Fiche de TD no 8 : Étude explicite de quelques systèmes simples

Le but de cette fiche de TD est d'étudier explicitement des exemples de systèmes ayant une dynamique simple (typiquement, une dynamique de type Morse-Smale), qui apparaissent naturellement dans différent contextes.

Exercice 1 (Un champ linéaire sur $M_{2,2}(\mathbb{R})$) On considère le champ de vecteurs linéaire \widetilde{X} sur l'espace vectoriel $M = M_{2,2}(\mathbb{R})$, défini par $\widetilde{X}(A) = X_0 A$ où X_0 est la matrice $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. On note $(\widetilde{\phi}^t)$ son flot.

- 1) Montrer que $\widetilde{\phi}^t$ est la multiplication à gauche par $h(t) = \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}$.
- 2) Montrer que $Sl_2(\mathbb{R})$ est une sous-variété lisse de M invariante par $\widetilde{\phi}^t$. Montrer que l'espace tangent en A à cette sous-variété admet la base (X_0A, Y_0A, Z_0A) , où

$$Y_0 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
 et $Z_0 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

3) On fait agir à droite $SL_2(\mathbb{Z})$ sur $Sl_2(\mathbb{R})$. On note $V = Sl_2(\mathbb{R})/Sl_2(\mathbb{Z})$ le quotient et $\pi : Sl_2(\mathbb{R}) \to V$ la projection. On admettra que V admet une unique structure de variété différentiable telle que π est un difféomorphisme local.

Montrer que $(\widetilde{\phi}^t)$ induit un flot différentiable (ϕ^t) sur V. Quel est son champ de vecteurs générateur X?

4) Soit $T \in]0,+\infty[$ fixé. Montrer que X a une orbite périodique de période T si et seulement si h(T) est conjuguée dans $\mathrm{Sl}_2(\mathbb{R})$ à un élément de $\mathrm{Sl}_2(\mathbb{Z})$. En déduire que l'ensemble des périodes des orbites périodiques de X est

$$\left\{\operatorname{ch}^{-1}(\frac{n}{2})\mid n\in\mathbb{N}, n\geq 3\right\}.$$

5) Montrer que toute orbite périodique de (ϕ^t) est hyperbolique.

Exercice 2 (Un champ hamiltonien sur \mathbb{T}^2) On considère le champ de vecteurs X défini sur le tore $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ défini par

$$X(x,y) = (\sin y, -\sin x).$$

- 1) Quelles sont les singularités de X? Sont-elles non-dégénérées? Hyperboliques? Dans ce dernier cas, donner les espaces tangents aux variétés stable et instable.
- 2) Montrer que tous les points qui ne sont pas sur une variété stable ou instable d'une singularité sont périodiques (on cherchera deux preuves : l'une utilisant l'existence d'une

fonction constante le long des orbites de X, l'autre utilisant un argument de symétrie). Dessiner en le justifiant le diagramme de phase de X (on représentera le tore comme un carré avec des côtés identifiés).

3) Montrer que l'ensemble des périodes minimales est un intervalle de $]0,+\infty[$ qui contient $]2\pi,+\infty[$ (en fait, il lui est égal).

Exercice 3 (Action d'un élément $Gl(3,\mathbb{C})$ sur \mathbb{CP}^2) Soit $A \in Gl(3,\mathbb{C})$, qu'on fait agir sur $\mathbb{C}^3 \setminus \{0\}$.

- 1) Montrer que cela induit un difféomorphisme ϕ_A de classe C^{∞} de l'espace projectif complexe $\mathbb{CP}^2 = (\mathbb{C}^3 \setminus \{0\})/\mathbb{C}^*$. Montrer qu'il existe $B \in \mathrm{Sl}(3,\mathbb{C})$ tel que $\phi_A = \phi_B$.
- 2) On suppose que A a 3 valeurs propres de modules différents. Montrer que les points périodiques de ϕ_A sont hyperboliques, et décrire leurs variétés stables et instables. Donner pour tout point de \mathbb{CP}^2 son ensemble α -limite et son ensemble ω -limite. Montrer que ϕ_A est de Morse-Smale.

Rappel : la variété différentiable \mathbb{CP}^2 a un atlas à 3 cartes, toutes isomorphes à \mathbb{C}^2 :

$$U_0 = \{[1:x:y] \mid (x,y) \in \mathbb{C}^2\}, \ \phi_0([1:x:y]) = (x,y)$$

$$U_1 = \{[t:1:y] \mid (t,y) \in \mathbb{C}^2\}, \ \phi_1([t:1:y]) = (t,y)$$

$$U_2 = \{[t:x:1] \mid (t,x) \in \mathbb{C}^2\}, \, \phi_2([t:x:1]) = (t,x).$$

- 3) On suppose que A est diagonalisable, mais que les modules des valeurs propres sont tous égaux. Montrer
- que ϕ_A est conjugué dans $\mathrm{Diff}(\mathbb{CP}^2)$ à ϕ_B où $B \in SU(3)$
- que toute orbite est contenue dans un tore de dimension au plus 3
- que tout point est non-errant.

4) Soit
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
. On note $x_0 = [1:0:0], x_1 = [0:1:0], x_2 = [0:0:1]$.

Montrer que pour tout $x \in U_0$ on a $\alpha(x) = \omega(x) = \{x_2\}$. Que se passe-t-il pour $x \in \mathbb{CP}^2 \setminus U_0$?