Fiche de TD no 6 : Deux difféomorphismes de surfaces célèbres

Exercice 1 ("Le" difféomorphisme d'Anosov du tore \mathbb{T}^2) On note \widetilde{A} l'automorphisme linéaire du plan \mathbb{R}^2 , donné dans la base canonique par la matrice $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$.

- 1) Montrer que \widetilde{A} induit un difféomorphisme du tore $\mathbb{T}^2=\mathbb{R}^2/\mathbb{Z}^2$. On note A ce difféomorphisme.
- 2) Montrer que les points périodiques de A sont denses dans le tore \mathbb{T}^2 .
- 3) Montrer que le tore \mathbb{T}^2 est un ensemble hyperbolique pour le difféomorphisme A.
- 4) Montrer que la variété stable (resp. instable) de tout point périodique du difféomorphisme A est dense dans le tore \mathbb{T}^2 .
- 5) Montrer que le difféomorphisme A est topologiquement mélangeant, c'est-à-dire : quels que soient les ouverts $U, V \subset \mathbb{T}^2$, il existe un entier N(U, V) tel que, pour tout $n \geq N(U, V)$, l'intersection $A^n(U) \cap V$ est non-vide.
- 6) En déduire que le difféomorphisme A est topologiquement transitif, c'est-à-dire : il existe un point $x \in \mathbb{T}^2$ tel que l'orbite de x (pour le difféomorphisme A) est dense dans le tore \mathbb{T}^2 .
- 7) On veut montrer que le difféomorphisme A est C^1 -structurellement stable. Pour ce faire, on considère un difféomorphisme $B: \mathbb{T}^2 \to \mathbb{T}^2$ de classe C^1 et on note $d = \|B A\|_1$ (où $\|.\|$ désigne la norme C^1). On doit prouver que, si d est petit, alors B est topologiquement conjugué à A.

Pourvu que d soit assez petit, il existe un unique relevé $\widetilde{B}: \mathbb{R}^2 \to \mathbb{R}^2$ de B tel que $\|\widetilde{B} - \widetilde{A}\|_1 = d$. On note alors $f = \widetilde{B} - \widetilde{A}$. Par définition, $f: \mathbb{R}^2 \to \mathbb{R}^2$ est une fonction de classe C^1 tel que $\|f\|_{C^1} = d$. De plus, dès que d est assez petit, la fonction f est invariante par translation à coordonnées entières.

On cherche un homéomorphisme $\widetilde{H}: \mathbb{R}^2 \to \mathbb{R}^2$, qui passe au quotient en un homéomorphisme $H: \mathbb{T}^2 \to \mathbb{T}^2$, et tel que $\widetilde{H} \circ \widetilde{A} = \widetilde{B} \circ \widetilde{H}$.

- a) La notation $\widetilde{C}(\mathbb{R}^2,\mathbb{R}^2)$ désigne l'ensemble des fonctions continues de \mathbb{R}^2 dans \mathbb{R}^2 invariantes par translations à coordonnées entières. Montrer que l'opérateur linéaire $L:\widetilde{C}(\mathbb{R}^2,\mathbb{R}^2)\to \widetilde{C}(\mathbb{R}^2,\mathbb{R}^2)$ défini par $L(h)=A\circ h-h\circ A$ est inversible, et majorer la norme de l'opérateur L^{-1} .
- b) On note $\Phi: \widetilde{C}(\mathbb{R}^2, \mathbb{R}^2) \to \widetilde{C}(\mathbb{R}^2, \mathbb{R}^2)$ l'opérateur non-linéaire définit par

$$\Phi(h) = f \circ (\mathrm{Id}_{\mathbb{R}^2} + h) - f$$

Montrer que la relation $\widetilde{H} \circ \widetilde{A} = \widetilde{B} \circ \widetilde{H}$ peut aussi s'écrire

$$h = L^{-1}(\Phi(h)) - L^{-1}(f)$$
 où $h = H - \mathrm{Id}_{\mathbb{R}^2}$

Montrer que, dès que d est assez petit, l'équation $h = L^{-1}(\Phi(h)) - L^{-1}(f)$ admet une unique solution dans $\widetilde{C}(\mathbb{R}^2, \mathbb{R}^2)$, et montrer que la norme C^0 de cette solution est petite quand d est petit.

c) Montrer que toute fonction continue $H: \mathbb{T}^2 \to \mathbb{T}^2$, suffisamment proche de l'identité, et qui satisfait la relation $\widetilde{H} \circ \widetilde{A} = \widetilde{B} \circ \widetilde{H}$, est un homéomorphisme du tore \mathbb{T}^2 . Indication: pour montrer l'injectivité, on utilisera l'existence d'un réel $\epsilon > 0$ tel que deux orbites de A sont toujours à une distance supérieure à ϵ l'une de l'autre.

d) Conclure.

Commentaires. Soit M une variété compacte et $f: M \to M$ un difféomorphisme. Si la variété M est un ensemble hyperbolique pour le difféomorphisme f, alors on dit que f est un difféomorphisme d'Anosov, en hommage au mathématicien Russe D.V. Anosov qui a prouvé, dans les années 60, qu'un tel difféomorphisme est structurellement stable. On montre facilement que le tore \mathbb{T}^2 est la seule surface qui porte un difféomorphisme d'Anosov. De plus, tout difféomorphisme d'Anosov du tore \mathbb{T}^2 est topologiquement conjugué à un difféomorphisme induit par un automorphisme linéaire de \mathbb{R}^2 . En dimension supérieure, la situation est plus complexe et encore mal comprise.

Exercice 2 (Le fer à cheval de Smale) On construit un difféomorphisme de la sphère S^2 de la manière suivante.

On considère le carré $C = [-1;1]^2$ et on désigne par D_1 et D_2 les demi-disques de rayon 1 et de centres (0,1) et (0,-1) au dessus et en dessous de C. On commence par envoyer C linéairement sur le rectangle $[\frac{-1}{4};\frac{1}{4}] \times [-4;4]$, puis on plie ce rectangle pour que l'image de C soit un "fer à cheval", comme indiqué sur la figure ci-dessous. On définit ainsi une application injective φ de $C \cup D_1 \cup D_2$ avec les propriétés suivantes :

- $C \cap \varphi(C)$ est l'union des deux rectangles : $Q_1 = \left[\frac{-3}{4}; \frac{-1}{4}\right] \times [-1; 1]$ et $Q_2 = \left[\frac{1}{4}; \frac{3}{4}\right] \times [-1; 1]$.
- Sur chacun des deux rectangles $R_1 = [-1; 1] \times [\frac{-3}{4}; \frac{-1}{4}]$ et $R_2 = [-1; 1] \times [\frac{1}{4}; \frac{3}{4}]$, φ est affine, préserve les horizontales et les verticales.
- On a $\varphi(R_i) = Q_i$ et $\varphi(D_i) \subset D_2$ pour i = 1, 2.
- Sur chacun des deux demi-disques D_1 et D_2 , φ est une similitude.
- a) Déterminer les points fixes de φ .
- b) Montrer que $\Lambda = \bigcap_{n \in \mathbb{Z}} \varphi^n(C)$ est le produit de deux ensembles de Cantor.
- c) Montrer que la restriction de φ à Λ est topologiquement conjuguée à un shift bilatéral sur l'alphabet à deux symboles.
- d) Montrer que les points périodiques de φ sont denses dans Λ et qu'il existe une orbite dense dans Λ .
- e) Étudier les variétés stables et instables des points fixes de φ dans Λ .