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Abstract : We consider u(x, t) a blow-up solution of ut = ∆u + |u|p−1u

where u : RN × [0, T ) → R, p > 1, (N − 2)p < N + 2 and either u(0) ≥ 0 or

(3N − 4)p < 3N + 8. The blow-up set S ⊂ RN of u is the set of all blow-up points.

Under a non degeneracy condition, we show that if S is continuous, then it is a C1

manifold.

Résumé : On considère u(x, t) une solution singulière de ut = ∆u+|u|p−1u où

u : RN×[0, T ) → R, p > 1, (N−2)p < N+2 et soit u(0) ≥ 0, soit (3N−4)p < 3N+8.

On définit l’ensemble singulier S ⊂ RN de u comme étant l’ensemble de tous les

points d’explosion. Sous une certaine condition de non dégénérescence, on montre

que si S est continu, alors c’est une variété de classe C1.

AMS Classification : 35K55, 35B40

1 Introduction

We are concerned in this paper with blow-up phenomena arising in the
following semilinear problem :

ut = ∆u+ |u|p−1u

u(., 0) = u0 ∈ L∞(RN ), (1)

where u(t) : x ∈ R
N → u(x, t) ∈ R and ∆ stands for the Laplacian in R

N .
We assume in addition the exponent p > 1 subcritical : if N ≥ 3 then
1 < p < (N + 2)/(N − 2). Moreover, we assume that

u0 ≥ 0 or (3N − 4)p < 3N + 8. (2)

This problem has attracted a lot of attention because it captures features
common to a whole range of blow-up problems arising in various physi-
cal situations, particularly the role of scaling and self-similarity. Without
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pretending to be exhaustive, we would like nonetheless to mention some re-
lated equations : the motion by mean curvature (Soner and Souganidis [23]),
vortex dynamics in superconductors (Chapman, Hunton and Ockendon [6],
Merle and Zaag [18]), surface diffusion (Bernoff, Bertozzi and Witelski [2])
and chemotaxis (Brenner et al. [4], Betterton and Brenner [3]). However,
equation (1) is simple enough to be tractable in rigorous mathematical terms,
unlike other physical equations.

A solution u(t) to (1) blows-up in finite time if its maximal existence
time T is finite. In this case,

lim
t→T

‖u(t)‖H1(RN ) = lim
t→T

‖u(t)‖L∞(RN ) = +∞.

Let us consider such a solution. T is called the blow-up time of u. A point
a ∈ R

N is called a blow-up point if

|u(x, t)| → +∞ as (x, t) → (a, T )

(this definition is equivalent to the usual local unboundedness definition,
thanks to Corollary 2 in [21]). S denotes the blow-up set, that is the set of
all blow-up points. From [21], we know that there exists a blow-up profile
u∗ ∈ C2

loc(R
N\S) such that

u(x, t) → u∗(x) in C2
loc(R

N\S) as t→ T. (3)

The blow-up problem has been addressed in different ways in the liter-
ature. A major direction was developed by authors looking for sufficient
blow-up conditions on initial data or on the nonlinear term (see Fujita [12],
Ball [1], Levine [16] and the review paper by Deng and Levine [7]). The
second main direction is about the description of the asymptotic blow-up
behavior, locally near a given blow-up point â (see Giga and Kohn [13], Bric-
mont and Kupiainen [5], Herrero and Velázquez [14], [24], Merle and Zaag
[21]). Given a ∈ R

N a blow-up point of y, we know that up to some scalings,
u approaches a particular explicit function near the singularity (a, T ) (see
[24]). Up to replacing u by −u, one of the following two cases occurs :

Case 1 : For all K0 > 0,

sup
|z|≤K0

∣

∣

∣
(T − t)

1
p−1u

(

a+ Q̃az
√

(T − t)| log(T − t)|, t
)

− fla(z)
∣

∣

∣
→ 0 (4)

as t→ T , where Q̃a is an orthonormal N ×N matrix, la = 1, ..., N and

fla(z) =

(

p− 1 +
(p− 1)2

4p

la
∑

i=1

z2
i

)− 1
p−1

. (5)
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Case 2 : For all K0 > 0,

sup
|z|≤K0

∣

∣

∣

∣

∣

∣

∣

(T − t)
1

p−1u
(

a+ z(T − t)
1
2k , t

)

−



p− 1 +
∑

|α|=2k

Cαz
α





− 1
p−1

∣

∣

∣

∣

∣

∣

∣

(6)

goes to 0 as t→ T , where k = 2, 3, 4.., xα = xα1
1 ...xαN

N and |α| = α1+...+αN

if α = (α1, ..., αN ) and
∑

|α|=2k

Cαx
α ≥ 0 for all x 6= 0.

Remark : Even though the proof of [24] is given in the positive case, it
extends to unsigned solutions under (2).

The description of the blow-up set S is a major issue. Examples where
S is a set of isolated points or a sphere are known to exist (see [17] and [19]
for isolated points and [13] for the sphere). If these solutions are artificially
considered as defined on R

N ′ × [0, T ) where N ′ > N , we obtain examples
where S consists in a collection of (N ′−N)-dimensional subspaces or spheres.
No other geometric configurations are known to occur. In [26], Velázquez
proves the following result :

The (N −1)-dimensional Hausdorff measure of S is bounded on compact
sets.

No other regularity result is known.

Our first goal in this paper is to improve this result and obtain partial
regularity results on S under some reasonable conditions. Let us consider
â ∈ S. According to [24] (remark after Theorem 2), if (4) occurs with l = N
or (6) occurs with

∑

Cαx
α > 0 for all x 6= 0 (no degenerate directions

in the function), then the blow-up point is isolated. The question remains
open in the other cases. Even if one assumes that â is not isolated, it
is unclear whether there is a continuum of blow-up points near â or not.
This question seems to be very difficult. Whatever the answer is, we don’t
know how S looks like near â, and how the profile u∗ is near S (no relevant
information on u∗ near a non isolated blow-up point was known before). To
make our presentation clearer, we restrict to the case N = 2 and consider
â a non isolated point of S such that â belongs to a continuous line of
blow-up points without being an endpoint. More precisely, we assume that
â = a(0) ∈ Im a ⊂ S where a ∈ C((−1, 1),R2) and for some α0,

∀ε > 0, a(−ε, ε) intersects the complimentary of any
connected closed cone with vertex at â and angle α ∈ (0, α0]

(7)
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(this is in a way to insure that â is not an endpoint).
Assuming that u behaves according to (4) near the singularity (â, T ), we

have the following result :

Theorem 1 (Regularity of the blow-up set at a point with the
behavior (4) assuming S contains a continuum) Assume N = 2 and
consider u a solution of (1) that blows-up at time T on a set S. Consider
â = a(0) ∈ Ima ⊂ S where a ∈ C((−1, 1),R2) and â is not an endpoint
(in the sense (7)). If u behaves near (â, T ) as stated in (4), then there are
δ > 0, δ1 > 0 and ϕ ∈ C1([−δ1, δ1],R) such that

S ∩B(â, 2δ) = graphϕ ∩B(â, 2δ) = Im a ∩B(â, 2δ). (8)

In particular, S is a C1 manifold near the point â.

We actually have the following refined C1 estimate for ϕ.

Proposition 2 (Refined C1 estimate for S) There exists C0 > 0 and
h0 such that for all |ξ| < δ1 and |h| < h0 such that |ξ + h| < δ1, we have :

|ϕ(ξ + h) − ϕ(ξ) − hϕ′(ξ)| ≤ C0|h|
√

log | log |h||
| log |h|| .

Remark : Using the techniques of Fermanian-Zaag [9], we show in [27] that
ϕ is actually C1,α for any α ∈ (0, 1

2).
Remark : From [24], we know that the limit function at (â, T ) stated in (4)
has a degenerate direction, and that we can not have two curves of blow-up
points intersecting transversally at â. With our contribution, we eliminate
the possibility of two curves meeting tangentially at â. In particular, there is
no cusp at â, and there is no sequence of isolated blow-up points converging
to â ∈ S.
Remark : The case we are considering does exist indeed. The techniques
of [19] hold for the one dimensional equation

∂tv = ∂2
rrv +

N − 1

r
∂rv + |v|p−1v

which is the radial case of (1). Thus, for all r0 > 0, there is a radial solution
u(x, t) = v(|x|, t) of (1) such that for all K0 > 0,

sup
|z|≤K0

∣

∣

∣
(T − t)

1
p−1 v

(

r0 + z
√

(T − t)| log(T − t)|
)

− f(z)
∣

∣

∣
→ 0 as t→ T
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where for all z ∈ R, f(z) =

(

p− 1 +
(p− 1)2

4p
z2

)− 1
p−1

. (9)

The blow-up set of u is the sphere r0S
N−1, and near each blow-up point, (4)

holds with the degenerate profile f1.

The description of the blow-up profile u∗ defined in (3) near the singularity
(â, T ) is our second concern in this paper. We claim the following :

Theorem 3 (Blow-up behavior and profile near a blow-up point
where u behaves as in (4) assuming S contains a continuum) With
the notations of Theorem 1, there exists t0 < T such that for all K0 > 0,
t ∈ [t0, T ) and x ∈ B(â, δ) s.t. d(x, S) ≤ K0

√

(T − t)| log(T − t)|, we have

∣

∣

∣

∣

∣

(T − t)
1

p−1u(x, t) − f

(

d(x, S)
√

(T − t)| log(T − t)|

)∣

∣

∣

∣

∣

≤ C ′
0(K0)

log | log(T − t)|
| log(T − t)|

(10)

where f is defined in (9). Moreover, ∀x ∈ R
N\S, u(x, t) → u∗(x) as t→ T

with

u∗(x) ∼ U(d(x, S)) as d(x, S) → 0 and x ∈ B(â, δ) (11)

where U(z) =
(

8p
(p−1)2

| log z|
z2

)
1

p−1
for z > 0.

Remark : This is the first time where the blow-up profile u∗ is derived near
a non-isolated point. Indeed, in the earlier work of Velázquez, the behavior
along the “tangential” direction of S was not derived. (10) shows that in
a tubular neighborhood of S, the main term in the blow-up asymptotics is
the 1D blow-up profile f , function of only the normal coordinate ±d(x, S).
Remark : When p > 3, we show in [27] that up to a non singular function,
u is a superposition of 1D blow-up solutions of (1), organized along the
normal directions to the blow-up set.

Theorems 1 and 3 hold in higher dimensions N ≥ 3. However, the
hypotheses should be stated more carefully. We claim the following

Theorem 4 (Regularity of the blow-up set near a point with the
behavior (4) assuming S contains a N − l dimensional continuum)
Take N ≥ 2 and l ∈ {1, ..., N − 1}. Consider u a solution of (1) that blows-
up at time T on a set S and take â ∈ S where u behaves locally as stated
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in (4). Consider a ∈ C((−1, 1)N−l,RN ) such that â = a(0) ∈ Im a ⊂ S
and Ima is at least (N − l) dimensional (in the sense (82)). If â is not an
endpoint (in the sense (83) given below), then there are δ > 0, δ1 > 0 and
ϕ ∈ C1([−δ1, δ1]N−l,Rl) such that (8) holds and S is a C1 manifold near â.
Proposition 2 and Theorem 3 hold as well.

Remark : If l = N − 1, then the fact that â is not isolated implies that
Im a is at least 1 dimensional near â.
Remark : Theorem 4 can be stated without the hypotheses (82) and (83)
if we strengthen the assumption on Im a. Indeed, If we already know that
Im a is a (N − l)-dimensional differentiable manifold, then we learn from
Theorem 4 that S\ Im a is empty, locally near â, and we get the blow-up
profile near â as stated in Theorem 3.
Up to some complications in the notation, the proof of Theorem 4 remains
the same as in the case N = 2. We will show in section 6 how to adapt the
proof of the case N = 2 to the general case.

The paper is organized as follows. In section 2, we recall from previ-
ous work the self-similar variables technique and a Liouville Theorem for
equation (1). In section 3, we show the stability of the behavior (4) (with
l = 1 < 2 = N) with respect to the blow-up point in Im a. The regularity
of the blow-up set is presented in section 4 where we prove Theorem 1 and
Proposition 2. Section 5 is devoted to the blow-up profile of u (Theorem 3).
In section 6, we sketch the proof of Theorem 4.

The author wants to thank T. Colding, R. V. Kohn, F. H. Lin and
F. Merle for interesting conversations and remarks about the paper. He
wants to acknowledge partial support he received from the NSF grant DMS-
9631832.

2 Asymptotic behavior in self-similar variables
and global estimates for blow-up solutions of (1)

In this section, we introduce the general framework for the study of u near
a singularity (a, T ) and recall from [21] a uniform (in space and time) com-
parison property of u with the solution of the associated ODE u′ = up.
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2.1 Self-similar variables

Given a a blow-up point of u, we study the behavior of u near the singularity
(a, T ) through the introduction of the function wa defined by

wa(y, s) = (T − t)
1

p−1u(x, t), y =
x− a√
T − t

, s = − log(T − t). (12)

From (1), we see that wa satisfies for all (y, s) ∈ R
N × [− log T,∞) the

following equation

∂w

∂s
= ∆w − 1

2
y.∇w − w

p− 1
+ |w|p−1w. (13)

We know from [13] that

‖wa‖L∞(RN×[− log T,∞)) ≤M <∞ (14)

((12) shows that M is independent of a) and that

wa(y, s) → ±κ ≡ ±(p− 1)
− 1

p−1 as s→ ∞ (15)

in L2
ρ where ρ(y) = e−

|y|2

4 /(4π)N/2 and uniformly on compact sets. Assum-
ing that wa → κ, we define

va = wa − κ. (16)

We know from (15) and (13) that ‖va‖L2
ρ
→ 0 as s→ ∞ and for all (y, s) ∈

R
N × [− log T,∞),

∂va

∂s
= Lva + f(va) ≡ Lva +

p

2κ
v2
a + g(va) (17)

where L = ∆ − 1
2y.∇ + 1, |f(va)| ≤ C(M)|va|2 and |g(va)| ≤ C(M)|va|3.

Operator L is self-adjoint on L2
ρ, its spectrum is spec L = {1− m

2 | m ∈ N}.
Its eigenfunctions are derived from the Hermite polynomials. If N = 1, all
the eigenvalues of L are simple. To 1 − m

2 corresponds the eigenfunction

hm(y) =

[m
2

]
∑

n=0

m!

n!(m− 2n)!
(−1)nym−2n.

If N ≥ 2, then the eigenfunctions corresponding to 1 − m
2 are

Hα(y) = hα1(y1)...hαN
(yN ), with α = (α1, ..., αN ) and |α| = m.
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In particular,
1 is an eigenvalue of multiplicity 1 and its eigenfunction is H0(y) = 1,
1
2 is of multiplicity N and its eigenspace is generated by the orthogonal basis
{yi | i = 1, ..., N},
0 is of multiplicity N(N+1)

2 and its eigenspace is generated by the orthogonal
basis

{yiyj | i < j} ∪ {y2
i − 2 | i = 1, ..., N}. (18)

Since the eigenfunctions of L make a total orthonormal family of L2
ρ, we

expand va as follows

va(y, s) =

2
∑

m=0

va,m(y, s) + va,−(y, s) ≡ va,2(y, s) + va,−(y, s) + va,+(y, s),

(19)

where va,m(y, s) is the orthogonal projection of va on the eigenspace of λ =
1 − m

2 , va,−(y, s) = P−(va)(y, s) and P− is the projector on the negative
subspace of L. Let us define a N ×N symmetric matrix Aa(s) by

Aa(s) =

∫

RN

va(y, s)M(y)ρ(y)dy where Mi,j(y) =
1

4
yiyj −

1

2
δij. (20)

Then, from (19), (18) and the orthogonality between eigenfunctions of L,
we have

va,2(y, s) =
1

2
yTAa(s)y − trAa(s). (21)

From Filippas and Liu [11] and Velázquez [25], we know that

either va ∼ va,2 or va ∼ va,− in L2
ρ as s→ ∞. (22)

In the former case, we know that for some la ∈ {1, ..., N}, δa > 0 and a
N ×N orthogonal matrix Q̃a, we have

va(Q̃ay, s) =
κ

2ps

(

la −
1

2

la
∑

i=1

y2
i

)

+O

(

1

s1+δa

)

as s→ ∞ (23)

in L2
ρ and u behaves near (a, T ) as stated in (4).

If la = N , then a is an isolated blow-up point. We proved in [8] with Ferma-
nian and Merle the stability of such a behavior with respect to perturbations
in initial data.
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In this paper, we consider the case la < N and assume that a is not
isolated. Although the techniques of [8] imply that this profile is unstable
with respect to perturbations in initial data, we will show in section 3 its
stability with respect to the blow-up point (for a fixed solution), in the smaller
class of non isolated blow-up points.

2.2 A Liouville Theorem and ODE comparison for u

The following rigidity theorem (from [21]) is crucial in the blow-up study of
(1). It is a central argument in the proof of our Theorem.

Proposition 2.1 (A Liouville Theorem for equation (1)) Let u be a
solution of (1) defined for all (x, t) ∈ R

N × (−∞, T ) such that for some
C > 0,

| u(x, t) |≤ C

(T − t)
1

p−1

.

Then, either u ≡ 0 or there exist T1 ∈ [T,+∞) and ω0 ∈ {−1,+1} such that

u(x, t) = ω0κ(T1 − t)
− 1

p−1 .

This allows Merle and Zaag [21] to prove for u0 ∈ C2 the following localiza-
tion property which reduces the study of the evolution of u(b, t) for a fixed
b to the study of an ODE :

Proposition 2.2 (Uniform ODE comparison of blow-up solutions
of (1)) For all ε > 0, there exists C = C(ε, ‖u0‖C2 , T ) such that ∀(x, t) ∈
R

N × [0, T ),

| ∂tu− | u |p−1 u |≤ ε | u |p +C.

As a consequence, we have the following criterion for regular points (by
definition, non blow-up points) :

Proposition 2.3 (Blow-up exclusion criterion) For all ε0 > 0, there
exists t0(ε) < T such that if |u(a, t)| ≤ (1−ε0)κ(T−t)−1/(p−1) ≡ (1−ε0)vT (t)
for some a ∈ R

N and t ∈ [t0(ε0), T ), then a is not a blow-up point.

Remark : vT is the solution of v′T = vp
T , vT (T ) = ∞.

Proof : See Corollary 1 in [20] where the criterion is derived from the ODE
comparison (Note that in [20] the criterion holds only for positive data, but
since we show in [21] the ODE comparison for unsigned data, the criterion
holds in this general case).
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3 Stability of the blow-up behavior (4) with re-
spect to non isolated blow-up points

From now on, we take 1 = l < N = 2. We consider â a blow-up point of
u such that â = a(0) where a ∈ C((−1, 1),R2) and â is not an endpoint
of Im a ⊂ S in the sense (7). We assume that u has the behavior (4) near
(â, T ). From rotation and translation invariance, we assume that â = 0 and
Q̃â = Id. Thus, (4) implies that

sup
|z|≤K0

∣

∣

∣(T − t)
1

p−1u(z
√

(T − t)| log(T − t)|, t) − f(z1)
∣

∣

∣→ 0 as t→ T (24)

where f is defined in (9). Since u has the behavior (24) near (0, T ), we know
from the previous section (see (22) and (23)) that

v0 ∼ v0,2 and w0(y, s) − κ = v0(y, s) ∼
κ

2ps
(1 − y2

1

2
) as s→ ∞ (25)

in L2
ρ, where v0 and w0 are defined in (12) and (16). In the following, we

will write a instead of a(σ) and va instead of va(σ). A central argument in
our proof is the following :

Proposition 3.1 (Stability of the L2
ρ asymptotic behavior with re-

spect to blow-up points in Ima) There exist σ0 > 0, C0 > 0 and s0 ∈ R

such that for all b ∈ a(−σ0, σ0), there exists Qb a 2 × 2 orthogonal matrix
such that :
i) for all |σ| < σ0 and s ≥ s0,

∥

∥

∥

∥

wa(Qay, s) −
{

κ+
κ

2ps
(1 − y2

1

2
)

}∥

∥

∥

∥

L2
ρ

≤ C0
log s

s2
.

ii) Q0 = Id and b ∈ a(−σ0, σ0) → Qb is continuous.
iii) For all K0 > 0, there is C ′

0(K0) > 0 such that for all s ≥ s0,

sup
|σ|<σ0, |y|≤K0

√
s

∣

∣

∣

∣

wa(Qay, s) − f

(

y1√
s

)∣

∣

∣

∣

≤ C ′
0(K0)

log s

s

where f is defined in (9).

Remark : This argument is similar to the result of [8], where we proved
the stability of the blow-up behavior (4) with l = N (the isolated blow-up
point case), with respect to initial data. Therefore, we will refer to [8] for
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the similar steps.
The proof of this Proposition follows from 4 steps.

- In Step 1, we show that the control of va near the same asymptotic L2
ρ

behavior as v0 reduces to the control of its neutral mode va,2, that is the
matrix Aa defined in (20) and (21) (this is a finite dimensional problem).

- In Step 2, we show that the eigenvalues of Aa(s) have uniformly the
same behavior as those of A0(s) as s→ +∞.

- In Step 3, we solve the finite dimensional problem by finding the long
time behavior of Aa.

- In Step 4, we give the solution of the infinite dimensional problem
(that is the asymptotics of wa as s → ∞), which concludes the proof of
Proposition 3.1.

Step 1 : Uniform reduction to a finite dimensional problem
In this step, the only relevant information on v0 we use is that v0 ∼ v0,2.

We aim at showing that this extends to any a(σ) near 0. In particular,
the fact that the asymptotic behavior in (25) has a degenerate direction
is not relevant here. Thus, this step is not new. It is exactly the same
as the analogous one in the proof of the stability of the profile (4) with
l = N presented in [8]. Therefore, we just summarize the arguments of
the proof in Appendix A. Let us just remark that the Liouville Theorem
(Proposition 2.1) is the central argument in getting the uniformity. We claim
the following :

Proposition 3.2 (Reduction to a finite dimensional problem) There
exists σ1 > 0 such that for all ε > 0, there is s1(ε) such that for all |σ| < σ1,

∀s ≥ s1(ε),

{

‖va(s)‖L2
ρ
≤ ε, ‖va − va,2(s)‖L2

ρ
≤ ε‖va,2(s)‖L2

ρ
,

|A′
a(s) − 1

βAa(s)
2| ≤ ε|Aa(s)|2

(26)

where β = κ
2p and va,2 and Aa are defined in (19), (21) and (20).

Proof : See Appendix A.

Step 2 : A spectral study of the finite dimensional problem
In Steps 2 and 3, we solve the finite dimensional problem given by Step

1. Since Aa is a symmetric matrix, we can define its eigenvalues as follows :

Lemma 3.3 (Existence of regular eigenvalues for Aa) There exist 2
real C1 functions la,i(s), i = 1, 2 eigenvalues of Aa(s). Moreover, the set
{la,1(s), la,2(s)} is continuous in terms of (a, s) ∈ S × [− log T,∞).
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Proof : From the regularity of wa, it is clear that for each a ∈ R
N , the

symmetric matrix Aa(s) is a C1 function of s. Therefore, according to Kato
[15], we can define 2 C1 functions of s, la,1(s) and la,2(s), eigenvalues of
Aa(s) (see Lemma 3.2 in [11] for a statement). Since Aa(s) is a continuous
function of (a, s) and the eigenvalues of a matrix vary continuously with
respect to the coefficients, {la,1(s), la,2(s)} is continuous in terms of (a, s).

Proposition 3.2 and section 2.1 have the following Corollary :

Corollary 3.4
i) (Non uniform behavior of va) For all |σ| < σ1, (23) holds with la = 1.
In particular,

Aa(s) = −β
s
Q̃a

(

1 0
0 0

)

Q̃T
a +O

(

s−1−δa

)

as s→ ∞,

and one eigenvalue is equal to − β
s + O

(

s−1−δa
)

while the other is equal to
O
(

s−1−δa
)

as s→ ∞.
ii)(Equations on eigenvalues) For all ε > 0, there is s1(ε) such that for
all i ∈ {1, 2}, |σ| < σ1 and s ≥ s1(ε),

|l′a,i(s) −
1

β
la,i(s)

2| ≤ ε(l2a,1 + l2a,2).

Proof : i) From Proposition 3.2, we have va ∼ va,2 as s→ ∞ for all |σ| < σ1,
hence (23) holds as stated in section 2.1. Since σ → a(σ) is continuous
and a(0) = 0 is not an isolated blow-up point (otherwise, (7) can not hold),
every a(σ) is non isolated in S. Therefore, 1 ≤ la < N = 2 in (23), hence
la = 1. (20) then gives the estimate for Aa, which gives the estimate for the
eigenvalues.

ii) Since
(

l2a,1 + l2a,2

)1/2
is a norm for Aa, just evaluate the equation on Aa

in Proposition 3.2 at eigenfunctions to get ii). This concludes the proof of
Corollary 3.4.

At the point a(0) = 0, we have from Corollary 3.4,

λ0(s) ∼ −β
s

and µ0(s) = o

(

1

s

)

as s→ ∞. (27)

where λ0 and µ0 are just l0,1 and l0,2 renamed. This behavior is in fact stable
with respect to σ. In the following proposition, we refine the estimates of
Proposition 3.2 and state this stability result.
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Proposition 3.5 (Stability of the behavior at infinity of the eigen-
values of Aa(s)) There exists σ2 > 0, s2 ∈ R and C2 > 0 such that for all
|σ| < σ2 and s ≥ s2,

i) ‖va(s) − va,2(s)‖L2
ρ
≤ C2s

−2, ii) |A′
a(s) − 1

βAa(s)
2| ≤ C2s

−3,

iii) |λa(s) + β
s | ≤ C2s

−2 log s and |µa(s)| ≤ C2s
−2,

where λa = la,τa(1), µa = la,τa(2) and τa is a permutation of {1, 2}.
Let us first explain our argument for this proposition formally.
Up to the third order term, the eigenvalues satisfy the equation λ′ = 1

βλ
2,

which has two orbits going to zero as s→ ∞ :

λ1(s) = − β

s+ s0
and λ2(s) ≡ 0.

It is clear that λ1 is stable, whereas λ2 is not. Therefore, the stability of
the behavior of λ0 in (27) comes from the dynamical stability analysis of λ1.
This argument was enough in [8] where all the eigenvalues were of order − β

s
(non degenerate profile). However, the stability analysis of λ2 suggests that
µa is not stable and does not allow us to derive the stability of its behavior.
We need a new argument. λ2 turns out to be stable if s is decreasing from
∞ to some point. Corollary 3.4 implies that one eigenvalue (the degenerate
direction) of Aa(s) is o

(

1
s

)

at infinity, say equal to λ2(s) at infinity, up to
the order o

(

1
s

)

. Thus, we recover the stability of the degenerate eigenvalue.
We now give the actual proof.

Proof of Proposition 3.5 :
The proof is done in several steps. Let us sketch the main lemmas and

derive the proposition first. Thus, we let the lemmas’ proof to the end.

Let us fix ε̂ = min
(

1
2 ,

1
100β

)

and s3 = s1(ε̂) defined in Proposition 3.2. From

(27) and the continuity of the set of eigenvalues with respect to a, we can
find σ3 ∈ (0, σ1) where σ1 appears in Corollary 3.4, such that for all |σ| ≤ σ3,

|la,τa(1)(s3) +
β

s3
| + |la,τa(2)(s3)| ≤

β

100s3
,

where τa is a permutation of {1, 2}. Let us rename the eigenvalues such that
λa = la,τa(1) and µa = la,τa(2). Therefore,

∀|σ| ≤ σ3, |λa(s3) +
β

s3
| ≤ β

100s3
and |µa(s3)| ≤

β

100s3
. (28)

We claim the following :

13



Lemma 3.6 (Non degeneracy of the decay rate of va) There exists
C3 > 0 such that for all |σ| < σ3 and s ≥ s3,

i) Na(s) ≡ λ2
a + µ2

a ≥ β2

16s2
, ii) ‖va(s)‖L2

ρ
≥ C3

s
.

We then prove the stability for the non degenerate direction.

Lemma 3.7 (Stability of the non degenerate direction of Aa(s)) For
all |σ| < σ3 and s ≥ s3,

−2β

s
≤ λa(s) ≤ − β

2s
and − 2β

s
≤ µa(s) ≤

C

s
.

With this lemma, we can refine the equation satisfied by λa and µa.

Lemma 3.8 (A refined equation satisfied by Aa(s)) There exists s4 ≥
s3 and C4 > 0 such that for all |σ| < σ3 and s ≥ s4,

‖va − va,2‖L2
ρ
≡
(

‖va,+(s)‖2
L2

ρ
+ ‖va,−(s)‖2

L2
ρ

)
1
2 ≤ C4s

−2 (29)

|A′
a(s) −

1

β
Aa(s)

2| + |λ′a −
1

β
λ2

a| + |µ′a −
1

β
µ2

a| ≤ C4s
−3. (30)

Lemma 3.7 and Corollary 3.4 imply that for all |σ| < σ3,

µa(s) = O
(

s−1−δa

)

as s→ ∞. (31)

Equation (30) propagates this estimate from ∞ to s and improves it. More
precisely,

Lemma 3.9 (Stability of the degenerate direction of Aa(s)) There
exist s5 ≥ s4 and C5 > 0 such that for all |σ| < σ3 and s ≥ s5,

|µa(s)| ≤ C5s
−2,

With this information, we can refine the estimate on λa(s).

Lemma 3.10 (Refinement of the estimate on the non degenerate
direction of Aa(s)) There exist s6 ≥ s5, σ6 < σ3 and C6 > 0 such that for
all |σ| < σ6 and s ≥ s6,

|λa(s) +
β

s
| ≤ C6

log s

s2
.
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It is clear that Lemmas 3.8, 3.9 and 3.10 directly imply Proposition 3.5. Let
us now prove the previous Lemmas.

Proof of Lemma 3.6 : Recall that ε̂, s3 and σ3 are defined just before
(28).
i) From Corollary 3.4, we have for all |σ| < σ3 and s ≥ s3,

N ′
a(s) = 2(λaλ

′
a + µaµ

′
a) ≥ 2

β (λ3
a + µ3

a) − 2ε̂(λa + µa)(λ
2
a + µ2

a) ≥ − 6
βN

3/2
a

(here we used the fact that ε̂ ≤ 1
100β and |λn

a + µn
a | ≤ 2(λ2

a + µ2
a)

n/2).

Since Na(s3) >
β2

16s2
3

(from (28)) and d
ds

(

β2

16s2

)

< − 6
β

(

β2

16s2

)3/2
, straightfor-

ward a priori estimates yield i).

ii) Since ε̂ ≤ 1
2 , Proposition 3.2 implies that ‖va‖L2

ρ
≥ 1

2‖va,2‖L2
ρ
≥ C(λ2

a +

µ2
a)

1/2 where C > 0 (because (λ2
a + µ2

a)
1/2 is a norm for Aa, hence for va,2

by (21)). Thus, ii) of Lemma 3.6 follows from i). This concludes the proof
of Lemma 3.6.

Proof of Lemma 3.7 :
We claim that for all |σ| < σ3 and s ≥ s3,

λa(s) + µa(s) < − β

50s
. (32)

Indeed, from Corollary 3.4, Lemma 3.6 and the fact that ε̂ ≤ 1
100β , we have

∀|σ| < σ3, ∀s ≥ s3,
d

ds
(λa + µa) ≥

(

1

β
− 2ε̂

)

(

λa
2 + µa

2
)

≥ 1

2β

β2

16s2
.

Since λa(s) + µa(s) → 0 as s → ∞ (Corollary 3.4), an integration between
s and ∞ gives (32).

(32) shows that Lemma 3.7 follows if we prove that for all |σ| < σ3 and
s ≥ s3,

−2β

s
< λa(s) < − β

2s
and µa(s) > −2β

s
. (33)

We proceed by contradiction. From (28), we consider some |σ| < σ3 and
s∗ > s3 such that (33) holds for all s ∈ [s3, s∗) with an equality case at s∗.
In the following, we rule out those 3 cases of equality. Let us just mention
that (33) and (32) yield

|µa(s∗)| ≤
2β

s∗
. (34)
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Case 1 : λa(s∗) = − β
2s∗

.

On one hand, we have λa
′(s∗) ≥ d

ds

(

− β
2s

)

|s=s∗
≥ β

2s2
∗
.

On the other hand, Corollary 3.4, (33) and (34) imply that

λa
′(s∗) ≤ 1

βλa(s∗)2 + ε̂
(

λa(s∗)2 + µa(s∗)2
)

≤ 1
β

(

β
2s∗

)2
+ ε̂

(

(

2β
s∗

)2
+
(

2β
s∗

)2
)

≤ β
3s2

∗

because ε̂ ≤ 1
100β . Contradiction.

Case 2 or 3 : λa(s∗) = −2β
s∗

or µa(s∗) = −2β
s∗

.
Let us handle for instance Case 3. Case 2 is exactly the same.

On one hand, we have µa
′(s∗) ≤ d

ds

(

−2β
s

)

|s=s∗
≤ 2β

s2
∗
.

On the other hand, Corollary 3.4, (33) and (34) imply that

µa
′(s∗) ≥ 1

βµa(s∗)2 − ε̂
(

λa(s∗)2 + µa(s∗)2
)

≥ 1
β

(

2β
s∗

)2
− ε̂

(

(

2β
s∗

)2
+
(

2β
s∗

)2
)

≥ 3β
s2
∗

because ε̂ ≤ 1
100β . Contradiction.

Thus, (33) holds for all |σ| < σ3 and s ≥ s3. This concludes the proof of
Lemma 3.7.

Proof of Lemma 3.9 :
An iteration argument for µa(s) based on (30) and (31) gives the result.
Indeed, these estimates yield µ′

a = β−1µa
2+O(s−3) = O(s−(2+2δa))+O(s−3)

as s→ ∞.
If 2δa ≥ 1, then µa = O

(

1
s2

)

. If 2δa < 1, then µa = O
(

1
s1+2δa

)

. In this case,
we repeat the same argument with 2δa instead of δa until we get

∀|σ| < σ3, µa(s) = O

(

1

s2

)

as s→ ∞. (35)

Fix s5 ≥ s4 such that

∀s ≥ s5, (C4 +
1

β
)

1

2s2
<

1

s7/4
(36)

where s4 and C4 are defined in Lemma 3.8. From (35), we can define for all
|σ| < σ3,

s∗σ = min{s∗ ≥ s5 | ∀s ≥ s∗, |µa(s)| ≤ s−7/4}. (37)
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Using (30), we have for all s ∈ [s∗σ,∞),
|µa

′(s)| ≤ β−1|µa(s)|2 + C4s
−3 ≤ (C4 + β−1)s−3.

Therefore,

∀s ∈ [s∗σ,∞), |µa(s)| ≤ (C4 + β−1)s−2/2 < s−7/4 (38)

since s∗σ ≥ s5 (see (36)). (37) then shows that s∗σ = s5 and (38) yields the
result.

Proof of Lemma 3.8 : We just follow ideas due to Filippas, Kohn and
Liu ([10], [11]). See Appendix B.

Proof of Lemma 3.10 : Let us define

Za(s) = s2(λa(s) +
β

s
). (39)

From (30) and Corollary 3.4, we have for all |σ| < σ3,

Za(s) = O
(

s1−δa

)

as s→ ∞, ∀s ≥ s4, |Z ′
a(s) −

Z2
a

βs2
| ≤ C4s

−1. (40)

As for Lemma 3.9, we improve the estimate on Za iteratively.
From (40), we write Z ′

a = O(s−2δa) +O(s−1).
If 2δa ≥ 1, then Za = O(log s). If 2δa < 1, then Za(s) = O

(

s1−2δa
)

. We
repeat the same argument with 2δa instead of δa until we get

∀|σ| < σ3, Za = O(log s), hence λa = −β
s

+O

(

log s

s2

)

as s → ∞. We need to prove that this holds uniformly with respect to σ.
Let us consider s7 and C7 ≥ 2C4 such that for all s ≥ s7, |Z0(s)| ≤ C7 log s
and Za(s) is continuous in terms of (a, s) ∈ S × [s7,∞) (for this latter fact,
remember from Lemma 3.3 the continuity of {λa(s), µa(s)} in terms of (a, s).
If s7 is chosen so that C5s

−2
7 ≤ β

4 s
−1
7 , then λa(s) and µa(s) become apart

for s ≥ s7 by Lemmas 3.7 and 3.9. Therefore, both are continuous in terms
of (a, s) ∈ S × [s7,∞)).
Define s6 ≥ s7 and then σ6 ≤ σ3 such that

∀s ≥ s6,
16C2

7 log2 s

βs2
≤ C4

s
and ∀|σ| ≤ σ6, |Za(s6)| ≤ 2C7 log s6 (41)

We claim that

for all |σ| < σ6 and s ≥ s6, |Za(s)| ≤ 4C7 log s. (42)
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Indeed, if for some |σ| < σ6 and s ≥ s6, then we have |Za(s)| > 4C7 log s,
we can define from (41) s∗σ such that

∀s ∈ [s6, s
∗
σ], |Za(s)| ≤ 4C7 log s and |Za(s

∗
σ)| = 4C7 log s∗σ. (43)

Using (40), (41), and the fact that C7 ≥ 2C4, we have

∀s ∈ [s6, s
∗
σ], |Z ′

a(s)| ≤
1

β

Z2
a

s2
+
C4

s
≤ 16C2

7 (log s)2

βs2
+
C4

s
≤ 2C4

s
≤ C7

s
.

Therefore, |Za(s
∗
σ)| ≤ |Za(s6)| + C7(log s

∗
σ − log s6) ≤ 3C7 log s∗σ by (41).

This contradicts (43). Thus, (42) holds. This closes the proof of Lemma
3.10 by (39). Thus Proposition 3.5 is proved.

Step 3 : Solution of the finite dimensional problem
Now, we are ready to solve (26). We claim the following :

Proposition 3.11 (Solution of the finite dimensional problem)
There exists C10 > 0 such that for all b ∈ a(−σ2, σ2), there exists a 2 × 2
orthogonal matrix Qb such that :

for all s ≥ s2,

∣

∣

∣

∣

Aa(s) +
β

s
La

∣

∣

∣

∣

≤ C10
log s

s2
(44)

where

La = Qa

(

1 0
0 0

)

QT
a . (45)

Moreover, Q0 = Id and b ∈ a(−σ2, σ2) → Qb is continuous.

Proof : It is easy to check from Proposition 3.5 that for all |σ| < σ2 and
s ≥ s2,

|A′
a(s) − tr Aa

β Aa(s) + detAa(s) Id | ≤ C2s
−3,

|Aa(s)| ≤ Cs−1, | trAa + β
s | ≤ Cs−2 log s, |detAa| ≤ Cs−3.

Therefore, for all |σ| < σ2 and s ≥ s2,

|A′
a +

1

s
Aa(s)| ≤ C

log s

s3
, hence

∣

∣

∣

∣

d

ds
(sAa(s))

∣

∣

∣

∣

≤ C
log s

s2
.

This shows that − s
βAa(s) has a limit as → ∞. This limit depends only on

a(σ) and not on σ, for Aa(s) does the same (see (20)). Therefore, we call
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this limit La(σ). We define this way a function b ∈ a(−σ2, σ2) → Lb. La(σ)

is a 2 × 2 symmetric matrix, such that for all |σ| < σ2 and s ≥ s2,

|sAa(s) + βLa| ≤ C

∫ ∞

s
t−2 log tdt ≤ Cs−1 log s. (46)

Since the convergence is uniform “with respect to a(σ)” and since for a fixed
s, Aa(s) is continuous with respect to a, b→ Lb is continuous.
Since La is symmetric, it has 2 eigenvalues which are the limits as s → ∞,
of − s

βλa and − s
βµa, say 1 and 0, according to Proposition 3.5. Therefore,

since b → Lb is continuous and Lb is symmetric with distinct eigenvalues,
we can define a 2 × 2 orthogonal matrix Qb, continuous in terms of b, such
that (45) and then (44) hold (just define continuous eigenvectors). From i)
of Corollary 3.4, we can even choose Q0 = Q̃0, hence, Q0 = Id.

Step 4 : Asymptotic behavior of wa in L2
ρ

We prove Proposition 3.1 here. We first use the solution of the finite
dimensional problem to find the asymptotic behavior of wa as s→ ∞, in L2

ρ

or equivalently uniformly on compact sets of R
N . We then use techniques

from [24] to extend the convergence up to sets of the type {|y| ≤ K0
√
s}.

Proof of Proposition 3.1 :
i) Take σ0 = σ2 and s0 = s2 where σ2 and s2 are defined in Proposition

3.5. Consider |σ| < σ0 and s ≥ s0. With the change of variable z = Qay
and using (45), we have
∥

∥

∥

∥

wa(Qay, s) −
{

κ+
κ

2ps
(1 − y2

1

2
)

}∥

∥

∥

∥

L2
ρ

=

∥

∥

∥

∥

wa(z, s) −
{

κ+ β
s (1 − (QT

a z)
2

1
2 )

}∥

∥

∥

∥

L2
ρ

(β = κ
2p)

=
∥

∥

∥va(z, s) −
{

− β
2sz

TLaz + β
s

}∥

∥

∥

L2
ρ

≤ ‖va(s) − va,2(s)‖L2
ρ
+

∥

∥

∥

∥

va,2(s) −
{

− β

2s
zTLaz +

β

s

}∥

∥

∥

∥

L2
ρ

≡ E1 +E2. (47)

According to Proposition 3.5, we have

E1 = ‖va(s) − va,2(s)‖L2
ρ
≤ C2

s2
. (48)

Using (21) and (45), we have

E2 =

∥

∥

∥

∥

1

2
zTAa(s)z − trAa(s) −

{

− β

2s
zTLaz − tr

(

−β
s
La

)}∥

∥

∥

∥

L2
ρ

. (49)
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Therefore, we have from (44)

E2 ≤ C|Aa(s) +
β

s
La| ≤ CC10

log s

s2
. (50)

Combining (47), (48) and (50) gives i) of Proposition 3.1.

ii) See Proposition 3.11.

iii) The derivation of iii) from i) was done by Velázquez in [24] for a fixed
blow-up point a. However, in [24], the convergence speed was not given,
because the error estimate in the L2

ρ convergence was not that accurate
there. We shall summarize in Appendix C the method of Velázquez, with
a special care to the speed of convergence, and of course, to the uniformity
with respect to the blow-up point.

4 Regularity of the blow-up set near a non isolated

point with the behavior (4)

4.1 Continuous differentiability of S

We prove Theorem 1 in this subsection. We proceed in 2 steps :
- In Step 1, we derive from the stability of the blow-up behavior with

respect to blow-up points in Im a a sort of weak differentiability of S at
points of Im a (the cone property).

- In Step 2, we define a C1 function A whose image is a graph and is
equal to S in a neighborhood of the origin.

Step 1 : The cone property for Im a
Let us introduce the cone property first.

Definition 4.1 (Cone property and the weak tangent) Consider a
set E ⊂ R

2.
i) E is said to have the cone property at some a ∈ E if there is u ∈ S

1 such
that for all ε > 0, there is δ(a, ε) > 0 such that

E ∩B(a, δ) ⊂ Ωa,u,ε ≡ {x | |(x− a).u| ≥ (1 − ε)|x− a|}. (51)

Ru is then called the weak tangent of E at a.
ii) E is said to have the uniform cone property at some subset F ⊂ E if for
all ε > 0 and a ∈ F , E has the cone property at a with δ(a, ε) = δ(ε).
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Remark : Ωa,u,ε is a cone with vertex a. It shrinks to a+ Ru as ε→ 0.
Remark : If E is a C1 curve, then the cone property is equivalent to the
differentiability and the weak tangent to the tangent.

Let us explain our argument first. wa(σ) defined in (12) describes the
local behavior of u, near a(σ). From iii) of Proposition 3.1, we see that if we
travel along the direction Qa(σ)e1 from 0 to y = η

√
s where η > 0, then we

make wa(y, s) drop down from f(0) = κ to f(η) < κ. No change occurs if
we travel along Qa(σ)e2 (hence, we call it the degenerate direction). In the
u(x, t) variable, this means that when we travel along the non degenerate
direction Qa(σ)e1, from a to x = a+ηe−

s
2
√
s, u(x, t) drops down from vT (t) ≡

κ(T − t)−
1

p−1 to (1 − ε0(η))vT (t). Therefore, if s is large enough, all points
along this non degenerate direction satisfy the blow-up exclusion criterion of
Proposition 2.3. Thus, S is located along the degenerate direction Qa(σ)e2.
More precisely, we have the following :

Proposition 4.2 (Uniform cone property for S at points of Im a)
i) S has the uniform cone property at Ima|σ|<σ0

. The weak tangent at a(σ)
is RQa(σ)e2 where e2 = (0, 1).
ii) Q0 = Id and the weak tangent is continuous as a function of b ∈
a(−σ0, σ0).

Remark : Velázquez’s result in [24] implies that S has the cone property
at a(σ), but with no uniformity with respect of a.

Proof of Proposition 4.2 :
Note that ii) follows directly from i) of Proposition 4.2 and ii) of Proposition
3.1. Let us prove i). We need to prove that for all ε > 0, there is δ(ε) such
that for all |σ| < σ0, if

|x− a| < δ and |(x− a).Qae2| < (1 − ε)|x− a|, (52)

then x 6∈ S. Consider ε and let us first introduce δ(ε) and then show that it
is convenient. Define

ε0 =
1

2

(

κ− f(
√
ε)
)

> 0 and t0 = t0(ε0) (53)

as defined in Proposition 2.3. Consider then s∗(ε) such that

∀s ≥ s∗(ε), C ′
0(1)

log s

s
≤ ε0 (54)
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where C ′
0 is defined in Proposition 3.1. Define

δ(ε) = e−
s̃
2

√
s̃ where s̃(ε) = max (s0 + 1, s∗(ε),− log(T − t0)) (55)

where s0 is introduced in Proposition 3.1. Let us take any |σ| < σ0 and x
as in (52) and show that x is not a blow-up point. We will use the blow-up
exclusion criterion of Proposition 2.3. Let us introduce ta,x and similarity
variables such that

|x− a| =
√

(T − ta,x)| log(T − ta,x)|, sa,x = − log(T − ta,x),

ya,x = Q−1
a

(

x−a√
T−ta,x

)

.
(56)

The following lemma allows us to conclude.

Lemma 4.3

i) sa,x ≥ max(s∗(ε),− log(T − t0), s0 + 1), ii) ta,x ≥ t0,
iii) |ya,x| =

√
sa,x, iv) |ya,x,2| ≤ (1 − ε)|ya,x|,

v) |ya,x,1| ≥ √
εsa,x, vi) |u(x, ta,x)| ≤ κ−ε0

(T−ta,x)
1

p−1
.

Indeed, according to ii) and vi) of Lemma 4.3 and (53), x satisfies the blow-
up exclusion criterion of Proposition 2.3 and is therefore not a blow-up point.
Remains to prove Lemma 4.3.

Proof of Lemma 4.3 :

i) From (56), (52) and (55), we have e−
sa,x

2
√
sa,x = |x − a| ≤ δ = e−

s̃
2

√
s̃.

Therefore, sa,x ≥ s̃. Use (55) again to conclude.
ii) Since sa,x = − log(T − ta,x), use i) to conclude.
iii) From (56), we have |ya,x| = |x − a|/

√

T − ta,x =
√

| log(T − ta,x)| =√
sa,x.

iv) From (52), we have |(x−a).Qae2| ≤ (1−ε)|x−a|. The conclusion follows
since Qaya,x = (x− a)/

√

T − ta,x by (56).
v) We have y2

a,x,1 = |ya,x|2 − y2
a,x,2 ≥ |ya,x|2(1− (1− ε)2) by iv). Since ε < 1,

the conclusion follows from iii).
vi) Using (12) and (56), we have |u(x, ta,x)|
= (T − ta,x)

− 1
p−1

∣

∣

∣

∣

wa

(

x−a√
T−ta,x

, sa,x

)∣

∣

∣

∣

= (T − ta,x)
− 1

p−1 |wa(Qaya,x, sa,x)|.
From i), v), the monotonicity of f and Proposition 3.1, we have

|u(x, ta,x)| ≤ (T − ta,x)
− 1

p−1

[

f
(

ya,x,1√
sa,x

)

+ C ′
0(1)

log sa,x

sa,x

]

≤ (T − ta,x)
− 1

p−1 [f(
√
ε) + ε0] (use v), i) and (54))

= (T − ta,x)−
1

p−1 [κ− ε0] (use (53)).
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This concludes the proof of Lemma 4.3 and the proof of i) of Proposition
4.2.

Step 2 : S as the graph of a C1 function
At the point a(0) = 0, we know from Proposition 4.2 that S is located

along the degenerate direction Qa(0)e2 = e2. In the following, we will show
that Im a is the graph of ϕ, function of the degenerate variable x2. Since
at each point b of this graph, S is located along the degenerate direction
Qbe2 which is continuous in terms of b, S\ graphϕ is empty, and ϕ is C 1.
Theorem 1 follows from the following :

Proposition 4.4 (S as the graph of a C1 function)
i) There exist δ1 > 0 and A ∈ C([−δ1, δ1],R2) such that

ImA = Ima|(−σ0,σ0) ∩ B̃(0, δ1) = S ∩ B̃(0, δ1), (57)

where B̃(0, δ1) = {(x1, x2) | for i = 1, 2, |xi| ≤ δ1} and

∀|x2| ≤ δ1, A(x2).e2 = x2. (58)

ii) A ∈ C1([−δ1, δ1],R2) and the tangent to S at a point A(x̄2) is A(x̄2) +
QA(x̄2)e2R.

Indeed, this implies that locally near â(0) = 0, S is the graph of a C 1

function ϕ defined by

∀|x2| ≤ δ1, A(x2) = (ϕ(x2), x2). (59)

Therefore, (8) follows from (57), which yields the conclusion of Theorem 1.
Let us prove Proposition 4.4.

Proof of Proposition 4.4 :
i) Consider η0 > 0 such that the angle of Ω0,e2,η0 is less than 1/100 and
than α0 where α0 is defined in (7). From the uniform cone property of S
at points of Im a (Proposition 4.2), there exists δ0 > 0 such that ∀|σ| < σ0,
S ∩B(a(σ), δ0) ⊂ Ωa(σ),Qa(σ)e2,η0

.

Since a(.) and Qa(.)e2 are continuous, a(0) = 0 and Qa(0)e2 = e2 (see ii)
of Proposition 3.1), there exists σ̃0 ≤ σ0 such that for all |σ| < σ̃0, a(σ) ∈
B(0, δ0

2 ), Ωa(σ),Qa(σ)e2,η0
⊂ Ωa(σ),e2 ,2η0

and Qa(σ)e2.e2 6= 0. Hence,

∀|σ| < σ̃0,
a(σ) ∈ B(0, δ0

2 ) ∩ Ω0,e2,η0 ,
S ∩B(a(σ), δ0) ⊂ Ωa(σ),e2,2η0

and Qa(σ)e2.e2 6= 0.
(60)
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Let δ− and δ+ be the infimum and the supremum of σ → a(σ).e2 for |σ| < σ̃0.
Since 0 is not an endpoint in Ima (property (7)), we have

−δ0
2

≤ δ− < 0 < δ+ ≤ δ0
2
. (61)

Indeed, δ− ≥ − δ0
2 follows from (60). Moreover, if δ− ≥ 0, then for all

|σ| < σ̃0, a(σ).e2 ≥ 0, hence a(−σ̃0, σ̃0) ⊂ Ω0,e2,η0 ∩ {x2 ≥ 0} by (60). This
contradicts (7), since the angle of Ω0,e2,η0 is less than α0. Do the same for
δ+.

Now, we are ready to define A. If δ1 = 1
2 min(δ+,−δ−) > 0, then for all

|x2| ≤ δ1, there is |σ∗(x2)| ≤ σ̃0 such that a(σ∗(x2)).e2 = x2, by continuity
of σ → a(σ).e2. If we define A(x2) = a(σ∗(x2)), then we readily see that
(58) holds and if we use (60), then we get

∀|x2| ≤ δ1, A(x2) = a(σ∗(x2)) with |σ∗(x2)| ≤ σ̃0 and |A(x2)| <
δ0
2
. (62)

Let us prove that (57) holds. From (62) and (60), we have ImA
⊂ Im a|(−σ̃0,σ̃0) ⊂ Ω0,e2,η0 , whose angle is less that 1

100 . Since A is defined for

all |x2| ≤ δ1, this implies that ImA ⊂ B̃(0, δ1). Since ImA ⊂ Im a|(−σ0,σ0) ⊂
S, (57) holds if we just show that S ∩ B̃(0, δ1) ⊂ ImA, or that for all b ∈
S∩B̃(0, δ1), b = A(b.e2). Remark that for such a b, |b.e2| ≤ δ1 so that A(b.e2)
is well defined. Using (62), we write |b−A(b.e2)| ≤ |b|+ |A(b.e2)| ≤

√
2δ1 +

δ0
2 ≤

(√
2

4 + 1
2

)

δ0 < δ0. Therefore, b ∈ S ∩B(A(b.e2), δ0) ⊂ ΩA(b.e2),e2,2η0
by

(62) and (60). Since b.e2 = A(b.e2).e2 by (58) and the line x2 = A(b.e2).e2
intersects ΩA(b.e2),e2,2η0

only at A(b.e2), this implies that b = A(b.e2). Thus,
(57) holds.

Remains to prove that A is continuous. Consider |x2,n| ≤ δ1 such that
x2,n → x̄2 ∈ [−δ1, δ1] as n → ∞. Since (62) implies that A(x2,n) ∈ S ∩
B̄(0, δ0

2 ), a compact set, we may assume that A(x2,n) → b ∈ S ∩ B̄(0, δ0
2 )

(up to a subsequence). Let us show that b = A(x̄2). Using (62), we have
|b − A(x2)| < 2 δ0

2 . Therefore, by (62) and (60), we have b ∈ ΩA(x̄2),e2,2η0

on one hand. On the other hand, we have from (58) A(x̄2).e2 = x̄2 and
A(x2,n).e2 = x2,n, hence, b.e2 = x̄2 = A(x̄2).e2. Since the line x2 = A(x̄2).e2
intersects ΩA(x̄2),e2,2η0

only at A(x̄2), this implies that b = A(x2) and A is
continuous. Thus, i) of Proposition 4.4 holds.

ii) Since A is continuous, we learn from the cone property at A(x̄2) that
we can make ImA (that is the graph of ϕ defined in (59)) as close as we want
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to the line A(x̄2) + QA(x̄2)e2 by taking x2 close enough to x̄2. Therefore,
this line is the tangent to the graph of ϕ at A(x̄2) and ϕ is differentiable

at x̄2 with ϕ′(x̄2) =
e1.QA(x̄2)e2

e2.QA(x̄2)e2
(remember that e2.QA(x2)e2 6= 0 by (62) and

(60)). Since A and b → Qb are continuous (see ii) of Proposition 4.2), ϕ is
C1. This closes the proofs of Proposition 4.4 and Theorem 1.

4.2 A geometric constraint yielding more regularity for S

We prove Proposition 2 in this subsection.
We first rewrite iii) of Proposition 3.1 with the terminology of Proposition
4.4. Thanks to (57), a(σ) is viewed as b ∈ ImA. The variable y1 is orthogo-
nal to Qbe2, the tangent direction to S. Therefore, y1 = ±d(y, Tb) where Tb

is the tangent to S at b. More precisely, we have the following :

Corollary 4.5 For all K0 > 0, t ≥ t0 ≡ T − e−s0 , b ∈ ImA and x ∈ R
2

such that |x− b| ≤ K0

√

(T − t)| log(T − t)|, we have
∣

∣

∣

∣

∣

(T − t)
1

p−1u(x, t) − f

(

d(x, Tb)
√

(T − t)| log(T − t)|

)∣

∣

∣

∣

∣

≤ C ′
0(K0)

log | log(T − t)|
| log(T − t)|

where Tb is the tangent to S at b.

Proof : If we introduce y and s such that

s = − log(T − t) and y = QT
b

(

x− b√
T − t

)

, (63)

then we see that |y| = |x−b|√
T−t

≤ K0
√
s and s ≥ s0. Since b ∈ ImA ⊂

Im a|(−σ0,σ0) by (57), we obtain from iii) of Proposition 3.1
∣

∣

∣

∣

wb (Qby, s) − f

(

y1√
s

)∣

∣

∣

∣

≤ C ′
0(K0)

log s

s
. (64)

Remark that we have from (12)

wb (Qby, s) = wb

(

x− b√
T − t

,− log(T − t)

)

= (T − t)
1

p−1u(x, t). (65)

From (63), we have |y1| = |y.e1| =
∣

∣

∣

x−b√
T−t

.Q̃be1

∣

∣

∣. Since Qbe1 is a normalized

normal vector to S (see ii) of Proposition 4.4), we have |(x− b).Qbe1| =
d(x, Tb) where Tb is the tangent to S at b. Therefore,

|y1| =
d(x, Tb)√
T − t

. (66)
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Combining this with (63), (64) and (65) concludes the Proof of Corollary
4.5.

Proof of Proposition 2 :
Given x near S (= ImA locally), Corollary 4.5 gives different asymp-

totic behaviors for u(x, t), depending on the choice of the point b ∈ ImA ∩
B(x,K0

√

(T − t)| log(T − t)|). All these possible behaviors have to agree,
up to the error term in Corollary 4.5. This implies a geometric constraint
on S, which gives some more regularity on A (and ϕ).
We consider some |x2| < δ1 and some h ∈ R such that |x2 + h| < δ1. Since
A is C1, there is C∗ such that

|ϕ′(x2)| ≤ C∗ and |A(x2 + h) −A(x2)| ≤ C∗|h|. (67)

For any time t > t0 such that |A(x2) −A(x2 + h)| ≤
√

(T − t)| log(T − t)|,
we can estimate u(A(x2 + h), t) from Corollary 4.5 in two ways :

- First by taking x = b = A(x2 + h), which gives

∣

∣

∣
(T − t)

1
p−1u(A(x2 + h), t) − f(0)

∣

∣

∣
≤ C ′

0(1)
log | log(T − t)|
| log(T − t)| . (68)

- Second, by taking b = A(x2), x = A(x2 + h), which gives
∣

∣

∣

∣

(T − t)
1

p−1u(A(x2 + h), t) − f

(

d(A(x2+h),TA(x2))√
(T−t)| log(T−t)|

)∣

∣

∣

∣

≤ C ′
0(1)

log | log(T−t)|
| log(T−t)| .

(69)

Now, if we fix t = t(x2, h) such that

|A(x2 + h) −A(x2)| =
√

(T − t(x2, h))| log(T − t(x2, h))| (70)

and take |h| < h1(t0) for some h1(t0) > 0, we see from (67) that t(x2, h) ≥ t0,
hence (68) and (69) hold. Therefore,
∣

∣

∣

∣

∣

f(0) − f

(

d
(

A(x2 + h), TA(x2)

)

|A(x2 + h) −A(x2)|

)∣

∣

∣

∣

∣

≤ 2C ′
0(1)

log | log(T − t(x2, h))|
| log(T − t(x2, h))|

. (71)

Note that since A(x2) ∈ TA(x2), we have
d(A(x2+h),TA(x2))

|A(x2+h)−A(x2)| ≤ 1. Therefore, (9)
implies that there is C > 0 such that

C

[

d(A(x2 + h), TA(x2))

|A(x2 + h) −A(x2)|

]2

≤
∣

∣

∣

∣

∣

f(0) − f

(

d
(

A(x2 + h), TA(x2)

)

|A(x2 + h) −A(x2)|

)∣

∣

∣

∣

∣

(72)
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Since ImA is the graph of ϕ, we have

d
(

A(x2 + h), TA(x2)

)

=
|ϕ(x2 + h) − ϕ(x2) − hϕ′(x2)|

√

1 + ϕ′(x2)2
. (73)

If τ(d) is given by d =
√

τ | log τ |, then

log τ ∼ 2 log d and log | log τ | ∼ log | log d| as d→ 0.

Therefore, log | log τ |
| log τ | ≤ log | log d|

| log d| if |d| ≤ d0 for some d0 > 0. Combining this

with (70) and (67), we have for all |x2| < δ1 and |h| < h0 for some h0 > 0
such that |x2 + h| ≤ δ1,

log | log(T − t(x2, h))|
| log(T − t(x2, h))|

≤ log | log |A(x2 + h) −A(x2)||
| log |A(x2 + h) −A(x2)||

≤ C
log | log |h||
| log |h|| .

(74)

Combining (72), (73), (71), (74) and (67) closes the proof of Proposition 2.

5 Blow-up profile at a non isolated blow-up point

with the behavior (4)

We prove Theorem 3 in this section.
Step 1 : Asymptotic behavior in self similar variables around

the blow-up set
We prove (10) in this step. This follows from Corollary 4.5 by taking

b = PS(x), the orthogonal projection of x on S. Indeed, take t ≥ t0 and
x ∈ B(0, δ) such that d(x, S) ≤ K0

√

(T − t)| log(T − t)|. We define PS(x)
as the orthogonal projection of x on S. We claim that PS(x) ∈ B(0, 2δ),
hence PS(x) ∈ graphϕ = ImA by (8). Indeed, |x − PS(x)| ≤ |x − 0|
since 0 ∈ S, therefore, |PS(x)| ≤ |PS(x) − x| + |x| ≤ 2|x| < 2δ. Since
|x− PS(x)| = d(x, S) ≤ K0

√

(T − t)| log(T − t)| and d(x, TPS(x)) = d(x, S),
(10) follows directly from Corollary 4.5 applied with b = PS(x).

Step 2 : Limiting profile in the original set of variables, near
the blow-up set

We prove (11) here. This follows from (10) and the uniform ODE com-
parison property of Proposition 2.2. Define t(d) such that

d =
√

(T − t(d))| log(T − t(d)). (75)
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For all x ∈ B(0, δ)\S and (ξ, τ) ∈ R
N × [− t(d(x,S))

T−t(d(x,S)) , 1), we introduce

v(x, ξ, τ) = (T − t̃)
1

p−1u
(

x+ ξ
√

T − t̃, t+ τ(T − t̃)
)

(76)

where t̃ = t(d(x, S)). From (10), (76) and Proposition 2.2, we know that
there is ε0 > 0 such that for all ε > 0, there is Cε such that if d(x, S) < ε0
and (ξ, τ) ∈ R

N × [− t(d(x,S))
T−t(d(x,S)) , 1), then

|∂τv − |v|p−1v| ≤ ε|v|p +Cε(T − t(d(x, S)))
p

p−1

|v(x, 0, 0) − f(1)| ≤ C ′
0(1)

log | log(T−t(d(x,S)))|
| log(T−t(d(x,S)))| .

Therefore, for all ε > 0, there is η(ε) > 0 such that if d(x, S) < η, then

|∂τv − |v|p−1v| ≤ ε(|v|p + 1) and |v(x, 0, 0) − f(1)| ≤ ε. (77)

This implies that

sup
τ∈[0,1)

|v(x, 0, τ) − v0(τ)| → 0 as d(x, S) → 0 (78)

where v0(τ) =

(

(p− 1)(1 − τ) +
(p− 1)2

4p

)− 1
p−1

(79)

is the solution of v′0(τ) = v0(τ)
p, v0(0) = f(1), defined in particular for

all τ ∈ [0, 1]. Moreover, sup
τ∈[0,1)

|∂τv(x, 0, τ)| ≤ 2 sup
τ∈[0,1]

|∂τv0(τ)| for d(x, S)

small. Therefore, for d(x, S) small, v(x, 0, τ) has a limit as τ → 1, hence
(76) implies that u(x, t) has a limit u∗(x) as t → T . Using (78) and (76),
we see that

u∗(x) ∼ (T − t(d(x, S)))
− 1

p−1 v0(1) as d(x, S) → 0. (80)

We claim that

(T − t(d))
− 1

p−1 v0(1) ∼
(

d2

| log d|
(p− 1)2

8p

)− 1
p−1

as d→ 0. (81)

Indeed, v0(1) =
(

(p−1)2

4p

)− 1
p−1

from (79), log(T − t(d)) ∼ 2 log d and T −
t(d) ∼ d2

2| log d| as d → 0 from (75). (11) then follows from (80) and (81).
This closes the proof of Theorem 3.
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6 The higher dimensional case

We sketch the proof of Theorem 4 here. We need to review the proofs of
Theorems 1, 3 and Proposition 2 to adapt them to the new context. We
shall stress the most delicate points in the adaptation of Theorem 1 and
Proposition 2. Once this is done, Theorem 3 extends in a natural way to
higher dimensions, so we don’t discuss it here.

If N ≥ 3, we consider a non isolated blow-up point â where u has the
behavior (4) with l < N . We may take â = 0 and Q̃â = Id. According to
[24], S satisfies near â the (N − l)-cone property :
Definition 4.1’ ((N − l)-cone property and weak tangent plane)
Consider a set E ⊂ R

N .
i) E is said to have the (N − l)-cone property at some point a ∈ E if there
is π a (N − l) subspace such that for all ε > 0, there is δ(a, ε) > 0 such that

E ∩B(a, δ) ⊂ Ωa,π,ε ≡ {x | |Pπ(x− a)| ≥ (1 − ε)|x− a|}

where Pπ is the orthogonal projection over π. π is then called the weak
tangent plane of E at a.
ii) E is said to have the uniform (N − l)-cone property at some subset
F ⊂ E if for all ε > 0 and a ∈ F , E has the (N − l)-cone property at a with
δ(a, ε) = δ(ε).
Remark : Ωa,π,ε is a cone with vertex a. It shrinks to a+ π as ε→ 0.
We have the following consequence of [24] :

Lemma 6.1 (Velázquez, (N − la)-cone property for S near a point
with the behavior (4)) If u has the behavior (4) (or (23)) near a, then S
satisfies the (N − l)-cone property at a. The weak tangent plane is spanned
by Q̃aej, j = la + 1, ..., N .

Proof : See Theorem 2 in [24].
Therefore, S has a weak tangent plane at â = 0, spanned by ej , j = l +
1, ..., N . One would expect S to be locally of dimension N − l near â.
However, we are unable to prove that S is a continuum near â. Therefore,
we assume there is a ∈ C((−1, 1)N−l,RN ) such that a(0) = â = 0 and
Im a ⊂ S where Im a is at least (N − l) dimensional in the sense that

∀b ∈ Ima, there are (N − l) independent vectors v1, ..., vN−l in R
N and

a1, .., aN−l functions in C1([0, 1], S) such that ai(0) = b and a′i(0) = vi.

(82)

29



This hypothesis means that b is actually non isolated in (N− l) independent
directions. We also assume that â = 0 is not an endpoint in Im a in the
sense that

∀ε > 0, the projection of a((−ε, ε)N−l) on the weak tangent plane
at â = 0 contains an open ball with center â = 0.

(83)

Let us first show the stability result of section 3 in the case N ≥ 3.

6.1 Stability of the behavior (4)

Since we have taken â = 0 and Q̃â = Id, (4) implies that

sup
|z|≤K0

∣

∣

∣
(T − t)

1
p−1u(z

√

(T − t)| log(T − t)|, t) − f(|z ′|)
∣

∣

∣
→ 0 as t→ T

where f is defined in (9) and z = (z1, z2, ..., zN ) ≡ (z′, zl+1, ..., zN ). Section
2 then implies that

v0 ∼ v0,2 and w0(y, s) − κ = v0(y, s) ∼
κ

2ps

(

l − |y′|2
2

)

as s→ ∞ (84)

where y′ = (y1, ..., yl). We claim that Proposition 3.1 holds here (with
the obvious changes a(−σ0, σ0) → a

(

(−σ0, σ0)
N−l

)

, 2 × 2 → N × N and

y2
1 →

l
∑

i=1

y2
i ).

Proof of Proposition 3.1 in higher dimensions :
Let us follow the 4 steps of the proof given in section 3.

Step 1 : Uniform reduction to a finite dimensional problem
This step holds as it is in section 2.

Step 2 : A spectral study of the finite dimensional problem
We should define N eigenvalues of Aa(s), la,i(s), C

1 as functions of s.
The multi-function {la,i(s), i = 1, ..., N} is continuous in terms of (a, s) ∈
S × [− log T,∞). Corollary 3.4 has to be changed formally. The following
Proposition crucially uses the (N − l) dimensionality property of Im a.
Corollary 3.4’ (Higher dimensional version of Corollary 3.4)
i) (Non uniform behavior of va) For all |σ| < σ1, (23) holds with la ≤ l.
In particular, Aa(s) = −β

s Q̃aIlQ̃
T
a +O(s−1−δa) where Il is a N×N diagonal

matrix with Il,ii = 1 if i ≤ la and Il,ii = 0 if i ≥ la +1. Moreover, Aa(s) has
(N − la) (hence, at least (N − l)) eigenvalues equal to O(s−1−δa), while the

30



others are equal to −β
s +O

(

s−1−δa
)

.
ii) (Equations on eigenvalues) For all ε > 0, there is s1(ε) such that for
all |σ| < σ1, i = 1, ..., N and s ≥ s1(ε),

|l′a,i(s) −
1

β
la,i(s)

2| ≤ ε
N
∑

j=1

la,j(s)
2

where la,j(s) are the eigenvalues of Aa(s).

Proof : i) From Proposition 3.1, we have va ∼ va,2 as s→ ∞ for all |σ| < σ1,
hence (23) holds as stated in section 2.1. Lemma 6.1 then implies that
u satisfies the (N − la)-cone property at a and therefore, S has a (N −
la) dimensional weak tangent plane at a. This plane contains the (N − l)
independent directions in property (82). Therefore, la ≤ l. The estimate for
Aa then follows from (20), and gives the estimate for eigenvalues.
ii) See the proof of ii) of Corollary 3.4.

At the point a(0) = 0, we know from (84) that l0 = l. Using Corollary
3.4’, we can rename the eigenvalues of A0(s) such that

∀i = 1, .., l, λ0,i(s) ∼ −β
s

and ∀j = 1, .., N − l, µ0,j(s) = o

(

1

s

)

as s→ ∞.

(85)

We claim then that Proposition 3.5 holds with eigenvalues λa,i for i = 1..., l
and µa,j for j = 1..., N − l instead of (λa, µa).

Proof of Proposition 3.5 in higher dimensions : We should fix a new
ε̂ > 0 and take s3 = s1(ε̂) defined in Proposition 3.2. From (85) and the
continuity of eigenvalues with respect to a, we can find σ3 ∈ (0, σ1) where
σ1 appears in Corollary 3.4, such that

∀|σ| ≤ σ3,
∀i = 1, .., l, |la,τa(i)(s3) + β

s3
| ≤ β

100s3
,

∀i = l + 1, .., N, |la,τa(i)(s3)| ≤ β
100s3

where τa is a permutation of {1..., N}. If we rename the eigenvalues such
that λa,i(s) = la,τa(i) for all i = 1..., l and µa,j = la,τa(l+j) for all j = 1..., N−l,
then we get

∀|σ| ≤ σ3,
∀i = 1, .., l, |λa,i(s3) + β

s3
| ≤ β

100s3
,

∀j = 1, .., N − l, |µa,j(s3)| ≤ β
100s3

.
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Lemma 3.6 and its proof hold with the change Na(s) =
l
∑

i=1

λ2
a,i +

N−l
∑

j=1

µ2
a,j .

Lemmas 3.7 and 3.8 then hold, with (λa, µa) replaced by (λa,i, µa,j) and
different constants. Here comes a delicate point before Lemma 3.9 : we need
to prove that (31) holds for all µa,j, for j = 1, ..., N− l. This comes from two
arguments. On one hand, we know from Corollary 3.4’ i) that Aa(s) has at
least N − l degenerate eigenvalues (that is eigenvalues satisfying (31)). On
the other hand, we see from Lemma 3.7 that all degenerate eigenvalues must
be in the set of all µa,j, j = 1., , , .N − l, which contains (N − l) elements.
Therefore, all µa,j are degenerate and satisfy (31).
One can easily see that Lemmas 3.9 and 3.10 extend naturally to N ≥ 3
and hold for each µa,j and λa,i.

Step 3 : Solution of the finite dimensional problem
Proposition 3.11 holds with “N×N” instead of “2×2” and La = QaIlQ

T
a

where Il is a N × N diagonal matrix with Il,ii = 1 if i ≤ l and Il,ii = 0 if
i ≥ l + 1.

Proof of Proposition 3.11 for N ≥ 3 : If N ≥ 3, one needs to find the
asymptotic behavior of all principal minors of order k of the matrix Aa(s)
with k = N, ..., 1, before getting the asymptotic behavior of the coefficients
of Aa(s) (property (46)). This has been done by Filippas and Liu [11],
Proposition 5.1. The continuity of b ∈ a

(

(−σ0, σ0)
N−l

)

→ Lb follows from
(46) as in the case N = 2. Since La is symmetric, it has N eigenvalues which
are the limits as s→ ∞ of − s

βλa,i (i = 1, .., l) and − s
βµa,j (j = 1, ..., N − l),

say 1 (multiplicity l) and 0 (multiplicity N − l), according to Proposition
3.5. Since b → Lb is continuous and the multiplicities of eigenvalues 0
and 1 are independent of b, we can define continuous eigenvectors for Lb

(see Oustry and Overton [22], corollary 2.5). Therefore, we can define a
N×N orthogonal matrix Qb, continuous in terms of b, diagonaling Lb. This
concludes the proof of Propositions 3.11 in the higher dimensional case.

Step 4 : Asymptotic behavior of wa in L2
ρ

This step extends naturally to N ≥ 3, which concludes the proof of
Proposition 3.1.

6.2 Regularity of the blow-up set

We prove here the part of Theorem 4 equivalent to Theorem 1. For this, we
adapt section 4 to the case N ≥ 3.

Step 1 : The (N − l)-cone property for Im a
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We claim the following :
Proposition 4.2’ (Uniform (N − l)-cone property for S at points of
Im a)
i) S has the uniform (N − l)-cone property at a

(

(−σ0, σ0)
N−l

)

. The weak
tangent plane πa(σ) at a(σ) is spanned by Qa(σ)ej, j = l+ 1, ..., N , where ej

is the j-th vector of the canonical basis of R
N .

ii) Q0 = Id and the weak tangent plane has an orthogonal basis
(Qbej , j = l + 1, ..., N) continuous as a function of b ∈ a

(

(−σ0, σ0)
N−l

)

.
Remark : If j ≥ l+1, then Qbej is a degenerate direction in the asymptotic
expansion of iii) in Proposition 3.1. If j ≤ l, then Qbej is a non degenerate
direction.
Proof : ii) follows directly from i) by ii) of Proposition 3.1. The proof of i)
in the case N = 2 extends naturally to the case N ≥ 3. Just note that y2

a,x,1

and y2
a,x,2 should be replaced respectively by

l
∑

i=1

y2
a,x,i and

N
∑

j=l+1

y2
a,x,j.

Step 2 : S as the graph of a C1 function.
The part of Theorem 4 equivalent to Theorem 1 follows from the follow-

ing :
Proposition 4.4’ (S as the graph of a C1 function)
i) There exist δ1 > 0 and A ∈ C([−δ1, δ1]N−l,RN ) such that

ImA = a
(

(−σ0, σ0)
N−l

)

∩ B̃(0, δ1) = S ∩ B̃(0, δ1), (86)

where B̃(0, δ1) = {x | ∀i = 1, .., N , |xi| ≤ δ1} and

∀(xl+1, ..., xN ) ∈ [−δ1, δ1]N−l, ∀j = l + 1, ..., N, A(xl+1, ..., xN ).ej = xj

(87)

ii) A ∈ C1([−δ1, δ1]N−l,RN ) and the tangent plane to S at a point b ∈
S ∩ B̃(0, δ1) is πb, spanned by Qbej, j = l + 1, ..., N .

Proof : The “no-end-point” property of â = 0 in Im a stated in (83)
is apparently different from (7) stated for N = 2. That is why we should
carefully define A here. Once this is done, one should follow the case N = 2
to finish the proof.

From the uniform cone property of S at points of Im a (Proposition 4.2’),
there exists δ0 > 0 such that ∀|σ| < σ0, S ∩B(a(σ), δ0) ⊂ Ωa(σ),πa(σ)e2,1/4.

Since a(.) and Qa(.) are continuous, a(0) = 0 and Qa(0) = Id (see ii) of
Proposition 3.1), there exists σ̃0 ≤ σ0 such that for all |σ| < σ̃0, a(σ) ∈
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B(0, δ0
N ), Ωa(σ),Qa(σ)e2,1/4 ⊂ Ωa(σ),e2 ,1/3 and det(ek ,k=l+1,...,N)(Qa(σ)ej , j = l+

1, ..., N) 6= 0. Hence, ∀|σ| < σ̃0,

a(σ) ∈ B(0, δ0
N ) ∩ Ω0,e2,1/4, S ∩B(a(σ), δ0) ⊂ Ωa(σ),e2,1/3 and

det(ek,k=l+1,...,N)(Qa(σ)ej , j = l + 1, ..., N) 6= 0.
(88)

Since Qa(0) = Id, we learn from Proposition 4.2’ that the weak tangent plane
at a(0) = 0 is π0, spanned by ej , j = l + 1., , , .N . Using property (83), we
find δ1(σ̃0) > 0 such that B̃π0(0, δ1) ⊂ Pπ0(a[−σ̃0, σ̃0]

N−l), where

B̃π0(0, δ1) = {x ∈ π0 | |xj | ≤ δ1, for j = l + 1, ..., N}.

This implies that A can be defined on B̃π0(0, δ1), so that (87) holds. One
can then finish the proof of Proposition 4.4’ by just following the proof of
Proposition 4.4.

6.3 A geometric constraint yielding some more regularity

This subsection is dedicated to the higher dimensional version of Proposition
2. Note that from Proposition 4.4’, ImA is the graph of
ϕ ∈ C1

(

[−δ1, δ1]N−l,Rl
)

such that ∀(xl+1, ..., xN ) ∈ [−δ1, δ1]N−l,
A(xl+1, ..., xN ) = (ϕ1, ..., ϕl, xl+1, ..., xN ) where ϕi = ϕi(xl+1, ..., xN ).
Proposition 2 holds with ϕ(x2) replaced by ϕi(xl+1, ..., xN ) and ϕ′ by ∇ϕi.

Proof of Proposition 2 in higher dimensions : Just follow the case N = 2
with A(x2) replaced by A(x̃) where x̃ = (xl+1, ..., xN ). The only delicate
point is the equivalent of (73) which is : for all i = 1, ..., l,

d
(

A(x̃+ h̃), πA(x̃)

)

≥

∣

∣

∣
ϕi(x̃+ h̃) − ϕi(x̃) − h̃.∇ϕi(x̃)

∣

∣

∣

√

1 + |∇ϕi(x̃)|2
. (89)

Note that we just need this inequality in our argument.
To prove (89), just note that ImA ⊂ Si, the surface of equation xi =
ϕi(xl+1, ..., xN ). Hence, πA(x̃) ⊂ πi,A(x̃), the (N − 1) dimensional tangent

plane to Si at A(x̃). Therefore, d
(

A(x̃+ h̃), πA(x̃)

)

≥ d
(

A(x̃+ h̃), πi,A(x̃)

)

,

equal to the right hand side of (89) (standard calculations).

A Reduction of the asymptotic blow-up behavior
to a finite dimensional problem

We prove Proposition 3.2 here. The use of the Liouville Theorem is crucial
here. The proof is the same as in the proof of Proposition 1.11 and 1.12 in
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[8]. All is about stability, with respect to initial data in [8], and with respect
to the blow-up point here. For this reason, we just sketch the proof and refer
to [8] for the proofs.

We know from (25) that w0(y, s) → κ as s → ∞ in L2
ρ. If a is a blow-

up point near 0, we know from (15) that wa → ±κ as s → ∞. Only +κ is
selected because of the following local constant sign property for u, which is a
direct consequence of the positivity of u for x = 0, and the ODE comparison
of Proposition 2.2.

Lemma A.1 (Constant sign property of u for (x, t) close to (0, T ))
There exists δ > 0 such that

∀t ∈ [T − δ, T ), ∀x ∈ B(0, δ), u(x, t) ≥ 0.

Proof : See corollary 1.8 in [8].
The Liouville Theorem of Proposition 2.1 allows us to show that va ≡ wa −
κ → 0 as s → ∞ in L2

ρ, uniformly for a in a neighborhood of 0. This
uniformity is a central argument in our proof.

Lemma A.2 (Uniform smallness of va) There exists σ̃2 > 0 such that
i) sup

|σ|<σ̃2

‖va(s)‖L2
ρ
→ 0 as s→ ∞,

ii) For all R > 0, sup
|σ|<σ̃2

(

sup
|y|<R

|va(y, s)|
)

→ 0 as s→ ∞.

Proof : See Proposition 1.10 in [8].
Note that this Lemma yields the first estimate of Proposition 3.2. We know
from (22) that for each a, either va ∼ va,2 or va ∼ va,− as s → ∞. (25)
shows that v0 ∼ v0,2, its neutral mode, as s→ ∞. The predominance of the
neutral mode turns out to be a stable behavior for solutions of (17). Indeed :

Lemma A.3 (Uniform stability of the dynamics where v2 is pre-
dominant) There exists σ̃4 with the following property :
i) There exists s∗ such that for all |σ| < σ̃4 and s0 ≥ s∗,

if Xa(s0) ≥ Ya(s0) + Za(s0), then ∀s ≥ s0, Xa(s) ≥
1

2
(Ya(s) + Za(s))

where

Xa(s) = ‖va,2(s)‖L2
ρ
, Ya(s) = ‖va,−(s)‖L2

ρ
+ ‖|y| k

2 va‖2
ρ
, Za(s) = ‖va,+(s)‖L2

ρ
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and k = k(M) > 0 (where M is defined in (14)) is fixed.
ii) For all ε > 0, there exists s3(ε) such that for all |σ| < σ̃4 and s ≥ s3(ε),

Ya(s) + Za(s) ≤ εXa(s).

Proof : See Proposition 1.11 in [8].
This lemma yields the second estimate of Proposition 3.2, namely the fact
that va ∼ va,2 as s → ∞, uniformly in a(σ). Therefore, the study of (17)
reduces to the study of its projection over the neutral mode, va,2, where, of
course, one should take into account the quadratic term. This leads to the
equation stated in ii) of Proposition 3.2 (Aa is the matrix of the components
of va,2, thanks to (21)). See Proposition 1.12 in [8] for a proof.

This closes the proof of Proposition 3.2.

B A refined equation on the neutral mode of (17)

We prove Lemma 3.8 here. We first prove (29). We claim the following :

Claim B.1 (Control of va(s) in Lr
ρ) For all r > 1, there exists C(r) > 0

and s∗0(r) > 0 such that for all |σ| < σ3 and s ≥ s3 + s∗0(r),

(∫

|va(y, s)|rρ(y)dy
) 1

r

≤ C(r)

s
.

Proof :
If r = 2, we use Lemma 3.7 to get |Aa(s)| ≤ Cs−1, hence ‖va,2(s)‖L2

ρ
≤ Cs−1

by (21). Since ‖va(s)‖L2
ρ
∼ ‖va,2(s)‖L2

ρ
as s → ∞ (uniformly for |σ| < σ3),

we get the estimate with some s∗0(2).
If r 6= 2, we combine the case r = 2 with the following regularizing effect of
the operator L.

Claim B.2 (Herrero-Velázquez) If va satisfies (17), then for all r > 1,
there exists s̃0(r) and C(r,M) such that

(∫

|va(y, s)|rρ(y)dy
)1/r

≤ C

(∫

|va(y, s− s̃0)|2ρ(y)dy
)1/2

.

Proof : See Lemma 2.3 in [14]. This closes the proof of Claim B.1.
(29) follows if we prove that for all |σ| < σ3 and s ≥ s′3 for some s′3 ≥ s3,

z′a(s) ≥ 1

2
za(s) −

C

s2
(90)

y′a(s) ≤ −1

2
ya(s) +

C

s2
(91)
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where za(s) = ‖va,+(s)‖L2
ρ

and ya(s) = ‖va,−(s)‖L2
ρ
. Indeed, integrating (90)

between s and +∞ and (91) between s′3 and s, we obtain for all |σ| < σ3

and s ≥ s′3,

za(s) ≤ Ces/2

∫ ∞

s
e−t/2t−2dt ≤ C ′s−2

ya(s) ≤ e−(s−s′3)/2ya(s
′
3) + C

∫ s

s′3

e−(s−t)/2t−2dt < C ′s−2

(Note that ya(s) + za(s) ≤ ‖va(s)‖L2
ρ
≤ ‖va(s)‖L∞ ≤ M + κ by (14)). Now

we prove (90). (91) follows in the same way.
Projecting (17) on the positive eigenspace of L, we get

∂sva,+ = Lva,+ + P+(f(va))

where P+ is the corresponding L2
ρ orthogonal projector. Multiplying this by

va,+ρ and integrating over R
N , we get

1

2

d

ds

∫

v2
a,+ρ =

∫

Lva,+.va,+ρ+

∫

P+(f(va))va,+ρ

≥ 1

2

∫

v2
a,+ρ−

(∫

v2
a,+ρ

)1/2 (∫

P+(f(va))
2ρ

)1/2

where we used Cauchy-Schwartz’s inequality.
Since P+ is a L2

ρ projector and f is quadratic, we have

(
∫

[P+(f(va))]
2 ρ

)1/2

≤
(
∫

(f(va))
2ρ

)1/2

≤ C

(
∫

(va)
4ρ

)1/2

.

Using claim B.1, we have for all |σ| < σ3 and s ≥ s3 + s∗0(4),
(∫

v4
aρ
)1/2 ≤

C(4)s−2. Thus, (90) follows with s′3 = s3 + s∗0(4). This closes the proof of
(29).

Now we prove (30). The estimate on eigenvalues is obtained by evalu-
ating the estimate on Aa at eigenfunctions. Therefore, we just focus on Aa.
With (29) and Claim B.1, we are ready to get a refined equation on Aa(s).
Using (20) and (17), we write for all |σ| < σ3 and s ≥ s3,

A′
a(s) = E1 +E2 +E3 (92)
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where

E1 = p
2κ

∫

va,2(y, s)
2M(y)ρ(y)dy,

E2 = p
2κ

∫ (

v2
a − v2

a,2

)

M(y)ρ(y)dy, E3 =
∫

g(va)M(y)ρ(y)dy.

By straightforward calculations, we get from (21)

E1 =
1

β
Aa(s)

2 where β =
κ

2p
. (93)

Recalling that v = va,+ + va,2 + va,− (see (19)), we write

|E2| ≤ C

∫

|v2
a − v2

a,2||M(y)|ρ(y)dy

= C

∫

|va,+ + va,−||va + va,2||M(y)|ρ(y)dy

≤ C

(
∫

|va,+ + va,−|2ρ
)1/2 (∫

|va + va,2|4ρ
)1/4 (∫

|M(y)|4ρ
)1/4

where we used Hölder’s inequality.
Using (29), Claim B.1, and the norm equivalence in the finite dimensional

space (18) where va,2 lays (
∫

|va,2|4ρ ≤ C
(∫

|va,2|2ρ
)2 ≤ C

(∫

|va|2ρ
)2

by
Proposition 3.1), we end-up with

|E2| ≤ Cs−3 for all s ≥ s′′3 (94)

for some s′′3 > s3.
We finally estimate E3. From (20), (17) and Cauchy-Schwartz inequality, we

write |E3| ≤
∫

|g(va)||M(y)|ρ(y)dy ≤ C
(∫

|va|6ρ
)1/2 (∫ |M(y)|2ρ(y)dy

)

=

C
(∫

|va|6ρ
)1/2

. Using Claim B.1, we end-up with

|E3| ≤ Cs−3 for all s ≥ s3 + s∗0(6) (95)

Combining (92), (93), (94) and (95), we obtain the first inequality in (30),
for all |σ| < σ3 and s ≥ s̃3 for some s̃3 ≥ s3. This closes the proof of Lemma
3.8.

C Asymptotic behavior in the y√
s

variable

We prove iii) of Proposition 3.1 here. We follow Velázquez’s work in [24]
(Proposition 2.3), with a special care to the convergence speed and to the
uniformity with respect to blow-up points.
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Define

ϕ(y, s) =

(

p− 1 +
(p− 1)2

4p

y2
1

s

)− 1
p−1

+
κ

2ps
and qa = wa − ϕ.

Straightforward calculations based on (13) and i) of Proposition 3.1 yield
for all |σ| < σ0 and s ≥ s0,

{

∀y ∈ R
N , ∂sqa = (L + V )qa +B(qa) +R(y, s),

‖qa(s)‖L2
ρ
≤ C0

log s
s2

(96)

where

L = ∆ − 1
2y.∇ + 1, V (y, s) = pϕp−1 − p

p−1

B(q) = |ϕ+ q|p−1(ϕ+ q) − ϕp − pϕp−1q,
R(y, s) = −∂sϕ+ ∆ϕ− 1

2y.∇ϕ− ϕ
p−1 + ϕp.

(97)

Let us introduce the following norm

L2,r
ρ (ψ) = sup

|ξ|<r

(∫

|ψ(y)|2ρ(y − ξ)dy

)1/2

.

Velázquez’s idea in [24] is to make estimates on solutions of (96) in the L
2,r(τ)
ρ

norm where r(τ) = K0e
τ−s0

2 ≤ K0
√
τ . The following is proved in [24] :

Lemma C.1 For all C3 > 0 and K3 > 0, there is s3(C3,K3) > 0 such that
if Z(y, s) satisfies

{

∂sZ ≤ (L + C3
s )Z + C3

(

Z2 + 1+|y|2
s2 + 1{|y|>2K3

√
s}
)

,

0 ≤ Z(y, s) ≤ C3,
(98)

for all (y, s) ∈ R
N × [s3,∞), then, for all s′ ≥ s3 and τ ∈ [s′, s], we have

g(τ) ≤ C4(C3)

[

eτ−s′
(

‖Z(s′)‖L2
ρ

+
log s′

s′2

)

+

∫ (τ−2K3)+

s′

eτ−t−2K3g(t)2
(

1 − e−(τ−t−2K3)
)1/20

dt

]

where g(τ) = L
2,r(K3,τ,s′)
ρ (Z(τ)), r(K3, τ, s

′) = K3e
τ−s′

2 , e
s−s′

2 =
√
s and

h+ = max(h, 0).

39



Proof : See Proposition 2.3 in [24] (in particular, pages 1575-1581).

Let us apply this to our case (96). It is readily seen from (97) that for
all K0 > 0, there is C2(K0,M) (M is defined in (14)) such that

V (y, s) ≤ C2
s , |B(q)| ≤ C2

(

|q|2 + 1{|y|≥2K0
√

s}
)

.

|R(y, s)| ≤ C2

(

1+|y|2
s2 + 1{|y|≥2K0

√
s}
) (99)

(one may consider first the case |y| ≥ 2K0
√
s and then |y| ≤ 2K0

√
s and

make a Taylor expansion for ξ = y√
s

bounded).

If Za = |qa|, then we use Kato’s inequality ∆g. sgn(g) ≤ ∆(|g|) to derive
from (96) and (99) the following :
For all K0, there is C2(K0,M) > 0 such that for all |σ| < σ0 and s ≥ s0,
{

∀y ∈ R
N , ∂sZa ≤ (L + C2

s )Za + C2

(

Z2
a + 1+|y|2

s2 + 1{|y|≥2K0
√

s}
)

,

‖Za(s)‖L2
ρ
≤ C0

log s
s2 .

(100)

We claim the following :

Claim C.2 For all K0 > 0, there exists C6 > 0 and s6 such that for all
|σ| < σ0 and s ≥ s6,

L2,K0
√

s
ρ (Za(s)) ≤ C6

log s

s
.

Proof : Consider K0 > 0. Fix s5(K0) ≥ 2max (s3(C2(K0,M),K0), s0) such
that for all s ≥ s5,

s
2 − log s ≥ 0 where C2, s3 and M are defined in (100),

(14) and Lemma C.1. If s ≥ s5 and s′ is defined by e
s−s′

2 =
√
s, then it is

readily seen that s′ = s− log s ≥ s
2 ≥ max(s3, s0). Therefore, we have from

(96), (100) and lemma C.1 : for all |σ| < σ0, for all τ ∈ [s′, s],

g(τ) ≤ C ′
5(C0,K0,M)

[

eτ−s′ log s
′

s′2
+

∫ (τ−2K0)+

s′

eτ−t−2K0g(t)2
(

1 − e−(τ−t−2K0)
)1/20

dt

]

where g(τ) = L
2,r(K0,τ,s′)
ρ (Za(τ)) and r(K0, τ, s

′) = K0e
τ−s′

2 .
By a standard Gronwall estimate (see Lemma 2.2 in [24]), there is
s6(C0,K0) ≥ s5 and C5(C0,K0) > C ′

5 such that if s ≥ s6, then for all

τ ∈ [s′, s], g(τ) ≤ C5e
τ−s′ log s′

s′2
.

If τ = s, then we get L
2,K0

√
s

ρ (Za(s)) ≤ C5e
s−s′ log s′

s′2
≤ 2C5

log s
s . This finishes

the proof of Claim C.2.

To conclude the proof, we use the following result from [24] :

40



Claim C.3 Assume that Z satisfies (98), then

sup
|y|≤K3

2

√
s

|Za(y, s)| ≤ C(C3,K3)L
2,K3

√
s

ρ (Za(s)) .

Proof : See Proposition 2.3 in [24] (in particular, page 1581).

Thus, for all |σ| < σ0 and s ≥ s6,

sup
|y|≤K0

2

√
s

|Za(y, s)| ≤ C(K0, C0,M)
log s

s
.

Since |wa(y, s) − f1(
y√
s
)| ≤ Za + κ

2ps , this concludes the proof of iii) of

Proposition 3.1.
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