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Abstract

We consider u(x, t) a solution of ut = ∆u + |u|p−1u that blows up at some time
T > 0, where u : R

N × [0, T ) → R, p > 1 and (N − 2)p < N + 2. Under a non
degeneracy condition, we show that the mere hypothesis that the blow-up set S is
continuous and N − 1 dimensional implies that it is C2. In particular, we compute
the N − 1 principal curvatures and directions of S. Moreover, a much more refined
blow-up behavior is derived for the solution, in terms of the newly exhibited geometric
objects. Refined regularity for S and refined singular behavior of u near S are linked
through a new mechanism of algebraic cancellations that we explain in details.
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1 Introduction

In this paper, we aim at computing the curvature of the blow-up set for the following
semilinear heat equation:

ut = ∆u + |u|p−1u,

u(., 0) = u0 ∈ L∞(RN ), (1)

where u(t) : x ∈ R
N → u(x, t) ∈ R. We assume p > 1 and subcritical: if N ≥ 3, then

1 < p < (N + 2)/(N − 2). A solution u(t) to (1) blows up in finite time if its maximal
existence time T is finite. In this case,

lim
t→T

‖u(t)‖H1(RN ) = lim
t→T

‖u(t)‖L∞(RN ) = +∞.

Let us consider such a solution. T is called the blow-up time of u. A point a ∈ R
N is

a blow-up point if u is not locally bounded near (a, T ). The blow-up set is the set of all
blow-up points and will be denoted by S.
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Recently, Giga, Matsui and Sasayama [12] extended to all subcritical p the blow-up
rate estimate once proved by Giga and Kohn [10] for a smaller range of p or under a
positivity condition. Thus, for all subcritical p, it holds that,

∀t ∈ [0, T ), ‖u(t)‖L∞ ≤ C(T − t)
− 1

p−1 .

Let us remark that with this new result, the previous work of Giga and Kohn [9], [10] and
[11], Velázquez (in particular [20] and [21]), and Merle and Zaag (in particular [16], [23]
and [24]) extend naturally to cover all the range of subcritical p.

Given a ∈ S, the study of the blow-up behavior of u(x, t) near (a, T ) is equivalent to
the study of the long-time behavior of Wa(y, s) defined by

Wa(y, s) = (T − t)
1

p−1 u(x, t), y =
x − a√
T − t

, s = − log(T − t). (2)

Using (1), we see that for all (y, s) ∈ R
N × [− log T,∞),

∂Wa

∂s
= ∆Wa −

1

2
y.∇Wa −

Wa

p − 1
+ |Wa|p−1Wa. (3)

Giga and Kohn proved in [9], [10] and [11] that

Wa(y, s) → ±κ ≡ (p − 1)−
1

p−1 as s → ∞,

in C(|y| < R) for any R > 0. In particular, (T−t)
1

p−1 u(a, t) → ±κ as t → T . From Filippas
and Kohn [7] and Herrero and Velázquez [13], we know that the speed of convergence is
either | log(T − t)|−1 (slow) or (T − t)µ (fast) for some µ > 0. The dynamical system
analysis of solutions of equation (3) in Fermanian, Merle and Zaag [5] easily shows that
the slow speed is the only stable, with respect to perturbations of the blow-up point a.

We address in this paper the regularity of the blow-up set S, an issue that has been
poorly studied in the literature. Indeed, most contributions focus on single point blow-up,
where S is (locally) one isolated point (Weissler [22], Bricmont and Kupiainen [2], Herrero
and Velázquez [13] and [20],...). The only pertinent result before [23] is due to Velázquez
who showed in [20] that the Hausdorff measure of S is less or equal to N − 1. In our
opinion, authors could not go further in the description of the blow-up set because of the
lack of uniform estimates of the solution near the blow-up time, with respect to (x, t) and
to initial data.

In [14] and [16], we proved with Merle the following Liouville Theorem (or rigidity
theorem) for entire solutions of (1):

Consider U a solution of (1) defined for all (x, t) ∈ R
N × (−∞, T ) such that for all

(x, t) ∈ R
N × (−∞, T ), |U(x, t)| ≤ C(T − t)−

1
p−1 . Then, either U ≡ 0 or U(x, t) =

±κ(T ∗ − t)−
1

p−1 for some T ∗ ≥ T .

This Liouville Theorem allowed us indeed to get uniform estimates in [14], [15], [16],
opening thus the door for a new approach in the study of blow-up for equation (1). As a
matter of fact, in the case of an isolated blow-up point, we proved with Fermanian and

2



Merle [6] and [5] the stability of the blow-up profile for equation (1) with respect to initial
data; in the case of a non isolated blow-up point, we obtained in [23] and [24] the first
regularity results for the blow-up set.

Our approach in [23] and [24] (see [25] for a review) is based on two ideas:
- the refinement of the asymptotic behavior of u near (a, T ) (or Wa as s → ∞) uniformly

with respect to the blow-up point a. The Liouville theorem is crucial in getting uniform
estimates.

- the fact that a more refined (uniform) blow-up behavior yields geometrical constraints
on the blow-up set S, resulting in more regularity for S.

In this paper, we follow these ideas, and do better! Indeed, we find here a new term
in the expansion of u near the blow-up set and exhibit a new mechanism of algebraic
cancellations which links the refined asymptotic behavior of the solution to the refined
regularity for its blow-up set. This mechanism is the heart of our argument and constitutes
the main novelty of this paper. As a consequence, we show that the blow-up set is C 2 and
that the refined asymptotic behavior of u is expressed in terms of the principal curvatures
and directions of its blow-up set.

Before stating our results, we would like to mention that the regularity of the blow-up
set is an issue that arises also for semilinear wave equations like

utt = ∆u + |u|p−1u. (4)

Due to the finite speed of propagation, a blow-up solution of this equation has a blow-up
time T (x) for each x ∈ R

N , and its blow-up set is the graph {t = T (x)}, a subset of
R

N × R. By definition, the blow-up set is 1− Lipschitz (see Alinhac [1]). In [4] and [3],
Caffarelli and Friedman showed under restrictions on the dimension, the power and initial
data the C1 regularity of the blow-up set. In [17], [19] and [18], we find with Merle the
blow-up rate near the blow-up set for (4) when 1 < p ≤ 1 + 4/(N − 1), which is the first
step towards the regularity of the blow-up set with no restrictions.

Let us now go back to the heat equation (1) and present our results. In [23], we showed
that if the blow-up set is continuous (in some precise sense), then it is a C 1 manifold. In
[24], we showed that if in addition, the blow-up set is of codimension 1, then it is C 1,α for
any α ∈ (0, 1

2 ).

In order to stress more the novelty of our present contribution, we assume that we

already know that locally near â, S is a C1 hypersurface, and that (T − t)
1

p−1 u(â, t) → κ
with the (slow) speed | log(T − t)|−1, which is a reasonable hypothesis since this speed
can be shown to be a stable behavior with the techniques of [5]. In [23] and [24], we have
shown then that for some t0 < T and δ > 0, for all K0 > 0 and t ∈ [t0, T ), we have:

For all x ∈ B(â, δ) such that dist(x, S) ≤ K0

√

(T − t)| log(T − t)|,
∣

∣

∣

∣

∣

(T − t)
1

p−1 u(x, t) − f1

(

dist(x, S)
√

(T − t)| log(T − t)|

)∣

∣

∣

∣

∣

≤ C ′
0(K0)

log | log(T − t)|
| log(T − t)| (5)
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where

f1(z) =

(

p − 1 +
(p − 1)2

4p
z2
1

)− 1
p−1

(6)

and

(T − t)
1

p−1
∣

∣u(x, t) − ũσ(PS(x)) (dist(x, S), t)
∣

∣ ≤ C(T − t)
1
2 | log(T − t)| 32+C0 (7)

where PS(x) is the projection of x over S, σ ∈ C(S ∩ B(â, δ), R),

ũσ(x1, t) = e
− σ

p−1 ũ(e−
σ
2 x1, T − e−σ(T − t)) (8)

and ũ(x1, t) is a positive symmetric one dimensional solution of (1) that has the same
profile f1, and which decays on (0,∞) and blows up at time T only at the origin. Note
that

in the self-similar variables (2), ũσ becomes w̃(., . + σ) (9)

where w̃(y1, s) is defined by

w̃(y1, s) = (T − t)
1

p−1 ũ(x1, t), y1 =
x1√
T − t

, s = − log(T − t) (10)

is a solution of (3).

In (7), the N -dimensional solution u(x, t) appears as a superposition of one dimensional
solutions of (1), ũσ, functions of the normal variable dist(x, S). Note that ũσ for any σ > 0
are all dilations of the same one dimensional solution of (1), ũ, and that they all blow up at
time T only at the origin. In other words, all the blow-up modalities in N dimensions are
already contained in the one dimensional case. Estimate (7) may appear less interesting
than (5) because the profile is explicit in (5), unlike (7). However, having a non explicit
profile in (7) is the price to pay in order to get a smaller error term, which yields better
regularity. In this paper, we are able to get to even smaller error terms and prove the C 2

regularity of the blow-up set. More precisely,

Theorem 1 (C2 regularity of the blow-up set) Assume N ≥ 2 and consider u a so-
lution of (1) that blows up at time T on a set S which is locally near some â, a C 1

hypersurface. Assume in addition that (T − t)
1

p−1 u(â, t) → κ as t → T with the (slow)
speed | log(T − t)|−1. Then, S is a C2 hypersurface, locally near â.

Remark: From the sign invariance of the equation, the same conclusion holds if (T −
t)

1
p−1 u(â, t) → −κ.

This regularity result follows from the refinement of the blow-up behavior of u(x, t) near
(a, T ) (or Wa(y, s) as s → ∞), uniformly with respect to the blow-up point a in a neighbor-
hood of â. More precisely, when a is a blow-up point, we link in the following proposition
the blow-up behavior of u near (a, T ) to the geometrical description of the blow-up set at
a (normal vector, tangent space, principal curvatures and directions):

Proposition 2 (Link between the refined uniform blow-up behavior of the so-
lution and the principal curvatures of its blow-up set) Under the hypotheses of
Theorem 1, there exist δ > 0 and s0 ≥ − log T such that for all a ∈ S ∩ B(â, δ):
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(i) For all s ≥ s0,

∥

∥

∥

∥

∥

∥

Wa(M(a)y, s) − w̃(y1, s + σ(a)) − κe−
s
2

4ps
y1

N
∑

j=2

lj(a)(y2
j − 2)

∥

∥

∥

∥

∥

∥

L2
ρ

≤ Ce−
s
2 s−1−ν

where ν ∈ (0, 1
2 ), Wa is defined in (2), w̃ is the one dimensional solution defined in (10),

σ(a) ∈ R is continuous, (lj(a))2≤j≤N and (M(a)ej)2≤j≤N are respectively the principal
curvatures and the unitary principal vectors of the blow-up set at a, and M(a)e1 is a
unitary normal vector. Note that lj(a) for all 2 ≤ j ≤ N and M(a)e1 are continuous in
terms of a. The convergence takes place in L2

ρ, the L2 space with respect to the weight

ρ(y) = e−|y|2/4/ (4π)N/2 (11)

as well as in W 2,∞(|y| < R) for any R > 0.

(ii) For all R0 > 0, t ∈ [T −s−s0, T ) and x ∈ B(â, δ
2 ) such that dist(x, S) < R0

√
T − t,

(T − t)
1

p−1

∣

∣

∣

∣

∣

u(x, t) −
{

ũσ(PS(x)) (d(x, S), t) − κd̃(x, S)

2p| log(T − t)|m(PS(x))

}∣

∣

∣

∣

∣

≤ C(R0)
(T − t)

1
2

| log(T − t)|1+ν

where PS(x) is the projection of x on S, σ : S → R is continuous, m : S → R is the mean
curvature and d̃(x, S) is the signed distance to the blow-up set.

(iii) It holds that for all j ≥ 2,

lj(a) = lim
t→T

p

4κ
| log(T − t)|−1(T − t)

1
p−1

− 1
2

×
∫

RN

u(x, t)(x − a).M(a)e1

(

((x − a).M(a)ej)
2 − 2

) e
− |x−a|2

4(T−t)

(4π)N/2
dx.

Remark: Note that in (i) of the previous proposition, the direction y1 is along the normal
vector M(a)e1, while the directions yj (along the principal vector M(a)ej) for j ≥ 2 lay in
the tangent space to the blow-up set at a. Unfortunately, we are unable to decide whether
the principal vectors M(a)ej for 2 ≤ j ≤ N are continuous or not.
Remark: Estimate (ii) in Proposition 2 improves (7) proved in [24]. It is better because
it has a smaller error term and a further term in the expansion involving a geometric
feature of the blow-up set, the mean curvature. However, the price to pay is to reduce
the convergence domain in space from dist(x, S) <

√

(T − t)| log(T − t)| to dist(x, S) <√
T − t.

Remark: Unlike what may be understood from (iii) of Proposition 2, it is not necessary
to know a principal direction in order to compute the corresponding principal curvature.
Indeed, if we just know a normal vector and any orthogonal basis of the tangent space, then
we can compute the second fundamental form in this basis, which gives by diagonalizing
the principal curvatures and directions at once. See Proposition 4.1.
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In Theorem 1, we derive C2 regularity assuming C1 regularity. Since we have derived
in [23] and [24] C1,α regularity assuming just continuity (in addition to a non-degeneracy
property), we actually have a stronger version of Theorem 1 which derives C 2 regularity
just assuming continuity. Stating this new version requires additional technical notation.

Let us consider a non isolated blow-up point â where for all K0 > 0,

sup
|z|≤K0

∣

∣

∣
(T − t)

1
p−1 u

(

â + Q(â)z
√

(T − t)| log(T − t)|, t
)

− f1(z)
∣

∣

∣
→ 0 as t → T (12)

where Q(â) is an orthonormal N × N matrix and f1 is defined in (6). We may take
Q(â) = Id. According to Theorem 2 in [20], for all ε > 0, there is δ(ε) > 0 such that

S ∩ B(â, δ) ⊂ Ωâ,π,ε ≡ {x | |Pπ(x − â)| ≥ (1 − ε)|x − â|} ,

where Pπ is the orthogonal projection over π, the subspace spanned by e2, ..., eN . Note
that Ωâ,π,ε is a cone with vertex â that shrinks to â + π as ε → 0. In fact, â + π is the
candidate for the tangent plane to S at â. We assume there is a ∈ C((−1, 1)N−1, RN )
such that a(0) = â and Im a ⊂ S where Ima is at least (N − 1)-dimensional in the sense
that

∀b ∈ Im a, there are (N − 1) independent vectors v1, ..., vN−1 in R
N and

a1, .., aN−1 functions in C1([0, 1], Im a) such that ai(0) = b and a′i(0) = vi.
(13)

This hypothesis means that b is actually non isolated in (N − 1) independent directions.
We also assume that â is not an endpoint in Im a in the sense that

∀ε > 0, the projection of a((−ε, ε)N−1) on the plane â + π
contains an open ball with center â.

(14)

We claim the following:

Theorem 3 (C2 regularity of the blow-up set) Assume that (T − t)
1

p−1 u(â, t) → κ
with the speed | log(T − t)|−1. Consider a ∈ C((−1, 1)N−1, RN ) such that â = a(0) ∈
Im a ⊂ S and Im a is at least (N − 1)-dimensional in the sense (13). If â is not an
endpoint (in the sense (14)), then, the blow-up set is a C 2 hypersurface, locally near â.
The conclusion of Proposition 2 holds in this case too.

Remark: If (T − t)
1

p−1 u(â, t) → −κ, then the same conclusion holds with a sign change.

Our paper is organized in 3 sections:
- In Section 2, after introducing suitable local charts for the blow-up set and making a
dynamical system formulation for equation (3), we explain a mechanism of a geometric
constraint which links the blow-up behavior of the solution to the regularity of its blow-up
set.
- In Section 3, we use this mechanism to get algebraic cancellations and find the refined
blow-up behavior of the solution.
- In Section 4, we use again the geometric constraint mechanism and this refined behavior
to derive the C2 regularity of the blow-up set (Theorem 1). We then conclude the proof of
Proposition 2. Finally, we briefly show how Theorem 3 follows from Theorem 1 and [23].

Throughout the paper, we work under the hypotheses of Theorem 1, which are also
the hypotheses of Proposition 2. At the very end of the paper, we assume the weaker
hypotheses stated in Theorem 3 and prove it using Theorem 1 and [23].
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2 Setting of the problem and strategy of the proof

We find in this section a sharp estimate of the blow-up behavior, uniformly with respect
to the blow-up set. To this end, we introduce a crucial geometric constraint mechanism
on the blow-up set, which constitutes the heart of our argument and the main novelty of
the paper.

2.1 Local C1,α charts of the blow-up set

Under the hypotheses of Theorem 1, we know from Velázquez [21] and [20] (see also
Filippas and Liu [8] and Filippas and Kohn [7]) that the local behavior of u near the
blow-up point â is given by (12). Therefore, we can apply Proposition 3 of [24] and derive
the existence of δ > 0 such that Sδ ≡ S∩B(â, 2δ) is a C1,α manifold for any α ∈ (0, 1

2). In
the following, we fix such an α. For convenience, we will use a local chart at every point
a ∈ Sδ in the form of a graph {(ϕa(ξ2, .., ξN ), ξ2, .., ξN )} of a C1,α([−ηa, ηa]

N−1) function
ϕa in a (direct) orthonormal basis (a, n(a), τ2(a), ..., τN (a)) for some ηa > 0 where n(a)
and τi(a) are of norm 1 and respectively normal and tangent to Sδ. It is possible to take
n(a) and τi(a) of class Cα in terms of a. By construction, we have for all i ≥ 2,

ϕa(0) =
∂ϕa

∂ξi
(0) = 0. (15)

In other words, Sδ is locally near a given by the set

{a + ϕa(ξ)n(a) +

N
∑

i=2

ξiτi(a) | |ξ| ≤ ηa} where ξ = (ξ2, ..., ξN ). (16)

Theorem 1 will be proved if we prove that for all a ∈ Sδ, ϕa is C2 at ξ = 0 and if we

compute
∂2ϕa

∂ξi∂ξj
(0) for all i, j ≥ 2. In dimension 2, there is only one number to compute,

ϕ′′
a(0), which is precisely the curvature.

Let Q(a) be the (direct) orthonormal matrix whose columns are n(a) and τi(a), i ≥ 2.
Hence,

n(a) = Q(a)e1 and τi(a) = Q(a)ei and Q(a) is of class Cα. (17)

If wa is defined by

wa(y, s) = (T − t)
1

p−1 u(x, t), y = Q(a)T

(

x − a√
T − t

)

, s = − log(T − t), (18)

then we see from (2) that wa(y, s) = Wa(Q(a)y, s) and that wa is also a solution of (3)
for all (y, s) ∈ R

N × [− log T,∞). We have proved in [24] (Proposition 2.1) the following
stronger version of (7) in self-similar variables1: for all a ∈ Sδ and s ≥ − log T ,

‖wa(y, s) − w̃(y1, s + σ(a))‖L2
ρ
≤ Ce−

s
2 sC0 , (19)

1In [23] and [24], y was equal to x−a√
T−t

in the definition analogous to (18). Therefore, estimates (19)

and (20) come with wa(Q(a)y, s) instead of wa(y, s) in the cited papers.
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where w̃ is defined in (10) and σ : Sδ → R is a continuous function. Note that any other
value of σ 6= σ(a) in (19) gives an error of order s−2 (see [24]), which is bad. The choice of
σ(a) gives the smallest error. It was made possible in [24] by means of modulation theory.

Recall that we already know from [23] (in particular in Proposition 3.1) that wa(y, s)

and w̃(y1, s) have the same profile f1

(

y1√
s

)

(6). In particular 2,

sup
a∈Sδ , s≥− log T

∥

∥

∥

∥

wa(y, s) −
{

κ +
κ

2ps

(

1 − y2
1

2

)}∥

∥

∥

∥

W2,∞(|y|<2)

≤ C
log s

s2
, (20)

sup
s≥− log T

∥

∥

∥

∥

w̃(y1, s) −
{

κ +
κ

2ps

(

1 − y2
1

2

)}∥

∥

∥

∥

W2,∞(|y1|<2)

≤ C
log s

s2
(21)

(the convergence takes place in L2
ρ in [23] and the W 2,∞

loc estimate follows by parabolic
regularity).

2.2 A dynamical system formulation

We need to refine estimate (19) on wa(y, s) − w̃(y1, s + σ(a)), the difference between two
solutions of equation (3) which have the same profile f1 (6).

The formulation is the same as we did with Fermanian in [6] for the difference of two
solutions with the radial profile

fN (z) =

(

p − 1 +
(p − 1)2

4p
|z|2
)− 1

p−1

. (22)

Therefore, we follow in extent the strategy of [6] and emphasize the novelties. However,
some technical details -most of them are straightforward and long- are omitted. The reader
can find them in [6]. Consider an arbitrary a ∈ Sδ. If we define

ga(y, s) = wa(y, s) − w̃(y1, s + σ(a)), (23)

then we see from (3) that for all (y, s) ∈ R
N×[− log T +σ0,∞) where σ0 = max

a∈B(â,δ)∩S
|σ(a)|,

∂sga(y, s) = (L + αa) ga, (24)

where L = ∆ − 1

2
y.∇ + 1 and

αa(y, s) =
| wa |p−1 wa(y, s) − w̃p(y1, s + σ(a))

wa − w̃
− p

p − 1
(25)

if wa(y, s) 6= w̃(y1, s + σ), and in general,

αa(y, s) = p | w̄a(y, s) |p−1 − p

p − 1
(26)

for some w̄a(y, s) ∈
(

wa(y, s), w̃(y1, s + σ(a))
)

.

2See previous footnote.
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According to (19) which was proved in [24] and (23), ga → 0 in L2
ρ as s → ∞. More

precisely, for all s ≥ − log T + σ0,

‖ga(s)‖L2
ρ
≤ Ce−

s
2 sC0 . (27)

In this paper, we refine this estimate and find an equivalent of ga in L2
ρ. In order to do

so, we need first to understand the dynamics of equation (24) satisfied by ga. In practice,
we need to know more about L and αa.

- The operator L: Operator L is self-adjoint on D(L) ⊂ L2
ρ(R

N ) where ρ is defined in
(11). The spectrum of L consists of eigenvalues

specL = {1 − m

2
, m ∈ N}.

Note that except two positive eigenvalues (1 and 1
2) and a null eigenvalue, all the spectrum

is negative. The eigenfunctions of L are

hβ(y) = hβ1(y1)...hβN
(yN ), (28)

where β = (β1, ..., βN ) ∈ N
N and for each m ∈ N, hm is the rescaled Hermite polynomial

hm(ξ) =

[m/2]
∑

j=0

m!

j!(m − 2j)!
(−1)jξm−2j . We note km =

hm

‖hm‖2
L2

ρ1
(R)

, (29)

where L2
ρ1

(R) is the L2 space with the measure

ρ1(ζ) =
e−

ζ2

4

√
4π

that satisfies ρ(y) =
N
∏

i=1

ρ1(yi). (30)

The polynomials hm and hβ satisfy the following

Lhβ = (1 − |β|
2 )hβ ,

∫

R

hm(ζ)hj(ζ)ρ1(ζ)dζ = 2mm!δm,j ,

h′
m(ζ) = mhm−1(ζ),

∂hβ

∂yi
(y) = βihβ−ei

(y) = βihβi−1(yi)

j=N
∏

j=1, j 6=i

hβj
(yj)

(31)

where ei is the i-th vector of the canonical basis of R
N and with the convention that

hm ≡ 0 if m ≤ −1.

- The function αa: We claim the following:

Lemma 2.1 (Estimates on α) For all a ∈ Sδ, y ∈ R
N and s ≥ − log T + σ0,

αa(y, s) ≤ C

s
, |αa(y, s)| ≤ C

s
(1 + |y|2)and |αa(y, s) +

1

4s
h2(y1)| ≤

C

s3/2
(1 + |y|3). (32)
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Proof: See Lemmas 2.5 in [24] and [6].

From the first estimate, we see that αa doesn’t shift much the spectrum of the linear
operator in the positive direction. Therefore, it is convenient to project equation (24) on
the eigenfunctions of L in order to understand its dynamics.

- Decomposition of ga with respect to the spectrum of L: Since the family {hβ(y) |β ∈ N}
spans all the space L2

ρ(R
N ), let us introduce the orthogonal projection of ga(., s) on hβ :

ga,β(s) =

∫

RN

kβ(y)ga(y, s)ρ(y)dy where kβ(y) =|| hβ ||−2
L2

ρ
hβ(y). (33)

If Pn is the orthogonal projector of L2
ρ over the eigenspace of L corresponding to 1 − n

2
and Rkga the sum of all Pnga for n ≥ k, then



































Pnga(y, s) =
∑

|β|=n

ga,β(s)hβ(y),

ga(y, s) =
∑

n∈N

Pnga =
∑

β∈NN

ga,β(s)hβ(y) =
∑

|β|≤k

ga,β(s)hβ(y) + Rk+1ga(y, s)

‖ga(s)‖2
L2

ρ
≡ Ia(s)

2 =
∑

n∈N

la,n(s)2 =
∑

n≤k

la,n(s)2 + ra,k+1(s)
2.

(34)

where la,n(s) ≡ ‖Pnga‖L2
ρ

and ra,k(s) ≡ ‖Rkga‖L2
ρ
. In the following, we project equation

(24) on the different modes:

Lemma 2.2 (Projection of (24) on the different modes) There exist s1 ≥ − log T
and s∗ > 0 such that for all a ∈ Sδ, s ≥ s1, n ∈ N and β ∈ N

N , we have the following:
(i) |l′a,n + (n

2 − 1)la,n| ≤ C(n) Ia(s)
s ,

(ii) I ′a(s) ≤
(

1 − n+1
2 + C0

s

)

Ia(s) +
n
∑

k=0

1

2
(n + 1 − k)la,k(s).

(iii)
∣

∣

∣
g′a,β(s) +

(

−1 + |β|
2 + β1

s

)

ga,β(s)
∣

∣

∣
≤ C(β) Ia(s)

s .

(iv)
∣

∣

∣g′a,β(s) +
(

−1 + |β|
2 + β1

s

)

ga,β(s)
∣

∣

∣ ≤ C(β)
(

la,|β|−2(s)+la,|β|+2(s)

s + Ia(s)

s
3
2

)

.

(v) r′a,n ≤ (1 − n
2 )ra,n + C

s Ia(s − s∗).

Proof: The calculations are based on (24) and the definition of αa (25). They are straight-
forward. For (i) and (ii), see the proof of Lemma 2.7 in [6], where the same equation is
treated (with a function α derived from the radial profile (22) instead of f1 (6)). Note
that (iii) follows immediately from (iv). For (iv), see Appendix V.1 in [24] for a similar
calculation. Thus, we only prove (v) in Appendix A.

2.3 Strategy of the proof: a geometric constraint linked to the asymp-
totic behavior

Using the equations of Lemma 2.2, we will refine in the space L2
ρ the estimate (27) on ga

and get to the first significant term as s → ∞, uniformly in a ∈ Sδ. This term depends
continuously on a ∈ Sδ. Using parabolic regularity and the definition (23) of ga, this
yields an expansion for wa in W 2,∞(|y| < 2), uniformly in a ∈ Sδ. Using the definition

10



(18) of wa, we see that in the u(x, t) formulation, the domain of validity of this expansion
is B(a, 2

√
T − t), for each a ∈ Sδ. These domains overlap, leading to as many expansions

for the same thing, namely u and its derivatives at a given point (x, t), as there are points
in Sδ ∩B(x, 2

√
T − t). Of course, the leading terms of these expansions must be the same.

This is how a geometric constraint (here, the overlapping and later, the regularity) is
related to algebraic relations in the coefficients of the asymptotic behavior of wa.

To illustrate this mechanism, we fix some a ∈ Sδ, |y| < 2 and s ≥ − log T . In the
u(x, t) formulation, the point (y, s) from the domain of wa (18) becomes the point (x, t)
where

x = a + e−
s
2 Q(a)y = a + e−

s
2



y1n(a) +

N
∑

j=2

yjτj(a)



 , (35)

t = T − e−s and wa(y, s) = (T − t)
1

p−1 u(x, t)

(see (17) and (18)). Now, take an arbitrary b ∈ Sδ and use again (18) (but in the other
way) to write

u(x, t) = (T − t)
− 1

p−1 wb(Y, s) where Y = Q(b)T

(

x − b√
T − t

)

.

Therefore, we have

wa(y, s) = wb(Y, s) where Y = Q(b)T
(

Q(a)y + e
s
2 (a − b)

)

. (36)

Since n(a) and τi(a) for i ≥ 2 are the column vectors of Q(a) (see (17)), we can differentiate
(36) with respect to yi, i ≥ 2, and write two formulations for the tangential derivative of
u with respect to τi(a) at the point (x, t) defined in (35):

(T − t)
1

p−1
+ 1

2
∂u

∂τi(a)
(x, t) =

∂wa

∂yi
(y, s) = τi(a).n(b)

∂wb

∂y1
(Y, s) +

N
∑

k=2

τi(a).τk(b)
∂wb

∂yk
(Y, s).

(37)
Now, if we use the equations of Lemma 2.2 to refine the smallness condition (27) on ga and

use parabolic regularity, we obtain an expansion on
∂wa

∂yk
and

∂wb

∂yk
as s → ∞, uniform for

all points in Sδ. Thus, we will obtain two expansions for the same object (the tangential
derivative of u) expressed in (37). These expansions have naturally to agree (up to error
terms), leading to constraints on their coefficients and then to more regularity for the
blow-up set.

Given a ∈ Sδ, |y| < 2 and s ≥ − log T , b is still free in Sδ for the moment. However,
there is one choice that makes the comparison of the two expansions particularly simple:
we fix b as the (non orthogonal!) projection on the blow-up set of x = a + e−

s
2 Q(a)y

defined in (35), in the orthogonal direction to the tangent space to the blow-up set at a.

11



b

a
â

S : the blow−up set

the tangent space at a
x=a+exp(−s/2 )Q(a)y

Thus, in the local chart (16), b has the same components on the tangent space spanned
by {τj(a), j ≥ 2} as x and has the following particularly simple expression:

b = b(a, y, s) = a + ϕa(e
− s

2 ỹ)n(a) + e−
s
2

N
∑

j=2

yjτi(a) where ỹ = (y2, ..., yN ). (38)

We claim the following:

Proposition 2.3 (A geometric constraint on the expansion of wa)
There exists s2 ≥ − log T such that for all a ∈ Sδ, |y| ≤ 1, s ≥ s2 and i = 2, ..., N , it holds
that

∣

∣

∣

∣

∂wa

∂yi
(y, s) −

{

∂wb

∂yi
(y1, 0, ..., 0, s) +

∂ϕa

∂ξi
(e−

s
2 ỹ)y1

κ

2ps

}∣

∣

∣

∣

(39)

≤ C

∣

∣

∣

∣

∂ϕa

∂ξi
(e−

s
2 ỹ)

∣

∣

∣

∣

[

|y1|
log s

s2
+

e−
α
2

s

s

]

+ Ce−
1+α

2
ssC0 ,

where b and ỹ are defined in (38).

Proof: We transform here some terms appearing in (37) in order to get (39).

(a) Term τi(a).n(b). Since ϕa is C1,α and ϕa(0) = ∇ϕa(0) = 0, we have for all |ξ| < ηa,

|ϕ(ξ)| ≤ C|ξ|1+α and |∇ϕ(ξ)| ≤ C|ξ|α. (40)

Using the local coordinates (38) and (40), we have

n(b) =



n(a) −
N
∑

j=2

∂ϕa

∂ξj
(e−

s
2 ỹ)τj(a)



 /

√

1 + |∇ϕa|(e−
s
2 ỹ)2 (41)

and

∣

∣

∣

∣

τi(a).n(b) +
∂ϕa

∂ξi
(e−

s
2 ỹ)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∂ϕa

∂ξi
(e−

s
2 ỹ)

∣

∣

∣

∣

e−αs

where ỹ is defined in (38).

(b) Term τi(a).τk(b). Using (38) and (40), we see that |a− b| ≤ |ϕa(ỹe−
s
2 )|+ |e− s

2 ỹ| ≤
Ce−

s
2 . Since n(a) and τj(a) are Cα, it holds then that |n(a) − n(b)| + |τj(a) − τj(b)| ≤

C|a − b|α ≤ Ce−
α
2

s. Therefore,

|n(a).n(b) − 1| ≤ Ce−
α
2

s, |n(a).τj(b)| ≤ Ce−
α
2

s,

|τi(a).τj(b) − δi,j| ≤ Ce−
α
2

s, |τj(a).n(b)| ≤ Ce−
α
2

s.
(42)
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(c) The point Y (a, y, s). Using the expressions (17), (36) and (38) of τi(a), Y and b,

we write Yj = Y.ej =
(

y1 − e
s
2 ϕa(e

− s
2 ỹ)
)

n(a).Q(b)ej . Using (17), (40) and (42), we get

|Y1 − y1| ≤ Ce−
α
2

s and ∀j ≥ 2, |Yj| ≤ Ce−
α
2

s. (43)

(d) Term
∂wb

∂y1
(Y, s). Using parabolic regularity, we get by differentiation from (27)

and (23) the following estimate:

∣

∣

∣

∣

∂wb

∂y1
(Y, s) − ∂w̃

∂y1
(Y1, s + σ(b))

∣

∣

∣

∣

+

N
∑

k=2

∣

∣

∣

∣

∂wb

∂yk
(Y, s)

∣

∣

∣

∣

+ sup
|z|<2,(i,j)6=(1,1)

∣

∣

∣

∣

∂2wb

∂yi∂yj
(z, s)

∣

∣

∣

∣

(44)

≤Ce−
s
2 sC0 .

From (21), we have

∣

∣

∣

∣

∂2w̃

∂y2
1

(z, s′) +
κ

2ps′

∣

∣

∣

∣

≤ C
log s′

s′2
, for all s′ ≥ − log T and |z| < 2. Since

∂w̃

∂y1
(0, s′) ≡ 0 (ũ and w̃ are symmetric), we interpolate to get

∣

∣

∣

∣

∂w̃

∂y1
(Y1, s + σ(b)) + Y1

κ

2ps

∣

∣

∣

∣

≤ C|Y1|
log s

s2
. (45)

Using (44), (45) and (43), we get

∣

∣

∣

∣

∂wb

∂y1
(Y, s) + y1

κ

2ps

∣

∣

∣

∣

≤ C|y1|
log s

s2
+ C

e−
α
2

s

s
. (46)

(e) Term
∂wb

∂yi
(Y, s) where i ≥ 2. Using (43) and the estimate of the second derivative

in (44), we get
∣

∣

∣

∣

∂wb

∂yi
(Y, s) − ∂wb

∂yi
(y1, 0, ..., 0, s)

∣

∣

∣

∣

≤ Ce−
(1+α)

2
ssC0 . (47)

We have just found expansions for all the terms involved in (37): (41) for τi(a).n(b), (46)

for
∂wb

∂y1
(Y, s), (42) for τi(a).τk(a), (44) for

∂wb

∂yk
(Y, s) when k 6= i and (47) for

∂wb

∂yk
(Y, s)

when k = i. Using this with (37) yields (39) and concludes the proof of Proposition 2.3.

3 Refined blow-up behavior

In this section, we use the equations of Lemma 2.2 and the mechanism of geometric
constraint in order to refine estimate (27) and find an equivalent of ga in L2

ρ, continuous in
terms of the blow-up point a. The continuous matrix of the coefficients of that equivalent
will be shown to be equal (up to some constant factors) to the second fundamental form
of the blow-up set, which gives the C2 regularity (section 4). In the following proposition,
we find an equivalent for ga:
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Proposition 3.1 (Term of order e−
s
2

s in the expansion of w) There exist µ ∈ (0, 1
2)

and continuous functions a → λβ(a) for all β ∈ N
N with |β| = 3 and β1 = 1 such that for

all a ∈ Sδ and s ≥ s1,
∥

∥

∥

∥

∥

∥

ga(y, s) − e−
s
2

s

∑

|β|=3, β1=1

λβ(a)hβ(y)

∥

∥

∥

∥

∥

∥

L2
ρ

≤ Ce−
s
2 s−1−µ

where s1 is defined in Lemma 2.2.

This section is devoted to the proof of this proposition. In regard of estimate (27) and the
decomposition (34), the modes of the eigenvalue − 1

2 , namely ga,β for |β| = 3 are resonant.
We will call high frequencies the modes ga,β for |β| ≤ 2 and low frequencies the modes
ga,β for |β| ≥ 4, or simply R4ga.

Plugging the rough estimate (27) into the equations on the different modes in Proposi-
tion 2.2, we will find a first expansion (terms of order e−

s
2 ). Using the geometric constraint

mechanism of Proposition 2.3, we show that all terms of order e−
s
2 are zero. We then re-

iterate the process and use again Proposition 2.2 in order to get the terms of order
e−

s
2

s
and conclude the proof of Proposition 3.1.

3.1 Vanishing of the term of order e−
s
2

Let us recall from (27) and (34) that for all s ∈ Sδ and s ≥ − log T + σ0,

Ia(s) = ‖ga(s)‖L2
ρ
≤ Ce−

s
2 sC0 . (48)

In this step, we use the equations of Lemma 2.2 to refine estimate (48) and catch the
term of order e−

s
2 in the expansion of wa. Using the geometric constraint technique of

Proposition 2.3, we derive better regularity for the blow-up set from this sharper estimate.

Let us first catch the the term of order e−
s
2 in the following:

Lemma 3.2 (Term of order e−
s
2 in the expansion of w) There exist ν ∈ (0, 1

2) and
continuous functions a → λβ(a) for all β ∈ N

N with |β| = 3 and β1 = 0 such that for all
a ∈ Sδ and s ≥ s1,

∥

∥

∥

∥

∥

∥

ga(y, s) − e−
s
2

∑

|β|=3, β1=0

λβ(a)hβ(y)

∥

∥

∥

∥

∥

∥

L2
ρ

≤ Ce−
s
2 s−ν

where s1 is introduced in Lemma 2.2.

Remark: Note that in 2 dimensions, β = (0, 3) is the only admissible β in the sum above.
Proof: Using (48), we claim the following:

If C0 >
1

2
, then ∀s ≥ s1, Ia(s) ≤ Ce−

s
2 sC0− 1

2 , (49)

∃γ ∈ (0,
1

2
) such that ∀s ≥ s1, Ia(s) ≤ Ce−

s
2 sγ . (50)
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It is clear that (50) follows from (48) and (49) by a finite induction. Hence, we focus on
the proof of (49). Recalling from (34) that

‖ga(s)‖2
L2

ρ
= Ia(s)

2 =
∑

n≤2

la,n(s)2 +
∑

|β|=3

ga,β(s)2‖hβ(y)‖2
L2

ρ
+ ra,4(s)

2, (51)

we claim the following:

Lemma 3.3 (Smallness of high and low frequencies and equation on resonant
frequencies) Assume that for some d ∈ R,

∀s ≥ s1, ‖ga(y, s)‖L2
ρ
≤ Ce−

s
2 sd. (52)

Then, ∀s ≥ s1, sup
n≤2

|la,n(s)| + ra,4(s) ≤ Ce−
s
2 sd−1 (53)

and ∀|β| = 3,

∣

∣

∣

∣

d

ds

(

ga,β(s)e
s
2 sβ1

)

∣

∣

∣

∣

≤ Csβ1+d− 3
2 . (54)

Proof: Using (52) and Lemma 2.2, we write for all s ≥ s1,

∀n ≤ 2,

∣

∣

∣

∣

d

ds

(

la,ne( n
2
−1)s

)

∣

∣

∣

∣

≤ Ce( n
2
− 3

2
)ssd−1, and

d

ds
(ra,4e

s) ≤ Ce
s
2 sd−1.

Integrating the first equation between s and ∞ and the second between s1 and s yields
(53). Using (53) (remember that la,5 ≤ ra,4), (52) and (iv) in Lemma 2.2 yields (54).

Using Lemma 3.3, we see that the conclusion of (49) follows from (51), (53) and the
integration of (54) between s1 and s. Thus, (49) and then (50) hold.

Using (50) and Lemma 3.3, we see from (54) that for any |β| = 3 with β1 = 0, there
exists a continuous function a → λβ(a) such that

|ga,β(s) − λβ(a)e−
s
2 | ≤ Ce−

s
2 sγ− 1

2 . (55)

If |β| = 3 and β1 ≥ 1, then we integrate (54) between s and ∞ to get

|ga,β(s)| ≤ Ce−
s
2 sγ− 1

2 . (56)

Since (53) holds too (with d = γ), the conclusion of Lemma 3.2 follows from (53), (55)
and (56) by the decomposition (34).

Now, we are in a position to gain more regularity on ϕa, the local chart defined in (16).

Lemma 3.4 (Almost C1,1 regularity for Sδ) There exists ξ0 > 0 such that for each
a ∈ Sδ, the local chart defined in (16) satisfies for all i ≥ 2 and |ξ| < ξ0,

∣

∣

∣

∣

∂ϕa

∂ξi
(ξ)

∣

∣

∣

∣

≤ C|ξ|| log |ξ||.
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Proof: Using Lemma 3.2 and parabolic regularity (remember that ∂w̃
∂yi

≡ 0 for i ≥ 2 and
from (23) that ga = wa − w̃), we see that for all i ≥ 2 and s ≥ s1 + 1

sup
a∈Sδ , |y|<2

∣

∣

∣

∣

∂wa

∂yi
(y, s)

∣

∣

∣

∣

≤ Ce−
s
2 .

Consider a ∈ Sδ, i ≥ 2, y = (1, ỹ) where ỹ is arbitrary in ∂BN−1(0, 1) and s ≥ max(s1 +
1, s2), and consider b = b(a, y, s) defined in (38). Using Proposition 2.3, we write

∣

∣

∣

∣

∂ϕa

∂ξi
(e−

s
2 ỹ)

κ

2ps

∣

∣

∣

∣

≤ C

∣

∣

∣

∣

∂ϕa

∂ξi
(e−

s
2 ỹ)

∣

∣

∣

∣

log s

s2
+ Ce−

1+α
2

ssC0 + Ce−
s
2 ,

therefore,

∣

∣

∣

∣

∂ϕa

∂ξi
(e−

s
2 ỹ)

∣

∣

∣

∣

≤ Cse−
s
2 . If ξ = e−

s
2 ỹ, then |ξ| = e−

s
2 and | log |ξ|| = | s2 − log |ỹ||,

hence
∣

∣

∣

∣

∂ϕa

∂ξi
(ξ)

∣

∣

∣

∣

≤ C|ξ|| log |ξ||, (57)

Since ỹ = (y2, ..., yN ) is arbitrary in ∂BN−1(0, 1), ξ = e−
s
2 ỹ covers a whole neighborhood

of 0, B(0, ξ0) where ξ0 = e−
1
2

max(s2,s1+1) and (57) concludes the proof of Lemma 3.4.

This refined regularity for ϕa implies a constraint on the asymptotic behavior of
wa(y, s): all the coefficients λβ(a) with |β| = 3 and β1 = 0 in Lemma 3.2 have to be
identically zero. More precisely:

Proposition 3.5 (Vanishing of the term of order e−
s
2 ) There exists ν ∈ (0, 1

2) such

that for all a ∈ Sδ and s ≥ s1, ‖ga(y, s)‖L2
ρ
≤ Ce−

s
2 s−ν.

Proof: Consider a ∈ Sδ. From Lemma 3.2, it is enough to prove that λβ(a) = 0 for all
|β| = 3 with β1 = 0. Using Lemma 3.2 and parabolic regularity, we see that for all i ≥ 2
and s ≥ s1 + 1,

sup
a∈Sδ , |y|<2

∣

∣

∣

∣

∣

∣

∂wa

∂yi
(y, s) − e−

s
2

∑

|β|=3,β1=0

λβ(a)
∂hβ

∂yi
(y)

∣

∣

∣

∣

∣

∣

≤ Ce−
s
2 s−ν . (58)

Take y = (0, ỹ) where ỹ is arbitrary in BN−1(0, 1). We would like to apply Proposition
2.3 for this choice of y (note that y1 = 0) and make s → ∞ in order to get algebraic

cancellations and conclude. Using (58) for
∂wa

∂yi
and

∂wb

∂yi
, (31) for

∂hβ

∂yi
(y), (40) and Lemma

3.4 for
∂ϕa

∂ξi
, and the fact that y1 = 0 (note also from (29) that hβ1(y1) = h0(0) = 1), we

see that Proposition 2.3 yields
∣

∣

∣

∣

∣

∣

e−
s
2

∑

|β|=3, β1=0

λβ(a)βihβi−1(yi)

N
∏

j=2, j 6=i

hβj
(yj)

− e−
s
2

∑

|β|=3, β1=0

λβ(b)βihβi−1(0)
N
∏

j=2, j 6=i

hβj
(0)

∣

∣

∣

∣

∣

∣

≤ Ce−
s
2 s−ν
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for all s ≥ max(s1 + 1, s2). Since b → a as s → ∞ (see (38)) and a → λβ(a) is continuous
(see Lemma 3.2), we get at the limit as s → ∞: for all ỹ ∈ BN−1(0, 1),

∑

|β|=3, β1=0

λβ(a)βihβi−1(yi)

N
∏

j=2, j 6=i

hβj
(yj) =

∑

|β|=3, β1=0

λβ(a)βihβi−1(0)

N
∏

j=2, j 6=i

hβj
(0)

By orthogonality of the polynomials hk, this yields for all i ≥ 2 and |β| = 3 with β1 = 0,
βiλβ(a) = 0. Now, take any β with |β| = 3 and β1 = 0. Since there exists i ≥ 2 such that
βi ≥ 1, this implies that λβ(a) = 0. Thus, Lemma 3.2 yields the conclusion of Proposition
3.5.

3.2 Term of order e−
s
2

s

Now, we are ready to catch the term of order e−
s
2

s in the expansion of ga. In fact, in this
subsection, we prove Proposition 3.1.

Proof of Proposition 3.1:
Using Proposition 3.5 and Lemma 3.3, we see that for all s ≥ s1,

sup
n≤2

|la,n(s)| + ra,4(s) ≤ Ce−
s
2 s−ν−1 (59)

and ∀|β| = 3,

∣

∣

∣

∣

d

ds

(

ga,β(s)e
s
2 sm

)

∣

∣

∣

∣

≤ Csβ1−ν− 3
2 (60)

where ν ∈ (0, 1
2). When |β| = 3, we integrate (60) between s and ∞ if β1 = 0 and between

s1 and s if β1 ≥ 2 to get

|ga,β(s)| ≤ Ce−
s
2 s−ν− 1

2 . (61)

If |β| = 3 and β1 = 1, (60) implies the existence of a continuous function a → λβ(a) such
that

|ga,β(s) − λβ(a)
e−

s
2

s
| ≤ Ce−

s
2 s−ν− 1

2 . (62)

Using the decomposition (34), we see that (59), (61) and (62) yield Proposition 3.1.

4 C2 regularity linked to the refined uniform blow-up be-

havior

In this section, we use the refined asymptotic behavior of Proposition 3.1 and the geometric
constraint of Proposition 2.3 to conclude the proofs of Theorem 1 and Proposition 2. We
will also show how to get Theorem 3 from Theorem 1 and [23].

Proof of Theorem 1:
Using Proposition 3.1, parabolic regularity and (31), we see that for all i ≥ 2 and s ≥ s1+1,

sup
a∈Sδ , |y|<2

∣

∣

∣

∣

∣

∣

∂wa

∂yi
(y, s) − e−

s
2

s

∑

|β|=3, β1=1

λβ(a)h1(y1)βihβi−1(yi)

N
∏

j=2, j 6=i

hβj
(yj)

∣

∣

∣

∣

∣

∣

≤Ce−
s
2 s−1−ν .
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Since hk(0) = 0 when k is odd, it is easy to see from (29) that for all ω = ±1, j ≥ 2 and
s ≥ s1 + 1,

∣

∣

∣

∣

∂wa

∂yi
(e1 + ωej, s) − ω

e−
s
2

s
(1 + δi,j)λe1+ei+ej

(a)

∣

∣

∣

∣

∣

≤ Ce−
s
2 s−1−ν ,

∣

∣

∣

∣

∂wa

∂yi
(e1, s)

∣

∣

∣

∣

≤ Ce−
s
2 s−1−ν

where ek is the k-th vector of the canonical base of R
N . Using the geometric constraint

of Proposition 2.3, we write then for y = e1 + ωej (note that y1 = 1 and yk = ωδk,j for
k ≥ 2) and s ≥ max(s1 + 1, s2),

∣

∣

∣

∣

∣

ω
e−

s
2

s
(1 + δi,j)λe1+ei+ej

(a) − ∂ϕa

∂ξi
(ωe−

s
2 ej)

κ

2ps

∣

∣

∣

∣

∣

≤ C

∣

∣

∣

∣

∂ϕa

∂ξi
(ωe−

s
2 ej)

∣

∣

∣

∣

log s

s2
+ Ce−

s
2 s−1−ν .

Therefore, since
∂ϕa

∂ξi
(0) = 0 (see (15)), we have for all j ≥ 2 and ω = ±1:

∂2ϕa

∂ξi∂ξj
(0) = lim

s→∞

∂ϕa

∂ξi
(ωe−

s
2 ej)

ωe−
s
2

=
2p

κ
(1 + δi,j)λe1+ei+ej

(a).

Since ϕa(0) = 0 and ∇ϕa(0) = 0, we have just computed the second fundamental form
(Λi,j(a))2≤i,j≤N of the blow-up set at the point a in the basis (Q(a)e2, ..., Q(a)eN ) of the
tangent space: for all 2 ≤ i, j ≤ N ,

Λi,j(a) =
∂2ϕa

∂ξi∂ξj
(0) =

2p

κ
(1 + δi,j)λe1+ei+ej

(a). (63)

Note that Λi,j(a) is symmetric. Since a → λβ(a) is continuous, this implies that the
blow-up set is of class C2. This concludes the proof of Theorem 1.

As a matter of fact, we have proved more than stated in Theorem 1. We claim the
following:

Proposition 4.1 (Link between the refined uniform blow-up behavior of the
solution and the second fundamental form of its blow-up set) For all a ∈ Sδ:

(i) For all s ≥ s1,

∥

∥

∥

∥

∥

∥

Wa(Q(a)y, s) − w̃(y1, s + σ(a)) − κe−
s
2

4ps
y1

∑

2≤i, j≤N

Λi,j(a)(yiyj − 2δi,j)

∥

∥

∥

∥

∥

∥

L2
ρ

(64)

≤ Ce−
s
2 s−1−ν

where Wa is defined in (2) and (Λi,j(a))2≤i,j≤N is a continuous symmetric matrix rep-
resenting the second fundamental form of the blow-up set at a in (Q(a)e2, ..., Q(a)eN ), a
basis of the tangent space.
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(ii) It holds that

Λi,j(a) = lim
t→T

p

4κ
| log(T − t)|−1(T − t)

1
p−1

− 1
2× (65)

∫

RN

u(x, t)(x − a).Q(a)e1 ((x − a).Q(a)ei × (x − a).Q(a)ej − 2δi,j)
e
− |x−a|2

4(T−t)

(4π)N/2
dx.

Remark: Note that Wa defined in (2) is different from wa defined in (18) by a rotation
of coordinates.

Proof of Proposition 4.1:
Part (i) follows directly form Proposition 3.1. Indeed, from (23), (2) and (18), we have

ga(y, s) = Wa(Q(a)y, s) − w̃(y1, s + σ(a)) (66)

on one hand. On the other hand, it is easy to check that the sum in Proposition 3.1 can
be indexed as follows

{β ∈ N
N | |β| = 3, β1 = 1} = {e1 + ei + ej | 2 ≤ i ≤ j ≤ N}

where ek is the k-th vector of the canonical basis of R
N . Therefore, using (63), (28) and

(29), we write

∑

|β|=3, β1=1

λβ(a)hβ(y) =
∑

2≤i≤j≤N

λe1+ei+ej
(a)he1+ei+ej

(y)

=
κ

2p
y1

∑

2≤i≤j≤N

Λi,j(a)

1 + δi,j
(yiyj − 2δi,j) =

κ

4p
y1

∑

2≤i,j≤N

Λi,j(a) (yiyj − 2δi,j) . (67)

Using Proposition 3.1, (66) and (67), we obtain (64). This concludes the proof of (i) in
Proposition 4.1.

(ii) From (63), (62) and the definition of ga,β(s) (33), we write for all 2 ≤ i, j ≤ N ,

Λi,j(a) =
2p

κ
(1 + δi,j)λe1+ei+ej

(a)

=
2p

κ
(1 + δi,j) lim

s→∞
se

s
2 ga,e1+ei+ej

(s)

=
2p

κ
(1 + δi,j) lim

s→∞
se

s
2

∫

RN

ga(y, s)
he1+ei+ej

(y)

‖he1+ei+ej
‖2

L2
ρ

ρ(y)dy. (68)

Using (28) and (29), we see that

he1+ei+ej
(y)

‖he1+ei+ej
‖2

L2
ρ

=
y1(yiyj − 2δi,j)

8(1 + δi,j)
. (69)

Using the definition of ga (23) and the fact that w̃(y1, s) does not depend on yi for i ≥ 2,
we derive from (68) and (69) that for all 2 ≤ i, j ≤ N ,

Λi,j(a) =
p

4κ
lim

s→∞
se

s
2

∫

RN

wa(y, s)y1 (yiyj − 2δi,j) ρ(y)dy.
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Using the change of variables in (18) gives (65) and concludes the proof of Proposition
4.1.

Proof of Proposition 2:
We computed in Proposition 4.1 (Λi,j(a))2≤i,j≤N which is a (N − 1)× (N − 1) continuous
symmetric matrix representing the second fundamental form of the blow-up set in the basis
(Q(a)e2, ..., Q(a)eN ) of the tangent space. Therefore, it can be diagonalized to provide the
principal curvatures and directions of the blow-up set. More precisely, there exists a
(N − 1) × (N − 1) matrix P (a) = (Pi,j(a))2≤i,j≤N such that

P (a)T P (a) = Id, P (a)T ΛP (a) = diag (l2(a), ..., lN (a))

and a → lj(a) is continuous for j ≥ 2. Note however that a → P (a) is not necessarily
continuous. The lj(a) for 2 ≤ j ≤ N (continuous in terms of a) are the principal curvatures
of the blow-up set at the point a, and the column vectors of P are its principal directions
in the basis (Q(a)e2, ..., Q(a)eN ) of the tangent space. Now, if we introduce the (non
necessarily continuous) N × N orthogonal matrix M(a) = Q(a)P̃ (a) where

P̃i,j(a) = Pi,j(a) if 2 ≤ i, j ≤ N and P̃i,j(a) = δi,j otherwise, (70)

then it is easy to check that the principal vectors (which are by definition in the tangent
space) take the simple form of M(a)ej for 2 ≤ j ≤ N . Like the matrix P (a), the principal
vectors are not necessary continuous in terms of a. Note from the definition (70) of P̃ that
P̃ (a)e1 = e1, therefore, the normal vector (see (17)) Q(a)e1 = Q(a)P̃ (a)e1 = M(a)e1. It
is continuous because of the continuity of Q(a) (see (17)).

Using (70), it is easy to check that (i) of Proposition 2 follows from (i) in Proposition
4.1 by a simple change of variables. The convergence in (64) holds also in W2,∞(|y| < R)
for any R > 0 by parabolic regularity if s ≥ s0 ≡ s1 + 1, so does the convergence in (i) of
Proposition 2.

(ii) Take R0 > 0, t ∈ [T − e−s0 , , T ) and x ∈ B(â, δ) such that dist(x, S) < R0

√
T − t.

Take a = PS(x), the orthogonal projection of x on the blow-up set S, and according to
(2), introduce Y and s such that

u(x, t) = (T − t)
− 1

p−1 Wa(M(a)Y, s) where M(a)Y =
x − a√
T − t

, s = − log(T − t). (71)

Since M(a)e1 is a normal vector and M(a)ej for all j ≥ 2 are tangent to the blow-up set
at a (see (i)), we see that

|a − â| ≤ |a − x| + |x − â| ≤ 2|x − â| < δ,

Y1 =
d̃(x, S)√

T − t
and Yj = 0 for all j ≥ 2,

|Y | ≤ d(x, S)√
T − t

≤ R0 and s ≥ s0,
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where d̃(x, S) = ±dist(x, S) (depending on the side of the blow-up set S where x is).
Applying (i) of Proposition 2 and using (71), we write

∣

∣

∣

∣

∣

∣

(T − t)
1

p−1 u(x, t) −







w̃(y1, s + σ(a)) − κ

2ps
Y1

N
∑

j=2

lj(a)







∣

∣

∣

∣

∣

∣

≤C(R0)(T − t)
1
2 | log(T − t)|−1−ν .

Using (10), (9), (8) and the definition of the mean curvature

m(a) =

N
∑

j=2

lj(a),

this concludes the proof of (ii) in Proposition 2.

(iii) If we project the estimate of (i) on the polynomial y1(y
2
j − 2), then we see from

(31) and the fact that w̃ does not depend on yj for all j ≥ 2 that

lj(a) = lim
s→∞

pses/2

4κ

∫

RN

wa(M(a)y, s)y1(y
2
j − 2)ρ(y)dy.

Making the change of variables (2), we get to the conclusion. This concludes the proof of
Proposition 2.

Proof of Theorem 3: Since (T − t)
1

p−1 u(â, t) → κ with the speed | log(T − t)|−1, we
know from Velázquez [21] and [20] (see also Filippas and Liu [8] and Filippas and Kohn
[7]) that the local behavior of u near the blow-up point â is given by (12). Therefore, if we
apply Theorem 4 of [23], we see that the blow-up set is a C 1 hypersurface, locally near â.
Therefore, we can apply Theorem 1 and derive the C 2 regularity as well as the behaviors
described in Proposition 2.

A Projection of equation (24) on the different modes

We prove (v) of Lemma 2.2 here. For simplicity, we drop down the index a here. Since
the projector Rk and the operator L commute, we write from equation (24) for all a ∈ Sδ,
y ∈ R

N and s ≥ − log T ,
∂sRkg = L (Rkg) + Rk (αg) .

Next, we multiply this equation by ρRkg and integrate over R
N to obtain

1

2

d

ds

∫

(Rkg)2 ρ =

∫

RkgL (Rkg) ρ +

∫

RkgRk(αg)ρ. (72)

Since Rkg is the projection of g on the spectrum of L below 1 − k
2 , it holds that

∫

RkgL (Rkg) ρ ≤ (1 − k

2
)

∫

(Rkg)2 ρ. (73)
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Since Rk is an orthogonal projector, we use Hölder’s inequality to estimate the second
term on the right-hand side of (72) by:
∣

∣

∣

∣

∫

Rk(αg)Rkgρ

∣

∣

∣

∣

≤ ‖Rk(αg)‖L2
ρ
‖Rkg‖L2

ρ
≤ ‖αg‖L2

ρ
‖Rkg‖L2

ρ
≤ ‖α‖L4

ρ
‖g‖L4

ρ
‖Rkg‖L2

ρ
.

Note that equation (24) has the following regularizing property (control of the L4
ρ norm

by the L2
ρ norm up to some delay in time, see Lemma 2.3 in [13]):

(∫

g(y, s)4ρdy

)1/4

≤ C

(∫

g(y, s − s∗)
2ρdy

)1/2

(74)

for some s∗ > 0. Combining (32), (72), (73) and (74) yields (v).
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