Feuille 2

I. Opérations ensemblistes et fonctions caractéristiques

Exercice 1. Soit E un ensemble. A toute partie A de E, on associe sa fonction caractéristique $\mathbf{1}_A$ définie par $\mathbf{1}_A(x) = 1$ si $x \in A$ et $\mathbf{1}_A(x) = 0$ si $x \notin A$.

- **a.** Soient E un ensemble et $(A_i)_{i\in I}$ une famille de parties de E. Exprimer $\mathbf{1}_{\cup_i A_i}$ et $\mathbf{1}_{\cap_i A_i}$ en fonction des $\mathbf{1}_{A_i}$.
- **b.** Si $(A_i)_{i\in\mathbb{N}}$ est une suite de parties de E, on pose

$$\limsup_{i} A_{i} = \bigcap_{p \geq 0} \bigcup_{n \geq p} A_{n} \quad \text{et} \quad \liminf_{i} A_{i} = \bigcup_{p \geq 0} \bigcap_{n \geq p} A_{n}.$$

Exprimer avec des quantificateurs puis en français "courant" ce que signifie $x \in \limsup_i A_i$ et $x \in \liminf_i A_i$.

- **c.** Montrer que $\mathbf{1}_{\limsup_i A_i} = \limsup_i \mathbf{1}_{A_i}$ et $\mathbf{1}_{\liminf_i A_i} = \liminf_i \mathbf{1}_{A_i}$.
- **d.** Si $E = \mathbb{R}$, $A_{2n} = [-1, 2+1/(n+1)[$ et $A_{2n+1} =]-2-1/(n+1), 1]$, calculer $\limsup_n A_n$ et $\liminf_n A_n$.

II. Tribus

Exercice 2. Soit X un ensemble et Y un sous-ensemble de X.

- **a.** Pour toute famille \mathcal{A} de parties de X, on note $\widetilde{\mathcal{A}} := \{A \cap Y \mid A \in \mathcal{A}\}$. Montrer que, si \mathcal{A} est une tribu sur X, alors $\widetilde{\mathcal{A}}$ est une tribu sur Y. Décrire simplement $\widetilde{\mathcal{A}}$ dans le cas où $Y \in \mathcal{A}$.
- **b.** Pour toute famille \mathcal{A} de partie de Y, on note $\overline{\mathcal{A}} := \{T \subset X \mid T \cap Y \in \mathcal{A}\}$. Montrer que, si \mathcal{A} est une tribu sur Y, alors $\overline{\mathcal{A}}$ est une tribu sur X. Comparer les familles $\widetilde{\overline{\mathcal{A}}}$ et \mathcal{A} .

c. On considère une tribu \mathcal{A} sur X engendrée par une famille \mathcal{F} de partie de X (c'est-à-dire $\mathcal{A} = \sigma(\mathcal{F})$). Montrer que $\widetilde{\mathcal{A}}$ est la tribu sur Y engendrée par la famille $\widetilde{\mathcal{F}}$ (c'est-à-dire $\widetilde{\mathcal{A}} = \sigma(\widetilde{\mathcal{F}})$).

Exercice 3. Montrer que l'ensemble des parties de \mathbb{R}^2 qui sont réunion finie de rectangles de la forme $I \times J$ où I et J sont des intervalles de \mathbb{R} est une algèbre de parties de \mathbb{R}^2 , c'est-à-dire est non vide, stable par union finie et passage au complémentaire.

Exercice 4. Soit X un ensemble. Décrire la tribu engendrée par les parties finies de X.

Exercice 5.

- a) Soit $\mathcal{A} = \{A_1, \ldots, A_n\}$ une partition finie d'un ensemble E. Décrire la tribu $\sigma(\mathcal{A})$. Quel est son cardinal?
- **b.** Soit $\mathcal{A} = \{A_1, \ldots\}$ une partition dénombrable d'un ensemble E. Décrire la tribu $\sigma(\mathcal{A})$. Quel est son cardinal?

Exercice 6. Pour $n \in \mathbb{N}$ et $k \in \mathbb{N}$, $1 \le k \le 2^n$, on pose $I_{n,k} = \left[\frac{k-1}{2^n}, \frac{k}{2^n}\right] \subset I_{0,1} = [0, 1[$.

- **a.** Décrire la tribu \mathcal{B}_n engendrée par les $I_{n,k}$ à n fixé.
- **b.** $\cup \mathcal{B}_n$ est-elle une tribu?

Exercice 7. On considère une tribu \mathcal{A} sur X. Par définition, $\emptyset \neq A \subset X$ est un **atome** si et seulement si:

$$B \in \mathcal{A}, \ B \cap A \neq \emptyset \Rightarrow B \supset A.$$

a) On définit, pour $x \in X$, A(x) comme étant l'intersection de tous les ensembles mesurables contenant x. Montrer que A(x) est un atome contenant x. Montrer qu'un atome A n'est pas forcément de la forme A(x). (Penser au cas $A = \{\emptyset, X\}$.) Construire un exemple d'atome non-mesurable. Montrer que

$$A \neq \emptyset$$
 est un atome $\iff \exists x \in X \text{ tel que } A \subset A(x).$

- b) Montrer que deux atomes de la forme A(x) sont soit disjoints, soit égaux. En déduire que les atomes A(x) réalisent une partition de X. Quels sont les atomes si $A = \mathcal{B}$?
- c) Si $B \in \mathcal{A}$, montrer que $B = \bigcup_{x \in B} A(x)$.
- **d)** Soit $C = \{A(x); x \in X\}$. Si C est au plus dénombrable, montrer que $C \subset A$, puis que $A = \sigma(C)$.
- e) Si \mathcal{C} est fini, montrer que la tribu est finie. Dans ce cas, déterminer le cardinal de \mathcal{A} en fonction du cardinal de \mathcal{C} . Décrire toutes les tribus finies.
- f) Si C est infini, montrer que la tribu est non-dénombrable. En déduire qu'une tribu n'est jamais dénombrable.
- g) On suppose X au plus dénombrable. Montrer que $\mathcal{C} \subset \mathcal{A}$, puis que $\mathcal{A} = \sigma(\mathcal{C})$. Ce résultat reste-t-il valable si on ne suppose pas X dénombrable? Décrire toutes les tribus d'un ensemble au plus dénombrable.

III. Tribus et topologie

Exercice 8. Soit (X, d) un espace métrique. Montrer que la famille

$$A = \{ A \subset X; A \text{ ouvert ou fermé } \}$$

est une tribu si et seulement si (X,d) est **discret** (c'est-à-dire, $\forall x \in X$, $\exists \varepsilon > 0$ tel que $B(x,\varepsilon) \cap X = \{x\}$). Si cette condition est satisfaite, qui est A?

Exercice 9. Soit (X, d), (Y, δ) espaces métriques. On considère une partition au plus dénombrable de $X, X = \bigcup X_i$, où chaque X_i est borélien.

On munit chaque X_i de la topologie induite par (X, d). Soit $f: (X, d) \to (Y, \delta)$. Montrer que

f est borélienne $\iff \forall i, f_{|X_i}$ est borélienne.

Exercice 10. Si $f:(X,d) \to (Y,\delta)$ est continue sauf en un nombre fini de points, montrer que f est borélienne. Plus généralement, si l'ensemble des points de discontinuité de f est au plus dénombrable, montrer que f est borélienne. Si $f: \mathbb{R} \to \mathbb{R}$ est réglée, montrer que f est borélienne. Cas particulier: f monotone.

Exercice 11. Si $f, g: (X, d) \to (Y, \delta)$, si f est borélienne et si $\{x ; f(x) \neq g(x)\}$ est au plus dénombrable, alors g est borélienne.

Exercice 12. Soit $f: \mathbb{R} \to \mathbb{R}$ continue à gauche. Étudier la suite de fonctions (f_n) , où $f_n(x) = f(l/n)$ si $l/n \le x < (l+1)/n$ $(l \in \mathbb{Z})$. En déduire que f est borélienne.

IV. Propriétés de la mesure de Lebesgue

On admettra dans ce qui suit l'existence de la mesure de Lebesgue sur \mathbb{R} (désignée par λ).

Exercice 13. Montrer que

$$\lambda(A) = 0 \Rightarrow A \text{ dense dans } \mathbb{R} \iff \stackrel{o}{A} = \emptyset.$$

Donner des contre-exemples à l'implication réciproque.

Exercice 14. Soient $f, g : \mathbb{R} \to \mathbb{R}$ continues. Montrer que, si f = g p.p., alors f = g. Si f, g sont seulement boréliennes?

Exercice 15. Calcular inf $\{\lambda(U) ; U \text{ ouvert dense dans } \mathbb{R}\}.$

Exercice 16. Soit $A \in \mathcal{B}$ ayant la propriété $(A + \{n\}) \cap A = \emptyset$, $\forall n \in \mathbb{Z}$. Montrer qu'il existe une famille de boréliens $(A_n)_{n \in \mathbb{Z}} \subset [0, 1[$ tels que: $A_n \cap A_m = \emptyset$, $n \neq m$, et $A = \bigcup_{n \in \mathbb{Z}} (A_n + \{n\})$. En déduire que $\lambda(A) \leq 1$.

Exercice 17. Soit $A \in \mathcal{B}$. Si I est un intervalle borné tel que $\lambda(A \cap I) = \lambda(I)$ et si $J \subset I$ est un intervalle, montrer que $\lambda(A \cap J) = \lambda(J)$. Si A a la propriété

$$\forall I \text{ intervalle born\'e}, \lambda(A \cap I) = \lambda(I) \text{ ou } \lambda(A \cap I) = 0,$$

montrer que $\lambda(A) = 0$ ou $\lambda(\mathbb{R} \setminus A) = 0$.

Exercice 18. Un ensemble non borélien Soit V un espace vectoriel (de dimension finie ou non) sur le corps K. Une famille $(e_i)_{i \in I}$ est une base de V si et seulement si tout élément v de V s'écrit de manière unique sous la forme

$$v = \sum_{\text{finie}} \lambda_i e_i, \quad \lambda_i \in K.$$

Ici, "finie" indique le fait que $\lambda_i = 0$ sauf pour un nombre fini d'indices i. Exemple: $\{1, X, X^2, \ldots\}$ est une base de $\mathbb{R}[X]$. On admet le résultat suivant: tout espace vectoriel admet une base.

a) Soit $(e_i)_{i\in I}$ une base de \mathbb{R} considéré en tant qu'espace vectoriel sur \mathbb{Q} . On fixe un $i_0 \in I$ et on considère l'ensemble

$$A = \{ \sum_{\text{finie}} \lambda_i e_i ; \lambda_i \in \mathbb{Q}, \lambda_{i_0} = 0 \}.$$

Montrer que $(A+\{\lambda e_{i_0}\})_{\lambda\in\mathbb{Q}}$ est une partition de \mathbb{R} . En déduire que l'ensemble A n'est pas borélien. (On pourra utiliser l'exercice ??) Donner un exemple de fonction non-borélienne.

Exercice 19. Soit A un borélien de mesure finie. Montrer que la fonction $x \mapsto \lambda((A + \{x\}) \cap A)$ est continue. (Commencer par le cas où A est un compact.) En déduire que, si $\lambda(A) > 0$, alors A - A a l'intérieur non vide.

V. Mesures abstraites

Exercice 20. Soit μ une mesure borélienne localement finie sur \mathbb{R} et A un borélien avec $\mu(A) > 0$. Montrer qu'il existe une suite d'intervalles non-dégénérés (I_n) tels que $\lim_n \frac{\mu(A \cap I_n)}{\mu(I_n)} = 1$.

Exercice 21. Soit (A_n) une suite d'ensembles mesurables tels que $\sum_n \mu(A_n) = \mu(\bigcup_n A_n) < +\infty$. Montrer qu'il existe une suite (B_n) d'ensembles **disjoints** tels que $B_n \subset A_n$, $\mu(A_n \setminus B_n) = 0$ et $\bigcup_n B_n = \bigcup_n A_n$.

Exercice 22. Lemme de Borel Cantelli. Soit (A_n) une suite d'ensembles mesurables tels que $\sum_n \mu(A_n) < +\infty$. Montrer que $\mu(\limsup A_n) = 0$.

Exercice 23. Mesure image. Soit $f: \mathbb{R} \to S^1$, $f(t) = e^{it}$. Pour $A \subset S^1$ borélien, on définit $\mu(A) = \lambda(f^{-1}(A) \cap [x, x + 2\pi[), x \in \mathbb{R}]$. Montrer que cette définition ne dépend pas du choix de x. Montrer que μ est une mesure. De plus, μ est invariante par isométries, c'est-à-dire $\mu(\mathcal{O}(A)) = \mu(A)$, pour toute isométrie linéaire \mathcal{O} de \mathbb{R}^2 .