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JEAN-FRANÇOIS BONY, SETSURO FUJIIÉ, THIERRY RAMOND, AND MAHER ZERZERI

Abstract. In this survey, we present some precise results concerning spectral and scattering
problems for the Schrödinger equation in the semiclassical regime, that we have obtained in
a series of papers [BFRZ1, BFRZ2, BFRZ3, ABR]. As one can expect, properties of the
underlying classical system play a crucial role in this regime, and we have studied the case
where there exists one hyperbolic fixed point for the associated Hamiltonian flow. This occurs
for example when the potential has a local maximum. A lot is encoded in what we call a
microlocal Cauchy problem at the fixed point, that we describe here with some details. In a
physicist language, the study of this microlocal Cauchy problem is that of the n-dimensional
tunneling effect at the hyperbolic fixed point.

1. Introduction

In this survey, we sum up different results obtained in a series of paper [BFRZ1, BFRZ2,
BFRZ3, ABR] concerning spectral or scattering quantities attached to the semiclassical
Schrödinger operator on L2(Rn)

(1.1) P = −h2∆+ V (x),

and the corresponding classical Hamiltonian

(1.2) p(x, ξ) =

n∑

j=1

ξ2j + V (x).

Here h is a small positive parameter, x = (x1, x2, . . . , xn), ξ = (ξ1, ξ2, . . . , ξn) and V (x) is a
real-valued smooth potential.

We suppose that V (x) has a local non-degenerate maximum E0 at a point, say at the origin
x = 0. We investigate the asymptotic behavior as h→ 0 of solutions to the equation

(1.3) Pu = Eu,

when the spectral parameter E is in a vicinity of size O(h) of E0. Of course we are in a
setting where tunnel effect occurs at the barrier top. We shall see quantitatively that, for
such energies, tunneling governs the behaviour of the physical quantities we are interested in.

Here, we have chosen to concentrate on a scattering situation, namely we assume that
E0 > 0 and V (x) → 0 as |x| → +∞. In this setting, we shall describe some results concerning
resonances for the Schrödinger operator P .

In physics, the notion of quantum resonance has appeared at the beginning of quantum
mechanics. Its introduction was motivated by the behavior of various quantities related to
scattering experiments, such as the scattering amplitude, the scattering cross-section, or the
time-delay (the derivative of the spectral shift function). At certain energies, these quantities
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present peaks (now called Breit-Wigner peaks), which were modelized by a Lorentzian shaped
function

wa,b : λ 7−→ 1

π

b

(λ− a)2 + b2
·

The real numbers a and (πb)−1 > 0, stand for the location of the maximum of the peak
and its height. The number 2b is the width of the peak (more precisely its width at half its
height). Of course for ρ = a− ib ∈ C, one has

wa,b(λ) = − 1

π

Im ρ

|λ− ρ|2 ,

and the complex number ρ was called a resonance. Such complex values for energies had
also appeared for example in the work [Ga] by Gamow, to explain α-radioactivity. In that
context, the inverse of the imaginary part of the resonance appears to be the half-life time of
the corresponding pseudoparticle.

On the mathematical side, the study of resonances for Schrödinger operators has a shorter
story. It has permitted to give a rigorous framework and to obtain very precise results,
in particular on the location of resonances in relation with the geometry of the underlying
classical flow. One of the most efficient mathematical definitions of resonances is based on the
notion of complex scaling (see, e.g., [AgCo, BaCo, Sim, Hu, Sig, Cy, Na1, Na2, HeSj3, SjZw]).
As a matter of fact, resonances, both in the physical sense and in the mathematical one,
are poles in the lower half plane, say, of a suitable meromorphic extension of the resolvent
(P − E)−1 from the upper half plane through the essential spectrum of P (the positive real
axis).

In a semiclassical regime, one expects, according to Bohr’s correspondence principle, that
the underlying classical system shows up in the discussion. As a matter of fact, in our settings,
classical quantities play the main role. Since works by Hörmander and others, the usual way
to make the link between the quantum quantities and the classical ones is to use the language
of microlocal analysis, here in the semiclassical setting. In particular we shall say that a
function u ∈ L2(Rn) is microlocally zero at a point (x0, ξ0) of the phase space, meaning that
there exists a smooth cut-off function χ, with χ(x0, ξ0) = 1, such that

χw(x, hD)u(x) = O(h∞).

Here χw(x, hD) stands for the semiclassical Weyl quantization of the cut-off function χ (see
Definition 2.4 below).

Of course, the key to the study of resonances is to have a good knowledge of the solutions u
to the Schrödinger equation (1.3) for energies E close to the barrier top energy E0, and more
precisely their asymptotic (or WKB) behaviour as h→ 0. In fact, the behaviour of u outside
of a compact set is rather clear since V is close to 0 there, and the main difficulty is to obtain
a sharp enough description of u in a vicinity of the maximum point. More precisely, it appears
that the microlocal behaviour of u in a neighborhood of the hyperbolic fixed point in the phase
space, is the only thing that matters. The function v = χwu, that is the function u truncated
microlocally near the hyperbolic fixed point, satisfies the microlocal Cauchy problem

(1.4)

{
Pv = Ev microlocally near the fixed point,

v has a prescribed behaviour in some incoming region.

This kind of microlocal Cauchy formulation is analogous to some normal form reduction, but
can be used in more general geometric settings. Moreover this approach avoids the use of an
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abstract reduction operator, and the solution of the problem (1.4) can be written explicitly.
In the present case, the study of the microlocal is given in Section 2. The knowledge of the
solution v of (1.4) allows to obtain the asymptotic behaviour of the solution u to (1.3), and,
eventually, to compute the physical quantities we study.

Among the applications of this microlocal study, we focus here on the two following ones:

• Describe the behaviour of the Schrödinger group, in the case where the potential
V has the form of a single barrier of height E0, for energies close to E0. It turns
out that the semiclassical expansion of this evolution operator involves resonances
created by the barrier top. The results in section 2 are applied to compute the non
orthogonal projection operator corresponding to each resonance, which appears in the
representation formula of the evolution operator.

• Prove the existence of a resonance free zone, i.e. give an estimate from below of
the imaginary part of resonances, when the classical system possesses a homoclinic
orbit. The results in section 2 together with the standard Maslov theory enable us to
compute the decay of microlocal solution after a continuation along the homoclinic
trajectories. This leads us to a contradiction if a resonance is assumed to be close
enough to the real axis.

2. Connection of microlocal solutions near a hyperbolic fixed point

In this section, we assume

(A1) V (x) is a real-valued smooth function near the origin and the origin is a non-degenerate
maximal point.

In suitable coordinates, the Taylor expansion at the origin can be written in the form

(2.1) V (x) = E0 −
n∑

j=1

λ2j
4
x2j +O(x3) as x→ 0,

with maximal value E0 and positive constants

0 < λ1 ≤ λ2 ≤ · · · ≤ λn.

2.1. A model in dimension 1. In the rest of the paper, we shall study the general, n-
dimensional case, but to start with, we recall here some well-known results concerning the
simplest one-dimensional operator with such a hyperbolic fixed point. We study the asymp-
totic expansion of the solutions to the one-dimensional Schrödinger equation

(2.2) Pu :=

(
−h2 d

2

dx2
− λ2

4
x2
)
u = hzu,

with respect to the semiclassical parameter h → 0. Here λ is a positive constant, and z is
a spectral parameter bounded with respect to h. The potential −λ2x2/4 presents a non-
degenerate barrier at x = 0 and the energy E = hz is close to the maximum value E0 = 0. In
this one dimensional simple case, we describe here the solutions in terms of Weber functions.

If z = −iλ
(
k + 1

2

)
, k ∈ N := {0, 1, 2, . . .}, there exists a solution

uk(x, h) = Hk

(
e−πi/4

√
λ

h
x

)
eiλx

2/(4h),
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where Hk is the Hermite polynomial of degree k. The function uk is an outgoing wave for
x → ±∞ (in the sense that its microsupport is included in the outgoing stable manifold of
the corresponding classical Hamiltonian vector field, see subsections 2.2 and 2.3).

If z ∈ C \ −iλ
(
N+ 1

2

)
, i.e. if ν := iz/λ− 1/2 /∈ N, then

(2.3) uν(x, h) := Dν

(
e−πi/4

√
λ

h
x

)
,

is a solution to (2.2). Here

Dν(y) =
1

Γ(−ν)

∫ ∞

0
exp

(
−
(
y2

4
+ yη +

η2

2

))
η−ν−1dη,

is the Weber function. For any cutoff function χ which is identically equal to 1 on an interval
[0, R], we define

(2.4) Iν(x, h) =

∫ ∞

0
exp

(
iλ

h

(
x2

4
+ xξ +

ξ2

2

))
ξ−ν−1χ(ξ) dξ.

Then we see

Proposition 2.1. i) Iν(x, h) is a quasimode, i.e. for |x| < R, we have

(P − hz)Iν(x, h) = O(h∞).

ii) The solution (2.3) satisfies uν(x, h) = Cte · Iν(x, h) +O(h∞) on L2([−R,R]).
iii) Suppose ν stays in a compact subset of C \N for any h small enough. Then Iν has an

asymptotic expansion in powers of h uniformly for x in any compact subset of R \ {0}: for
x > 0, there exists a symbol a(x, h) ∼∑∞

k=0 ak(x)h
k with a0 = 1 such that

Iν(x, h) = e−πiν/2Γ(−ν)
(
λx

h

)ν

eiλx
2/(4h)a(x, h)

and, for x < 0, there exist symbols b(x, h) ∼ ∑∞
k=0 bk(x)h

k with b0 = 1 and c(x, h) ∼∑∞
k=0 ck(x)h

k with c0 = 1 such that

Iν(x, h) =e
πiν/2Γ(−ν)

(
λ|x|
h

)ν

eiλx
2/(4h)b(x, h)

+ eπi/4
√

2πh

λ
|x|−ν−1e−iλx2/(4h)c(x, h).

Here a(x, h) ∼∑∞
k=0 ak(x)h

k means that for any N ∈ N, a(x, h)−∑N
k=0 ak(x)h

k = O(hN+1).

The function uν(x, h) describes a wave coming from x < 0 to the origin and scattered to
the positive and negative directions. In the case z = 0 in particular, this proposition says that
when the amplitude of the incoming wave is normalized to |x|−1/2 then that of the transmitted

wave in the region x > 0 is x−1/2/
√
2 and that of the reflected wave in the region x < 0 is

|x|−1/2/
√
2 (see (3.15)).

In the case z = −iλ
(
k + 1

2

)
, on the other hand, the wave is purely outgoing. This means

that for these energies the incoming wave does not determine the outgoing wave.

In the following, we generalize this fact to the multi-dimensional case with potential having
a non-degenerate local maximum. Theorem 2.9 guarantees that the incoming wave determines
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the outgoing wave except for a discrete set of energies, and Theorem 2.11 gives us the asymp-
totic behavior of the outgoing wave in terms of that of the incoming wave.

2.2. Classical mechanics. Recall that p(x, ξ) is the classical Hamiltonian (1.2) with V (x)
satisfying (A1). Consider the canonical system of p:

(2.5)
d

dt

(
x

ξ

)
=

( ∇ξp

−∇xp

)
.

The origin (x, ξ) = (0, 0) is a fixed point of the Hamilton vector field Hp. The linearization
of Hp at the origin is

(2.6)
d

dt

(
x

ξ

)
= Fp

(
x

ξ

)
,

where Fp is the fundamental matrix

Fp :=




∂2p
∂x∂ξ

∂2p
∂ξ2

− ∂2p
∂x2 − ∂2p

∂ξ∂x


∣∣∣(x,ξ)=(0,0)

=

(
0 2 Id

1
2diag (λj)

2 0

)
.

This matrix has n positive eigenvalues {λj}nj=1 and n negative eigenvalues {−λj}nj=1. The

eigenspaces Λ0
± corresponding to these positive and negative eigenvalues are respectively out-

going and incoming stable manifolds for the quadratic part p0 of p:

Λ0
± =

{
(x, ξ) ∈ R

2n; exp(tHp0)(x, ξ) → (0, 0) as t→ ∓∞
}

=
{
(x, ξ) ∈ R

2n; ξj = ±λj
2
xj , j = 1, . . . , n

}
.

By the stable manifold theorem, we also have outgoing and incoming stable manifolds for p:

Λ± =
{
(x, ξ) ∈ R

2n; exp(tHp)(x, ξ) → (0, 0) as t→ ∓∞
}
.

The tangent space of Λ± at (0, 0) is Λ0
±. The manifolds Λ± are Lagrangian manifolds and

can be written near (0, 0)

Λ± =
{
(x, ξ) ∈ R

2n; ξ =
∂φ±
∂x

(x)
}
,

where the generating functions φ± behave like

(2.7) φ±(x) = ±
n∑

j=1

λj
4
x2j +O

(
|x|3
)

as x→ 0.

Now suppose ρ± = (x±, ξ±) ∈ Λ± \ {(0, 0)}. Then by definition exp(tHp)(ρ±) → (0, 0) as
t→ ∓∞. More precisely,

Proposition 2.2. One has

exp(tHp)(ρ±) ∼
∞∑

k=1

γ±k (t)e
±µkt as t → ∓∞,

where

0 < µ1 < µ2 < · · ·
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ξ

Λ−

Λ0
+

Λ+

Λ0
−

x

Figure 1. The Lagrangian manifolds Λ± and Λ0
±.

are the linear combinations over N of {λj}nj=1, and in particular µ1 = λ1. The γ±k (t) are
vector valued polynomials in t. Moreover, γ1 is independent of t and is an eigenvector of Fp

corresponding to ±λ1. Remark that γ1e
−λ1t is a solution to (2.6).

In the sequel, we will denote the x-space projection of the vector γ±1 (ρ±) by g±(ρ±).

Remark 2.3. By the symmetry with respect to ξ of p(x, ξ), one has

φ−(x) = −φ+(x) and Λ− =
{
(x,−ξ) ∈ R

2n; (x, ξ) ∈ Λ+

}
.

If ρ± = (x,±ξ) ∈ Λ±, then
g+(ρ+) = g−(ρ−) =: g(x).

2.3. Review of semiclassical microlocal analysis. In this part, we recall some basic
properties of the h-pseudodifferential calculus. For more details, we send the reader to the
books [DiSj, Ma1, Zw]. We begin with the definition of the semiclassical pseudodifferential
operators in Weyl quantization.

Definition 2.4. Let χ(x, ξ) be a function in C∞
b (Rn

x × R
n
ξ ) (the space of functions bounded

with all their derivatives). The pseudodifferential operator χw(x, hD) with symbol χ is defined
by

(χw(x, hD)u) (x) =
1

(2πh)n

∫∫
ei(x−y)·ξ/hχ

(x+ y

2
, ξ
)
u(y) dy dξ,

for all u in the Schwartz space S(Rn).

In particular, if χ(x, ξ) = χ(x) (resp. χ(x, ξ) = χ(ξ)), then χw(x, hD) is simply the
multiplication operator by χ(x) (resp. the semiclassical Fourier multiplier by χ(ξ)). We now
define the notion of microsupport. Let u(x;h) be in L2(Rn) depending on h with ‖u‖ ≤ 1
and (x0, ξ0) a point in the phase space R

2n.

Definition 2.5. We say that u = 0 microlocally at (x0, ξ0) if there exists a function χ ∈
C∞
0 (R2n) with χ(x0, ξ0) = 1 such that

(2.8)
∥∥χw(x, hD)u

∥∥
L2(Rn)

= O(h∞) as h→ 0.

The complement of the set of such points is called the microsupport (or frequency set).

In other words, u = 0 microlocally near (x0, ξ0) iff the function u does not oscillate near
x0 with semiclassical frequencies closed to ξ0. if it is the case, then (2.8) holds true for all
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χ ∈ C∞
0 (R2n) supported in a neighborhood of (x0, ξ0). For Ω ⊂ R

2n, we say that u = 0
microlocally in Ω (resp. outside Ω) iff u = 0 microlocally near each point in Ω (resp. not in
Ω). We recall now some fundamental properties of the microsupport.

Proposition 2.6. The microsupport of a function u is a closed set.

Proposition 2.7. Let u(x;h) = a(x;h)eiφ(x)/h, where φ(x) is a real-valued C∞ function in
a domain Ω ⊂ R

n and a(x;h) is a C∞ symbol on Ω, i.e. a(x;h) is bounded in Ω uniformly
with respect to h with all its derivatives. Then

u = 0 microlocally outside
{
(x, ξ) ∈ R

2n; ξ =
∂φ

∂x
(x)
}
.

Eventually, we state the theorem of propagation of singularities which was first proved by
Hörmander [Hö] in the classical setting.

Theorem 2.8 (Propagation of singularities). Let u be a solution to (1.3) with ‖u‖ ≤ 1. The
microsupport of u is included in the characteristic set. This means

u = 0 microlocally outside Char(p− E0) :=
{
(x, ξ) ∈ R

2n; p(x, ξ) = E0

}
.

Moreover, for all (x0, ξ0) ∈ Char(p− E0),

u = 0 microlocally near (x0, ξ0) ⇐⇒ ∀t ∈ I, u = 0 microlocally near exp(tHp)(x0, ξ0),

where 0 ∈ I is the maximal interval of existence of exp(tHp)(x0, ξ0).

2.4. The microlocal Cauchy problem - uniqueness. In this section, we consider the
microlocal Cauchy problem at a hyperbolic fixed point of the classical flow. As explained in
the introduction, this approach allows to focus in the most important region of the phase
space and, eventually, to obtain informations on the global problem.

For a small neighborhood Ω of (0, 0) and ε > 0 small, we consider the microlocal Cauchy
problem:

(2.9)

{
Pu = Eu microlocally in Ω,

u = u0(x) microlocally in C := Λ− ∩ {|x| = ε},
with E = E0 + hz. Remark that the initial surface C is transversal to the Hamilton flow for
sufficiently small ε. Since we want to study quantities associated to the resonances which are
non real in general, the spectral parameter z may be complex but in a disc of center 0 and
radius bounded with respect to h.

We start with a uniqueness result for this problem. For the proof, we send the reader to
[BFRZ1, Section 4]. Let r be any positive number and z complex number, which may depend
on h, in a disc D(r) := {z ∈ C; |z| < r}.
Theorem 2.9 ([BFRZ1, Theorem 2.1]). There exist a h-independent positive number δ and a
h-dependent finite set Γ(h) ⊂ D(r)∩{z ∈ C; Im z < −δ}, whose cardinal number is bounded
with respect to h, such that if dist (z,Γ(h)) > hC for some C > 0, and if u0 = 0, then any
solution u ∈ L2(Rn) of (2.9), satisfying ‖u‖ ≤ 1, is 0 microlocally in a neighborhood Ω′ of
the origin.

Remark 2.10. In the analytic category (i.e. p is analytic near the origin and the notion of
C∞-microsupport (see Definition 2.5) is replaced by the analytic microsupport (see [Sj1])),
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ρI Λ−

Λ+

ρF

Ω

(0, 0)

Ω′

C

Figure 2. The geometrical setting of Theorem 2.9 and Theorem 2.11.

we have the same theorem with more precision on the set Γ(h). In fact, Γ(h) is −iE0 modulo
O(h), where

E0 =
{ n∑

j=1

λj

(
αj +

1

2

)
; (α1, . . . , αn) ∈ N

n

}
,

is the set of eigenvalues of the harmonic oscillator

(2.10) −∆+

n∑

j=1

λ2j
4
x2j ,

see [BFRZ1, Theorem 2.2]. Note also that, modulo o(h), E0−iE0h is the set of the resonances
generated by the barrier top (see Theorem 3.3 below).

In the C∞ case, Helffer and Sjöstrand [HeSj1] have constructed the asymptotic expansion

(in powers of h1/2) of the eigenvalues at the bottom of a potential well. The set of the first
terms of the expansion is E0. This means that −iE0 is necessarily included in Γ(h) modulo
O(h). We expect that, modulo O(h∞), Γ(h) is the set of −i times the eigenvalues obtained
in [HeSj1].

If u = 0 microlocally in Ω′, it vanishes also microlocally in Λ+ by Theorem 2.8. Hence this
result can be expressed as follows: The microsupport propagates from the incoming stable
manifold Λ− to the outgoing stable manifold Λ+ under a generic assumption on the energy z.

2.5. The microlocal Cauchy problem - transition operator. Theorem 2.9 says that the
data u0 given on Λ−∩{|x| = ε} uniquely determines the solution u at any point ρF = (xF , ξF )
on Λ+ (if it exists). Our problem now is to construct u microlocally near ρF in terms of u0
which, restricted to the initial surface C, has its support in a small neighborhood of a point
ρI = (xI , ξI) ∈ C.

We make two generic assumptions; one is on the spectral parameter z and the other is on
the initial point ρI = (xI , ξI) ∈ C and the final point ρF = (xF , ξF ) ∈ Λ+:

(A2) There exists ν > 0 such that dist(z,Γ(h)) > ν,

(A3) g(xI) · g(xF ) 6= 0.

In particular, g(xI) 6= 0. This means that, in case λ1 < λ2, the Hamilton flow starting from
ρI converges to the origin tangentially to the x1-axis. In case λ1 = λ2, also, we can assume,
without loss of generality, that the x1-axis is parallel to g(xI). Since p is of real principal type
near ρI , we can modify the initial surface C so that it is given by {x1 = ε}∩Λ− near ρI . Hence,
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denoting xI = (ε, x′I), the initial data u0 on C is a function of x′ in a small neighborhood of
x′I and 0 elsewhere.

Theorem 2.11 ([BFRZ1, Theorem 2.6]). Assume (A1), (A2), (A3). The microlocal Cauchy
problem (2.9) has a solution u (unique thanks to Theorem 2.9). Microlocally near ρF =
(xF , ξF ), it has the following representation formula

(2.11) u(x, h) =
hS(z)/λ1

(2πh)n/2

∫

Rn−1

ei(φ+(x)−φ−(ε,y′))/hd(x, y′;h)u0(y
′) dy′.

Here

(2.12) S(z) =
1

2

n∑

j=1

λj − iz,

and the symbol d ∈ S0
h(1) has the following asymptotic expansion

(2.13) d(x, η′;h) ∼
∞∑

k=0

dk(x, y
′, lnh)hµ̂k/λ1 ,

where 0 = µ̂0 < µ̂1(= µ2 − µ1) < µ̂2 < · · · is a numbering of the linear combinations of
{µk − µ1}∞k=0 over N, and dk(x, y

′, lnh) are polynomials in lnh. In particular, the symbol d0
is independent of lnh.

We will need an explicit quantity of the principal term d0 of the symbol d for Theorem
3.12, especially for the definition of J0(α) in (3.13). It is given by

d0(x, y
′) =e−iπn/4λ

1/2−S(z)/λ1

1 exp

(
−S(z)

2λ1
πi σ

)
Γ

(
S(z)

λ1

)

× eI∞(x)

√
|det∇2

y′φ−(ε, y
′)|

J∞(y′)

|g(ε, y′)|
|g(ε, y′) · g(x)|

S(z)
λ1

·(2.14)

Here σ = sgn(g(xI) · g(xF )),

I∞(x) :=

∫ −∞

0

(
∆φ+(x(τ))−

1

2

n∑

j=1

λj

)
dτ,

where x(t) is the x-space projection of the flow exp(tHp)(ρF ), and

J(t, y′, η′) := det
∂x(t, y′, η′)

∂(t, y′)
,

J∞(y′) := lim
t→+∞

J(t, y′, η′)

J(0, y′, η′)
∣∣η′= ∂φ

−

∂y′
(ε,y′)

e(−
∑n

j=1 λj+2λ1)t,

where x(t, y′, η′) is the x-space projection of the flow exp(tHp)ρ(y
′, η′) for y′ near x′I and η′

near ξ′I , and ρ(y
′, η′) :=

(
ε, y′;−

√
−|η′|2 − V (ε, y′), η′

)
∈ {x1 = ε} ∩ p−1(E0).

The main idea of the proof for Theorem 2.11 is to express the solution u microlocally near
the fixed point (0, 0) as a superposition of WKB solutions to the time-dependent Schrödinger
equation:

u(x, h) =
1√
2πh

∫ ∞

0
eiϕ(t,x)/ha(t, x;h) dt.
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Then, the phase ϕ(t, x) has an asymptotic expansion as t→ +∞:

ϕ(t, x) ∼ φ+(x) +
∞∑

k=1

φµk
(t, x)e−µkt,

and the symbol a(t, x;h) has classical expansion in h:

a(t, x;h) ∼
∞∑

ℓ=0

aℓ(t, x)h
ℓ,

whose coefficients have expansion as t→ +∞:

aℓ(t, x) ∼
∞∑

k=0

aℓ,k(t, x)e
−(S+µk)t,

where aℓ,k(t, x) is polynomial in t and S = S(z) is defined by (2.12). In particular, a0,0 can
be explicitly calculated from the initial condition on Λ− and gives the value of the symbol d0
on Λ+.

3. Applications to semiclassical resonances

We first recall the definition of the resonances by the complex scaling method (see [AgCo,
Hu, SjZw] and the other references given in the introduction). This technique is very effi-
cient in the semiclassical setting since it is well adapted to the microlocal calculus and since
the resonances are seen as the (usual) eigenvalues of a non-selfadjoint operator. There ex-
ist other approaches to defined the resonances (poles of different scattering quantities (see
[LaPh]), poles of the extension of the cut-off resolvent (see (3.2) below), . . . ). In fact, all
these definitions coincide as proved in [HeMa].

In order to define resonances, we assume

(B1) V (x) ∈ C∞(Rn;R) and extends holomorphically in a sector

S =
{
x ∈ C

n; | Imx| ≤ (tan θ0)|Re x| and |Re x| > C
}
,

for some positive constants θ0 and C. Moreover

V (x) −→ 0 as |x| → ∞ in S.
Then P is a selfadjoint operator on L2(Rn) with σess(P ) = R+. To this operator, we associate
a distorted operator

P̃µ = UµPU−µ, (Uµf)(x) := |det(Id + µdF )|1/2f(x+ µF (x)),

for small real µ and F ∈ C∞(Rn;Rn) with

F (x) = 0 on |x| < R and F (x) = x on |x| > R+ 1,

for large R. This operator P̃µ is analytic of type-A with respect to µ, and, taking R large

enough, Pθ := P̃iθ is well-defined for θ small enough. Then σess(Pθ) = e−2iθ
R+, and the

spectrum of Pθ in Cθ := {E ∈ C\{0}; −2θ < argE < 0} is discrete.
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Definition 3.1. Resonances are the eigenvalues of Pθ in Cθ. The multiplicity of a resonance
E∗ is the rank of the spectral projection

(3.1) ΠE∗ =
1

2πi

∫

γ
(E − Pθ)

−1dE,

where γ is a small circle centered at E∗ and we choose θ with E∗ ∈ Cθ. Resonances are
independent of θ in the sense that σ(Pθ′)∩Cθ = σ(Pθ)∩Cθ for θ < θ′ taking the multiplicity
into account. Moreover, the resonances are also independent of F . Hence we will denote the
set of resonances by Res(h) without indicating θ and F .

Equivalently, we can define the resonances of P by showing that the resolvent (E −P )−1 :
L2
comp(R

n) −→ L2
loc(R

n) has a meromorphic extension R+(E) from the upper half plane to
Cθ across (0,∞). We have

(3.2) χR+(E)χ = χ(E − Pθ)
−1χ.

for any cut-off function χ whose support is in |x| < R. The poles are the resonances and the
multiplicity of a resonance is also given by rank 1

2πi

∫
γ R+(E)dE.

Let K(E) be the set of trapped trajectories on the energy surface p−1(E):

K(E) =
{
(x, ξ) ∈ p−1(E); t 7→ exp(tHp)(x, ξ) is bounded

}
.

The following result suggests a close relationship between the semiclassical distribution of
resonances near a real energy E and the geometry of K(E) of the corresponding classical
dynamics.

Theorem 3.2 ([Ma2]). Let E0 > 0 be such that K(E0) = ∅. Then there exists ε > 0 such
that, for any C > 0, there is no resonance in the box

[E0 − ε,E0 + ε] + i
[
− Ch| lnh|, 0

]
,

for sufficiently small h.

In the case where V (x) is globally analytic near R
n, it was earlier proved by Helffer and

Sjöstrand implicitly in [HeSj2] and also by Briet, Combes and Duclos [BCD1] under a stronger
hypothesis called the virial assumption that there is no resonance in a h-independent neigh-
borhood of E0 such that K(E0) = ∅.

In the following two subsections, we assume (A1) and (B1). The maximal value E0 at
the origin should then be positive. K(E0) contains at least the point (0, 0) and we consider
resonances close to E0.

3.1. Spectral projection and Schrödinger group. Under (A1), the origin (0, 0) is a
hyperbolic fixed point and itself a trapped point in p−1(E0). Here we study the case where
it is the only trapped point, i.e.

(B2) K(E0) = {(0, 0)}.
This assumption implies that E0 is the global maximum of V and it is attained only at x = 0.

When V (x) is assumed to be analytic globally near R
n, the semiclassical distribution of

resonances is known near the barrier top energy E0 (in [BCD2], a virial condition is assumed).
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Theorem 3.3 ([BCD2, Sj2]). Let Res0(h) be the discrete set

Res0(h) := E0 − ihE0 =
{
E0

α := E0 − ih

n∑

j=1

λj

(
αj +

1

2

)
; α = (α1, . . . , αn) ∈ N

n

}
,

and let C be an h-independent positive constant such that C 6= ∑n
j=1 λj (αj +

1
2) for any

α ∈ N
n. Then, in D(E0, Ch), there exists a bijection

bh : Res0(h) ∩D(E0, Ch) −→ Res(h) ∩D(E0, Ch),

such that bh(E) = E + o(h).

Let us denote Eα = bh(E
0
α). We call E0

α pseudo-resonance (see [Sj3]). We say that a pseudo-
resonance E0

α is simple if E0
α = E0

α′ implies α = α′. If a pseudo-resonance E0
α is simple, then

the corresponding resonance Eα is simple for h small enough (i.e. its multiplicity is one), and
has an asymptotic expansion in powers of h whose leading term is E0

α.

Theorem 3.4 ([BFRZ2, Theorem 4.1]). Assume (A1), (B1), (B2) and suppose E0
α ∈ Res0(h)

is simple. Then, as operator from L2
comp(R

n) to L2
loc(R

n), one has

(3.3) ΠEα = c(h)(·, fα)fα,
with

(3.4) c(h) = h−|α|−n
2
e−iπ

2
(|α|+n

2
)

(2π)
n
2 α!

n∏

j=1

λ
αj+

1
2

j ,

where fα = fα(x, h) is a solution to Pfα = Eαfα, locally L
2 uniformly in h, vanishes in the

incoming region (in the microlocal sense) and has an asymptotic expansion as h → 0 for x
near the origin

(3.5) fα = dα(x, h)e
iφ+(x)/h,

with

dα(x, h) ∼
∑

dα,j(x)h
j as h→ 0,(3.6)

dα,0(x) = xα +O(|x||α|+1) as x→ 0.(3.7)

The proof of Theorem 3.4 goes the following way. First, we choose a suitable u0 (a La-
grangian distribution which associated Lagrangian manifold is transverse to Λ−). Then, we
compute the solution of the Cauchy problem (2.9) for E close to Eα using Theorem 2.11.
Performing the integration in E around Eα as in (3.1), we compute the asymptotic of ΠEαu0.
The leading term with respect to h comes from the singularity of the function Γ in (2.14). In
particular, this gives all the stated properties for fα. At last, the coefficient c(h) follows from
the computation of (u0, fα).

Let us consider the Cauchy problem for the time-dependent Schrödinger equation




ih
∂ψ

∂t
(t, x) = Pψ(t, x),

ψ(0, x) = ψ0(x).

We denote the solution ψ(t, x) by e−itP/hψ0. The operator e−itP/h is unitary on L2(Rn).
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Recall that, if E∗ is an isolated eigenvalue of P , then for any ψ(E) ∈ C∞
0 (R) supported

near E∗, one has

e−itP/hψ(P ) = e−itE∗/hΠE∗ψ(E∗),

where ΠE∗ is the orthogonal projection to the eigenspace of E∗ generated by orthonormal
eigenfunctions {fj},

ΠE∗ =
∑

j

(·, fj)fj.

In the case of resonances associated with a single barrier top, we have, using the projection
operator of the previous theorem,

Theorem 3.5 ([BFRZ2, Theorem 6.1]). Assume (A1), (B1), (B2). Let C be any positive
constant such that C 6=∑n

j=1(βj +
1
2)λj for all β ∈ N

n. Then, for any χ ∈ C∞
0 (Rn) and any

ψ ∈ C∞
0 (R) supported in a sufficiently small neighborhood of E0, there exists K > 0 such

that for any t, one has as h→ 0,

(3.8)
χe−itP/hχψ(P ) =

∑

Eα∈Res(h)∩D(E0,Ch)

χResidueEα

(
e−itE/hR+(z)

)
χψ(P )

+O(h∞) +O(e−Cth−K).

If, in particular, all the pseudo-resonances in D(E0, Ch) are simple, one has, for any t, and
as h→ 0,

(3.9)
χe−itP/hχψ(P ) =

∑

Eα∈Res(h)∩D(E0,Ch)

e−itEα/h χΠEαχψ(P )

+O(h∞) +O(e−Cth−K).

Here, ΠEα is the spectral projection given by (3.1).

Remark 3.6. We see in Theorem 3.4 that χΠEαχ ∼ h−|α|−n/2 when E0
α is simple. Since,

on the other hand, |e−itEα/h| = e−t| ImEα|/h ∼ e−t
∑n

j=1 λj(αj+
1
2
) for Eα ∈ Res(h) ∩D(E0, Ch),

the α-th term of the RHS of (3.9) is greater than the errors for

(3.10) t ≥ K − n
2 − |α|

C −∑n
j=1 λj(αj +

1
2)

ln
1

h
+Cte.

Remark 3.7. If {λj}nj=1 are Z-independent, all the pseudo-resonances are simple and (3.9)
holds for any C.

3.2. Resonance free zone for homoclinic trajectories. Here we assume, instead of (B2),
that K(E0) consists of the fixed point (0, 0) and of homoclinic trajectories associated with
this point. More precisely,

(B3) K(E0) = Λ+ ∩ Λ− and H := Λ+ ∩ Λ−\{(0, 0)} 6= ∅.
This is the case when there is another suitably shaped bump higher than E0. Notice that
there may be infinitely many homoclinic trajectories (see Example 3.14).

When the dimension is 1 and the potential is analytic, the operator P −E can be reduced
microlocally near (0, 0) to the Weber equation (2.2), see [HeSj4]. This fact combined with
the complex WKB method lead us to the following result:
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Theorem 3.8 ([FuRa, Theorem 0.7]). Assume n = 1, (A1), (B1), (B3), H consists of a
unique curve and V (x) is globally analytic near R. Then the resonances in the disc centered
at E0 with radius Ch/| lnh| with C > 0 satisfy

Ek = E0 − λ1
S0 − (2k + 1)πh+ ih ln 2

2| ln h| +O(h/| ln h|2),

where S0 =
∫
H ξ · dx is the action along the homoclinic curve H and k ∈ N. In particular,

ImEk = − ln 2

2
λ1

h

| lnh| +O(h/| ln h|2).

Let us consider the multi-dimensional case. In order to apply Theorem 2.11, we need an
assumption corresponding to (A3):

(B4) g(x) · g(x′) 6= 0 for any x, x′ ∈ ΠxH.

When there is only one homoclinic trajectory, this condition requires that the homoclinic
trajectory should reach the barrier top in the direction of the minimum curvature. When the
barrier top is isometric and there are many homoclinic trajectories as in Example 3.14, this
condition requires θ1 < π/4.

We will see that the imaginary part of resonances depends on the “strength” of the trap.
We start with a case where the trapping is weak:

(B5) Either (B5)(a) or (B5)(b) holds:
(a) λ1 < λn ,
(b) ∀ρ ∈ H, TρΛ+ 6= TρΛ− .

Assumption (B5)(a) means that H is small near the fixed point (0, 0) in the sense that x-
space projection of every Hamilton curve in H is tangent to a subspace of T0R

n of dimension
≤ n− 1.

Theorem 3.9 ([BFRZ3]). Assume (A1), (B1), (B3), (B4), (B5). Then there exists δ > 0
such that for all C > 0, P has no resonance in

(3.11) [E0 − Ch,E0 + Ch] + i[−δh, 0],
for sufficiently small h. Moreover, for all χ ∈ C∞

0 (Rn), there exists M > 0 such that for any
E in this domain, one has ∥∥χ(E − P )−1χ

∥∥ . h−M .

Next, we consider the complementary case where the trapping is strong. We assume an
isotropic condition on the barrier top:

(B6) λ1 = · · · = λn =: λ.

In this special setting, Proposition 2.2 about the Hamiltonian flow on Λ± can be expressed
as follows:

Lemma 3.10. For any α ∈ S
n−1, there exists a unique Hamiltonian curve ρ+(t, α) =

(x+(t, α), ξ+(t, α)) on Λ+ such that, for any ε > 0,

x+(t, α) = eλtα+O
(
e(2λ−ε)t

)
as t→ −∞.
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Then, we define

Htang := {ρ ∈ H; TρΛ+ = TρΛ−},
the set of the points at which Λ+ and Λ− are tangent, and

H∞ := {α ∈ S
n−1; ρ(·, α) ∈ H},

H∞
tang := {α ∈ S

n−1; ρ(·, α) ∈ Htang},
the asymptotic directions of the Hamiltonian curves in H and Htang. Note that these two
sets are compact subsets of Sn−1.

Let α ∈ H∞
tang. For any sufficiently small ε > 0, there exist unique times tε±(α) satisfying

|x+(tε±(α), α)| = ε and tε±(α) → ∓∞ as ε→ 0. Then, it is well known that the quantity

Mε(α) =
D(tε+(α), α)

D(tε−(α), α)
with D(t, α) =

√∣∣∣det ∂x+(t, α)
∂(t, α)

∣∣∣,

represents the evolution of the amplitude of WKB solutions along the curve x+(t, α) from the
time tε+(α) to the time tε−(α) (see for example [MaFe]). This function Mε(α) has a positive
limit M0(α) as ε tends to 0

(3.12) M0(α) := lim
ε→0

Mε(α),

which is continuous with respect to α ∈ H∞
tang and hence bounded. We also define a constant

associated with the quantum propagation through the fixed point:

(3.13) J0(α) := (2π)−n/2Γ
(n
2

) ∫

H∞

tang

|α · ω|−n/2dω.

The amplification around the trapped set is then controlled by the quantity

(3.14) A0 := max
α∈H∞

tang

M0(α)J0(α) ∈ [0,+∞[.

Remark 3.11. In the one-dimensional case, H∞ = H∞
tang ⊂ {−1, 1} and, for each α ∈ H∞,

one has

(3.15) M0(α) = 1, J0(α) =





0 if H∞ = ∅,
1/
√
2 if H∞ = {1} or {−1},

√
2 if H∞ = {−1, 1}.

Theorem 3.12 ([BFRZ3]). Assume (A1), (B1), (B3), (B4), (B6) and

(3.16) A0 < 1.

Then, for all ε > 0, there exists ν > 0 such that P has no resonance in the box

(3.17) [E0 − νh,E0 + νh] + i

[(
λ lnA0 + ε

) h

| lnh| , 0
]
,

for sufficiently small h. Moreover, for all χ ∈ C∞
0 (Rn), there exists a positive constant M

such that, for any E in this domain, one has

(3.18)
∥∥χ(P − E)−1χ

∥∥ . h−M ,

for sufficiently small h.
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V (x)

0

{V (x) = E0}

0 2θ0 π(H)

Figure 3. The potential of Example 3.13 and the spatial projection of H.

When A0 = 0, we use the convention that ln(A0) appearing in (3.17) can be taken as any
arbitrary large negative constant. We refer to [BFRZ3] for a result in a larger zone.

Example 3.13. Consider the case n = 1. Due to Remark 3.11, the condition (3.16) is
satisfied if H∞ consists of one point but not satisfied if H∞ = {−1, 1}. When H∞ = {1} or
H∞ = {−1}, the precise location of the resonances is given in Theorem 3.8. This result implies
that our estimate (3.17) from below of the imaginary part of the resonances is optimal. When
H∞ = {−1, 1}, on the contrary, we are in the well in an island situation, and the resonances
are exponentially close to the real axis.

Example 3.14. In dimension n = 2, let (r, θ) be the polar coordinates. We consider

V (x) = q0(r) + q1(r − a)ψ(θ),

where the q•(r)’s are even non-degenerate bumps in C∞
0 (R) with rq′•(r) < 0 for r 6= 0 and

E0 = q0(0) < q1(0), a is a sufficiently large constant such that supp q0(r)∩ supp q1(r− a) = ∅
and ψ(θ) ∈ C∞

0 ([−θ1− ε, θ1+ ε]) is equal to 1 for |θ| ≤ θ1 and θψ′(θ) < 0 for θ1 < |θ| < θ1+ ε
for θ1 < π/4 and small enough ε > 0. The setting is illustrated in Figure 3. It can be
checked that the conditions (A1), (B1), (B3), (B4), (B6) are all satisfied, and moreover
H∞ = H∞

tang = [−θ1, θ1] and M0(α) = 1. J0(α) can also be computed explicitly, and the
condition (3.16) is satisfied if sin(2θ1) < tanh(2π).

We end this review by sketching the proofs of Theorem 3.9 and Theorem 3.12. For the de-
tails, we refer to [BFRZ3]. Assuming that there existed a resonance in the expected resonance
free domain (3.11) or (3.17), we would conclude that the corresponding normalized resonant
state becomes smaller microlocally at any point on H after a continuation along homoclinic
trajectories and the fixed point.

For the continuation along the homoclinic trajectories, we use the standard WKB theory
of Maslov, which says in particular that the order in h of the amplitude of WKB solutions
does not change along Hamiltonian flow.

For the continuation through the fixed point, we apply the results in Section 2. We first
show that the resonant state has its microsupport only on Λ+. This implies in particular that
it is microlocally 0 on Λ− outside H. Hence Theorem 2.11 gives us its asymptotic behavior
on Λ+ ∩H from the knowledge of that on Λ+ ∩H. In the case of Theorem 3.9, the amplitude
of the resonant state changes by multiplication by hα for some α > 0, which comes from the
prefactor hS(z)/λ1 in (2.11) when (B5)(a) holds and from a stationary phase expansion of the
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integral in (2.11) when (B5)(b) holds. In the case of Theorem 3.12, the amplitude changes
only by the multiplication by a small constant independent of h, therefore we need the explicit
expression (2.14) of the principal symbol.
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[BFRZ1] J.-F. Bony, S. Fujiié, T. Ramond, and M. Zerzeri, Microlocal kernel of pseudodifferential operators

at a hyperbolic fixed point, J. Funct. Anal. 252 (2007), no. 1, 68–125.
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