ÉCOLE NORMALE SUPÉRIEURE – FIMFA – ANNÉE 2010-2011 TRAVAUX DIRIGÉS DE TOPOLOGIE ET CALCUL DIFFÉRENTIEL FRANÇOIS BÉGUIN

Feuille d'exercices n°9

ESPACES DE HILBERT.

1 - Identité du parallélogramme généralisée

1. Soit H un espace de Hilbert. Montrer l'identité du parallélogramme généralisée: pour tous $x_1, \ldots, x_n \in H$, on a

$$||x_1||^2 + \dots + ||x_n||^2 = \frac{1}{2^n} \sum ||\varepsilon_1 x_1 + \dots + \varepsilon_n x_n||^2$$

où la somme porte sur tous les *n*-uplets $(\varepsilon_1, \dots, \varepsilon_n)$ dans $\{-1, 1\}^n$.

2. En déduire que ℓ^p n'est pas isomorphe à ℓ^2 pour $p \neq 2$.

2 - Distance à un sous-espace vectoriel fermé dans un espace de Banach

Soit E l'espace vectoriel des fonctions continues de[-1,1] dans $\mathbb R$ muni de la norme de la convergence uniforme, et F le sous-espace vectoriel de E formé des fonctions impaires dont l'intégrale sur [0,1] est nulle. Soit φ l'élément de E donné par $\varphi(t)=t$.

- 1. Vérifier que F est fermé.
- 2. Montrer que la distance de φ est égale à 1/2, mais que l'on a $\|\varphi \psi\| > \frac{1}{2}$ pour tout $\psi \in F$.

Le théorème de projection sur un convexe fermé est donc faux dans un espace de Banach où la norme ne dérive pas d'un produit scalaire.

3 - Hyperplan fermé d'orthogonal réduit à {0} dans un espace pré-hilbertien

- 1. Rappeler pourquoi un sous-espace vectoriel d'un espace de Hibert est dense si et seulement si son orthogonal est réduit à $\{0\}$.
- 2. Soit $c_{00}(\mathbb{N})$ l'espace préhilbertien des suites nulles à partir d'un certain rang, muni du produit scalaire $\langle u, v \rangle = \sum_{n \in \mathbb{N}} u_n v_n$. Soit f la forme linéaire sur $c_{00}(\mathbb{N})$ donnée par

$$f(u) = \sum_{n \in \mathbb{N}} \frac{u_n}{n+1}.$$

Montrer que Ker(f) est un hyperplan fermé, et que $(Ker(f))^{\perp} = \{0\}.$

3. Plus généralement, montrer que dans tout espace pré-hilbertien non complet, il existe un hyperplan fermé dont l'orthogonal est réduit à $\{0\}$.

4 - Continuité des opérateurs auto-adjoints

Soit H un espace de Hilbert, et $T: H \to H$ un opérateur tel que $\langle T(x), y \rangle = \langle x, T(y) \rangle$ pour tous $x, y \in H$. Montrer que T est continu.

5 - Le théorème de représentation de Riesz est faux dans un espace pré-hilbertien

Soit $E=C([0,1],\mathbb{R})$ l'espace pré-hilbertien des fonctions continues de [0,1] dans \mathbb{R} , muni du produit scalaire $\langle f,g\rangle=\int_0^1 f(t)g(t)dt$. Pour $p\geq 0$ et $a\in]0,1[$ fixés, on considère la forme linéaire $u:E\to\mathbb{R}$ définie par $u(f)=\int_0^a t^p f(t)dt$.

- 1. Montrer que u est continue et calculer sa norme.
- 2. Montrer qu'il n'existe auc un élément g de E tel que $u(f) = \langle f, g \rangle$ pour tout f.

6 - Opérateurs de Hilbert-Schmidt

Soit H un espace de Hilbert.

1. Soient $(e_i)_{i\in I}$ et $(f_j)_{j\in J}$ deux bases hilbertiennes de H. Montrer que, pour tout opérateur linéaire A de H dans lui-même, on a

$$\sum_{i \in I} ||Ae_i||^2 = \sum_{j \in J} ||A^*f_j||^2.$$

En déduire que, si A est un opérateur linéaire de H dans lui-même, la quantité

$$||A||_{\mathcal{HS}} := \left(\sum_{i \in I} ||Ae_i||^2\right)^{\frac{1}{2}}$$

est indépendante du choix de la base hilbertienne $(e_i)_{i \in I}$. Lorsque cette quantité est finie, on dit que A est un opérateur de Hilbert-Schmidt. On notera $\mathcal{HS}(H)$ l'ensemble des opérateurs de Hilbert-Schmidt de H.

- 2. Montrer que $\|\cdot\|_{\mathcal{HS}}$ définit une norme sur \mathcal{HS} , et que l'on a $\|A\|_{\mathcal{HS}} \geq \|A\|$ pour tout A.
- 3. Si A et B sont deux opérateurs continus, montrer que l'opérateur $A \circ B$ est de Hilbert-Schmidt dès que l'un des opérateurs A ou B est de Hilbert-Schmidt.
- 4. Montrer que $\|\cdot\|_{\mathcal{HS}}$ muni de la norme $\|\cdot\|_{\mathcal{HS}}$ est un espace de Hilbert.
- 5. Montrer que tout opérateur de rang fini est de Hilbert-Schmidt. Montrer que les opérateurs de rang finis sont denses dans $\mathcal{HS}(H)$ (pour la norme $\|\cdot\|_{\mathcal{HS}}$), et que les opérateurs de Hilbert-Schmidt sont des opérateurs compacts.
- 6. Soit A un opérateur compact auto-adjoint. Pour toute valeur propre non-nulle λ de A, on note n_{λ} la dimension du sous-espace propre associé à λ . Montrer que A est de Hilbert-Schmidt si et seulement si

$$\sum_{\lambda \in \sigma(A) \setminus \{0\}} n_{\lambda} |\lambda|^2 < +\infty.$$

On suppose maintenant que $H = L^2(X, \mu)$ où μ est une mesure σ -finie sur un espace mesurable (X, \mathcal{B}) . Pour $K \in L^2(X \times X, \mu \otimes \mu)$, on considère l'ópérateur sur H défini par

$$A_K(f) := \int_Y K(x, y) f(y) d\mu(y).$$

- 7. Vérifier que A_K est un opérateur linéaire continu de H dans lui-même, pour tout $K \in L^2(X \times X, \mu \otimes \mu)$. Que peut-on dire de la norme de cet opérateur ? À quel condition est-il auto-adjoint ?
- 8. Soit $(e_i)_{i\in I}$ une base hilbertienne de H. Montrer que la famille $(e_{i,j})_{(i,j)\in I^2}$ définie par $e_{i,j}(x,y)=e_i(x)e_j(y)$ est une base hilbertienne de $L^2(X\times X,\mu\otimes\mu)$.
- 9. En utilisant les bases hilbertiennes $(e_i)_{n\in\mathbb{N}}$ et $(e_{i,j})_{(i,j)\in I^2}$, montrer que

$$||A_K||_{\mathcal{HS}} = ||K||_{L^2(X \times X, \mu \otimes \mu)}$$

pour $K \in L^2(X \times X, \mu \otimes \mu)$. En particulier, A_K est un opérateur de Hilbert-Schmidt pour tout $K \in L^2(X \times X, \mu \otimes \mu)$.

- 10. Réciproquement, et toujours en montrer que tout opérateur de Hilbert-Schmidt $A \in \mathcal{HS}(H)$ est de la forme A_K pour un certain $K \in L^2(X \times X, \mu \otimes \mu)$.
- 11. Conclure que l'application $K \mapsto A_K$ définit une bijection isométrique entre $L^2(X \times X, \mu \otimes \mu)$ et $\mathcal{HS}(H)$.

7 - Théorème ergodique de Von Neumann

1. Soit H un espace de Hilbert et T un endomorphisme continu de H de norme inférieure ou égale à 1. Pour $n \in \mathbb{N} \setminus \{0\}$, on note $T_n := \frac{1}{n+1} \sum_{k=0}^n T^k$ la moyenne des n+1 premiers itérés de T, et on veut montrer que

$$\lim_{n \to \infty} T_n(x) = P(x) \quad \text{pour tout } x \in H$$

où P est le projecteur orthogonal sur Ker(Id - T).

- a. Montrer que $\operatorname{Ker}(I-T) = \operatorname{Ker}(I-T^*)$, et en déduire que $H = \operatorname{Ker}(\operatorname{Id} T) \oplus \overline{\operatorname{Im}(\operatorname{Id} T)}$.
- b. Montrer que $T_n(x)$ tend vers 0 pour $x \in \overline{\text{Im}(\text{Id} T)}$.
- c. Démontrer le résultat annoncé.
- 2. Application. Soit $H = L^2(\mathbb{R}/(2\pi\mathbb{Z})) \simeq L^2([0,2\pi])$ et $\alpha \in 2\pi\mathbb{Q}$. Montrer que pour tout $f \in H$, on a

$$\frac{1}{n+1} \sum_{k=0}^{n} f(\cdot + n\alpha) \to m(f) \quad \text{dans } L^{2}(\mathbb{R}/(2\pi\mathbb{Z}))$$

où m(f) est la fonction constante égale à $\frac{1}{2\pi} \int_0^{2\pi} f(t) dt$.