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Abstract

Given a (transitive or non-transitive) Anosov vector fieldX on a closed three-dimensional
manifoldM , one may try to decompose (M,X) by cuttingM along two-tori transverse toX .
We prove that one can find a finite collection {T1, . . . , Tn} of pairwise disjoint, pairwise non-
parallel incompressible tori transverse toX , such that the maximal invariant sets Λ1, . . . ,Λm

of the connected components V1, . . . , Vm ofM−(T1∪· · ·∪Tn) satisfy the following properties:

– each Λi is a compact invariant locally maximal transitive set for X ;

– the collection {Λ1, . . . ,Λm} is canonically attached to the pair (M,X) (i.e. it can be
defined independently of the collection of tori {T1, . . . , Tn});

– the Λi’s are the smallest possible: for every (possibly infinite) collection {Si}i∈I of
tori transverse to X , the Λi’s are contained in the maximal invariant set of M −∪iSi.

To a certain extent, the sets Λ1, . . . ,Λm are analogs (for Anosov vector field in dimension 3)
of the basic pieces which appear in the spectral decomposition of a non-transitive axiom A
vector field. Then we discuss the uniqueness of such a decomposition: we prove that the
pieces of the decomposition V1, . . . , Vm, equipped with the restriction of the Anosov vector
field X , are “almost unique up to topological equivalence”.

1 Introduction

Anosov flows (originally called U -system) are named after D.V. Anosov. In his celebrated
paper [1], Anosov proved that every Anosov flow is both structure stable and ergodic.
Anosov flows are generalizations of the geodesic flow on closed Riemannian manifold with
negative curvature, motivated by an important property of these geodesic flows: the whole
underling manifold is a hyperbolic set for the flow. To be precise, for a closed Riemannian
manifold M , a nonsingular Cr (r ≥ 1) vector field X on M is called an Anosov vector field
(and the corresponding flow (Xt) is called an Anosov flow) if there exists a X-invariant
splitting TM = Es ⊕ RX ⊕ Eu and some constants C > 0, λ > 1 such that: ‖DXt(v)‖ ≤
Ce−λt‖v‖ for any v ∈ Es, t ≥ 0 and ‖DX−t(v)‖ ≤ Ce−λt‖v‖ for any v ∈ Eu, t ≥ 0.

It is natural to develop a qualitative understanding of these flows. Many works have
been done in this direction, although a complete classification seems to be absolutely out
of reach, even in dimension 3. Let us cite a few papers:

• Plante and Ghys classified Anosov flows on closed three-manifolds which are either
torus bundles over the circle or circle bundles over a surface ([19, 15]),

• Ghys classified Anosov flows on closed three-manifolds whose stable/unstable bundles
are smooth ([16]),

• Barbot and Fenley associated to each Anosov flow (Xt) on a closed three-manifold a
pair of one-dimensional foliations (Gs,Gu) on a subset of R2, and explained how the
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dynamical properties of the flow (Xt) translate as geometrical properties of the pair
(Gs,Gu), and vice-versa ([12, 2]);

• Barbot and Fenley gave a description of certain classes of (pseudo-)Anosov flows on
certain toroidal manifolds (see e.g. [6, 7]).

Besides these efforts to classify some particular classes of Anosov flows in dimension 3,
many new examples of Anosov have been discovered. For example:

• Handel and Thurston have constructed an Anosov flow on a closed three-manifold
which is neither a circle bundle over a surface, nor a surface bundle over the circle
([18]);

• Goodman ([17]) has developed the technique used by Handel and Thurston. Her con-
struction, called Dehn-Goodman surgery, is a fundamental tool to construct various
types of examples of Anosov flows;

• Franks and Williams have built an Anosov flow (on a closed three-manifold) which is
not transitive ([14]);

• Bonatti and Langevin have constructed a transitive Anosov flow X on a closed three-
manifold M , such that there is a torus embedded in M and transverse to X, but X is
not a suspension ([10]; see also [4]).

These examples show that the realm of Anosov flows in dimension three is much richer
than what can be expected at first sight. Both Franks-Williams’ and Bonatti-Langevin’s
examples have been built by “gluing hyperbolic plugs along their boundaries”. In [9], we
have proved a technical result which allows to build many new examples of Anosov vector
fields. Let us briefly recall this construction tool.

Definition 1.1. A hyperbolic plug is a couple (V,X) where V is a compact three-dimensional
manifold with boundary, andX is a vector field on V , so that X is transverse to the bound-
ary of V , and so that the maximal invariant set Λ :=

⋂
t∈RX

t(V ) is a saddle hyperbolic
set for X.

Consider such an orientable hyperbolic plug (V,X), with maximal invariant set Λ.
Denote by ∂inV (resp. ∂outV ) the union of the connected components of ∂V along which
the vector fields X is point inwards (resp. outwards) U . Assume that there exists a
diffeomorphism φ : ∂outV → ∂inV . Then one might consider the closed manifold Mφ :=
V/φ and the vector field Xφ induced by X on Mφ. In [9], we give some very general
sufficient conditions for X to be (topologically equivalent to) an Anosov vector field. This
allows us to produce many new examples of (transitive or non-transitive) Anosov vector
fields in dimension three.

If (Mφ,Xφ) has been constructed using the process described above, then one can
recover the hyperbolic plug (V,X) by cutting M along a the projection of ∂V , i.e. along
finite collection of pairwise disjoint two-tori embedded inMφ and transverse to Xφ

1. More
generally, any Anosov vector field on some closed three-manifold can be decomposed into
hyperbolic plugs by cutting the manifold along tori that are transverse to the vector field.
Let us formalize this:

1Recall that a closed connected surface S which is transverse to an Anosov vector field X in a closed
orientable three-manifold is necessarily a two-torus, since the weak stable foliation of X induces a non-
singular foliation on S.
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Definition 1.2. Let M be a closed three-manifold, X be an Anosov vector field on
M , and T = {T1, . . . , Tn} be a finite collection of pairwise disjoint tori in M that
are transverse to X. Choose ǫ > 0 small enough so that the tubular neighborhoods
X(−ǫ,ǫ)(T1), . . . ,X

(−ǫ,ǫ)(Tn) of T1, . . . , Tn are pairwise disjoint, and denote by V1, . . . , Vm
the connected components ofM\

(
X(−ǫ,ǫ)(T1) ∪ · · · ∪X(−ǫ,ǫ)(Tn)

)
. Then (V1,X|V1

), . . . , (Vm,X|Vm
)

are hyperbolic plugs, and (M,X) can be recovered (up to topological equivalence) by glu-
ing these hyperbolic plugs together along their boundaries. We say that V1, . . . , Vm is a
plug decomposition of (M,X).

Similar to the JSJ decomposition of three-manifolds, one might hope to find a canonical
plug decomposition of Anosov vector fields on three-manifold:

Problem 1.3. Given an Anosov vector field X on a closed orientable three-manifold M ,
can one find a “canonical” plug decomposition of (M,X) ?2

In order to discuss Problem 1.3, we are led to consider the collection of all the tori
which are transverse to a given Anosov vector field:

Definition 1.4. Let X be an Anosov vector field on a closed three-dimensional orientable
manifoldM . Let T be the union of all the two-tori that are embedded inM and transverse
to X. We define the core of X to be the set Core(X) :=M \ T .

In other words, a point x ∈M is in the core of X if it impossible to find a two-torus T
embedded in M and transverse to X, such that x ∈ T . Observe that, if a point x belongs
to a two-torus T embedded in M , transverse to X, then the same is true for every point y
close to x, and for every point y on the orbit of x. This shows that the core of an Anosov
vector field X is compact and invariant under the flow of X.

Examples 1.5. Let us describe the core of various examples of Anosov vector fields.

1. If X is the suspension of Anosov diffeomorphism, then the core of X is empty (observe
that this is the only situation where the core of X is empty).

2. If M is the unit tangent bundle of a closed hyperbolic surface and X is the geodesic
flow on M , then there does not exist any torus embedded in M and transverse to X;
therefore the core of X is the whole manifold M .

3. If M is atoroidal, then, for every Anosov vector field X on M , the core of X is the
whole manifold M . The first examples of Anosov vector fields on closed atoroidal
three-dimensional manifolds were constructed by Goodman ([17]).

4. The core of the Bonatti-Langevin example ([10]) is a single periodic orbit γ. Let us
explain why. The Bonatti-Langevin manifold M is a graph manifold with one Seifert
piece M − T obtained by cutting M along a JSJ torus T . The maximal invariant set
of M − T for the Bonatti-Langevin vector field X is a periodic orbit γ. Therefore the
core of X is either empty or reduced to γ. But γ is isotopic to the regular fiber of
M −T , and the algebraic intersection number of the regular fiber of M −T with every
incompressible torus equals 0. Since every torus transverse to an Anosov vector field
is incompressible ([11, 13]), it follows that γ does not intersect any torus transverse to
X. Hence the core of X is the periodic of orbit γ.

2Of course, there exists a stupid canonical plug decomposition: indeed (M,X) can be seen as the
plug decomposition of (M,X) associated to the empty collection of tori ! But one would like a plug
decomposition which is not always trivial.
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5. If X is a non-transitive Anosov flow, the existence of Lyapunov functions implies that
the core of (M,X) is contained in the non-wandering set of X. In particular, in the
case the non-transitive Anosov flow on a 3-manifold M by gluing two figure eight knot
complement spaces constructed by Franks and Williams, the core of X exactly is the
non-wandering set of X since the gluing tours is the unique incompressible torus in M .

6. In [9], we have constructed many examples of transitive Anosov flows with complicated
cores (typically, the core of such examples will be a transversally cantorian set). We
will explain more about them later (see example 1.9).

Let us recall that a basic set (for a vector field X) is a compact transitive locally
maximal hyperbolic set. Smale proved that every locally maximal hyperbolic set has only
finitely many chain-recurrence classes, each of which is a basic set. As a consequence, every
locally maximal hyperbolic set can be decomposed, in a unique way, as a finite union of
pairwise disjoint basic sets. We shall prove the following theorem:

Theorem 1.6. Let X be an Anosov vector field on a closed orientable 3-manifold M .
Assume that X is not a suspension.

1. The core of X is a locally maximal set. It can be decomposed, in a unique way, as a
finite union of pairwise disjoint basic sets: Core(X) = Λ1 ⊔ · · · ⊔ Λm.

2. There exists a plug decomposition V1, . . . , Vm of (M,X) such that the basic set Λi is
the maximal invariant set of Vi for every i ∈ {1, . . . ,m}.

Definition 1.7. The basic sets Λ1, . . . ,Λm defined by item 1 of Theorem 1.6 will be called
the core basic sets of X. A plug decomposition of (M,X) satisfying item 2 of Theorem 1.6
(i.e. a plug decomposition V1, . . . , Vm such that the maximal invariant set of Vi is the core
basic set Λi for every i) will be called a fine plug decomposition.

The adjective fine is justified by the following observation.

Remark 1.8. Let V1, . . . , Vm be a fine plug decomposition of (M,X), and W1, . . . ,Wp be
an arbitrary plug decomposition of (M,X). By definition of a fine plug decomposition,
the maximal invariant set of Vi is the core basic set Λi defined by item 1 of Theorem 1.6.
Denote by Li the maximal invariant set of Wj. Then L1⊔· · ·⊔Lp is the maximal invariant
set the complement of a finite union of tori in that are transverse to X. Hence, the core
of X is contained in L1 ⊔ · · · ⊔ Lp. Hence, for every i, the basic set Λi is contained in
L1 ⊔ · · · ⊔ Lp. And since Λi is connected (it is transitive), it must be contained in Lji for
some ji ∈ {1, . . . , p}. In other words, the maximal invariant sets of the elements of a fine
plug decomposition of (M,X) are contained in the maximal invariants sets of the elements
of any other plug decomposition of (M,X).

Examples 1.9. Let us describe the outcome of theorem 1.6 in various situations.

1. If there does not exist any two-torus transverse to X (e.g. if M is atoroidal, or if M is
the unit tangent bundle of an hyperbolic compact surface and X is the geodesic flow
on M), then Core(X) = M is a basic set by itself, and there is no torus embedded in
M and transverse to X. With the notations of theorem 1.6: m = 1 and n = 0. Of
course, in this situation, theorem 1.6 is completely trivial and useless.

2. If (M,X) is the example constructed by Bonatti and Langevin in [10], then Core(X)
is a single periodic orbit, and there is only one torus embedded in M and transverse to
X up to isotopy along the orbits of X. With the notations of theorem 1.6: m = n = 1.
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3. More generally, for the examples of Anosov flows on Seifert or graph manifolds studied
by Barbot and Fenley in [6], Core(X) is made of a finite number of saddle periodic
orbits, and the basic sets Λ1, . . . ,Λm are precisely these periodic orbits. This can be
proved using the same arguments as in examples 1.5 for the Bonatti-Langevin example.

4. If (M,X) is the example constructed by Franks and Williams in [14] where M can be
obtained by gluing two figure eight knot complement spaces. Core(X) is made of two
basic sets Λ1 and Λ2. In this case, m = 2 and n = 1.

5. Our paper [9] provides many examples where the basic sets Λ1, . . . ,Λm are non-trivial
saddle hyperbolic sets (i.e. hyperbolic sets that are not reduced to periodic orbits).
The simplest way to construct such examples is the following. Take a transitive Anosov
vector field X0 on a manifold M0, and pick up two periodic orbits O and O′ of this
vector field. Make a DA-bifurcation near O is the stable direction and a DA bifurcation
in the unstable direction near O′. This creates a new vector field X1 with an attracting
periodic orbit and a repelling periodic orbit. Let M1 be the manifold with boundary
obtained by excising a small tubular neighborhood of each of these two periodic orbits.
The boundary of M1 is made of two tori T and T ′, that are transverse to X1. By
gluing T on T ′, one gets a closed manifold M , endowed with a vector field X induced
by X1|M1

. In [9], we have proved that it is possible to perform this gluing in such a way
that X is a transitive Anosov vector field. If there does not exist any torus embedded
in the manifold M0 transverse to the vector field X0, then the core of the new vector
field X is a transitive non-trivial saddle hyperbolic set (and therefore, for this vector
field, m = n = 1).

To what extend does Theorem 1.6 solve problem 1.3 ? Theorem 1.6 states the existence
of a particular plug decomposition, which we call a fine plug decomposition. Is this fine
plug decomposition unique ? The answer to this question depends on the equivalence
relation we put on the set of plug decompositions. Several natural equivalence relations
can be proposed.

Definition 1.10. Let X be an Anosov vector field on a closed three-manifold M . Two
plug decompositions V1, . . . , Vp and Wp, . . . ,Wp of (M,X) are said to be:

1. residually equivalent if, for every i, the plugs (Vi,X|Vi
) and (Wσ(i),X|Wσ(i)) have the

same maximal invariant set,

2. piecewise topologically equivalent if, for every i, there exists a homeomorphism hi :
Vi → Wσ(i) mapping each oriented orbit of XVi

on an oriented orbit of X|Wσ(i)
,

3. globally topologically equivalent if there exists a homeomorphism h :M →M mapping
each oriented orbit of X on an oriented orbit of X, and such that h(Vi) = Wσ(i) for
every i,

4. flow isotopy equivalent if there exists a function θ : M → R such that the homeomor-
phism h :M →M defined by h(x) := Xθ(x)(x) maps Vi on Wσ(i) for every i,

where σ is a permutation of {1, . . . , n}.

Clearly, flow isotopy equivalence implies global topological equivalence, which implies
piecewise topological equivalence, which implies residual equivalence. The following fact
is a straightforward consequence of the definitions:

Fact 1.11. Two fine plug decompositions of the same Anosov vector field are residually
equivalent.
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We will prove the following:

Theorem 1.12. An Anosov vector field on a closed three-manifold admits at most finitely
many fine plug decompositions up to piecewise topological equivalence.

Moreover, we will describe some particular case where a fine plug decomposition is
necessarily unique up to piecewise topological equivalence; see Proposition 3.16. On the
other hand, we will give an example showing that fine plug decompositions are not unique
up to flow isotopy equivalence:

Proposition 1.13. There exists an Anosov vector field Z on a closed three-manifolds M ,
such that (M,Z) admits infinitely many fine plug decompositions which are pairwise not
flow isotopy equivalent.

We do not know if there exists Anosov vector fields which admit infinitely many fine
plug decompositions that are pairwise not globally topologically equivalent. As a summary,
the plug decomposition provided by Theorem 1.6 is:

• canonical from the viewpoint of residual equivalence,

• “almost canonical” from the viewpoint of piecewise topological equivalence,

• not canonical in general from the viewpoint of flow isotopy equivalence.

Roughly speaking, this means that : the hyperbolic plugs provided by Theorem 1.6 are
almost unique (finitely many possibilities) when we consider them intrinsically, but the
positions of these plugs with respect of the orbits of X in the closed manifold M are far
from being unique (infinitely many possibilities).

Theorem 1.6 is obviously reminiscent of Smale’s decomposition theorems for axiom A
vector fields. Recall that non-singular C1 vector field X on a three-manifold M is said to
be axiom A if its non-wandering set Ω(X) is hyperbolic and coincides with closure of the
periodic points of X (Anosov vector fields are examples of axiom A vector fields). Under
this hypothesis, Ω(X) can be decomposed, in a unique way, as the union of a finite number
of pairwise disjoint basic sets K1, . . . ,Kr: this is the so-called spectral decomposition the-
orem, and the sets K1, . . . ,KM are called the basic pieces of X, see [21]. Moreover, using
Lyapunov function, one can find a plug decomposition (W1,X), . . . , (Wr,X) of (M,X) so
that the maximal invariant set of Wi is precisely the basic piece Ki. Moreover, in the par-
ticular case where X is an Anosov vector field, the surfaces S1, . . . , Sn are necessarily tori,
and Brunella has proved these tori S1, . . . , Sn are incompressible and pairwise non-parallel
([11]). So Theorem 1.6 is somehow parallel to Smale’s decomposition of axiom A vector
fields, where:

• the core of X play the same role as the non-wandering set of an axiom A vector field;

• the core basic sets Λ1, . . . ,Λm provided by Theorem 1.6 play the same role as the basic
pieces K1, . . . ,Kr which appear in Smale’s spectral decomposition of the non-wandering
set;

• the fine plug decomposition (V1,X), . . . , (Vm,X) provided by Theorem 1.6 play the
same role as the plug decomposition (W1,X), . . . , (Wr,X) defined above by mean of a
Lyapunov function.
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This is the reason we speak of “spectral-like decomposition for Anosov vector fields”.
Notice nevertheless that the core basic sets Λ1, . . . ,Λm provided by Theorem 1.6 are in
general much smaller than the basic pieces of X provided by Smale’s decomposition the-
orem (see e.g. by example 2, 3 and 5 above), and a single basic piece of X might contain
several core basic sets (see e.g. [9, Theorem 1.5]). Also notice that the proof of theo-
rem 1.6 is completely different from those of Smale’s spectral decomposition theorem for
non-transitive axiom A vector fields. Indeed, the starting point of the proof Smale’s spec-
tral decomposition theorem is the fact that the non-wandering set of an axiom A vector
field is locally maximal. But we do not know a priori that the core of an Anosov flow is
a locally maximal set. Roughly speaking3 :

– in the case of non-transitive axiom A flows, one first observes that the non-wandering set
is locally maximal, hence gets a spectral decomposition, and therefore (using Lyapunov
theory) gets some surfaces S1, . . . , Sn which separates the basic pieces from each others,

– to obtain theorem 1.6, we first have to prove that there exists a finite family of pairwise
disjoint, pairwise non-parallel two-tori {T1, . . . , Tn} so that Core(X) is the maximal
invariant set of M − (T1 ∪ · · · ∪ Ti). This will imply Core(X) is a locally maximal set.
Once we will know that, the decomposition in core basic sets will follow by Smale’s
classical arguments.

2 Existence of a fine plug decomposition

The purpose of this section is to prove Theorem 1.6. All along this section, we consider
a closed orientable three-dimensional manifold M , and an Anosov vector field X on M .
In the sequel, the phrase “a transverse torus” will always mean “a two-dimensional torus
embedded in M and transverse to the vector field X”. The proof of theorem 1.6 uses five
ingredients :

1. a cohomological argument which allows to find a finite collection of transverse tori
which intersect every periodic orbit in M − Core(X) (proposition 2.1);

2. a desingularisation procedure which allow to replace any finite collection of transverse
tori by a collection of pairwise disjoint transverse tori T ′ intersecting exactly the same
orbits of X as T (corollary 2.3);

3. the classical spectral decomposition theorem which tells us that ΛT ′ contains only
finitely many chain recurrence classes, and that the periodic orbits are dense in each
of these chain recurrence classes (theorem 2.5);

4. Lyapunov theory which provides us with some transverse tori separating the basics sets
of ΛT ′ (theorem 2.4);

5. a lemma of Brunella which tells that two parallel transverse tori intersect the same
orbits of X (lemma 2.6).

We now proceed to the proof:

Proposition 2.1. There exists a finite collection of transverse tori T = {T1, . . . , Tn} such
that T1 ∪ · · · ∪ Tn intersects every periodic orbit which is not in the core of X.

Proof of proposition 2.1. We argue by contradiction: we assume that the conclusion of
proposition 2.1 does not hold. Using this assumption, a immediate induction allows us to
construct a sequence (Tk)k≥1 of transverse tori and a sequence (γk)k≥2 of periodic orbits
of X with the following property :

3Actually, the proof of theorem 1.6 is slightly more intricate than described below.
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(P) For every k ≥ 2, the orbit γk is disjoint from the torus Ti for i = 1, . . . , k− 1, but does
intersect the torus Tk.

We will show that property (P) yields a contradiction. For this purpose, we will use the
cohomology H∗(M) = H∗(M,Q) of the manifold M . Consider an orbit γ of X, and
a two-torus T embedded in M , transverse to the vector field X. By Poincare duality,
γ corresponds to a class [γ] ∈ H2(M), and T corresponds to a class [T ] ∈ H1(M). A
standard theorem in (co-)homology theory tell us that the cup product of [γ] and [T ]
satisfies [γ] ∨ [T ] = int(γ, T )[·], where int(γ, T ) is the algebraic intersection number of γ
and T , and [·] is the Poincaré dual of the homology class of a point. Now, observe that,
since γ is an orbit of X, and T is transverse to X, the algebraic intersection number
int(γ, T ) is nothing but the cardinal of γ ∩ T . Therefore, [γ] ∨ [T ] = 0 if and only if
γ ∩ T = ∅. This allows us to translate property (P) as follows :

(P’) for every k ≥ 2, one has [γk] ∨ [Ti] = 0 for i = 1, . . . , k − 1, but [γk] ∨ [Tk] 6= 0.

In particular, for every k ≥ 0, the class [Tk] is not in the linear subspace of H1(M) spanned
by [T1], ..., [Tk−1]. Therefore, H

1(M) must be infinite dimensional. But this is impossible
since M is a closed manifold. This completes the proof of proposition 2.1.

We will now explain how to replace the finite collection of transverse tori provided by
proposition 2.1 by a finite collection of pairwise disjoint transverse tori :

Proposition 2.2. Given any finite collection S = {S1, . . . , Sk} of transverse tori such that
S1, . . . , Sk−1 are pairwise disjoint, one can find another finite collection Ŝ = {Ŝ1, . . . , Ŝℓ}
of transverse tori such that:

• Ŝ1, . . . , Ŝℓ are pairwise disjoint;

• Ŝ := Ŝ1 ∪ · · · ∪ Ŝℓ intersects exactly the same orbits of X as S := S1 ∪ · · · ∪ Sk.

The proof of this proposition consists in performing some simple surgeries to eliminate
on the immersed surface S = S1 ∪ · · · ∪ Sk.

Proof of proposition 2.2. Let us first observe that a small perturbation of the embedding
of Sk does not change the set of orbits of X that are intersected by this torus. Therefore,
we can assume that Sk is transverse to S1, . . . , Sk−1. It follows that Sk ∩ (S1 ∪ · · · ∪ Sk−1)
is a finite collection of pairwise disjoint simple closed curves.

Let C be one of these curves; C is a connected component component of Si∩Sk for some
i ∈ {1, . . . , k − 1}. Since X is transverse to both Si and Sn, we can find a neighborhood
U of C in M , and a diffeomorphism h : U → S1 × [−1, 1]× [−1, 1] such that:

• the surface h(Si) (resp. h(Sk)) is a graph over the “horizontal” annulus S1×[−1, 1]×{0};

• the vector field h∗X is “vertical”: the flow lines of h∗X are the vertical lines {⋆} ×
{⋆} × [−1, 1]

(see figure 1, left). Then we can find two smooth graphs A,A′ ⊂ U over the annulus
S1 × [−1, 1]× {0} such that:

• A is disjoint from A′ (say A′ is strictly below A);

• A∪A′ coincides with h(Si)∪h(Sk) on a neighborhood of the boundary of S1× [−1, 1]×
{0}.

(see the figure below rightwards). Note that h−1(A) (resp. h−1(A′)) is transverse to X,
since A (resp. A′) is a graph over the horizontal annulus S1×[−1, 1]×{0} andX is vertical.
Also note that h−1(A ∪ h−1(A′) intersects exactly the same orbits of X as (Si ∪ Sk) ∩ U
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(because every horizontal graph in over the horizontal annulus S1× [−1, 1]×{0} intersects
every vertical line {⋆} × {⋆} × [−1, 1] in S1 × [−1, 1]× [−1, 1]).

We do a surgery on S = S1 ∪ · · · ∪ Sk: we replace (Si ∪ Sk) ∩ U by h−1(A ∪ h−1(A′).
Actually, we do this surgery not only for the curve C, but for each connected component
of Sk ∩ (S1 ∪ · · · ∪ Sk−1). This surgery changes S = S1 ∪ . . . . . . Sk into a (not necessarily
connected) closed surface Ŝ which is embedded in M and transverse to X. This surface Ŝ
intersects exactly the same orbits of X as S. The connected component of Ŝ are transverse
tori, since every connected closed surface transverse to an Anosov vector field is a torus.
We set Ŝ = {Ŝ1, . . . , Ŝℓ̂} to be the collection of the connected components of Ŝ.

X

X

X

X

c

h(U)

h(S )i

h(S )n

h(U)

A

A’

Figure 1: Removing intersection curves in a union of transverse tori

Corollary 2.3. Given any finite collection of transverse tori T , there exists another finite
collection of transverse tori T ′ such that:

• the elements of T ′ are pairwise disjoint;

• the union of the elements of T ′ intersects exactly the same orbits of X as the union of
the elements of T .

Proof. Denote by T1, . . . , Tn the elements of T . The proof consists in applying n − 1
times proposition 2.2. First, we consider the collection of transverse tori S1 := {T1, T2}.

Proposition 2.2 provides a collection of pairwise disjoint transverse tori Ŝ1, such that the

union of the elements of Ŝ1 intersect exactly the same orbits of X as the union of the
elements of S1, i.e. the same orbits of X as T1 ∪ T2. Then we consider the collection of

transverse tori S2 := Ŝ1 ∪ {T3}. Proposition 2.2 provides a collection of pairwise disjoint

tori Ŝ2, such that the union of the elements of Ŝ2 intersect the same orbits of X as the
union of the elements of S2, i.e. the same orbits of X as T1 ∪ T2 ∪ T3. Etc.

Let us now recall Conley’s fundamental theorem of dynamical systems (see e.g. [20,
Theorem 3.14]):

Theorem 2.4 (Conley). Let N be a compact manifold with boundary, and Y be a vector
field on N , transverse to ∂N . Let ∂inN (resp. ∂outN) be the part of ∂N where Y is pointing
inwards (resp. outwards) N . Then one can find a smooth function f : N → [−1, 1] such
that:

1. ∂inN = f−1({1}) and ∂outN = f−1({1});

2. every chain-recurrence class of Y is a (singular) level set of f ;

9



3. dfx.Y < 0 for every point x which is not in the chain-recurrent set of Y (in particular,
f is decreasing along any orbit of Y which is not in the chain recurrent set of Y ).

The function f is called a complete smooth Lyapunov function for the vector field Y .
We also recall Smale’s spectral decomposition theorem for locally maximal hyperbolic sets
(see e.g. [20]):

Theorem 2.5 (Smale). Let Y be a vector field on a compact manifold, and Λ be a compact
invariant locally maximal hyperbolic set for Y . Then Y|Λ has finitely many chain-recurrent
classes, called basic sets. Each basic set is transitive, locally maximal, contains a dense
set of periodic orbits.

To complete the proof of theorem 1.6, we shall need the following lemma, which was
proved by Brunella in [11]:

Lemma 2.6 (Brunella). If N is a sub-manifold with boundary of M , which is diffeomor-
phic to T2× [0, 1], and whose boundary is transverse to X, then the maximal invariant set⋂

t∈RX
t(N) is empty.

The proof of this lemma is quite short, but relies on rather sophisticated tools (a
version of Novikov’s theorem due to Plante). The converse of the above lemma is also true
(and more easier to prove):

Lemma 2.7. Let N be a non-empty connected sub-manifold with boundary of M , so that
the boundary of N is transverse to X. If the maximal invariant set Λ :=

⋂
tX

t(N) is
empty, then N is diffeomorphic to T2 × [0, 1].

Proof. Recall that we denote by ∂inN (resp. ∂outN) the union of the connected compo-
nents of ∂N where X is pointing inwards (resp. outwards) N . First observe that ∂inN
is non-empty: indeed, if both ∂inN was empty, them the backward orbit of a point in N
could not exit N , and therefore would accumulate on a non-empty maximal invariant set,
contradicting our assumption. Now, for every x ∈ ∂inN , the forward orbit of x eventu-
ally exits N by cutting ∂outN (otherwise it would accumulate on a non-empty maximal
invariant set) . Moreover, since ∂inN and ∂outN are transverse to X, the exit time τ(x)

depends continuously on x. Hence, the map (x, t) 7→ X
t

τ(x) (x) defines a diffeomorphism
between ∂inN × [0, 1] and N . Since N is connected, it follows that ∂inN must also be
connected. Therefore ∂inN is a two-torus, and N is diffeomorphic to T2 × [0, 1].

We can now complete the proof of theorem 1.6:

Proof of theorem 1.6. For every finite collection S = {S1, . . . , Sn} of transverse tori, we
will denote by ΛS the maximal invariant set of M − (S1 ∪ · · · ∪ Sn). Observe that this set
ΛS is always non-empty: indeed ΛS contains Core(X), and Core(X) is non-empty since
X is not a suspension by assumption.

Proposition 2.1 together with corollary 2.3 provide a finite collection of pairwise disjoint
transverse tori T := {T1, . . . , Tp} such that T1 ∪ · · · ∪ Tp intersects every periodic orbit in
M − Core(X). The maximal invariant set ΛT is a compact, invariant, locally maximal,
hyperbolic set for X. By theorem 2.5, X|ΛT

has only finitely many chain recurrence classes
Λ1, . . . ,Λm, and the periodic orbits of X are dense in each Λi.

Let N be the compact manifold with boundary obtained by cutting M along the tori
T1, . . . , Tp. Denote by X the vector field on N induced by X. Clearly, X is transverse to
the boundary of N , the maximal invariant set of N under X is nothing but the set ΛT , and
the chain recurrence classes of X are nothing but the basic sets Λ1, . . . ,Λm. Theorem 2.4
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provides us with a complete smooth Lyapunov function f : N → [−1, 1] for X . So, for
every i, there exists a real number −1 < ai < 1 such that Λi := f−1(ai). Changing the
indexation of the Λi’s if necessary, we assume that a1 < a2 < · · · < am. Then we pick
some real numbers c1, . . . , ck−1 such that ai < ci < ai+1 for every i. Since df(x).X < 0 at
every point x which is not chain-recurrent, c0, . . . , cm−1 are regular values of f . Therefore,
if we set Tp+i := f−1(ci), then Tp+1, . . . , Tp+m−1 is a finite collection of pairwise disjoint
transverse tori embedded in the interior of N . Using again the fact that df(x).X < 0
for every x which is not chain-recurrent, we obtain that the maximal invariant set of∫
(N)− (Tp+1 ⊔ · · · ⊔ Tp+m−1) =M − (T1 ⊔ · · · ⊔ Tp+m−1) is the chain-recurrent set of X .

Therefore, T ′′ := {T1, . . . , Tp+m−1} is a finite collection of pairwise disjoint transverse tori
such that ΛT ′′ = Λ1 ⊔ · · · ⊔ Λm. Moreover, by construction of Tp+1 ⊔ · · · ⊔ Tp+m−1, each
connected component of M − (T1 ⊔ · · · ⊔ Tp+m−1) contains at most one Λi.

Now, we claim that Λ1 ⊔ · · · ⊔Λm = Core(X). On the one hand, Core(X) is obviously
included Λ1 ∪ · · · ∪ Λm (recall that Λ1 ⊔ · · · ⊔ Λm is the maximal invariant set of the
complement of a collection of transverse tori). On the other hand, the periodic orbits of
X are dense in Λ1 ⊔ · · · ⊔ Λm. So, if Core(X) were not equal to (Λ1 ⊔ · · · ⊔ Λm), then
there would be a periodic orbit in (Λ1 ⊔ · · · ⊔Λk)−Core(X). But this is impossible since
Λ1 ⊔ · · · ⊔ Λk is the maximal invariant set of M − (T1 ∪ · · · ∪ Tp+m−1), and T1 ∪ · · · ∪ Tp
intersects every periodic orbit in Core(X). Therefore, Λ1 ⊔ · · · ⊔ Λm = Core(X).

This completes the proof of item 1: indeed, the equality Core(X) = Λ1 ⊔ · · · ⊔ Λm

shows in particular that Core(X) is a locally maximal set. Moreover, this equality gives
the decomposition of Core(X) as a finite union of pairwise disjoint basic sets.

In addition, we have found a finite collection of pairwise disjoint transverse tori T ′′ :=
{T1, . . . , Tp+m−1}, such that ΛT ′′ = Core(X) = Λ1⊔· · ·⊔Λm, and such that each connected
component of M − (T1 ⊔ · · · ⊔Tp+m−1) contains at most one Λi. Now, consider a maximal
sub-collection T ′′′ = {Ti1 , . . . , Tiq} of T ′′, so that the elements of T ′′′ are pairwise non-
parallel. By construction, every torus in T ′′ \ T ′′′ is parallel to a torus in T ′′′. Denote
M1, . . . ,Mr the connected components ofM−(Ti1⊔· · ·⊔Tiq). According to lemma 2.6, for
each j = 1, . . . , r, the maximal invariant sets of Mj coincides with the maximal invariant
set of a connected component of M − (T1⊔· · ·⊔Tp+m−1), i.e. is either empty or one of the
Λi’s. But, since the elements of T ′′′ are pairwise non-parallel, Mj cannot be diffeomorphic
to T2 × [0, 1], and therefore (by Lemma 2.7), the maximal invariant set of Mj cannot be
empty. Therefore, r = m and, for j = 1 . . . m, the maximal invariant set of Mj is one of
the Λi’s. Of course, re-ordering the Λi’s if necessary, we can assume that Λj the maximal
invariant set of Mj. This completes the proof of item 2.

3 Fine plug decompositions up to piecewise topological equiv-

alence

The purpose of this section is to prove Theorem 1.12, i.e. to prove that, up to piecewise
topological equivalence, there are only finitely many fine plug decomposition of a given
Anosov flow. For this purpose, we need to recall a few general things about hyperbolic
plugs, and to study what are the particular features of a hyperbolic that arise in a plug
decomposition of an Anosov vector field.

Definition 3.1. Let (U,X) be a hyperbolic plug. Recall that the vector field X is trans-
verse to the boundary ∂U . Also recall that we decompose ∂U as ∂inU ⊔ ∂outU , where
∂inU (resp. ∂outU) is the union of the connected components of ∂U where X pointing
inward (resp. outward) U . The surface ∂inU (resp. ∂outU) is called the entrance boundary
(resp. the exit boundary) of U . We denote by Ls(U,X) the set of all points of ∂inU whose
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forward orbit remain forever in U . Similarly, we denote by Lu(U,X) the set of all points
of ∂outU whose backward orbit remain forever in U .The set Ls(U,X) (resp. Lu(U,X)) is
called the entrance lamination (resp. the exit lamination) of (U,X).

If we denote by Λ the maximal invariant set of a hyperbolic plug (U,X), then Ls(U,X)
is the intersection of the stable lamination W s

U (Λ) and the entrance boundary ∂inU , and
Lu(U,X) is the intersection of the unstable lamination W u

U (Λ) and the exit boundary
∂outU . Since W s

U (Λ) and W u
U (Λ) are compact laminations with two-dimensional leaves

which are transverse to ∂U (because X is transverse to ∂U , it follows that Ls(U,X) and
Lu(U,X) are laminations with one-dimensional leaves.

Definition 3.2. We say that (U,X) has a trivial connected component if there is a con-
nected component U0 of U such that the maximal invariant set

⋂
t∈RX

t(U0) is empty.

Note that, by definition of Ls(U,X), the hyperbolic (U,X) has no trivial connected
component if and only if the lamination Ls(U,X) intersects every connected component
of the entrance boundary ∂inU (or equivalently, if and only if, the lamination Lu(U,X)
intersects every connected component of the exit boundary ∂outU).

The entrance and exit laminations of a hyperbolic plug are very peculiar laminations:

Proposition 3.3 (Proposition 2.8 of [9]). Given any hyperbolic plug (U,X),

1. Ls(U,X) has only finitely many closed leaves,

2. every half non-closed leaf of Ls(U,X) is asymptotic to a closed leaf ( i.e. each end of a
non-closed leaf of Ls(U,X) “spirals around a closed leaf”),

3. every closed leaf of Ls(U,X) can be oriented so that its holonomy is contraction.

Of course, similar properties hold for Lu(U,X).

In the present paper, we are interested in a quite particular type of hyperbolic plugs:

Definition 3.4. A hyperbolic plug (U,X) is called of Anosov type if there exist a closed
three-manifold M and an embedding θ : U →֒ M , such that θ∗X is the restriction an
Anosov vector field on M .

Of course, all hyperbolic plugs which appear in a plug decomposition of an Anosov
vector field are of Anosov type. The entrance and exit laminations of a hyperbolic plug of
Anosov type satisfy some specific properties, as shown by Proposition 3.6 below.

Definition 3.5. Let (U,X) be a hyperbolic plug. A connected component C of ∂inU \
Ls(U,X) (resp. ∂outU \ Lu(U,X)) is called a strip if it is homeomorphic to R × (0, 1),
and if the accessible boundary of C is made of two non-closed leaves of Ls(U,X) (resp.
Lu(U,X)) which are asymptotic to each other at both ends.

Proposition 3.6. Let (U,X) be a hyperbolic plug with no trivial component. Assume
that (U,X) is of Anosov type. Then each connected component of ∂inU \ Ls(U,X) (resp.
∂outU \ Lu(U,X)) is either an annulus bounded by compact leaves of Ls(U,X), or a strip
in the sense of definition 3.5.

Proof. We begin by constructing a vector field transverse to the lamination Ls(U,X).

Claim. There is a non-singular Morse-Smale vector field Z on ∂inU which is transverse
to the lamination Ls(U,X).
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Let Λ be the maximal invariant set of (U,X). If (U,X) is of Anosov type, then there
exists a closed three-manifold M , an Anosov vector field X̂ on M , and an embedding
θ : U →֒M such that θ∗X = X̂ . By transversality, the weak stable foliation of the Anosov
vector field X̂ induces a one-dimensional foliation F on θ(∂inU). Since θ(Λ) is a hyperbolic
basic set of X, and the lamination θ∗L

s(U,X) is the intersection of the local weak stable
lamination W s

U (θ(Λ)) with ∂
inU . It follows that the foliation F contains θ∗L

s(U,X) as a
sublamination. Now, we consider a non-singular vector field Z on the surface ∂inU which is
transverse to the foliation (θ)−1

∗ (F) (one may, for example, endow ∂inU with a riemannian
metric and consider a unitary vector field orthogonal to (θ)−1

∗ (F)). Since Morse-Smale
vector fields are dense in dimension 2, we can perturb Z so that it is a Morse-Smale vector
field. We choose the perturbation is small enough, Z is still transverse to (θ)−1

∗ (F). In
particular, Z is transverse to the lamination Ls(U,X). This completes the claim.

Let C be a connected component of ∂inU \ Ls(U,X). Since (U,X) has no trivial con-
nected component, C cannot be a whole connected component of ∂inU , i.e. the boundary
of C is non-empty. As a consequence, the accessible boundary of C is also non-empty.
Both the boundary of C and the accessible boundary of C are union of leaves of the
lamination Ls(U,X).

We first consider the case where every leaf of Ls(U,X) in the accessible boundary of C
is a closed leaf. Since Ls(U,X) has only a finite number of closed leaves (Proposition 3.3),
the boundary of C coincides with the accessible boundary, i.e. the boundary of C is made
of closed leaves of Ls(U,X). It follows that C is homeomorphic to the interior of a compact
surface C. According to the claim above, the compact surface C carries a non-singular
vector field, which is transverse to its boundary. Hence the Euler characteristic of C is
equal to 0, i.e. C is an annulus.

Now we consider the case where there is a non-closed leaf γ in the accessible boundary
of C. Replacing the vector field Z by −Z if necessary, we may — and we do — assume
that Z is pointing inwards C along γ.

Claim. For every x ∈ γ, the forward orbit of x under the flow of Z eventually exits C.

Let E be the set made of the points x ∈ γ such that the forward orbit of x under the
flow of Z eventually exits C (i.e. such that there exists t > 0 such that Zt(x) /∈ C). The
forward orbit a point x ∈ γ eventually exists C if and only if it intersects the lamination
Ls(U,X). Since the vector field Z is transverse to the lamination Ls(U,X), it follows that
E is an open subset of γ. On the other hand, if the forward of a point x ∈ γ remains in C
forever, then the forward orbit of x is included in the basin of an attracting periodic orbit
of Z contained in C (recall that Z is a non-singular Morse-Smale vector field, hence every
forward orbit is attracted by a periodic orbit). Hence, γ \E coincides with the intersection
of γ with the union of the basins of the attracting periodic orbits of Z contained in C. In
particular, γ \ E is an open subset of γ. So we have proved that E is an open and closed
subset of γ. To complete the proof of the claim, it remains to show that E is non-empty.
The ends of γ spiral around some closed leaves α1, α2 of Ls(U,X). The vector field Z is
transverse to α1, α2. Hence, in some neighborhood of αi, every orbit of Z cuts γ infinitely
many times. It follows that, for x ∈ γ close enough to αi, the forward orbit of x will
intersect γ, and therefore exit C. In other words, the set E contains some neighborhood
of the ends of γ. This completes the proof of the claim.

Now we prove that C is a strip. For every point x ∈ γ, let τ(x) = inf{t > 0, Zt(x) /∈ C}.
The above claim ensures that τ(x) is finite for every x ∈ γ. Since the boundary of C is made
of leaves of the lamination Ls(U,X) and since Z is transverse to Ls(U,X), the time τ(x)
must depend continuously on x. Moreover, since the ends of γ spirals around closed leaves

13



and since Z is transverse to these closed leaves, τ(x) must tend to 0 when x approaches
the ends of γ. We consider the map φ : γ × (0, 1) → C defined by φ(x, t) := Zt/τ(x)(x).
This map is continuous (because the flow of Z and x 7→ τ(x) are continuous), one-to-
one (otherwise this would imply that the forward orbit of some point x ∈ γ intersects γ
before exiting C, which is of course impossible), and proper (since τ(x) tends to 0 when
x approaches the ends of γ). It follows that φ is a homeomorphism. In particular, C is
homeomorphic to R× (0, 1). Now, by transversality, the forward orbits of all the points of
γ exit C through the same leaf γ′. By construction, this leaf is contained in the accessible
boundary of C. It is non-compact, since x 7→ Zτ(x)(x) defines a homeomorphism between
γ and γ′. Moreover γ and γ′ are asymptotic to each other at both ends, since τ(x) tends
to 0 when x approaches the ends of γ. One easily deduces that the accessible boundary of
C is reduced to γ ∪ γ′. Hence, C is a strip in the sense of definition 3.5. This completes
the proof of the proposition.

Now we will quickly recall the main results of [8]. More precisely, we will define some
particular hyperbolic plugs (called models) and explain how an arbitrary hyperbolic plug
(U,X) can be obtained from a model by some simple surgeries called handle attachments.

Definition 3.7. Let X,X ′ be vector fields on some three-manifolds (possibly with bound-
ary) M,M ′, and Λ,Λ′ be some compact invariant sets for X,X ′ respectively. We say that
the germ of X along Λ coincides with the germ of X ′ along Λ′ if there exist neighborhoods
O,O′ of Λ,Λ′ respectively, such that X|O is topologically equivalent to X ′

|O′ .

Definition 3.8. Let X be a vector field on a closed three-manifold, and Λ be a hyperbolic
basic set of X. A model of the germ of X along Λ is a hyperbolic plug (Ũ , X̃) with maximal
invariant set Λ̃ such that :

• (Ũ , X̃) has no trivial connected component;

• the germ of X̃ along Λ̃ coincides with the germ of X along Λ;

• every simple closed curve in ∂inŨ \ Ls(Ũ , X̃) bounds a disc in ∂inŨ \ Ls(Ũ , X̃).

One of the main results of [8] is the following:

Theorem 3.9 (Theorem 0.3 of [8]). For every vector field X on a closed three-manifold,
and every hyperbolic basic set Λ of X, the model of the germ of a vector field X along a
hyperbolic set Λ exists and is unique up to topological equivalence.

Let (U,X) be a orientable hyperbolic plug. Given any set A ⊂ U , we denote by

OX(A) the orbit of A (in U) under the flow of X. Let {Dk
j }

k=1,2
j=1...ℓ be a collection of

2ℓ pairwise disjoint closed discs in ∂inU \ Ls(U,X). Since each Dk
j is disjoint from the

lamination Ls(U,X), for every point x in ∪j,kD
k
j , the forward orbit of x eventually exits

U (by cutting ∂outU). Moreover, since the surfaces ∂inU and ∂outU are transverse to the
vector field X, the exit time of the orbit of x depends continuously on x (for x in ∪j,kD

k
j ).

Therefore, up to topological equivalence, we can — and we will — assume that the exit
time of the forward orbit of every point x in ∪j,kD

k
j is equal to 1. After this topological

equivalence, the restriction of X to the orbit OX(Dk
j ) is conjugated to the trivial vector

field ∂
∂t on the product space Dk

j × [0, 1].

Let U0 := U \
⋃

j,k OX(int(Dk
j )). The above discussion shows that “U0 is obtained by

digging 2ℓ tunnels going from ∂inU to ∂outU”. Now, we will “glue pairwise the boundaries
of these 2ℓ tunnels”. See figure 2.
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Consider a diffeomorphism ϕ :
⋃

j ∂D
1
j →

⋃
j ∂D

2
j , so that ϕ maps ∂D1

j to ∂D2
j , and

reverses orientation when the curves ∂D1
j , ∂D

2
j are equipped with their orientations as

boundaries. Consider the diffeomorphism Φ :
⋃

j OX(∂D1
j ) →

⋃
j OX(∂D2

j ) defined by

Φ(Xt(x)) = Xt(ϕj(x)) for x ∈ ∂D1
j . Note that this diffeomorphism is indeed well-defined

and onto because we have assumed that the exit time of the orbit of every point x in⋃
j OX(∂D1

j ) and
⋃

j OX(∂D2
j ) is equal to 1. Also note that Φ preserves the vector field

X. Let V := U0/Φ, and denote by Y the vector field induced by X on V (see figure 2). One
easily checks that V is a manifold with boundary and that the vector field Y is transverse
to the boundary of V . Moreover, since the orbits of the discs D1

1,D
2
1 , . . . ,D

1
n,D

2
n are

disjoint from the maximal invariant set
⋂

tX
t(U), the germ of vector field Y along the

hyperbolic set
⋂

t Y
t(V ) coincides with the germ of the vector field X along the hyperbolic

set
⋂

tX
t(U). In particular, (V, Y ) is a hyperbolic plug.

Definition 3.10 (Handle attachment). We say that (V, Y ) is obtained from (U,X) by
handle attachments on the pair of discs (D1

1,D
2
1), (D

1
2 ,D

2
2), . . . , (D

1
ℓ ,D

2
ℓ ).

Remark 3.11. Clearly, the entrance boundary ∂inV is given by ∂inV = (∂inU\
⋃

j,k int(D
k
j ))/ϕ.

One easily deduces that ∂inV is obtained by attaching n handles on the surface ∂inU in
the classical topological sense (see figure 2).

exit boundary

entrance boundary

removing
the orbits of

gluing togrther
the orbits of

and and

Figure 2: Handle attachment on a pair of discs (D1,D2)

Proposition 3.12 (Lemma 3.2 of [8]). Up to topological equivalence, (V, Y ) only depends
on the connected components of ∂inU \ Ls(U,X) containing the discs D1

1,D
2
1 , . . . ,D

1
ℓ ,D

2
ℓ .

In the two following statements (Proposition 3.13 and 3.14), we consider a hyperbolic
plug (U,X) with no trivial connected component. We denote by (Ũ , X̃) be the model of the
germ of X along the hyperbolic set Λ :=

⋂
tX

t(U) (see Definition 3.8 and Theorem 3.9).
We assume that (U,X) has no trivial component (i.e. every connected component of U
meets Λ). The first proposition below states that (U,X) can be obtained from the model
(Ũ , X̃) thanks to a finite number of handle attachments. The second proposition states
some very strong restriction on the position of these handle attachments, in the particular
case where (U,X) is of Anosov type.

Proposition 3.13 (Proposition 0.5 of [8]). There exist a finite family of pairwise disjoint
topological closed discs D1

1,D
2
1 ,D

1
2,D

2
2 , . . . ,D

1
ℓ ,D

2
ℓ in ∂inŨ \ Ls(Ũ , X̃) such that, up to

topological equivalence, (U,X) can be obtained from (Ũ , X̃) by handle attachments on the
pair of discs (D1

1 ,D
2
1), . . . , (D

1
ℓ ,D

2
ℓ ).
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Proposition 3.14. Let D1
1,D

2
1 , . . . ,D

1
ℓ ,D

2
ℓ be some discs provided by Proposition 3.13.

Denote by Ck
j the connected components of ∂inŨ \ Ls(Ũ , X̃) containing the disc Dk

j . If
(U,X) is of Anosov type, then:

1. for every j, k, the connected component Ck
j is a disc bounded by a closed leaf of Ls(Ũ , X̃) ;

2. the connected components C1
1 , C

2
1 , . . . , C

1
ℓ , C

2
ℓ are pairwise different.

Proof. Let ϕ :
⋃

j ∂D
1
j →

⋃
j ∂D

2
j be a diffeomorphism mapping ∂D1

j to ∂D
2
j , and reversing

orientation when the curves ∂D1
j , ∂D

2
j are equipped with their orientations as boundaries,

as considered in Definition 3.10. Let π be the projection of the compact surface with
boundary ∂inŨ \

⋃
j,k int(D

k
j ) on the closed surface (∂inŨ \

⋃
j,k int(D

k
j ))/ϕ.

Up to topological equivalence, the neighborhood (U,X) is obtained from (Ũ , X̃) by han-
dle attachments on the pairs of discs (D1

1 ,D
2
1), . . . , (D

1
ℓ ,D

2
ℓ ). Considering the restriction

of the topological equivalence to the entrance boundary of U , we obtain a homeomorphism
h between the surfaces (∂inŨ \

⋃
j,k int(D

k
j ))/ϕ and ∂inU (see remark 3.11). Since h is

the restriction of a topological equivalence, h ◦ π maps the lamination Ls(Ũ , X̃) on the
lamination Ls(U,X).

For every i, let Γj := h(π(∂D1
j )) = h(π(∂D2

j )). Note that Γ1, . . . ,Γℓ are pairwise

disjoint simple closed curves in ∂inU \Ls(U,X). In particular, ∂inU \
⋃

j Γj is the interior
of a compact surface with boundary. Also note that h ◦ π induces a homeomorphism
between the open surfaces ∂inŨ \

⋃
j,kD

k
j and ∂inU \

⋃
j Γj.

Claim. Each connected component of ∂inU \
⋃

j Γj intersects the lamination Ls(U,X).

Indeed, suppose that there exists a connected component B of ∂inU \
⋃

j Γj which does

not intersect Ls(U,X). Then (h ◦ π)−1(B) is a connected component of ∂inŨ \
⋃

j,kD
k
j

which does not intersect the lamination Ls(Ũ , X̃). Since the discs Dk
j ’s are also disjoint

from the lamination Ls(Ũ , X̃), it follows that (h ◦ π)−1(B) is contained in a connected
component of ∂inU which is disjoint from the lamination Ls(Ũ , X̃). This is impossible
since (Ũ , X̃) has no trivial connected component (see Definition 3.8).

Now, denote by Ai the connected component of ∂inU \ Ls(U,X) containing the curve
Γi. The claim proved above implies that none of the curves Γ1, . . . ,Γℓ is homotopic
to 0 in ∂inU \ Ls(U,X) and that the curves Γ1, . . . ,Γℓ are pairwise non-homotopic in
∂inU \ Ls(U,X). Together with Proposition 3.6 (recall that (U,X) is assumed to be of
Anosov type), this implies that, for every i = 1 . . . ℓ, the connected component Ai is an
annulus bounded by to two closed leaves of the lamination Ls(U,X), and that the annuli
A1, . . . , Aℓ are pairwise different. As a consequence,

1. Aj \ Γj is disjoint from
⋃

j Γj ;

2. Aj \ Γj has two connected components A1
j and A2

j ;

3. each of these two connected components A1
j , A

2
j is an annulus bounded by Γj and a

closed leaf of Ls(U,X).

Recall that Ck
j is the connected component of ∂inŨ \ Ls(Ũ , X̃) containing the disc Dk

j .

Item 1,2,3 above imply that (h ◦ π)−1 is defined on the whole connected component Ak
j ,

and that Ck
j is obtained by gluing the disc Dk

j on one of (h ◦π)−1(Ajk) (up to exchanging

the names of A1
j and A2

j ). Using item 3 again, it follows that Ck
j is a disc bounded by

a compact leaf of Ls(Ũ , X̃). It also follows that, for (j′, k′) 6= (j, k), the disc Dk′

j′ is

disjoint from Ck
j ; equivalently, the connected components C1

1 , C
2
1 , . . . , C

1
ℓ , C

2
ℓ are pairwise

different. This completes the proof of Proposition 3.14.
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Proof of Theorem 1.12. Let X be an Anosov vector field on a closed orientable three-
manifold M . Let Λ1, . . . ,Λm be the residual basic sets provided by Theorem 1.6. For each
i = 1, . . . ,m, let (Ṽi, X̃i) be the model of the germ of X along Λi.

By definition, if V1, . . . , Vm is a fine plug decomposition of (M,X), then (up to per-
mutation of the indices) (Vi,X|Vi

) is a connected hyperbolic plug with maximal invari-
ant set Λi. Note that (Vi,X|Vi

) has no trivial connected component (since it is con-
nected and has a non-empty maximal invariant set). Therefore, according to Proposi-
tion 3.13, we can find discs D1

i,1,D
2
i,1, . . . ,D

1
i,ℓi
,D2

i,ℓi
such that, up to topological equiva-

lence, (Vi,X|Vi
) can be obtained from (Ṽi, X̃i) by handle attachments on the pair of discs

(D1
i,1,D

2
i,1), . . . , (D

1
i,ℓi
,D2

i,ℓi
). Denote by Ck

i,j the connected component of ∂inṼi\L
s(Ṽi, X̃i)

containing the disc Dk
i,j. By construction, (Vi,X|Vi

) is of Anosov type (since it belongs
to a plug decomposition of an Anosov vector field). So, by Proposition 3.14, the con-
nected components C1

i,1, C
2
i,1, . . . , C

1
i,ℓi
, C2

i,ℓi
are pairwise different, and each of them is a

topological disc bounded by closed leaf of the lamination Ls(Ṽi, X̃i). According to propo-
sition 3.3, the lamination Ls(Ṽi, X̃i) has only finitely many closed leaves. It follows that
the integer ℓi is a priori bounded, and that there are only finitely many possible choices
for the connected components C1

i,1, C
2
i,1, . . . , C

1
i,ℓi
, C2

i,ℓi
. Moreover, Theorem 3.9 and 3.13

state that, up to topological equivalence, the hyperbolic plug (Vi,X|Vi
) only depends on

the components C1
i,1, C

2
i,1, . . . , C

1
i,ℓi
, C2

i,ℓi
. Therefore, up to topological equivalence, there

are only finitely many possibilities for the hyperbolic plug (Vi,X|Vi
). This completes the

proof of Theorem 1.12

Now, we describe a particular situation, where a fine hyperbolic plug decomposition is
unique. The following definition was introduced in [9].

Definition 3.15. Let (U,X) be an orientable hyperbolic plug. We say that (U,X) has
filling laminations if every connected components of ∂inU \Ls(U,X) is a strip in the sense
of Definition 3.5.

Recall that, in the particular case where (U,X) is of Anosov type, Definition 3.15 is
equivalent to requiring that no connected components of ∂inU \ Ls(U,X) is an annulus
bounded by closed leaves of Ls(U,X) (Proposition 3.14). Also observe that, if (U,X) has
filling laminations, then every connected components of ∂inU \ Ls(U,X) is contractible,
and therefore, (U,X) is a model of the germ of X along the hyperbolic set

⋂
tX

t(U).

Proposition 3.16. Let X be an Anosov vector field on a closed orientable three-manifold
M . If (M,X) admits a fine plug decomposition V 0

1 , . . . , V
0
m so that (V 0

i ,X|V 0
i
) has fill-

ing laminations for every i, then this fine plug decomposition is unique up to piecewise
topological equivalence.

Proof. Let V1, . . . , Vm be an arbitrary fine plug decomposition of (M,X). Note that since
(V 0

i ,X|V 0
i
) has filling laminations, every connected components of ∂inV 0

i \ Ls(V 0
i ,X) is

contractible, and therefore, (V 0
i ,X|V 0

i
) is a model of the germ of X along the hyperbolic

set Λi :=
⋂

tX
t(V 0

i ). Hence, for every i, up to topological equivalence, the hyperbolic plug
(Vi,X|Vi

) is obtained from by some handles attachment (V 0
i ,X|V 0

i
) (see the proof of Theo-

rem 1.12). But the arguments of the proof Theorem 1.12 show that each handle attachment
correspond to a pair of connected components C1

i,j, C
2
i,j of ∂

inV 0
i \Ls(V 0

i ,X|V 0
i
) which both

are topological discs bounded by closed leaves of Ls(V 0
i ,X|V 0

i
). Since (V 0

i ,X|V 0
i
) has filling

laminations, such connected components do not exists. Hence, there is actually no han-
dle attachment, i.e. (Vi,X|Vi

) is topological equivalent to (V 0
i ,X|V 0

i
). By definition, this

means that the plug decompositions V1, . . . , Vm and V 0
1 , . . . , V

0
m are piecewise topologically

equivalent.
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4 Fine plug decompositions up to flow isotopy equivalence

The purpose of this section is to build an example to prove Proposition 1.13, i.e. to build
an Anosov vector field Z on a closed manifold M , so that Z admits with infinitely many
fine plug decompositions which are pairwise not flow isotopy equivalent. Actually, the
manifold M and the vector field Z were already constructed in the final section of our
paper [9]. In that paper, we proved the existence of infinitely many pairwise non-isotopic
tori transverse to Z. Here, we only briefly recall the construction of (M,Z), and explain
what are the fine plug decompositions.

First we consider the vector field X0 on the torus T2 defined as follows

X0(x, y) = sin(2πy)
∂

∂x
+ sin(2πy)

∂

∂y
.

The non-wandering set of X0 consists in four hyperbolic singularities: a source α := (0, 0),
two saddles σ1 := (12 , 0) and σ2 := (0, 12 ), and a sink ω := (12 ,

1
2). Moreover, the invariant

manifolds of σ1 are disjoint from the invariant manifold of σ2. See figure 3.

Figure 3: The gradient-like vector field X0

Now, let us choose four small and standard open discs neighborhoodsDα,Dσ1 ,Dσ2 ,Dω

of α, σ1, σ2, ω respectively. We consider a smooth function ϕ : T2 → R such that ϕ > 0
on Dσ1 , ϕ < 0 on Dσ2 , and ϕ = 0 on T2 \ (Dσ1 ∪Dσ2) (in particular, ϕ = 0 on Dα ∪Dω).
Then we consider the vector field X on T2 × S1 defined by

X(x, y, t) = X0(x, y) + ϕ(x, y)
∂

∂t
.

We consider the compact three-manifold with boundary U := (T2 \ (Dα∪Dω))×S1. Then
(U,X) is a hyperbolic plug. The maximal invariant set of (U,X) consists in two saddle
hyperbolic periodic orbits. The entrance boundary ∂inU (resp. the exit boundary ∂outU)
is the torus ∂Dα × S1 (resp. ∂Dω × S1).

Now we consider two copies (U1,X1) and (U2,X2) of the plug (U,X). We choose a
diffeomorphism ψ : ∂outU1 → ∂inU2 (see Definition 3.1) so that (V, Y ) := (U1 ⊔ U2,X1 ⊔
X2)/ψ is a hyperbolic plug with boundary composed of two tori. In [9], we proved that
there exists a diffeomorphism χ : ∂outV → ∂inV such that (M,Z) := (V, Y )/χ is a
transitive Anosov flow (see lemma 11.4 of [9], and the paragraph following the proof of
this lemma).

The manifold M constructed above is a graph manifold (it was obtained by gluing
together two copies of Σ×S1 where Σ is the torus minus two discs), with two JSJ tori T =
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π(∂inU1) = π(∂outU2) and T
′ = π(∂outU1) = π(∂inU2) (where π denotes the projection of

U1 ⊔ U2 on M).

Proof of Proposition 1.13. We shall describe infinitely many fine plug decompositions of
(M,Z) which are pairwise not flow isotopy equivalent.

Let cx and cy be the closed curves on T2 defined respectively by the equations x = 1
4

and y = 1
4 . We endow cx and cy with the orientations defined by the vector fields ∂

∂y and
∂
∂x respectively. One can easily check that the vector field X0 is transverse to cx and cy.
One can choose a simple closed curve b in T2 which satisfies the following conditions (see
the left side of Figure 4).

1. b is transverse to X0 and b is disjoint with cy, Dα, Dσ1 , Dσ2 and Dω.

2. The geometrical intersectional number of b and cx is 1.

3. cy and b cut T2 \ (Dα ∪Dω)) in two pants and there is exactly one saddle in each pant.

Let D be a Dehn twist about the curve −cx. For n ∈ N+, let bn and cy,n be the images
of the curves b and cy under the nth power of D (the right hand side of Figure 4 displays bn
and cy,n for n = 1). If D is supported in a sufficiently small neighborhood of cx, the closed
curves bn and cy,n are transverse to X0. Note that cy,n and bn also cut T2 \ (Dα ∪Dω)) in
two pants and there is exactly one saddle in each pant.

b

Figure 4: The transverse curves: left, b, cx and cy; right, b1 and cy,1

If c is a simple closed curve in T2 \ (Dα ∪ Dω)) transverse to X0, then the torus
Tc := c× S1 is embedded in U = (T2 \ (Dα ∪Dβ))× S1 and transverse to the vector field
X (because c is transverse to X0 and X(x, y, t) = X0(x, y) for (x, y) ∈ T2 \ (Dσ1 ,Dσ2)).
In particular, for every n ∈ N+, the tori Tbn := bn×S1 and Tcy,n are transverse to X in U .

Now recall that (M,Z) has been obtained by gluing together two copies (U1,X1) and
(U2,X1) of (U,X) along their boundary. For every curve c as above, we denote by T 1

c

(resp. T 2
c ) the torus Tc seen in U1 (resp. in U2). Recall that the projections in M of the

boundary components of U1, U2 yields two JSJ tori T, T ′ in M . For every n ∈ N+, we
consider the collection of six tori set Tn = {T, T ′, T 1

b , T
1
cy , T

2
bn
, T 2

cy,n}.

By the construction, T, T ′, T 1
b , T

1
cy , T

2
bn
, T 2

cy,n are pairwise disjoint, pairwise non-isotopic
and transverse to Z. Therefore, the collection Tn defines a plug decomposition of (M,Z).
To prove Proposition 1.13, we should prove the following two claims:

1. the plug decomposition associated to Tn is a fine plug decomposition;
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2. if m 6= n, the plug decompositions associated to Tn and Tm are not flow isotopy
equivalent.

For every n, the plug decomposition associated to TN is made of four connected hy-
perbolic plugs with maximal invariant sets s11, s

1
2, s

2
1 and s22 respectively. Here si1 and si2

are the isolated saddle periodic orbits associated to the singularities σ1 and σ2 in (Ui,Xi).
Therefore, to prove the claim 1, we only need to prove that Core(X) = {s11, s

1
2, s

1
2, s

2
2}. For

this purpose, recall that:

• M is a graph manifold, with two Seifert pieces, each of which is a copy Σ× S1, where
Σ is the torus minus two discs,

• each of the four orbits s11, s
2
1, s

1
2, s

2
2 is isotopic to a fiber of one of the Seifert pieces of

M .

It follows that, for every torus T embedded in M , the algebraic intersection number of T
with any of the four orbits s11, s

2
1, s

1
2, s

2
2 is equal to 0. If T is transverse to Z, the algebraic

intersection number of T with any orbit of Z coincides with the geometric intersection
number. This proves that every torus T transverse to Z is disjoint from s11, s

1
2, s

1
2, s

2
2.

Hence, Core(X) = {s11, s
1
2, s

1
2, s

2
2}.

Now we turn to prove claim 2. It is enough to prove that there is no self-homeomorphism
of M , isotopic to the identity, and mapping the collection of tori Tm on the collection of
tori Tn. Using the topological structure of M , this reduces to proving that the pairs of
simple closed curves {bm, cy,m} and {bn, cy,n} are not isotopic in T2 \ (Dα ∪ Dω)). This
last fact clearly follows from the definition of the curves bm, bn, cy,m, cy,n.
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(French) [Optimal positioning of tori with respect to an Anosov flow] Comment.
Math. Helv. 70 (1995), no. 1, 113-160.

[4] Barbot, Thierry. Generalizations of the Bonatti-Langevin example of Anosov flow
and their classification up to topological equivalence. Comm. Anal. Geom. 6 (1998),
no. 4, 749–798.

[5] Barbot,Thierry. De l’hyperbolique au globalement hyperbolique. Mémoire pour
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