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ABSTRACT. – In [Rees, M., A minimal positive entropy homeomorphism of the 2-torus, J. London
Math. Soc. 23 (1981) 537–550], Mary Rees has constructed a minimal homeomorphism of the n-torus
with positive topological entropy. This homeomorphism f is obtained by enriching the dynamics of
an irrational rotation R. We improve Rees construction, allowing to start with any homeomorphism R
instead of an irrational rotation and to control precisely the measurable dynamics of f . This yields in
particular the following result: Any compact manifold of dimension d � 2 which carries a minimal uniquely
ergodic homeomorphism also carries a minimal uniquely ergodic homeomorphism with positive topological
entropy.

More generally, given some homeomorphism R of a compact manifold and some homeomorphism hC of
a Cantor set, we construct a homeomorphism f which “looks like” R from the topological viewpoint and
“looks like” R×hC from the measurable viewpoint. This construction can be seen as a partial answer to the
following realisability question: which measurable dynamical systems are represented by homeomorphisms
on manifolds?
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RÉSUMÉ. – En enrichissant la dynamique d’une rotation irrationnelle R, Mary Rees a construit un
homéomorphisme f minimal du tore Tn d’entropie positive [Rees, M., A minimal positive entropy
homeomorphism of the 2-torus, J. London Math. Soc. 23 (1981) 537–550]. Nous améliorons cette
construction dans deux directions : d’une part, la technique décrite permet d’enrichir la dynamique de
n’importe quel homéomorphisme R ; d’autre part, nous expliquons comment contrôler avec précision
la dynamique mesurable obtenue pour f . En particulier, nous montrons que toute variété compacte
de dimension d � 2 qui admet un homéomorphisme minimal et uniquement ergodique admet aussi un
homéomorphisme minimal uniquement ergodique et d’entropie topologique strictement positive.

Plus généralement, étant donnés un homéomorphisme R sur une variété compacte et un homémorphisme
hC sur un ensemble de Cantor, nous construisons un homéomorphisme f qui « ressemble à R » d’un point
de vue topologique et « ressemble à R×hC » d’un point de vue mesurable. Ceci donne une réponse partielle
à la question suivante : quels systèmes dynamiques mesurables sont réalisés par des homéomorphismes sur
des variétés ?
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1. Introduction

1.1. The Denjoy–Rees technique

Twenty-five years ago, M. Rees has constructed a homeomorphism of the torus Td (d � 2)
which is minimal and has positive topological entropy (see [22]). The existence of such an
example is surprising for several reasons:

– classical examples of minimal homeomorphisms (irrational rotations, time t maps of
horocyclic flows, etc.) are also typical examples of zero entropy maps,

– a classical way for proving that a map f has positive topological entropy is to show that the
number of periodic orbits of period � n for f grows exponentially fast when n →∞. So, in
many situations, “positive topological entropy” is synonymous of “many periodic orbits”.
But a minimal homeomorphism does not have any periodic orbit,

– a beautiful theorem of A. Katok states that, if f is a C1+α diffeomorphism of a compact
surface S with positive topological entropy, then there exists an f -invariant compact set
Λ ⊂ S such that some power of f |Λ is conjugate to a full shift (see [17, Corollary 4.3]). In
particular, a C1+α diffeomorphism of a compact surface with positive topological entropy
cannot be minimal.

Beyond the mere existence of minimal homeomorphisms of Td with positive topological
entropy, the technique used by Rees to construct such a homeomorphism is very interesting.
This technique can be seen as a very sophisticated generalisation of the one used by A. Denjoy
to construct his famous counter-example (a periodic orbit free homeomorphism of S1 which is
not conjugate to a rotation [8]). Indeed, the basic idea of Rees’ construction is to start with an
irrational rotation of Td, and to “blow-up” some orbits, just as in Denjoy’s counter-example. Of
course, the construction of Rees is much more complicated and delicate than the one of Denjoy;
for example, to get a homeomorphism with positive topological entropy, one has to blow up a set
of orbits of positive Lebesgue measure.

The aim of the present paper is to describe a general setting for what we call the Denjoy–Rees
technique. This general setting includes as particular cases the construction of various “Denjoy
counter-examples” in any dimension, and Rees’ construction of a minimal homeomorphism of
Td with positive topological entropy. Moreover, we will develop a new technique which allows
to control that the homeomorphisms we obtain “do not contain too much dynamics”. This yields
new results such as the existence of minimal uniquely ergodic homeomorphisms with positive
topological entropy, or the possibility to realise many measurable dynamical systems as minimal
homeomorphisms on manifolds.

1.2. Strictly ergodic homeomorphisms with positive topological entropy

A homeomorphism is said to be strictly ergodic if it is minimal and uniquely ergodic. As an
application of the Denjoy–Rees technique, we will prove the following theorem.

THEOREM 1.1. – Any compact manifold of dimension d � 2 which carries a strictly ergodic
homeomorphism also carries a strictly ergodic homeomorphism with positive topological
entropy.

A. Fathi and M. Herman have proved that every compact manifold of dimension d � 2
admitting a locally free action of the circle 1 carries a strictly ergodic homeomorphism (see [10]).
Putting Theorem 1.1 together with Fathi–Herman’s result yields many examples. In particular,

1 An action of the circle is said to be locally free if no orbit of this action is reduced to a point.
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the torus Td for d � 2, the sphere S2n+1 for n � 1, any Seifert manifold, any manifold obtained
as a quotient of a compact connected Lie group, etc., carry strictly ergodic homeomorphisms
with positive topological entropy (see the discussion in [10]).

Theorem 1.1 (as well as Rees’ example and Katok’s theorem cited above) can be seen as a
piece of answer to a general question of Herman asking “whether, for diffeomorphisms, positive
topological entropy is compatible with minimality, or strict ergodicity” (see [17, page 141]).
Katok answered negatively to Herman’s question in the case of C1+α diffeomorphisms of
surfaces. Then, Herman himself constructed an analytic minimal diffeomorphism with positive
topological entropy on a 4-manifold (see [13]), and Rees constructed a minimal homeomorphism
with positive topological entropy on Td. But neither Herman, nor Rees managed to make their
examples strictly ergodic (see the introductions of [22] and [17]). Theorem 1.1 shows that
positive topological entropy is compatible with strict ergodicity for homeomorphisms (in any
dimension). To complete the answer to Herman’s question, it essentially remains to determine
what is the best possible regularity for a minimal (resp. strictly ergodic) homeomorphism on T2

with positive entropy (Hölder? C1?). We do not have any idea of the best regularity one can
obtain for a homeomorphism constructed via the Denjoy–Rees technique.

Note that, by the Oxtoby–Ulam theorem [21], one can assume that the unique measure
preserved by the homeomorphism provided by Theorem 1.1 is a Lebesgue measure.

1.3. Realising measurable dynamical systems as homeomorphisms on manifolds

The main difference between Rees’ result and our Theorem 1.1 is the fact that the
homeomorphisms we construct are uniquely ergodic. More generally, we develop a technique
which allows us to control the number of invariant measures of the homeomorphisms obtained
by constructions à la Denjoy–Rees. What is the point of controlling the invariant measures? In
short:

– the Denjoy–Rees technique by itself is a way for constructing examples of “curious”
minimal homeomorphisms,

– the Denjoy–Rees technique combined with the possibility of controlling the invariant
measures is not only a way for constructing examples, but also a way for realising
measurable dynamical systems as homeomorphisms on manifolds.

Let us explain this. In her paper, Rees constructed a homeomorphism f on Td which is
minimal and possesses an invariant probability measure μ such that f has a rich dynamics
from the point of view of the measure μ: in particular, the metric entropy hμ(f) is positive.
By the variational principle, this implies that the topological entropy htop(f) is also positive.
Nevertheless, f might possess some dynamics that is not detected by the measure μ (for example,
htop(f) might be much bigger than hμ(f)). So, roughly speaking, Rees constructed a minimal
homeomorphism which has a rich dynamics, but without being able to control how rich this
dynamics is. Now, if we can control what are the invariant measures of f , then we know exactly
what f looks like from the measurable point of view.

To make this precise, we need some definitions. For us, a measurable dynamical system
(X,A, S) is a bijective bi-measurable map S on a set X with a σ-algebra A. An S-invariant
set X0 ⊂ X is universally full if it has full measure for any S-invariant probability measure on
(X,A). Two measurable systems (X,A, S) and (Y,B, T ) are universally isomorphic if there
exist an S-invariant universally full set X0 ⊂ X , a T -invariant universally full set Y0 ⊂ Y and
a bijective bi-measurable map Θ:X0 → Y0 such that Θ ◦ S = T ◦ Θ. With these definitions, an
interesting general question is:

Question 1. – Given any measurable dynamical system (X,A, S), does there exist a
homeomorphism on a manifold which is universally isomorphic to (X,A, S)?
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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In this direction, using the Denjoy–Rees technique together with our technique for controlling
the invariant measures, we will prove the following “realisation theorem” (which implies
Theorem 1.1, see below).

THEOREM 1.2. – Let R be a uniquely ergodic aperiodic homeomorphism of a compact
manifold M of dimension d � 2. Let hC be a homeomorphism on some Cantor space C .
Then there exists a homeomorphism f :M→M universally isomorphic to R× hC :M×C →
M×C .

Furthermore, the homeomorphism f is a topological extension of R: there exists a continuous
map Φ:M → M such that Φ ◦ f = R ◦ Φ. If R is minimal (resp. transitive), then f can be
chosen minimal (resp. transitive).

Remark. – In [22], Rees considered the case where R is an irrational rotation of Td and hC

is a full shift. She constructed a minimal homeomorphism g which had a subsystem universally
isomorphic to R× hC , but was not universally isomorphic to R× hC .

Let us comment our definitions and Theorem 1.2.
The problem of realising measurable dynamical systems as topological dynamical systems

admits many alternative versions. One possibility is to prescribe the invariant measure, that is,
to deal with measured systems instead of measurable systems. In this context, the realisability
problem consists in finding homeomorphisms f on a manifold M and an f -invariant measure
ν such that (M, f, ν) is metrically conjugate to a given dynamical system (X,T,μ). In this
direction, D. Lind and J.-P. Thouvenot proved that every finite entropy measured dynamical
system is metrically conjugate to some shift map on a finite alphabet, and thus also to a Lebesgue
measure-preserving homeomorphism of the two-torus (see [19]).

Then, one can consider the same problem but with the additional requirement that the realising
homeomorphism is uniquely ergodic. In this direction (but not on manifolds), one has the
celebrated Jewett–Krieger theorem: any ergodic system is metrically conjugate to a uniquely
ergodic homeomorphism on a Cantor space (see e.g. [9]). Concerning homeomorphisms on
manifolds, we hope to address this problem and to be able to use Theorem 1.2 (more precisely,
the generalisation of Theorem 1.2 stated in Section 1.4) to prove that any measured system
whose discrete spectrum contains an irrational number (i.e. which is a measurable extension
of an irrational rotation of the circle) is metrically conjugate to a minimal uniquely ergodic
homeomorphism of the two-torus T2.

If one seeks realisations of measurable (or measured) dynamical systems by smooth maps, then
the Denjoy–Rees technique seems to be useless. The main technique for constructing “curious”
minimal C∞ diffeomorphisms on manifolds was introduced by D. Anosov and A. Katok in
[1], and developed by many authors, including A. Fathi, M. Herman, B. Fayad, A. Katok,
A. Windsor, etc. Note that this technique is not really adapted for constructing diffeomorphisms
that are universally isomorphic to a given measurable dynamical system, but it allows to construct
minimal diffeomorphisms that have exactly n ergodic invariant probability measures, or with
such or such spectral property. See [11] for a survey.

An interesting feature of the Anosov–Katok technique is that it allows to construct examples of
irrational pseudo-rotations of the torus T2, i.e. homeomorphisms whose rotation set is reduced
to a single irrational point of R2/Z2 (this irrational point is generally Liouvillian, which is
the price to pay in order to get the smoothness of the pseudo-rotation). Observe that, if one
applies Theorem 1.2 with the homeomorphism R being an irrational rotation of the torus T2

(and hC being any homeomorphism of a Cantor set), then it is easy to see that the resulting
homeomorphism f is also an irrational pseudo-rotation. Varying the homeomorphism hC , one
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gets lots of examples of “exotic” irrational pseudo-rotations on the torus T2. We point out that
with this method the angle of the rotation R may be any irrational point of R2/Z2 (but the
pseudo-rotations we obtained are just homeomorphisms). For a general discussion on pseudo-
rotations, see the introduction of [2].

Let us try to give a brief idea of what the homeomorphism f provided by Theorem 1.2 looks
like (see also Section 1.5). On the one hand, from the topological point of view, f looks very
much like the initial homeomorphism R (which typically can be a very simple homeomorphism,
like an irrational rotation of the torus T2). Indeed, the continuous map Φ:M → M realising
the topological semi-conjugacy between f and R is an “almost conjugacy”: there exists an
f -invariant Gδ-dense set X on which Φ is one-to-one. This implies that f is minimal. On
the other hand, from the measurable point of view, f is universally isomorphic to the product
R× hC (which might exhibit a very rich dynamics since hC is an arbitrary homeomorphism on
a Cantor set). As often, the paradox comes from the fact that the set X is big from the topological
viewpoint (it is a Gδ dense set), but small from the measurable viewpoint (it has zero measure
for every f -invariant measure).

We end this section by explaining how Theorem 1.2 implies Theorem 1.1. Let M be
a manifold of dimension d � 2, and assume that there exists a minimal uniquely ergodic
homeomorphism R on M. We have to construct a minimal uniquely ergodic homeomorphism f
with positive entropy on M. For this purpose, we may assume that the topological entropy of R
is equal to zero, otherwise there is nothing to do.

Let σ be the shift map on {0,1}Z, and μ be the usual Bernoulli measure on {0,1}Z. First,
we need to get a “uniquely ergodic version” of σ. For this purpose we apply the Jewett–Krieger
theorem (see e.g. [9]). This provides us with a uniquely ergodic homeomorphism hC of a Cantor
set C such that (C,hC , α) is metrically conjugate to ({0,1}Z, σ,μ), where α is the unique
invariant measure of hC . Now we prove that the product map R × hC is uniquely ergodic. Let
β be the unique invariant measure for R. Since ({0,1}Z, σ,μ) is a K-automorphism (see [24,
Paragraph 4.3]), so is (C,hC , α). Since (C,hC , α) is a K-automorphism and (M,R,β) has
zero topological entropy, they are disjoint (see [24, Proposition 4.6(1)]): the only (R × hC)-
invariant measure whose projections are α and β is the product measure α ⊗ β. On the other
hand, since R and hC are uniquely ergodic, the projection of every (R× hC)-invariant measure
are α and β. Thus R× hC is uniquely ergodic.

Denote by ν the unique invariant measure of R × hC . Then the metric entropy hν(R × hC)
is equal to hμ(σ) = log 2. Now Theorem 1.2 provides us with a minimal homeomorphism f on
M, which is universally isomorphic to R × hC . Denote by Θ the map realising the universal
isomorphism between R × hC and f . Since R × hC is uniquely ergodic, f is also uniquely
ergodic: Θ∗ν is the unique f -invariant measure. Moreover, the metric entropy hΘ∗ν(f) is equal
to hν(R × hC), which is positive. The variational principle then implies that the topological
entropy of f is equal to hΘ∗ν(f). Hence, f is a strictly ergodic homeomorphism with positive
topological entropy.

1.4. A more general statement

Theorem 1.2 is only a particular case of a more general statement: Theorem 1.3 below will
allow to consider a homeomorphism R that is not uniquely ergodic, and to replace the product
map R× hC by any map that fibres over R.

To be more precise, let R be a homeomorphism of a manifold M and A be any measurable
subset of M. Let C be a Cantor set. We consider a bijective bi-measurable map which is fibered
over R:
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h :
⋃
i∈Z

Ri(A)×C −→
⋃
i∈Z

Ri(A)×C,

(x, c) �−→
(
R(x), hx(c)

)
where (hx)x∈

⋃
Ri(A) is a family of homeomorphisms of C . We make the following continuity

assumption: for every integer i, the map hi is continuous on A×C .

Remark. – In the case A = M, the continuity assumption implies that h is a homeomorphism
of M× C; if M is connected, then h has to be a product as in Theorem 1.2. Thus we do not
restrict ourselves to the case where A = M; we rather think of A as a Cantor set in M. Also
note that the continuity assumption amounts to requiring that h is continuous on Ri(A)×C for
every i. Note that this does not imply that h is continuous on

⋃
i∈Z

Ri(A)×C .

We will prove the following general statement.

THEOREM 1.3. – Let R be a homeomorphism on a compact manifold M of dimension d � 2.
Let μ be an aperiodic 2 ergodic measure for R, and A ⊂M be a set which has positive measure
for μ and has zero-measure for every other ergodic R-invariant measure. Let h be a bijective
map which is fibered over R and satisfies the continuity assumption as above. Then there exists
a homeomorphism f :M→M such that (M, f) is universally isomorphic to the disjoint union( ⋃

i∈Z

Ri(A)×C,h

)
�

(
M\

⋃
i∈Z

Ri(A),R
)

.

Furthermore, f is a topological extension of R: there exists a continuous map Φ:M → M,
which is one-to-one outside the set Φ−1(Suppμ), such that Φ◦ f = R ◦Φ. If R is minimal (resp.
transitive), then f can be chosen to be minimal (resp. transitive).

The case where R is not minimal on M is considered in the following addendum.

ADDENDUM 1.4. – In any case, the dynamics f is transitive on Φ−1(Suppμ). Moreover, if
R is minimal on Suppμ, then f can be chosen to be minimal on Φ−1(Suppμ).

In the case where R is uniquely ergodic, Theorem 1.3 asserts that there exists a homeomor-
phism f :M→M which is universally isomorphic to the fibered map h. In the general case, it
roughly says that there exists a homeomorphism f :M→M which, from the measurable point
of view, “looks like” R outside Φ−1(

⋃
i∈Z

Ri(A)) and like h on Φ−1(
⋃

i∈Z
Ri(A)). In other

words, it allows to replace the dynamics of R on the iterates of A by the dynamics of h.
Our main motivation for considering maps that fibre over a homeomorphism R but are not

direct product is the following. In a subsequent work, we hope to prove that any measured
extension of a uniquely ergodic homeomorphism R is metrically conjugate to fibered map over R
satisfying a continuity assumption as above. Using Theorem 1.3, this would allow us to construct
some uniquely ergodic homeomorphism metrically conjugate to any measured extension of R.
And, choosing R carefully, this would allow us to construct a strictly ergodic homeomorphism
f on T2 metrically conjugate to a given ergodic dynamical system (X,T,μ), provided that the
pointwise spectrum of (X,T,μ) contains an irrational number.

To conclude, here is an example where we use Theorem 1.3 with a homeomorphism R that
is not uniquely ergodic. Consider a euclidean rotation of irrational angle on the sphere S2.
Let μ be the ergodic measure supported by some invariant circle A. Let h be the product of

2 An invariant measure μ is aperiodic if the set of periodic points of R has measure 0 for μ. When μ is ergodic, this
just says that μ is not supported by a periodic orbit of R.
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R |A with some (positive entropy) homeomorphism of the Cantor space C . Then the map f
provided by Theorem 1.3 is an irrational pseudo-rotation of the 2-sphere with positive topological
entropy. The entropy is concentrated on the minimal invariant set Φ−1(A). This set is one-
dimensional (connected with empty interior), and it cuts the sphere into two open half-spheres
on which f is C∞ conjugate to the initial rotation R. In other words, f is a “rotation with
an invariant circle replaced by some minimal set with a wilder dynamical behaviour”. The
possibility of constructing such a homeomorphism was mentioned in [23]; more details are given
in Appendix C.3. It is interesting to compare this homeomorphism with the examples constructed
by M. Handel and Herman in [12,14].

1.5. Outline of the Denjoy–Rees technique

In this section, we give an idea of the Denjoy–Rees technique. For this purpose, we first
recall one particular construction of the famous Denjoy homeomorphism on the circle. Many
features of the Rees construction already appear in this presentation of the Denjoy construction,
especially the use of microscopic perturbations (allowing the convergence of the construction)
with macroscopic effects on the dynamics.

1.5.1. General method for constructing Denjoy counter-examples
To construct a Denjoy counter-example on the circle, one starts with an irrational rotation and

blows up the orbit of some point to get an orbit of wandering intervals. There are several ways to
carry out the construction, let us outline the one that suits our needs. We first choose an irrational
rotation R. The homeomorphism f is obtained as a limit of conjugates of R,

f = limfn with fn = Φ−1
n RΦn,

where the sequence of homeomorphisms (Φn) will converge towards a non-invertible continuous
map Φ that will provide a semi-conjugacy between f and R. To construct this sequence, we pick
some interval I0 (that will become a wandering interval). The map Φn will map I0 to some
interval In which is getting smaller and smaller as n increases, so that I0 is “more and more
wandering”; more precisely, I0 is disjoint from its n first iterates under fn.

In order to make the sequence (fn) converge, the construction is done recursively. The map
Φn+1 is obtained by post-composing Φn with some homeomorphism Mn+1 that maps In on
In+1, and whose support is the disjoint union of the n backward and forward iterates, under the
rotation R, of an interval În which is slightly bigger than In. Thus the uniform distance from
Φn to Φn+1 is roughly equal to the size of In. This guarantees the convergence of the sequence
(Φn) if the size of In tends to 0 quickly enough.

Clearly, this is not enough for the convergence of (fn) (for example, if Φn was the identity
outside a little neighbourhood of I0, then (fn) could converge to a map that crashes I0 onto
a point). We also demand that Mn+1 commutes with the rotation R except on the union
of two small intervals I in

n and Iout
n (namely, I in

n = R−(n+1)(În) and Iout
n = Rn(În)). Then

an immediate computation shows that the map fn+1 coincides with fn except on the set
Φ−1

n (I in
n ∪ Iout

n ), which happens to be equal to Φ−1
n−1(I

in
n ∪ Iout

n ) (due to the condition on the

support of Mn, see Fig. 1). Note that the interval În is chosen after the map Φn−1 has been
designed, and thus we see that this set Φ−1

n−1(I
in
n ∪ Iout

n ) can have been made arbitrarily small

(by choosing În small enough), so that fn+1 is arbitrarily close to fn.

1.5.2. The Denjoy–Rees technique
We now turn to the generalisation of the Denjoy construction developed by Rees. We have in

mind the easiest setting: the map R is an irrational rotation of the two-torus M = T2, we are
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Fig. 1. Denjoy construction on the circle: the interval I0 has four consecutive disjoint iterates under f1, and
six consecutive disjoint iterates under f2.

given some homeomorphism hC on some abstract Cantor space C , and we want to construct a
minimal homeomorphism f of T2 which is universally isomorphic to R × hC . In some sense,
we aim to blow up the dynamics of R and to “embed the dynamics of hC” into the blown-up
homeomorphism f . The main difference with the Denjoy construction is that we have to blow
up the orbits of all the points of a positive measure Cantor set K . Whereas for the previous
construction the point to be blown up was disjoint from all its iterates under the rotation R,
obviously K will meet some of its iterates: one has to deal with the recurrence of K , which adds
considerable difficulty.

At step k, we will know an approximation E0
k of K by a union of small rectangles. The key

property of these rectangles, that enables the construction in spite of the recurrence, is that they
are dynamically coherent: if X1,X2 are two connected components of E0

k , if −k � l, l′ � k, then
the rectangles Rl(X1) and Rl′(X2) are either disjoint or equal.

The final map f will again be a limit of conjugates of R,

f = limfk with fk = Φ−1
k RΦk and Φ = limΦk.

We fix an embedding of the abstract product Cantor set K ×C in the manifold M (see Fig. 2);
in some sense, this set K × C will play for the Rees map the same role as the interval I0 for
the Denjoy map. Indeed, each point x of K will be blown up by Φ−1, so that the fibre Φ−1(x)
contains the “vertical” Cantor set {x}×C embedded in M. Furthermore, the first return map of f

in K̃ := Φ−1(K) will leave the embedded product Cantor space K×C invariant: in other words,
for each point x ∈K and each (return time) p such that Rp(x) belongs to K , the homeomorphism
fp will map the vertical Cantor set {x} × C onto the vertical Cantor set {Rp(x)} × C . When
both vertical Cantor sets are identified to C by way of the second coordinate on K ×C , the map
fp induces a homeomorphism of C , which will be equal to hp

C . This is the way one embeds the
dynamics of hC into the dynamics of f , and gets a universal isomorphism between the product
R×hC and the restriction of the map f to the set

⋃
i f

i(K ×C). Note that Theorem 1.2 requires
more, namely a universal isomorphism between R×hC and the map f on the whole manifold M.
We will explain in the last paragraph how one can further obtain that f be universally isomorphic
to its restriction to the set

⋃
i f

i(K ×C).
Once again the construction will be carried out recursively. At step k we will take care of all

return times less than 2k + 1, that is, the map Φk will be constructed so that the approximation
fk of f will satisfy the description of Fig. 2 for |p| � 2k + 1. This property will be transmitted
to fk+1 (and so gradually to f ) because for any point x of K whose return time in K is less than
4e SÉRIE – TOME 40 – 2007 – N◦ 2
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Fig. 2. Rees construction on the torus: description of the isomorphism between f and R × hC . The
topological flavour is given by the vertical map Φ, the measurable flavour is given by the horizontal map
K ×C → C .

or equal to 2k +1, fp
k+1(x) = fp

k (x). Actually the equality fk+1 = fk will hold except on a very
set which becomes smaller and smaller as k increases (just as in the Denjoy construction). On
the other hand fk+1 will take care of return times equal to 2k + 2 and 2k + 3. The convergence
of the sequences (Φk) and (fk) will be obtained using essentially the same argument as in the
Denjoy construction.

Another feature of the construction is that we want f to inherit from the minimality of R. This
will be an easy consequence of the two following properties. First the fibre Φ−1(x) above a point
x that does not belong to an iterate of K will be reduced to a point. Secondly the other fibres will
have empty interior.

1.5.3. Control of invariant measures
Until here, we have been dealing with the control of the dynamics on the iterates of the product

Cantor set K ×C . This is enough for f to admit the product R× hC as a subsystem, and to get
an example with positive topological entropy (Rees’ initial result). If we want the much stronger
property that f is uniquely ergodic (in Theorem 1.1) or universally isomorphic to R × hC (in
Theorem 1.2), we need to gain some control of the dynamics outside the iterates of K × C , on
the whole manifold M. With this in view, we first note that, since K has positive measure, the
(unique) invariant measure for R gives full measure to

⋃
i R

i(K). The automatic consequence
for f is that any invariant measure for f gives full measure to

⋃
i f

i(K̃) (with K̃ = Φ−1(K)). It
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now remains to put further constraints on the construction to ensure that any invariant measure
for f will give measure 0 to K̃ \K ×C . This will be done by considering the first return map of
f in K̃ , and by forcing the ω-limit set of any point x ∈ K̃ , with respect to this first return map,
to be included in K ×C .

1.6. Structure of the paper

Recall that our goal is to prove Theorem 1.3 (which implies Theorems 1.2 and 1.1, see the end
of Section 1.3). So we are given, in particular, a homeomorphism R on a manifold M and a map
h which fibres over R, and we aim to construct a homeomorphism f on M which is universally
isomorphic to (

⋃
i∈Z

Ri(A)×C,h)� (M\
⋃

i∈Z
Ri(A),R).

The paper is divided into three parts.
– In Part I, we construct a Cantor set K , obtained as a decreasing intersection of a sequence

of sets (E0
n)n∈N, where E0

n is a finite collection of pairwise disjoint rectangles for every n.
– In Part II, we explain how to blow up the orbits of the points of K: we construct a sequence

of homeomorphisms (Mn) whose infinite composition is a map Ψ:M → M such that
Ψ−1(K) contains a copy of the product Cantor set K ×C .

– In Part III, we explain how to insert the dynamics of h in the blowing-up of the orbits of
the points of K . In order to improve the convergence, one will define an extracted sequence
(Mk) of (Mn). One also needs to “twist” the dynamics by constructing a sequence of
homeomorphisms (Hk) and by replacing each Mk by the homeomorphism Hk ◦ Mk .
The infinite composition of the homeomorphisms Hk ◦ Mk is a map Φ and the desired
homeomorphism f :M→M is a topological extension of R by Φ.
The construction of Part III is further divided into two main parts: in Section 8 we obtain the
Rees theorem (on any manifold); then we explain in Section 9 how to get unique ergodicity.

The proof of our main Theorem 1.3 is given at the end of Part III (Sections 8.6 and 9.5). The
proof of Addendum 1.4 is more technical, we postpone it to Appendix B.

In each of the three parts of the paper, we will proceed as follows. First, we introduce some
new objects (for example, a sequence of homeomorphisms (Mn)n�1) and some hypotheses on
these objects (for example, the diameter of every connected component of the support of Mn

is less than 2−n). Second, we prove some consequences of the hypotheses (for example, if the
above hypothesis is satisfied, and if we set Ψn = Mn ◦ · · · ◦ M1, then the sequence of maps
(Ψn)n�1 converges). And third, we prove that the hypotheses are realisable (for example, we
construct a sequence of homeomorphisms (Mn) satisfying the required hypotheses). Most of the
time, the main difficulties lie in the “realisability” results and it might be a good idea to skip the
proofs of these results for the first reading (these are mainly Sections 2.4, 5.4, 8.4, 8.5, and 9.4).

We have already mentioned the main novelties with respect to Rees’ paper: we can enrich
the dynamics of any homeomorphism (not only rotations of the torus) and we can control
the measurable dynamics that have been inserted. Apart from this, the general scheme of
our construction is quite similar to Rees’ original one. However, let us point out a couple of
differences.

– We have tried, as much as possible, to divide the construction into independent steps:
the Cantor set K is defined once and for all in Part I, the sequence (Mn) is constructed
once and for all in Part II. Then (in Part III) an extraction process will be used to get the
convergence. As already explained above, each step is structured according to a fixed pattern
(objects/hypotheses/consequences/construction).

– In order to insert the dynamics of the model h in the blowing-up of the orbits of the points
of K , we notice that it is enough to consider the first-return map of f to the blowing-up of
K . This avoids many technical complications.
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Part I. Construction of a Cantor set K

In this part, we assume that we are given a compact topological manifold M and a
homeomorphism R :M → M. For technical purposes, we choose a metric on M. We will
explain how to construct a Cantor set K ⊂M which has a nice behaviour with respect to the
action of the homeomorphism R. In Part II, this nice behaviour will allow us to “blow up”
the orbits of the points of K . The construction described below is a generalisation of Rees’
construction which works in the case where R is an irrational rotation of the torus Td (see [22]).
Since rotations of Td are products of rotations of S1, Rees’ original construction essentially takes
place in dimension 1, and is much easier than the present one. The reader mainly interested in
the rotation case can refer to [22] instead of Section 2.4 below.

2. Dynamically coherent Cantor sets

2.1. Definitions

Remember that a Cantor set is a metrisable totally discontinuous compact topological space
without isolated points; any two such spaces are homeomorphic. In what follows, a rectangle of
M is a subset X of M homeomorphic to the closed unit ball in Rd, where d is the dimension
of M. The phrase “collection of rectangles” will always refer to a finite family of pairwise
disjoint rectangles of M. Such a collection will be denoted by a calligraphic letter (like “E”);
the corresponding straight letter (like “E”) will represent the reunion of all the rectangles of
the collection. We denote by Rk(E) the collection of rectangles whose elements are the images
under the map Rk of the elements of E .

DEFINITION 2.1. – Let E and F be two collections of rectangles. We say that F refines E if
– every element of E contains at least one element of F ;
– for every elements X of E and Y of F , either X and Y are disjoint or Y is included in the

interior of X .

The second property is equivalent to F ∩ ∂E = ∅ (where ∂E is the boundary of E).

DEFINITION 2.2. – Let p be a positive integer. A collection of rectangles E0 is p times iterable
if for every element X,X ′ of E0, for every integers k, l such that |k|, |l| � p, the rectangles
Rk(X) et Rl(X ′) are disjoint or equal.

Equivalently, the collection E0 is p times iterable if, for every element X of E0 and every
integer m such that |m|� 2p, if Rm(X) meets E0, then Rm(X) also belongs to E0.

Let E0 be a collection of rectangles which is p times iterable. For any positive integer n � p,
we define the collection of rectangles

En :=
⋃

|k|�n

Rk
(
E0

)
and we denote by En the union of all the elements of En. For any positive integer n < p, we
consider the oriented graph G(En), whose vertices are the elements of En, and whose edges
represent the dynamics of R: there is an edge from X ∈ En to X ′ ∈ En if and only if X ′ = R(X).

DEFINITION 2.3. – Let E0 be a p times iterable collection of rectangles, and n < p. The
collection En is said to be without cycle if the graph G(En) has no cycle.

The most important definition is the following.
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



262 F. BÉGUIN, S. CROVISIER AND F. LE ROUX
DEFINITION 2.4. – Let E0 and F0 be two collections of rectangles, such that E0 is p times
iterable, and F0 is p + 1 times iterable. Assume that Fp+1 refines Ep. We say that F0 is
compatible with E0 for p iterates if F 0 ⊂ E0 and

for every k such that |k| � 2p + 1, we have Rk
(
F 0

)
∩E0 ⊂ F 0.

This definition can be reformulated in several different ways. For example, one can check that
F0 is compatible with E0 for p iterates if and only if F 0 ⊂ E0 and

for every k such that |k|� p, we have F p+1 ∩Rk
(
E0

)
= Rk

(
F 0

)
.(1)

Indeed, assume that F 0 ⊂ E0 and consider an integer k such that |k| � p. Then the reverse
inclusion of (1), F p+1 ∩Rk(E0)⊃ Rk(F 0), is always satisfied. Furthermore, one has⋃

|k′|�2p+1

Rk′(
F 0

)
=

⋃
|k|�p

R−k
(
F p+1

)
.

On the one hand, the compatibility says that the intersection of the left-hand side with E0 is
included in F0. On the other hand, property (1) says that the intersection of the right-hand side
with E0 is included in F0. One deduces that the compatibility is equivalent to property (1).

2.2. Hypotheses A1,2,3

Let (E0
n)n∈N be a sequence of collections of rectangles. We introduce the following

hypotheses.

A1 (Combinatorics of rectangles)
a For every n ∈ N, the collection E0

n is n + 1 times iterable and the collection En
n has

no cycle;
b for every 0 � m < n, the collection En+1

n refines the collection Em+1
m ;

c for every n ∈ N, the collection E0
n+1 is compatible with E0

n for n + 1 iterates.
A2 (No isolated point)

For every n ∈ N and every rectangle X ∈ E0
n, there are at least two elements of E0

n+1

contained in X .
A3 (Decay of the collections of rectangles)

The supremum of the diameters of the elements of En
n tends to 0 when n → +∞.

For sake of simplicity, we will often assume that E0
0 contains a single rectangle X0.

2.3. Consequences of hypotheses A1,2,3

Let (E0
n)n∈N be a sequence of collections of rectangles.

2.3.1. Main consequence of hypothesis A1.c (compatibility)
One immediately checks that, under hypothesis A1.c, we have, for every n � 0,

En+1
n+1 ∩E0

n = E0
n+1.

Moreover, using an easy induction, one can check that, under hypothesis A1.c, we have, for
every n,k � 0

En+1
n+k ∩E0

n = E0
n+k.
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Fig. 3. The three successive collections of rectangles E0
0 ,E1

1 ,E2
2 . The graph G0

0 is reduced to a single
rectangle; the graph G1

1 has two connected components, the graph G2
2 has three connected components.

Note that E2
2 ∩E0

0 �= E0
2 .

Be careful: in general, it is not true 3 that En+p
n+k ∩E0

n = E0
n+k for p � 2 (see Fig. 3).

2.3.2. The graphs Gp
n

Under hypothesis A1.a, for every n ∈ N and every p ∈ {0, . . . , n}, we will consider the
oriented graph Gp

n = G(Ep
n). By hypothesis A1.a, the graphs Gn

n have no cycle. More precisely,
each connected component of Gn

n is a trivial linear graph

X → R(X) → · · · →Rl(X)

(for some l � 2n + 1). Hypothesis A1.c implies that each connected component of Gn
n+1 is

isomorphic to a connected component Gn
n (the isomorphism is given by the inclusion of the

rectangles).
By definition of the graphs Gp

n, the first and the last rectangles of any connected component
of the graph Gn+1

n+1 do not belong to the graph Gn
n+1. Moreover, two consecutive connected

components of Gn
n+1 within a connected component of Gn+1

n+1 are separated by one or two
rectangles (see Fig. 3).

2.3.3. The Cantor set K
We denote by K the decreasing intersection of all the compact sets E0

n. Hypothesis A2 implies
that K has no isolated point and hypothesis A3 implies that K is totally disconnected; hence,
if both hypotheses A2 and A3 hold, then K is a Cantor set, homeomorphic to the usual triadic
Cantor set in [0,1].

LEMMA 2.5. – Assume hypothesis A1, and let n � 0. Let X → · · · →X ′ = Rp(X) be a path
in the graph Gn

n with X,X ′ ∈ E0
n. Then Rp(K ∩X) = K ∩X ′.

Proof. – First note that if |p| > 2n + 1, then the path X → · · · → X ′ must cross E0
n; by

decomposing it into shorter paths we see that it suffices to deal with the case |p| � 2n + 1.
Now we have

Rp
(
E0

n+1 ∩X
)

= Rp
(
E0

n+1

)
∩X ′ ⊂ Rp

(
E0

n+1

)
∩E0

n ⊂ E0
n+1

3 Actually, if R is minimal, then for every n � 0 and every rectangle X ∈ E0
n , there exists an integer k such that

En+k
n+k

∩X �= E0
n+k .
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where the last inclusion follows from hypothesis A1.c (compatibility of E0
n+1 with E0

n for n + 1
iterates). Thus

Rp
(
E0

n+1 ∩X
)
⊂E0

n+1 ∩X ′.

Exchanging the role of X and X ′, we get the reverse inclusion. Applying this argument
recursively, we get that for any positive m

Rp
(
E0

n+m ∩X
)

= E0
n+m ∩X ′.

We now take the intersection on all positive m to get the desired equality. �
2.4. Construction of the Cantor set K: realisation of hypotheses A1,2,3

In this subsection, we first give a characterisation of the Cantor sets K that appear as the
intersection of collections of rectangles satisfying hypotheses A1,2,3. Then, using Rokhlin’s
lemma, we construct such a Cantor set inside a given set A.

DEFINITION 2.6. – A Cantor set (or, more generally, a totally discontinuous set) K ⊂M is
tamely embedded if there exist arbitrarily small neighbourhoods of K that are a finite union of
pairwise disjoint rectangles of M.

The geometry of tamely embedded Cantor sets is discussed in Appendix A.

DEFINITION 2.7. – A Cantor set K ⊂M is said to be dynamically coherent for R if
– for each integer k, the intersection Rk(K)∩K is open in K;
– for any integer p � 0 and any point x ∈ K , there exist p + 1 consecutive positive iterates

Rk(x), . . . ,Rk+p(x) and p+1 consecutive negative iterates R−�(x), . . . ,R−�−p(x) outside
K .

DEFINITION 2.8. – A Cantor set K ⊂M is said to be dynamically meagre for R if K has
empty interior in Λ = Cl(

⋃
i∈Z

Ri(K)).

PROPOSITION 2.9. – A tamely embedded Cantor set K ⊂M is dynamically coherent if and
only if there exists a sequence of collections of rectangles (E0

n)n∈N satisfying hypotheses A1,2,3

and such that K =
⋂

n�0 E0
n.

PROPOSITION 2.10. – Assume that we are given an aperiodic R-invariant probability
measure μ, and a measurable set A ⊂M such that μ(A) > 0. Then, there exists a Cantor set
K ⊂A which is dynamically coherent. Furthermore, K can be chosen such that:

– it is disjoint from its image R(K);
– it is tamely embedded;
– it is dynamically meagre;
– μ(

⋃
k∈Z

Rk(K)) is arbitrarily close to μ(
⋃

k∈Z
Rk(A)) (in particular, μ(K) > 0).

Remark 2.11. – Let K be a Cantor set provided by Proposition 2.10, and (E0
n)n∈N be a

sequence of collections of rectangles provided by Proposition 2.9.
1. One can choose the collection of rectangles (E0

n)n∈N such that E0
0 is an arbitrarily small

neighbourhood of K . Since R(K) ∩ K = ∅ by Proposition 2.10, we may assume that
R(E0

0)∩E0
0 = ∅, so that the graph G0

0 has no edge.
2. We can always assume that A is included in the support of μ (by replacing A with

A∩ Supp(μ)).
3. We are mainly interested in the case when the measure μ is supposed to be ergodic (see

hypotheses of Theorem 1.3). In this case the set
⋃

k∈Z
Rk(K) has full measure and its
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closure is equal to the support of μ. Furthermore, one may assume that the collection E0
0

is reduced to a single rectangle X0. This property is obtained by picking one rectangle
X0 ∈ E0

0 such that the set K ′ = K ∩X0 has positive measure, and replacing the sequence
(E0

n)n∈N by the sequence (E ′0
n)n∈N where E ′0

n is the collection of the rectangles of E0
n

that are included in X0. One easily checks that the new sequence (E ′0
n)n∈N still satisfies

hypotheses A1,2,3.

Proof of Proposition 2.9. – Let us first assume that K is defined as an intersection K =⋂
n∈N

E0
n where (E0

n)n∈N is a sequence of collections of rectangles satisfying hypotheses A1,2,3.
Clearly, K is tamely embedded in M. Fix an integer n � 1. For every rectangle X ∈ E0

n, let
KX := K ∩ X . Then, {KX}X∈E0

n
is a partition of K into clopen (closed and open) subsets.

Moreover, for any rectangles X,X ′ ∈ E0
n, if Rn(X) intersects X ′, then Rn(X) = X ′ (by

hypothesis A1.a), and the sets Rn(KX) and KX′ coincide (by compatibility, see Lemma 2.5).
This implies that the intersection Rn(K) ∩ K is the union of some of the KX ’s, and is thus
open in K . Finally, by hypothesis A1.a (no cycle), any point x ∈ K has a positive iterate fk(x)
and a negative iterate f−�(x) which are in En

n \ En−1
n : the n − 1 first backward and forward

iterates of fk(x) and f−�(x) are disjoint from E0
n and thus from K . So we have proven that K

is dynamically coherent for R.
Conversely we consider a tamely embedded Cantor set K which is dynamically coherent for

R. We have to build a sequence of collections of rectangles (E0
n)n∈N satisfying hypotheses A1,2,3

such that K =
⋂

n∈N
E0

n. The construction is made by induction.
Let us assume that we have already constructed some collections of rectangles E0

0 , . . . ,E0
n−1,

and that the following induction hypothesis is satisfied for m � n− 1:
(Pn) the boundary ∂X of each rectangle X ∈ E0

m is disjoint from the set
⋃

i∈Z
Ri(K).

We will now explain how to construct a collection E0
n.

Hypotheses (P1), . . . , (Pn−1) imply that, for every m � n − 1, every X ∈ E0
m and every k

such that |k| < 2(n + 1), the set K ∩ R−k(X) is a clopen subset of K . Hence, we can find a
partition Pn of K into clopen subsets such that, for each P ∈ Pn, if P intersects a rectangle
R−k(X) with X ∈ E0

m and m � n − 1, and if |k| < 2(n + 1), then P is contained in R−k(X).
Now, we introduce the set On made of the points x ∈ K such that Rk(x) is outside K for
0 < k < 2(n + 1). Since K is dynamically coherent, On is a clopen subset of K and any point
of K belongs to or has a positive iterate in On. Similarly, we define the set In made of the points
x ∈ K such that R−�(x) is outside K for 0 < � < 2(n + 1). Then, In is a clopen subset of K ,
and any point in K belongs to or has a negative iterate in In. (Note that the first return of a point
of On to K occurs in In.) One now defines a new partition Dn of K into clopen subsets of K
which is finer than Pn: two points x and x′ of K belong to a same element of Dn if

– their first entry time s � 0 to On and their last exit time r � 0 from In coincide: in other
words, we have Rs(x) ∈On, R−r(x) ∈ In, Rj(x) /∈ In ∪On for −r < j < s and the same
properties hold for x′;

– for any −r � j � s, the two iterates Rj(x) and Rj(x′) are both outside K or belong to the
same element of Pn.

By construction, the collection Dn satisfies an equivariance property: for any D,D′ ∈ Dn and
any integers k, � such that |k|, |�| � n + 1, the sets Rk(D) and R�(D′) are disjoint or coincide.
This shows that the collection Dn is organised as the vertices of an oriented graph Γn: one puts
an edge from D to D′ if Rk(D) = D′ for some positive k < 2(n + 1) and if Rj(D) is disjoint
from K for all the positive j < k. Since any element of Dn has a positive iterate included in On

and a negative iterate included in In, the graph Γn has no cycle and its connected components
are linear graphs D0 ⊂ In → Rk0(D0) → · · · →Rkp(D0) ⊂ On.
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The collection E0
n is obtained by “thickening” the elements of Dn. Indeed, since K is tamely

embedded in M, every element D ∈Dn can be thickened as a union D̂ of finitely many disjoint
rectangles; this yields a finite collection of rectangles E0

n.
Hypothesis A1.a is obtained as follows. Since the graph Γn has no cycle, for each connected

component Σ of this graph, one can first thicken a single element D ∈ Σ as a set D̂; then any
other element D′ ∈ Σ can be uniquely written as an image Rk(D) and we set D̂′ = Rk(D̂). If
moreover the connected components of each set D̂ are small enough, then the collection E0

n is
n + 1 times iterable and the associated graph Gn

n has no cycle (hypothesis A1.a).
Hypothesis A1.b is obtained by choosing the elements of E0

n small enough. Indeed, by
definition of the partition Pn, and since Dn is finer than Pn, one has the following property:
for every m < n, every X ∈ E0

m and k such that |k| < 2(n + 1), if D is an element of the
partition Dn with intersects R−k(X), then D ⊂ R−k(X). Hence, choosing the elements of E0

n

small enough, we obtain that: for every m < n, every X ∈ E0
m and k such that |k|< 2(n + 1), if

X ′ is an element of the partition E0
n with intersects R−k(X), then X ′ ⊂ R−k(X). In particular,

En+1
n refines Em+1

m for m < n (hypothesis A1.b).
Hypothesis A1.c is obtained as follows. First, choosing the elements of E0

n small enough, we
get E0

n ⊂ E0
n−1. Second, since K is dynamically coherent, the set⋃

|k|�2(n+1)+1

Rk(K) \K

is a closed set. Hence, we can choose the set E0
n in such a way that the following equality holds

E0
n ∩

⋃
|i|�2(n+1)+1

Ri(K) = K.(	)

Let us now consider a rectangle X ∈ E0
n and an iterate Rk(X), with |k|� 2((n− 1)) + 1, that

intersects E0
n−1. We have to show that Rk(X) also belongs to E0

n. We therefore introduce

the rectangle X̂ ∈ E0
n−1 that contains X and a rectangle X̂ ′ ∈ E0

n−1 that intersects Rk(X).

Since the collection En+1
n refines the collection E(n−1)+1

n−1 , we have Rk(X) ⊂ X̂ ′. We obtain

Rk(X ∩K) ⊂ X̂ ′ so that by (	) we get Rk(X ∩ K) ⊂ K . Hence Rk(X) intersects a rectangle
X ′ ∈ E0

n and since E0
n is n+1 iterable, we have X ′ = Rk(X). This proves that E0

n is compatible
with E0

n−1 for n iterates (hypothesis A1.c).
Hypotheses A2 and A3 are easily obtained by choosing the elements of E0

n small enough.
Finally, the induction property (Pn) can be obtained as follows. The space H of homeomor-

phisms ϕ from the closed unit ball D to a subset of M, endowed with the uniform convergence
topology is a Baire space. Since K is tamely embedded, the homeomorphism ϕ such that ϕ(∂D)
is disjoint from K is an open and dense subset of H. Hence, for any homeomorphism ϕ in a
dense Gδ subset of H, the boundary ϕ(∂D) is disjoint from all the iterates of K . Since each ball
X ∈ E0

n is the image of a homeomorphism ϕ ∈H, one modify X in order to get hypothesis (Pn)
by considering a homeomorphism close to ϕ in this Gδ set. �

Proof of Proposition 2.10. – We will build a decreasing sequence of compact sets (Kn)n∈N

contained in A, and a sequence of positive integers (�n)n∈N with the following main properties
(see Fig. 4).

1. For each n, there exists a compact set Fn such that Kn = Fn ∪ Tn(Fn) ∪ · · · ∪ T �n
n (Fn),

where Tn is the return map to Kn for R.
2. The sets Fn, Tn(Fn), . . . , T �n

n (Fn) are pairwise disjoint.
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Fig. 4. Two successive towers in the construction of K .

3. For every finite sequence (ti) = (t1, . . . , tln), define the set F
(ti)
n of those x ∈ Fn whose

sequence of successive return times in Kn is (ti) = (t1, . . . , tln) (that is, for every 0 � i �
�n − 1, the return time of T i

n(x) in Kn is ti+1). Then all but a finite number of those sets
F

(ti)
n are empty, and the other ones are clopen subsets of Fn.

4. The sets R−k(Fn) and Rk(T �n
n (Fn)), with 1 � k � n are disjoint from Kn.

5. For n � p, we have Fp ⊂ Fn. Let Fp(n) be the union of all the sets T k
p (Fp) with 0 � k � �p

that are contained in Fn. Then, Kp = Fp(n)∪Tn(Fp(n))∪· · ·∪T �n
n (Fp(n)). In particular,

we have Fp(n) = Kp ∩ Fn.
Then we will prove that these properties imply that the set K :=

⋂
n∈N

Kn is dynamically
coherent. Finally, we will explain how to get the other desired properties for the set K .

Let us first explain how to build a sequence (Kn)n∈N satisfying properties 1, . . . ,5. One
chooses a compact set K0 = F0 in A with positive μ-measure, and sets �0 = 0. Let us assume that
K1, . . . ,Kn−1 and �1, . . . , �n−1 have been defined. On Fn−1, one considers the dynamics of the
return map RFn−1 associated to R. By Rokhlin’s lemma, there exist a measurable set B ⊂ Fn−1

and an (arbitrarily large) integer s such that the subsets B,RFn−1(B), . . . ,Rs
Fn−1

(B) of Fn−1

are pairwise disjoint, and such that the measure μ(Fn−1 \ (B ∪ RFn−1(B) ∪ · · · ∪Rs
Fn−1

(B)))
is arbitrarily small. One sets Fn = B and:

a. Fn(n− 1) = Fn ∪RFn−1(Fn)∪ · · · ∪Rs
Fn−1

(Fn),

b. Kn = Fn(n− 1)∪ Tn−1(Fn(n− 1))∪ · · · ∪ T
�n−1
n−1 (Fn(n− 1)).

Denoting by Tn the first return map of R to Kn, we observe that we have
c. Kn = Fn ∪ Tn(Fn)∪ · · · ∪ T �n

n (Fn), where �n = (s + 1)(�n−1 + 1)− 1.
We define the partition of Fn by the sets F

(ti)
n according to the �n first return times in Kn (as in

property 3 above). Shrinking a little the set Fn, one can assume that this is a finite partition by
compact (and thus clopen) subsets of Fn (this makes use of the regularity of the measure μ); in
this process we keep properties a, b and c.

For 0 � m < n − 1, let Fn(m) be the union of all the sets T k
n (Fn), with 0 � k � �n, that

are contained in Fm. One checks inductively that the equality Kn = Fn(m) ∪ Tm(Fn(m)) ∪
· · · ∪ T �m

m (Fn(m)) also holds for any m < n − 1. In this construction, one can also consider a
first Rokhlin tower C,RFn−1(C), . . . ,Rt

Fn−1
(C): since the measure of C ∪ RFn−1(C) ∪ · · · ∪

Rn−1
Fn−1

(C) and Rt−n+1
Fn−1

(C) ∪ · · · ∪ Rt
Fn−1

(C) is arbitrarily small if t is large, one can choose

in the previous proof B = Rn
Fn−1

(C) and s = t − 2n. By this choice, the sets R−k(Fn) and

Rk(T �n
n (Fn)), with 1 � k � n, are disjoint from Kn. Hence, all the required properties on Kn

are satisfied.
Now, assume that we have such a sequence of sets (Kn)n∈N satisfying properties 1, . . . ,5.

Let K :=
⋂

n∈N
Kn. Clearly, K is a compact subset of A. Let us prove that K is dynamically

coherent. For every n ∈ N, let F (n) := K ∩ Fn. Then, we have K = F (n) ∪ Tn(F (n)) ∪ · · · ∪
T �n

n (F (n)), and the sets R−k(F (n)) and Rk(T �n
n (F (n))) are disjoint from K for every k
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such that 1 � k � n. This implies that the compact set K satisfies the second property of the
definition of dynamical coherence. Let us explain how to prove the first one. The partition of
the set Fn into clopen subsets F

(ti)
n having the same sequence (ti) = (t1, . . . , tln) of �n first

return times in Kn induces a partition of the set F (n) by clopen sets having the same sequence
(ti) of �n first return times in K (the return times of R in K and Kn are the same). The set
F (n) ∩ R−n(K) can be written as a union of some elements of this partition, thus it is also
a clopen subset 4 of F (n). Similarly, the set Tn(F (n)) admits a finite partition into compact
(hence clopen) subsets Rt1(F (ti)

n ); thus it is a compact set whose subset Tn(F (n)) ∩ R−n(K)
is a clopen subset obtained as a union of some sets of this partition. The same argument works
for all the sets T i

n(F (n)) for i = 0, . . . , �n. Consequently, we see firstly that these sets constitute
a (finite) partition of K by clopen subsets, and secondly that the set K ∩ R−n(K) is a finite
union of clopen subsets of K and thus it is also a clopen subset of K . Hence K is dynamically
coherent.

Finally, we have to explain how to choose the sequence (Kn)n∈N in order to get the other
desired properties for the compact set K: it is a Cantor set, it is disjoint from R(K), tamely
embedded, dynamically meagre, and the measure of

⋃
k∈Z

Rk(K) is arbitrarily close to the
measure of

⋃
k∈Z

Rk(A).
Clearly, the sequence (Kn)n∈N can be chosen such that the diameter of the connected

components of Kn tends to 0 when n → ∞. This implies that K =
⋂

n Kn is totally
disconnected. Moreover, at each step, one may choose Kn such that the Hausdorff distance
between Kn and Kn−1 is arbitrarily small. One can also assume (the measure μ has no atom)
that each Kn has no isolated point. These two facts imply that K has no isolated point. Hence,
the sequence (Kn)n∈N can be chosen such that K is a Cantor set.

In order to get a set K which is disjoint from R(K), it is enough to choose carefully the set K0:
by Rokhlin’s lemma, there exists a measurable set A′ ⊂ A such that A′ and R(A′) are disjoint
and such that the measures of

⋃
k∈Z

Rk(A) and of
⋃

k∈Z
Rk(A′) are arbitrarily close. One then

chooses the compact set K0 in A′, such that the measure μ(A′ \K0) is arbitrarily small. We get
K ⊂A′ so that K and R(K) are disjoint.

Let us explain how to get a Cantor set K which is tamely embedded. Let (Ti) be a sequence of
triangulations of M whose simplexes that are not of maximal dimension have zero μ-measure,
and whose diameters decrease to 0 when i tends to infinity. By removing from K0 a set with
arbitrarily small measure, one can assume that K0 does not intersect the boundary of the
simplexes of the Ti. Hence by removing from K0 a set with arbitrarily small measure, we may
assume that K0 has a neighbourhood which is a disjoint union of arbitrarily small rectangles 5 .
Repeating inductively the argument for K1,K2, . . . , we obtain a set K which has a basis of
neighbourhoods made of disjoint unions of rectangles, i.e. a set K which is tamely embedded.

In order to get a set K which is dynamically meagre, we proceed as follows. Let us consider an
integer n � 0. One can require that all the non-empty open sets of Kn have positive μ-measure:
in particular, Kn contains a dense set of recurrent points. By removing a set with arbitrarily small
μ-measure, this implies that Kn is contained in the 1

n -neighbourhood of (
⋃

k∈Z
Rk(Kn)) \Kn,

and hence of (
⋃

|k|�rn
Rk(Kn)) \ Kn for some integer rn � 1. By choosing the sets Kn+i

4 Here we use that on T �n
n (F (n)) the return time is larger that n, thus we do not need to know the return times on that

set.
5 It may happen that the topological manifold M does not admit any triangulation, but this is not a problem for our

purpose. Indeed, one can always cover M by a finite number of balls B1, . . . ,Bn such that the boundary of these balls
has zero measure. Then, one can choose an open neighbourhood U of the union of the boundaries of the Bi’s such that
μ(U) is small, and replace K0 by K′

0 := K0 \ U . By construction, the compact set K′
0 is included in the interiors of

the balls B1, . . . ,Bn; so, for K′
0, one can use triangulations of the balls B1, . . . ,Bn.
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(with i � 1) to be 1
n -dense in Kn, one gets that Kn is contained in the 2

n -neighbourhood of
(
⋃

|k|�rn
Rk(K)) \K . This implies that K is dynamically meagre.

Finally, observe that, in the construction of the sequence (Kn)n∈N, the measure μ(A \K0) is
arbitrarily small, and the measure μ(Kn\Kn+1) is also arbitrarily small for every n. This implies
that the measures of

⋃
k∈Z

Rk(A) and of
⋃

k∈Z
Rk(K) are arbitrarily close, as required. �

Part II. Blowing-up of the orbit of K

All along Part II, we assume that we are given a sequence of collections of rectangles (E0
n)n∈N

such that hypotheses A1 and A3 are satisfied 6 . We use the notations Ep
n, Ep

n, Gp
n and K defined

in Section 2. We also assume that the graph G0
0 has no edge (see Remark 2.11).

– In Section 3, we will introduce a sequence of homeomorphisms (Mn)n�1, and some
hypotheses on this sequence (B1, B2 and B3). Under these hypotheses, we prove that there
exist a continuous onto map Ψ = · · · ◦ Mn ◦ · · · ◦ M1 and a homeomorphism g :M→M
such that Ψ ◦ g = R ◦Ψ.

– In Section 4, we will formulate another hypothesis, denoted by B4. If this hypothesis is
satisfied, and if R is minimal (resp. transitive), then g is also minimal (resp. transitive).

– In Section 5, we will state two additional hypotheses (B5 and B6) in order to embed
a Cantor set K × C in Ψ−1(K), such that the dynamics of g on the orbit of K × C
is universally isomorphic to the trivial dynamics R × Id (for the notion of universal
isomorphism defined in the introduction, see §1.3). This section also contains the
construction of a sequence (Mn)n�1 satisfying hypotheses B1,2,4,5,6 (but maybe not B3).

– Finally, in Section 6, we will explain the extraction process, that allows in particular to get
hypothesis B3.

The purpose of Part III will be to modify the construction in order to get a non-trivial dynamics
on the orbit of the Cantor set K ×C .

3. General scheme

3.1. The sequences of homeomorphisms (Mn)n�1, (Ψn)n∈N and (gn)n∈N

We consider a sequence (Mn)n�1 of homeomorphisms of the manifold M. Given this
sequence, we consider, for every n � 1, the homeomorphism Ψn defined by

Ψn = Mn ◦ · · · ◦M2 ◦M1,

and the homeomorphism gn defined by

gn = Ψ−1
n ◦R ◦Ψn.

We also set Ψ0 = Id and g0 = R.

3.2. Hypotheses B1,2,3

We consider the following hypotheses on the homeomorphisms (Mn)n�1.

6 In Section 5, we will assume moreover that hypothesis A2 is satisfied, so that K will be a Cantor set, but we do not
need this hypothesis in Sections 3 and 4.
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B1(n) (Support)
The support of the homeomorphism Mn is contained in the set En−1

n−1 .
B2(n) (Commutation)

The maps Mn and R commute along the edges of the graph Gn−1
n−1 .

B3 (Convergence)
Let An = En+1

n \En−1
n . Then the supremum of the diameters of the rectangles Ψ−1

n−1(X)
with X ∈An tends to 0 when n tends to +∞.

In B1,2(n) we assume n � 1. The precise meaning of B2 is: for every X ∈ En−1
n−1 such that

R(X) ∈ En−1
n−1 , the equality Mn ◦R = R ◦Mn holds on X .

3.3. Main consequences of hypotheses B1,2,3

The fundamental properties concerning the convergence of the sequences (Ψn) and (gn) are
stated in Proposition 3.1. This proposition is one step in the proof of Theorem 1.3. But it is also
an interesting result by itself: in Appendix C, we will show how Proposition 3.1 can be used to
produce various kinds of “Denjoy counter-examples”.

PROPOSITION 3.1 (Existence of Ψ and g). – Assume that hypotheses B1,2,3 are satisfied for
every n � 1. Then:

1. The sequence of homeomorphisms (Ψn) converges uniformly towards a continuous map
Ψ:M→M (which is not invertible in general).

2. The sequence of homeomorphisms (gn) converges uniformly towards a homeomorphism g
of M, and the sequence (g−1

n ) converges uniformly towards g−1.
3. The homeomorphism g is a topological extension of R: one has R ◦Ψ = Ψ ◦ g.

Note that the convergence of (Ψn) (item 1 above) only uses hypothesis B1 (but not hypotheses
B2 and B3).

Proof of Proposition 3.1. –

1. Convergence of the sequence (Ψn). Let n,p be two positive integers. The map Ψn+p

is obtained by post-composing the map Ψn by the homeomorphism Mn+p ◦ · · · ◦ Mn+1.
Hypotheses B1 and A1.b imply that each connected component of the support of this
homeomorphism is included in a rectangle of the collection Em

m for some m ∈ {n, . . . , n+p−1}.
We will use this property several times thereafter, so we label it “property (	)”.

Property (	) implies that the uniform distance from Ψn to Ψn+p is smaller than the supremum
of the diameters of the rectangles of the collection

⋃n+p
m=n Em

m . On the other hand, the supremum
of the diameters of the rectangles of the collection Em

m is assumed to tend to 0 when m → 0
(hypothesis A3). Hence, the sequence of maps (Ψn) is a Cauchy sequence. This proves the first
assertion of Proposition 3.1.

2. Convergence of the sequence (gn).

LEMMA 3.2. – Consider a point x ∈M, an integer n � 0, and a rectangle X ∈ En+1
n . Then(

Ψn(x) ∈X
)

⇐⇒
(
Ψn+p(x) ∈ X for every p � 0

)
⇐⇒

(
Ψ(x) ∈X

)
.

Proof of Lemma 3.2. – Let p be a positive integer. By property (	), the map Ψn+p is
obtained by post-composing Ψn by the homeomorphism Mn+p ◦· · ·◦Mn+1, and each connected
component of the support of this homeomorphism Mn+p ◦ · · · ◦Mn+1 is included in a rectangle
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of the collection Em
m for some m ∈ {n, . . . , n + p− 1}. In particular, each connected component

of the support of the homeomorphism Mn+p ◦ · · · ◦Mn+1 is either contained in the rectangle X ,
or disjoint from X (see hypothesis A1.b). Hence, the map Ψn+p is obtained by post-composing
Ψn by a homeomorphism which preserves the rectangle X .

This shows that (Ψn(x) ∈ X) ⇐⇒ (Ψn+p(x) ∈ X for every p � 0). Since X is compact,
letting p →∞, we also get that (Ψn(x) ∈ X) =⇒ (Ψ(x) ∈ X). So, the only implication we are
left to be proved is (Ψn(x) /∈ X) =⇒ (Ψ(x) /∈X).

Suppose Ψn(x) /∈ X . Consider the sequence of points (Ψn+p(x))p�0. Because of prop-
erty (	), two successive points Ψn+p(x),Ψn+p+1(x) in this sequence are either equal, or both
belong to some rectangle X ′ ∈ En+p

n+p . Hence, either the sequence (Ψn+p(x))p�0 is constant (in
which case the property we want to prove is obvious), or there is a p0 such that Ψn+p0(x) be-
longs to some rectangle X ′ ∈ En+p0

n+p0
, and then the whole sequence of points (Ψn+p(x))p�p0 is

trapped in X ′. Since X ′ is compact, this implies that the point Ψ(x) is also in X ′. And since X ′

is disjoint from X (hypothesis A1.c), we get that Ψ(x) /∈ X . �
LEMMA 3.3. – Let n be a positive integer. Consider the set An := En+1

n \En−1
n . Then:

1. Ψ−1
n−1(An) = Ψ−1

n (An) = Ψ−1
n+p(An) for every positive integer p,

2. gn+1 = gn and g−1
n = g−1

n+1 on the set M\Ψ−1
n (An).

Proof of Lemma 3.3. – Hypothesis A1.c implies that En+1
n ∩ En−1

n−1 = En−1
n . Hence, the set

An is disjoint from the set En−1
n−1 which contains the support of the homeomorphism M−1

n

(hypothesis B1). Hence, M−1
n (An) = An. Hence, Ψ−1

n (An) = Ψ−1
n−1 ◦M−1

n (An) = Ψ−1
n−1(An).

Moreover, Lemma 3.2 implies that Ψ−1
n (An) = Ψ−1

n+p(An) for every positive integer p. This
completes the proof of item 1.

Concerning item 2, we only prove the equality gn+1 = gn; the proof of the equality concerning
the inverse maps is completely similar. Recall that

gn = Ψ−1
n ◦R ◦Ψn and gn+1 = Ψ−1

n ◦M−1
n+1 ◦R ◦Mn+1 ◦Ψn.

Therefore, proving that gn+1(x) = gn(x) for every x ∈M\Ψ−1
n (An) amounts to proving that

M−1
n+1 ◦R ◦Mn+1(x) = R(x) for every x ∈M\An. Let x be a point in M\An.
– Either x /∈ En+1

n . Then R(x) /∈ En
n . In this case the equality holds because both the points

x and R(x) are outside the support of the homeomorphism Mn+1 (hypothesis B1).
– Or x is in a rectangle X ∈ En−1

n . Then the rectangle R(X) is in En
n , and thus, both rectangles

X and R(X) are vertices of the graph Gn
n . In this case the equality holds because Mn+1

commutes with R along this graph (hypothesis B2). �
We now turn to the proof of the convergence of the sequence homeomorphisms (gn). We fix

two positive integers n,p. We will check that the uniform distance between the two maps gn and
gn+p and between the two maps g−1

n and g−1
n+p is less than some quantity εn which tends to 0

when n goes to infinity. Applying item 2 of Lemma 3.3, we get that both equalities gn = gn+p

and g−1
n = g−1

n+p hold outside the set

Fn,p =
p−1⋃
k=0

Ψ−1
n+k(An+k)

where An+k = En+k+1
n+k \En+k−1

n+k . Consequently, we have d(gn, gn+p) < εn and d(g−1
n , g−1

n+p) �
εn where εn is the supremum of the diameters of the connected components of Fn. So, we are left
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to prove that this supremum tends to 0 when n →∞. Let X be a rectangle in En+k+1
n+k \ En+k−1

n+k

for some k ∈ {0, . . . , p− 1}. By item 1 of Lemma 3.3, we have Ψ−1
n+k(X) = Ψ−1

n+p(X). Hence,
we can rewrite Fn,p as

Fn,p = Ψ−1
n+p

(
p−1⋃
k=0

An+k

)
.

Hence, hypothesis A1.b implies that every connected component of Fn,p is a set Ψ−1
n+p(X) with

X ∈ En+k+1
n+k \ En+k−1

n+k and 0 � k � p − 1. Using once again item 1 of Lemma 3.3, we get

that every connected component of Fn,p is some Ψ−1
n+k−1(X) with X ∈ En+k+1

n+k \ En+k−1
n+k and

0 � k � p−1. Hence hypothesis B3 implies that the supremum of the diameters of the connected
components of Fn,p tends to 0 when n →∞.

Thus we have proved that the sequences (gn) and (g−1
n ) are Cauchy sequences. Hence, they

converge respectively towards a homeomorphism g and its inverse g−1.

3. Relation between g and R. The semi-conjugacy R ◦Ψ = Ψ ◦ g is obtained by taking the
limit in the equality R ◦Ψn = Ψn ◦ gn. �
3.4. Some other consequences of hypothesis B1,2,3

Let us call orbit of K the set
⋃

i∈Z
Ri(K).

PROPOSITION 3.4. – Assume that hypotheses B1,2,3 are satisfied for every n � 1. Then:
1. For every point x ∈ Rn0(K) for some integer n0, let (Xn)n�|n0|, Xn ∈ En0

n be the
decreasing sequence of rectangles containing x. Then

Ψ−1(x) =
⋂

n�n0

Ψ−1
n (Xn).

2. For every point y ∈M which does not belong to the orbit of K , the fibre Ψ−1(y) is a single
point.

Proof of Proposition 3.4. – The first assertion is a direct consequence of Lemma 3.2. The proof
of the second assertion begins by a lemma.

LEMMA 3.5. – Let x be a point of M . The following properties are equivalent:
1. the point Ψ(x) belongs to the orbit of K;
2. for every n large enough, the point Ψn(x) belongs to the set En

n .

Proof of Lemma 3.5. – Recall that

K =
⋂
n�0

E0
n and En

n =
⋃

−n�i�n

Ri
(
E0

n

)
.

Implication 1 =⇒ 2 is a consequence of these equalities and Lemma 3.2.
In order to prove implication 2 =⇒ 1, we consider a point x and an integer n0 such that

Ψn(x) ∈ En
n for every n � n0. In particular, the point Ψn0(x) is in the set En0

n0
. Hence,

Lemma 3.2 implies that the point Ψn0+1(x) is also in the set En0
n0

. Hence, the point Ψn0+1(x) is
in the set

En0
n ∩En0+1

n +1 = En0
n +1
0 0 0
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(the equality follows from hypothesis A1.c). By induction, we obtain that the point Ψn0+p(x) is
in the set En0

n0+p for every p � 0. Since (En0
n0+p)p�0 is a decreasing sequence, this implies that

the point Ψ(x) = limp→∞ Ψn0+p(x) is in the set
⋂

p�0 En0
n0+p =

⋃
|i|�n0

Ri(K). In particular,
the point Ψ(x) belongs to the orbit of K . �

Let us turn to the proof of the second assertion of Proposition 3.4. Pick two points x,x′ ∈M
such that Ψ(x) = Ψ(x′) = y and such that y is not in the orbit of K . We have to prove that
x = x′. On the one hand, Lemma 3.2 implies that, for every n � 0,

– either Ψn(x) /∈ En
n , and then Ψn(x′) /∈En

n ,
– or Ψn(x) is in some rectangle X ∈ En

n , and then Ψn(x′) is in the same rectangle X .
On the other hand, Lemma 3.5 shows that there exist arbitrarily large integers n such that
Ψn(x) /∈ En

n . The easy case is when this happens for every n large enough, say every n bigger
than some n0: in this case, one has Ψ(x) = Ψn0(x) and Ψ(x′) = Ψn0(x

′) (because of hypothesis
B1 on the support of the Mn’s), so that Ψn0(x) = Ψn0(x

′), and x = x′ since the map Ψn0 is
invertible. If we are not in the easy case, then there exists an increasing sequence of integers
(nk)k∈N such that, for every k,

1. Ψnk−1(x),Ψnk−1(x′) /∈Enk−1
nk−1 ,

2. Ψnk
(x),Ψnk

(x′) ∈Xk where Xk is some rectangle in Enk
nk

.
From item 1 and Lemma 3.2, we see that, for every k, the rectangle Xk is not included in (and
thus is disjoint from) the set Enk−1

nk−1 . Now remember that Ψnk
= Mnk

◦ Ψnk−1 and that the
support of Mnk

is included in the set Enk−1
nk−1 . From this we get Ψ−1

nk
(Xk) = Ψ−1

nk−1(Xk) for
every k. Item 2 says that the points x and x′ both belong to the set Ψ−1

nk
(Xk) = Ψ−1

nk−1(Xk). We
now apply hypothesis B3, which says that the diameter of the set Ψ−1

nk−1(Xnk
) tends to 0 when

k →∞. This proves that x = x′, as wanted. �
Remark 3.6 (Comparison between the maps gn and g). –
1. Item 2 of Lemma 3.3 is not optimal: the equality gn = gn+1 also holds on every rectangle

Ψ−1
n (X) such that both X and R(X) belong to En

n .
2. For every n � 1, we have g = gn on the set

Ψ−1
(
R−n(K)∪ · · · ∪Rn−1(K)

)
.

Proof. – The first claim follows easily from the commutation of Mn+1 and R along the edges
of the graph Gn

n (hypothesis B2(n + 1)).
In order to prove the second claim, we consider an integer n ∈ N and a point x̃ ∈M such that

x := Ψ(x̃) belongs to R−n(K) ∪ · · · ∪Rn−1(K). Then for any p � 0, both x and R(x) belong
to En+p

n+p . We apply the first claim: if x ∈ X ∈ En+p
n+p then gn+p = gn+p+1 on Ψ−1

n+p(X). The first
assertion of Proposition 3.4 says that the point x̃ belongs to this last set. Thus gn(x̃) = gn+p(x̃)
for any positive p. The second claim follows. �

4. Transitivity, minimality

In this section, we assume that we are given a sequence (Mn)n�1 of homeomorphisms of M.
We use the notations Ψn and gn defined in Section 3. We recall that the sequence (E0

n) is
supposed to satisfy hypotheses A1,3. When hypotheses B1,2,3 are satisfied, Proposition 3.1
provides us with a homeomorphism g = limgn and a continuous map Ψ = limΨn such that
Ψ ◦ g = R ◦ Ψ. The purpose of the section is to present hypothesis B4 on the Mn’s: when R is
supposed to be transitive (or minimal), this hypothesis implies that g is transitive (or minimal).
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The more general situation when the dynamics of R is only supposed to be transitive or minimal
on a subset of M (see Addendum 1.4) will be treated in Appendix B.

4.1. Hypothesis B4

We call internal radius of a set F ⊂M the supremum of the radii of the balls included in F .
We consider the following hypothesis.

B4 (Fibres are thin)
The internal radius of the set Ψ−1

n (E0
n) goes to 0 when n →∞.

4.2. Consequences of hypothesis B4

We now assume that the sequence (Mn)n�1 satisfies hypotheses B1,2,3.

PROPOSITION 4.1. – Hypothesis B4 is satisfied if and only if Ψ−1(K) has empty interior.

Proof. – Hypothesis B1 on the support easily implies that for any n one has Ψ−1(E0
n) =

Ψ−1
n (E0

n) (see for example Lemma 3.2). Then the definition of K gives

Ψ−1(K) =
⋂
n∈N

Ψ−1
(
E0

n

)
=

⋂
n∈N

Ψ−1
n

(
E0

n

)
where the intersections are decreasing. The proposition follows from these equalities and an easy
compactness argument. �

PROPOSITION 4.2. – If the dynamics R on M is transitive (resp. minimal) and hypothesis
B4 is satisfied, then the dynamics g on M is also transitive (resp. minimal).

LEMMA 4.3. – If hypothesis B4 is satisfied and F is a compact g-invariant subset of M such
that Ψ(F ) = M, then F =M.

Proof. – Under the hypotheses of the lemma, assume F �= M. The second assertion of
Proposition 3.4 implies that the complement O of F in M is an open set contained in⋃

i∈Z
gi(Ψ−1(K)). By Baire theorem, there exists i ∈ Z such that the set gi(Ψ−1(K)) has

non-empty interior in M. Hence Ψ−1(K) has non-empty interior in M. Hence Proposition 4.1
implies that B4 is not satisfied. �

Proof of Proposition 4.2. – Assume that hypothesis B4 is satisfied, and that the dynamics of
R on M is minimal. Consider any non-empty g-invariant compact set F ⊂M. Then Ψ(F ) is an
R-invariant compact set, so Ψ(F ) = M. Lemma 4.3 implies F = M. Hence the dynamics of g
on M is minimal.

Now, assume that hypothesis B4 is satisfied, and that the dynamics of R on M is transitive.
Consider a point x ∈ M whose R-orbit is dense in M and choose any lift x̃ ∈ Ψ−1(x) of x.
The closure of the g-orbit of x̃ projects by Ψ on the closure of the R-orbit of x, that is on M.
Hence, by Lemma 4.3, the closure of the g-orbit of x̃ is M. Hence, the dynamics of g on M is
transitive. �

Remark. – Conversely, if the dynamics of g on M is minimal, then the dynamics of R on M
is minimal and hypothesis B4 is satisfied. We will not use this fact, and the (easy) proof is left to
the reader.
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5. Cantor sets in the fibres of Ψ

We recall that we are considering a sequence of collection of rectangles (E0
n) such that

hypotheses A1,3 are satisfied. Moreover, we will now assume that hypothesis A2 is also satisfied
(so that K is a Cantor set).

In this section, we will again consider a sequence (Mn)n�1 of homeomorphisms of M.
We will state two additional hypotheses B5,6 concerning the homeomorphisms Mn. Roughly
speaking, we want to ensure that, for any x in K , the fibre Ψ−1(x) will contain a Cantor set
identified to {x} × C (hypothesis B5), and that the homeomorphism g will induce a “trivial”
dynamics on K ×C =

⋃
x∈K{x} ×C (hypothesis B6). Then we will explain how to construct

a sequence of homeomorphisms (Mn)n�1 satisfying hypotheses B1,2,4,5,6.

Additional assumption. For sake of simplicity, we will assume that the collection E0
0 is

made of a single rectangle X0 (see Remark 2.11).

5.1. The Cantor set K ×C

We set X̃0 = X0. Even if both sets are equal, this notation trick allows us to deal with X̃0

for objects that have a dynamical meaning for the map g, and to deal with X0 for those which
have a dynamical meaning for R. In particular, the semi-conjugacy Ψ will be constructed so that
Ψ(X̃0) = X0.

We consider an (abstract) Cantor set C . Thus K × C is again a Cantor set. We embed this
Cantor set K × C in the interior of the rectangle X̃0; from now on, we will see K × C as a
Cantor set in X̃0. For technical reasons we choose a tame embedding of K × C in X̃0 (see
Definition 2.6).

For every n ∈ N and every rectangle X ∈ E0
n, we denote by KX the Cantor set K ∩X . Then

KX ×C is a sub-Cantor set of K ×C embedded in the rectangle X̃0.

Remark. – We will often consider some path X → · · · → X ′ = Rp(X) in the graph Gn
n .

Remember that this means that the rectangles X,R(X), . . . ,Rp(X) = X ′ are in En
n , and observe

that the integer p is unique (since the graph has no cycle). Moreover, we will always consider
the case where the rectangles X,X ′ are in E0

n; in particular X and X ′ are included in the
rectangle X0.

5.2. Hypotheses B5,6

We consider the following hypotheses.

B5(n) (Cantor sets in the fibres of Ψ, see Fig. 5)
For every rectangle X ∈ E0

n, the open set Ψ−1
n (Int(X)) contains the Cantor set KX ×C.

B6(n) (Embedding a trivial dynamics)
If X → · · · →X ′ = Rp(X) is a path in the graph Gn

n with X,X ′ ∈ E0
n, then

gp
n(x, c) =

(
Rp(x), c

)
for every (x, c) ∈KX ×C.

Note that in hypothesis B6 the point Rp(x) belongs to KX′ (this is due to the compatibility
hypothesis A1.c, see Lemma 2.5), so that (Rp(x), c) is a point of KX′ × C ⊂ M, and the
statement is meaningful.
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Fig. 5. Cantor sets in the fibres (hypothesis B5). Below, the Cantor set KX inside the rectangles X of E0
n;

above, the Cantor set KX ×C inside the rectangle Ψ−1(X).

5.3. Consequences of hypotheses B5,6

Proposition 5.1 below states some consequences of hypotheses B5,6 on the dynamics of g.
We will not use formally this proposition; we only state it for “pedagogical reasons”: in Part III,
there will be a similar proposition, where the map R × Id will be replaced by some non-trivial
fibered dynamics h, and whose proof will be entirely similar to the proof of Proposition 5.1. We
use the notion of universal isomorphism defined in the introduction (Section 1.3).

PROPOSITION 5.1. – Assume that hypotheses B1,2,3,5,6 are satisfied. Then the dynamics of
g on the set

⋃
n∈Z

gn(K × C) is universally isomorphic to the dynamics of R × Id on the set⋃
n∈Z

Rn(K)×C .

LEMMA 5.2. – Assume hypotheses B1,2,3. Under hypothesis B5, for every x ∈K ,

{x} ×C ⊂ Ψ−1(x),

that is, for every (x, c) ∈K ×C , the formula Ψ(x, c) = x holds.

Proof of Lemma 5.2. – This is an immediate consequence of the equality Ψ−1(x) =⋂
n∈N

Ψ−1
n (Xn) of Proposition 3.4. �

Proof of Proposition 5.1. – We first note that the return times of g on K × C and of R on K
are coherent: for every (x, c) in K ×C and every integer p,

gp(x, c) ∈K ×C ⇔ Rp(x) ∈K.
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Indeed, the direct implication follows easily from Lemma 5.2 and the semi-conjugacy Ψg = RΨ.
The other implication follows not so easily from hypothesis B6. More precisely, consider any
integer n � |p| and the rectangle X such that x ∈ X ∈ E0

n. Since Rp(X) contains Rp(x) which
is supposed to belong to K , the rectangle Rp(X) also belongs to E0

n (as a consequence of the
iterability, hypothesis A1.a). Then we can apply hypothesis B6 to the path X → · · · → Rp(X)
in Gn

n , which shows in particular that gp
n(x, c) ∈K ×C . It remains to note that applying p times

Remark 3.6 yields gp
n(x, c) = gp(x, c).

Now consider the map Θ from the embedded Cantor set K × C ⊂ X̃0 to the set K × C ⊂
X0 ×C which is just the inverse map of our embedding K ×C ↪→ X̃0. Let (x, c) be a point of
K ×C ⊂ X̃0 which returns in K ×C under iteration of g, and let p � 1 be the return time. Then
p is also the return time of Ψ(x, c) = x in K under iteration of R. Let n � p. Then hypothesis
B6 implies that

Θ
(
gp

n(x, c)
)

= (R× Id)p
(
Θ(x, c)

)
.

Since gp
n(x, c) = gp(x, c) (see Remark 3.6), we get that Θ realises a universal isomorphism

between the first return map of g on K × C ⊂ M and the first return map of R × Id on
K×C ⊂M×C , with compatible return times. Hence Θ extends (in a unique way) to a universal
isomorphism as required by the proposition. �
5.4. Construction of the Mn’s: realisation of hypotheses B1,2,4,5,6

The following proposition is one of the main steps of the proof of our main theorem.

PROPOSITION 5.3 (Existence of (Mn)). – Assume that hypotheses A1,2,3 hold and that the
graph G0

0 has no edge. Then there exists a sequence (Mn)n�1 of homeomorphisms of M such
that hypotheses B1,2,4,5,6 are satisfied.

Remark. – Note that Proposition 5.3 does not ensure hypothesis B3. Indeed, it is not possible
to get this hypothesis for any sequence of collections of rectangles (E0

n)n∈N. In Section 6, we
will explain how to obtain hypothesis B3 using an extraction process.

Proof. – We will proceed by induction. For this purpose, we need to state a quantitative version
of B4:

B4(n) For every X in E0
n, the internal radius of the rectangle Ψ−1

n (X) is less than 1
n .

Of course, one may replace the sequence ( 1
n )n�1 by any sequence of positive numbers (εn)n�1

such that εn → 0 when n → 0. Clearly, if hypothesis B4(n) is satisfied for every n, then
hypothesis B4 is satisfied.

Now let n � 1. We assume that some homeomorphisms M1, . . . ,Mn−1 have been constructed
and that hypotheses B1,2,4,5,6(m) are satisfied for every m ∈ {1, . . . , n − 1}. We will explain
how to construct a homeomorphism Mn such that hypotheses B1,2,4,5,6(n) are satisfied.

Step 1. Choice of a tame embedding iX of KX × C in Int(X). We first need to choose
such an embedding for every rectangle X ∈ E0

n. Furthermore, we need these embeddings to
satisfy the following equivariance property: if X → · · · →X ′ = Rp(X) is a path in the graph Gn

n

with X,X ′ ∈ E0
n, then

Rp ◦ iX(x, c) = iX′
(
Rp(x), c

)
(2)

for every (x, c) ∈ KX ×C . Remember that the point (Rp(x), c) is known to belong to KX′ ×C
(Lemma 2.5), so this equality is compatible with the requirement that iX′(KX′ ×C)⊂ Int(X ′).
The construction of such a family of homeomorphisms is straightforward, since the graph Gn

n

has no cycle (hypothesis A1.a).
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Recall that the support of Mn has to be included in En−1
n−1 (hypothesis B1(n)); so we need

to define Mn on each rectangle of En−1
n−1 , i.e. on each vertex of the graph Gn−1

n−1 . From now on
we will treat the different connected components of the graph Gn−1

n−1 independently 7 . Moreover,
since Mn has to commute with R along the edges of the graph Gn−1

n−1 (hypothesis B2(n)), we
will first define Mn on one vertex of each connected component of the graph Gn−1

n−1 (step 2) and
then extend Mn along the component by commutation (step 3). Also note that for n = 1 the
graph Gn−1

n−1 has no edge (by assumption), so step 3 is not needed.

Step 2. Definition of Mn on one vertex of each connected component of the graph Gn−1
n−1 .

For each connected component Γ of the graph Gn−1
n−1 , we choose one vertex X̂ of Γ which is in

E0
n−1. We define Mn on this rectangle X̂ as follows (see Fig. 6).

We denote by X1, . . . ,X� the immediate sub-rectangles of X̂ , i.e. the rectangles of E0
n

contained in X̂ . For first we observe that the set Ψ−1
n−1(X̂) contains the Cantor set K

X̂
× C

(by the induction 8 hypothesis B5(n− 1)), and that the Cantor set K
X̂
×C is the disjoint union

of the Cantor sets KX1 ×C, . . . ,KX�
×C . As a consequence, the Cantor set Ψn−1(KX̂

×C) in

Int(X̂) is the disjoint union of the Cantor sets Ψn−1(KX1 ×C), . . . ,Ψn−1(KX�
×C). Thus we

can construct the homeomorphism Mn on Ψn−1(KX̂
× C) the following way: on each subset

Ψn−1(KXi ×C) we define Mn by the formula

Mn

(
Ψn−1(x, c)

)
= iXi(x, c).(3)

Fig. 6. Construction of Mn.

7 However note that the homeomorphisms (iX)X∈En
n

defined at step 1 are equivariant not only along the graph Gn−1
n ,

but also along the graph Gn
n . This will automatically establish a link between the restrictions of Mn to any two rectangles

belonging to the same connected component of Gn
n .

8 When n = 1, the observation rather follows from the convention Ψ0 = Id.
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In a moment, we will extend the homeomorphism Mn to the whole rectangle X̂ ; before doing
so, we first make an extension to a finite set that will ensure that the preimages of the sub-
rectangles are “thin” 9 . More precisely, we fix a small δn > 0 and we consider two finite subsets
A,A′ in the interior of the rectangle X̂ , such that:

– A = Ψn−1(Ã) where Ã is disjoint from the Cantor set K
X̂
×C and δn-dense in Ψ−1

n−1(X̂);
– A′ is disjoint from all the sub-rectangles Xi;
– A and A′ have the same number of elements.

We now extend Mn to the set A so that Mn(A) = A′.
Since the set A ∪ Ψn−1(KX̂

× C) is totally disconnected and tamely embedded in Int(X̂),

using Proposition A.1 of Appendix A we can further extend Mn to a homeomorphism of X̂
which is the identity on the boundary of the rectangle.

Note that Mn was constructed in such a way that, for every i, the rectangle M−1
n (Xi) is

disjoint from the set A. Since Ψ−1
n−1(A) is δn-dense in Ψ−1

n−1(X̂), this implies that:

for every i, the internal radius of Ψ−1
n−1(M

−1
n (Xi)) is less than δn.(4)

Step 3. Definition of Mn on M. Let X̂ ′ be any rectangle of En−1
n−1 . We define Mn on X̂ ′

as follows. In step 2, we have defined Mn on one (and only one) vertex X̂ which is in the same
connected component of Gn−1

n−1 as X̂ ′. We consider the path X̂ → · · · → X̂ ′ = Rp(X̂) in Gn−1
n−1 .

Then we define Mn on X̂ ′ by

M
n|X̂′ = Rp ◦M

n|X̂ ◦R−p.(5)

This defines the homeomorphism Mn on En−1
n−1 , ensures that Mn preserves En−1

n−1 and is equal to
the identity on the boundary of each connected component of En−1

n−1 . As a consequence, we can
extend Mn on the whole manifold M in such a way that Mn is the identity outside En−1

n−1 (thus
hypothesis B1(n) is satisfied). Moreover, the definition of Mn given above clearly implies that
Mn commutes with R along the edges of Gn−1

n−1 , i.e. satisfies hypothesis B2(n).
We now fix the value of the number δn of step 2 to get hypothesis B4(n) (fibres are thin).

Let � be the maximal length of the connected components of the graph Gn−1
n−1 . Then δn may have

been chosen so small that for any |p| � �, any pair of points closer than δn are mapped by the
homeomorphism gp

n−1 to points closer than 1
n . Now if X ′

i is an immediate sub-rectangle of X̂ ′,

then Xi = R−p(X ′
i) is an immediate sub-rectangle of X̂ . According to equality 4 and the choice

of δn, the internal diameter of gp
n−1(Ψ

−1
n−1(M

−1
n (Xi))) = Ψ−1

n−1(M
−1
n (X ′

i)) is less than 1
n . This

gives hypothesis B4(n).

Step 4. Relation between Ψn and the iX ’s. Note that the map Mn is now defined, so that
we can also deal with the map Ψn = Mn ◦ · · · ◦M1. We claim that, for every rectangle X ∈ E0

n,
one has (see Fig. 6)

Ψn|KX×C = iX|KX×C .(6)

Observe that equality (6) follows immediately from equality (3) when X is included in one
of the rectangles of E0

n−1 on which Mn was defined in step 2 (in particular, there is nothing
else to check for n = 1; in what follows we assume n � 2). Now let X ′ be any rectangle of
E0

n, and denote by X̂ ′ the rectangle of E0
n−1 containing X ′. Let X̂ → · · · → X̂ ′ = Rp(X̂) be

9 There certainly are other ways to get this property, but this trick will also be useful in Appendix B.
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the (unique) path in the graph Gn−1
n−1 such that X̂ is a rectangle on which Mn has been defined at

step 2. Consider the rectangle X = R−p(X ′) ∈ E0
n. As explained above, equality (6) holds for X .

Consider the following cube-shaped diagram. We aim at proving commutation of the right-hand
side. For this it suffices to prove the commutation of the five other sides.

KX ×C
Rp×Id

iX

KX′ ×C

iX′

KX ×C

Id

Rp×Id

Ψn

KX′ ×C

Id

Ψn

iX(KX ×C) Rp

iX′(KX′ ×C)

Ψn(KX ×C) Rp

Id

Ψn(KX′ ×C)

Id

The top and bottom side of the diagram commutes trivially; the commutation of the back side is
due to the equivariance of the homeomorphisms iX (equality (2)); the commutation of the left-
hand side is equality (6) for X . The commutation of the front side is obtained by putting together
the induction hypothesis B6(n− 1) and relation (5), yielding yet another commutative diagram
(see below). This finishes the proof of equality (6) for X ′.

KX ×C

Ψn−1

Rp×Id
KX′ ×C

Ψn−1

Ψn−1(KX ×C) Rp

Mn

Ψn−1(KX′ ×C)

Mn

Ψn(KX ×C) Rp

Ψn(KX′ ×C)

Step 5. Hypotheses B1,2,4,5,6(n) are satisfied. It follows from the very construction of
Mn that hypotheses B1(n), B2(n) and B4(n) are satisfied (see the end of step 3). Equality (6)
implies hypothesis B5(n) (Cantor sets in the fibres). Equality (6) and the equivariance
property (2) imply hypothesis B6(n) (embedding a trivial dynamics). This completes the proof
of the proposition. �

6. Extraction process

Recall that we are considering a sequence of collections of rectangles (E0
n)n∈N such that

hypotheses A1 and A3 are satisfied. In this section, we assume moreover that we are given
a sequence (Mn)n�1 of homeomorphisms of M satisfying hypothesis B1. The purpose of this
section is to explain an extraction process which allows to replace the sequence of collections
of rectangles (E0

n)n∈N by a sub-sequence (E0
n )k∈N, and the sequence of homeomorphisms
k
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(Mn)n�1 by a sequence (Mk)k∈N. The first important point is that this extraction process will
respect hypotheses B1,2,4,5,6. The second important point is that this extraction process can be
used to get some convergence properties; this is the reason why it will play an important role
in Part III. To illustrate this role, we will explain below how to use the extraction process to get
hypothesis B3.

6.1. Definition of the extraction process

Assume we are given an increasing sequence of integers (nk)k∈N, with n0 = 0. Note that
nk � k for every k. Then we consider

– for every k ∈ N and every p � k + 1, the collection of rectangles Ep
k , the set Ep

k , and the
graph Gp

k defined by

Ep
k := Ep

nk
, Ep

k := Ep
nk

, Gp
k := Gp

nk
;

– for every k � 1, the homeomorphism Mk defined by

Mk := Mnk|Ek−1
nk−1

◦ · · · ◦Mi|Ek−1
i−1

◦ · · · ◦Mnk−1+1|Ek−1
nk−1

where Mi|Ek−1
i−1

denotes the homeomorphism 10 which is equal to Mi on Ek−1
i−1 and equal to

the identity on M\Ek−1
i−1 ;

– for every k � 1, the maps Ψk and gk defined by

Ψk := Mk ◦ · · · ◦M1 and gk := Ψ−1
k ◦R ◦Ψk.

Remark 6.1. – It follows from these definitions that Ψ−1
k = Ψ−1

nk
on the set E0

k−1 = E0
nk−1

.
This can be proved recursively, using the equality Mk(E0

k−1) = E0
k−1. As a consequence,

Ψ−1
k (E0

k−1) = Ψ−1
nk

(E0
nk−1

), and on this set we have Ψk = Ψnk
.

Remark. – Applying two successive extractions with some sequences of integers (nk)k�0 and
(kl)l�0 amounts to applying a single extraction with the sequence (nkl

)l�0.

6.2. Hypotheses B1,2,4,5,6 are preserved

Assume we are given an increasing sequence of integers (nk)k∈N. We consider the sequence
of collections of rectangles (E0

k)k∈N and the sequence of homeomorphisms (Mk)k∈N defined
above. Then, we can consider the conditions obtained by replacing the sequences (E0

n)n∈N and
(Mn)n�1 by the sequences (E0

k)k∈N and (Mk)k�1 in hypotheses A1,2,3 and B1,2,3,4,5,6. We
obtain some new conditions that we still call “hypotheses A1,2,3 and B1,2,3,4,5,6”. For example,
the new hypotheses A1.a and B6 are:

A1.a For every k ∈ N, the collection E0
k is k +1 times iterable and the collection Ek

k has no
cycle;

B6(k) If X → · · · →X ′ = Rp(X) is a path in the graph Gk
k , with X,X ′ ∈ E0

k , then

Ψ−1
k ◦Rp ◦Ψk(x, c) =

(
Rp(x), c

)
for every (x, c) ∈ KX ×C.

10 Hypothesis B1 implies that, for every i � k, the set Ek−1
i−1 is the union of some of the connected components of the

support of the homeomorphism Mi. Hence, the map M
i|Ek−1 is a homeomorphism.
i−1
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A very important feature of the extraction process defined above is that it does not destroy the
hypotheses.

PROPOSITION 6.2. –
– The extracted sequence of collections of rectangles (E0

k)k∈N satisfies (the new) hypotheses
A1,3. Moreover, if the original sequence (E0

n)n∈N satisfies hypothesis A2, then the
extracted sequence (E0

k)k∈N also satisfies A2.
– The extracted sequence of homeomorphisms (Mk)k�1 satisfies hypothesis B1. Moreover,

if B∗ is one of the hypotheses B2, B4, B5, B6, and if the original sequence of
homeomorphisms (Mn)n�1 satisfies B∗, then the extracted sequence (Mk)k�1 also
satisfies B∗.

Proof. – The proof is immediate for hypotheses A1.a, A1.b and A3. For hypotheses A1.c

and A2, it follows from a very easy induction. For B1, it follows from the very definition
of the sequence of homeomorphisms (Mk). For B2, one just needs to observe that Mk =
Mnk

◦ · · · ◦ Mnk−1+1 on every rectangle X which is a vertex of the graph Gk−1
k−1 = Gk−1

nk−1
, and

that all the homeomorphisms Mnk
, . . . ,Mnk−1+1 commute with R along the edges of the graph

Gk−1
k−1. Finally, for B4,B5,B6, it follows from Remark 6.1. �

6.3. Realisation of hypothesis B3

Proposition 6.3 below shows that the extraction process can be used to get hypothesis B3.
Formally, we will not use it (although we will use a very similar statement in Part III). We only
state it for “pedagogical reasons” to illustrate the use of the extraction process.

PROPOSITION 6.3. – There exists an increasing sequence of integers (nk)k�1 such that
hypothesis B3 is satisfied for the extracted sequences (E0

k)k∈N and (Mk)k�1.

Proof. – Choose a sequence of positive real numbers (εk)k∈N such that εk → 0, and assume
that, for some k � 1, some integers n1 < · · · < nk−1 have been constructed in such a way that
max{Diam(Ψ−1

l−1(X)) |X ∈El+1
l \El−1

l } � εl for 1 � l � k − 1.
On the one hand, we know the integer nk−1. Hence we know the homeomorphism Ψk−1.

Hence we can find η > 0 such that, if X is a rectangle of diameter less than η, then Ψ−1
k−1(X) is

a set of diameter less than εk . On the other hand, hypothesis A3 gives us an integer nk > nk−1

such that the diameter of every rectangle of Ek+1
nk

\ Ek−1
nk

is less than η. Hence, we have
max{Diam(Ψ−1

k−1(X)) |X ∈ Ek+1
k \Ek−1

k } � εk , as wanted. �
Part III. Insertion of the desired dynamics in the fibres of Ψ

In this part, we assume that we are given a sequence of collections of rectangles (E0
n)n∈N

such that hypotheses A1,3 are satisfied and a sequence of homeomorphisms (Mn)n�1 such that
hypotheses B1,2 are satisfied 11 .

– In Section 7, we introduce a sequence of homeomorphisms (Hk)k�1 and hypotheses
C1,2,3,4 that are the analogues of hypotheses B1,2,3,4 for the maps Mn. In particular, under
these hypotheses, the sequence (Hk ◦Mk) will still satisfy hypotheses B1,2,3,4(k), so the
convergence results of Part II will also hold for this sequence: thus we get a continuous onto
map Φ = · · · ◦ Hk ◦ Mk ◦ · · · ◦ H1 ◦ M1 and a homeomorphism f :M→M such that
Φ ◦ f = R ◦Φ.

11 In Sections 8 and 9, we will also assume that hypotheses B5,6 are satisfied, but we do not need these hypotheses for
Section 7.
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– In Section 8, we will state two additional hypotheses (denoted by C5 and C6) in order to
ensure that the dynamics of f on the orbit of K × C is universally isomorphic to a given
fibered map h. This section also explains how to construct a sequence (Hk) satisfying all
hypotheses C1,...,6. It ends with the first part of the proof of our main Theorem 1.3, which
contains Mary Rees’ original result.

– Finally, in Section 9, we will formulate hypotheses C7,8 under which the dynamics of f
on the whole of M is universally isomorphic to h. Then we will tighten the construction of
Section 8 in order to get a sequence (Hk) satisfying the additional hypotheses C7,8. This
enables us to complete the proof of Theorem 1.3.

7. General scheme

7.1. The sequences (nk)k�1 and (Hk)k�1

We consider an extraction sequence (nk)k�1 and a sequence (Hk)k�1 of homeomorphisms
of M. Given these sequences, for every k � 1 we define the homeomorphisms Mk as in
Section 6.1, the homeomorphism Φk by:

Φk := Hk ◦Mk ◦ · · · ◦H2 ◦M2 ◦H1 ◦M1

and the homeomorphism

fk := Φ−1
k ◦R ◦Φk.

One also sets Φ0 = Id and f0 = R.

7.2. Hypotheses C1,2,3,4

We consider the following hypotheses.

C1(k) (Support)
The support of the homeomorphism Hk is contained in the set Ek−1

k .
C2(k) (Commutation)

The maps Hk and R commute along the edges of the graph Gk−1
k .

C3 (Convergence)
Let Ak = Ek+1

k \ Ek−1
k . Then the supremum of the diameters of the rectangles

Φ−1
k−1(X) with X ∈Ak tends to 0 when k tends to +∞.

C4 (Fibres are thin)
The internal radius of the set Φ−1

k (E0
k) goes to 0 when k →∞.

The last two hypotheses have also quantitative versions.
C3(k) (Convergence, quantitative version)

max
{
Diam

(
Φ−1

k−1(X)
) ∣∣ X ∈ Ek+1

k \ Ek−1
k

}
� 1

k
.

C4(k) (Fibres are thin, quantitative version)
The internal radius of the set Φ−1

k (E0
k) is less than 1

k .

Remark. – There is an important difference between the assumptions on (Mn)n�1 and their
analogues for (Hk)k�1: hypothesis C1 requires the support of the homeomorphism Hk to
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be included in the set Ek−1
k = Ek−1

nk
, whereas hypothesis B1 implies that the support of the

homeomorphism Mk is contained in the set Ek−1
k−1 = Ek−1

nk−1
. Consequently, if all the hypotheses

are satisfied and if the integer nk is much bigger than nk−1, then the size of the support of the
homeomorphism Hk will be much smaller than the size of the support of the homeomorphism
Mk . This will play a crucial role when we will try to get hypotheses C3 and C4 (see in particular
Proposition 8.3).

Note also that there is no real difference between C2 and B2: the compatibility hypothesis
A1.c implies that, given hypothesis C1(k) on the support, nothing changes if one replaces
in C2(k) the graph Gk−1

k with the graph Gk−1
k−1, thus getting the exact analogue to hypothesis

B2(n).

One checks easily that if one combines these hypotheses with hypotheses B1,2 on (Mn)n�1,
one can replace the sequences (E0

n)n�0, (Mn)n�1 and (Ψn)n�0 by the sequences (E0
k)k�0,

(Hk ◦ Mk)k�1 and (Φk)k�0: for each hypothesis Ci which is satisfied by (Hk), the
corresponding hypothesis Bi is satisfied by (Hk ◦Mk).

In particular, one can apply Propositions 3.1, 3.4 and 4.2 to these new sequences and obtain
the following consequences.

PROPOSITION 7.1. – Propositions 3.1, 3.4 and 4.2 still hold when one replaces Ψn, Ψ, gn,
g, and En0

n respectively with Φk , Φ, fk , f , and Ek0
k .

8. Inserting the dynamics of h on the Cantor set K ×C

In this section, we assume hypotheses A1,2,3 for the sequence of collections of rectangles
(E0

n)n�0 and hypotheses B1,2,5,6 for the sequence of homeomorphisms (Mn)n�1. We also
assume that the graph G0

0 has no edge. Considering a fibered map h as in Theorem 1.3, we
state two additional hypotheses C5,6 for the sequences (nk) and (Hk), that are the counterpart
(but not the exact analogues) of hypotheses B5,6: they will imply that the homeomorphism f
realises the dynamics of h on the set

⋃
i∈Z

Ri(K)×C .
Then we explain how to construct a sequence of homeomorphisms (Hk) and a sequence of

integers (nk) so that hypotheses C1,2,3,4,5,6 will be satisfied. There is no simple way to define
an extraction for the sequence (Hk); hence, one has to combine the inductive construction of the
sequence (Hk) with successive extractions of the sequences (E0

n) and (Mn). This is structured
as follows (in Section 8.6):

– we assume that the homeomorphism H� and the integer n� are known for every � � k − 1;
– then, we construct the integer nk in such a way that hypotheses C3,4(k) will be satisfied

whatever the homeomorphism Hk might be (see Proposition 8.3);
– and then, we define the homeomorphism Hk so that hypotheses C1,2,5,6(k) will be satisfied

(see Proposition 8.4).

8.1. Hypothesis C5 and some consequences

We consider the following hypothesis.

C5(k) (Cantor sets in the fibres of Φ)
For each point x ∈K , the map Hk preserves Ψk({x} ×C):

Hk

(
Ψk

(
{x} ×C

))
= Ψk

(
{x} ×C

)
.
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Under hypothesis C5, the map Φk satisfies a property analogous to hypothesis B5 for Ψn.
More precisely, we get the following consequences (which are illustrated by the topological
flavour of Fig. 2 of the introduction, Section 1.5).

PROPOSITION 8.1. – Let (n1, . . . , nk) and (H1, . . . ,Hk) be two finite sequences that satisfy
hypotheses C5(�) for every � � k.

1. For each x ∈K , we have

Φk

(
{x} ×C

)
= Ψk

(
{x} ×C

)
and the fibre Φ−1(x) contains {x} ×C .

2. If X → · · · → X ′ = Rp(X) is a path in the graph Gk
k with X,X ′ ∈ E0

k , then, for each
x ∈ KX we have

fp
k

(
{x} ×C

)
=

{
Rp(x)

}
×C.

Proof. – The equality Φk({x}×C) = Ψk({x}×C) is easily proved using an induction on �.
Now Φ−1(x) =

⋂
k∈N

Φ−1
k (Xk) where x ∈ Xk ∈ E0

k (see Propositions 3.4 and 7.1). Using the
above equality and hypothesis B5 on Ψk , one gets Φk({x}×C)⊂ Xk for every k. Thus {x}×C
is contained in Φ−1(x). This completes the proof of the first property.

For the second property, one uses hypothesis B6 for Ψk , which implies the equality

Ψ−1
k ◦Rp ◦Ψk

(
{x} ×C

)
=

{
Rp(x)

}
×C.

The first property shows that in this equality Ψk may be replaced by Φk . This gives the desired
equality. �
8.2. The fibered map h

We now consider a fibered dynamics (compare to the hypotheses of Theorem 1.3):

h :
⋃
i∈Z

Ri(K)×C −→
⋃
i∈Z

Ri(K)×C,

(x, c) �−→
(
R(x), hx(c)

)
such that

1. h is bijective;
2. for every x ∈

⋃
i∈Z

Ri(K), hx is a homeomorphism of C;
3. for every integer k, the map hk is continuous on K ×C .

In particular, if X → · · · → X ′ = Rp(X) is a path in the graph Gk
k with X,X ′ ∈ E0

k , then the
map hp induces a homeomorphism between KX ×C and KX′ ×C . Note that by Proposition 8.1,
the map fp

k shares the same property (for the embedded versions of the Cantor sets KX ×C and
KX′ ×C).

8.3. Hypothesis C6 and some consequences

C6(k) (Embedding a non-trivial dynamics)
If X → · · · →X ′ = Rp(X) is a path in the graph Gk

k with X,X ′ ∈ E0
k , then

fp
k (x, c) = hp(x, c) for every (x, c) ∈KX ×C.
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We get for f a statement similar to Proposition 5.1 for g (and the proof is the same). The
proposition below is illustrated in Fig. 2 of the introduction.

PROPOSITION 8.2. – Assume that hypotheses C1,2,3,5,6 are satisfied. Then, the map f on⋃
i∈Z

f i(K ×C) is universally isomorphic to the map h on
⋃

i∈Z
Ri(K)×C .

8.4. Construction of the sequence (nk): realisation of hypotheses C3,4

In this section, we explain how to get C3 and C4 from hypotheses A3 and B4.

PROPOSITION 8.3. – Let us assume that (Mn) satisfies the additional hypothesis B4. Let
(n1, . . . , nk−1) and (H0, . . . ,Hk−1) be two finite sequences. Then, for any integer nk > nk−1

large enough and for any homeomorphism Hk that satisfies C1(k), hypotheses C3(k) and
C4(k) also hold.

The idea of the proof is to extract the sequence (E0
n) so that the rectangles of E0

k have a very
small diameter with respect to the modulus of continuity of the homeomorphisms M� and H�

for � < k.

Proof. – By hypothesis A3, for n large enough the diameter of the connected components of
Ek+1

n is arbitrarily small. One deduces that for n large enough the diameter of the connected
components of Φ−1

k−1(E
k+1
n \Ek−1

n ) is less than 1
k . This gives hypothesis C3(k).

By hypothesis B4, for any ρ > 0 and for n large enough, the set Ψ−1
n (E0

n) does not contain
any ball of radius ρ. By definition of the extractions (see Remark 6.1), we have

Ψ−1
n

(
E0

n

)
= Ψ−1

k−1 ◦ (Mn ◦ · · · ◦Mnk−1+1)−1
(
E0

n

)
.

Hence, if ρ is small, the set(
Φ−1

k−1 ◦Ψk−1

)
◦Ψ−1

n

(
E0

n

)
= (Mn ◦ · · · ◦Mnk−1+1 ◦Φk−1)−1

(
E0

n

)
does not contain any ball of radius 1

k . Choosing nk large enough, one gets the same property for
the set (Mk ◦ Φk−1)−1(E0

k). Let us consider any homeomorphism Hk satisfying hypothesis
C1(k): the support of Hk is included in Ek−1

k . One deduces that Φ−1
k (E0

k) = (Mk ◦
Φk−1)−1(E0

k). This gives hypothesis C4(k). �
8.5. Construction of the Hk’s: realisation of hypotheses C1,2,5,6

We explain in this section how to build inductively the maps Hk in order to satisfy hypotheses
C1,2,5,6.

PROPOSITION 8.4. – Let us assume that G0
0 has no edge. Let k � 1 and let (n1, . . . , nk) and

(H1, . . . ,Hk−1) be two finite sequences that satisfy hypotheses C1,2,5,6(�) for every 1 � � < k.
Then there exists a homeomorphism Hk of M such that hypotheses C1,2,5,6(k) are also satisfied.

Proof. – As for the construction of the homeomorphisms Mn in Proposition 5.3, we build Hk

independently on each connected component of the graph Gk
k: we fix Γ one of these components.

We also denotes by Γ1, . . . ,Γs the connected components of Gk−1
k contained in Γ; they are

ordered by the dynamics on Gk
k (which has no cycle by hypothesis A1). For each connected

component Γi, one chooses a rectangle Xi ∈ Γi ∩ E0
k . The construction goes as follows. On

step 1 we will define inductively Hk on each Xi, making sure that hypothesis C5(k) is satisfied
on each of these rectangles, and that hypothesis C6(k) is satisfied between each pair Xi,Xi+1.
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On step 2 we will extend Hk along each connected component Γi of the graph Gk−1
k so that the

commutation with R holds (hypothesis C2(k)). On step 3 we will check that hypothesis C6(k)
holds between any pair of rectangles in Γ∩ E0

k .

Step 1. Definition of Hk on one vertex of each connected component of the graph Gk−1
k . One

defines inductively Hk on each Xi in the following way.
On X1, we set 12 Hk = Id.
Suppose that Hk has been defined on Xi (so that C5(k) is satisfied for every x ∈ KXi ).

Consider the integer pi � 1 such that Xi+1 = Rpi(Xi). We want to define Hk on Xi+1 in order
to satisfy C6(k), i.e. such that on KXi × C we have fpi

k = hpi . That is, we want the following
diagram to commute:

KXi ×C

f
pi
k

=hpi

Φk−1
Ψk−1(KXi ×C)

Mk Ψk(KXi ×C)
Hk Ψk(KXi ×C)

Rpi

KXi+1 ×C
Φk−1 Ψk−1(KXi+1 ×C)

Mk Ψk(KXi+1 ×C)
Hk

?
Ψk(KXi+1 ×C)

This allows to define Hk on Ψk(KXi+1 ×C) in a unique way as:

Hk = Rpi ◦Hk ◦Mk ◦Φk−1 ◦ h−pi ◦Φ−1
k−1 ◦M−1

k .

Note that
– Writing down the diagram makes use of

– Proposition 8.1, which entails Φk−1(KXi ×C) = Ψk−1(KXi ×C);
– hypothesis C5(k) on Xi, which entails Hk(Ψk(KXi ×C)) = Ψk(KXi ×C);
– hypothesis B6(k), which entails Rpi(Ψk(KXi ×C)) = Ψk(KXi+1 ×C).

– The homeomorphism Hk that appears in the top side of the diagram is the homeomorphism
of Xi that has already be defined (by induction on i). The other one is the homeomorphism
of Xi+1 we want to define.

– By our continuity assumption on h, the restriction of the map hpi on KXi × C is a
homeomorphism, proving that Hk is homeomorphism of Ψk(KXi+1 ×C).

– The fibered structures on the Cantor sets are preserved by each of these maps: one uses
Proposition 8.1 for Φk−1, the assumption that h is a fibered map, hypothesis B6(k) for Rpi

and the induction assumption for Hk on Ψk(KXi ×C). This proves that C5(k) is satisfied
for every x ∈KXi+1

Note that Ψk(KXi+1 × C) is included in the interior of the rectangle Xi+1 (hypothesis
B5(k)). One then extends the map Hk to a homeomorphism of Xi+1 which is the identity on the
boundary, using Proposition A.1 of Appendix A.

Step 2. Extension of Hk to M. We first define Hk on the rectangles of each component Γi: for
any rectangle X ∈ Γi, we consider the integer p such that X = Rp(Xi) and set

Hk|X = Rp ◦Hk|Xi
◦R−p.

12 We have some freedom here: H1 should be the identity on the boundary of X1 and preserve each Cantor set Ψk(Cx)
for x ∈ KX1 .
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The same construction is carried out for every connected component Γ of Gk
k . We extend Hk

by the identity elsewhere. One clearly obtains a homeomorphism M which satisfies hypothesis
C1(k) on the support and C2(k) on the commutation.

Step 3. Hypotheses C5,6(k) are satisfied. For each rectangle X = Xi, the map Hk preserves
the Cantor set Ψk(KX × C) and its fibered structure by construction. Any other rectangle
X ∈ G0

k is the iterate of some rectangle Xi that belongs to the same connected component of
Gk−1

k as X . Hence, the same property holds for any X by using the equivariance given by
B6(k). This proves hypothesis C5(k).

Let us prove hypothesis C6(k). We consider any path X → · · · → X ′ = Rp(X) in Gk
k with

X,X ′ ∈ E0
k . One has to prove that fp

k and hp coincide on KX ×C . The rectangles X and X ′ are
in a same connected component of Gk−1

k as some rectangles Xi and Xj respectively; hence (by
“transitivity” of the required property) it is sufficient to show the property in the two following
particular cases:

– X = Xi and X ′ = Xi+1. Here the property is satisfied by construction (see step 1).
– X and X ′ belong to a same connected component Γi of Gk−1

k . If k = 1 there is nothing
to prove 13 , so we assume k � 2. Hypotheses B2(k) and C2(k) imply fp

k = fp
k−1 on

Φ−1
k (X) (apply Remark 3.6) which contains KX ×C (apply hypothesis C5(k) via item 1

of Proposition 8.1 and hypothesis B5(k)). Hence the induction hypothesis C6(k− 1) gives
the property. �

8.6. First part of the proof of Theorem 1.3, and minimal homeomorphisms with positive
topological entropy

Under the hypotheses of Theorem 1.3, we are now able to construct a homeomorphism f that
is topologically semi-conjugate to R and has a subsystem universally isomorphic to h. For some
appropriate choice of maps R and h, this will lead to a minimal homeomorphism with positive
topological entropy on the torus Td (Rees’ theorem).

8.6.1. Construction of a homeomorphism f with a subsystem universally isomorphic to h
Assume that the hypotheses of Theorem 1.3 are satisfied:
– R is a homeomorphism on a manifold M of dimension d � 2;
– μ is an aperiodic ergodic measure for R, and A ⊂M is a measurable set which has positive

measure for μ and has zero-measure for every other ergodic R-invariant measure;
– h is a bijective map which is fibered over R (see Section 1.4 for the precise definition).
Note that we can assume that A is included in the support of μ. We first apply the results

of Section 2: there exists a Cantor set K included in A (and thus also in Supp(μ)) which
is dynamically meagre and dynamically coherent, and a family (E0

n) of rectangles satisfying
hypotheses A1,2,3 (Propositions 2.9 and 2.10). According to Remark 2.11, we can also assume
that the graph G0

0 has no edge, and even that E0
0 is reduced to a single rectangle (since μ

is ergodic). We now apply the results of Section 5 to obtain a sequence (Mn) satisfying
hypotheses B1,2,4,5,6 (see Proposition 5.3). Then we apply alternately Propositions 8.3 and 8.4
to get the sequences (nk) and (Hk) such that hypotheses C1,...,6 are satisfied. Proposition 3.1
(and 7.1) ensures the existence of a map Φ and a homeomorphism f such that Φf = RΦ.
Item 2 of Proposition 3.4 implies that Φ is one-to-one outside the set Φ−1(Supp(μ)). Since
hypothesis C4 is satisfied, Proposition 4.2 shows that, if R is transitive (resp. minimal), then
the homeomorphism f is also transitive (resp. minimal). And according to Proposition 8.2, the

13 The graph G0
0 is assumed to have no edge; by compatibility (hypothesis A1.c), this also holds for G0

1 . Thus when
k = 1 one has X = X′.
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dynamics of f on
⋃

i∈Z
f i(K ×C) is universally isomorphic to the dynamics of h: thus f has a

subsystem universally isomorphic to h.
In Section 9.5 we will complete the proof of Theorem 1.3, describing precisely the measurable

dynamics of f from the dynamics of R and h. The proof of Addendum 1.3 will be given in
Appendix B.

8.6.2. Minimal homeomorphisms with positive topological entropy
Let us specify the above construction to the case where h is a product map R×hC and hC is a

homeomorphism of the Cantor set C admitting an invariant measure ν with positive entropy (for
example, hC is conjugate to the shift map and ν is a Bernoulli measure). Then the measure μ×ν
has positive entropy for h. Since the homeomorphism f is universally isomorphic to h on some
subset, this implies that f has a measure with positive entropy. Using the variational principle,
this shows that f has positive topological entropy. We have obtained the following result.

THEOREM 8.5. – Every manifold M of dimension d � 2 which carries a minimal homeomor-
phism also carries a minimal homeomorphism with positive topological entropy.

In particular, if M = Td and R is an irrational rotation, we get Rees’ theorem: there exists a
minimal homeomorphism f on Td with positive topological entropy.

9. Suppressing the dynamics outside the Cantor set K ×C

We assume here that hypotheses A1,2,3, B1,2,4,5,6 are satisfied and that the graph G0
0 has no

edge. We have also fixed a fibered map h on the set
⋃

i∈Z
Ri(K) × C . In the previous section,

we have constructed f so that its restriction to the set
⋃

i∈Z
f i(K ×C) is universally isomorphic

to h. Getting the universal isomorphism required by Theorem 1.3 now amounts to tightening
the construction so that the set

⋃
i∈Z

f i(Φ−1(K) \K ×C) has measure 0 for every f -invariant
probability measure.

This will be obtained by requiring two additional hypotheses C7,8 on the sequences (nk)
and (Hk), under which the following fact holds: if we denote by F the first return map of f
in Φ−1(K), every F -orbit will accumulate only on K × C . For this purpose, we will consider
a sequence of “waste bins” (Pi) in M. We loosely describe the hypotheses in terms of “waste
collection and management”. Consider a point x̃ in Φ−1(K) \ (K × C) that returns infinitely
many times in Φ−1(K) in the future. Then

– the “waste collection” (hypothesis C7) will ensure that some positive iterate F r(x̃) will fall
into some waste bin Pi;

– the “waste management” (hypothesis C8) will ensure that, given that F r(x̃) belongs to a
waste bin, the forward F -orbit of F r(x̃) will accumulate only on K ×C .

In order to obtain these hypotheses we will explain how to modify the construction of the
Hk’s (the second part for the proof of the existence of (nk) and (Hk)). One important point is
that the previous hypotheses C5,6 only dealt with the dynamics of f on the Cantor set K × C ,
whereas the new ones C7,8 will only deal with the dynamics in the complement of this Cantor
set. Therefore the new constraints on the Hk’s will be compatible with the previous ones.

9.1. The waste bins (Pi)i∈N and the neighbourhoods (Vk)k∈N

We choose a sequence of topological closed balls (Pi)i∈N tamely embedded 14 in the interior
of the rectangle X̃0 = X0, that will play the role of “waste bins”. We suppose that:

14 That is, each Pi is the image of the unit ball of Rd under a continuous one-to-one map from Rd into X̃0.
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– the Pi’s are pairwise disjoint, and disjoint from the Cantor set K ×C ,
– limsupi→∞ Pi = K ×C .
We also introduce a decreasing sequence (Vk)k∈N of neighbourhoods of the Cantor set

K ×C ⊂M such that ⋂
k∈N

Vk = K ×C.

The neighbourhoods (Vk)k∈N will be used to perform the “waste collection”. Roughly speaking,
at the k-th step of the construction, we will make sure that the orbit of any point that is not in Vk

fall in some waste bin after some time.

9.2. Hypotheses C7,8

We consider the following hypotheses.

C7(k) (Waste collection, see Fig. 7)
Let X → · · · → X ′ = Rp(X) be a path in the graph Gk

k with X,X ′ ∈ E0
k , which is not a

path in the graph Gk−1
k . Then

fp
k

(
Φ−1

k+1

(
E0

k+1 ∩X
)
\ Vk

)
⊂

⋃
i∈N

Pi.

C8(k) (Waste management)
Let X → · · · →X ′ = Rp(X) be a path in the graph Gk

k with X,X ′ ∈ E0
k . Then for every

i ∈ N,

fp
k

(
Φ−1

k+1

(
E0

k+1 ∩X
)
∩ Pi

)
⊂

⋃
i′>i

Pi′ .

Remark. – If X is an element of E0
k , then the set E0

k+1 ∩ X is the union of the “immediate
sub-rectangles” of X , and the set Φ−1

k+1(E
0
k+1 ∩X) is a neighbourhood of KX ×C .

Fig. 7. Waste collection (hypothesis C7(k)). The waste to be collected are shaded in dark grey (in X̃), the
waste bins Pi are in light grey (in X̃ ′).
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Remark 9.1. – Remember that, because of hypothesis C1 on the support of Hk+1, we have

Φ−1
k+1

(
E0

k+1

)
= (Mk+1 ◦Φk)−1

(
E0

k+1

)
.

Hence hypothesis C7(k) involves the integers n1, . . . , nk and the homeomorphisms H1, . . . ,Hk

(in order to know the maps Φk and fk), but it also involves the integer nk+1 (in order to know
the set Φ−1

k+1(E
0
k+1)). It does not involve Hk+1. The same remark holds for hypothesis C8(k).

9.3. Consequences of hypotheses C7,8

Let us assume that the sequences (nk)k∈N and (Hk)k∈N were constructed in such a way that
hypotheses C1,2,3,5 are satisfied. Then, Proposition 7.1 provides us with a map Φ:M→M and
a homeomorphism f :M→M. We denote by K̃ the set Φ−1(K) and by F the first return map
in K̃ of f . Let us recall that we have embedded the Cantor set K × C in M, that K × C ⊂ K̃
and that the Cantor set K × C is invariant under F and F−1: if x̃ ∈ K̃ has a forward iterate
in K̃ , properties x̃ ∈ K × C and F (x̃) ∈ K × C are equivalent (this is the content item 2 of
Proposition 8.1 with the help of Remark 3.6).

PROPOSITION 9.2. – Assume hypotheses C1,2,3,5,7,8 and consider a point x̃ ∈ K̃ whose
forward f -orbit returns infinitely many times in K̃ . Then the ω-limit set of the F -orbit of x̃ is
included in the Cantor set K ×C .

LEMMA 9.3. – Assume hypotheses C1,2,3,5,8 and consider a point ỹ ∈ K̃ having a forward
iterate by f in K̃ . If ỹ is in a waste bin Pi, then F (ỹ) is in a waste bin Pi′ with i′ > i.

Proof. – Let p be the return time of ỹ in K̃ (i.e. the integer such that F (ỹ) = fp(ỹ)). Since
K̃ = Φ−1(K) = Φ−1(

⋂
k∈N

E0
k), the point ỹ belongs to X̃ = Φ−1(X) for some rectangle

X ∈ E0
k and some k > p. Since k > p, the rectangle X ′ = Rp(X) is in Ek

k , and belongs to
the same connected component of the graph Gk

k as X . Moreover, X ′ must be also an element
of E0

k since it contains the point Rp(Φ(ỹ)) ∈ K (by iterability, hypothesis A1.a). Thus we
can apply hypothesis C8. Note that ỹ also belongs to the set Φ−1(E0

k+1 ∩ X), which equals
Φ−1

k+1(E
0
k+1 ∩ X) (by hypotheses B1 and C1 concerning the support), and that fp(ỹ) = fp

k (ỹ)
(by Proposition 7.1). Thus hypothesis C8 implies that, if ỹ is in a waste bin Pi, then the point
F (ỹ) is in a waste bin Pi′ with i′ > i. �

Proof of Proposition 9.2. – If the point x̃ is in K × C ⊂ K̃ , then the proposition follows
immediately from the invariance of K × C under F . Consider now the case where x̃ is not in
K ×C . Since

⋂
k∈N

Vk = K ×C , there exists k0 such that x̃ /∈ Vk0 . Moreover, since (Vk)k∈N is
a decreasing sequence of neighbourhoods, x̃ is outside Vk for every k � k0.

The point x̃ is in K̃ =
⋂

k∈N
Φ−1(E0

k). As a consequence, for every k ∈ N, the point x̃ is in

X̃k = Φ−1(Xk) for some rectangle Xk ∈ E0
k . Let r be a positive integer, and let p be the integer

such that F r(x̃) = fp(x̃). There exists a unique integer k such that the rectangle Rp(Xk) is in the
same connected component of the graph of Gk

k as Xk but not in the same connected component
of the graph Gk−1

k . Up to replacing r by a bigger integer, we may assume that k is bigger than k0

(since there is no cycle in Gk0
k0

, hypothesis A1.a). Then hypothesis C7(k) implies that the point
F r(x̃) is in the waste bin Pi0 for some i0 ∈ N.

Now, using Lemma 9.3 recursively, we obtain that F r+s(x̃) is in a waste bin Pis , where
(is)s∈N is an increasing sequence of integers. As a consequence, the ω-limit set of the orbit of x̃
under F is included in limsupi→∞ Pi = K ×C . �
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COROLLARY 9.4. – Assume hypotheses C1,2,3,5,6,7,8 and let ν be an f -invariant probability
measure on M. Then

ν

( ⋃
j∈Z

f j
(
K̃ \ (K ×C)

))
= 0.

In particular, f is universally isomorphic to the disjoint union( ⋃
j∈Z

Rj(K)×C,h

)
�

(
M\

⋃
j∈Z

Rj(K),R
)

.

Proof. – The restriction of ν to K̃ is F -invariant. So, by Proposition 9.2 and using the Poincaré
recurrence theorem, we have ν(K̃ \ (K ×C)) = 0. The first part of the corollary follows.

For the second part, one defines the bi-measurable map

Θ:
(
M\

⋃
j∈Z

f j
(
K̃

))
�

( ⋃
j∈Z

f j(K ×C)
)
→

(
M\

⋃
j∈Z

Rj(K)
)
�

( ⋃
j∈Z

Rj(K)×C

)

given by Φ on the set M\
⋃

j∈Z
f j(K̃) and by Proposition 8.2 on the set

⋃
j∈Z

f j(K ×C). By
the first part of the corollary, the set

M0 :=
(
M\

⋃
j∈Z

f j
(
K̃

))
�

( ⋃
j∈Z

f j(K ×C)
)

is universally full in M: for any invariant measure ν we have ν(M \ M0) = 0. By
Propositions 7.1 and 3.4, Φ is one-to-one on the set M\

⋃
j∈Z

f j(K̃), so that Θ is one-to-one.
By Propositions 3.1 and 8.2, Θ is a conjugacy. The second part of the corollary follows. �
9.4. Realisation of hypotheses C7 and C8

We are left to prove the following proposition.

PROPOSITION 9.5. – There exist a sequence of integers (nk)k∈N and a sequence of
homeomorphisms (Hk)k∈N such that hypotheses C1,...,8 are satisfied.

Proof. – We proceed by induction. We consider an integer k0. We assume that the integers
n0, n1, . . . , nk0 and the homeomorphisms H0, . . . ,Hk0−1 are constructed, and that hypotheses
C1,...,8(k), are satisfied for every k � k0 −1 (see Remark 9.1). We will explain how to construct
an integer nk0+1 and a homeomorphism Hk0 such that hypotheses C1,...,8(k0) are satisfied.

Some explanations on the proof. As explained at the beginning of the section, we will first
use Proposition 8.4 to get a homeomorphism Hk0 such that hypotheses C1,2,5,6(k0) are satisfied,
and then we will modify this homeomorphism outside the Cantor set Ψk0(K × C) in order to
get hypotheses C7,8(k0).

One important difficulty is due to the interplay between the choices of the homeomorphism
Hk0 and the integer nk0+1: on the one hand, there are many reasons why we have to choose
the integer nk0+1 after the homeomorphism Hk0 (e.g. to get hypotheses C3,4(k0)); on the other
hand, it seems that we need to know the integer nk0+1 when we construct the homeomorphism
Hk0 in order to get hypothesis C7(k0) (see Remark 9.1). To solve this problem, we will consider
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the set:

G =
⋂
i�1

(Mnk0+i ◦ · · · ◦Mnk0+1)−1
(
E0

nk0+i

)
.

Note that, if we imagine (for sake of simplicity) that the sequence (Mn)n�1 satisfies hypothesis
B3 (so that the sequence (Ψn)n�1 converges towards a map Ψ), then we have

G = Ψnk0

(
Ψ−1(K)

)
.

According to hypothesis B4, the set G has empty interior. We will construct the homeomorphism
Hk0 and a (thin) neighbourhood W of Φ−1

k0
(G), in such a way that the set W \Vk0 will be mapped

in a waste bin by the appropriate powers of fk0 : more precisely, hypothesis C7(k0) will hold with
the set Φ−1

k+1(E
0
k+1) replaced by W . Then we will choose the integer nk0+1 big enough, so that

the set

Φ−1
k0+1

(
E0

k0+1

)
= Φ−1

k0
◦M−1

k0+1

(
E0

k0+1

)
= Φ−1

k0
◦ (Mnk0+1 ◦ · · · ◦Mnk0+1)−1

(
E0

nk0+1

)
will be included in W . Thus we will get hypothesis C7(k0). The same strategy will work to get
hypothesis C8.

Some notations. For any rectangle X ∈ Ek
k , the rectangle Φ−1

k (X) will be denoted by X̃ .
Similarly, we set Ẽ0

k = Φ−1
k (E0

k).
The different connected component Γ of the graph Gk0

k0
will be considered independently. Let Γ

be a connected component of the graph Gk0
k0

. We denote by Γ1, . . . ,Γs the connected components

of the graph Gk0−1
k0

included in Γ (ordered by the orientation of Γ). For j = 1, . . . , s, we denote
by X in

j the first vertex of Γj which is in E0
k0

, and by Xout
j the last vertex of Γj which is in E0

k0
.

Finally, for j = 1, . . . , s− 1, we denote by qj the positive integer such that X in
j+1 = Rqj (Xout

j ).
See Fig. 8.

For every j � s, we will define the homeomorphism Hk0 on the rectangle X in
j . Then

hypotheses C1,2(k0) (support and commutation with R) will enforce the definition on the
remaining vertices of Γ.

Step 1. Construction of the restriction of Hk0 to Ψk0(K ×C). Using Proposition 8.4, we
can construct a homeomorphism H0

k0
such that hypotheses C1,2,5,6(k0) are satisfied. We will

modify this homeomorphism H0
k0

in order to get a homeomorphism Hk0 such that hypotheses
C7,8(k0) will also be satisfied. The new homeomorphism Hk0 will coincide with H0

k0
on the

Fig. 8. The connected components Γ1, . . . ,Γs in Γ, the rectangles X in
1 , . . . ,X in

s and Xout
1 , . . . ,Xout

s , the
integers q1, . . . , qs−1.
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set Ψk0(K × C). Note that hypotheses C5,6(k0) depend only on the restriction of Hk0 to this
set (see point 1 of Proposition 8.1). Hence the replacement of H0

k0
by Hk0 will not destroy

hypotheses C5,6(k0). We will use the notation

f0
k0

:=
(
H0

k0
◦Mk0 ◦Φk0−1

)−1 ◦R ◦
(
H0

k0
◦Mk0 ◦Φk0−1

)
.

The map (yet to be constructed)

fk0 = (Hk0 ◦Mk0 ◦Φk0−1)−1 ◦R ◦ (Hk0 ◦Mk0 ◦Φk0−1)

will be seen as an alteration of the map f0
k0

.

Step 2. Definition of Hk0 on Γ1. On the first component Γ1, we do not modify the homeo-
morphism H0

k0
given by Proposition 8.4: we set Hk0 := H0

k0
. From now on, the formulae

Φk0 := Hk0 ◦Mk0Φk0−1 and fk0 := Φ−1
k0

◦R ◦Φk0

define the map Φk0 above the vertex of Γ1 and the map fk0 along the edges of the graph Φ−1
k0

(Γ1).

Step 3. Definition of Hk0 on Γ2. We will now define Hk0 on X in
2 , in such a way that the

map fq1
k0

: X̃out
1 → X̃ in

2 will have the desired properties (i.e. will map the appropriate sets into a
waste bin).

Note that if X = R−p(Xout
1 ) is any vertex of Γ1, then fp

k0
(KX ×C) = KXout

1
×C (point 2 of

Proposition 8.1). Now we choose a set U1 ⊂ X̃out
1 which is a small neighbourhood of KXout

1
×C

such that:
– if X = R−p(Xout

1 ) is a vertex of Γ1 in E0
k0

, then U1 is contained in fp
k0

(Vk0 ∩ X̃);
– the boundary of U1 is disjoint from all the waste bins;
– U1 is a finite union of pairwise disjoint topological balls tamely embedded in M (this is

possible since the Cantor set K ×C is tamely embedded).
Let

G =
⋂
i�1

(Mnk0+i ◦ · · · ◦Mnk0+1)−1
(
E0

nk0+i

)
.

The set Φ−1
k0

(G∩Xout
1 ) is contained in X̃out

1 and has empty interior (hypothesis B4). Moreover,
from the very definition of G we see that the set Φ−1

k0
(G ∩ Xout

1 ) can be obtained as a
decreasing intersection of a finite union of pairwise disjoint topological balls. Hence, we can
find a neighbourhood W1 of Φ−1

k0
(G ∩ Xout

1 ), such that W1 is a finite union of pairwise

disjoint topological balls, tamely embedded in Int(X̃out
1 ), with arbitrarily small internal radii.

In particular, we can assume that the internal radii of these balls are smaller than the infimum of
the internal radii of the connected components of U1, so that no connected component of U1 is
contained in W1 (see Fig. 7, where U1 is replaced by Vk and W1 by Φ−1

k+1(E
0
k+1 ∩ X)). Let Z

be the union of KXout
1

× C and all the waste bins contained in U1; thanks to the properties of
U1 and of the waste bins, Z is a compact set inside the interior of U1. We will use the following
lemma (since everything takes place inside the interior of the rectangle X̃out

1 , we can assume that
the ambient space is Rd).

LEMMA 9.6. – Let W1 and U1 be finite unions of pairwise disjoint closed topological balls
tamely embedded in Rd. Assume that every connected component of U1 meets Rd \ W1. Let Z
be a compact set inside the interior of U1.
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Then there exists a set W ′
1 which is again a finite union of pairwise disjoint closed topological

balls tamely embedded in Rd, which contains W1 \U1 and which does not meet Z .

Proof. – Using a homeomorphism L whose support is included in U1, one can push Z outside
W1 (the map L can be constructed fibrely on each connected component of U1). Then one takes
W ′

1 = L−1(W1). �
Denote by B1, . . . ,Br the pairwise disjoint closed topological balls given by the previous

lemma. Let B be the collection of these balls and of all the waste bins Pi contained in U1.
According to the lemma, B is a family of pairwise disjoint sets. Note that B contains all but a
finite number of waste bins Pi; in particular, each ball B1, . . . ,Br meets only a finite number
of the waste bins Pi. Thus for every B ∈ B, we can define an integer i(B) such that no waste
bin Pi with i > i(B) meets B. Note that every ball of B is tamely embedded. Now this family
B contains everything that we want to dispose of: each ball B will be put inside a waste bin Pi

with i > i(B). This will be done by the way of the following extension lemma (note that this is
the place where we use the inclusion K ×C ⊂ limsupi→∞ Pi).

FACT 9.7. – There exists a homeomorphism g : X̃out
1 → X̃ in

2 such that
1. g coincides with (f0

k0
)q1 on KXout

1
×C and on the boundary of X̃out

1 ;
2. for every B ∈ B, there exists i > i(B) such that g(B)⊂ Pi.

Proof. – This fact is contained in Corollary A.3 in Appendix A. Here is the translation: the
sets X,X ′ of the corollary are X̃out

1 , X̃ in
2 ; Q,Q′ are KXout

1
× C,KXin

2
× C; α and β are the

restrictions of (f0
k0

)q1 respectively on the boundary of X̃out
1 and on KXout

1
× C; the sequence

(Bj) is any indexation of the family B; the sequence (B′
i) is any indexation of the family of those

waste bins Pi that are included in the interior of X̃ in
2 . Note that since limsupi→∞ Pi = K × C

and Q′ = KXin
2
×C ⊂ Int(X̃ in

2 ), we have limsupi→∞ B′
i = Q′. �

We want to define the homeomorphism Hk0 on X in
2 in such a way that the homeomorphism

fq1
k0

: X̃out
1 → X̃ in

2 will coincide with the homeomorphism g given by the above fact. For this
purpose, recall that fq1

k0
will be such that

fq1
k0
|
X̃out

1
= (Φk0−1 ◦Mk0 ◦Hk0 |Xin

2
)−1 ◦Rq1 ◦ (Φk0−1 ◦Mk0 ◦Hk0 |Xout

1
).

In the right-hand term of this equality, all the maps are already defined except Hk0 |Xin
2

. As a
consequence, replacing fq1

k0
|
X̃out

1
by g in the above equality, we obtain a formula that tells us

how to define the map Hk0 |Xin
2

. Observe that:
– The first property in Fact 9.7 implies that Hk0 |Xin

2
will coincide with H0

k0
on Ψk0(KXin

2
×

C) and on the boundary of X in
2 , and in particular it is the identity on this boundary.

– The second property in the fact implies that fq1
k0

maps W1 \U1 into a union of waste bins Pi.
– The second property in the fact also implies that, for every i, the homeomorphism fq1

k0
maps

W1 ∩ Pi into a union of waste bins Pi′ with i′ > i (this also makes use of the properties of
the family B).

The last two points can be reformulated as follows: hypotheses C7,8(k0) are now satisfied in the
special case X = Xout

1 ,X ′ = X in
2 with the set Φ−1

k0+1(E
0
k0+1 ∩ X) replaced by the set W1 and

the set Vk0 replaced by the set U1.
The homeomorphism Hk0 is now defined on the rectangle X in

2 . Since Hk0 has to commute
with R along the edges of Gk0−1

k0
(hypothesis C2(k0)), this forces automatically the definition

of Hk0 on all the vertices of Γ2.
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Step 4. End of the definition of Hk0 . We repeat the same procedure as in step 3 to define
Hk0 on the vertices of Γ3, . . . ,Γs. Of course, we extend Hk0 by the identity outside Ek0−1

k0
so

that hypothesis C1(k0) is satisfied.

Step 5. (Temporary) choice of the integer nk0+1. For every j � s − 1, we have defined
above (in step 3 for j = 1, in step 4 for j > 1) a neighbourhood Wj of Φ−1

k0
(G ∩ Xout

j ). By
definition, G is the decreasing intersection of the sets:

(Mnk0+i ◦ · · · ◦Mnk0+1)−1
(
E0

nk0+i

)
for i � 1. So, we can choose an integer nk0+1 big enough, so that (for every j) the set

Φ−1
k0+1

(
E0

k0+1 ∩Xout
j

)
= Φ−1

k0
◦M−1

k0+1

(
E0

k0+1 ∩Xout
j

)
= Φ−1

k0
◦ (Mnk0+1 ◦ · · · ◦Mnk0+1)−1

(
E0

nk0+1
∩Xout

j

)
is included in Wj .

Hypothesis C8(k0) is satisfied. Let X → · · · → X ′ = Rp(X) be a path in the graph Gk
k

with X,X ′ ∈ E0
k . Fix an integer i. We have to check that the homeomorphism fp

k0
maps the set

Ẽ0
k0+1∩X̃∩Pi = Φ−1

k0+1(E
0
k0+1∩X)∩Pi in a union of waste bins Pi′ with i′ > i. This property

behaves well under composition, so it is enough to prove it in the two following particular cases:

Case 1 (transition between two successive components of the graph Gk0−1
k0

): there exists an
integer j � s− 1 such that X = Xout

j and X ′ = X in
j+1. In this case, the hypothesis follows from

the construction of the homeomorphism Hk0 (see the end of step 3 for j = 1) and the choice of
the integer nk0+1.

Case 2: the rectangles X,X ′ are in the same connected component of the graph Gk0−1
k0

. In
this case, the hypothesis follows easily from our induction hypothesis C8(k0 − 1), since fp

k0

coincides with fp
k0−1 on X̃ (by commutation, hypotheses B2 and C2).

Hypothesis C7(k0) is satisfied. Let X → · · · →X ′ = Rp(X) be a path in the graph Gk
k with

X,X ′ ∈ E0
k , which is not a path in the graph Gk−1

k . We have to prove that the homeomorphism
fp

k0
: X̃ → X̃ ′ maps (Ẽ0

k0+1∩X̃)\Vk0 = Φ−1
k0+1(E

0
k0+1∩X)\Vk0 into a union of waste bins Pi.

We consider the integer j such that X is a vertex of Γj , and the non-negative integer r such that
Rr(X) = Xout

j . We see fp
k0

: X̃ → X̃ ′ as the composition of fr
k0

: X̃ → X̃out
j , fqj

k0
: X̃out

j → X̃ in
j+1

and f
p−r−qj

k0
: X̃ in

j+1 → X̃ ′.

a. Let us first look at the homeomorphism fr
k0

: X̃ → X̃out
j . Recall that the rectangles X̃ and

X̃out
j are in the same connected component of the graph Gk0−1

k0
. Hence by construction

(see step 3 for the case j = 1), the neighbourhood Uj is contained in fr
k0

(X̃ ∩ Vk0). As a

consequence, fr
k0

maps (Ẽ0
k0+1 ∩ X̃) \ Vk0 into (Ẽ0

k0+1 ∩ X̃out
j ) \Uj .

b. The homeomorphism Hk0 was constructed in such a way that f
qj

k0
: X̃out

j → X̃ in
j+1 maps

Wj \ Uj into a union of waste bins Pi (see the end of step 3). And the integer nk0+1 was
chosen in such a way that Ẽ0

k0+1∩ X̃out
j is contained in Wj (see step 5). As a consequence,

f
qj

k0
maps (Ẽ0

k0+1 ∩ X̃out
j ) \Uj into a set (Ẽ0

k0+1 ∩ X̃ in
j+1)∩S where S is a union of waste

bins Pi.
c. Finally, since we have already checked hypothesis C8(k0), we know that the homeomor-

phism f
p−r−qj

k0
: X̃ in

j+1 → X̃ ′ maps any set (Ẽ0
k0+1 ∩ X̃ in

j+1)∩Pi, with Pi a waste bin, into
a union of waste bins.
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Putting a, b and c together, we obtain the desired property.

Step 6. Getting hypotheses C3,4(k0) (convergence and thinness of the fibres). On the
one hand, increasing the integer nk0+1 does not destroy hypotheses C7,8(k0) (nor, of course, the
other hypotheses which do not involve the integer k0 + 1). On the other hand, Proposition 8.3
shows that we can get hypotheses C3,4(k0) by increasing if necessary the integer nk0+1. This
completes the proof. �
9.5. Proof of Theorem 1.3

Let us assume that the hypotheses of Theorem 1.3 hold. We modify the construction of
Section 8.6 in the following way. The sequences (nk) and (Hk) are provided by Proposition 9.5
so that hypotheses C1,...,8 are satisfied (whereas in Section 8.6, we had only obtained hypotheses
C1,...,6). Proposition 3.1 (and 7.1) ensures the existence of the map Φ (which is one-to-one
outside Supp(μ)) and the homeomorphism f such that Φf = RΦ. And Corollary 9.4 provides a
universal isomorphism between f and( ⋃

j∈Z

Rj(K)×C,h

)
�

(
M\

⋃
j∈Z

Rj(K),R
)

as desired. Since hypothesis C4 is satisfied, Proposition 4.2 shows that, if R is transitive (resp.
minimal), then f is also transitive (resp. minimal). This completes the proof of Theorem 1.3.

A. Extension of homeomorphisms between Cantor sets

The following proposition is needed in the paper to extend homeomorphisms between Cantor
sets. The techniques involved in the proof are very classical (see [5,15]). Nevertheless the needed
statement does not appear in the literature, firstly because the classical theorems are not written
as extension theorems, and secondly because we deal with totally disconnected sets and not only
Cantor sets. Thus we provide a proof.

PROPOSITION A.1. – Let X,X ′ be two copies of the unit cube [−1,1]d, and α a homeomor-
phism between X and X ′. Let Q,Q′ be two totally discontinuous tamely embedded compact sets
in Int(X), Int(X ′), and β be a homeomorphism between Q and Q′.

Then there exists a homeomorphism γ between X and X ′, which coincides with β on Q and
with α on the boundary of X .

Since the totally discontinuous compact set Q is tamely embedded in X = [−1,1]d (see
Definition 2.6), there exists a strictly decreasing sequence (Qn)n�0 of subsets of Int([−1,1]d)
such that:

1. Q =
⋂

n�0 Qn;
2. each Qn is the union of a finite family of pairwise disjoint closed topological balls

(homeomorphic to [−1,1]d).
Note that the supremum of the diameters of the connected components of Qn goes to 0 when
n tends to infinity (since Q is totally disconnected). We also consider an analogous sequence of
sets (Q′

n)n�0 for Q′.

Proof. – The proof consists in successive reductions of the problem to an almost trivial case.

Reduction 1. One can assume that X = X ′ = [−1,1]d and α = Id. Indeed, one can bring
back Q′ in X via α−1, solve the reduced problem in X , then compose the solution with α.
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Reduction 2. We let I1 be the arc [−1,1] × {(0, . . . ,0)} in X = X ′ = [−1,1]d. One can
further assume that Q,Q′ ⊂ I1. To see this it suffices to find a homeomorphism F of [−1,1]d

such that F is the identity on the boundary and F (I1) contains Q (and do the same for Q′). The
homeomorphism F is constructed by a technique of successive approximations (see for example
[20], Theorem 1): F = limFn when Fn(I1) meets every connected components of Int(Qn) and
Fn+1 = Gn ◦ Fn with Gn supported in Qn. The existence of Gn comes from the fact that the
group of homeomorphisms of [−1,1]d which are the identity on the boundary acts transitively
on the n-uplet of distinct points in [−1,1]d.

Reduction 3. One can further assume that X = X ′ = [−1,1]2 (that is, d = 2). Note that
Q,Q′ are obviously tamely embedded in [−1,1]2 × {(0, . . . ,0)} (thanks to reduction 2). So
solving the problem in dimension 2 enables us first to construct γ as a homeomorphism of
[−1,1]2 × {(0, . . . ,0)} and then extend γ to [−1,1]d using an isotopy from γ to the identity
(Alexander trick).

Reduction 4. One can additionally assume that for every n � 0, and every connected
component R of Qn, there exists a connected component R′ of Q′

n such that β(R∩Q) = R′∩Q′.
We start with the initial sequences (Qn), (Q′

n) and we explain how to construct two decreasing
sequences (Q̂n), (Q̂′

n) that satisfy the additional assumption. The construction will satisfy
Q̂2p = Qmp and Q̂′

2p+1 = Q′
np

for some increasing sequences (mp) and (np), which will

guarantee that
⋂

Q̂n = Q and
⋂

Q̂′
n = Q′.

We let Q̂0 = Q0, and denote by R1, . . . ,Ri0 the connected components of Q0. The family
F = {β(Ri ∩ Q), i = 1, . . . , i0} is a finite covering of Q′ by closed open sets. Let n0 be a
sufficiently big integer so that the covering of Q′ by the connected components of Q′

n0
is finer

than F . A repeated use of the first item in Lemma A.2 below (with R = [−1,1]2) provides a
family F ′ = {R′

1, . . . ,R
′
i0
} of pairwise disjoint closed topological discs whose union contains

Q′
n0

, and such that R′
i ∩ Q′ = β(Ri ∩ Q) for each i (each R′

i contains all the connected

components R′ of Q′
n0

satisfying R′ ∩Q′ ⊂ β(Ri ∩Q)). We let Q̂′
0 be the union of the elements

of F ′.
Now let Q̂′

1 = Q′
n0

. We construct Q̂1 from Q̂′
1 by imitating the above construction of Q̂′

0

from Q̂0 (note that this time Lemma A.2 is applied with R equal to the appropriate connected
component of Q̂0, so that Q̂1 ⊂ Int(Q̂0)). We proceed to construct both sequences (Q̂n), (Q̂′

n),
exchanging at each step the role played by Q and Q′.

Final proof. We now prove the special case of the theorem corresponding to the successive
reductions. The wanted homeomorphism γ is obtained as the limit of a sequence (γn) where
γn sends each component Rn of Qn onto the corresponding component R′

n of Q′
n (see

reduction 4). This sequence is constructed recursively with γn+1 = δn ◦ γn and the support of
the homeomorphism δn included in Qn. The homeomorphism δn is given by the second item of
Lemma A.2. �

LEMMA A.2 (in dimension 2). –
1. Let R be a closed topological disc (i.e. a set homeomorphic to [−1,1]2), and let R1, . . . ,Ri0

be a family of pairwise disjoint closed topological discs inside Int(R). Then there exists a
closed topological disc R1,2 inside Int(R) that contains R1 and R2 and is disjoint from all
the Ri, i � 3.

2. Let R′
1, . . . ,R

′
i0

be another such family. Then there exists a homeomorphism of R, which is
the identity on the boundary, and that maps each Ri onto R′

i.
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The first item is proved the following way: choose one point xi in each disc Ri, choose a
disc R̂1,2 that contains x1, x2 (in its interior) but not the xi, i � 3. Then set R1,2 = F−1(R̂1,2)
where F is a homeomorphism that is supported on a neighbourhood of the union of the Ri’s
and contract each Ri to a sufficiently small disc around xi. The second item is a variation on
Schoenflies’ theorem. Here is one way to prove it. Firstly, the problem can easily be solved if the
last word “onto” is replaced by the word “into”. Secondly, by considering discs R′′

i slightly larger
than the R′

i’s, the problem is reduced to the case i0 = 1. Then this is the classical Schoenflies
theorem with compact support, see for example [6], Theorem II.6.C on page 31.

COROLLARY A.3. – Assume the hypotheses of Proposition A.1, together with the following
additional data: (Bj)j�0, (B′

i)i�0 are two sequences of pairwise disjoint topological closed balls
respectively in Int(X), Int(X ′) such that

1. the Bj’s are disjoint from Q, the B′
i’s are disjoint from Q′;

2. limsupj→∞ Bj ⊂ Q;
3. limsupi→∞ B′

i = Q′;
4. each Bj is tamely embedded 15 in X .

Let ϕ :N → N be any function. Then there exists a homeomorphism γ such that the conclusion
of Proposition A.1 holds, and for every j � 0 there exists i > ϕ(j) such that γ(Bj) ⊂ B′

i.

Proof. – For every j, let xj be any point in the interior of Bj . We first extend continuously the
map β to the set {xj}, with values in the B′j’s, in the following way: for every j � 0, pick a
point q in Q which is among the closest to xj , then pick some point β(xj) in the interior of a ball
B′

i with i > ϕ(j) and such that d(β(xj), β(q)) � d(xj , q) (such a point exists thanks to item 3
of the hypotheses). This can be done so that β is still one-to-one, and since Q̂ := Q ∪ {xj} is a
compact set (hypothesis 2), β is still a homeomorphism on its image.

Now we apply Proposition A.1 to the sets Q̂ and Q̂′ = β(Q̂). Denote by γ̂ the resulting
homeomorphism. Note that for every j, xj is a point of Int(Bj) such that γ̂(xj) ⊂ Int(B′

ij
)

for some ij > ϕ(j).
Let Oj be a topological closed ball containing γ̂(Bj) in its interior. It is easy to find a

homeomorphism δj supported in Oj such that δj(γ̂(Bj)) ⊂ Int(B′
ij

). Note that since the balls
Bj are tamely embedded, we can assume that the Oj are pairwise disjoint. Let δ be the
infinite (commutative) composition of all the δj . Thanks to hypothesis 2, and since Q is totally
disconnected, the diameter of Bj goes to 0 when j goes to infinity, thus we can assume that the
same happens to the Oj ’s, and then δ is a homeomorphism. It remains to set γ = δ ◦ γ̂. �

B. Transitivity, minimality: proof of Addendum 1.4

In Sections 4 and 7, we have explained how to get some recurrence properties for the
homeomorphism f in the case where the dynamics of the initial homeomorphism R is minimal
(or transitive) on the whole manifold M. This appendix deals with the general case, when the
dynamics of R is not supposed to be minimal nor transitive on M. Assuming some recurrence
properties for the homeomorphism R on the subset

Λ = Cl
(⋃

j∈Z

Rj(K)
)

,

we explain how to obtain some recurrence properties for the homeomorphism f on the set
Φ−1(Λ). In particular, we will prove Addendum 1.4 (see Section 1.4).

15 See footnote 14 in Section 9.1.
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All along the appendix, we suppose we are given a sequence of collections of rectangles (E0
n)

satisfying hypotheses A1,3, and such that the graph G0
0 has no edge.

B.1. Hypotheses B̃4 and C̃4

Given a sequence of homeomorphisms (Mn)n�1, we consider the following hypothesis.
B̃4 (Fibres are thin: strong form)

For any δ > 0, there exists r � 1 such that for any n � r, the set Ψ−1
n (Er

n \E0
n) is δ-dense

in the set Ψ−1
n (Er

n).

Remark. – Hypothesis B4 (see Section 4) can be reformulated as follows: for every δ > 0
there exists n0 such that, for any n � n0, the set Ψ−1

n (M\ E0
n) is δ-dense in M. This shows

that hypothesis B̃4 is stronger than B4.

If the sequence of homeomorphisms (Mn)n�1 satisfies hypotheses B1,2,3, then we can
reformulate hypothesis B̃4 using the map Ψ = limΨn.

PROPOSITION B.1. – Hypothesis B̃4 is satisfied if and only if the set Ψ−1(K) has empty
interior in the set Ψ−1(Λ).

Proof. – As in the proof of Proposition 4.1, for any fixed r > 0, we get that Ψ−1(
⋃

|i|�r Ri(K))
is the decreasing intersection of the compact sets Ψ−1

n (Er
n) and that Ψ−1(

⋃
|i|�r Ri(K) \K) is

the decreasing intersection of the sets Ψ−1
n (Er

n \ E0
n). This implies that B̃4 is satisfied if and

only if for every δ > 0, there exists r > 0 such that the set Ψ−1(
⋃

|i|�r Ri(K) \K) is δ-dense in

Ψ−1(
⋃

|i|�r Ri(K)). Hence, B̃4 is satisfied if and only if Ψ−1(Λ \K) is dense in Ψ−1(Λ), i.e.
if and only if Ψ−1(K) has empty interior in Ψ−1(Λ). �

COROLLARY B.2. – If Λ = M, hypotheses B4 and B̃4 are equivalent.

Proof. – This follows immediately from Propositions 4.1 and B.1. �
Replacing M by Λ in the proof of Proposition 4.2, we obtain the following result.

PROPOSITION B.3. – If the dynamics of R on Λ is transitive (resp. minimal) and hypothe-
sis B̃4 is satisfied, then the dynamics of g on Ψ−1(Λ) is also transitive (resp. minimal).

Now suppose we are also given a sequence of integers (nk)k∈N and a sequence of
homeomorphisms (Hk)k∈N. Then we can consider the following hypothesis.

C̃4 (Fibres are thin: strong form)
For any ε > 0, there exists r � 1 such that for any � � r, the set Φ−1

� (Er
� \E0

� ) is ε-dense
in the set Φ−1

� (Er
� ).

Of course, Proposition B.1, Corollary B.2 and Proposition B.3 are still valid if one replaces the
maps Ψ, g by the maps Φ, h, and hypothesis B̃4 by hypothesis C̃4.

B.2. Realisation of hypotheses B̃4 and C̃4

An important technical problem arises when one tries to realise simultaneously hypothesis B̃4

(or C̃4) and some other hypotheses:
– the extraction process defined in Section 6.1 is crucial for obtaining some hypotheses (as e.g.

B3);
– hypothesis B̃4 is not preserved by the extraction process.
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To overcome this problem, we will have to realise some hypotheses that are stronger than B̃4,
and preserved by the extraction process.

Given a sequence of homeomorphisms (Mn)n�1 satisfying hypotheses B1,2, we consider the
sequence of homeomorphisms (Ψ0

n)n�1 defined by:

Ψ0
n = Mn|E0

n−1
◦Mn−1|E0

n−2
◦ · · · ◦M1|E0

0

where Mi|E0
i−1

denotes the homeomorphism which is equal to Mi on E0
i−1 and equal to the

identity elsewhere. The same proof as in Section 3.3 shows that sequence of homeomorphisms
(Ψ0

n) converges to a continuous map Ψ0.

Remark B.4. – The map Ψ0
n can be thought of as “what would be the extracted map Ψ1 if n1

was equal to n.” Also note that this definition is “stable under the extraction process”: more
precisely, if (nk) is some sequence of integers as in Section 6, and (Mk) is the associated
extracted sequence as in Section 6.1, one can define a sequence

Ψ0
k = Mk|E0

k−1
◦Mk−1|E0

k−2
◦ · · · ◦M1|E0

0
.

Then one has Ψ0
k = Ψ0

nk
for every k, so that the sequence (Ψ0

k) converges towards the same map
Ψ0.

We introduce a hypothesis that is a first step towards hypothesis B̃4:
β̃4 The set (Ψ0)−1(K) has empty interior in (Ψ0)−1(Λ), where Λ = Cl(

⋃
i∈Z

Ri(K)).
This hypothesis should be compared to the definition of dynamical meagreness (Definition 2.8).
According to the previous remark, this hypothesis is stable under the extraction process. We now
prove that hypothesis β̃4 can be realised.

PROPOSITION B.5. – Assume that K is dynamically meagre. Then there exists a sequence
(Mn)n∈N of homeomorphisms of M such that hypotheses B1,2,5,6 and β̃4 are satisfied.

Proof. – We adapt the proof of Proposition 5.3. Hypothesis β̃4 is a straightforward conse-
quence of the following points.

– Let x be a point of K , and for every n let X̂n be the rectangle of E0
n containing x. Since

K is dynamically meagre, for infinitely many values of n, the set Λ ∩ Int(X̂n−1 \ E0
n) is

not empty. Also note that the dynamical meagreness implies that Λ has no isolated point, so
that Λ∩ Int(X̂n−1 \E0

n) is infinite as soon as it is non-empty.
– In the inductive construction of the sequence (Mn)n∈N, we may require the following

additional property to be satisfied:

For every rectangle X̂ ∈ E0
n−1 such that the set Λ ∩ Int(X̂ \ E0

n) is not empty, the set

(Ψ0
n)−1(Λ∩ Int(X̂ \E0

n)) is 1
n dense in (Ψ0

n)−1(X̂).

This property is easily obtained by the following modification in the step 2 of the proof of
Proposition 5.3: we choose the set A′ included in the (infinite) set Λ∩ Int(X̂ \E0

n), and the
constant δn smaller than 1

n .

– Hypothesis B1 implies that (Ψ0)−1(Λ∩ Int(X̂ \E0
n)) = (Ψ0

n)−1(Λ∩ Int(X̂ \E0
n)). �

The next step is to show that hypothesis B̃4 can be obtained from hypothesis β̃4 by extracting.
For this we need a quantitative version of hypothesis B̃4.

B̃4(δ) There exists r � 1 such that for any n � r, the set Ψ−1
n (Er

n \E0
n) is δ-dense in the set

Ψ−1
n (Er

n).
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PROPOSITION B.6. – Assume that the sequence (Mn) satisfies hypotheses B1,2 and β̃4. Let
(n1, . . . , nk−1) be an increasing sequence. Fix some positive δ. Then for any increasing sequence
(n�)��k with nk large enough, the hypothesis B̃4(δ) is satisfied by the extracted sequences (E0

�)
and (Ψ�).

During the proof of Proposition B.6, we will need to compare the maps Ψ−1
k and (Ψ0

nk
)−1.

This is the purpose of the following lemma:

LEMMA B.7. – For every increasing sequence (n1, . . . , nk), the maps Ψ−1
k and (Ψ0

nk
)−1

coincide on the set E0
k−1.

The proof is an easy induction, and makes use of the equality Ek−1
i−1 ∩E0

k−1 = E0
i−1 for every

i = nk−1 + 1, . . . , nk that follows from hypothesis A1.c (see Section 2.3).

Proof of the proposition. – We will prove the following fact. There exists r � 1 such that for
any nk large enough,

1. the set Ψ−1
k ((Er

nk
\E0

nk
)∩E0

k) is (2δ)-dense 16 in the set Ψ−1
k (E0

nk
);

2. the diameter of each connected component of Ψ−1
k ((Er

nk
\E0

nk
)∩E0

k) is less than δ.
For this, we first choose an ε > 0 which is less than δ and such that the ε-neighbourhood
of (Ψ0)−1(K) is included in (Ψ0)−1(E0

k). We now apply β̃4. Since the map (Ψ0)−1 is a
homeomorphism outside K , this provides us with a positive integer r (we may assume r � k)
such that (Ψ0)−1(Kr) is ε-dense in (Ψ0)−1(K), where Kr = (

⋃
|i|�r Ri(K))\K . By the choice

of ε this implies that
(	) the set (Ψ0)−1(Kr ∩E0

k) is δ-dense in (Ψ0)−1(K).
Using hypothesis A3, we choose an integer N � r large enough so that

(		) the diameter of each connected component of the set (Ψ0)−1((Er
N \E0

N ) ∩E0
k) is less

than δ;
(			) the set (Ψ0)−1(K) is δ-dense in the set (Ψ0)−1(E0

N ).
Note that for every s � r we have (Ψ0

s)
−1 = (Ψ0)−1 on M\E0

r , in particular on Er
N \E0

N (by
compatibility, see Section 2.3), so that (Ψ0)−1((Er

N \E0
N )∩E0

k) = (Ψ0
s)

−1((Er
N \E0

N )∩E0
k).

Now let us check that, for any nk � N , we have properties 1 and 2 stated at the beginning of
the proof. Using Lemma B.7 and the above equality (for s = nk), we get

Ψ−1
k

((
Er

nk
\E0

nk

)
∩E0

k

)
=

(
Ψ0

nk

)−1((
Er

nk
\E0

nk

)
∩E0

k

)
=

(
Ψ0

)−1((
Er

nk
\E0

nk

)
∩E0

k

)
⊂

(
Ψ0

)−1((
Er

N \E0
N

)
∩E0

k

)
.

This, together with property (		), implies property 2. For property 1, let us note that the set Kr

is contained in Er
nk

\E0
nk

. Thus the set Ψ−1
k ((Er

nk
\E0

nk
)∩E0

k) contains a set that is δ-dense in
(Ψ0)−1(K) (by property (	)), which in turn is δ-dense in (Ψ0)−1(E0

N ) (by property (			)),
which contains (Ψ0)−1(E0

nk
): as a consequence, Ψ−1

k ((Er
nk

\ E0
nk

) ∩ E0
k) is (2δ)-dense in

(Ψ0)−1(E0
nk

). It remains to note that(
Ψ0

)−1(
E0

nk

)
=

(
Ψ0

nk

)−1(
E0

nk

)
= (Ψk)−1

(
E0

nk

)
.

The first equality follows from the definition of Ψ0, and the second one from Lemma B.7.
To complete the proof of the proposition, let (n�)��k be an increasing sequence with nk � N

as above, and let � � r (thus � � k). Then

16 That is, every point Ψ−1
k

(E0
n ) is at distance less than 2δ from a point of the set Ψ−1

k
((Er

n \E0
n )∩E0

k).

k k k
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– by hypothesis A1.b, the set Ψ−1
� ((Er

n�
\E0

n�
)∩E0

k) meets every connected component of
the set Ψ−1

� ((Er
nk

\E0
nk

)∩E0
k);

– by definition of the map Ψ�, one has Ψ−1
� ((Er

nk
\E0

nk
)∩E0

k) = Ψ−1
k ((Er

nk
\E0

nk
)∩E0

k).
Thus properties 1 and 2 above imply that the set Ψ−1

� ((Er
n�

\E0
n�

)∩E0
k) is (3δ)-dense in the set

Ψ−1
k (E0

nk
). Finally, observe that

Ψ−1
k

(
E0

nk

)
= Ψ−1

�

(
E0

nk

)
⊃Ψ−1

�

(
E0

n�

)
.

Hence, the set Ψ−1
� ((Er

n�
\ E0

n�
) ∩ E0

k) is (3δ)-dense in the set Ψ−1
� (E0

n�
). Hence hypothesis

B̃4(3δ) is satisfied by the extracted sequences. �
Finally we will get hypothesis C̃4 in the same way as for B̃4. When given two sequences (nk)

and (Hk), we consider:
C̃4(ε) There exists r � 1 such that for any � � r, the set Φ−1

� (Er
� \E0

� ) is ε-dense in the set
Φ−1

� (Er
� ).

PROPOSITION B.8. – Assume that the sequence (Mn) satisfies hypotheses B1,2 and β̃4.
Let (n1, . . . , nk−1) and (H1, . . . ,Hk−1) be two finite sequences. Fix some positive ε. Then for
any increasing sequence (n�)��k with nk large enough and any sequence (H�)��k such that

hypotheses C1,2 are satisfied, the hypothesis C̃4(ε) is also satisfied.

Proof. – We consider the homeomorphism Z = Φ−1
k−1 ◦Ψk−1. Choose some δ > 0 such that

d(x, y) � δ implies d(Z(x),Z(y)) � ε. According to the proof of Proposition B.6, we can find
integers r � k and N � r such that for any choice of nk � N ,

1. the set Ψ−1
k ((Er

nk
\E0

nk
)∩E0

k) is δ-dense in the set Ψ−1
k (E0

nk
);

2. the diameter of each connected component of Ψ−1
k ((Er

nk
\E0

nk
)∩E0

k) is less than δ.
Consider some sequences (n�)��k and (H�) as in the statement of Proposition B.8. Assume
nk � N . By definition we have Φ−1

k = Φ−1
k−1 ◦M−1

k ◦H−1
k = Z ◦Ψ−1

k ◦H−1
k . Since the support

of Hk is Ek−1
nk

, the sets (Er
nk

\E0
nk

)∩E0
k and E0

nk
are preserved by H−1

k . Consequently, points
1 and 2 above are still valid when Ψk is replaced by Φk and δ by ε.

It remains to prove that this implies that: for any � � r, the set Φ−1
� (Er

n�
\E0

n�
) is (2ε)-dense

in the set Φ−1
� (Er

n�
). This is entirely analogous to the end of the proof of Proposition B.6. �

B.3. Proof of Addendum 1.4

We modify the constructions of Sections 8.6 and 9.5 in the following way. Using Proposi-
tion B.5, we can construct a sequence (Mn) such that hypotheses B1,2,4,5,6 and β̃4 are satisfied.
Then, using Proposition B.8 together with Proposition 9.5, we can construct a sequence of inte-
gers (nk) and a sequence of homeomorphisms (Hk) such that hypotheses C1,...,8 and C̃4 are
satisfied 17 . Since the measure μ is ergodic, the set Λ is equal to the support of μ. Hence, R is
transitive on Λ. Hence, Proposition B.3 (applied to Φ, f and C̃4 instead of Ψ, g and B̃4) shows
that:

– in any case, f is transitive on Φ−1(Supp(μ));
– if R is minimal on Φ−1(Supp(μ)), then R is also minimal on Supp(μ).

This completes the proof of Addendum 1.4.

17 More precisely, we have to modify the proof of Proposition 9.5 so that the choice of the integer nk0+1 at step 6
involves not only Proposition 8.3 but also Proposition B.8.
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C. Some examples

In this appendix, we want to illustrate some of the results of the paper (mainly Propositions 3.1,
B.3 and our main Theorem 1.3) by a few examples.

C.1. Denjoy counter-examples

The simplest setting for Proposition 3.1 is when the collection E0
n is made of a single rectangle

for every n (or equivalently, when K is a single point). This yields various generalisations of the
classical Denjoy counter-examples on S1.

PROPOSITION C.1. – Let R be a homeomorphism on a compact manifold M, and x a
point of M which is not periodic under R. Consider a compact subset D of M which can
be written as the intersection of a strictly decreasing sequence (X̃n)n�0 of tamely embedded
topological closed balls. Then there exist a homeomorphism f :M→M and a continuous onto
map Φ:M→M such that Φ ◦ f = R ◦Φ, and such that

– Φ−1(x) = D;
– Φ−1(y) is a single point if y does not belong to the R-orbit of x.

Remarks. –
– The properties of Φ and f imply that, if R is minimal, then the set M\

⋃
n∈Z

fn(Int(D))
is the only minimal closed invariant set for f .

– So, if R is an irrational rotation on M = S1 and D is a non-trivial interval of S1, then f is
a classical Denjoy counter-example.

– In any case, if the interior of D is non-empty, then it is an open wandering set for f . In
particular, if R is minimal and D has non-empty interior, then the dynamics of f is very
similar to the dynamics of Denjoy counter-examples on the circle.

– If R is minimal and D has empty interior, then f is minimal. In this case, we obtain a kind
of “Denjoy-counter-example” whose dynamical behaviour is actually quite different from
those of the classical Denjoy counter-examples on the circle.

Proof of Proposition C.1. – First note that we may assume that the point x belongs to the
interior of X̃0

18 . We choose a decreasing sequence of rectangles (Xn)n∈N such that X0 = X̃0

and
⋂

n∈N
Xn = {x} and such that, for every n ∈ N, the rectangles f−(n+1)(Xn), . . . ,Xn, . . . ,

fn+1(Xn) are pairwise disjoint. Observe that to get the last property, it suffices to choose the
rectangle Xn small enough. We set E0

n := {Xn}. It is very easy to check that the sequence of
collection rectangles (E0

n)n∈N satisfies hypotheses A1,2,3.
Secondly, we construct a sequence of homeomorphisms (Mn)n�1 satisfying hypotheses

B1,2 and such that Φ−1
n (Xn) = X̃n for every n. We proceed as follows. Assume that

M1, . . . ,Mn−1 have been constructed. Then Φn−1(X̃n) is a strict sub-rectangle of the rectangle
Φn−1(X̃n−1) = Xn−1. So we can construct Mn on the rectangle Xn−1 such that Mn is
the identity on the boundary of Xn−1 and such that Mn(Φn−1(X̃n)) = Xn (i.e. Φn(X̃n) =
Xn). Then hypotheses B1 and B2 do not leave any freedom for the construction of Mn

on M \ Xn−1 (note that hypothesis B2 does not cause any problem since the rectangles
f−(n+1)(Xn), . . . ,Xn, fn+1(Xn) are pairwise disjoint).

Thirdly, using Proposition 6.3, we can “extract a sub-sequence” in order to obtain hypothesis
B3. Then, we can apply Proposition 3.1 in order to get a map Φ and a homeomorphism f

18 Choose some homeomorphism Ψ of M such that x ∈ Int(Ψ(X̃0)); solve the problem with (X̃n) and D replaced

by (Ψ(X̃n)) and Ψ(D); then replace f by Ψ−1 ◦ f ◦Ψ and Φ by Φ ◦Ψ.
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satisfying all the desired properties (the equality Φ−1(x) = D follows from the equalities
Φ−1

n (Xn) = X̃n and Φ−1(x) =
⋂

n∈N
Φ−1

n (x), see Lemma 3.2). �
C.2. Different ways of blowing up an invariant circle

Now, we would like to illustrate hypothesis B̃4 on some simple examples. For this purpose, we
consider an irrational rigid rotation R of the sphere S2 (fixing the two poles N and S). We denote
by Λ the equatorial circle of S2 (which is invariant under R), and we pick a point x ∈ Λ. Using
Proposition C.1, we can construct a homeomorphism f and a map Φ such that Φ ◦ f = R ◦ Φ,
such that Φ−1(x) is a non-trivial “vertical” segment J and such that Φ−1(y) is a single point if y
does not belong to the R-orbit of x. It follows that Λ̃ = Φ−1(Λ) is a one-dimensional (connected
with empty interior) f -invariant compact set which separates S2 into two connected open sets.

Moreover, according to the way we choose the Mn’s, we can get quite different topologies for
the set Λ̃ and quite different dynamics for the restriction of f to Λ̃. Here are three possible types
of behaviours:

– Λ̃ is a non-arcwise connected set which is minimal for f (Fig. 9, I);
– Λ̃ is a topological circle which is not minimal for f : the restriction of f to Λ̃ is a Denjoy

counter-example on the circle, the vertical segment J is wandering (Fig. 9, II);
– Λ̃ contains a circle which is a minimal set for f , but is not equal to this circle (Fig. 9, III,

where the minimal set is the equatorial circle).
We will not explain precisely how to obtain such examples. We just note that an important point
in the construction is the fact that hypothesis B̃4 is satisfied in the first example, but not in the
other two.

Remark. – The construction of the above examples can be made in such a way that Φ
is C∞ on S2 \ Λ̃. Moreover, if we identify S2 \ {N,S} to the annulus S1 × R and see
f as a homeomorphism of S1 × R, then all the constructions can be made in such a way
that f is a fibered homeomorphism (i.e. is of the form f(x, y) = (x + α,fx(y))). In this
context, it is interesting to compare the three above examples with the classification of fibered
homeomorphisms of T. Jaeger and J. Stark (see [16]). This will be one of the purposes of a
forthcoming paper [4].

C.3. Pseudo-rotations with positive topological entropy on the 2-sphere

To end up this appendix, we would like to apply Theorem 1.3 to obtain a more sophisticated
example. An irrational pseudo-rotation of the sphere S2 is a homeomorphism which preserves
the orientation and the Lebesgue measure, has two fixed points N,S and no other periodic point.
The rotation set of an irrational pseudo-rotation is reduced to a single irrational number (the
angle of the pseudo-rotation, see [18,3]).

We choose any irrational angle α ∈ S1 and denote by Rα the rigid rotation of angle α. We
denote by Λ the equatorial circle invariant by Rα.

PROPOSITION C.2. – For every α ∈ R \Q, there exists an irrational pseudo-rotation f on S2

of angle α with positive topological entropy.
Furthermore, there exists a continuous onto semi-conjugacy Φ between f and the rigid

rotation Rα. If Λ is the equatorial circle of S2 (invariant under Rα), then the set Λ̃ = Φ−1(Λ) is
a one-dimensional (connected with empty interior) minimal closed f -invariant set which carries
all the entropy of f . It separates the sphere into two connected open sets. The map Φ is smooth
on S2 \ Λ̃; thus the restriction f to S2 \ Λ̃ is C∞-conjugate to the restriction of Rα to S2 \Λ.
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Fig. 9. Different ways of blowing up an invariant circle.

Proof. – The proposition is almost a corollary of Theorem 1.3 applied in the case where the
manifold M is the sphere S2, the homeomorphism R is the rigid rotation Rα, the measure μ is the
unique R-invariant measure supported by the equatorial circle Λ, the set A is the equatorial circle
Λ and the map h is the product of Rα|Λ by a Cantor homeomorphism with positive topological
entropy. The only point which does not follow from Theorem 1.3 is the fact that Φ is C∞ on
S2 \ Λ̃. This is an immediate consequence of the two following remarks:

– in the construction of the homeomorphisms Mn’s and Hk’s explained in Sections 5.4, 8.5
and 9.5, it is not difficult to ensure that all these homeomorphisms are C∞ outside the
iterates of the Cantor set K ×C;
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– for every point x̃ ∈ S2 \ Λ̃, all but a finite number of the homeomorphisms Mn’s and Hk’s
are equal to the identity in a neighbourhood of x̃; hence Φ is locally the composition of a
finite number of C∞ maps. �
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