 . (76)

Using Proposition 3.13, we get:

sup
|ξ|<4e−s0/4

|us0(ξ, 0)−G(ε0/2)| ≡ g(s0)→ 0 as s0 → −∞.

If we define v, the solution of:{
v′ = (1 + iδ)|v|p−1v,
v(0) = G( ε02 ),

then v(τ) = κ
(
1− C1κ

−p ε0
2 − τ

)− (1+iδ)
p−1 , which blows up at time 1−C1κ

−p ε0
2 < 1. There-

fore, there exists τ0 < 1, such that |v(τ0)| = 2M(1 − τ0)−
1
p−1 . Now, we consider the

function z = us0 − v, then we have for all τ ∈ [0, τ0]:

∂τ |z| ≤ ∆|z|+ C(ε0)|z|. (77)

Using the fact that z is bounded for all τ ∈ [0, τ0] by B2 = B2(ε0) (use (76)), we use
Lemma 3.7 with B1 = e−s0/4, τ∗ = τ0, z0 = g(s0) and λ = 0. We obtain for all τ ∈ [0, τ0],

sup
|ξ|≤e−ε0/4

|z(ξ, τ)| ≤ g(s0) + C(ε0)e−e
−|s0|/2/16 → 0 as s0 → −∞.
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For |s0| large enough and ξ = 0, we get |z(0, τ0)| ≤M/2(1− τ0)−
1
p−1 and

|us0(0, τ0)| ≥ 3
2
M(1− τ0)−

1
p−1 ,

which by (75) is in contradiction with (76) and case (ii) of Proposition 2.5 is ruled out.
Now, we prove Proposition 3.13.

Proof of Proposition 3.13: The proof is very similar to that of Proposition 2.8. We
note f(y, s) = G(yes/2), then f satisfies

∂sf −
1
2
y · ∇f − (1 + iδ)

f

(p− 1)
+ (1 + iδ)|f |p−1f = 0. (78)

Consider an arbitrary ε0 ∈ (0, R
∗

10 ), where R∗ =
κp

C1
. ε0 will be fixed small enough later. Let

us consider a cut-off function γ(y, s) = γ0(yes/2), where γ0 ∈ C∞(R) such that γ0(ξ) = 1
if |ξ| ≤ 3ε0 and γ0(ξ) = 0 if |ξ| ≥ 4ε0. We note ν = (w − f) and Z = γ (|ν̃1|+ |ν̃2|). From
(ii) of Proposition 2.5, we have

‖Z‖ ≤ Ces(1−ε) as s→ −∞, for some ε > 0. (79)

As in the previous case, we divide our proof in two parts given in the following lemmas.

Lemma 3.14 (Estimates in the modified L2
ρ spaces.) There exists ε0 > 0 such that

the function Z satisfies for all s ≤ s∗ and y ∈ R,

∂sZ −∆Z +
1
2
y · ∇Z − (1 + σ)Z ≤ C(Z2 + es + χε0)− 2div ((|ν̃1|+ |ν̃2|)∇γ), (80)

where s∗ ∈ R, σ = 1
100 and

χε0(y, s) = 1 if |y|es/2 ≥ 3ε0 and zero otherwise. (81)

Moreover, we have
N2

2ε0e−s/2
(Z(s)) = o(1) as s→ −∞. (82)

As in Step 4, the following lemma allows us to conclude the proof of Proposition 3.13:

Lemma 3.15 (An upper bound for Z(y, s) in |y| ≤ ε0e
−s/2.) We have:

sup
|y|≤ε0e−s/2

Z(y, s) = o(1) as s→ −∞. (83)

Remains to prove Lemmas 3.14 and 3.15 to conclude the proof of Proposition 3.13. Here,
we only sketch the proof of Lemma 3.14, since it is completely similar to Step 4. We don’t
give the proof of Lemma 3.15. We refer the reader to Step 4 and Proposition 2.4 from
Velázquez [Vel92] for similar situations.
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Proof of Lemma 3.14: As in the previous step, we leave the proof of (80) to Appendix B.
Let us now apply variation of constants formula and take the norm N2

r(s,s0), where r(s, s0)
is as in (71). Assume that s0 < 2s∗, then for all s0 ≤ s ≤ s0

2 , we have

N2
r (Z(., s)) ≤ N2

r (Sσ(s− s0)Z(., s0)) + C
∫ s
s0
N2
r (Sσ(s− τ)(Z(., τ)2))dτ

+C
∫ s

s0

N2
r (S(s− τ)(eτ ))dτ + C

∫ s

s0

N2
r (Sσ(s− τ)(χε0(., τ)))dτ

−2
∫ s

s0

N2
r (Sσ(s− τ)(div ((ν̃1|+ |ν̃2|)∇γ)))dτ

= J1 + J2 + J3 + J4 + J5.

Arguing as in Step 4 and using (79), we prove:

Claim 3.16

|J1| ≤ Ce(s−s0)(1+σ)es0(1−ε),

|J2| ≤ C

∫ s0+((s−R0)−s0)+

s0

e(s−τ−R0)(1+σ)

(1− es−τ−R0)1/20

(
L2
r(Z(., s)2)

)
dτ + Ce(s−s0)(1+σ)es

with R0 = 4ε0,

|J3| ≤ Ce(s−s0)(1+σ)es,

|J4| ≤ Ce(s−s0)(1+σ)e−αe
−s

where α > 0,

|J5| ≤ Ce(s−s0)(1+σ)e−βe
−s

where β > 0.

Proof: To estimate Ji=1..4, see page 1584 in [Vel92]. To treat J5, we proceed as in the
proof of Lemma 3.8 of the previous Step.�
Summing up Ji=1..5, we obtain:

N2
r (Z(., s)) ≤

Ce(s−s0)(1+σ)e(1−ε)s + C
∫ s0+((s−R0)−s0)+
s0

e(s−τ−R0)(1+σ)

(1−es−τ−R0 )1/20

(
L2
r(Z(., s)2)

)
dτ,

then using Proposition 3.11, we get N2
r(s,s0)(Z(., s)) ≤ Ce(s−s0)(1+σ)e(1−ε)s as s→ −∞ for

s0 ≤ s ≤ s0
2 . If we fix s = s0/2, then we obtain N2

r(s,s0)(Z(., s)) ≤ Ces(2(1−ε)−(1+σ)) ≤
Ces(1−(2ε+σ)) → 0 as s → −∞, since ε is small enough and σ = 1

100 . This concludes the
proof of Lemma 3.14.�
As announced earlier, we don’t give the proof of Lemma 3.15 and refer the reader to Step
4 and Section 2 from [Vel92]. This concludes the proof of Proposition 3.13 and rules out
case (ii) of Proposition 2.5.

Conclusion of Part 3 and the sketch of proof of the Liouville theorem:
As we wrote in Section 2, we conclude from Step 4 and 5 that cases (ii) and (iii) of
Proposition 2.5 are ruled out. By Step 3, we obtain that w ≡ κeiθ0 or w ≡ ϕδ(s− s0)eiθ0
for some real s0 and θ0, where ϕδ is defined in Theorem 1, which is the desired conclusion
of Theorem 1.
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4 Applications of the Liouville Theorem for a type I blow-
up solution of (2)

In this section we say how to adapt to the case δ 6= 0, the proof of Proposition 3 given in
[MZ98a] and [MZ00] in the case δ = 0.

Proof of (i) of Proposition 3: The proof is exactly the same as in the case δ = 0 (see
page 148 in [MZ98a]). However, one needs the following lower bound which is a bit tricky
to get and which we give for the reader’s convenience.

Lemma 4.1 (Sharp lower bound on the blow-up rate) For all t ∈ [0, T ),

‖u(t)‖L∞ ≥ κ(T − t)−
1
p−1 .

Remark: This bound is sharp, since there is equality for the solutions of the ODE
v′ = (1 + iδ)|v|p−1v, which are particular solutions of (2).
Proof: we introduce ρ̃ =

√
1 + |u|2, we claim that ρ̃ satisfies

∂tρ̃ ≤ ∆ρ̃+ ρ̃p. (84)

Indeed, we can easily prove that ∂t|u|2 = ū∆u+ u∆ū+ 2|u|p+1. Then we have:

∂tρ̃ =
∂t|u|2

2(1 + |u|2)1/2
,

∆ρ̃ =
∆|u|2

2(1 + |u|2)1/2
− |∇|u|2|2

4(1 + |u|2)3/2
,

=
ū∆u+ u∆ū+ 2|∇u|2

2(1 + |u|2)1/2
− |u · ∇ū+ ū · ∇u|2

4(1 + |u|2)3/2
.

Using the fact that |u · ∇ū+ ū · ∇u|2 ≤ 4|u|2|∇u|2 ≤ 4(1 + |u|2)|∇u|2, we have

∆ρ̃ ≥ ū∆u+ u∆ū
2(1 + |u|2)1/2

, hence

∂tρ̃ ≤ ∆ρ̃+
|u|p+1

(1 + |u|2)1/2
≤ ∆ρ̃+ ρ̃p,

which gives (84).
Now we prove that ρ̃ ≥ κ(T−t)−

1
p−1 , for all t ∈ [0, T ). For this, we argue by contradiction.

Assume that ‖ρ̃‖L∞ < κ(T−t0)−
1
p−1 , for some t0 < T . Then, there exists T0 > T such that

‖ρ̃(t0)‖L∞ ≤ κ(T0 − t0)−
1
p−1 . Using the maximum principle, the inequality remains valid

after T0 and we have lim supt→T ‖ρ̃(t)‖L∞ ≤ κ(T0−T )−
1
p−1 <∞, which is a contradiction.

This concludes the proof of Lemma 4.1.�

Proof of (ii) of Proposition 3: Consider |δ| ≤ δ0 and a solution u(t) of (2), that blows
up in finite time T > 0 such that

∀t ∈ [0, T ), ‖u(t)‖L∞ ≤M(δ)(T − t)−
1
p−1 , (85)
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where δ0 and M(δ) are defined in Theorem 1. Let us prove now the uniform pointwise
control of the diffusion term by the nonlinear term, which asserts that the solution u(t)
behaves everywhere like the ODE u′ = (1 + iδ)|u|p−1u (up to a constant).
The plan of the proof is the same as in [MZ98a] and [MZ00]. However, the Giga-Kohn
property ”small local energy implies no blow-up locally” breaks down because we no longer
have a gradient structure. The property has to be replaced by a new idea of ours ”small
L2
ρ norm implies no blow-up locally” which is stated in Proposition 3.3.

We argue by contradiction and assume that for some ε0 > 0, there exists (xn, tn)n∈N, a
sequence of elements of R× [T2 , T ), such that

∀n ∈ N, |∆u(xn, tn)| ≥ ε0|u(xn, tn)|p + n. (86)

From the uniform estimates and the parabolic regularity, since ‖∆u‖L∞ is bounded on
compact sets of [T2 , T ), we have

T − tn → 0, as n→∞.

Part (i) of Proposition 3 implies that |u(xn, tn)|(T−tn)
1
p−1 is uniformly bounded, therefore,

we can assume that it converges as n→ +∞. Let us consider two cases:

i)Estimates in the very singular region: |u(xn, tn)|(T − tn)
1
p−1 → κ0 > 0. From (86),

it follows that
‖∆u(tn)‖L∞ ≥ |∆u(xn, tn)| ≥ ε0

(κ0

2
)p(T − tn)−

p
p−1 ,

with tn → T , which contradicts (i) of Proposition 3.

ii)Estimates in the singular region: u(xn, tn)(T − tn)
1
p−1 → 0.

We consider n large enough, such that

|u(xn, tn)|(T − tn)
1
p−1 ≤ η0

3
, where η0 is defined in Proposition 3.3.

We take t0n → T such that
(T − t0n)−

p
p−1 =

√
n. (87)

Using (86) and uniform estimates, we obtain:

n ≤ |∆u(xn, tn)| ≤ C0(T − tn)−
p
p−1 ,

hence t0n < tn. Now we distinguish two cases:
Case 1. We assume that (up to extracting a subsequence) there exists t′n ∈ (t0n, tn), such
that |u(xn, t′n)|(T − t′n)

1
p−1 = 2

3η0. If we consider

vn(ξ, τ) = (T − t′n)
1
p−1u(xn + ξ

√
T − t′n, t′n + τ(T − t′n)), (88)

then, we have from (i) of Proposition 3 and (85)

|vn(0, 0)| = 2
3
η0, ‖∇vn(0)‖L∞ + ‖∆vn(0)‖L∞ → 0, (89)
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∀τ < 1, ‖vn(τ)‖L∞ ≤M(δ)(1− τ)−
1
p−1 and ∂τvn = ∆vn + (1 + iδ)|vn|p−1vn.

Using parabolic regularity, we can extract a subsequence (still denoted by tn) such that,
vn(ξ, τ)→ v̂(ξ, τ) in C2,1 of every compact set of R× (−∞, 1), with

∂τ v̂ = ∆v̂ + (1 + iδ)|v̂|p−1v̂, |v̂(0, 0)| = 2/3η0 and ‖v̂‖L∞ ≤M(δ)(1− τ)−
1
p−1 .

Using the Liouville Theorem (see Theorem 2), we get

v̂(ξ, τ) = κ

((
3κ
2η0

)p−1

− τ

)− 1+iδ
p−1

eiθ0 , for some θ0 ∈ R.

We claim that it is enough to extend the convergence of vn → v̂ to all τ ∈ [0, 1) (and
ξ = 0), to conclude. Indeed, if we have this extended convergence, then we write from
(86) and the definition (88) of vn,

|∆vn(0, τn)| = (T − t′n)
p
p−1 |∆u(0, tn)| ≥ ε0

2
|u(0, tn)|p(T − t′n)

p
p−1 ≥ ε0

2
|vn(0, τn)|p,

with τn = tn−t
′
n

T−t′n
. Letting n→∞, we obtain

0 ≥ ε0

2
min
τ∈[0,1]

|v̂(τ)|p ≥ ε0

2

(
2
3
η0

)p
, (90)

which is a contradiction.
Let us then extend the convergence. If we consider the following similarity variables,

y =
ξ − ξ0√

1− τ
, s = − log(1− τ), wn,ξ0(y, s) = (1− τ)

1
p−1 vn(ξ, τ), (91)

then, we see from (89) that for all |ξ0| ≤ 1, ‖wn,ξ0(., 0)‖L2
ρ
≤ η0, for n large enough. Using

Proposition 3.3, we get for all |ξ| ≤ 1 and τ ∈ [0, 1), |vn(ξ, τ)| ≤M0. Using the parabolic
regularity, we can extend the convergence, and then reach the contradiction (90). This
concludes Case 1.

Case 2. We assume that for some n0 ∈ N, for all n ≥ n0 and t ∈ [t0n, tn], we have:

(T − t)
1
p−1 |u(xn, t)| <

2
3
η0.

Then, we take t′n = t0n and introduce vn by (88). As in Case 1, we obtain by Proposition
3.3 and the parabolic regularity:

∀|ξ| ≤ 1 and τ ∈ [0, 1), |vn(ξ, τ)| ≤M0, |∆vn(0, τn)| ≤ C0η0 where τn =
tn − t0n
T − t0n

.

Therefore, we get from (86), (88) and (87):

n ≤ |∆un(xn, tn)| = (T − t0n)−
p
p−1 |∆vn(0, τn)| ≤ C0η0(T − t0n)−

p
p−1 = C0η0

√
n,

which is a contradiction, as n→∞. This ends Case 2 and concludes the proof of Propo-
sition 3.�
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A Proof of Proposition 3.5

We prove Proposition 3.5 here, we recall from (44,..,47):

ṽ1s = Lṽ1 + θ
′
(s)(δṽ1 + ṽ2) + G̃1, (92)

ṽ2s = (L − 1)ṽ2 − θ
′
(s)((1 + δ2)ṽ1 + δṽ2 + κ) + G̃2, (93)

where L is given in (35) and

G̃1 =
p− δ2

2κ
ṽ2

1 +
1

2κ
ṽ2

2 +O(|v|3), (94)

G̃2 = (1 + δ2)
ṽ1(δṽ1 + ṽ2)

κ
+O(|v|3). (95)

A primary idea to deal with system (92,..,95) is to confirm that it is driven by its linear
part ∂s(ṽ1, ṽ2) = (Lṽ1, (L − 1)ṽ2) (except for the neutral modes ṽ12 where the second order
terms matter, and ṽ20 = 0 by the choice of the modulation parameter; see (24)).
To this end, let us decompose ṽ1 and ṽ2, respectively with respect to the spectrum of L
(with a positive (λ = 1 or λ = 1/2), zero and nonnegative part (λ ≤ −1/2)) and L−1 (with
zero eigenvalue and a nonnegative part (λ ≤ −1/2)). Let us introduce some notations

ṽ1+(y, s) = ṽ10(s)h0(y) + ṽ11(s)h11(y), z(s) = ‖ṽ1+(., s)‖L2
ρ
,

ṽ1null(y, s) = ṽ12(s)h2(y), x(s) = ‖ṽ1null(., s)‖L2
ρ
,

ṽ1−(y, s) =
∑+∞

3 ṽ1m(s)hm(y), y1(s) = ‖ṽ1−(., s)‖L2
ρ
,

and we note by

ṽ2⊥(y, s) =
∑+∞

1 ṽ2m(s)hm(y), y2(s) = ‖ṽ2⊥(., s)‖L2
ρ
.

Since we have ṽ20(s) = 0 from (24), it follows that

ṽ2⊥(y, s) = ṽ2(y, s) and y2(s) = ‖ṽ2(., s)‖L2
ρ
.

Finally, we note

N1(s) = ‖θs(δṽ1 + ṽ2) + G̃1‖L2
ρ
,

N2(s) = ‖θs((1 + δ2)ṽ1 + δṽ2 + κ) + G̃2‖L2
ρ
,

We proceed in 3 steps:

• In step 1, we use ODE techniques to show that either z or x dominates as s→ −∞.

• In step 2, we consider the case where z dominates and show that it leads to case (i)
or (ii) of Proposition 3.5.

• In step 3, we show that (iii) of Proposition 3.5 holds in the case where x dominates.
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A.1 Step 1: Either ‖ṽ1+(., s)‖L2
ρ

or ‖ṽ1null(., s)‖L2
ρ

dominates as s→ −∞

Projecting (92) onto the unstable subspace of L forming the L2
ρ-inner product with ṽ1+,

and using standard inequalities, we get

ż ≥ 1
2
z −N1.

Working similarly with ṽ10(s), ṽ1−(y, s) and ṽ2(y, s) we arrive at the system

ż ≥ 1
2z −N1,

|ẋ| ≤ N1,
ẏ1 ≤ −1

2y1 +N1,
ẏ2 ≤ −1

2y2 +N2.

(96)

Using the fact that v is bounded (see (11) and (14)), and (15), we obtain easily

N2
1 +N2

2 ≤ C
∫
|v|4ρ, (97)

for some positive constant C. Thus, it follows from (96) that

ż ≥ 1
2z − CN

|ẋ| ≤ CN
ẏ ≤ −1

2y + CN,
(98)

where
y ≡ y1 + y2 and N2 ≡

∫
|v|4ρ. (99)

If we knew that for |s| large enough

N ≤ ε(x+ y + z), (100)

which is equivalent to
∫
|v|4ρ ≤ ε2

∫
|v|2ρ, we could use ODE techniques to conclude the

step. The meaning of estimate (100) is essentially that the L2
ρ−norm of quadratic term

|v|2 is small compared to the norm of the linear term |v|. However, we do not have this
information at this stage. We thus estimate N as follows. Given any ε > 0, and any α > 0
(both will be chosen small in the sequel), there is a time s∗ such that:∫
|v|4ρ =

∫
|y|>α−1

|v|4ρ+
∫
|y|<α−1

|v|4ρ ≤ αk
∫
|v|4|y|kρ+ε2

∫
|v|2ρ for all s ≤ s∗. (101)

Here we use the fact that v(y, s) goes to zero uniformly on the compact set |y| < α−1,
which follows from (ii) of Lemma 2.3 and parabolic regularity. The exponent k which
appears in (101) is an arbitrary positive integer (later we will choose it to be large). We
set

J2 ≡
∫
|v|4|y|kρ,

so that (101) can be rewritten as∫
|v|4ρ ≤ αkJ2 + ε2

∫
|v|2ρ for all s ≤ s∗.
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From the inequalities above, we get that

N ≤ αk/2J + ε(x+ y + z) for all s ≤ s∗. (102)

We next estimate J . Multiplying (92) by ṽ1|v|2|y|kρ, and (45) by ṽ2|v|2|y|kρ, integrating
over all R, we get after some calculations:

J̇ ≤ −θJ + ε
′
(x+ y + z) + c(x+ y + z)2,

where

θ =
k

4
− c− kα2

2
(k − 1) and ε′ =

1
2
εα2−k/2k(k + n− 2). (103)

Using the fact that x, y, z → 0 as s→ −∞, we end up with

J̇ ≤ −θJ + 4ε′(x+ y + z), (104)

where θ is still given by (103) with a different value of the constant c, to end the proof
we choose k large enough (certainly k > 4), so that for some α∗(k) > 0, we have for
0 < α < α∗, θ ≥ 1

2 . We obtain from (98), (102) and (104):

ż ≥ (1
2 − ε̂)− ε̂(x+ ỹ),

|ẋ| ≤ ε̂(x+ ỹ + z),
˙̃y ≤ −(1

2 − ε̂)ỹ + ε̂(x+ z)

where
ỹ ≡ y + J , ε̂ ≡ C max(ε+ εα2−k/2, αk/2).

Note that ε̂ can be made arbitrarily small by choosing first α and then ε sufficiently small.
Now, we conclude using the following Lemma

Lemma A.1 Let x(s), y(s) and z(s) be absolutely continuous, real valued functions that
are non negative and satisfy:
i) (x, y, z)(s)→ 0 as s→ −∞,
ii) For all ε > 0, there exists s0 ∈ R such that for all s ≤ s0

ż ≥ c0z − ε(x+ y)
|ẋ| ≤ ε(x+ y + z)
ẏ ≤ −c0y + ε(x+ z).

(105)

Then either x+ y = o(z) or y + z = o(x), as s→ −∞.

Proof: Here, we adapt the proof of Lemma A.1 (page 172) from [MZ98a]. By rescaling in
time, we may assume c0 = 1.
Part 1. Let ε > 0. We show in this part that either

∃s2(ε) such that ∀s ≤ s2, z(s) + y(s) ≤ Cεx(s), (106)

or
∃s2(ε) such that ∀s ≤ s2, x(s) + y(s) ≤ Cεz(s). (107)

We show that for all s ≤ s0(ε), β(s) ≤ 0 where β = y−2ε(x+z). We argue by contradiction
and suppose that there exists s∗ ≤ s0(ε) such that β(s∗) > 0. Then, if s ≤ s∗ and β(s) > 0,
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we have from (105) β̇ = ẏ − 2ε(ẋ + ż) ≤ 0. Therefore, for all s ≤ s∗, β(s) ≥ β(s∗) > 0,
which contradicts β(s)→ 0 as s→ −∞. Thus, for all s ≤ s0(ε)

y ≤ 2ε(x+ z). (108)

Therefore, (105) yields

ż ≥ 1
2
z − 2εx, (109)

|ẋ| ≤ 2ε(x+ z). (110)

Let γ(s) = 8εx(s)− z(s). Two cases then arise:

• Case 1. There exists s2 ≤ s0(ε) such that γ(s2) > 0. Then we compute γ̇ =
8εẋ− ż ≤ 16ε2(x+ z)− 1

2z+ 2εx = γ(s)
(

1
4 + 2ε

)
− z(s)

(
1
4 − 2ε− 16ε2

)
. Therefore,

for all s ≤ s2, γ(s) ≥ γ(s2)e(
1
4
−2ε)(s−s2) > 0, that is, 8εx(s) > z(s). Together with

(108), this yields (106).

• Case 2. For all s ≤ s0(ε), γ(s) ≤ 0, that is, 8εx(s) ≤ z(s). In this case (110) yields

∀s ≤ s0(ε), ż ≥ 1
4
z and ẋ ≤

(
2ε+

1
4

)
z, hence ẋ ≤ (1 + 8ε)ż. (111)

By integration, we get x(s) ≤ (8ε + 1)z(s). We inject this in (110) and get from
(111) ẋ ≤ 2ε(x+z) ≤ 2εz(2+8ε) ≤ 8ε(2+8ε)ż(s) which gives x(s) ≤ 8ε(2+8ε)z(s)
by integration.

Part 2. It is easy to see that if for some ε > 0, (106) holds, then it holds for all ε
′
< ε

and the same with (107). This concludes the proof of Lemma A.1.�
Applying Lemma A.1, we get either

‖ṽ12‖L2
ρ

+ ‖ṽ1−(., s)‖L2
ρ

+ ‖ṽ2(., s)‖L2
ρ

= o(‖ṽ1+(., s)‖L2
ρ
)

or
‖ṽ1+(., s)‖L2

ρ
+ ‖ṽ1−(., s)‖L2

ρ
+ ‖ṽ2(., s)‖L2

ρ
= o(‖ṽ12‖L2

ρ
).

A.2 Step 2: Case where ‖ṽ1+(., s)‖L2
ρ

dominates

Now, we focus on the case ‖ṽ1null(., s)‖L2
ρ

+ ‖ṽ1−(., s)‖L2
ρ

+ ‖ṽ2(., s)‖L2
ρ

= o(‖ṽ1+(., s)‖L2
ρ
).

We will show that it leads to either case (i) or case (ii) of Proposition 3.5. We want
to derive from (92) the equations satisfied by ṽ10 and ṽ11. For this, we estimate in the
following lemma,

∫
G̃1km(y)ρ(y)dy for m = 0, 1 where

km(y) = hm(y)/‖hm‖2L2
ρ

and G̃1 is given by (94).

Lemma A.2 There exists β0 > 0, and an integer k′ > 4 such that for all β ∈ (0, β0),
∃s0 ∈ R such that ∀s ≤ s0,

∫
v2|y|k′ρ ≤ c0(k′)β4−k′z(s)2.
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Proof: This lemma is analogous to Lemma A.3 p 175 from [MZ98a], which handles the
real case with δ = 0. One can adapt with no difficulty the proof of the present context. �
Proceeding as in Appendix.A from [MZ98a] and doing the projection of equation (44),
respectively on k0(y) and k1(y), we obtain

ṽ′10(s) = ṽ10(s) +
p− δ2

2κ
(1 + α(s))z2(s), (112)

and

ṽ′11(s) =
1
2
ṽ11(s) + η(s)z(s)2, (113)

where z(s) = ‖ṽ1+(., s)‖L2
ρ
, α(s)→ 0 as s→ +∞ and η is bounded. Then, from standard

ODE techniques, we get

∀ε > 0, ṽ10(s) = O(e(1−ε)s) and ṽ11 = C1e
s
2 +O(e(1−ε)s). (114)

Since z(s)2 = ‖ṽ1+(., s)‖2L2
ρ

= ṽ2
10 + 2ṽ2

11, we write (112) as

ṽ′10(s) = ṽ10(s) +
p− δ2

κ
|C1|2ses(1 + α(s)) + γ(s),

where γ(s) = O(e2(1−ε)s) and α(s)→ 0 as s→ −∞, which gives by integration

ṽ10(s) =
p− δ2

κ
|C1|2ses(1 + o(s)) + C0e

s +O(e2(1−ε)), as s→ −∞. (115)

Two cases then arise:

• If C1 6= 0, then ṽ11 ≡ C1e
s
2 � ṽ10 = O(ses), from (115). Note first that applying

Lemma 3.4 to |v1| + |v2| (this is possible from equations (92) and (93) and the
boundedness of v), we have for all |s| large enough (and s < 0),

N2 =
∫
|v(y, s)|4ρ(y)dy ≤ C ∗ ‖v(., s− s∗)‖2L2

ρ
, (116)

for some positive s∗ and C∗.

Recalling system (98) and using (116), we obtain, ẏ ≤ −1
2y+c‖v(., s−s∗)‖2L2

ρ
≤ −1

2y+
ces. Then, we obtain y = O(es), similarly, we obtain x = ‖ṽ1null(., s)‖L2

ρ
= O(es).

We conclude that ‖v(., s) − (1 + iδ)C1e
s/2y‖L2

ρ
= O(es(1−ε)) as s → −∞, for some

ε > 0. Using (15), we get |θs| ≤ Ces. This is case (ii) of Proposition 3.5.

• If C1 = 0, we obtain case (i) of Proposition 3.5. Indeed, let us first improve the
estimate of v. In fact, from (115) we have ṽ10 = C0e

s + O(e3/2s) and from (113)
ṽ11 = O(e3/2s).
We note y = ‖ṽ1−(., s)‖L2

ρ
+ ‖ṽ2(., s)‖L2

ρ
and x = ‖ṽ1null(., s)‖L2

ρ
. Recalling system

(98) and using (116), we obtain

ẏ ≤ −1
2
y + c‖v(., s− s∗)‖2L2

ρ
≤ −1

2
y + ce2s.
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Then, we have that y = ‖ṽ1−(., s)‖L2
ρ

+ ‖ṽ2(., s)‖L2
ρ

= O(e3/2s). Similarly, we obtain
that

x = ‖ṽ1null(., s)‖L2
ρ

= O(e3/2s)

and we conclude

‖v(., s)− (1 + iδ)ṽ10(s)‖L2
ρ

= ‖(1 + iδ) (ṽ11(s) + ṽ1,null(., s) + ṽ1−(., s)) + iṽ2(., s)‖L2
ρ

= O(e3/2s).

Using (15), we get |θ′(s)|L2
ρ
≤ Ce2s. This is case (i) of Proposition 3.5.

A.3 Step 3: Case where ‖ṽ1null(., s)‖L2
ρ

dominates

In the following we prove that (iii) of Proposition 3.5 holds. First, we prove the following
Lemma:

Lemma A.3 Assume that

‖ṽ1+(., s)‖L2
ρ

+ ‖ṽ1−(., s)‖L2
ρ

+ ‖ṽ2(., s)‖L2
ρ

= o(‖ṽ1null(., s)‖L2
ρ
) (117)

holds. Then
v(y, s) = −(1 + iδ)

κ

4(p− δ2)s
(y2 − 2) + o(

1
s

),

in L2
ρ as s→ −∞.

Proof: Since ṽ1null = ṽ12(s)h2(y), we note that ṽ12 =
∫
ṽ1k2ρ. Projecting equation

(92) onto h2(y) we get

d

ds
(ṽ12) =

p− δ2

2κ

∫
ṽ2

1k2(y)ρ(y)

+θ
′
(s)
∫

(δṽ1 + ṽ2)k2(y)ρ(y) +
∫

1
2κ
ṽ2

2k2(y)ρ(y) +O(
∫
|v|3k2(y)ρ(y)),

=
p− δ2

2κ

∫
ṽ2

1nullk2(y)ρ(y)− p− δ2

2κ

∫
(ṽ2

1null − ṽ2
1)k2(y)ρ(y)

+θ
′
(s)
∫

(δṽ1 + ṽ2)k2(y)ρ(y) +
∫

1
2κ
ṽ2

2k2(y)ρ(y) +O(
∫
|v|3k2(y)ρ(y)),

≡ (p− δ2)
2κ

8ṽ2
12 +

p− δ2

2κ
E1 + E2 + E3 + E4,

where we use the fact that
∫
ṽnullk2ρ = ṽ2

12

∫
h2

2k2ρ = 8ṽ2
12. We next estimate E1, E2, E3

and E4. For this, we need the following lemma:

Lemma A.4 There exist α0 > 0 and an integer k′ > 4 such that for all α ∈ (0, α0), there
exists s0 ∈ R such that for all s ≤ s0,∫

|v|2|y|k′ρdy ≤ c0(k′)α4−k′
∫
ṽ2

1nullρdy.
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Proof: See proof of Lemma C.1 in [MZ98a] (page 187).�

Recalling that ṽ1 = ṽ1− + ṽ1+ + ṽ1null, we write on the one hand:

|E1| ≤
∫
|ṽ1+ + ṽ1−| × |ṽ1 + ṽ1null||k2(y)|ρ,

≤ c

(∫
|ṽ1+ + ṽ1−|2ρ

)1/2
{(∫

ṽ2
1k

2
2(y)ρ

)1/2

+
(∫

ṽ2
1nullk

2
2(y)ρ

)1/2
}
.

We have from (117)
(∫
|ṽ1+ + ṽ1−|2ρ

)1/2 = o(ṽ12) and

( ∫
ṽ2

1k
2
2(y)ρ

)1/2 +
( ∫

ṽ2
1nullk

2
2(y)ρ

)1/2 ≤ (∫ |v|2k2
2ρ

)1/2

+ c|ṽ12| ≡ I1 + I2.

On the other hand, we have:

E3 =
∫

1
2κ
ṽ2

2k2(y)ρ(y) ≤ c

(∫
ṽ2

2ρ

)1/2(∫
ṽ2

2k
2
2ρ

)1/2

,

≤ o(ṽ12)
(∫
|v|2k2

2ρ

)1/2

︸ ︷︷ ︸
I1

.

To treat I1, we have from A.4:∫
ṽ2

1k
2
2ρ ≤ c

∫
|v|2ρ+ c

∫
|v|2|y|k′ρ ≤ c(

∫
|v|2ρ) ≤ cṽ2

12.

We conclude that E1 = o(ṽ2
12) and E3 = o(ṽ2

12). We can see easily that E2 = o(ṽ2
12), because

of Lemma 2.3.
It remains to estimate E4, we consider α ∈ (0, α0) and we proceed as in Appendix C from
[MZ98a], (page 189). We write for m = 0 or m = 2:∫

|v|3|y|mρdy ≤
∫
|y|≤α−1

|v|3|y|mρdy +
∫
|y|≥α−1

|v|3|y|mρdy,

≤ εα−m
∫
|y|≤α−1

|v|2ρdy + CMαk
′−m

∫
|y|≥α−1

|v|2|y|k′ρdy,

≤ C(εα−m +Mc0(k′)α4−m)
∫
ṽ2
nullρdy,

where, we used the fact that |v| → 0 as s → −∞ in L∞(B(0, α−1)), |v(y, s)| ≤ M ,
Lemma A.4 and

∫
|v|2ρdy ≤

∫
ṽ2
nullρdy. We can then choose ε and α such that for s ≤ s0,∫

|v|3|y|mρ ≤ ε
∫
ṽ2
nullρ and we obtain E4 = o(ṽ2

12).
So finally, we have

d

ds
(ṽ12) =

(p− δ2)
κ

4ṽ2
12 + o(ṽ2

12).

Solving the above, we obtain

ṽ1null = − κ

4(p− δ2)s
(1 + o(1))

(
y2 − 2

)
.
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This concludes the proof of Lemma A.3. �
In order to finish the proof of (iii) of Proposition 3.5. We need to refine the estimates of
Lemma A.3 to catch the O( |s|

s2
).

Recalling system (98) and using (116), we obtain,

y′ ≤ −1
2
y + c‖v(., s− s∗)‖2L2

ρ
≤ −1

2
y + c

1
s2
.

Then, integrating (yes/2)′ ≤ C
es/2

s2
between −∞ and s, we get y ≤ C

s2
. Doing the same

for z = ‖ṽ1+(., s)‖L2
ρ
, we obtain (ze−s/2)′ ≥ C

es/2

s2
, integrating between s and s0 ≥ s, we

have z ≤ C

s2
.

Proceeding as in the proof of Proposition A.3, we write:

d

ds
(ṽ12) =

p− δ2

2κ

∫
ṽ2

1nullk2(y)ρ(y)− p− δ2

2κ

∫
(ṽ2

1null − ṽ2
1)k2(y)ρ(y)

+θ
′
(s)
∫

(δṽ1 + ṽ2)k2(y)ρ(y) +
∫

1
2κ
ṽ2

2k2(y)ρ(y) +O

(∫
|v|3k2(y)ρ(y)

)
,

≡ 4(p− δ2)
κ

ṽ2
12 +

p− δ2

2κ
E1 + E2 + E3 + E4.

(118)

Then, we have:

|E1| ≤
∫
|ṽ1+ + ṽ1− + ṽ2| × |v + ṽ1null||k2(y)|ρ,

≤
(∫
|ṽ1+ + ṽ1− + ṽ2|2ρ

)1/2
{(∫

v2k2
2(y)ρ

)1/2

+
(∫

ṽ2
1nullk

2
2(y)ρ

)1/2
}
,

≤ ε

(∫
ṽ2

1nullρ

)1/2
{
c

(∫
v4ρ

)1/4

+ c

(∫
ṽ2

1nullρ

)1/2
}
.

Using the fact that ‖ṽ1null(., s)‖L2
ρ
∼ C

s
and (116), we have∫

v4ρ ≤ c
(∫

v2(., s− s∗)ρ
)2

≤ c

(s− s∗)2
≤ c

s2
.

Thus, E1 ≤
C

s3
. Similarly, we obtain E2 ≤

C

|s|3
, E3 ≤ y2 ≤ C

s4
and E4 ≤

C

|s|3
. Then, we

have from (118):

d

ds
(ṽ12) =

4(p− δ2)
κ

ṽ2
12 +O(

1
s3

) =
4(p− δ2)

κ
ṽ2

12

(
1 +O(

1
s

)
)
.

By integrating, we conclude that:

ṽ12 = − κ

4(p− δ2)s
+O(

log |s|
s2

).

Finally, we get ‖v(., s) − (1 + iδ) κ
4(p−δ2)s

(y2 − 2)‖L2
ρ

= O( log |s|
s2

) as s → −∞. Remains to

prove the estimate for θ
′
(s) to conclude.
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Integrating equation (93) with respect to ρdy, we obtain:

θ
′
(s)
∫

((1 + δ2)ṽ1 + δṽ2 + κ)ρ =
∫
G̃2ρ.

On the one hand, we have ((1 + δ2)ṽ1 + δṽ2 + κ) = κ + O(
1
s

). On the other hand, using

(95), we get ∫
G̃2ρ =

(1 + δ2)δ
κ

∫
ṽ2

1ρ+
(1 + δ2)

κ

∫
ṽ1ṽ2ρ,

where we have from (iii) of Proposition 3.5,
∫
ṽ1ṽ2ρ = O( log |s|

s3
),∫

ṽ2
1ρ =

∫
ṽ2

12h
2
2ρ+

∫ (
ṽ2

1 − ṽ2
12h

2
2

)
ρ

= 8ṽ2
12 +

∫
((ṽ1 − ṽ12h2)) (ṽ1 + ṽ12) ρ,

ṽ12 = κ
4(p−δ2)s

+O( log |s|
s2

),
∫

((ṽ1 − ṽ12h2)) (ṽ1 + ṽ12) ρ ≤ C log |s|
s2
× 1

s = C log |s|
s3

.

θ
′
(s) =

(1 + δ2)δ
κ

(
κ

2(p− δ2)

)2 1
s2

+O(
log |s|
s3

).

Consequently, we obtain the desired estimate for θs. This concludes the proof of Proposi-
tion 3.5.�

B Equations of Z in Step 4 and 5

Equation of Z in Step 4: In this part we establish the equation satisfied by Z in Step
4 of the proof of Theorem 1. We note φ : C→ C the function defined by φ(x) = |x|p−1x.
If we introduce ν = (w − F ), where F is defined by (62), then we see from (10) that ν
satisfies the following equation for all (y, s) ∈ R× R, such that for |y| < 4ε0

√
−s

∂sν = (L − 1)ν + l(ν) +B(ν) +R(y, s), (119)

where L is defined in (35), ν = ν1 + iν2,

l(ν) = (1 + iδ)
[
− ν
p−1 + (p− 1)|F |p−3F (F1ν1 + F2ν2) + |F |p−1ν

]
,

B(ν) = (1 + iδ)
[
φ(F + ν)− φ(F )− (p− 1)|F |p−3F (F1ν1 + F2ν2)− |F |p−1ν

]
,

R(y, s) = −∂sF + ∆F − 1
2y · ∇F − (1 + iδ) F

p−1 + (1 + iδ)|F |p−1F.

Using Taylor’s formula and the fact that w and F are bounded for |y| ≤ 4ε0
√
−s, we

readily obtain for all s ≤ s0 and |y| < 4ε0
√
−s

|B(ν)| ≤ C|ν|2,
|R(y, s)| ≤ C

(
|y|2+1
s2

+ χε0

)
,

44



with χε0 defined in (64). If we write ν = (1 + iδ)ν̃1 + iν̃2, B = (1 + iδ)B̃1 + iB̃2 and
R = (1 + iδ)R̃1 + iR̃2, then we have:

∂sν̃1 = Lν̃1 + l1,1ν̃1 + l1,2ν̃2 + B̃1 + R̃1 (120)
∂sν̃2 = (L − 1)ν̃2 + l2,2ν̃2 + l2,1ν̃1 + B̃2 + R̃2, (121)

where 
l1,1(y, s) = (1− δ2)(|F |p−1 − 1

p−1) + (p− 1)|F |p−3(F1
2 − δ2F2

2)− 1,
l1,2(y, s) = −δ(|F |p−1 − 1

p−1) + (p− 1)|F |p−3(F1 − δF2)F2,

l2,1(y, s) = (1 + δ2)(|F |p−1 − 1
p−1) + (p− 1)|F |p−3(F1 + δF2)F2,

l2,2(y, s) = (1 + δ2)(|F |p−1 − 1
p−1) + (p− 1)|F |p−3F2

2.

Proceeding as in the proof of Lemma B.1 from [Zaa98] (page 615), we obtain for all
|y| ≤ 4ε0

√
−s

|li,j(y, s)| ≤ C min
[

(1 + |y2|)
|s|

, 1
]

, for any i, j ∈ {1, 2}.

Therefore, we write for |s| large enough and |y| ≤ 4ε0
√
−s:

|li,j(y, s)| ≤ C
{

(1 + ε2
0|s|)
|s|

+ χε0

}
≤ C

{
2ε2

0 + χε0
}
.

Now, we multiply (120) and (121) respectively by sgn(ν̃1) and sgn(ν̃2). Using Kato’s
inequality, we obtain for z = |ν̃1|+ |ν̃2|, |s| large enough and |y| ≤ 4ε0

√
−s:

∂sz −∆z +
1
2
y · ∇z − (1 + σ)z ≤ C

(
z2 +

(y2 + 1)
s2

+ χε0

)
,

where we fix ε0 small enough so that σ = Cε2
0 = 1

100 .
Now, we consider the cut-off function γ (65), we define Z = zγ and we obtain for |s| large
enough:

∂sZ −∆Z +
1
2
y · ∇Z − (1 + σ)Z ≤ C

(
Z2 + (y2+1)

s2
+ χε0

)
+z
(
∂sγ −∆γ +

y

2
· ∇γ

)
− 2∇γ · ∇z,

(here, we used the fact that γz2 = Z2 + (γ − γ2)z2 ≤ Z2 + Cχε0). The last terms in this
equation are the cut-off terms. Using the fact that z

(
∂sγ − ∆γ + y

2 · ∇γ
)
− 2∇γ∇z ≤

Cχε0 − 2div (z∇γ), we obtain for |s| large enough:

∂sZ −∆Z +
1
2
y · ∇Z − (1 + σ)Z ≤ C

(
Z2 +

(y2 + 1)
s2

+ χε0

)
− 2div ((|ν̃1|+ |ν̃2|)∇γ) ,

which is the desired equation in Lemma 3.8.

Equation of Z in Step 4: In the following, we determine the equation satisfied by
Z in Step 4. We note by ν = w − f . We can see from (78), that ν satisfies the following
equation for all (y, s) ∈ R× R, such that for |y| < 4ε0e

−s/2

∂sν = ∆ν − 1
2y · ∇ν + l(ν) +B(ν) +R(y, s),
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where

l(ν) = −(1 + iδ) ν
p−1 + (1 + iδ)

{
(p− 1)|f |p−3f(f1ν1 + f2ν2) + |f |p−1ν

}
,

B(ν) = (1 + iδ)
{
|f + ν|p−1(f + ν)− |f |p−1f − (p− 1)|f |p−3f(f1ν1 + f2ν2)− |f |p−1ν

}
,

R(y, s) = es∆G(yes/2).

Using a Taylor formula, we prove that for |s| large and |y| ≤ R∗

2 e
−s/2

|B(ν)| ≤ C|ν|2, |R(y, s)| ≤ Ces + χε0(y, s),

with χε0 is defined by (81). If we write ν = (1 + iδ)ν̃1 + iν̃2, B = (1 + iδ)B̃1 + iB̃2 and
R = (1 + iδ)R̃1 + iR̃2, then we have:

∂sν̃1 = Lν̃1 + l1,1ν̃1 + l1,2ν̃2 + B̃1 + R̃1 (122)
∂s ˜̄ν2 = (L − 1)˜̄ν2 + l2,2ν̃2 + l2,1ν̃1 + B̃2 + R̃2, (123)

where 
l1,1(y, s) = (1− δ2)(|f |p−1 − 1

p−1) + (p− 1)|f |p−3(f1
2 − δ2f2

2)− 1,
l1,2(y, s) = −δ(|f |p−1 − 1

p−1) + (p− 1)|f |p−3(f1 − δf2)f2,

l2,1(y, s) = (1 + δ2)(|f |p−1 − 1
p−1) + (p− 1)|f |p−3(f1 + δf2)f2,

l2,2(y, s) = (1 + δ2)(|f |p−1 − 1
p−1) + (p− 1)|f |p−3f2

2.

Proceeding as in the proof of Lemma B.1 from [Zaa98] (page 615), we obtain for |y|es/2 ≤
4ε0 and s large

|li,j(y, s)| ≤ C min
[
|y|es/2, 1

]
, for any i, j ∈ {1, 2}.

If we consider χε0 defined in (81), then, we write for |s| large and |y| ≤ 4ε0e
−s/2:

|li,j | ≤ C
{
|y|es/2 + χε0

}
≤ C {ε0 + χε0} .

Now, we multiply (122) and (123) respectively by sgn(ν̃1) and sgn(ν̃2). Using Kato’s
inequality, we obtain for z = |ν̃1|+ |ν̃2|, |s| large enough and |y|es ≤ 4ε0,

∂sz −∆z +
1
2
y · ∇z − (1 + σ)z ≤ C

(
z2 + es + χε0

)
,

where σ = Cε0 = 1
100 . Now, we consider the cut-off function γ, we define Z = zγ and we

obtain for |s| large:

∂sZ −∆Z +
1
2
y · ∇Z − (1 + σ)Z

≤ C
(
Z2 + es + χε0

)
− z

(
∂sγ −∆γ +

y

2
· ∇γ

)
+ 2∇γ∇z.

The last terms in this equation are the cut-off terms. Using z
(
∂sγ−∆γ+ y

2 ·∇γ
)
−2∇γ∇z ≤

Cχε0 + 2div (z∇γ), we obtain for |s| large:

∂sZ −∆Z +
1
2
y · ∇Z − (1 + σ)Z ≤ C

(
Z2 + es + χε0

)
− 2div ((|ν̃1|+ |ν̃2|)∇γ) ,

which is the desired equation in (80).
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[PŠ01] P. Plecháč and V. Šverák. On self-similar singular solutions of the complex
Ginzburg-Landau equation. Comm. Pure Appl. Math., 54(10):1215–1242, 2001.

[Vel92] J. J. L. Velázquez. Higher-dimensional blow up for semilinear parabolic equa-
tions. Comm. Partial Differential Equations, 17(9-10):1567–1596, 1992.

[Vel93] J. J. L. Velázquez. Classification of singularities for blowing up solutions in
higher dimensions. Trans. Amer. Math. Soc., 338(1):441–464, 1993.

[Wei84] F. B. Weissler. Single point blow-up for a semilinear initial value problem. J.
Differential Equations, 55(2):204–224, 1984.

[Zaa98] H. Zaag. Blow-up results for vector-valued nonlinear heat equations with no
gradient structure. Ann. Inst. H. Poincaré Anal. Non Linéaire, 15(5):581–622,
1998.

[Zaa01] H. Zaag. A Liouville theorem and blowup behavior for a vector-valued nonlinear
heat equation with no gradient structure. Comm. Pure Appl. Math., 54(1):107–
133, 2001.

48



Nejla Nouaili
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