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Abstract. In this paper, we investigate the existence of foliations by
constant mean curvature (CMC) hypersurfaces in maximal, globally hy-
perbolic, spatially compact, spacetimes of constant curvature.

In the non-positive curvature case (i.e. for flat and locally anti-de
Sitter spacetimes), we prove the existence of a global foliation of the
spacetime by CMC Cauchy hypersurfaces. The positive curvature case
(i.e. locally de Sitter spacetimes) is more delicate: in general, we are only
able to prove the existence of a foliation by CMC Cauchy hypersurfaces
in a neighbourhood of the past (or future) singularity.

Except in some exceptional and elementary cases, the leaves of the
foliation we construct are the level sets of a time function, and the mean
curvature of the leaves increases with time. In this case, we say that the
spacetime admits a CMC time function.

Our proof is based on using the level sets of the cosmological time
function as barriers. A major part of the work consists of proving the
required curvature estimates for these level sets. One of the difficulties
is the fact that the local behaviour of the cosmological time function
near one point depends on the global geometry of the spacetime.
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1. Introduction

The purpose of the present paper is to study the existence of foliations
by CMC Cauchy hypersurfaces, and the existence of CMC time functions
on maximal globally hyperbolic, spatially compact, spacetimes of constant
curvature.

1.1. CMC time functions as canonical time functions. Spacetimes
considered as cosmological models in generel relativity are usually assumed
to be globally hyperbolic. By a classical theorem of Geroch, every such space-
time (M, g) admits a time function, that is a function t : M → R which is
strictly increasing along every future-oriented causal curve. This time func-
tion is by no means unique : the set of all time functions on a given spacetime
contains open sets of functions for the C1-Whitney topology. Nevertheless,
on some spacetimes, it is possible to find a canonical time function. By
“canonical”, we mean “defined in a coordinate invariant manner”.

The primary interest of a canonical time function is of course to provide a
good notion of time. Introducing a canonical time function also allows one
to describe the spacetime as a one parameter family of Riemannian spaces
(the level sets of the function) indexed by time. As a consequence, it is
possible to measure the geometric distorsion of the spacetime (how different
is the spacetime from a metric product (I,−dt2)× (N,h) ?), or to describe
the asymptotic geometric behaviour of the spacetime as one approaches the
initial (or future) singularity (or when times goes to infinity).

One example of canonical time function is the so-called cosmological time.
Given a spacetime (M, g), one may consider the function τ : M → [0,+∞]
defined as follows: τ(x) is the supremum of the lengths of all past-directed
timelike curves starting at x. If τ(x) is finite for every x in M and depends
continuously on x (which is the case e.g. in the classical Robertson-Walker
models), then τ is time function on M : the cosmological time of M . The
main drawback of the cosmological time is that it typically has a poor reg-
ularity (C1 but not C2).
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In this paper, we will be considering another type of canonical time
functions. A CMC time function of a spacetime (M, g) is a time func-
tion t : M → I ⊂ R such that for every a ∈ I, the level set t−1(a) is a
Cauchy hypersurface with constant mean curvature equal to a. If such a
function exists, the spacetime is foliated by Cauchy hypersurfaces with con-
stant mean curvature, and the mean curvature of these Cauchy hypersurfaces
increases with time. A simple consequence of the maximum principle is that
a CMC time function with compact level sets, when it exists, is automat-
ically unique. Hence, CMC time functions are examples of canonical time
functions.

In addition to being canonical time functions, CMC time functions are
interesting because of the important role they play in the study of the Ein-
stein equations. The study of the global properties of spacetimes solving
the Einstein equations plays a central role both in differential geometry
and General Relativity. However, with the exception of results which rely
on small data assumptions (nonlinear stability results) or the assumption
of symmetries, many fundamental questions about the global structure of
Einstein spacetimes remain open, including cosmic censorship, structure of
singularities, and existence of global foliations by Cauchy hypersurfaces with
controlled geometry. Recall that the Einstein equations are hyperbolic only
in a weak sense, and therefore in order to approach its Cauchy problem from
a PDE point of view, it is necessary either to impose gauge conditions, or
to extract a hyperbolic system by modifying the equation. The constant
mean curvature (CMC) condition is an important gauge condition in the
study of the Cauchy problem of the Einstein equation, and hence in General
Relativity. The CMC time gauge is known to lead to a well-posed Cauchy
problem in conjunction with the zero shift condition [27] as well as with the
spatial harmonic gauge condition [9]. In the Hamiltonian formulation of the
Einstein equation, the volume of a CMC hypersurface can be viewed as the
canonical dual to the CMC time, see [30]. In the case of 2+1 dimensional
spacetimes, this point of view leads to a formulation of the Einstein equation
in CMC gauge as a time-dependent finite dimensional Hamiltonian system
on the cotangent bundle of Teichmuller space (see [41]).

There are numerous results concerning the existence of global foliations
by CMC hypersurfaces and CMC time functions under various symmetry
conditions, for spacetimes with and without matter. See [2, 44] for recent
surveys. It should be noted that examples of Ricci flat spacetimes which do
not contain any CMC Cauchy hypersurface were recently constructed [28].
However, it is not yet known if these examples are stable.

1.2. Maximal globally hyperbolic spatially compact spacetimes of
constant curvature. Recall that a Lorentz manifold, or spacetime, (M, g)
is globally hyperbolic if it contains a Cauchy hypersurface S, i.e. a spacelike
hypersurface such that each inextendible causal curve in M intersects S at
exactly one point. A globally hyperbolic spacetime is maximal if it cannot
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be extended in the class of globally hyperbolic spacetimes. For brevity
we use the acronym MGHC for maximal globally hyperbolic spacetimes
whose Cauchy hypersurfaces are compact. An equivalent definition is that
a spacetime M is MGHC if and only if it admits a time function t : M → R
which is proper (i.e. t−1([a, b]) is a compact subset of M for every compact
interval [a, b] ⊂ R).

Several authors, see eg. [17], use the term cosmological spacetime to
denote a MGHC spacetime satisfying the timelike convergence, or strong
energy condition, i.e. Ric(v, v) ≥ 0 for every timelike vector v (see below).

Spacetimes with constant (sectional) curvature are special cases of space-
times satisfying the vacuum Einstein equations with cosmological constant.
They constitute an important subclass of spacetimes, where one may expect
to understand the fundamental questions, including the cosmic censorship
problem completely. However, even within this subclass, there are still open
questions relating to the existence and properties of constant mean curva-
ture foliations, and the asymptotic structure at cosmological singularities is
not fully understood.

MGHC spacetimes with constant curvature have a locally trivial geome-
try, being locally isometric to Minkowski space, de Sitter space or anti-de
Sitter space and thus the partial differential equations aspect of the analysis
of these spacetimes is trivial. However, the topology of these spacetimes
may be highly nontrivial and although the spacetimes under consideration
have a local isometry pseudo-group of maximal dimension, they typically
have trivial (global) isometry groups. The interplay between the topology
and the causal structure of the spacetime will be the source of most of the
difficulties encountered in our work.

Having a locally trivial geometry, a spacetime with constant curvature
cannot be considered as an accurate model of the Universe at small scales
(e.g. since the Weyl tensor of such a spacetime vanishes, it cannot model
phenomena like gravitationnal waves). Nevertheless, we do think that the
study of such spacetimes is pertinent. Indeed, considering spacetimes with
constant curvature allows one to ignore the local issues, in order to focus
on the global topological and geometrical problems. Moreover, recall that
very little is known on the global geometry of the solutions of the Einstein
equations except for results which rely on small data assumptions (non-
linear stability results) or the assumption of symmetries. The spacetimes
we consider do not have global symmetries, and do not correspond to the
usual ”small data situation”, so the situation we are handling leads into
unexplored areas.

MGHC spacetimes with constant curvature can also be considered as large
scale approximation of more realistic spacetimes. From this point of view,
our result could be thought as starting points for studies of non-homogenous
deformations of MGHC spacetimes with constant curvature .
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Among the spacetimes we consider here are those with positive constant
curvature, i.e. MGHC de Sitter spacetimes. An essential feature of the
current standard model in cosmology is the accelerated expansion of the
universe. In order to achieve accelerated expansion, the strong energy con-
dition must be violated, which leads one to consider spacetimes with positive
cosmological constant, i.e. spacetimes of de Sitter type. The timelike conver-
gence condition is violated in these spacetimes and hence the standard proof
of uniqueness of CMC foliations does not apply. Nevertheless, we shall show
the existence of a large class of MGHC de Sitter spacetimes which admit a
CMC time function, and thus a unique CMC foliation.

On the other hand, spacetimes of anti-de Sitter type play an important
role in the AdS/CFT correspondence, which is currently being intensely
investigated by string theorists.

The systematic study of spacetimes of constant sectional curvature was
initiated by Mess [40], following work by among others Margulis [39] and
Fried [31]. The classification of maximal globally hyperbolic flat spacetimes
with complete Cauchy hypersurfaces has recently been completed by Barbot
[12], following work of Bonsante [23, 24] and others. This classification in
the de Sitter case has been performed by Scannell in his thesis [45]. The
classification in the anti-de Sitter case is not yet fully understood, but what
is known is enough for our purpose - and it appears that this case is some
way the simplest one: we will prove that every anti-de Sitter MGHC space-
time admits a CMC time function, with no further restriction. However,
it remains a difficult case, due to the necessicity to grasp the geometrical
feature of the anti-de Sitter space, which will be developed in this paper.

1.3. Conventions and definitions. Consider a n-dimensional spacetime
M . Let S ⊂ M be a spacelike hypersurface, and ν be its future directed unit
normal. Then for X, Y tangent to S, the second fundamental form is given
by II(X, Y ) = 〈ν,∇XY 〉 = −〈∇Xν, Y 〉. The mean curvature of S is defined
by HS = tr(II)/(n − 1). The hypersurface S is called a CMC hypersurface
if HS is constant over S.

If M satisfies the timelike convergence condition (i.e. if Ric(V, V ) ≥ 0 for
timelike vectors V ) and has compact Cauchy hypersurfaces, then for each
p ∈ M and for each τ 6= 0, there is at most one compact CMC surface
containing x with mean curvature τ . The timelike convergence condition
holds in flat and locally anti-de Sitter spacetimes, but fails in locally de
Sitter spacetimes.

A CMC foliation of a spacetime M is a foliation whose leaves are CMC
hypersurfaces.

Remark 1.1. Let F be a CMC foliation of M whose leaves are compact.
On the one hand, since all the leaves of F are compact, there exists a
submersion f : M → R whose level sets are the leaves of F . On the other
hand, a compact spacelike hypersurface in a globally hyperbolic spacetime
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is a Cauchy hypersurface (see e.g. [25]); hence the leaves of F are Cauchy
hypersurfaces. It follows that f is strictly monotonous along every causal
curve; hence f or −f is a time function. In particular, the leaves of F are
the level sets of a time function.

A time function t : M → I ⊂ R is a CMC time function if the level set
t−1(a) is a CMC Cauchy hypersurface whose mean curvature is equal to a,
for every a ∈ I.

Remark 1.2. To admit a CMC time function is a stronger property than
to admit a CMC foliation with compact leaves. The key difference is the
following :

– if t : M → I ⊂ R is a CMC time function then the mean curvature of
the level set t−1(a) is equal to a. In particular, the mean curvature
of the level sets of t increases strictly along future directed timelike
curves.

– if F a CMC foliation with compact leaves, then the leaves of F are
the level sets of a time function t : M → I ⊂ R, but the mean
curvature of the leaf t−1(a) does not necessarily increase strictly
with a. As a dramatic example, there are CMC foliation all leaves
of which have the same mean curvature.

In contrast to the situation for CMC foliations, a globally defined CMC
time function with compact level sets is unique, even if the timelike con-
vergence condition fails to hold. The proof is a straightforward application
of the maximum principle, see [15, § 2] for details. Similarly, we will prove
that CMC time functions in constant sectional curvature MGHC space-
times is automatically real analytic (see Proposition 4.11) whereas this is
not necessarily the case for CMC foliations (see e.g. Proposition 17.5 and
Remark 17.7, item 2 and 3).

1.4. Statements of results. A spacetime (M, g) is said to be causally com-
plete if every causal geodesic is complete. It is said to be past (resp. future)
complete if every past-directed (resp. future-directed) causal geodesic ray is
complete.

1.4.1. The flat case. It is a basic fact that if a flat MGHC spacetime (M, g)
is causally complete, then it is a quotient of the Minkowski space R1,n−1

(see e.g. [12]). In this case M is foliated by flat, totally geodesic Cauchy
hypersurfaces. Therefore we may focus on the case when M is causally
incomplete. Without loss of generality, assume that M is past incomplete.
Then M is future complete, and is the quotient of a convex strict subset of
R1,n−1 by a group of isometries acting freely and properly discontinuously.
This subset is in fact a future regular domain E+(Λ), cf. definition 6.2.

The first result characterizes the generalized mean curvature of the level
sets of the cosmological time function in a regular domain.
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Theorem 1.3. Consider a (future complete flat) regular domain E+(Λ) in
R1,n−1, and the associated cosmological time τ : E+(Λ) → (0,+∞). Then,
for every a ∈ (0,+∞), the level hypersurface Sa = τ−1(a) has generalized
mean curvature bounded from below by − 1

a , and from above by − 1
(n−1)a .

Our conventions for second fundamental form and mean curvature are
such that the future hyperboloids in Minkowski space have negative mean
curvature with respect to the future directed normal (see subsection 1.3).
Clearly, Theorem 1.3 holds for quotients of regular domains, and such spaces
therefore have crushing singularity, since the level sets of the cosmological
time function provide a sequence of Cauchy hypersurfaces with uniformly
diverging mean curvature.

For the case of spacetimes with compact Cauchy hypersurface, a standard
barrier argument yields existence of a CMC foliation.

Theorem 1.4. Let (M, g) be a flat MGHC spacetime.
(1) If (M, g) is both past and future complete then it does not admit any

globally defined CMC time function, but it admits a unique CMC
foliation.

(2) If (M, g) is future complete, then it admits a globally defined CMC
time function τcmc : M → I where I = (−∞, 0). Furthermore, the
CMC and cosmological times are comparable:

τ ≤ − 1
τcmc

≤ (n− 1)τ.

(3) A similar statement, but with a time range I = (0,+∞), is true in
the past complete case.

In all cases, these foliations are analytic.

Remark 1.5. This result is not new. It was proved in [10] in the 2+1
dimensionsal case, assuming the existence of one CMC Cauchy hypersurface.
In [1], a proof was given for the case of spacetimes with hyperbolic spatial
topology. Finally, it has been observed in [12], that the general case follows
from the classification of flat MGHC spacetimes.

The proof provided here is conceptually much simpler that the arguments
given in the above mentioned papers. More importantly, as we will see, this
proof that can be adapted to the general constant curvature case.

Furthermore, the asymptotic behavior of the geometry on the level sets of
the cosmological time function is intimately related to the geometry of the
singularity itself, i.e. the boundary of the universal cover of the spacetime.
This will enable us in a forthcoming paper to analyze the asymptotic behavor
of the CMC foliation at the cosmological singularity of constant curvature
spacetimes, see [4]. In particular, in the case of flat spacetimes, we are
able to prove in [4] the conjecture of Benedetti and Guadagnini [19] that
the limit of the geometry of the level sets of the CMC time function in the
Gromov sense is the same as the limit of the geometry of the level sets of the
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cosmological time function. In the 2+1 dimensional case, this limit can be
identified as a point on the Thurston boundary of Teichmuller space. While
one expects the limiting geometry of the cosmic time levels to be the same
as the CMC time levels in general, there is not yet a clear identification of
the limiting geometry except in the 2+1 dimensional flat case.

Remark 1.6. There is no compactness condition on Cauchy hypersurfaces
in Theorem 1.3. However, a direct proof of existence of CMC hypersurfaces
given barriers requires compactness. In a noncompact situation, it is neces-
sary to consider a sequence of Plateau problems, following ideas developed
in [46]. It is natural to ask whether any flat regular domain has a CMC
foliation. In particular, given two level hypersurfaces of the cosmological
time function with mean curvatures bounded above and below by c, is there
a CMC hypersurface with mean curvature c between them? Similarly, given
an isometry group of a regular domain, does there exist CMC hypersurfaces,
or CMC foliations, invariant under the isometry group action?

1.4.2. The anti-de Sitter case. The fact that the timelike convergence condi-
tion holds strictly in anti-de Sitter spacetimes (i.e. spacetimes with constant
negative sectional curvature) simplifies the analysis of CMC time functions.
We shall prove the following result:

Theorem 1.7 (see § 13). Let (M, g) be a MGHC spacetime with negative
constant sectional curvature. Then (M, g) admits a globally defined CMC
time function τcmc : M → (−∞,∞).

Remark 1.8. Theorem 1.7 was already proved in [15] in the particular case
where dim(M) = 3. The proof provided in [15] uses some sophisticated
tools, such as the so-called Moncrief flow on the cotangent bundle of the
Teichmüller space, which are very specific to the case where dim(M) = 3.

1.4.3. The de Sitter case. In de Sitter spacetimes, i.e. spacetimes of constant
positive sectional curvature, the timelike convergence condition fails to hold,
and due to this fact the problem of existence of CMC time functions is most
difficult in this case. Although they are quite delicate to deal with, MGHC
de Sitter spacetimes are very abundant and easy to construct. Any com-
pact conformally flat Riemannian manifold gives rise by means of a natural
suspension process to a MGHC de Sitter spacetime, and vice-versa. This
classification is essentially due to K. Scannell (for more details, see section
14.1). All of theses spaces are (at least) future complete or past complete.
According to the nature of the holonomy group of the associated conformally
flat Riemannian manifold, i.e. the representation of its fundamental group
into the Möbius group, MGHC de Sitter spacetimes split into three types:
elliptic, parabolic and hyperbolic (reminiscent of the same classification in
Riemannian geometry). Elliptic and parabolic de Sitter spacetimes admit a
simple characterization.

• Every elliptic de Sitter spacetime is the quotient of the whole de
Sitter space by a finite group of isometries.
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• Up to a finite cover, every parabolic dS spacetime is the quotient of
some open domain of the de Sitter by a finite rank abelian group of
isometries of parabolic type.

Using these geometrical descriptions, it is quite easy to prove that elliptic
and parabolic spacetimes do not admit any CMC time function, but admit
CMC foliations: More precisely, one has the following results:

Proposition 1.9 (see § 17.2). Let (M, g) be an elliptic de Sitter MGHC
spacetime. Then, (M, g) admits no CMC time function, but it admits (at
least) a CMC foliation. More precisely:

(1) if (M, g) is isometric to the whole de Sitter space, it admits infinitely
many CMC foliations.

(2) if (M, g) is isometric to a quotient of the de Sitter space by a non-
trivial group, then there is a unique CMC foliation. Moreover, every
CMC Cauchy hypersurface surface in (M, g) is a leaf of this CMC
foliation.

Proposition 1.10 (see § 17.3). If (M, g) is parabolic, then it admits no
CMC time function, but has a unique CMC-foliation. Moreover, every CMC
Cauchy surface in (M, g) is a leaf of this CMC foliation.

“Most” de Sitter MGHC spacetimes are hyperbolic. Our last result, even
if non-optimal, tends to show that these spacetimes “usually” admit CMC
time functions:

Theorem 1.11 (see § 17.1). Let (M, g) be a MGHC hyperbolic de Sitter
spacetime. After reversal of time, we can assume that M is future complete.
Then, (M, g) admits a partially defined CMC time function τcmc : U → I
where U is a neighbourhood of the past end of M and I = (−∞, β) for some
β ≤ −1. Moreover, U is the whole spacetime M and β = −1 in the following
cases,

(1) (M, g) has dimension 2 + 1,
(2) (M, g) is a almost-fuchsian, i.e. contains a Cauchy hypersurface

with all principal curvatures < −1.

Remark 1.12. Theorem 1.11 is sharp in the following sense: for any n ≥ 4,
we will give examples of n-dimensional de Sitter MGHC spacetimes which
do not admit any global CMC time function (see section 17.1.3). A proof
of Theorem 1.11 in the particular case where dim(M) = 3 was given in
[16]. This proofs relies on a theorem of F. Labourie on hyperbolic ends of
3-dimensional manifolds, and thus, is very specific to the 3-dimensional case.

Remark 1.13. There is a well-known natural duality between spacelike im-
mersions of hypersurfaces in de Sitter space and immersions of hypersurfaces
in the hyperbolic space (see for example [16, § 5.2.3]). This correspondance
has the remarkable property to invert principal curvatures: if λ is a principal
curvature of the spacelike hypersurface immersed in de Sitter space, then
the inverse λ−1 is a principal curvature of the corresponding hypersurface
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immersed in the hyperbolic space. The notion of almost-fuchsian manifolds
has been introduced by K. Krasnov and J.-M. Schlenker in [37, § 2.2] for
the riemannian case. More precisely, they defined almost-fuchsian hyper-
bolic manifolds as hyperbolic quasi-fuchsian manifolds containing a closed
hypersurface S with principal curvatures in ] − 1,+1[. For every r > 0, let
Sr be the surface made of points at oriented distance r from S. Then, for
r converging to −∞, the principal curvatures of Sr all tend to −1 (see [37,
Lemma 2.7]). It follows that hyperbolic almost-fuchsian hyperbolic mani-
folds can be defined more precisely as hyperbolic quasi-fuchsian manifolds
containing a closed hypersurface S with principal curvatures in ]−1, 0[. Here
we extended the notion of almost-fuchsian manifolds to the de Sitter case,
defining (future complete) almost-fuchsian de Sitter spacetimes as MGHC
de Sitter spacetimes containing a Cauchy hypersurface admitting principal
curvatures in ]−∞,−1[. It follows from the discussion above that this termi-
nology is consistent with respect to the Krasnov-Schlenker terminology and
the duality between de Sitter space and hyperbolic space. Typical examples
are fuchsian spacetimes and small deformations thereof (see Remark 17.2).

1.5. Contents of the paper. The existence of CMC foliations will be ob-
tained by the classical barrier method, using the level sets of the cosmologi-
cal time function as barriers. Henceforth the proof of our results essentially
amounts to analysing the cosmological time function of MGHC spacetimes
with constant curvature, in order to prove the desired curvature estimates.

The paper is divided into four parts. In the first part (sections 2 to 5),
we review some general facts on the cosmological time functions, the barrier
method and (G, X)-structure. The three remaining parts correspond to the
three possible signs for the curvature of the spacetimes : flat spacetimes
(sections 6 to 9), anti-de Sitter spacetimes (sections 10 to 13) and de Sitter
spacetimes (section 14 to 17). Each part is itself divided in four sections. In
the first section, we give a description of a MGHC spacetime with constant
curvature as the quotient of a convex open subset of the Minkowski, the
anti-de Sitter or the de Sitter space by a discrete isometry group. In the
second section, we give a description of the cosmological time function of the
spacetime under consideration. In the third part, we prove some estimates
for the mean curvature of the level sets of the cosmological time function.
Finally, in the fourth part, we prove the existence of a CMC foliation and/or
a CMC time function.

2. Cosmological time functions

In any spacetime (M, g), one can define the cosmological time function,
see [6], as follows:

Definition 2.1. The cosmological time function of a spacetime (M, g) is
the function τ : M → [0,+∞] defined by

τ(x) = Sup{L(c) | c ∈ R−(x)},
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where R−(x) is the set of past-oriented causal curves starting at x, and L(c)
is the lorentzian length of the causal curve c.

This function is in general badly behaved. For example, in the case of
Minkowski space, the cosmological time function is everywhere infinite.

Definition 2.2. A spacetime (M, g) has regular cosmological time function
τ if

(1) M has finite existence time, i.e. τ(x) < ∞ for every x in M ,
(2) for every past-oriented inextendible causal curve c : [0,+∞) → M ,

limt→∞ τ(c(t)) = 0.

In [6], Andersson, Galloway and Howard have proved that spacetimes
whose cosmological time function is regular enjoy many nice properties.

Theorem 2.3. If a spacetime (M, g) has regular cosmological time function
τ , then

(1) M is globally hyperbolic,
(2) τ is a time function, i.e. τ is continuous and is strictly increasing

along future-oriented causal curves,
(3) for each x in M , there is a future-oriented timelike geodesic c :

(0, τ(x)] → M realizing the distance from the ”initial singularity”,
that is, c has unit speed, is maximal on each segment, and satisfies:

c(τ(x))) = x and τ(c(t)) = t for every t

(4) τ is locally Lipschitz, and admits first and second derivative almost
everywhere.

Remark 2.4. Similarly, for every spacetime (M, g), one may define the
reverse cosmological time function of (M, g). This is the function τ̂ : M →
[0,+∞] defined by

τ̂(x) = Sup{L(c) | c ∈ R+(x)},
where R+(x) is the set of future-oriented causal curves starting at x, and
L(c) the lorentzian length of the causal curve c. Then one may introduce
the notion of spacetime with regular reverse cosmological time function, and
prove a result analogous to Theorem 2.3.

3. Generalized mean curvature

If S is a spacelike hypersurface in a spacetime (M, g), then the second
fundamental form (also known as the extrinsic curvature) of S at a point
x is defined as II(X, Y ) = 〈ν,∇XY 〉 = −〈∇Xν, Y 〉 where X, Y are tan-
gent vectors to S at x and ν is the future oriented timelike normal of S
(with lorentzian norm −1). The mean curvature is defined in terms of the
trace of II with respect to the induced metric as HS = trII/(n − 1). This
definition requires S to be at least C2. Nevertheless, in certain cases, one
can give a meaning to the assertion “a topological hypersurface has mean
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curvature bounded from below (or above) by some constant c”. A definition
of this notion for rough spacelike spacelike hypersurfaces was given in [7,
Definition 3.3], making use of the notion of supporting hypersurfaces with
one-sided Hessian bound. The following definition, which does not include
the one-sided Hessian bound, is sufficient for our purposes in this paper. We
will say that S is a C0-spacelike hypersurface in M if for each x ∈ S, there
is a neighborhood U of x so that S ∩U is edgeless and acausal in U , see [7,
Definition 3.1].

Definition 3.1. Let S be a C0-spacelike hypersurface in a spacetime (M, g).
Given a real number c, we will say that S has generalized mean curvature
bounded from above by c at x, denoted HS(x) ≤ c, if there is a geodesically
convex open neighborhood V of x in M and a smooth spacelike hypersurface
S−x in V such that :

– x ∈ S−x and S−x is contained in the past of S ∩ V (in V ),
– the mean curvature of S−x at x is bounded from above by c.

Similarly, we will say that S has generalized mean curvature is bounded
from below by c at x, denoted HS(x) ≥ c, if, there is a geodesically convex
open neighborhood V of x in M and a smooth spacelike hypersurface S+

x in
V such that :

– x ∈ S+
x and S+

x is contained in the past of S∩V (with respect to V ),
– the mean curvature of S+

x at x is bounded from below by c.

We will write HS ≥ c and HS ≤ c to denote that S has generalized mean
curvature bounded from below respectively above by c for all x ∈ S.

Remark 3.2. Let S be a smooth spacelike hypersurface in a spacetime
(M, g), and c be a real number. If HS ≤ c or HS ≥ c in the sense of the
definition above, then the maximum principle, see Proposition 4.4 below,
implies that the same bounds hold in terms of the usual sense.

Remark 3.3. Let S be a C0-spacelike hypersurface, and let x be a point of
S. Assume that there exists two numbers c−, c+ such that S has generalized
mean curvature bounded from below by c− and from above by c+ at x.
Then S has a tangent plane at x. Indeed, the point x belong to two smooth
hypersurfaces S−x and S+

x which are (locally) respectively in the past and in
the future S. In particular, S−x is locally in the past of S+

x . This implies that
the tangent hyperplane of S−x at x coincides with the tangent hyperplane of
S+

x . And since S is between S−x and S+
x , this hyperplane is also tangent to

S.

4. From barriers to CMC time functions

In this section, we consider a n-dimensional, n ≥ 3, maximal globally hy-
perbolic spacetime (M, g) with compact Cauchy hypersurfaces and constant
curvature equal to k. We emphasize that many of the proofs that we give
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are not valid without the assumption that M has compact Cauchy surfaces.
Recall that (M, g) has curvature k if the Riemann tensor satisfies

〈Riem(X, Y )Y, X〉 = k(〈X, X〉〈Y, Y 〉 − 〈X, Y 〉2)
for any vector fields X, Y . Then the Ricci tensor satisfies Ric = (n − 1)kg.
We will define a notion of sequence of asymptotic barriers, and prove (using
quite classical arguments) that (M, g) admits a CMC time function provided
that it admits a sequence of asymptotic barriers.

Definition 4.1. Let c be a real number. A pair of c-barriers is a pair of
C0-spacelike Cauchy hypersurfaces (Σ−,Σ+) in M such that

– Σ+ is in the future of Σ−,
– HΣ− ≤ c ≤ HΣ+ in the sense of definition 3.1.

Definition 4.2. Let α be a real number. A sequence of asymptotic past
α-barriers is a sequence of C0-spacelike Cauchy hypersurfaces (Σ−m)m∈N in
M such that

– Σ−m tends to the past end of M when m → +∞ (i.e. given any
compact subset K of M , there exists m0 such that K is in the future
of Σ−m for every m ≥ m0),

– a−m ≤ HΣ−
m
≤ a+

m, where a−m and a+
m are real numbers such that

α < a−m ≤ a+
m, and such that a+

m → α when m → +∞.
Similarly, a sequence of asymptotic future β-barriers is a sequence of C0-

spacelike Cauchy hypersurfaces (Σ+
m)m∈N in M such that

– Σ+
m tends to the future end of M when m → +∞,

– b−m ≤ HΣ+
m
≤ b+

m, where b−m and b+
m are real numbers such that

b−m ≤ b+
m < b, and such that b−m → β when m → +∞.

Theorem 4.3. Let (M, g) be an n-dimensional, n ≥ 3, maximal globally hy-
perbolic spacetime, with compact Cauchy hypersurfaces and constant curva-
ture k, and such that (M, g) admits a sequence of asymptotic past α-barriers
and a sequence of asymptotic future β-barriers. If k ≥ 0, assume moreover
that (α, β) ∩ [−

√
k,
√

k] = ∅. Then, (M, g) admits a CMC time function
τcmc : M → (α, β).

Theorem 4.3 follows easily from known facts in case the barriers are
smooth, and introducing C0 barriers is not difficult given the results above.
Nevertheless, since we are not aware of a reference for this precise statement,
we include a proof below. The following are the two main technical steps
in the proof. In the case of smooth barriers and hypersurfaces, they were
proved in this formulation by Gerhardt [33].

– a proposition which states that any CMC hypersurface of mean cur-
vature c′ lies in the future of any CMC hypersurface of mean curva-
ture c whenever c′ > c (Proposition 4.6);

– a theorem which ensures the existence of a Cauchy hypersurface of
constant mean curvature c, assuming the existence of a pair of c-
barriers (Theorem 4.9).
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Let us start with a slight generalization of the classical maximum principle.

Proposition 4.4. Let Σ and Σ′ be two C0-spacelike hypersurfaces. Assume
that these hypersurfaces have one point x in common, and assume that Σ is
in the past of Σ′. Assume that Σ has generalized mean curvature bounded
from above by c at x, and Σ′ has generalized mean curvature bounded from
below by c′ at x. Then c ≥ c′.

Remark 4.5. Proposition 4.4, which may be viewed as a comparison prin-
ciple, follows from the strong maximum principle for C0 hypersurfaces sat-
isfying a one-sided Hessian bound, see [7, Theorem 3.6]. The notion of
generalized curvature we are using here does not include this requirement
and we therefore include the simple proof of the proposition.

Proof. Since Σ has generalized mean curvature bounded from above by c at
x, there exists a smooth spacelike hypersurface Sx such that x ∈ Sx, Sx is
in the past of Σ and the mean curvature of Sx at x is at most c. Similarly,
there exists a smooth spacelike hypersurface S′x such that x ∈ S′x, S′x is in
the future of Σ′ and the mean curvature of S′x at x is at least c′. Since Σ
is in the past of Σ′, this implies that Sx is in the past of S′x. And since the
point x belongs to both Sx and S′x, we deduce that Sx and S′x share the
same tangent hyperplane at x. Now the classical maximum principle can be
applied to show that c ≥ c′. �

The following result was proved by Gerhardt for the case of spacetimes
with a lower bound on the Ricci curvature on timelike vectors, see [33,
Lemma 2.1].

Proposition 4.6. Let (M, g) be an n-dimensional, n ≥ 3, maximal glob-
ally hyperbolic spacetime, with compact Cauchy hypersurfaces and constant
curvature k. Let Σ and Σ′ be two smooth Cauchy hypersurfaces in M . As-
sume that HΣ ≤ c and HΣ′ ≥ c′, with c ≤ c′. If k is non-negative, assume
moreover that c < −

√
k or that c′ >

√
k. Then Σ′ is in the future of Σ.

We will give a proof of Proposition 4.6 below, as we shall make use of
some of the details in the proof of Theorem 4.3.

Let Σ0 be a smooth Cauchy hypersurface with future unit normal ν0.
Recall that the orbit of the Gauss flow of smooth Cauchy hypersurface Σ0

in the direction ν0 consists of the Cauchy hypersurfaces Σt = Ft(Σ0) where
F : I × Σ0 → M is defined as Ft(x) = expx(tν0) for x ∈ Σ0, for t ∈ I.
Here I is the maximal time interval where Ft is regular. The core of the
proof of Proposition 4.6 is the following standard comparison lemma, see for
example [8, corollary 2.4].

Lemma 4.7. We consider the orbit (Σt)t∈I of a smooth Cauchy hypersurface
Σ0 under the Gauss flow. We consider a geodesic γ which is orthogonal to
the Σt’s, and we denote by p(t) the point of intersection of the geodesic γ
with the hypersurface Σt. The mean curvature H(t) of Σt at p(t) satisfies
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the differential inequality

dH(t)
dt

≥ (n− 1)(H(t)2 − k).

Proof of Proposition 4.6. Assume that Σ′ is not in the future of Σ. Then,
we can consider a future-directed timelike geodesic segment γ going from a
point of Σ′ to a point of Σ having maximal length among all such geodesic
segments. It is well-known that γ is orthogonal to both Σ′ and Σ, and that
there is no focal point to Σ′ or Σ along γ (see e.g. [36, Proposition 4.5.9]).
We will denote by p′ ∈ Σ′ and p ∈ Σ the ends of γ, and by δ be the length
of γ.

If k is non-negative, we have to distinguish two differents cases, according
to whether c′ >

√
k or c < −

√
k. Let us consider the first case. Since there

is no focal point to Σ′ along γ, the image Σ′t of Σ′ by the time t of the Gauss
flow is well-defined for t ∈ [0, δ] in a neighbourhood of γ. Denote by p′(t)
the point of intersection of the hypersurface Σ′t with the geodesic segment γ,
and by H ′(t) the mean curvature of Σ′t at p′(t). By Lemma 4.7, t 7→ H ′(t)
satisfies the differential inequality dH′

dt ≥ (n− 1)(H ′2− k). This implies that
H ′ increases along γ (note that H ′(t)2 is strictly greater than k for every
t, since H ′(0) = c′ >

√
k by assumption and since H ′(t) increases). In

particular, we have H ′(δ) > H ′(0) = c′. But now, recall that, by definition
of Σ′δ, every point of Σ′δ in a neighbourhood of γ(δ) = p is at distance exactly
δ of Σ′. Also recall that γ is the longest geodesic segment joining a point
of Σ′ to a point of Σ. This implies that Σ is in the past of Σ′δ. Hence,
by Proposition 4.4, the mean curvature of Σ at p is bounded from below
by the mean curvature of Σ′δ, which itself is strictly greater than the mean
curvature of Σ′. This contradicts the assumption c ≤ c′.

The proof is the same in the case where c < −
√

k (except that one
considers the backward orbit of Σ for the Gauss flow, instead of the forward
orbit of Σ′). �

Remark 4.8. Proposition 4.6 implies that, for every c ∈ R \ [−
√

k,
√

k],
there exists at most one Cauchy hypersurface in M with constant mean
curvature equal to c. In particular, for any open interval (α, β), which if
k ≥ 0 satisfies the condition (α, β) ∩ [−

√
k,
√

k] = ∅, there exists at most
one function τcmc : M → (α, β) such that τ−1

cmc(c) is a smooth Cauchy
hypersurface with constant mean curvature equal to c for every c ∈ (α, β).
Note that we are not assuming here that τcmc is a time function (recall
that, if τcmc is a time function, then it is automatically unique, without any
assumption on (α, β)).

Further, it is easy to see using a maximum principle argument, that in
the standard de Sitter space with topology Sn−1 × R and curvature k > 0,
there is no Cauchy hypersurface with mean curvature c ∈ R \ [−

√
k,
√

k].
Therefore Proposition 4.6 is vacuous in this case.
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Theorem 4.9. Let (M, g) be an n-dimensional, n ≥ 3, maximal globally
hyperbolic spacetime, with compact Cauchy hypersurfaces. Let c be any real
number, and assume that there exists a pair of c-barriers (Σ−,Σ+) in M .
Then, there exists a smooth Cauchy hypersurface Σ with constant mean cur-
vature equal to c. Moreover, Σ is in the future of Σ− and in the past of
Σ+.

Proof. The result is proved e.g. in [32] in the case where the barriers Σ−

and Σ+ are smooth. The only way the barriers Σ− and Σ+ are used in
Gerhardt’s proof is via the maximum principle (to show that a family of
Cauchy hypersurfaces whose mean curvature approaches c cannot “escape
to infinity”). Since the maximum principle is still valid for C0 hypersurfaces
(Proposition 4.4), Gerhardt’s proof also applies in the case where the barriers
are not smooth. �

Proof of Theorem 4.3. We consider a sequence (Σ−m)m∈N of asymptotic past
α-barriers, and a sequence (Σ+

m)m∈N of asymptotic future β-barriers.

Construction of the function τcmc. Fix c ∈ (α, β). For m large enough,
the pair of Cauchy hypersurfaces (Σ−m,Σ+

m) is a pair of c-barriers. Thus, by
Theorem 4.9, for any c ∈ (α, β), there exists a Cauchy hypersurface Sc with
constant mean curvature equal to c. Proposition 4.6 implies that the Sc’s
are pairwise disjoint, and that Sc is in the past of Sc′ if c < c′ (let us call
this “property (?)”).

Now, let us prove that the set
⋃

c∈(α,β) Sc is connected. Assume the
contrary. Because of property (?), there are only two possible cases :

(i) there exists c0 ∈ (α, β) such that
⋃

c>c0
I+(Sc) ( I+(Sc0),

(ii) or there exists c0 ∈ (α, β) such that
⋃

c<c0
I−(Sc) ( I−(Sc0).

Let us consider, for example, case (i). Using the Gauss flow, we can push
the hypersurface Sc0 towards the future, in order to obtain a Cauchy hyper-
surface S′c0 which is in the future of Σc0 , but as close to Sc0 as we want. In
particular, we can assume that S′c0 is not in the future of Sc for any c > c0.
Moreover, according to Lemma 4.7, the mean curvature of S′c0 is bounded
from below by some number c′0 > c0. But this contradicts Proposition 4.6.
Case (ii) can be treated similarly. As a consequence, the set

⋃
c∈(α,β) Sc is

connected. Note that this implies that the hypersurface Sc depends contin-
uously on c

Now, let us prove that the union
⋃

c∈(α,β) Sc is equal to the whole M .
Assume that there exists a point x ∈ M \

⋃
c∈(α,β) Sc. Since the hypersurface

Sc depends continuously on c, there are only two possible cases :
(i) either x is in the future of Sc for every c ∈ (α, β),
(ii) or x is in the past of Sc for every c ∈ (α, β).

Now, recall that we have a sequence (S+
m)m∈N of asymptotic future β-

barriers. By definition, this means that S+
m has generalized mean curva-

ture bounded from below by some b−m and smaller than some b+
m where



COSMOLOGICAL VERSUS CMC TIME 17

b−m ≤ b+
m < β and b−m →m→∞ β. Fix some integer p. One can find q > p

such that b−q > b+
p . Then (S+

p , S−q ) is a pair of b+
p -barriers. By Theorem 4.9,

one can find a Cauchy hypersurface with constant mean curvature equal to
b+
p between S+

p and S−q , and by uniqueness (see remark 4.8), this hyper-
surface is the hypersurface Sc for c = b+

p . In particular, for c ≥ b+
p , the

hypersurface Sc is in the future of the barrier S+
p . Now, recall that, by def-

inition of a sequence of asymptotic future barriers, S+
p tends to the future

end of M when p →∞. This shows that case (i) cannot happen. Of course,
one can exclude case (ii) using similar arguments. Therefore we have proved
that

⋃
c∈(α,β) Sc = M.

Now, we can define the function τcmc : M → (α, β) as follows : for every
x ∈ M , we set τcmc(x) = c where c is the unique number such that x ∈ Sc.

Properties of the function τcmc. The fact the hypersurface Sc depends
continuously on c implies that the function τcmc is continuous. The fact
that the hypersurface Sc′ is in the strict future of the hypersurface Sc when
c′ > c implies that the function τcmc is strictly increasing along any future
directed timelike curve. Hence, τcmc is a time function. �

Remark 4.10. Using the same arguments as above, one can prove the
following result:

Let (M, g) be an n-dimensional, n ≥ 3, maximal globally hyperbolic space-
time, with compact Cauchy hypersurfaces and constant curvature k. Assume
that (M, g) admits a sequence of asymptotic past α-barriers. If k ≥ 0, as-
sume moreover that α /∈ [−

√
k,
√

k]. Then, (M, g) admits a partially defined
CMC time function τcmc : U → (α, β) where U is a neighbourhood of the
past end of M (i.e. the past of a Cauchy hypersurface in M) and β is a real
number greater than α.

Proposition 4.11. Let (M, g) be an n-dimensional, n ≥ 3, maximal glob-
ally hyperbolic spacetime, with compact Cauchy hypersurfaces and constant
curvature k. Suppose that there exists a function τcmc : M → (α, β) such
that τ−1

cmc(c) is a Cauchy hypersurface with constant mean curvature equal to
c for every c ∈ (α, β). Assume moreover that one of the following hypotheses
is satisfied:

• τcmc is a time function,
• the curvature k is negative,
• the curvature k is non-negative and (α, β) ∩ [−

√
k,
√

k] = ∅.
Then τcmc is real analytic.

Sketch of proof. Under the stated conditions, there is exactly one CMC
Cauchy hypersurface for each c ∈ (α, β). CMC hypersurfaces in a real an-
alytic spacetime are real analytic, since they are solutions of a quasi-linear
elliptic PDE. Given a CMC Cauchy hypersurface S0 with mean curvature
c0 ∈ (α, β), let u be the Lorentz distance to S0. For c close to c0, a Cauchy
hypersurface Sc with mean curvature c is a graph over S0, defined by the
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level function w = u
∣∣
Sc

. The function w solves the mean curvature equation
H[w] = c, which is a quasilinear elliptic system with real analytic depen-
dence on the coefficients. It follows that Sc depends in a real-analytic manner
on c, and that the function τcmc is a real analytic function on M . �

Remark 4.12. The function τcmc is also a time function in the following
stronger sense : for every future directed timelike curve γ : I → R, one has

d

dt
τcmc(γ(t)) > 0.

Indeed, fix such a curve γ and some t0 ∈ I, let x0 = γ(t0) and c0 = τcmc(x0).
For t small enough, denote by St

c0 the image of the hypersurface Sc0 by
the time t of the Gauss flow. Since the derivatives of γ are future-oriented
timelike vectors, there exists a constant λ1 > 0 such that, for h > 0 small
enough, the point γ(t0 + h) is in the future of the image of the hypersurface
Sλ1.h

c0 . Now Lemma 4.7 implies that there exists a constant λ2 > 0 such
that the mean curvature of the hypersurface Sλ1.h

c0 is bounded from below
by c0 + λ1.λ2.h (for h small enough). Then Proposition 4.6 implies that
Sc0+λ1.λ2.h is in the past of Sλ1.h

c0 . In particular, for h small enough, the
point γ(t0 + h) is the future of the hypersurface Sc0+λ1.λ2.h. In other words,
we have τcmc(t0 + h) > c0 + λ1.λ2.h. This implies d

dtτcmc(γ(t)) > λ1.λ2 > 0.

5. Spaces of constant curvature as (G, X)-structures

Let X be a manifold and G be a group acting on X with the following
property: if an element γ of G acts trivially on an open subset of X, then
γ is the identity element of G. A (G, X)-structure on a manifold M is an
atlas (Ui, φi)i∈I where

• (Ui)i∈I is a covering of M by open subsets,
• for every i, the map φi is a homeomorphism from Ui to an open set

in X,
• for every i, j, the transition map φi ◦φ−1

j : φj(Ui∩Uj) → φi(Ui∩Uj)
is the restriction of an element of G.

Given a manifold M equipped with a (G, X)-structure (Ui, φi)i∈I , one can
construct two important objects: a map d : M̃ → X, called developing map,
and representation ρ : π1(M) → G, called holonomy representation. The
map d is a local homeomorphism (obtained by pasting together some lifts of
the φi’s) and satisfies the following equivariance property: for every x̃ ∈ M̃
and every γ ∈ π1(M), one has d(γ · x̃) = ρ(γ) · d(x̃). The map d is unique
up to post-composition by an element of G and the choice of d obviously
fully determines the representation ρ. In general, d is neither one-to-one,
nor onto. A good reference for all these notions is [35].

Now let (M, g) be a n-dimensional spacetime with constant curvature k =
0 (respectively k = 1 and k = −1). Then it is well-known that every point
in M admits a neighbourhood which is isometric to an open subset of the
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Minkowski space R1,n−1 (respectively the de Sitter space dSn and the anti-de
Sitter space AdSn). In other words, the lorentzian metric on M can be seen
as a (G, X)-structure, where X = R1,n−1 (respectively dSn and AdSn) and
G = Isom(X). Hence the general theory provides us with a locally isometric
developing map d : M̃ → X and a representation ρ : π1(M) → Isom(X)
such that d(γ · x̃) = ρ(γ) · d(x̃) for every x̃ ∈ M̃ and every γ ∈ π1(M). The
map d and the representation ρ will play a fundamental role in the proofs
of Theorems 1.7 and 1.11.

6. Description of flat MGHC spacetimes

6.1. Flat regular domains. Regular domains in Minkowski space R1,n−1

were first defined by F. Bonsante in [23, 24] (generalizing a construction of G.
Mess in the 2+1-dimensional case, see [40]). Here we will use an equivalent
definition introduced in [12], since it appears to be slightly more adapted to
our purpose. For more details, we refer to section 4.1 of [12].

The importance of flat regular domains for our purpose comes from the
fact that they have regular cosmological time function, see Proposition 6.5,
and that each flat maximal globally hyperbolic spacetime with compact, or
more generally complete, Cauchy hypersurface is a quotient of a flat regular
domain, see Theorem 6.7. Thus, the analysis of the singularity of these
spacetimes can be carried out by studying the past boundary of flat regular
domains. This will be carried out in section 7.

Definition 6.1. The Penrose boundary Jn−1 of the Minkowski spacetime
R1,n−1 is the space of null affine hyperplanes of R1,n−1

Let N be an auxiliary euclidean metric on R1,n−1. Let Sn−2 be the set of
future oriented null elements of R1,n−1 with N -norm 1. Then the map which
associates to a pair (u, a) the null hyperplane H(u, a) = {x | 〈x, u〉 = a}
is a bijection between Sn−2 × R and Jn−1. It defines a topology on Jn−1,
which coincides with the topology of Jn−1 as a homogeneous space under
the action of the Poincaré group; Jn−1 is then homeomorphic to Sn−2 × R.

For every element p of Jn−1, we denote by E+(p) the future of p in
R1,n−1, and by E−(p) the past of of p. If p is the null hyperplane H(u, a),
then E+(p) = {x | 〈x, u〉 < a} and E−(p) = {x | 〈x, u〉 > a}. They are half-
spaces, respectively future-complete and past-complete. For every closed
subset Λ of Jn−1, we define

E±(Λ) =
⋂
p∈Λ

E±(p).

Definition 6.2. A closed subset Λ of Jn−1 is said to be future regular (resp.
past regular) if it contains at least two elements and if E+(Λ) (resp. E−(Λ))
is non-empty.

A future complete flat regular domain is a domain of the form E+(Λ)
were Λ is a future regular closed subset of Jn−1. Similarly, a past complete
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flat regular domain is a domain of the form E−(Λ) were Λ is a past regular
closed subset of Jn−1. A flat regular domain is a future complete regular
domain or a past complete regular domain.

See § 4.2 of [12] where it is proved in particular that this definition of flat
regular domains coincides with Bonsante’s definition.

Remark 6.3. A past regular closed set Λ is not necessarily future regular.
Actually, a closed subset of Jn−1 is past regular and future regular if and
only if it is compact (and contains at least two points). See Corollary 4.11
in [12].

Remark 6.4. In the rest of the paper, we will mainly be dealing with a
past incomplete, future complete spacetimes, and many statements have an
obvious time reversed analog. In the following we will not make any explicit
statements concerning the time reversed situation, and leave it to the reader
to rephrase the relevant definitions and results.

One of the cornerstones of Bonsante’s work on flat regular domains is the
following proposition:

Proposition 6.5. Future complete flat regular domains have regular cos-
mological time.

Proof. See [24, Proposition 4.3 and Corollary 4.4]. �

6.2. Flat MGHC spacetimes.

Proposition 6.6. Let E+(Λ) ⊂ R1,n−1 be a future complete flat regular
domain. Let Γ be a discrete torsion free group of isometries of Minkoswki
spacetime R1,n−1 preserving E+(Λ). Then, the action of Γ on E+(Λ) is free
and properly discontinuous, and the quotient space M+

Λ (Γ) = Γ\E+(Λ) is a
globally hyperbolic spacetime with regular cosmological time.

Sketch of proof. The proof that the action is free and properly discontinuous
can be found in [12, Proposition 4.16]. The cosmological time τ is obviously
Γ-invariant. Hence, it induces a map τ̂ on the quotient M+

Λ (Γ). Since inex-
tendible causal curves in M+

Λ (Γ) are projections of causal curves in E+(Λ),
the cosmological time on the quotient M+

Λ (Γ) is the map τ̂ . It follows easily
that M+

Λ (Γ) has regular cosmological time. �

Conversely:

Theorem 6.7. Every flat MGHC spacetime is the quotient of a flat regular
domain or of the entire Minkowski space by a torsion-free discrete subgroup
of isometries. More precisely, let (M, g) be a n-dimensional flat MGHC
spacetime.

(1) If (M, g) is not past (resp. future) complete, then (M, g) is the quo-
tient of a future (resp. past) complete regular domain in R1,n−1 by
a torsion-free discrete subgroup of Isom(R1,n−1).



COSMOLOGICAL VERSUS CMC TIME 21

(2) If (M, g) is causally complete then it is the quotient of Rn−1,1 by a
subgroup of Isom(R1,n−1) containing a finite index free abelian sub-
group generated by n− 1 spacelike translations.

Proof. It follows from the classification of flat MGHC spacetimes given in
[12]. The result in [12] is more precise: it characterizes up to finite index
the possible torsion-free discrete subgroups. �

Remark 6.8. The natural setting for a result like Theorem 6.7 is not really
spacetimes with compact Cauchy hypersurfaces, but rather flat maximal
globally hyperbolic spacetimes with complete Cauchy hypersurfaces (abbre-
viation: complete MGH flat spacetimes). Indeed, every flat regular domain
admits a complete Cauchy hypersurface ( see [12, Proposition 4.14]). Con-
versely, according to [12, Theorem 1.1], every complete MGH flat spacetime
can be tamely embedded in the quotient of a flat regular domain by a dis-
crete group of isometries of Minkowski except if it is causally complete or
if it is an unipotent spacetime. Complete MGH flat spacetime which are
also causally complete are quotients of the entire Minkoswki space R1,n−1

by a commutative discrete group of spacelike translations. Flat unipotent
spacetimes are defined and described in § 3.3 of [12] (see also [31]); every flat
unipotent spacetime is the quotient of a domain Ω ⊂ R1,n−1 by a unipotent
discrete subgroup of Isom(R1,n−1), where Ω is of one of the three following
forms: Ω = E+(p), Ω = E−(p) or Ω = E+(p) ∩ E−(p′) where p and p′ are
two parallel null hyperplanes.

7. Cosmological time and horizon of flat regular domains

In this section, we consider a future complete flat regular domain E+(Λ).
We will describe the past horizon, the initial singularity, and the so-called
”retraction to the initial singularity” of E+(Λ).

7.1. Horizons. According to Proposition 6.5 and Theorem 2.3, E+(Λ) is
globally hyperbolic. Since E+(Λ) is a future complete convex open domain
in Minkowski space, its boundary H−(Λ) is a past horizon (and thus enjoys
all the known properties of horizons).

Since H−(Λ) is the boundary of a convex domain, it admits support hy-
perplanes at each of its points. And since E+(Λ) is future complete, the
future in R1,n−1 of any point p in H−(Λ) is contained in E+(Λ). But, time-
like hyperplanes containing p all intersect the future of p, it then follows
that support hyperplanes to H−(Λ) are non-timelike.

Lemma 7.1. Let p a point of the past horizon H−(Λ) of a future complete
flat regular domain E+(Λ). Let C(p) ⊂ TpX be the set of future oriented
tangent vectors orthogonal to support hyperplanes to H−(Λ) at p. Then C(p)
is the convex hull of its null elements. Moreover, the null elements of C(p)
are precisely the normals to elements of Λ tangent to H−(Λ) at p.

Proof. See [24, corollary 4.12] (see also [40, Proposition 11]). �
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7.2. Retraction to the initial singularity. According to point (3) in
Theorem 2.3, for every point x in a flat regular domain there is a unique
maximal timelike geodesic ray with future endpoint x realizing the ”distance
to the initial singularity”: we call such a geodesic ray a realizing geodesic
for x.

Proposition 7.2. Let x be an element of a future complete flat regular
domain E+(Λ). Then, there is an unique realizing geodesic for x.

Proof. See [24, Proposition 4.3]. �

Definition 7.3. A unit speed future oriented timelike geodesic γ : [0, T ] →
E+(Λ) is tight if for every t in [0, T ] the restriction γ : [0, t] → E+(Λ) is a
realizing geodesic for γ(t).

Proposition 7.4. Let γ : [0, T ] → E+(Λ) be an unit speed future oriented
timelike geodesic with initial point in the past horizon. Then the following
assertions are equivalent:

(1) γ is tight,
(2) the derivative of γ at 0 is orthogonal to a support hyperplane at γ(0)

of the past horizon.

Proof. See [24, Proposition 4.3]. �

Definition 7.5. The initial singularity of a future complete flat regular
domain E+(Λ) is the set of points in the past horizon admitting at least two
support hyperplanes; it will be denoted by Σ−(Λ).

Proposition 7.6. The map which associates to any point x of a regular
domain E+(Λ), the initial singularity of the unique realizing geodesic for x
is a continuous map taking value in Σ−(Λ). This map is denoted r, and
called “retraction to the initial singularity”.

Proof. See [24, Proposition 4.3 and 4.12]. �

7.3. Description of the retraction map.

Proposition 7.7. For every p in the past singularity Σ−, the preimage
r−1(p) in E+(Λ) is the union of complete timelike geodesic rays with initial
point at p.

Proof. The Proposition is an immediate corollary of Proposition 7.2 and
7.4. �

Corollary 7.8. Let p be an element of the past horizon of E+(Λ) such that
the convex hull C(p) of the null generators has non-empty interior in the
space of timelike tangent vectors at p. Then, r−1(p) is open in E+(Λ). �
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8. Flat regular domains : curvature estimates for
cosmological time level sets

Let us recall the statement of Theorem 1.4:

Theorem 1.2. Consider a future complete flat regular domain E+(Λ) and
the associated cosmological time τ : E+(Λ) → (0,+∞). Then, for every
a ∈ (0,+∞), the hypersurface Sa = τ−1(a) has generalized mean curvature
satisfying − 1

a ≤ HSa ≤ − 1
(n−1)a .

Remark 8.1. What is important for us in the proof of Theorem 1.4 is
the fact that the hypersurface Sa has generalized mean curvature satisfying
α(a) ≤ HSa ≤ β(a), where α(a), β(a) → −∞ when a → 0, and α(a), β(a) →
0 when a → +∞.

Proof. Let x be a point on the level set Sa. We denote by γ : [0, a] → E+(Λ)
the unique realizing geodesic for x, with initial point p = r(x). Let v be the
future oriented unit speed tangent vector of γ at p. We denote as before
by C(p) the set of vectors in TpX orthogonal to support hyperplanes of the
past horizon at p.

Construction of S+
x . Define S+

x as the hyperboloid {z | d(p, z) = a}. Since
E+(Λ) is geodesically convex, for any z in S+

x the timelike geodesic (p, z)
is contained in E+(Λ). Hence, its length a is less than τ(z). The unique
realizing geodesic for z must therefore intersect Sa. Hence, S+

x is contained
in the future of Sa. The tangent hyperplane to S+

x at x is the hyperplane
orthogonal to c at x. Hence, S+

x is tangent to Sa at x. Finally, the mean
curvature of S+

x is obviously − 1
a everywhere. As a consequence, Sa has

generalized mean curvature satisfying HSa ≥ − 1
a .

Construction of S−x . According to Lemma 7.1, the tangent vector v of the
realizing geodesic γ introduced above, belongs to the convex hull C(p). Let
B be a finite subset of the null elements of C(p) such that v lies in the convex
hull of B. We choose moreover B minimal, i.e. such that for any proper
subset B′ ⊂ B, v does not belong to the convex hull of B′. An equivalent
statement is that v belongs to the relative interior Conv(B).

The null hyperplanes p + w⊥ for w in B form a finite subset ΛB of Λ.
Observe that since the convex hull of B contains the timelike vector v, B
contains at least two elements. Hence, E+(ΛB) is a future complete flat
regular domain.

Obviously, E+(ΛB) contains E+(Λ). Hence H−(ΛB) is contained in the
causal past of E+(Λ). Moreover, E+(ΛB) contains the timelike geodesic
γ, and also x, and its past horizon H−(ΛB) contains p. According to
Lemma 7.1, support hyperplanes toH−(ΛB) at p are hyperplanes orthogonal
to vectors in the convex hull of B. In particular, the hyperplane orthogonal
to the timelike vector v is a spacelike support hyperplane. It follows that γ
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is a realizing geodesic for x in E+(ΛB). Hence, τB(x) = a, where τB is the
cosmological time for E+(ΛB).

Let S′B be the level set {τB = a} in E+(ΛB), and define S−x as a small
open neighborhood of x in S′B ∩ E+(Λ). Let V be a geodesically convex
neighborhood of x containing S−x (for example, the Cauchy development of
S−x in E+(Λ)). For any z in S′B let c be the unique realizing geodesic for
z in E+(Λ). Since H−(ΛB) is in the causal past of H−(Λ) there is a past
extension of c with past endpoint in H−(ΛB). Hence, τ(z) ≤ a. It follows
that S−x lies in the causal past of Sa in V .

To complete the proof, we must prove that S−x near x is smooth, admits
at x the same tangent hyperplane (x − p) + v⊥, and that it has constant
mean curvature − d

(n−1)a for some integer 1 ≤ d ≤ n− 1.
Consider R1,n−1 as a vector space, with origin p = 0. Let F be the vector

space spanned by Conv(B). Then F is a timelike subspace, with dimension
2 ≤ k ≤ n, and we have a splitting R1,n−1 = F ⊕ F⊥. The subspace F⊥ is
spacelike. Every element of ΛB is a null hyperplane containing F⊥. It follows
easily that E+(ΛB) is the sum E′(ΛB)⊕F⊥, where E′(ΛB) = F ∩E+(ΛB).
For every element H of ΛB, H ∩ F is a null hyperplane in F ≈ R1,k−1.

Let Λ′B = {H ∩ F | H ∈ ΛB}. Then Λ′B is a finite subset of the Penrose
boundary of F . Clearly E′(ΛB) is precisely the flat regular domain E(Λ′B) ⊂
F . Now we observe that restricting to F , v is in the interior of Conv(Λ′B).
Hence, for some small neighborhood V ′ of x in E(Λ′B), which can be selected
geodesically convex, the image by the retraction r of each point y in V ′ is
p. Shrinking V if necessary, we can assume that V is contained in V ′ ⊕
F⊥. According to Corollary 7.8, S−x has the form H ⊕ F⊥, where H is the
hyperboloid consisting of points in F in the future of p and at lorentzian
distance a from p. Hence, S−x is smooth and admits at x the same tangent
hyperplane than Sa (the orthogonal x + v⊥). Moreover, since x + F⊥ is
totally geodesic, and since the principal directions of H are all equal to − 1

a ,
the mean curvature of S−x is equal to − 1

a . d
n−1 where d = k − 1. This shows

that Sa has generalized mean curvature satisfying HSa ≤ − 1
(n−1)a . �

Remark 8.2. The proof of Theorem 1.4 shows that the second fondamental
forms of S−x , S+

x have eigenvalues −1/a, 0 (in the case of S−x ) and −1/a
(in the case of S+

x ). Therefore the level sets of τ have mean curvature
satisfying −1/a ≤ HSa ≤ −1/((n − 1)a) with one-sided Hessian bound, as
in [26, Definition 3.3] , and hence the strong maximum principle for spacelike
hypersurfaces given in [7, Theorem 3.6] applies in our situation. However
we shall not need the full strength of this result here. See Proposition 4.4
below for the version of the maximum principle which we shall make use of.

The eigenvalue bounds stated in Remark 8.2 allow us to give a more
precise characterization of the regularity of the cosmological time function.
The Hessian bounds for the height function implied by the bounds on the
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second fundamental form of the supporting hypersurfaces, together with an
application of the case p = ∞ of [26, Proposition 1.1] proves

Corollary 8.3. τ ∈ C1,1
Loc

We leave to the reader to formulate the obvious analogs of Theorem 1.4
and Corollary 8.3 for past complete flat regular domains E−(Λ) which hold
in term of the reverse cosmological time τ̂ : E−(Λ) → (0,+∞).

9. CMC time functions in flat MGHC spacetimes

Let (M, g) be a n-dimensional flat MGHC spacetime. We first consider the
case where (M, g) is not past complete. Then Theorem 6.7 states that (M, g)
is the quotient of a future complete regular domain E+(Λ) ⊂ R1,n−1 by a
torsion-free discrete subgroup Γ of Isom(R1,n−1). Let τ : E+(Λ) → (0,+∞)
be the cosmological time of E+(Λ). It follows from Theorem 2.3 and its
proof, see [6, Proposition 2.2], that for every a ∈ (0,+∞), the level set
Sa = τ−1(a) is a closed strictly achronal edgeless hypersurface in E+(Λ).
Moreover, τ is obviously invariant under every element of Isom(R1,n−1) pre-
serving E+(Λ). Hence, for every a ∈ (0,+∞), the projection Σa of Sa in
M ≡ Γ \ E+(Λ) is a closed strictly achronal edgeless hypersurface in M .
Since M is globally hyperbolic with compact Cauchy hypersurfaces, this
implies that Σa is a compact strictly achronal hypersurface in M , and thus
is a topological Cauchy hypersurface in M . Theorem 1.4 implies that, for
every a ∈ (0,+∞), Σa has generalized mean curvature bounded from be-
low by −1/a, and bounded from above by −1/((n − 1)a). Let (am)m∈N
be a decreasing sequence of positive real numbers such that am → 0 when
m → +∞, and (bm)m∈N be a increasing sequence of positive real num-
bers such that bm → +∞ when m → +∞. Observe that (Σam)m∈N is a
sequence of past asymptotic α-barrier in M for α = −∞ (indeed −∞ <
−1/am < −1/((n − 1)am) for every m, and since −1/((n − 1)am) → −∞
when m →∞), and (Σbm)m∈N is a sequence of future asymptotic β-barrier
in M for β = 0 (indeed −1/bm < −1/((n−1)bm) < 0) for every m, and since
−1/bm → 0 when m → ∞). Hence Theorem 4.3 implies that M admits a
globally defined CMC time function τcmc : M → (−∞, 0).

Next, we prove that τ and τcmc are comparable. It follows from Theorem
1.4 that for every a > 0, the pair of hypersurfaces

(
Σa/(n−1),Σa

)
is a pair of

−1/a-barriers. Hence, Theorem 4.9 and remark 4.8 imply that the hyper-
surface τ−1

cmc(−1/a) is in the future of Σa/(n−1) = τ−1(a/(n− 1)) and in the
past of Σa = τ−1(a). Equivalently, one has

τ ≤ − 1
τcmc

≤ (n− 1)τ.

The case where (M, g) is future incomplete is similar (except that (M, g) is
the quotient of a past complete flat regular domain E−(Λ), and that one has
to consider the reverse cosmological time of E−(Λ)).
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Finally, let us consider the case where (M, g) is causally complete. Then
Theorem 6.7 states that up to a finite covering (M, g) is a quotient of R1,n−1

by a commutative subgroup Γ of Isom(R1,n−1) generated by n− 1 spacelike
linearly independant translations t−→u1

, . . . , t−→un
. Let −→v be any (say future-

directed) timelike vector. Then, for every t ∈ R, the affine plane Pt := t.−→v +
R.−→u1+ · · ·+R.−→un is Γ-invariant. Hence it induces a totally geodesic spacelike
hypersurface Σt := Γ\Pt in M ' Γ\R1,n−1. The family of hypersurfaces
(Σt)t∈R is a foliation of M whose leaves are by totally geodesic (in particular,
CMC) spacelike hypersurfaces.

In order to complete the proof of Theorem 1.4, we only need to prove
that in the case where (M, g) is causally complete, every CMC Cauchy
hypersurface Σ in M is a leaf of the totally geodesic foliation (Σt)t∈R con-
structed above. Indeed, let t− = inf{t such that Σ ∩ Σt 6= ∅} and t+ =
sup{t such that Σ ∩ Σt 6= ∅}. Then, Σ is tangent to Σt− at some point and
is in the future of Σt− . Hence, the maximum principle (Proposition 4.4)
implies that the mean curvature of Σ is smaller or equal than those of Σt− ,
i.e. is non-positive. Similarly, Σ is tangent to Σt+ at some point and is in
the past of Σt+ , so by the maximum principle, the mean curvature of Σ is
non-negative. So, we know that the mean curvature of Σ is equal to 0. And
now, we use the equality case of the maximum principle (see, e.g., [7, The-
orem 3.6]): if S and S′ are two CMC Cauchy hypersurfaces with the same
mean curvature, which are tangent at some point, and such that S′ is in the
future of S, then S = S′. This shows that Σ = Σt− = Σt+ ; in particular, Σ
is a leaf of the totally geodesic foliation (Σt)t∈R.

10. Description of anti-de Sitter MGHC spacetimes

We now start our investigation of anti-de Sitter spacetimes. Our goal is
to prove Theorem 1.7. According to Theorem 4.3, this reduces to finding
two sequences of asymptotic barriers. These sequences of barriers will be
provided by the levels of the cosmological time function. Thus, we essentially
need to prove curvature estimates for the level sets of the cosmological time
function of any anti-de Sitter MGHC spacetime. A key point is that every
MGHC spacetime with constant curvature −1 is isometric to the quotient
of a certain open domain in the anti-de Sitter space AdSn by a discrete
subgroup of Isom(AdSn). A consequence is that studying the cosmological
time functions of anti-de Sitter MGHC spacetimes amounts to studying
the cosmological time functions of certain open domains in AdSn. These
domains are called AdS regular domains.

We will proceed as follows. In the present section, we define AdS regu-
lar domains, using the conformal structure of the anti-de Sitter space. We
shall also give two characterisation of AdS regular domains, using the Klein
model of the anti-de Sitter space. In section 11, we shall study the cosmolog-
ical time and the boundary of AdS regular domains. The desired estimates
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on the curvature of the levels of the cosmological time of AdS regular do-
mains will be obtained in section 12. Theorem 1.7 follows easily from these
estimates and from Theorem 4.3.

10.1. The linear model AdSn of the anti-de Sitter space. For n ≥ 2,
let (x1, . . . , xn+1) be the standard coordinates on Rn+1, and consider the
quadratic form Q2,n−1 = −x2

1−x2
2 +x2

3 + · · ·+x2
n+1. The linear model AdSn

of the n-dimensional anti-de Sitter space is the quadric (Q2,n−1 = −1),
endowed with the lorentzian metric induced by Q2,n−1.

It is very easy to see that AdSn is diffeomorphic to S1 × Dn−1. The
geodesics of AdSn are connected components of the intersections of AdSn

with the linear 2-planes in Rn+1. Similarly, the totally geodesic subspaces
of dimension k in AdSn are connected components of the intersections of
AdSn with the linear subspaces of dimension (k + 1) in Rn+1.

A nice feature of the anti-de Sitter space is its simple conformal structure.

Proposition 10.1. The anti-de Sitter space AdSn is conformally equivalent
to (S1 × Dn−1,−dt2 + ds2), where dt2 is the standard riemannian metric
on S1 = R/2πZ, where ds2 is the standard metric (of curvature +1) on the
sphere Sn−1 and Dn−1 is the open upper hemisphere of Sn−1.

Moreover, one can attach a Penrose boundary ∂ÃdSn to ÃdSn such that
ÃdSn ∪ ∂ÃdSn is conformally equivalent to (S1 × Dn−1,−dt2 + ds2), where
Dn−1 is the closed upper hemisphere of Sn−1.

Proposition 10.1 shows in particular that AdSn contains many closed
causal curves. One can overcome this difficulty by considering the univer-
sal covering ÃdSn of AdSn. It follows from Proposition 10.1 that ÃdSn

is conformally equivalent to (R × Dn−1,−dt2 + ds2), and admits a Pen-
rose boundary ∂ÃdSn such that ÃdSn ∪ ∂ÃdSn is conformally equivalent to
(R×Dn−1,−dt2 +ds2). In particular, ÃdSn and ÃdSn∪∂ÃdSn are strongly
causal.

Proof of Proposition 10.1. See e.g. [13, § 4] or [15, Proposition 4.16]. �

10.2. AdS regular domains as subsets of AdSn. In this paragraph,
we will use the conformal completion AdSn ∪ ∂AdSn of AdSn to define the
notion of AdS regular domain. Let us start by a remark.

Remark 10.2. A subset Λ̃ of ∂ÃdSn ≈ (R× Sn−2,−dt2 + ds2) is achronal
if and only if it is the graph of a 1-Lipschitz function f : Λ0 → R where
Λ0 is a subset of Sn−2 (endowed with its canonical distance, induced by the
metric ds2 of curvature 1). In particular, the achronal closed topological
hypersurfaces in ∂ÃdSn are exactly the graphs of the 1-Lipschitz functions
f : Sn−2 → R. In particular, every closed achronal hypersurface in ∂ÃdSn

is a topological (n− 2)-sphere.
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Let Λ̃ be a closed achronal subset of ∂ÃdSn, and Λ be the projection of Λ̃
in ∂AdSn. We denote by Ẽ(Λ̃) the invisible domain of Λ̃ in ÃdSn ∪ ∂ÃdSn,
that is,

Ẽ(Λ̃) =
(
ÃdSn ∪ ∂ÃdSn

)
\

(
J−(Λ̃) ∪ J+(Λ̃)

)
where J−(Λ̃) and J+(Λ̃) are the causal past and the causal future of Λ̃ in
ÃdSn∪∂ÃdSn = (R×Dn−1

,−dt2+ds2). We denote by Cl(Ẽ(Λ̃)) the closure
of Ẽ(Λ̃) in ÃdSn ∪ ∂ÃdSn. We denote by E(Λ) the projection of Ẽ(Λ̃) in
AdSn ∪ ∂AdSn (clearly, E(Λ) only depends on Λ, not on Λ̃).

Definition 10.3. A n-dimensional AdS regular domain is a domain of the
form E(Λ) where Λ is the projection in ∂AdSn of an achronal topological
(n− 2)-sphere Λ̃ ⊂ ∂AdSn.

We will see later that regular domains satisfy several “convexity proper-
ties” (geodesic convexity, convexity in a projective space). The first property
of this kind concerns the causal structure.

Remark 10.4. For every closed achronal set Λ̃ in ∂ÃdSn, the invisible
domain Ẽ(Λ̃) is a causally convex subset of ÃdSn ∪ ∂ÃdSn: if p, q ∈ Ẽ(Λ̃)
then J+(p)∩J−(q) ⊂ Ẽ(Λ̃), where J+(p) and J−(q) are the causal past and
future of p and q in ÃdSn ∪ ∂ÃdSn. This is an immediate consequence of
the definitions.

The following remark is a key point for understanding the geometry of
AdS regular domains.

Remark 10.5. Let Λ̃ be a closed achronal subset of ∂ÃdSn. Recall that Λ̃
is the graph of a 1-Lipschitz function f : Λ0 → R where Λ0 is a closed subset
of Sn−2 (remark 10.2). Define two functions f−, f+ : Dn−1 → R as follows:

f−(p) = Supq∈Λ0
{f(q)− d(p, q)},

f+(p) = Infq∈Λ0{f(q) + d(p, q)},

where d is the distance induced by ds2 on Dn−1. It is easy to check that

Ẽ(Λ̃) = {(t, p) ∈ R× Dn−1 | f−(p) < p < f+(p)}.

Corollary 10.6. For every (non-empty) closed achronal set Λ̃ ⊂ ∂ÃdSn,
the projection of Ẽ(Λ̃) on E(Λ) is one-to-one.

Proof. We use the notations introduced in remark 10.5. For every p ∈ Dn−1,
there exists a point q ∈ Sn−2 = ∂Dn−1 such that d(p, q) ≤ π/2. Hence, for
every p ∈ Dn−1, we have f+(p) − f−(p) ≤ π. Hence Ẽ(Λ̃) is included
in the set E = {(t, p) ∈ R × Dn−1 such that f−(p) < t < f−(p) + π}. The
projection of ÃdSn∪∂ÃdSn = R×Dn−1 on AdSn∪∂AdSn = (R/2πZ)×Dn−1

is obviously one-to-one in restriction to E. �
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Corollary 10.7. For every achronal topological (n− 2)-sphere Λ̃ ⊂ ∂ÃdSn,

(1) Ẽ(Λ̃) is disjoint from ∂ÃdSn (i.e. it is contained in ÃdSn);
(2) Cl

(
Ẽ(Λ̃)

)
∩ ∂ÃdSn = Λ̃.

Proof. We use the notations introduced in remark 10.5. Since Λ̃ is a topo-
logical (n − 2)-sphere, the set Λ0 is the whole sphere Sn−2. Now observe
that, for every p ∈ Sn−2 = Λ0, one has f−(p) = f+(p) = p. Finally, recall
that (t, p) ∈ Ẽ(Λ̃) (resp. (t, p) ∈ Cl(Ẽ(Λ̃))) if and only if f−(p) < t < f+(p)
(resp. f−(p) ≤ t ≤ f+(p)). The corollary follows. �

Definition 10.8. Let Λ0 be a closed subset of Sn−2, let f : Λ0 → R be a
1-Lipschitz function, and Λ̃ ⊂ ∂ÃdSn be the graph of f . The achronal set
Λ̃ is said to be pure lightlike if Λ0 contains two antipodal points p0 and −p0

on the sphere such that f(p0) = f(−p0) + π.

Lemma 10.9. If Λ̃ is pure lightlike, then Ẽ(Λ̃) is empty.

Proof. If f : Λ0 → R is 1-Lipschitz, and if there exists two antipodal points
p0,−p0 ∈ Λ0 such that f(p0) = f(−p0) + π, then it is easy to show that, for
every element p of Dn−1, we have f−(p) = f+(p) = f(−p0) + d(−p0, p) =
f(p0)− d(p0, p). The lemma follows. �

10.3. The Klein model ADSn of the anti-de Sitter space. We now
consider the quotient S(Rn+1) of Rn+1 \ {0} by positive homotheties. In
other words, S(Rn+1) is the double covering of the projective space P(Rn+1).
We denote by π the projection of Rn+1 on S(Rn+1). The projection π is one-
to-one in restriction to AdSn = (Q2,n−1 = −1). The Klein model ADSn of
the anti-de Sitter space is the projection of AdSn in S(Rn+1), endowed with
the induced lorentzian metric.

Observe that ADSn is also the projection of the open domain of Rn+1 de-
fined by the inequality (Q2,n−1 < 0). It follows that the topological bound-
ary of ADSn in S(Rn+1) is the projection of the quadric (Q2,n−1 = 0); we
will denote this boundary by ∂ADSn. By construction, the projection π
defines an isometry between AdSn and ADSn; one can easily verify that this
isometry can be continued to define a canonical homeomorphism between
AdSn ∪ ∂AdSn and ADSn ∪ ∂ADSn.

For every linear subspace F of dimension k + 1 in Rn+1, we denote
by S(F ) = π(F ) the corresponding projective subspace of dimension k in
S(Rn+1). The geodesics of ADSn are connected components of the intersec-
tions of ADSn with the projective lines S(F ) of S(Rn+1). More generally,
the totally geodesic subspaces of dimension k in ADSn are connected com-
ponents of the intersections of ADSn with the projective subspaces S(F ) of
dimension k of S(Rn+1).

Definition 10.10. An affine domain of ADSn is a connected component
U of ADSn \ S(F ), where S(F ) is a projective hyperplane of S(Rn+1) such
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that S(F ) ∩ ADSn is a spacelike (totally geodesic) hypersurface. Let V be
the connected component of S(Rn+1) \ S(F ) containing U . The boundary
∂U ⊂ ∂ADSn of U in V is called the affine boundary of U .

Remark 10.11. Affine domains can be visualized in Rn. Indeed, let U be an
affine domain in ADSn. By definition, there exists a a projective hyperplane
S(F ) in S(Rn+1) such that the hypersurface S(F ) ∩ ADSn is spacelike, and
such that U is one of the two connected components of ADSn \ S(F ). We
denote by V the connected component of S(Rn+1) containing U . Up to
composition by an element of the isometry group SO0(2, n − 1) of Q2,n−1,
we can assume that S(F ) is the projection of the hyperplane (x1 = 0) in
Rn+1 and V is the projection of the region (x1 > 0) in Rn+1. The map

(x1, x2, . . . , xn+1) 7→ (u1, . . . , un) := (
x2

x1
,
x3

x1
, . . . ,

xn+1

x1
)

induces a diffeomorphism between V and Rn. In the coordinates (u1, . . . , un),
the image of the affine domain U is to the region (−u2

1 + u2
2 + · · ·+ u2

n < 1).
The affine boundary ∂U of U corresponds to the hyperboloid (−u2

1 + u2
2 =

+ · · ·+u2
n = 1). The intersection of U with the totally geodesic subspaces of

ADSn correspond to the intersections of the region (−u2
1 +u2

2 + · · ·+u2
n < 1)

with the affine subspaces of Rn.

10.4. AdS regular domains as subsets of ADSn. The canonical diffeo-
morphism between AdSn ∪ ∂AdSn and ADSn ∪ ∂ADSn allows us to see AdS
regular domains as subsets of ADSn. Nevertheless, it would be much more
interesting to characterize AdS regular domains directly as subsets of ADSn

without using the identification of ADSn∪∂ADSn with AdSn∪∂AdSn; this is
the purpose of the present section. We start by stating the following lemma.

Lemma 10.12. Let Λ ⊂ ∂AdSn be the projection of a closed achronal subset
of ∂ÃdSn which is not pure lightlike. We see Λ and E(Λ) in ADSn∪∂ADSn.
Then Λ and E(Λ) are contained in the union U ∪ ∂U of an affine domain
and its affine boundary.

Proof. See [13, Lemma 8.27]. �

Lemma 10.12 implies, in particular, that every AdS regular domain is
contained in an affine domain U of ADSn. This allows one to visualize AdS
regular domains as subsets of Rn (see remark 10.11).

We will now use the pseudo-scalar product 〈· | ·〉 associated with the
quadratic form Q2,n−1. It is important to note that, although the real
number 〈x | y〉 is well-defined only for x, y ∈ Rn+1, the sign of 〈x | y〉 is well-
defined for x, y ∈ S(Rn+1). The following lemma is easy but fundamental.

Lemma 10.13. Let U be an affine domain in ADSn and ∂U ⊂ ∂ADSn be
its affine boundary. Let x be be a point in ∂U , and y be a point in U ∪ ∂U .
There exists a causal (resp. timelike) curve joining x to y in U ∪ ∂U if and
only if 〈x | y〉 ≥ 0 (resp. 〈x | y〉 > 0).
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Proof. See e.g. [13, Proposition 5.10] or [15, Proposition 4.19]. �

Putting together the definition of the invisible domain E(Λ) of a set Λ ⊂
∂AdSn and Lemma 10.13, one easily proves the following.

Proposition 10.14. Let Λ ⊂ ∂AdSn be the projection of a closed achronal
subset of ∂ÃdSn which is not pure lightlike. If we see Λ and E(Λ) in the
Klein model ADSn ∪ ∂ADSn, then

E(Λ) = {y ∈ ADSn ∪ ∂ADSn such that 〈y | x〉 < 0 for every x ∈ Λ}).
Remark 10.15. A nice (and important) corollary of this Proposition is that
the invisible domain E(Λ) associated with a set Λ is always geodesically
convex, i.e. any geodesic joining two points in E(Λ) is contained in E(Λ).

Proposition 10.14 provides a characterization of the AdS regular domain
associated to the projection of an achronal topological (n − 2)-sphere of
∂ÃdSn. In order to obtain a complete definition of AdS regular domains in
ADSn, it remains to identify the subsets of ∂ADSn which corresponds to the
projections of achronal topological spheres ∂ÃdSn. This is the purpose of
the following proposition, which easily follows from Lemma 10.13.

Proposition 10.16. For Λ ⊂ ∂ADSn, the following assertions are equiva-
lent.

(1) when we see Λ as a subset of ∂AdSn, it is the projection of an
achronal subset of ∂ÃdSn,

(2) 〈x | y〉 is non-positive for every x, y ∈ Λ.
Moreover, if Λ satifies these assertions, Λ is pure lightlike if and only it
contains two antipodal points of S(Rn+1).

Finally, we will give another characterization of the AdS regular domains,
using the duality for convex subsets of S(Rn).

Let us first recall some standard definitions. A convex cone J of Rn+1 is
a convex subset stable by positive homotheties. A convex cone J ⊂ Rn+1

is said to be proper if it is nonempty, and if its closure J̄ does not contain
a complete affine line. A convex subset C of S(Rn+1) is the projection of a
convex cone J(C) of Rn ; it is proper if J(C) can be chosen proper. Now,
for any convex cone J ⊂ Rn+1, one can define the dual convex cone J∗ of J ,

J∗ = {x ∈ Rn+1 such that 〈x | y〉 < 0 for all y ∈ J̄ \ {0}}
This allows one to associate a dual convex set C∗ ⊂ S(Rn+1) to any convex
set C ⊂ S(Rn+1). Note that J∗∗ = J and C∗∗ = C.

Using this duality, Proposition 10.14 can be reformulated as follows.

Proposition 10.17. Let Λ ⊂ ∂AdSn be the projection of a closed achronal
subset of ∂ÃdSn. We see Λ and E(Λ) in ADSn ∪ ∂ADSn. Then the domain
E(Λ) is the dual of the convex hull of Λ in S(Rn+1). �

In particular, AdS regular domains are the duals of the convex hulls of
the achronal topological (n− 2)-sphere in ∂ADSn.
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10.5. Cosmological time and horizon of AdS regular domains. The
link between MGHC spacetimes with constant curvature−1 and AdS regular
domains is made explicit by the following theorem.

Theorem 10.18. Every n-dimensional MGHC spacetime with constant cur-
vature −1 is isometric to the quotient of a regular domain in AdSn by a
torsion-free discrete subgroup of Isom(AdSn).

This result was proved by Mess in his celebrated preprint [40] (Mess only
deals with the case where n = 3, but his arguments also apply in higher
dimension). For the reader’s convenience, we shall recall the main steps of
the proof (see [13, Corollary 11.2] for more details).

Sketch of proof of Theorem 10.18. Let (M, g) be a MGHC spacetime of di-
mension n with constant curvature −1. As explained in section 5, the the-
ory of (G, X)-structures provides us with a locally isometric developing map
d : M̃ → AdSn and a holonomy representation ρ : π1(M) → Isom(AdSn).
Pick a Cauchy hypersurface Σ in M , and a lift Σ̃ of Σ in M̃ . Then S := d(Σ̃)
is an immersed complete spacelike hypersurface in AdSn. One can prove that
such a hypersurface is automatically properly embedded and corresponds to
the graph of a 1-Lipschitz function f : D2 → S1 in the conformal model
(S1 × D2,−dt2 + ds2). Such a function extends to a 1-Lipschitz function f̄

defined on the closed disc D2. This shows that the boundary ∂S of S in
AdSn ∪ ∂AdSn is an achronal curve contained in ∂AdSn.

On the one hand, it is easy to see that the Cauchy development D(S)
coincides with the invisible domain E(∂S) (this essentially relies on the fact
that S ∪ ∂S is the graph of a 1-Lipschitz function, hence an achronal set in
ÃdSn). In particular, this shows that D(S) is an AdS regular domain.

On the other hand, one can prove that M is isometric to the quotient
Γ \D(S), where Γ := ρ(π1(M)). Indeed, recall that S = d(Σ̃) is a properly
embedded hypersurface. This shows that the group Γ acts freely and prop-
erly discontinuously on S = d(Σ̃). It is easy to deduce that Γ acts freely
and properly discontinuously on the Cauchy development D(S). Hence the
quotient Γ \ D(S) is a globally hyperbolic spacetime. Now, observe that
d(M̃) is necessarly contained in D(S) since Σ̃ is a Cauchy hypersurface in
M̃ . Moreover, since S is embedded in M , the developing map d is one-to-one
in restriction to Σ̃. It follows that d is one-to-one on the Cauchy develop-
ment of Σ̃, i.e. on M̃ . Hence the developing map d induces an isometric
embedding of M in the Γ\D(S). Since M is maximal, this embedding must
be onto, and thus, M is isometric to the quotient Γ \D(S). �

11. Cosmological time and horizons of AdS regular domains

Throughout this section, we consider an achronal topological (n − 2)-
sphere Λ in ∂AdSn, and the associated AdS regular domain E(Λ).
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11.1. The cosmological time function.

Proposition 11.1. The AdS regular domain E(Λ) has regular cosmological
time.

Proof. We recall that Λ is, by definition, the projection of an achronal topo-
logical sphere Λ̃ ⊂ ∂ÃdSn, and that E(Λ) is the projection of the invisible
domain Ẽ(Λ̃) of Λ̃ in ÃdSn ∪ ∂ÃdSn. We will prove that Ẽ(Λ̃) has regu-
lar cosmological time. Since the projection of Ẽ(Λ̃) on E(Λ) is one-to-one
(corollary 10.6), this will imply that E(Λ) also has regular cosmological time.
We denote by τ̃ the cosmological time of Ẽ(Λ̃).

Let x be a point in Ẽ(Λ̃). On the one hand, corollary 10.7 states that
Cl(Ẽ(Λ̃)) is a compact subset of ÃdSn ∪ ∂ÃdSn, and that Cl(Ẽ(Λ̃)) ∩
∂ÃdSn = Λ̃. On the other hand, since x is in the invisible domain of Λ̃,
the set J−(x) is disjoint from Λ̃. Therefore J−(x) ∩ Cl(Ẽ(Λ̃)) is a compact
subset of ÃdSn. Therefore J−(x) ∩ Cl(Ẽ(Λ̃)) is conformally equivalent to a
compact causally convex domain in (R×Dn−1,−dt2 +ds2) (with a bounded
conformal factor since everything is compact). It immediately follows that
the lengths of the past-directed causal curves starting at x contained in
Ẽ(Λ̃) is bounded (in other words, τ̃(x) is finite), and that, for every past-
oriented inextendible causal curve c : [0,+∞) → Ẽ(Λ̃) with c(0) = x, one
has τ̃(c(t)) → 0 when t →∞. This proves that Ẽ(Λ̃) has regular cosmolog-
ical time. �

Since the definition of AdS regular domains is “time-symmetric”, E(Λ)
also has regular reverse cosmological time.

11.2. Horizons. According to Proposition 11.1 and Theorem 2.3, E(Λ) is
globally hyperbolic. Hence its boundary in AdSn is a Cauchy horizon and
enjoys all the known properties of Cauchy horizons (see for example [18]).
In our framework, this boundary is the union of two closed achronal subsets,
the past horizon H−(Λ) and the future horizon H+(Λ). Observe that H+(Λ)
is in the future of H−(Λ).

In the conformal model (D2 × S1,−dt2 + ds2), the horizons H−(Λ) and
H+(Λ) are the graphs of the functions f+ and f− defined in remark 10.5. In
the Klein model, E(Λ) is a convex domain, and the union H−(Λ)∪H+(Λ) is
the topological boundary of this convex domain. We can therefore consider
support hyperplanes to E(Λ) at some point p ∈ H±(Λ). These are projective
hyperplanes in S(Rn+1). It is quite clear that, for such a support hyperplane
H ⊂ S(Rn+1), the corresponding totally geodesic hypersurface H ∩ ADSn

is degenerate or spacelike (otherwise, H would intersect transversally the
achronal hypersurface H±(Λ), and this would contradict the fact that H is
a support hyperplane of E(Λ.

The following is the analog of Lemma 7.1.
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Proposition 11.2. Let p a point of the past horizon H−(Λ) of E(Λ). Let
C(p) ⊂ TpAdS be the set of the future directed unit tangent vectors orthogonal
to the support hyperplanes of E(Λ) at p. Then:

(1) C(p) is the convex hull of its lightlike elements.
(2) If c is a future complete geodesic ray starting at p whose tangent

vector at p is a lightlike element of C(p), then the future endpoint of
c is in Λ.

Proof. First of all, we need to understand better the link between the way
the elements of C(p) are associated to the support planes of E(Λ) at p. Let
H be a support hyperplane of E(Λ) at p. Then H = S(u⊥) where u is an
element of Rn+1 such that

(i) 〈u | u〉 ≤ 0 (since H = S(u⊥) is spacelike or lightlike);
(ii) 〈p | u〉 = 0 (since p ∈ S(u⊥));
(iii) 〈x | u〉 ≤ 0 for every x ∈ E(Λ) (since H = S(u⊥) is a support

hyperplane of E(Λ), and since, up to replacing u by −u, we can
assume that u and E(Λ) are on the same side of H).

Observe that this property (i) implies that the projection [u] of u in S(Rn)
belongs to ADSn ∪ ∂ADSn. Also observe that [u] and E(Λ) being on the
same side of H, the point [u] must be in the future of p. Consider the
2-plane Pu containing u and p. The projection of S(Pu) of Pu is a causal
geodesic γu containing p and orthogonal to H. If [u] ∈ ADSn, then [u] ∈ γu;
if [u] ∈ ∂ADSn, then [u] is the final extremity of γu. We will denote by vu

be the future directed unit tangent vector of γu at p.
The set C(p) is the set of all the vectors vu when H = S(u⊥) ranges other

the set of all the support hyperplanes of E(Λ) at p. It is important to note
that vu is lightlike if and only if u is lightlike, i.e. if and only if H = S(u⊥)
is a lightlike hyperplane.

Now we will prove item (1). For this purpose, let us consider a support
plane H = S(u⊥) of E(Λ) at p. We know that 〈x | u〉 ≤ 0 for every
x ∈ E(Λ). We also know that E(Λ) is the dual of the convex hull of Λ
in S(Rn) (Proposition 10.17). This implies that the projection [u] ∈ S(Rn)
of u ∈ Rn belongs to the convex hull in S(Rn) of Λ. Hence, we can write
u as a convex combination u =

∑
aiui where the ui’s are elements of Rn

projecting onto elements of Λ and the ai are positive number (equivalently,
vu is a convex combination of the vui ’s). We know that the scalar 〈p | u〉
is equal to zero:

∑
ai〈p | ui〉 = 0. But all the terms of this sum are

nonpositive. Therefore 〈p | ui〉 = 0 for every i. As a consequence, S(u⊥i ) is
a support plane of E(Λ) at p for every i (equivalently, vui is an element of
C(p) for every i). Moreover, Hi = S(u⊥i ) is a lightlike hyperplane for every
i (equivalently, vui is lightlike for every i). So, we have proved that vu is
a convex combination of lightlike elements C(p). This completes the proof
of (1).

It remains to prove item (2). For this purpose, we consider a support
plane H = S(u⊥) of E(Λ) at p, and the associated element vu of C(p).
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We assume that H is lightlike (equivalently that vu is lightlike). Just as
above, we write u =

∑
aiui where the ui’s projecting on elements of Λ,

and the ai’s are positive. By hypothesis, the norm of u is equal to zero:∑
aiaj〈ui | uj〉 = 0. But, according to Proposition 10.16, the scalar product

〈ui | uj〉 is non-positive for every i, j. Hence, 〈ui | uj〉 must be equal zero for
every i, j. Hence, the subspace F spanned by the ui’s is (totally) isotropic,
which implies it is either 1-dimensional or 2-dimensional. In the first case,
[ui] = [uj ] for all i, j, and in the second one, S(F ) is a lightlike geodesic
containing all the [ui]’s. In both cases, we deduce that [u] belongs to the
segment joining [ui] to [uj ] for some i, j. It follows that [u] belongs to Λ
(since Λ is achronal, every lightlike segment with both ends in Λ is contained
in Λ). Now recall that vu is the tangent vector at p of the geodesic segment
joining p and [u]. Hence, we have proved that the future extremity of the
lightlike ray starting at p with tangent vector vu lies in Λ. This completes
the proof of (2). �

Remark 11.3. Of course, a similar statement holds for the future horizon
H+(Λ) but where complete null rays contained in the horizon are now past
oriented.

11.3. Retraction onto the horizon. According to (3) in Theorem 2.3,
for every point x in the regular domain, there exists at least one maximal
timelike geodesic ray with future endpoint x realizing the “distance to the
initial singularity”: we call such a geodesic ray a realizing geodesic for x.

Definition 11.4. The region {τ < π/2} of the AdS regular domain E(Λ)
is denoted E−

0 (Λ) and called the past tight region of E(Λ).

Proposition 11.5. Let x be an element of the past tight region E−
0 (Λ) of

E(Λ). Then, there is an unique realizing geodesic for x.

This proposition means that the past tight region is foliated by inex-
tendible timelike geodesics on which τ restricts as a unit speed parameter.

Proof. Consider an affine domain U containing E(Λ) (see Proposition 10.12).
In some coordinate system (u1, u2, . . . , un) the domain U is the region {−u2

1+
u2

2 + . . . + u2
n < 1}, and x has zero coordinates (see definition 10.10 and

remark 10.11). Initial extremities of realizing geodesics for x are points
z in H−(Λ) such that d(x, z) = τ(x), where d(x, z) is the time length of
a past oriented timelike geodesic in ADSn starting from x and ending to
z (hence d(x, z) = 0 if z is not in the past of x). For each τ , we have:
Eτ = {z ∈ U | d(x, z) ≥ τ} = {−u2

1 + u2
2 + . . . + u2

n ≤ − tan2(τ), x1 < 0}. If
τ < τ ′, then Eτ ′ ⊂ Eτ . Since E(Λ) is causally convex, one has:

τ(x) = sup{τ | Eτ ∩H−(Λ) 6= ∅}
Let y, y′ be initial extremities of realizing geodesics for x: they both belong
to Eτ(x)∩E(Λ). Assume by contradiction that y 6= y′, and take any element z
in the interior of the segment [y, y′]. On the one hand, since E(Λ) is geodesi-
cally convex, z belongs to E(Λ). On the other hand, z belongs to the interior
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of Eτ(x) (since the hyperboloid {−u2
1 +u2

2 + . . .+u2
n = − tan2(τ(x)), x1 < 0}

is concave). Hence, the length of the geodesic segment [x, z] is strictly bigger
than τ(x). Contradiction. �

Proposition 11.6. Let c : (0, T ] → E−
0 (Λ) be a future oriented timelike ge-

odesic whose initial extremity p := limt→0 c(t) is in the past horizon H−(Λ).
Then the following assertions are equivalent.

(1) For every t ∈ (0, T ], c|[0,t] is a realizing geodesic for the point c(t).
(2) There exists t0 ∈ (0, T ] such that c|[0,t] is a realizing geodesic for the

point c(t).
(3) c is orthogonal to a support hyperplane of E(Λ) at p := limt→0 c(t).

Proof. Obviously (1)⇒(2).
Assume that there exists t0 ∈ (0, T ] such that c|[0,t] is a realizing geodesic

for the point c(t0). Let x := c(t0) and p := limt→0 c(t). The level set
{z | d(x, z) = τ(x)} is a smooth hypersurface in ADSn and its tangent
space at p is the orthogonal in TpADSn of the vector tangent to c. If this
tangent space is not tangent to a support hyperplane of H−(Λ) then, the set
{d(x, z) = τ(x)} intersects E(Λ). This would imply that p is not a minimum
point for the restriction of d(x, .) to E(Λ). This is a contradiction since the
restriction of c((0, t0]) is a realizing geodesic for x. Hence (2)⇒(3).

Now assume that c is orthogonal to a support hyperplane of H−(Λ) at p,
and let x be a point of c. Consider an affine domain U centered at x. The
hyperboloid {z ∈ U | d(x, z) = d(x, p)} is orthogonal to c at p: hence, by
hypothesis, its tangent space at p is a support hyperplane of E(Λ). Since
H−(Λ) is convex whereas the hyperboloid is strictly concave, the intersection
of E(Λ) withH−(Λ) is {p}. This means that p is a minimum point for d(x, .).
Therefore, [x, y] is a realizing geodesic for x. Hence (3)⇒(1). �

Remark 11.7. Using the reverse cosmological time τ̂ instead of τ , one can
define the future tight region E+

0 (Λ) of E(Λ), and prove some analogs of
Propositions 11.5 and 11.6.

12. AdS regular domains: curvature estimates for
cosmological time level sets

We are now able to state the main result on curvature estimates of the
level sets of the cosmological time of an AdS regular domain.

Theorem 12.1. Let E−(Λ) be the past tight region of an AdS regular do-
main, and τ : E−

0 (Λ) → (0, π/2) be the associated cosmological time. For ev-
ery a ∈ (0, π/2), the generalized mean curvature of the level set Sa = τ−1(a)
satisfies

− cot(a) ≤ HSa ≤ − 1
n− 1

cot(a) +
n− 2
n− 1

tan(a).

Proof. Let x be a point on the level set Sa. We denote by c : [0, a] → E−(Λ)
the unique realizing geodesic for x, with initial extremity p = r(x). Let v
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be the future oriented unit speed tangent vector of c at p. We denote as
before C(p) the set of vectors in TpADSn orthogonal to support hyperplanes
of the past horizon at p. Our goal is to construct two local surfaces S+

x , S−x
containing x, respectively in the future and the past of Sa, and with known
mean curvature at x (recall Definition 3.1).

Construction of S+
x . The construction of the upper barrier S+

x is similar to
the construction in the flat case: take a portion near x of the set of points at
lorentzian distance a from p = r(x). The mean curvature of S+

x is − cot(a),
its tangent hyperplane at x is the hyperplane orthogonal to c at x.

Construction of S−x . Let Λ̃ be a lift of Λ in ∂ÃdSn ' R × Sn−2. We recall
that Λ̃ can be seen as the graph of a 1-Lipschitz function f : Sn−2 → R. By
Proposition 11.6, the vector v is in C(p). Hence, Proposition 11.2 implies
that there is a finite set {v1, . . . , vl} of lightlike elements of C(p) such that
v is in the convex hull of {v1, . . . , vl}. According to Proposition 11.2 the
future extremities of the lightlike geodesics whose tangent vectors at p are
v1, . . . , vl belong to Λ. Let B be the finite subset of Λ made of these future
extremities, and B̃ the corresponding subset of Λ̃. Then B̃ is the graph
of a 1-Lipschitz function fB : B0 → R where B0 is a finite subset of Sn−2

(see remark 10.2). Let Λ̃B be the graph of the f−B : Sn−2 → R defined
remark 10.5, and ΛB be the projection of Λ̃B. We define our hypersurface
S−x to be the a-level set of the cosmological time of the domain E(ΛB).

Let us check that S−x satisfies the required properties: x ∈ S−x and S−x is
in the past of Sa. Since ΛB subset Λ, the invisible domain E(ΛB) contains
the invisible domain E(Λ), and hence the hypersurface S−x is in the past of
the hypersurface Sa. For each x ∈ ΛB, there is a future directed lightlike
geodesic ray starting at p whose endpoint is equal to x. It follows that p ∈
H−(ΛB). By construction, the vectors v1, . . . , vl are orthogonal to support
hyperplanes of E(ΛB) at p. Hence v ∈ Conv(v1, . . . , vl) is also orthogonal
to a support hyperplane of E(ΛB) at p. According to Proposition 11.6, this
implies that c is a realizing geodesic in E(ΛB). It follows that x = c(a)
belongs to the a-level set of the cosmological time of E(ΛB), i.e. x ∈ S−x .

We are left to evaluate the mean curvature of the hypersurface S−x at x.
The finite set B is the projection of a set B̂ of null vectors in En. Let F

be the vector space spanned by B̂, and let F⊥ be the subspace orthogonal
to F . Let 1 + d be the dimension of F . The convex hull of B̂ contains a
timelike element q̂ with Q2,n−1-norm −1: the dual to the spacelike support
hyperplane at p orthogonal to v. This point q̂ can also be defined as the
unique element of AdSn projecting on q = c(π/2).

Similarly, F⊥ contains a timelike vector: the lift p̂ in En of p, let us say,
Q2,n−1(p̂) = −1. It follows that F ∩ F⊥ = {0}, F has signature (1, d), and
F⊥ has signature (1, n− d− 1).

Let G ≈ SO0(1, n − d − 1) be the subgroup of SO0(2, n − 1) made of
the elements acting trivially on F . The group G preserves B̂. It follows
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that its induced action on S(E) preserves E(ΛB). This action preserves the
cosmological time τB of E(ΛB). The G-orbit of p is a connected component
of the geodesic subspace S(F⊥) ∩ ADSn.

Let F1 be the subspace F⊥ ⊕ 〈q̂〉. Observe that q̂ is a fixed point for the
action of G. The projection A1 of F1∩AdSn in S(En) is a copy of the Klein
model of the anti de Sitter space of dimension n − d. It contains x which
is the projection of x̂ = cos(a)p̂ + sin(a)q̂. The G-orbit of x is contained
in the cosmological level τ−1

B (a). On the other hand, this G-orbit in the
anti de Sitter space A1 is the set of initial extremities of future oriented
timelike geodesics with future extremity q and of length π/2− a. Hence, it
is an umbilical submanifold with principal curvatures cot(π/2−a) = tan(a).
This G-orbit is orthogonal to r−1(p), and in r−1(p) ⊂ S(F ), the cosmological
time τB is simply the lorentzian distance to p: τ−1

B (a)∩r−1(p) is an umbilical
submanifold with principal curvatures − cot(a). Hence, the mean curvature
of S−x = τ−1

B (a) at points in r−1(p) is

− d

n− 1
cot(a) +

n− d− 1
n− 1

tan(a)),

and the same is true at all points of τ−1
B (a) because of the G-invariance. In

order to conclude, we just need to observe that

− d

n− 1
cot(a) +

n− d− 1
n− 1

tan(a)) ≤ − 1
n− 1

cot(a) +
n− 1
n− 2

tan(a))

since a ∈ (0, π/2) and d ∈ {1, . . . , n− 1}. �

Reversing the time in the proof of Theorem 12.1, one gets:

Theorem 12.2. Let E+(Λ) be the future tight region of an AdS regular
domain, and τ̂ : E+(Λ) → (0, π/2) be the associated reverse cosmological
time. For every a ∈ (0, π/2), the generalized mean curvature of the level set
Ŝa = τ̂−1(a) satisfies

1
n− 1

cot(a)− n− 2
n− 1

tan(a) ≤ HbSa
≤ cot(a).

13. CMC time functions in anti-de Sitter MGHC spacetimes

The proof follows the same lines as those of Theorem 1.4, but is slightly
complicated by the fact that we need to consider also the reverse cosmolog-
ical time (cf. remark 2.4).

Proof of Theorem 1.7. Let (M, g) be a n-dimensional MGHC spacetimes
with constant curvature −1. According to Theorem 10.18, (M, g) is the
quotient of a regular domain E(Λ) ⊂ AdSn by a torsion-free discrete group
Γ ⊂ Isom(AdSn). The cosmological time τ : E(Λ) → (0,+∞) and the re-
verse cosmological time τ̂ : E(Λ) → (0,+∞) are well-defined and regular
(Proposition 11.1).
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For every a ∈ [0,+∞], let Sa = τ−1(a) and Σa bethe projection of Sa in
M ≡ Γ \ E(Λ). Every level set Sa is quite obviously a Cauchy hypersur-
face in E(Λ). It is Γ-invariant since the cosmological time is so. It follows
that Σa is a topological Cauchy hypersurface in M since inextendible causal
curves in M are projections of inextendible causal curves in E(Λ). More-
over, Theorem 12.1 implies that the generalized mean curvature HΣa of Σa

satisfies

− cot(a) ≤ HΣa ≤ −cot(a)
n− 1

+
n− 2
n− 1

tan(a).

Consider a decreasing sequence of positive real numbers (am)m∈N such that
am → 0 when m → +∞. Observe that

−cot(am)
n− 1

+
n− 2
n− 1

tan(am) −→
m→∞

−∞.

This shows that (Σam)m∈N is a sequence of past asymptotic (−∞)-barriers.
For every a ∈ [0,+∞], let Ŝa = τ̂−1(a) and Σ̂a be the projection of Ŝa in

M . Of course, Σ̂a is a topological Cauchy hypersurface in M for every a.
By Theorem 12.2, the generalized mean curvature HbΣa

of Σ̂a satisfies

1
n− 1

cot(a)− n− 2
n− 1

tan(a) ≤ HΣa ≤ cot(a).

Consider a decreasing sequence of positive real numbers (bm)m∈N such that
bm → 0 when m → +∞. Observe that

1
n− 1

cot(bm)− n− 2
n− 1

tan(bm) −→
m→∞

+∞.

This shows that (Σ̂bm)m∈N is a sequence of past asymptotic (+∞)-barriers.
So we are in a position to apply Theorem 4.3, which shows that M admits

a globally defined CMC-time τcmc : M → (−∞,+∞). �

14. Description of de Sitter MGHC spacetimes

We now start our investigation of MGHC de Sitter spacetimes (i.e. MGHC
spacetimes with constant curvature +1). Each section in the sequel is a “de
Sitter substitute” of a section above dealing with anti-de Sitter spacetimes.
Our first task will be to introduce a de Sitter analog of the notion of AdS
regular domain, called dS standard spacetime. Every MGHC de Sitter space-
time is the quotient of a dS standard spacetime by a torsion free subgroup of
Isom0(dSn) = O0(1, n). Then, we will try to get a good understanding of the
geometry of dS standard spacetimes, in order to obtain some estimates of
the (generalized) mean curvature of the level sets of the cosmological time.

In comparison to the anti-de Sitter case, a major technical difficulty
appears: given a MGHC de Sitter spacetime (M, g), the developing map
D : M̃ → dSn is not one-to-one in general. A consequence is that dS stan-
dard spacetimes cannot be defined as domains in the de Sitter space dSn. A
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dS standard spacetime is a simply connected manifold which is locally iso-
metric to dSn; in some particular cases, this manifold is globally isometric
to an open domain in dSn, but this is not the general case.

14.1. dS standard spacetimes. The purpose of this section is to define
a class of locally de Sitter manifolds, called dS standard spacetimes. Recall
that a Möbius manifold is a manifold equipped with a (G, X)-structure,
where X = Sn−1 is the (n − 1)-dimensional sphere and G ≡ O0(1, n) is
the Möbius group (i.e. the group of transformations preserving the usual
conformal structure of Sn−1). To every (n−1)-dimensional simply connected
Möbius manifold S, we will associate a n-dimensional future complete dS
standard spacetimes B+

0 (S) diffeomorphic to S × R. A similar construction
leads to a n-dimensional past complete dS standard spacetime B−0 (S).

The definition of dS standard spacetimes we will use here first appeared in
a paper by Kulkarni and Pinkall (see § 3.4 of [38]). Unfortunately, Kulkarni-
Pinkall did not insist on the de Sitter nature of the space they consider, and
we need to formulate here the lorentzian interpretation of some of their
results. There is another construction by Scannell (generalizing some ideas
of Mess; see [45] and [40]) where the de Sitter nature of the resulting spaces
is obvious. But Scannell only considered the case of where S is closed,
and it is not obvious from his description that the obtained spacetimes are
past or future complete. So, we will reproduce here Kulkarni-Pinkall’s and
Scannell’s constructions, for the readers’ convenience, and in order to ensure
that both these constructions lead to the same spacetimes.

14.2. Linear and Klein models of the de Sitter space. For n ≥ 2,
let (x1, . . . , xn+1) be the standard coordinate system on Rn+1, and let Q1,n

be the quadratic form −x2
1 + x2

1 + . . . + x2
n+1. The linear model of the

n-dimensional de Sitter space is the one-sheet hyperboloid (Q1,n = +1)
endowed with the lorentzian metric induced by Q1,n; we denote it by dSn.

It is easy to check that dSn is homeomorphic to R× Sn−1. Actually, one
can prove that dSn is conformally equivalent to ((−π/2, π/2)×Sn−1,−dt2 +
ds2), where dt2 is the usual metric on R and ds2 is the usual metric (of
curvature 1) on the sphere Sn−1. It follows in particular that dSn is globally
hyperbolic. The coordinate x0 defines on dSn a time function (provided that
we make the appropriate choice of time-orientation).

Observe that each of the two sheets of the hyperboloid (Q1,n = −1)
endowed with the riemannian metric induced by Q1,n is a copy of the n-
dimensional hyperbolic space. We denote by H−

n (resp. H+
n ) the sheet of

the hyperboloid (Q1,n = −1) contained in the half space (x0 < 0) (resp.
x0 > 0).

The projection on S(Rn+1) of dSn (endowed with the push-forward of the
lorentzian metric of dSn) is the Klein model of the de Sitter space; we denote
it by DSn. The projections on S(Rn+1) of Hn

− and Hn
+ will be denoted by

Hn
− and Hn

+. The boundary of DSn in S(Rn−1) is the projection of the cone
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(Q1,n = 0) \ {0}; this is the union of two spheres Sn−1
+ , Sn−1

− . We choose the
notations such that Sn−1

+ (resp. Sn−1
− ) is included in the projection of the

half space x0 > 0 (resp. x0 < 0). Notice that Sn−1
+ (resp. Sn−1

− ) is also the
boundary of Hn

− (resp. Hn
−) in S(Rn+1).

Using the conformal structure of dSn, one sees that every future oriented
inextendible causal curve in DSn “goes from Sn−1

− to Sn−1
+ ”. In other words,

Sn−1
+ can be seen as the future boundary, of DSn, and Sn−1

− as the past
boundary.

An important observation is that the group O0(1, n) can be seen alter-
natively as the isometry group of the lorentzian space DSn, as the isometry
group of the hyperbolic spaces Hn

− and Hn
+, or as the Möbius group of the

spheres Sn−1
− and Sn−1

+ (i.e. the group of the transformations preserving the
usual conformal structure on the spheres Sn−1

− and Sn−1
+ ). In other words,

each isometry of DSn extends as a conformal tranfomation of the spheres
Sn−1
− and Sn−1

+ , and conversely, each conformal tranformation of the sphere
Sn−1
± extends as an isometry of DSn.

The geodesics of DSn are the connected components of the intersections
of DSn with the projective lines of S(Rn+1). More precisely, let γ be a
projective line in S(Rn+1), then

• if γ does not intersect the spheres Sn−1
− and Sn−1

+ , then γ is a spacelike
geodesic of DSn,

• if γ is tangent to the spheres Sn−1
− and Sn−1

+ , then each of the two
connected components of γ ∩ DSn is a lightlike geodesic in DSn,

• if γ intersects transversally the spheres Sn−1
− and Sn−1

+ , then each of
the two connected components of γ ∩ DSn is a timelike geodesic.

The causal future J+(x) of a point x ∈ DSn is the union of all the projec-
tive segments contained in DSn, joining at x to Sn−1

+ . For the timelike future
I+(x), one only considers the segments that hit the Sn−1

+ transversally. The
totally geodesic hypersurfaces in DSn are the connected components of the
intersections of DSn with the projective hyperplanes of S(Rn+1).

A key ingredient in the sequel will be the fact that de Sitter space can be
thought of as the space of (non-trivial open) round balls in Sn−1

+ . For every
point x ∈ DSn, we denote by ∂+I+(x) the set of the future endpoints in Sn−1

+

of all the future oriented timelike geodesic rays starting at x. Then, for every
x ∈ DSn, the set ∂+I+(x) is an open round ball in Sn−1

+ . One can easily
check that the map associating to x the round ball ∂+I+(x) establishes a
one-to-one correspondance between the points in DSn and the (non-trivial
open) round balls in Sn−1

+ . Observe that a point x ∈ DSn is in the (causal)
past of another point y ∈ DSn, if and only if the round ball associated
to x contains the round ball associated to y. Of course, there is a similar
identification between the points of DSn and the round balls in Sn−1

− .
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14.3. dS standard spacetimes associated to open domains in Sn−1
+ .

Recall that our goal is to associate a future complete dS standard spacetime
B+

0 (S) to every simply connected Möbius manifold S. In this paragraph, we
consider the particular case where S is an open domain in the sphere Sn−1

+ .
We denote by Λ the boundary of S in Sn−1

+ .
For p ∈ Λ, let H(p) be the unique projective hyperplane in S(R1,n) tangent

to Sn−1
+ at p. Note that H(p) ∩ Sn−1

+ = {p}, H(p) ∩ Sn−1
− = {−p}, and

H(p)\{p,−p} is contained in DSn (more precisely, H(p)\{p,−p} is a lightlike
totally geodesic hypersurface in DSn). Also note that S(Rn+1) \ H(p) has
two connected components. We denote by Ω+(p) the connected component
of S(Rn+1) \H(p) containing Hn

+.

Definition 14.1. We consider the set

Ω+(S) :=
⋂
p∈Λ

Ω+(p)

We denote by B+
0 (S) the unique connected component of Ω+(S)∩DSn whose

closure in S(R1,n) contains S (see remark 14.2 below). The domain B+
0 (S)

is the (future complete) dS standard spacetime associated to S.

Remark 14.2. The set Ω+(S) is obviously a convex domain of S(R1,n).
This convex domain contains the hyperbolic space Hn

+. Select a point O ∈
Hn

+. The radial projection of center O on Sn−1
+ defines a fibration of Ω+(S)∩

DSn over Sn−1
+ \ Λ with fibers R. It follows that there exists a unique

connected component of Ω+(S)∩DSn whose closure contains S. This shows
the validity of the above definition of B+

0 (S).

Remark 14.3. Since geodesic segments in DSn are segments of projective
lines, another consequence of the convexity of Ω+(S) is the geodesic con-
vexity of B+

0 (S): any geodesic segment joining two elements of B+
0 (S) is

contained in B+
0 (S).

Remark 14.4. For every p ∈ Λ, the set Ω+(p)∩DSn is the timelike future of
the hyperplane H(p) in DSn. It follows that, for every x ∈ B+

0 (S), the causal
future of x in DSn is contained in B+

0 (S). Since DSn is future complete, it
also follows that B+

0 (S) is future complete.

Remark 14.5. For every p ∈ Λ, one has

Ω+(p) = {x ∈ S(Rn+1) such that 〈x | p〉 < 0}

where 〈· | ·〉 is the pseudo-scalar product associated to the quadratic form
Q1,n. It follows that Ω+(S) is the dual convex set of the convex hull of Λ in
S(Rn+1).

Remark 14.6. One can easily check that Ω+(S) ∩ DSn is the set of points
in DSn which are not causally related to any element of Λ. Therefore, B+

0 (S)
can be considered as the domain of dependence of S in DSn, so that there is
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a complete analogy between the above definition of dS standard spacetimes
and the definition of AdS regular domains.

Remark 14.7. Recall that there is a canonical identification between the
points of DSn and the round balls in Sn−1

+ (see section 14.2). One can easily
check that a point x ∈ DSn is in B+

0 (S) if and only if the ball of Sn−1
+

corresponding to x is contained in S.

Of course, there is a similar construction which allow to associate a past
complete domain B−0 (S) to any connected open domain S in Sn−1

− .

14.4. The general case. Now we consider the general, where S is any
simply connected (n − 1)-dimensional Möbius manifold. A key ingredient
will be the identification between DSn and the set of round balls in Sn−1

+ .
Let us first state two technical lemmas, valid for any local homeomorphism

ϕ : X → Y between manifolds (for proofs, see e.g. [11, § 2.1]).

Lemma 14.8. Let U , U ′ be two open domains in X, such that ϕ is one-to-
one in restriction to U , and in restriction to U ′. Assume that U ∩U ′ is not
empty, and that ϕ(U ′) contains ϕ(U). Then, U ′ contains U . �

Lemma 14.9. Assume that ϕ is one-to-one in restriction to some open
domain U in X. Also assume that the set V = ϕ(U) is locally connected in
Y , i.e. every point y in the closure of V admits arbitrarly small neighborhood
W such that V ∩W is connected. Then, the restriction of ϕ to the closure
of U in X is one-to-one. �

Now we start the construction of the dS standard spacetime B+
0 (S). For

this purpose, we choose a d : S → Sn−1
+ . Recall that such a map does exist

since S is a Möbius manifold. Also recall that the map d is not one-to-one
in general.

Definition 14.10. An (open) round ball U in S is an open domain in S
such that the developing map d to U is one-to-one in restriction to U , and
such that d(U) is an open round ball in Sn−1

+ . A round ball U ⊂ S is said
to be proper if the image under d of the closure U of U in S is the closure
of d(U) in Sn−1

+ .

Note that according to Lemma 14.9, if U is a proper round ball in S, then
d is one-to-one in restriction to U and d(U) is a closed round ball of Sn−1.

Definition 14.11. We will denote by B(S) the set of all round balls in S,
and by B0(S) the set of proper round balls.

The sets B(S) and B0(S) are naturally ordered by the inclusion. For every
element U of B0(S), we denote by W (U) the subset of B0(S) made of the
proper round balls U ′ such that U ′ ⊂ U . Given two elements U, V of B0(S)
such that U ⊂ V , we denote by W (U, V ) the set of all proper round balls U ′

in S such that U ⊂ U ′ and U ′ ⊂ V . The sets W (U, V ) generate a topology
on B0(S) that we call the Alexandrov topology.
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We already observed that the de Sitter space DSn, as a set, is canonically
identified with the space B0(Sn−1

+ ) = B(Sn−1
+ ) of all open round balls in the

sphere Sn−1
+ (see § 14.2).

Lemma 14.12. The canonical identification between DSn and B0(Sn−1
+ ) is

an homeomorphim, once B0(Sn−1
+ ) is endowed with the Alexandrov topology.

Proof. Let U, V be two points elements in B0(Sn−1
+ ) such that U ⊂ V . Let

x, y be the points of DSn corresponding respectively to U and V . Recall
that this means that U (resp. V ) is the set of future extremities of timelike
geodesics starting at x (resp. y). Hence U ⊂ V implies J+(x) ⊂ I+(y),
or equivalently p ∈ I+(q). Now observe that the set W (U, V ) ⊂ B0(Sn−1

+ )
corresponds in DSn to the set of all points z such that J+(x) ⊂ I+(z) and
J+(z) ⊂ I+(y), or equivalently, z ∈ I+(y)∩I−(x). But since DSn is strongly
causal, the topology on DSn generated by sets of the type I+(y) ∩ I−(x) is
the same as the manifold topology. The lemma follows. �

Proposition 14.13. The set B0(S), equipped with the Alexandrov topology,
is a manifold.

Sketch of proof. Compare our proof with [38, Proposition page 98, item
(iii)]. The developing map d : S → Sn−1 induces a map d : B0(S) →
B0(Sn−1). The composition of this map with the identification between
B0(Sn−1

+ ) with DSn defines a natural map D+ : B0(S) → DSn. For any
element U of B0(S), the restriction of F to W (U) is a homeomorphism onto
its image, which is the future I+(x) of the point x such that ∂I+(x) = d(U).
It follows that the W (U) are charts on B0(S) homeomorphic to Rn.

Let us prove the Hausdorff separation property: let U1, U2 be elements of
B0(S) such that every neighborhood of U1 intersects every neighborhood of
U2. Let U ′

1, U ′
2 be other elements of B0(S) such that U1 ⊂ U ′

1 and U2 ⊂ U ′
2.

Then, the neighborhoods W (U ′
1) and W (U ′

2) have non-trivial intersection
since the first contains U1 and the second contains U2. Let V be a common
element. The round ball V is contained in U ′

1 ∩U ′
2. This last intersection is

not empty. According to Lemma 14.8, the image by D of U ′
1∩U ′

2 is D(U ′
1)∩

D(U ′
2). It follows that the restriction of D to the union U ′

1 ∪U ′
2 is injective.

Therefore, the restriction of D+ to W (U ′
1) ∪ W (U ′

2) is a homeomorphism,
and D+(W (U ′

1)∪W (U ′
2)) = I+(D+(U ′

1))∪I+(D+(U ′
2)). Since the Hausdorff

property holds in I+(D+(U ′
1)) ∪ I+(D+(U ′

2)), we conclude that U1 = U2.
The fact that B0(S) is second countable is not really relevant to our

purpose, and its proof is left to the reader. �

The map D+ : B0(S) → DSn (obtained as the composition of the develop-
ing map d : B0(S) → B0(Sn−1) and the identification of B0(Sn−1) with DSn)
is a local homeomorphism (see Lemma 14.12). Hence, we can consider the
pull-back by D+ of the de Sitter metric on B0(S). This is a locally de Sitter
lorentzian metric on B0(S).



COSMOLOGICAL VERSUS CMC TIME 45

Definition 14.14. We will denote by B+
0 (S) the manifold B0(S) equipped

with the pull-back by D+ of the de Sitter metric.

Remark 14.15. It is clear from our definitions that the lorentzian manifold
B+

0 (S) is future complete. It is also that B+
0 (S) is asymptotically simple, i.e.

that every inextendible future oriented null geodesic ray is complete. It
follows that B±0 (S) is globally hyperbolic (see Proposition 2.1 in [5]).

Proposition 14.16. In the case where d is one-to-one, the lorentzian man-
ifold B+

0 (S) defined in this paragraph is isometric to the domain B+
0 (d(S))

defined in § 14.3.

Proof. This follows from the constructions and from remark 14.7. The isom-
etry is given by the map D+. �

Remark 14.17. If d′ : S → Sn−1
+ is another developing map, then d′ = φ◦d

where φ is an element of the Möbius group O(1, n−1) (in particular, φ maps
round balls on round balls). It follows that, up to isometry, the dS standard
spacetime B+

0 (S) does not depend on the choice of d.

A similar construction (where the sphere Sn−1
+ is replaced by the sphere

Sn−1
− ) yields a past complete lorentzian manifold B−0 (S).

Definition 14.18. A future (resp. past) complete dS standard spacetime is
a lorentzian manifold of the type B+

0 (S) (resp. B−0 (S)) where S is a simply
connected Möbius manifold.

If S is conformally equivalent to a finite quotient of the sphere Sn, then S
and B±0 (S) are said to be elliptic. If S is conformally equivalent to the sphere
Sn minus a single point, then S and B±0 (S) are said to be parabolic. If S is
neither elliptic nor parabolic, then S and B±0 (S) are said to be hyperbolic.

Remark 14.19. Elliptic standard dS spacetime are finite quotients of the
de Sitter space itself. Up to isometry, there is only one future complete
(resp. past complete) parabolic standard spacetime, which can be described
as the future (resp. past) in DSn of a point in the conformal boundary Sn−1

−
(resp. Sn−1

+ ).

14.5. Canonical neighbourhood and canonical domain of a point.
Let S a simply connected Möbius manifold of dimension n− 1. Let d : S →
Sn−1

+ be a developing map. In general, the dS standard spacetime B+
0 (S)

does not admit any global isometric embedding in DSn. Nevertheless, for
many purpose, we will not need to study the geometry of the whole spacetime
B+

0 (S), but only the geometry of some regions of B+
0 (S) (typically the past

of a point in B+
0 (S)). The purpose of this paragraph is to define some “big”

regions of B+
0 (S) which admit some isometric embeddings in DSn.

Definition 14.20. For x ∈ S, we denote by U(x) the union of all the open
round balls containing x. The set U(x) is called the canonical neighborhood
of x in S.
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Using Lemma 14.8 it is easy to prove the following proposition (see also
[38, Proposition 4.1]).

Proposition 14.21. The restriction of d to any canonical neighborhood is
one-to-one. �

Putting together Propositions 14.21 and 14.16, we get.

Corollary 14.22. For every x ∈ S, the dS standard spacetime B+
0 (U(x)) is

isometric to the dS standard spacetime B+
0 (d(U(x))) (associated to the open

domain d(U(x)) of Sn−1
+ . In particular, B+

0 (U(x)) is globally isometric to an
opain domain in DSn.

Moreover, the past of a point can always be seen in a domain of the form
B+

0 (U(x)).

Proposition 14.23. Let U be an element of B+
0 (S) (i.e. a proper round

ball in S). Let x ∈ U ⊂ S. Then the canonical domain B+
0 (U(x)) contains

the past of U in B+
0 (S).

Proof. Recall that a round ball V is in the past of U in B+
0 (S) if and only

if V contains U . So, if V is in the past of U , then x ∈ V ; hence, V ∈
B+

0 (U(x)). �

14.6. Another definition of dS standard spacetimes. The construc-
tion of dS standard spacetimes detailed in the previous paragraph is quite
different from those given by Scannell in [45]. We will now explain Scannell’s
construction.

Let S be a hyperbolic simply connected Möbius manifold of dimension
n − 1, and d : S → Sn−1

+ be a developing map. Let Bmax(S) be the set of
maximal open round balls in S, i.e. the maximal elements of B(S). For every
element U of Bmax(S), let U be the the closure of U in S, let d(U) be the
closure of d(U) in Sn−1, and let ΛS(U) be the complement of d(U) in d(U).
Observe that ΛS(U) is closed in Sn−1. The closed set d(U) is conformally
equivalent to the compactified hyperbolic space Hn−1 ∪ ∂Hn−1. We may
therefore transfer the usual notion of hyperbolic convex hull to d(U), and
define the convex hull Ĉ(U) of ΛS(U) in d(U). Let C(U) = d−1(Ĉ(U)) ∩ U
(note that C(U) = ∅ if and only if ΛS(U) has less than two points). A
key point in the construction is the following fact ([38, Theorem 4.4] or [45,
Proposition 4.1]).

Fact. For every x in S there exists a unique element U(x) of Bmax(S) such
that x belongs to C(U(x)).

Remark 14.24. This fact allows one to define a stratification of the Möbius
manifold S: for every x ∈ S, the strata of x is the set C(U(x)). This
stratification — which was defined by Thurston in some particular case
(unpublished), and later by Apanasov and Kulkarni-Pinkall in the general
case (see [38]) — is called the canonical stratification of S.
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Following Scannell (see [45, page 8]), we will now define a local homeo-
morphism D+ : S × (0,+∞) → DSn. We use the identification the points
in DSn and the set of round balls in Sn−1

+ : for every x in S, we see the
round ball U(x) as a point in DSn. Let cx : [0,+∞) → DSn be the unique
unit speed future oriented timelike geodesic such that cx(0) = U(x) and
cx(t) → x when t →∞. We define D+(x, t) as the point cx(t) in DSn. Scan-
nell proved that this map is a local homeomorphism. Then we can define
the future complete dS standard spacetime B+(S) associated with S as the
manifold S × (0,+∞) equipped with the pull-back by D+ of the de Sitter
metric.

We will see later (remark 15.9) that this definition of dS standard space-
times coincides with the definition given in § 14.4 (more precisely, the lo-
cally de Sitter manifolds B+(S) and B+

0 (S) are isometric). At this point,
it should be clear to the reader that there exists an isometric embedding
f : B+(S) ↪→ B+

0 (S) such that D+ = D+ ◦ f .

14.7. MGHC de Sitter spacetimes and dS standard spacetimes.

Theorem 14.25 (Scannell). Every MGHC dS-spacetime is the quotient of
a dS standard spacetime by a torsion-free discrete subgroup of isometries.

Proof. See [45] (and remark 15.9 which shows that Scannell’s definition of
dS standard spacetimes is equivalent to Kulkarni-Pinkall’s definition). �

15. Cosmological time and horizons of dS regular domains

All along this section, we consider a simply connected Möbius manifold
S of dimension n − 1, and the associated (future complete) dS standard
spacetime B+

0 (S). We assume that S is hyperbolic.
Recall that B+

0 (S) is defined as follows. One chooses a developing map
d : S → Sn−1

+ ' Sn−1. One considers the space B0(Sn−1
+ ). This map induces

a local homeomorphism d : B0(S) → B0(Sn−1
+ ). The composition of this local

homeomorphism with the identification between DSn with B0(Sn−1
+ ) defines

a local homeomorphism D+ : B0(S) → DSn. The dS standard spacetime
B+

0 (S) is, by definition, the manifold B0(S) equipped with the pull back
by D+ of the lorentzian metric of DSn. So, by construction, D+ defines a
locally isometric developing map of B+

0 (S) in DSn.
The purpose of this section is to get some informations on the cosmological

time of B+
0 (S). Just as in the AdS setting, this will lead us to study the

support hyperplanes of the past horizon H−(S) of B+
0 (S). Of course, a

similar study could be carried out for the dS standard spacetime B−0 (S).

15.1. Cosmological time.

Proposition 15.1. The dS standard spacetime B+
0 (S) has a regular cosmo-

logical time.
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Proof. Recall that we have assumed that S is hyperbolic; this will play a
crucial role here. We denote by τ the cosmological time of B+

0 (S).
Let x ∈ B+

0 (S). We want to prove that τ(x) is finite. We argue by
contradiction. If τ(x) = +∞, then, for every n ∈ N, we can find a past
directed causal curve cn : [0, 1] → B+

0 (S) such that cn(0) = x and such that
the length of cn is at least n. For every n, let xn := cn(1). Let z := D+(x).
For every n ∈ N, let γn := D+ ◦ cn and zn := D+(xn) = γn(1). Then
(γn)n∈N is a sequence of past directed compact causal curves in DSn, all
having the same final extremity z, and such that the length of γn tends
to ∞ when n → ∞. It follows that, up to extracting a subsequence, the
sequence (zn)n∈N converges to a point z̄ ∈ Sn−1

− . Now, recall that (xn)n∈N
is a sequence of points in B+

0 (S), that is, a sequence of proper round balls
in S. Let x̄ be the liminf of these balls, i.e. x̄ =

⋃
p∈N

⋂
n≥p xn. Note that

d is one-to-one in restriction to x̄ (since it is one-to-one in restriction to
each xi). For every n, the point zn can be seen as a ball in Sn−1

+ (using the
identification of DSn with the space of round balls in Sn−1

+ ). If we see xn as
a ball in S and zn as a ball in Sn−1

+ , then we have zn = d(xn). Hence, d(x̄) is
the liminf of the sequence of balls (zn)n∈N. Since zn → z̄ ∈ Sn−1

− , it follows
that d(x̄) is the complement of a single point in Sn−1

+ . According to Lemma
14.9, this implies that the boundary of the ball x̄ in S is either empty, or a
single point. In the former case, we have y = S, hence S is parabolic, and
this contradicts our hypothesis on S. In the latter case, the restriction of d
to the closure y is a homeomorphism onto Sn−1

+ ; it follows that S is elliptic,
and this also contradicts our hypothesis. So τ(x) is finite.

Now, we consider an inextendible past oriented causal curve c : [0, T ) →
B+

0 (S). We have to prove that τ(c(t)) → 0 when t → T . Let x := c(0).
On the one hand, for every t ∈ [0, T ), the quantity τ(c(t)) does not depend
on the whole spacetime B+

0 (S), but only on the past J−(x) of x in B+
0 (S).

On the other hand, the set J−(x) is contained in the domain B+
0 (U(x))

(Proposition 14.23). As a consequence, in our problem, we can replace the
cosmological time τ of the dS standard spacetime B+

0 (S) by the cosmolog-
ical time τ̌ of standard spacetime B+

0 (U(x)) ⊂ B+
0 (S). But the standard

spacetime B+
0 (U(x)) is isometric to a causally convex domain of DSn (corol-

lary 14.22 and remark 14.4). It follows easily that τ̌(c(t)) → 0 when t → T .
Therefore τ(c(t)) → 0 when t → T . �

Remark 15.2. (1) Since MGHC de Sitter spacetimes are quotients of
standard spacetimes by Theorem 14.25, and since cosmological time
functions are preserved by isometries, it is an immediate corollary of
Proposition 15.1 that MGHC hyperbolic standard spacetimes have
regular cosmological time.

In [5, Theorem 3.1] it is shown that for a class of MGHC space-
times (spacetimes of de Sitter type), satisfying the strong energy
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condition with positive cosmological constant, assuming that the fu-
ture conformal boundary has an infinite fundamental group implies
that the spacetime is past incomplete.

This result and our Proposition 15.1 have quite similar flavor. The
result in [5] is more general since MGHC spacetimes of de Sitter type
do not have in general constant curvature. On the other hand, the
conclusion of Proposition 8.1 is stronger, since a spacetime may be
past incomplete without having a regular cosmological time.

(2) Elliptic and parabolic dS standard spacetimes do not have regular
cosmological time. The cosmological time in these spacetimes is
everywhere infinite.

Of course, there are analogs of Theorem 2.3 and Proposition 15.1, concern-
ing the reverse cosmological time in past complete dS standard spacetimes.

15.2. Past horizon. As in the AdS case, one can define a notion of past
horizon for future complete dS standard spacetimes. Recall that B0(S) is
the set of proper open round balls in S, whereas B(S) is the set of all round
balls in S (see § 14.4).

Definition 15.3. The past horizon of the future complete regular domain
B0(S) is the set H−(S) := B(S) \ B0(S).

Remark 15.4. (1) The arguments of Proposition 14.13 can be easily
adapted, leading to the conclusion that the set B(S) admits a topol-
ogy for which it is a manifold with boundary (the boundary being
precisely the past horizon H−(S) = B(S)\B0(S)). Moreover, the de-
veloping map D+ : B0(S) → DSn extends to a local homeomorphism
from B(S) into DSn that we still denote by D±.

(2) Every round ball in S is the increasing union of one-parameter family
of proper round balls. It follows that any past-extendible causal
curve c in B+

0 (S) admits a limit point in the horizon H−(S); we call
this point the initial extremity of the curve c. Conversely, any point
p ∈ H−(S) is the initial extremity of a past-inextendible timelike
curve in B−0 (S) (which can actually be chosen to be geodesic).

(3) Recall that, in the particular case where S is an open domain in Sn−1
+ ,

the dS standard spacetime B+
0 (S) can be seen as an open domain

domain in the de Sitter space DSn. Using item (1), it is easy to
see that, in this particular case, the past horizon H−(S) is just the
topological boundary in DSn of the open domain B+

0 (S).

As noticed above, the past horizon H−(S) admits a simple description in
the particular case where the developing map d is one-to-one. Lemma 15.5
shows that, as far as “semi-local” properties ofH−(S), one can always reduce
to this particular case. We recall that every point q ∈ S admits a “nice”
neighbourhood U(q) in S which is isometric to an open domain in Sn−1

+ .
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Lemma 15.5. Let p be a point in H−(S). Let c be a future complete timelike
geodesic with initial extremity p. Let q be the future extremity of c in S+

n−1.
For every element x in c, let H−

x (S) be the intersection of H−(S) with the
closure of I−(x) in B+(S). Similarly, let H−

y (U(q)) be the intersection of
H−(U(q)) with the closure of I−(x) in B+(U(q)). Then H−

x (S) is an open
neighborhood of p in H−(S) and coincides with H−

x (U(q)).

Proof. This is an immediate corollary of Proposition 14.23. �

Let us assume that S is a domain in the sphere Sn−1
+ . Recall that, under

this assumption, the dS standard spacetime B+
0 (S) is a domain in DSn, and

the past horizon H−(S) is just the boundary of B+
0 (S) in DSn. Also recall

that B+
0 (S) is defined as a connected component of the intersection of the

convex set Ω+(S) with DSn (see § 14.3). In particular, H−(S) is a locally
convex hypersurface in S(Rn+1). This allows us to speak of the support
planes of H−(S) (which are projective hyperplanes in S(Rn+1). Note that,
just as in AdS case, if H is a support hyperplane of H−(S), then the totally
geodesic hypersurface H ∩ DSn is a spacelike or degenerate. The following
statement is the analog of Proposition 11.2 in the AdS case.

Proposition 15.6. Assume that S is a domain in Sn−1
+ . Let p a point of

H−(S). Let C(p) ⊂ TpDSn be the set of the future directed unit tangent
vectors orthogonal to the support hyperplanes of H−(S) at p. Then:

(1) the set C(p) is the convex hull of its lightlike elements;
(2) If c is a future complete geodesic ray starting at p whose tangent

vector at p is a lightlike element of C(p), then the future endpoint of
c is in Λ (recall that Λ is the boundary of S in Sn−1

+ ).

Proof. The proof is very similar to those of Proposition 11.2; the only dif-
ferences are the following.

• We work with the convex set Ω+(S) instead of the convex set E(Λ).
• The point q now belongs to Hn

+ ∪ Sn−1
+ (instead of ADSn ∪ ∂ADSn

in the AdS case).
• The causal vector vq is lighlike if and only if q ∈ Sn+1

+ .
• The proof of item (2) is slightly easier in the dS case: since the

quadratic form Q1,n has signature (1, n), one gets that the subspace
spanned by the q̂i’s is 1-dimensional (instead of 2-dimensional in the
AdS case); it follows immediately that all the qi’s are equal to q, and
thus, that q is in Λ.

�

15.3. Retraction onto the horizon. We now study the realizing geodesics
in B+

0 (S). Let x ∈ B+
0 (S). Recall that a future directed timelike geodesic

ray c : (0, 1] → B+
0 (S) such that c(1) = x is a realizing geodesic for x if τ(x)

is equal to the length of c. Clearly, realizing geodesic rays for x are contained
in the past of x. Therefore, for our problem, we may pick a point q ∈ Sn−1

+
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which is the future endpoint of a timelike geodesic passing through x, and
replace the dS standard spacetime B+

0 (S) by the dS standard spacetime
B+

0 (U(q)) (Proposition 14.23). In other words, as far as realizing geodesic
rays for x are concerned, we may assume without loss of generality that S
is an open domain in the sphere Sn−1

+ .

Proposition 15.7. For every x ∈ B+
0 (S), there is a unique realizing geodesic

for x in B+
0 (S).

Proof. Recall that we assume without loss of generality that S is a domain in
Sn−1

+ . Hence, the dS standard spacetime B+
0 (S) is a connected component

of the intersection of the convex set Ω+(S) with DSn, and H−(S) is the
boundary of B+

0 (S) in DSn. Initial extremities of realizing geodesics for x
are points z in H−(S) such that d(x, z) = τ(x), where d(x, z) is the length
of a past oriented timelike geodesic in DSn starting from x and ending to
z. For each τ , the set {z ∈ DSn | d(x, z) ≥ τ} is the intersection of DSn

with a solid ellipsoid Eτ in S(Rn) tangent to the sphere Sn−1
− along a round

subsphere. If τ < τ ′, then Eτ ′ ⊂ intEτ , leading to the definition:

τ(x) = sup{τ | Eτ ∩H−(S) 6= ∅}.

Let y, y′ be initial extremities of realizing geodesics for x: they both belong
to Eτ(x)∩Ω+(Λ). On one hand, the segment [y, y′] is contained in the interior
of Eτ(x) (since ellipsoids are strictly convex). On the other hand, according
to Remark 14.2, the segment [y, y′] is contained in B+(S). We obtain a
contradiction, unless y = y′ (see the proof of Proposition 11.5). �

Proposition 15.8. Let c : (0, T ] → B−0 (S) be a future oriented timelike
geodesic whose initial extremity p = limt→0 c(t) belongs to the past horizon
H−(Λ). Then the following assertions are equivalent.

(1) the geodesic c is tight,
(2) there exists t0 ∈ (0, T ] such that c((0, t0]) is a realizing geodesic for

the point c(t),
(3) c is orthogonal to a support hyperplane of Ω+(S) at p.

Proof. The proof is entirely similar to those of Proposition 11.6, based on
the strict convexity of the ellipsoids Eτ . �

Remark 15.9. According to Lemma 15.6, and since there is at least one
realizing geodesic for each x in B+

0 (S), Proposition 15.8 means precisely that
the map f : B(S) → B+

0 (S) defined at the end of § 14.1 is onto. Hence f is
an isometric identification between B+

0 (S) and B(S).

16. dS regular domains : curvature estimates for cosmological
time level sets

Theorem 16.1. Let B+
0 (S) be a future complete dS standard spacetime,

and τ : B+
0 (S) → (0,+∞) be the associated cosmological time function.
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Then, for every a ∈ (0,+∞), the generalized mean curvature of the level set
Sa = τ−1(a) admits the following estimates

− coth(a) ≤ HSa ≤ − 1
n− 1

coth(a)− n− 2
n− 1

tanh(a).

Proof. We use the same notations x, p, c, v as in the proof of Theorem 12.1.
The past of the geodesic c : R → B+

0 (S) contains the past in B+
0 (S) of a small

neighbourhood U of x. The restriction to U of the function τ only depends
of the past of U in B+

0 (S). Hence the geometry of the hypersurface Sa in U
(in particular the generalized mean curvature of Sa at p) only depends on
the past of c in B+

0 (S). Together with Lemma 15.5, this allows us to restrict
ourselves to the case where S is an open domain in Sn−1

+ .
The proof is then formally completely similar to those of Theorem 12.1.

The hypersurface S+
x is the set of the points of B+

0 (S) which are in the future
of p, at distance exactly a from p. Clearly, S+

x is in the future of Sa, and
x ∈ S+

x . A simple computation shows that the mean curvature of S+
x is

constant and equal to − coth(a).
In order to construct the hypersurface S−x , we select a finite set v1, . . . , vr

of lightlike elements of C(p) such that v ∈ Conv(v1, . . . , vr) (such a finite set
does exist by item (1) of Proposition 15.6). For every i, we denote by qi the
future endpoint of the lightlike geodesic ray whose tangent vector at p is the
vector vi. Let S′ = Sn−1

+ \ {q1, . . . , qr}. Item (2) of Proposition 15.6 shows
that S′ ⊃ S. The domain B+

0 (S′) ⊂ DSn is a dS standard spacetime with
regular cosmological time τ ′. We define the hypersurface S−x as the a-level
of the cosmological time τ ′. Since S′ ⊃ S, the domain B+

0 (S′) contains the
domain B+

0 (S), and thus, S−x is in the past of Sa.
So, we are left to compute the mean curvature of S−x at p. For this pur-

pose, we introduce the minimal projective subspace F in S(Rn+1) containing
q1, . . . , qr. We observe that S−x = (τ ′)−1(a) is the saturation under G of the
umbilical submanifold Sa ∩F⊥, where G is the group of isometries fixing F
pointwise. It follows that the mean curvature of S−x is constant and equals:

− d

n− 1
coth(a) +

n− 1− d

n− 1
tanh(a)

for some d ∈ {1, . . . , n − 1}. Finally, one observes that this quantity is
maximal when d is minimal (i.e. when d = 1). The theorem follows. �

Remark 16.2. The past barriers appearing in the proof are the CMC hy-
persurfaces presented in Example 2 of [42].

By reversing the time one obtains the following result.

Theorem 16.3. Let B−0 (S) be a past complete dSn regular domain, and
τ̂ : B−0 (S) → (0,+∞) be the reverse cosmological time function associated
to B−0 (S). Then, for every a ∈ (0,+∞), the generalized mean curvature of
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the level set Ŝa = τ̂−1(a) admits the following estimates:
1

n− 1
coth(a) +

n− 2
n− 1

tanh(a) ≤ HcSa
≤ coth(a).

�

17. CMC time functions in de Sitter MGHC spacetimes

In this section we prove Theorems 1.10 and 1.11, and discuss CMC folia-
tions in elliptic de Sitter spacetimes. The existence problem of CMC-times
or CMC-foliations splits into several cases (essentially three) and subcases.

17.1. The hyperbolic case. The proof of Theorem 1.11 is very similar to
that of Theorem 1.4. The only difference is that, in the de Sitter case, the
cosmological time function does not provide a sequence of future asymptotic
barriers (except in dimension 2 + 1).

Proof of Theorem 1.11. Let (M, g) be a past incomplete n-dimensional de
Sitter MGHC spacetime. According to Theorem 14.25, (M, g) is the quotient
of a regular domain B+

0 (S) by a torsion-free discrete group Γ ⊂ Isom(dSn).
The cosmological time τ : B+

0 (S) → (0,+∞) is well-defined and regular.
For every a ∈ [0,+∞], let Sa = τ−1(a) and Σa be the projection of Sa

in M ≡ Γ \ B+
0 (S). As every compact level set of a time function, Σa is a

topological Cauchy hypersurface in M for every a. Theorem 16.1 implies
that, for every a ∈ (0,+∞), the generalized mean curvature of Σa satisfies

− coth(a) ≤ HΣa ≤ − 1
n− 1

coth(a)− n− 2
n− 1

tanh(a).

Let (am)m∈N be a decreasing sequence of positive real numbers such that
am → 0 when m → +∞. Observe that

− 1
n− 1

coth(am)− n− 2
n− 1

tanh(am) → −∞ when m →∞.

Hence (Σam)m∈N is a sequence of past asymptotic α-barrier in M for α =
−∞. Hence remark 4.10 implies that M admits a partially defined CMC-
time τcmc : U → (−∞, β) where U is a neighbourhood of the past end of
M .

17.1.1. The three-dimensional case. Assume n = 3. Consider a sequence
(bm)m∈N of increasing positive real numbers such that bm → +∞ when
m → +∞. For every m ∈ N, one has

− coth(bm) < −1
2

coth(bm)− 1
2

tanh(bm) < −1

and
− coth(bm) → −1 when m →∞.

Hence (Σbm)m∈N is a sequence of future asymptotic β-barrier in M for β =
−1. Therefore, Theorem 4.3 implies that M admits admits a globally defined
CMC time function τcmc : M → (−∞,−1).
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Remark 17.1. This argument fails if n > 3. The problem is that the
quantity

− 1
n− 1

coth(a)− n− 2
n− 1

tanh(a)

becomes bigger than −1 when a is large. See § 17.1.3 below.

17.1.2. The almost-fuchsian case. In the almost-fuchsian case there is an
embedded Cauchy surface Σ in (M, g) with all principal eigenvalues < −1.
Reversing the time if needed, we can assume that M is future complete.
Denote by Σt the image of the hypersurface Σ under the time t map of the
Gauss flow, i.e. obtained by pushing Σ during a time t along its normal
geodesics. It is easy to describe in our context these hypersurfaces: let Σ̃ be
the universal covering of Σ: the embedding Σ ⊂ M lifts to an embedding
u : Σ̃ → B+

0 (S). For every x in Σ̃, there exists a unique element u∗(x) of Hn
+

such that the line R.u∗(x) is the Q1,n-orthogonal of R.H(x) where H(x) is
the tangent projective hyperplane of Σ̃ at x. In other words, we have two
maps u, u∗ : Σ̃ → R1,n such that, for every x in Σ̃,

• Q1,n(u(x)) = 1,
• Q1,n(u∗(x)) = −1,
• 〈u(x) | u∗(x)〉 = 0,
• for every tangent vector ∂x at u(x) we have 〈u∗(x) | ∂xu〉 = 0.

Then for every x in Σ̃ we have 〈u(x) | ∂xu∗〉 = 0. The Weingarten operator
for Σ̃ is the linear operator B such that B(∂xu) = −∂xu∗ for every tangent
vector ∂x.

The Gauss flow is described as follows: for every t ≥ 0, let ut : Σ̃ → dSn ⊂
R1,n defined by ut(x) = cosh(t)u(x) + sinh(t)u∗(x). Observe that since we
have selected u∗(x) in Hn

+ the ut(x) (for a fixed x) describes a future oriented
geodesic ray starting from u(x). The projection in M of the image Σ̃t of ut

is the hypersurface Σt.
For a fixed t, the differential of ut evaluated on a tangent vector ∂x is

cosh(t)∂xu + sinh(t)∂xu∗ = (cosh(t)Id− sinh(t)B)(∂xu).
By assumption, the principal curvatures of Σ, i.e. the eigenvalues of B,

are less than−1. It follows that ut is an immersion for every t ≥ 0: the Gauss
flow is defined for all positive t. Moreover, the differential of u∗t evaluated on
∂x is (sinh(t)Id−cosh(t)B)(∂xu). It follows that the Weingarten operator for
Bt is −(tanh(t)Id−B)(Id− tanh(t)B)−1. In particular, the mean curvature
of Σt is smaller than −1 for every t ≥ 0, and tends to −1 when t → +∞.

Now, we claim that given an increasing sequence (tm)m∈N of real numbers
such that tm → ∞ when m → ∞, the sequence of hypersurfaces (Σtm)m∈N
is a sequence of future asymptotic β-barrier in M for β = −1. The only
remaining point to check is that (Σtm)m∈N tends to the future end of M when
m → +∞. But this is clear: let T0 be the minimal value of the cosmological
time function on Σ. Then the cosmological time function restricted to Σt is
everywhere bigger than T0 + t. The claim follows.
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Hence Theorem 4.3 implies that M admits a globally defined CMC-time
τcmc : M → (−∞,−1). �

Remark 17.2. We define (future complete) fuchsian de Sitter spacetimes
as MGHC de Sitter spacetimes (M, g0) = B+

0 (S) where the Möbius manifold
S is a quotient Γ\U of a proper round ball U in Sn−1

+ .
The metric of a Fuchsian spacetime is a warped product of the form

−dt2 + w(t)2h, where h is independent of t. Any metric of this form admits
a timelike homothety and is conformal to a static spacetime.

Observe that in particular the holonomy group Γ is conjugate in SO0(1, n)
to a lattice of SO0(1, n−1); Γ preserves a totally geodesic hypersurface Hn−1

in Hn.
We claim that (M, g0) is almost-fuchsian. To see this, consider a hyper-

surface Σ dual to a hypersurface in Hn all the principal curvatures of which
are very small (this last hypersurface can be obtained by taking the image
of the totally geodesic hypersurface Hn−1 under the time t map of the Gauss
flow for t small).

If another Lorentz metric g of dS type is a small deformation of the fuch-
sian metric g0, then the hypersurface Σ also has all its principal curvatures
< −1 (with respect to g).

Remark 17.3. In dimension 2+1, Theorem 1.11 can also be deduced from
the existence of foliation of hyperbolic ends by surfaces with constant Gauss
curvature (see [16]).

17.1.3. A regular spacetime with no CMC time function. For every n ≥ 4,
there exists n-dimensional MGHC regular spacetimes that do not admit any
CMC time function. Here a construction of such a spacetime. Let n ≥ 4 and
choose as Möbius surface S the complement in Sn−1

+ of two points, say p1

and p2. Let P1 and P2 be the projective hyperplanes in S(Rn+1) which are
tangent to Sn−1

+ respectively at p1 and p2. The intersection Q = P1∩P2 is a
spacelike totally geodesic subspace of dimension n−2 in DSn, homeomorphic
to Sn−2. The domain B+

0 (S) is by definition the intersection of the futures
of P1 and the future of P2. It can be easily proved that the cosmological
time function τ̃ of B+

0 (S) is just the lorentzian distance to the spacelike
totally geodesic (n− 2)-sphere Q. Using this, one can verify that, for every
a, the level set Sa = τ̃−1(a) is a Cauchy hypersurface in B+

0 (S) which is
homeomorphic to the Sn−2 × R, and has constant mean curvature equal to

− 1
n− 1

coth(a)− n− 2
n− 1

tanh(a)

(the calculation of the mean curvature is entirely similar to the estimates
of the curvature of the hypersurface S+ in the proofs of Theorem 12.1
and 16.1). Now, observe that the regular domain B+

0 (S) admits (regular)
Cauchy compact quotients: if Γ is a cyclic group generated by a hyper-
bolic element of SO0(1, n) fixing the points p1 and p2, then Γ acts prop-
erly discontinuously on B+

0 (S) and the projection Σa of Sa in the quotient
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M := Γ\B+
0 (S) is a Cauchy hypersurface homeomorphic to Sn−2×S1. More-

over, for every a, the hypersurface Σ has constant mean curvature equal to
− 1

n−1 coth(a)− n−2
n−1 tanh(a). Hence F = {Σa}a∈(0,+∞) is a CMC foliation of

M . But the mean curvature of the leafs of F is not monotonous (it increases
for a small, but decreases for a large). In particular, M does not admit any
CMC time function (if there would exist a CMC time function, then the
hypersurface Σa would be a fiber of this CMC time function for every a,
and thus, the mean curvature of Σa would be a monotonous function of a).

This raises the following question.

Question. Do every MGHC regular spacetime admit a global CMC foliation
with compact leaves?

17.2. The elliptic case.

17.2.1. de Sitter space. We first consider the case of de Sitter space itself
dSn. A key fact is that compact CMC hypersurfaces in dSn are umbilical
(see [43]; this is of course reminiscent of Alexandrov rigidity Theorem which
states that is any compact CMC hypersurface in the Euclidean space is a
round sphere). More precisely, they are the intersections between dSn =
{Q1,n = 1} and the affine spacelike hyperplanes of the Minkowski space
R1,n. Such an hyperplane is defined as the set H(t,v) = {x | 〈x | v〉 = sinh(t)}
where v is a vector of norm −1 in the future cone of the Minkowski space,
i.e. an element of the hyperbolic space Hn = {Q1,n = −1}, and t a real
number. Then, the intersection S(t,v) = H(t,v0) ∩ dSn is an umbilical sphere,
and every closed CMC surface in dSn must be such an intersection. In other
words, Hn × R is the space of umbilical spheres.

The mean curvature of S(t,v) is − tanh(t). It follows that if S(t,v) is in
the future of S(t′,v′), then the mean curvature of the former is less than the
mean curvature of the later. This phenomenom is actually valid locally.

Lemma 17.4. Let U be an open subset of dSn endowed with an umbilical
foliation F with compact leaves. Then, the mean curvature function of F is
decreasing. In particular, dSn has no CMC time.

Proof. By contradiction, assume that the mean curvature is somewhere in-
creasing (or just non-decreasing). This will be true on an open F-saturated
set, we can thus assume that this holds on all U . Therefore, on U , we have
a CMC time. By a well known property, any other compact CMC hyper-
surface in U is a leaf of F . This is obviously false: take S a leaf of F , and
S′ an umbilical hypersurface close to it, then S′ will be contained in U , but
is not necessarily a leaf of F .

Observe that for a global foliation of dSn, leaves accumulate to the two
boundary components, which can be thus seen as umbilical hypersurfaces,
but with infinite curvature. More formally, the curvature of leaves decreases
(with time) from +∞ to −∞. �
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We want to describe now CMC-foliations in dSn. The following Proposi-
tion gives a complete description.

Proposition 17.5. There is a 1-1 correspondance between CMC-foliations
with compact leaves in dSn and inextendible timelike curves in Hn × R
equipped with the lorentzian metric ds2

hyp − dt2 where ds2
hyp is the hyper-

bolic metric of Hn.

Proof. Let F be a CMC-foliation with compact leaves. In order to simplify
the proof, we assume that F is C1, but see remark 17.7. The leaves are
umbilical spheres S(t,v). Observe that since the leaves are disjoint one to
the other, two different leaves must have different parameter t. By Reeb
stability Theorem (see [34]), since every leaf is a sphere, the foliation is
trivial: there is a map f : dSn → R such that the leaves of F are the fibers
of f . It follows that there is a curve cF : I → Hn×R such that the leaves of
F are the umbilical spheres S(t(s),v(s)) where I ⊂ R and cF (s) = (t(s), v(s)).
Since the map s → t(s) is 1-1, we can choose that the parameter s so that
t(s) = s, i.e. we can parametrize cF by the first factor t.

Consider any C1 curve c : I → Hn × R: the umbilical spheres Sc(t) may
be non-disjoint. We make the following

Claim. The spheres Sc(t) are pairwise disjoint if and only if tangent vectors
v′(t) have hyperbolic norm less than 1.

We first consider the case n = 1. Then v(t) = (sinh(η(t)), cosh(η(t)))
where t → η(t) is a C1 map. The elements of the 0-sphere S(t,v(t)) are
(cosh(a), sinh(a)) and (− cosh(b), sinh(b)) where a, b satisfy:

cosh(a) sinh(η)− sinh(a) cosh(η) = sinh(t)
− cosh(b) sinh(η)− sinh(b) cosh(η) = sinh(t)

Hence, we have a = t−η and b = t+η. But the 0-spheres Sc(t) are disjoint
if and only if the maps t → a and t → b are increasing. This is equivalent
to the absolute value of η′(t) being strictly less than 1. The claim follows
since the hyperbolic metric of H1 is dη2.

Assume now n ≥ 2. Let P be any 2-plane in R1,n on which the restriction
of Q1,n has signature (1, 1). Let πP : R1,n → P be the orthogonal projection.
If the Sc(t) are two by two disjoint the same is true for the intersections
P ∩ Sc(t), and conversely, if P ∩ Sc(t) and P ∩ Sc(t′) are disjoint for every
2-plane as above, then Sc(t) and Sc(t′) are disjoint. Now observe that the
intersection P ∩ Sc(t) is the set of points x in P ∩ dSn ≈ dS1 satisfying
〈x | πP (v)〉 = sinh(t). Hence, since the n = 1 case has been proved, the
spheres Sc(t) are all disjoint if and only if for every 2-plane P as above the
norm of dπP (v′(t)) is less than one. But, using the natural parallelism of
R1,n, the spacelike vector v′(t) has Minkowski norm less than 1 if and only
if all the vectors dπP (v′(t)) = πP (v′(t)) have Minkowski norm less than 1.
The claim follows.
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According to the claim, the curve cF : I → R is a timelike curve in Hn×R.
If this curve is extendible, then it means that some umbilical curve S(T,V )

is disjoint from all the ScF (t). This is a contradiction since F foliates the
entire de Sitter space. Hence, cF is inextendible.

Conversely, for every inextendible timelike curve c in Hn × R, the argu-
ments above show that t → Sc(t) is a 1-parameter family of umbilical spheres
which are pairwise disjoint. Since the projection on the second factor of is
a Cauchy time function on the globally hyperbolic space Hn ×R, the mean
curvature t must take all value in ] −∞,+∞[. We leave to the reader the
proof that the continuity of c implies that the spheres Sc(t) cover all the
de Sitter space. It follows that the spheres that they are the leaves of a
CMC-foliation Fc. �

Corollary 17.6. There are infinitely many non-isometric CMC-foliations
of the de Sitter space dSn. �

Remark 17.7. (1) Proposition 17.5 actually shows that the modulus
space of CMC foliations of the de Sitter space dSn up to isometry
is enormous: this is an open set in an infinite dimensional vector
space.

(2) Proposition 17.5 provides many examples of CMC foliations of dSn

with poor regularity. Indeed, consider a inextendible timelike curve
c in Hn × R (equipped with the lorentzian metric ds2

hyp − dt2). The
proof of Proposition 17.5 shows how to associate with the curve
c a CMC foliation Fc of dSn. Each leaf of the foliation Fc is an
umbilical sphere in dSn; in particular, it is an analytic submanifold
of dSn. Nevertheless, it follows easily from the construction that
the tranverse regularity of the foliation Fc is exactly the same as
the regularity of the curve c. More precisely, if γ is analytic curve
tranverse to the foliation Fc, the tangent plane of the leaves of Fc

varies in a Ck way along γ if and only if the curve c is Ck. Therefore,
a curve c which is Ck but not Ck+1 yields a CMC foliation Fc of
dSn which is Ck but not Ck+1.

(3) It is well-known that the notion of timelike curve in a lorentz man-
ifold extends to the non-differentiable case: here, it can be defined
as curves c : t → Hn ×R such that c(t) is in the strict future of c(t′)
for all real numbers t′ < t. Such curves are automatically Lipschitz
(see [18]). It is quite obvious that timelike curves in this more gen-
eral meaning also provide CMC-foliations which are only Lipschitz
regular.

(4) In Proposition 17.5, we only considered foliations with compact
leaves. It is suggestive to relax this condition, i.e. to ask whether
CMC-foliations with non compact leaves of dSn exist and how they
behave?

(5) The opposite of the mean curvature of an umbilical foliation is a
time function. But, not all umbilical time functions are equally
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“tame”. For instance, given any (spacelike compact) hypersurface
S in dSn, its isometry group GS (i.e. isometries of dSn preserving
it) has umbilical orbits. The so-obtained time is GS-invariant. No
other time function can have a “comparable” symmetry group. It is
interesting to characterize, variationally, say, these extra-symmetric
time functions.

17.2.2. Non-trivial quotients of dSn. In general, an elliptic MGHC de Sitter
spacetime is the quotient of dSn by a finite group Γ acting freely on dSn. The
group Γ admits a fixed point v0 in Hn. For every real number t, the umbilical
sphere S(t,v0) is preserved by Γ: it projects in the quotient M = Γ\dSn on a
umbilical hypersurface. Hence, varying t, we obtain a CMC foliation F0 in
M . Observe that M admits no CMC time function, since such a CMC time
function would lift in dSn to a CMC time function. Furthermore:

Lemma 17.8. Every compact CMC hypersurface in M is a leaf of F0.

Proof. Let S be a CMC hypersurface in M . It lifts to a compact CMC
hypersurface in dSn, i.e. to some umbilical sphere S(t,v). It is easy to show
that for any isometry γ of dSn, either we have γS(t,v) = S(t,v), or there is a
transverse intersection between γS(t,v) and S(t,v). Since here S(t,v) is the lift
of S, the former case cannot occur when γ belongs to Γ. Hence, v must be
a fixed point of Γ. Assume v 6= v0. Then, S(0,v0) is the unit sphere in the
euclidean space v⊥0 ≈ Rn, and v⊥ ∩ v⊥0 is a Γ-hyperplane in this euclidean
space. The orthogonal to this hyperplane for the euclidean metric in v⊥0
intersects the unit sphere in two points which are both fixed by Γ (indeed,
these points are fixed individually and not permuted, since one of them
belongs to the future of v⊥ in R1,n and the other belongs to the past of v⊥).
This is a contradiction since the action of Γ on dSn is free. Hence, v = v0:
the hypersurface S is a leaf of F0. �

Corollary 17.6 and Lemma 17.8 conclude the proof of Theorem 1.9.

17.3. The parabolic case. Consider now a parabolic standard spacetime
B+

0 (S). By definition of parabolic spacetimes, S is the sphere Sn−1
+ punc-

tured at one point r0. The hyperbolic space Hn
+ is foliated by umbilical

hypersurfaces with constant mean curvatures −1: the horospheres based at
r0. The dual to these hypersurfaces are umbilical hypersurfaces with the
same constant mean curvature −1, and foliate B+

0 (S) (these hypersurfaces
are not umbilical spheres, but it is not a contradiction with Montiel’s The-
orem since they are not compact!). It follows that B+

0 (S) admits no CMC
time function (since as explained above, if such a CMC time function would
exist, then any CMC hypersurface would be a level set of this function;
in particular, there would exist at most one CMC hypersurface with mean
curvature −1 in B+

0 (S)).
Every future complete parabolic MGHC dS spacetime is a quotient M =

Γ \ B+
0 (S) where Γ is a subgroup of SO0(1, n) preserving ∞. As in previous
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case, we have a CMC-foliation but no CMC-time. Moreover, let Σ be any
closed CMC hypersurface. It is tangent to two leaves of the CMC-foliation,
one of these leaves being in the future of Σ, and the other in the past. By
the maximum principle, Σ has mean curvature −1; by the equality case
of the maximum principle it follows that Σ is equal to the CMC-leaves.
In particular, the CMC-foliation is unique. This completes the proof of
Proposition 1.10. �

Remark 17.9. Proposition 1.10 also follows directly from [43].
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[41] V. Moncrief, Reduction of the Einstein equations in 2+1 dimensions to a Hamiltonian
system over Teichmüller space, J. Math. Phys. 30 (1989), no. 12, 2907–2914.

[42] S. Montiel, An integral inequality for compact spacelike hypersurfaces in de Sitter
space and applications to the case of constant mean curvature, Indiana Univ. Math.
J., 37 (1988), 909–917.

[43] S. Montiel, Uniqueness of spacelike hypersurfaces of constant mean curvature in foli-
ated spacetimes, Math. Ann., 314 (1999), no. 3, 529–553.

[44] A.D. Rendall, Theorems on existence and global dynamics for the Einstein equations,
Living Rev. Relativ. 5 (2002), 2002–6, 62 pp. (electronic).

[45] K. Scannell, Flat conformal structures and the classification of de Sitter manifolds,
Comm. Anal. Geom., 7 (1999), no. 2, 325–345.

[46] A. Treibergs, Entire spacelike hypersurfaces on constant mean curvature in Minkowski
space, Invent. Math. 66 (1985), 39-56.

E-mail address: laan@aei.mpg.de

Albert Einstein Institute, Am Mühlenberg 1, D-14476 Potsdam, Germany
and Department of Mathematics, University of Miami, Coral Gables, FL 33124,
USA

E-mail address: Thierry.Barbot@univ-avignon.fr
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