Licence de Mathématiques - Probabilités et statistiques

Fiche de TD no 2. Notion de probabilité dans le cadre des probabilités discrètes

Dáfinitions	t résultats fon	damantaur	
 TJennilions ei	r resultats for	пашенганх –	

• Etant donné un ensemble \mathcal{E} et une σ -algèbre \mathcal{F} sur \mathcal{E} , on peut attribuer une probabilité d'apparition $\mathbb{P}(A)$ à chaque événement A de \mathcal{F} . Une condition naturelle est que, si A_1 et A_2 sont des événements disjoints, alors la probabilité de réalisation de A_1 ou A_2 est la somme probabilités de réalisation de A_1 et de A_2 . Ceci est traduit par la définition suivante:

Définition Une probabilité \mathbb{P} sur $(\mathcal{E}, \mathcal{F})$ est une application de \mathcal{F} dans [0, 1] telle que: - si $(A_n)_{n\in\mathbb{N}}$ est une famille d'événements 2 à 2 disjoints alors $\mathbb{P}(\bigcup A_n) = \sum \mathbb{P}(A_n)$, - $\mathbb{P}(\mathcal{E}) = 1$.

Le triplet $(\mathcal{E}, \mathcal{F}, \mathbb{P})$ avec les définitions ci-dessus est alors un espace de probabilité.

• On déduit de la définition précédente que, pour tous événements A_1 et A_2 , on a la relation $\mathbb{P}(A_1 \cup A_2) = \mathbb{P}(A_1) + \mathbb{P}(A_2) - \mathbb{P}(A_1 \cap A_2)$ et donc, qu'on a toujours

$$\mathbb{P}(A_1 \cup A_2) \le \mathbb{P}(A_1) + \mathbb{P}(A_2)$$

Il n'existe pas de relation valable en toute généralité entre $\mathbb{P}(A_1)$, $\mathbb{P}(A_2)$ et $\mathbb{P}(A_1 \cap A_2)$. Si on a l'égalité $\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1)\mathbb{P}(A_2)$, on dit que les événements A_1 et A_2 sont *indépendants*. (Remarquez que ceci traduit la notion intuitive d'indépendance : la réalisation de l'événement A_2 n'influence pas la probabilité de réalisation de l'événement A_1 .)

• L'exemple le plus simple d'espace de probabilité est certainement le cas où \mathcal{E} est fini (on parle de probabilités discrètes). On suppose généralement tacitement que la σ -algèbre \mathcal{F} est égale à $\mathcal{P}(\mathcal{E})$ en entier et que la probabilité \mathbb{P} est la probabilité uniforme (c'est à dire $\mathbb{P}(A) = \frac{card(A)}{card(\mathcal{E})}$ pour tout A).

Exercice 1 (Poker) On tire simultanément 5 cartes dans un jeu de 32, chaque quintuplet étant équiprobable. Formaliser cette expérience en terme d'espace probabilisé. Calculer les probabilités des évènements consistant à obtenir exactement:

1 - Une paire 5 - Un carré

2 - Deux paire 6 - Une séquence (des cartes consécutives)

3 - Un brelan (3 cartes identiques) 7 - Un flush (séquence dans la même couleur)

4 - Un full (une paire et un brelan) 8 - Une couleur (5 cartes de la même couleur)

Exercice 2 (Formule de Poincaré)

- 1 Soit Ω un ensemble et $A_1, ..., A_n$ des parties de Ω . Donner une formule pour $Card(\cup A_i)$ en fonction de cardinaux du type $Card(A_{i_1} \cap ... \cap A_{i_k})$ (utiliser les fonctions indicatrices).
- 2- Un facteur fou distribue les quittances de loyer de n locataires complètement au hasard. Traduire cela en termes d'espace de probablité. Quelle est la probablité que p quittances exactement arrivent à leur destinataire? (on commencera par chercher le résultat pour p=0 grâce à la question précédente, puis on se ramènera à ce cas)
- 3- Le facteur distribue maintenant q propectus dans les n boîtes aux lettres en oubliant au fur et à mesure l'endroit où il les a placés. Quelle est la probablité de finir avec exactement p boîtes aux lettres vides ?

Exercice 3 (Scrutin) On appelle *chemin* joignant (0,0) à (x,y) (x et y entiers) une suite d'entier relatifs $(s_0,...,s_x)$ tels que $s_0=0$, $s_x=y$ et pour tout $1 \le k \le x$, $|s_k-s_{k-1}|=1$.

- 1 Calculer le nombre $N_{x,y}$ de chemins joignant (0,0) à (x,y).
- 2 Montrer que le nombre de chemin joignant (x_0, y_0) à (x, y) touchant ou traversant l'axe des abscisses est égal au nombre de chemins joignant $(x_0, -y_0)$ à (x, y) (on représentera graphiquement de tels chemins). En déduire, le nombre de chemins joignant (0, 0) à (x, y) qui sont strictement positifs $(s_k > 0$ pour tout k > 0)? Quel est le nombre de chemins joignant (0, 0) à (2n, 0) qui sont strictement positifs $(s_1 > 0, ..., s_{2n-1} > 0)$, positifs au sens large $(s_1 \ge 0, ..., s_{2n-1} \ge 0)$?
- 3 Pour un scrutin à deux candidats et n suffrages exprimés, où l'on suppose que chaque vote revient de façon équiprobable à l'un ou l'autre des candidats, quelles sont les probabilités des évènements suivants :
- i) Les candidats arrivent à égalité.
- ii) Les candidats arrivent à égalité sans qu'il n'y est jamais eu égalité auparavant.
- iii) Un candidat est toujours en tête.
- iv) Un candidat est toujours en tête (ou a égalité) puis perd au dépouillement de la dernière enveloppe.