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Abstract. We are concerned here with Smale (i.e. C1-structurally stable) diffeo-
morphisms of compact surfaces. Bonatti and Langevin have produced some combina-
torial descriptions of the dynamics of any such diffeomorphism ([2]). Actually, each
diffeomorphism admits infinitely many different combinatorial descriptions. The aim
of the present article is to describe an algorithm which decides whether two combi-
natorial descriptions correspond to the same diffeomorphism or not. This provides
an algorithmic way to classify Smale diffeomorphisms of surfaces up to topological
conjugacy (on canonical neighbourhoods of the basic pieces).

1. Introduction. A C1-diffeomorphism f of a manifold M is said to be
C1-structurally stable if there exists a neighbourhood U of f in Diff1(M), such
that every diffeomorphism g ∈ U is topologically conjugate to f . In tribute to the
pioneering work of S. Smale, C1-structurally stable diffeomorphisms of compact
manifolds are often called Smale diffeomorphisms.

We are concerned here with the classification of Smale diffeomorphisms of com-
pact surfaces up to topological conjugacy.

1.1. Combinatorial descriptions of Smale diffeomorphisms of surfaces.
In [2], C. Bonatti and R. Langevin have produced some combinatorial descriptions
of the global dynamics of every Smale diffeomorphism of a compact surface ; we will
briefly summarize the work of these authors. For sake of simplicity, all the surfaces
that we consider are oriented, and all the diffeomorphisms that we consider are
orientation-preserving.

It is well-known that the non-wandering set of a Smale diffeomorphism f can
be decomposed as finite union of disjoined compact invariant topologically transi-
tive sets: the basic pieces of f (see [8, chapter 8]). Then, the main difficulty in
the investigation of the dynamics of a Smale diffeomorphism is to understand the
dynamics in the neighbourhood of each basic piece.

The classification of Smale diffeomorphisms of surfaces can be reduced to the
classification of Smale diffeomorphisms of surfaces whose non-wandering set is a
totally discontinuous (see [2, section 2.3]). Moreover, the dynamics of a Smale
diffeomorphism in the neighbourhood of an isolated periodic orbit is completely
trivial. These are the reasons why we will focus our attention on totally discontin-
uous basic pieces which are not isolated periodic orbits. We call such a basic piece
a non-trivial saddle basic piece.

2000 Mathematics Subject Classification. 36C15,37D20,37E30.
Key words and phrases. Smale diffeomorphisms, axiom A diffeomorphisms, Markov partitions.
.

1
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Let f be a Smale diffeomorphism of a compact surface. To study the dynam-
ics of f in the neighbourhood of a non-trivial saddle basic piece K, we use some
geometrized Markov partitions of K. Roughly speaking, a Markov partition of K
is a finite collection R = {R1, . . . , Rn} of rectangles embedded in the surface S,
such that K is included R1 ∪ · · · ∪Rn, and such that each connected component of
f(Ri) ∩Rj is a subrectangle which crosses Rj“vertically” and crosses f(Ri) “hori-
zontally” (see subsection 3.1). A geometrized Markov partition is a Markov parti-
tion, whose rectangles are ordered and endowed with some choices of orientations.

For every geometrized Markov partition R of a non-trivial saddle basic piece
of f , Bonatti and Langevin have defined a finite combinatorial object, called the
geometrical type of the Markov partition R. This combinatorial object describes
how the rectangles of R are intersected by their images (number of connected com-
ponents in the intersection, relative positions, and orientations of these connected
components).

Besides, for every non-trivial saddle basic piece K of f , Bonatti and Langevin
have defined an invariant neighbourhood ∆(f,K) of K, which they call the domain
of K. The rectangles of every Markov partition of K are included in the domain
∆(f,K). The work of Bonatti and Langevin culminates in the following theorem:

Theorem 1 (Bonatti, Langevin [2]). Let f1, f2 be Smale diffeomorphisms of com-
pact surfaces S1, S2, let K1,K2 be non-trivial saddle basic pieces of f1, f2, and
let R1,R2 be geometrized Markov partitions of K1,K2. Assume that R1 and
R2 have the same geometrical type. Then, there exists an homeomorphism
h : ∆(f1,K1) → ∆(f2,K2) which conjugates the restrictions of f1 and f2.

A couple of remarks about the objects involved in theorem 1:
— The domain ∆(f,K) of a basic piece K is a very “nice” neighbourhood of K: it
is homeomorphic to a compact surface with boundary (see [2]).
— If R is a geometrized Markov partition of a basic piece K of a Smale diffeomor-
phism f of a compact surface, then the information captured by the geometrical
type of R contains the information captured by the classical incidence matrix of
R. The incidence matrix of R characterizes the restriction of f to the basic piece
K up to topological conjugacy (see [8, chapter 10]), whereas the geometrical type
of R characterizes the restriction of f to the domain ∆(f,K).

1.2. Statement of the main result. According to theorem 1, the restriction
of a Smale diffeomorphism f to the domain of a non-trivial saddle basic piece
K is characterized (up to topological conjugacy) by the geometrical type of any
geometrized Markov partition of K. Nevertheless, such a non-trivial saddle basic
piece K admits infinitely many Markov partitions. This suggests the following
definitions:

Definition (realizability of a geometrical type). A geometrical type T is said to
be realizable if there exists a Smale diffeomorphism f on a compact surface and a
non-trivial saddle basic piece K of f , such that K admits a geometrized Markov
partition of geometrical type T .

Definition (strong equivalence of geometrical types). Two realizable geometrical
types T1, T2 are said to be strongly equivalent if there exists a Smale diffeomorphism
f of a compact surface and a non-trivial saddle basic piece K of f , such that K
admits a geometrized Markov partition of geometrical type T1, and a geometrized
Markov partition of geometrical type T2.

The aim of the present article is to prove the following theorem:
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Theorem 2. There exists a finite algorithm which takes two realizable geometrical
types, and decides whether these geometrical types are strongly equivalent or not.

Theorem 2 provides an algorithmic way to classify Smale diffeomorphisms of
surfaces in restriction to the domains of non-trivial saddle basic pieces. A few
remarks about this theorem:
— There exist effective criterions to decide whether a given geometrical type is
realizable or not (see [1] and [4]).
— Unfortunately, the complexity of the algorithm announced in theorem 2 is ex-
ponential (as a function of the number of rectangle of the geometrical types).
— The restriction of a Smale diffeomorphism to a non-trivial saddle basic piece K
is topologically conjugate to a subshift of finite type (SSFT), and is characterized by
the incidence matrix of any Markov partition of K. R. F.Williams has described
a algebraic citerion to decide whether two incidence matrices correspond to the
same SSFT or not (see [10]). Nevertheless, it is not known whether Williams
criterion is algorithmic or not (see [11]). As a consequence, the classification of
Smale diffeomorphisms of surfaces in restriction to the domains of the basic pieces
is better understood than the classification of these diffeomorphisms in restriction
to the basic pieces themselves.
— A.Y. Zhirov has studied the dynamics of Smale diffeomorphism of surfaces in the
neighbourhood of 1-dimensional attractors, and has proved a analog of theorem 2
in this context (see [9]). Using some classical operations, the dynamics of Smale
diffeomorphism in the neighbourhood of 1-dimensional attractors can be seen a
particular case of the dynamics of Smale diffeomorphism in the neighbourhood
non-trivial saddle basic pieces (see [2, section 2.3]).

1.3. Organization of the article. In sections 2 and 3, we recall the definitions
and basic properties of Smale diffeomorphisms, Markov partitions and their geo-
metrical types. In sections 4 and 5, we consider a Smale diffeomorphism f of a
compact surface, and a non-trivial saddle basic piece K of f . We define a posi-
tive integer pmin(f,K). Then, for every integer p ≥ pmin(f,K), we construct a
set R(f,K, p) of particular Markov partitions of the basic piece K. The set made
of the geometrical types of these Markov partitions is denoted by T (f,K, p) ; it
satisfies the following important properties:
(i) For every p ≥ pmin(f,K), the set T (f,K, p) is made of a finite number of
geometrical types.
(ii) For every p ≥ pmin(f,K), the set T (f,K, p) is a complete invariant for topo-
logical conjugacy (see proposition 7 for a precise statement).

Then, for every realizable geometrical type T , we choose a Smale diffeomorphism
fT on a compact surface, and a non-trivial saddle basic pieceKT of fT , such that the
basic piece KT admits a geometrized Markov partition of geometrical type T . We
consider the integer pmin(T ) := pmin(fT ,KT ), and, for every integer p ≥ pmin(T ),
we consider the set of geometrical types T (T, p) := T (fT ,KT , p). This set satisfies
the following important properties:
(i’) For every p ≥ pmin(T ), T (T, p) is a finite set of geometrical types.
(ii’) For every p ≥ pmin(T ), the set T (T, p) is a complete invariant for strong
equivalence of geometrical types (see proposition 8 for a precise statement).

At that stage, we have found a complete invariant for strong equivalence of
geometrical types, and we are left to prove that this complete invariant can be
computed by a finite algorithm.
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Remark 1. The definition of the set of geometrical types T (T, p) uses the process
of construction of Markov partitions described in section 5. This process of con-
struction is completely geometric. Thus, it is not clear a priori that one can deduce
an algorithm from this process of construction.

Section 7, 8, 9 and 10 are devoted to the proof of the two following propositions:

Proposition 1. For every realizable geometrical type T , the integer pmin(T ) is
smaller than 142n2

T , where nT is the number of rectangles of any Markov partition
of geometrical type T .

Proposition 2. There exists an algorithm, which takes a realizable geometrical type
T and an integer p ≥ pmin(T ) as input, and gives back the finite set of geometrical
types T (T, p).

In section 7, we consider a Smale diffeomorphism f on a compact surface, a non-
trivial saddle basic piece K of f , and a Markov partition R of K. For every positive
integer N , we define a finite set of segments included in the images under fN (resp.
f−N) of the sides of the rectangles of R. These segments are called N -segments of
(f,K,R). Roughly speaking, the aim of the section is to find explicitly an integer
N , such that every segment involved in the construction of the set of Markov
partitions R(f,K, p) is a N -segment of (f,K,R). In particular, this implies that
every segment involved in the construction of the set of Markov partitionsR(f,K, p)
belongs to a finite set of segments that we know a priori. This is certainly the
most important step in the proof of proposition 2. We also prove proposition 1 in
section 7.

Sections 8, 9 and 10 are devoted to the description of the algorithm announced in
proposition 2. In section 8, we introduce the elementary combinatorial objects that
the algorithm will manipulate. Roughly speaking, these elementary combinatorial
objects are 6-uples of integers and binary symbols, which encode the positions of
the N -segments of (f,K,R). In section 9, we define some elementary operations
on these elementary combinatorial objects, and we prove that these elementary
operations are algorithmic. Lastly, in section 10, we describe each step of the
algorithm. Theorem 2 follows from properties (ii’), proposition 1 and 2.

2. Smale diffeomorphisms of surfaces: basic properties. Recall that a C1-
diffeomorphism f of a manifold M is called a Smale diffeomorphism if there exists
a neighbourhood U of f in Diff1(M), such that every g ∈ U is topologically con-
jugate to f . In this section, we will state some classical properties of Smale dif-
feomorphisms of compact surfaces. These basic properties will be used (sometimes
tacitely) all along the article.

Let f be a C1-diffeomorphism of a manifold M . Recall that the non-wanderring
set Ω(f) is made of the points x ∈ M such that, for every neighbourhood U of
x, there exists an integer n > 0 such that fn(U) ∩ U 6= ∅. The non-wanderring
set Ω(f) is said to be hyperbolic if there exists a splitting TΩ(f)M = Es ⊕ Eu, a
constant λ > 1, and a riemannian metric ‖.‖ on M such that:
— Es and Eu are continuous subbundles of TΩ(f)M which are invariant under df ,
— for every x ∈ Ω(f), and every v ∈ Es

x, we have ‖dfx.v‖ ≤ λ‖v‖,
— for every x ∈ Ω(f), and every v ∈ Eu

x , we have ‖df−1
x .v‖ ≤ λ‖v‖.

If the non-wanderring set Ω(f) is hyperbolic, then, for every point x
in Ω(f), the set W s(x) := {y ∈ M | d(fn(x), fn(y)) → 0 as n → +∞} and the set
Wu(x) := {y ∈ S | d(fn(x), fn(y)) → 0 as n → −∞} are C1-manifolds, injectively
immersed in M , called respectively stable and unstable manifold of x.
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The study of Smale diffeomorphisms relies on the following characterization:

Theorem 3 (Robbin, Robinson,Mañé, [7], [5]). A C1-diffeomorphism f of a com-
pact manifold M is a Smale diffeomorphism if and only if:
— the non-wanderring set Ω(f) is hyperbolic, the periodic points are dense in Ω(f),
— for every x, y ∈ Ω(f), W s(x) is transverse to Wu(y).

From now on, we consider a Smale diffeomorphism f of a compact surface S. We
recall that the surface S is assumed to be orientable, and that the diffeomorphism
f is assumed to be orientation-preserving.

A basic piece of f is a maximal compact invariant transitive subset of the non-
wanderring set Ω(f). It was proved by S. Smale that f has finitely many basic
pieces, that these basic pieces are pairwise disjoined, and that Ω(f) is the union of
these basic pieces (see [8]).

Remark 2. Using some classical techniques, one can prove that the classification
of Smale diffeomorphisms of compact surfaces is equivalent to the classification of
Smale diffeomorphism of compact surfaces whose non-wanderring set is totally dis-
continuous (see [2, section 2.3]). This is the reason why we will focus our attention
on totally discontinuous basic pieces of f .

Now, we consider a non-trivial saddle basic piece K of f , that is a totally dis-
continuous basic piece of f which is not a periodic orbit. The properties below are
all classical:
1. Since S is a surface, and since K is neither a sink nor a source, the stable
direction Es

x and the unstable direction Eu
x are one-dimensional for every x ∈ K.

2. K is homeomorphic to a Cantor set.
3. Let x ∈ K. The stable manifold W s(x) is a one-dimensional manifold, dif-
feomorphic to the real line, injectively immersed in the surface S. Similarly, the
unstable manifold Wu(x) is a one-dimensional manifold, diffeomorphic to the real
line, injectively immersed in S, and transversal to W s(x). Moreover, we have
W s(f(x)) = f(W s(x)) and Wu(f(x)) = f(Wu(x)).
4. The set W s(K) =

⋃
x∈K W s(x) is a one-dimensional lamination. Similarly, the

set Wu(K) =
⋃

x∈K Wu(x) is a one-dimensional lamination, transversal to W s(K).
Clearly, we have f(W s(K)) = W s(K) and f(Wu(K)) = Wu(K). Moreover, we
have K = W s(K) ∩Wu(K).
5. Let x ∈ K. A stable separatrix of x is a connected component of W s(x)\{x}. A
stable separatrix of x is said to be free if it does not intersect lamination Wu(K).
If W s is a stable separatrix of x which is not free, then it is easy to prove that the
orbit of W s under f is dense in the lamination W s(K) (see [2, lemme 6.1.2]).
Similarly, an unstable separatrix of x is a connected component of Wu(x)\{x}. An
unstable separatrix of x is said to be free if it does not intersect W s(K). If Wu is
an unstable separatrix of x which is not free, then the orbit of Wu is dense in the
lamination Wu(K).
6. A stable interval (for the basic piece K) is a connected subset of a leaf of the
lamination W s(K). A stable segment is a compact stable interval. If the points
a and b lie on the same leaf of the lamination W s(K), then we denote by [a, b]s

the stable segment whose ends are a and b. The notions of unstable intervals and
unstable segments, and the notation [a, b]u are defined similarly.
The hyperbolicity of the non-wandering set Ω(f) implies that we can find a riema-
nian metric on S such that:
– for every stable interval I, we have length(f(I)) ≤ λ.length(I),
– for every unstable interval J , we have length(f(J)) ≥ λ−1.length(J).
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7. Consider a point x ∈ K. Since K is homeomorphic to a Cantor set (see
property 2), the point x is not isolated in K. Moreover, for every stable interval
I such that x ∈ int(I), the point x is not isolated in I ∩ K. Similarly, for every
unstable interval J such that x ∈ int(J), the point x is not isolated in J ∩K. In
particular, if x ∈ K, then at least one of the two stable (resp. unstable) separatrices
of x is not free.

3. Markov partitions and geometrical types. The aim of this section is to
define the notion of geometrized Markov partition of a basic piece, and the notion
of geometrical type of a geometrized Markov partition.

3.1. Markov partitions. We consider a Smale diffeomorphism f of a compact
surface S, and a non-trivial saddle basic piece K of f .

Definition (rectangle). Let Q be a subset of the surface S. We say that Q is a
rectangle (for the basic piece K) if there exists an homeomorphism h : [0, 1]2 → Q
such that (see figure 1):
– Q∩W s(K) = h([0, 1]×F s), where F s is a closed subset of [0, 1] and {0, 1} ⊂ F s,
– Q∩Wu(K) = h(Fu× [0, 1]), where Fu is a closed subset of [0, 1] and {0, 1} ⊂ Fu.

Let Q be a rectangle (for the basic piece K). The stable sides of Q are the
connected components of ∂Q∩W s(K). The unstable sides of Q are the connected
components of ∂Q ∩ Wu(K). The union of the two stable sides of Q is denoted
by ∂sQ. The union of the two unstable sides of Q is denoted by ∂uQ.

A stable cross bar of the rectangle Q is a connected component of W s(K) ∩ Q.
An unstable cross bar of Q is a connected component of Wu(K)∩Q. Observe that
the ends of every stable (resp. unstable) cross bar of Q lie in the unstable (resp.
stable) sides of Q.

An horizontal subrectangle of Q is a rectangle H , included in Q, such that the
unstable sides of H are included in the unstable sides of Q. A vertical subrectangle
of Q is a rectangle V , included in Q, such that the stable sides of V are included
in the stable sides of Q (see figure 1)
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Wu(K)

W s(K)

an horizontal
subrectangle
of Q

subrectangle
of Q

a vertical(for the basic
piece K)

a rectangle Q

Figure 1. A rectangle for the basic piece K

Definition (Markov partition). A Markov partition R of the basic piece K is a
finite collection of pairwise disjoined rectangles such that (see figure 2):
— K is included in the union R of the rectangles of R,
— f(∂sR) ⊂ ∂sR and f(∂uR) ⊃ ∂uR, where ∂sR (resp. ∂uR) is the union of the
stable (resp. unstable) sides of all the rectangles of R,
— each connected component of f(R) ∩R has non-empty interior.
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Definition (geometrized Markov partition). A geometrized Markov partition is
a Markov partition R endowed with:
— an order of the rectangles of R,
— an orientation of the unstable cross bars of each rectangle of R.

Remarks 1. Let R be a geometrized Markov partition.
(i) Since the rectangles of R are ordered, we can denote them by R1, . . . , Rn.
(ii) Let i ≤ n. The orientation of the unstable cross bars of the rectangle Ri induces
an orientation of the stable cross bars of the rectangle Ri (via the two-dimensional
orientation of the surface S).
(iii) Let i ≤ n. If Q is a subrectangle of the rectangle Ri, then every stable (resp.
unstable) cross bars of Q is included in a stable (resp. unstable) cross bar of Ri.
As a consequence, the orientation of the stable (resp. unstable) cross bars of the
rectangle Ri, induces an orientation of the stable (resp. unstable) cross bars of
every subrectangle of Ri.

The following remark plays a fundamental role in the defintion of the geometrical
type of a Markov partition:

Remark 3. Let Ri and Rj be two rectangles of a Markov partition of the basic
piece K. It follows immediately from definition that every connected component of
f(Ri) ∩Rj is:
— a vertical subrectangle of the rectangle Rj,
— the image under f of an horizontal subrectangle of the rectangle Ri.

fixed points

f(R2)

R1

f(R1)

R2

Figure 2. A Markov partition

3.2. Geometrical types.

Definition (geometrical type). A geometrical type T = (n, h, v, Φ, ε) is 5-uple
made of:
— a positive integer n,
— two n-uples of positive integers h = (h1, . . . , hn) and v = (v1, . . . , vn) which
satisfy the equality

∑
hi =

∑
vi,

— a bijection Φ : {(i, j) | i ≤ n, j ≤ hi} → {(k, l) | k ≤ n, l ≤ vk},
— a function ε : {(i, j) | i ≤ n, j ≤ hi} → {+,−}.

Now, we will associate a geometrical type to any geometrized Markov partition.
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Definition (geometrical type of a Markov partition). Let R = {R1, . . . , Rn}
be a geometrized Markov partition of the non-trivial saddle basic piece K. The
geometrical type T = (n, h, v,Φ, ε) of R is defined as follows:
— n is the number of rectangles of R.
— h = (h1, . . . , hn) where hi is the number of connected components of the intersec-
tion (R1 ∪ · · · ∪Rn)∩ f(Ri). The connected components of (R1 ∪ · · · ∪Rn)∩ f(Ri)
are the images under f of some horizontal subrectangles of the rectangle Ri (re-

mark 3) ; we denote these horizontal subrectangles by H1
i , . . . , H

hi

i , the order being
induced by the orientation of the vertical cross bars of Ri.
— v = (v1, . . . , vn) where vk is the number of connected components of the inter-
section Rk ∩ f(R1 ∪ · · · ∪Rn). The connected components of Rk ∩ f(R1 ∪ · · · ∪Rn)
are some vertical subrectangles of the rectangle Rk (remark 3) ; we denote these
vertical subrectangles by V 1

k , · · · , V
vk
k , the order being induced by the orientation of

the horizontal cross bars of Rk.
— Φ(i, j) = (k, l) if the diffeomorphism f maps the horizontal subrectangle Hj

i to
the vertical subrectangle V l

k .
– ε(i, j) = + if and only if the diffeomorphism f maps the orientation of the unstable

cross bars of Hj
i to the orientation of the unstable cross bars of V l

k (by definition,

the orientation of the unstable cross bars of the subrectangle Hj
i is the orientation

of the unstable cross bars of the rectangle Ri, and the orientation of the unstable
cross bars of the subrectangle V l

k is the orientation of the unstable cross bars of the
rectangle Rk; see item (iii) of remark 1)

Example 1. Consider the Markov partition of figure 2. Assume that the stable
(resp. unstable) cross bars of the rectangles of this Markov partition are oriented
from left to right (resp. from bottom to top). Then, the geometrical type of this
Markov partition is T = (n, h, v,Φ, ε) where n = 2, h = (2, 3), v = (2, 3), and
Φ(1, 1) = (1, 1) ε(1, 1) = + Φ(2, 1) = (2, 1) ε(2, 1) = +
Φ(1, 2) = (2, 3) ε(1, 2) = − Φ(2, 2) = (2, 2) ε(2, 2) = −

Φ(2, 3) = (1, 2) ε(2, 3) = +

4. Boundary leaves and special points. In this section, we consider a Smale
diffeomorphism f of a compact surface, and a non-trivial saddle basic piece K
of f . The purpose of the section is to define some particular leaves of the lami-
nations W s(K), Wu(K), called boundary leaves, and some particular points of K,
called special points.

4.1. Boundary leaves, s and u-boundary points.

Definition (boundary leaves, s and u-boundary points). A point x ∈ K is said
to be a s-boundary point if there exists a point y ∈ Wu(x) such that y 6= x and
]x, y[u∩W s(K) = ∅ (see figure 3). If x is a s-boundary point of K, then the stable
manifold W s(x) is said to be a boundary leaf of the lamination W s(K).

A point x ∈ K is said to be a u-boundary point if there exists a point y ∈ W s(x)
such that y 6= x and ]x, y[s∩Wu(K) = ∅ (see figure 3). If x is a u-boundary point
of K, then the unstable manifold Wu(x) is said to be a boundary leaf of Wu(K).

It is quite easy to see that the stable (resp. unstable) sides of the rectangles of
every Markov partition of K are included in the boundary leaves of the lamination
W s(K) (resp. Wu(K)). This is the reason why these leaves will play a very
important role in the sequel.
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a s-boundary point

another boundary leaf
of W s(K)

of W s(K)
a boundary leaf

Wu(K)

W s(K)

Figure 3.

The proposition below is essentially due to S. Newhouse and J.Palis (see [6]) ; a
detailed proof of this proposition can be found in [2, propositon 2.1.1] (the proof
relies on the so-called “local product structure of K”).
Proposition 3 (Newhouse,Palis). (i) If x is a s-boundary point and x′ ∈ W s(x)∩
K, then x′ is a s-boundary point. In other words, every point of K which lies on a
boundary leaf of the lamination W s(K) is a s-boundary point.
(ii) There exists at least one boundary leaf in the lamination W s(K).
(iii) Every boundary leaf of the lamination W s(K) is periodic under f , i.e. every
boundary leaf of W s(K) is the stable manifold of a periodic s-boundary point of K.
(iv) If x is a periodic s-boundary point of K, then one of the two unstable separa-
trices of x is a free separatrix.
(v) There are only finitely many boundary leaves in the lamination W s(K). In
other words, there are only finitely many periodic s-boundary points in K.

Of course, there is an an analog of proposition 3 concerning u-boundary points
of K, and boundary leaves of the lamination Wu(K).

4.2. Special points of K.

Definition (special point). A point z ∈ K is said to be a special point of K if
there exists a periodic s-boundary point x of K and a periodic u-boundary point y
of K, such that z ∈ W s(x) ∩Wu(y), and such that ]x, z]s∩]y, z]u = {z}.

point y

point x

a periodic
u-boundary

special points

not special points
s-boundary
a periodic

W s(x)

Wu(y)

Figure 4. Special points and non-special points.

The special points of K will play a fundamental role in section 5. The main
properties of these points are stated in propositions 4 and 5 below.



10 FRANÇOIS BÉGUIN

Proposition 4. There are only finitely many orbits of special points in K.

Lemma 1. Let x be a periodic s-boundary point of K, and y be a periodic u-
boundary point of K. Let W s be a stable separatrix of x, and Wu be an unstable
separatrix of y. Then, there are finitely many orbits of special points in W s ∩Wu.

Proof of lemma 1. We consider a positive integer q such that f q(W s) = W s and
f q(Wu) = Wu, and a point z0 in W s ∩Wu.

On the one hand, for every point z ∈ W s, there exists an integer k such that
fk(z) ∈]f q(z0), z0]

s (since the stable segment [z0, f
q(z0)]

s is a fundamental domain
of W s for the action of f q). On the other hand, if fk(z) ∈]f q(z0), z0]

s ∩Wu and
fk(z) /∈]f q(z0), z0]

s ∩ [y, f q(z0)]
u, then fk(z) is not a special point of K (since the

point f q(z0) lies in ]x, fk(z)[s∩]y, fk(z)[u). Thus, we have the following statement:
for every special point z ∈ W s ∩Wu, there exists an integer k such that fk(z) ∈
[f q(z0), z0]

s ∩ [y, f q(z0)]
u.

Now, we observe that [f q(z0), z0]
s ∩ [y, f q(z0)]

u is a finite set (since it is the
intersection of two transversal segments). This completes the proof. △

Proof of proposition 4. The result follows immediately from lemma 1 and from
item (v) of proposition 3. △

Proposition 5. Let g be a Smale diffeomorphism of a compact surface and L be a
non-trivial saddle basic piece of g. Recall that we denote by ∆(g, L) the canonical
invaraint neighbourhood of L defined in [2] (see subsection 1.1). Assume that there
exists an homeomorphism h : ∆(f,K) → ∆(g, L) such that h ◦ f = g ◦ h. Then, z
is a special point of K if and only if h(z) is a special point of L.

Morally, proposition 5 tells us that the (finite) set of the special points of f is a
conjugacy invariant of f ; this is a crucial point in the strategy of our proof.

Proof of proposition 5. Let x ∈ K be a periodic s-boundary point, y ∈ K be a pe-
riodic u-boundary point, and z ∈ W s(x)∩Wu(y) be a special point. Since h is a con-
jugacy, h maps the laminations W s(K), Wu(K) to the lamination W s(L), Wu(L).
This implies that h maps the boundary leaves of W s(K), Wu(K) to the boundary
leaves of W s(L), Wu(L). Since h maps periodic points to periodic points, we see
that h(x) is a periodic s-boundary point of L, and h(y) is a periodic u-boundary
point of L. Finally, we have ]h(x), h(z)]s∩]h(y), h(z)]u = h(]x, z]s∩]y, z]u) = h(z).
As a consequence, h(z) is a special point of L. △

5. Construction of the set of geometrical types T (f,K, p). Let f be a Smale
diffeomoprhism of a compact surface, and K be a non-trivial saddle basic piece of
f . The purpose of this section is to construct the set of geometrical types T (f,K, p)
(for every p large enough). In subsection 5.1, we consider a special point z of K,
and we construct a Markov partition R(z, p) of K. In subsection 5.2, we define the
set of geometrical types T (f,K, p), and we prove that set is a complete invariant
for topological conjugacy.

5.1. Construction of the Markov partition R(z, p). In this subsection, we
consider a Smale diffeomorphism f of a compact surface, a non-trivial saddle basic
piece K of f , and a special point z of K (see definition ). For every p large enough,
we will construct a Markov partition R(z, p) of K. The construction, inspired by [3,
exposé 10] and [2, chapter 4], is divided in several steps.

If F is a family of intervals, then we denote by ∪F the union of the elements of F .
A family I of intervals is said to be positively invariant, if f(∪I) ⊂ (∪I). Similarly,
a family J of intervals is said to be negatively invariant, if f−1(∪J ) ⊂ (∪J ).
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Step 0. Construction of the family of unstable intervals J0(z).

Definition of the family of unstable intervals J0(z). Since z is a special point,
z lies on the unstable manifold of a periodic u-boundary point y. We consider the
unstable interval J0(z) :=]y, z]u, and the family of unstable intervals

J0(z) := {J0(z), f−1(J0(z)), . . . , f
−(2q−1)(J0(z))} where q is the period of y

Remarks 2. The period of each unstable separatrix of the point y is either q or 2q.
As a consequence, we have f−2q(J0(z)) ⊂ int(J0(z)). In particular, this inclusion
implies that:
(i) the family of unstable intervals J0(z) is negatively invariant,
(ii) there are points of K in the interior of the interval J0(z).

Step 1. Construction of the family of stable segments I1(z).

Lemma 2. Let x be a point in K, and W s be one of the two stable separatrices
of x. If the separatrix W s is not free, then W s intersects ∪J0(z).

Proof. On one hand, the lamination W s(K) intersects (transversaly) the interior
of the unstable interval J0(z) (remark 2). On the other hand, the orbit of the
separatrix W s is dense in W s(K) (see property 5 of section 2). As a consequence,
there exists an integer k ≥ 0 such that fk(W s) intersects J0(z). As a further
consequence, W s intersects f−k(J0(z)) ⊂ (∪J0(z)). △

Construction of the segment I1(x, z). Let x be a periodic s-boundary point of
K, and let W s

1 and W s
2 be the stable separatrices of x. For i = 1, 2, we consider

the point xi defined as follows:
— if W s

i is not a free separatrix, then xi is the unique point of W s
i ∩ (∪J0(z)) such

that the stable interval ]x, xi[
s does not intersect ∪J0(z);

— if W s
i is a free separatrix, then xi = x.

Then, we consider the stable segment I1(x, z) := [x1, x2]
s (see figure 5).

an element of the
family of unstable
segments J0(z)x = x1

x2

Ws
2

Ws
1

Figure 5. Construction of the segment I1(x, z) (the case where
W s

1 is a free separatrix, but not W s
2 )

And then, we consider the finite family of stable segments

I1(z) := {I1(x, z) | x is a periodic s-boundary point of K}

Remarks 3. By construction, the segment I1(x, z) is included in the stable mani-
fold of the periodic s-boundary point x, and the periodic s-boundary point x lies in
the segment I1(x, z). Moreover, I1(x, z) is non-trivial segment ( i.e. I1(x, z) 6= {x}),
since at least one of the two unstable separatrices of the point x is not free (see prop-
erty (vii) in section 2). Lastly, the both ends of the segment I1(x, z) are u-boundary
points.

Consequently, all the elements of the family of stable segments I1(z) are included
in the boundary leaves of W s(K), and all the periodic s-boundary points of K lie
in ∪I1(z). Moreover, I1(z) is positively invariant (this follows from the negative
invariance of J0(z)).
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Step 1’. Construction of the family of unstable segments J1(z). The proof of
lemma 3 below is similar to the proof of lemma 2

Lemma 3. Let y be a point in K, and Wu be one of the two unstable separatrices
of y. If the separatrix Wu is not free, then Wu intersects ∪I1(y)

Construction of the segment J1(y, z). Let y be a periodic u-boundary point
of K, and let Wu

1 ,W
u
2 the unstable separatrices of y. For i = 1, 2, we consider the

point yi defined as follows:
— if Wu

i is not free, then yi is the unique point of Wu
i ∩ (∪I1(z)) such that

]y, yi[
u∩(∪I1(z)) = ∅ ;

— if Wu
i is free, then yi = y.

Then, we consider the unstable segment J1(y, z) := [y1, y2]
u.

Then, we consider the finite family of unstable segments

J1(z) := {J1(y, z) | y is a periodic u-boundary point of K}

Remarks 4. By construction, the segment J1(y, z) is included in the unstable man-
ifold of the periodic u-boundary point y, and the point y lies in the segment J1(y, z).
Moreover, J1(y, z) is a non-trivial segment. Lastly, the both ends of the segment
J1(y, z) are s-boundary points.

Consequently, all the elements of the family of unstable segments J1(z) are in-
cluded in the boundary leaves of Wu(K), and all the periodic u-boundary points of
K lie in ∪J1(z). Moreover, J1(z) is negatively invariant.

Step 2. Construction of the family of externally isolated stable segments I2(z).

Definition (externally isolated stable segment). The stable segment [a, b]s is said
to be externally isolated at b if there exists a point b′ such that [a, b]s ⊂ [a, b′[s and
[a, b]s ∩K = [a, b′[s∩K. Similarly, the stable segment [a, b]s is said to be externally
isolated at a if there exists a point a′ such that [a, b]s ⊂]a′, b]s and [a, b]s ∩ K =
]a′, b]s ∩ K. The stable segment [a, b]s is said to be externally isolated if it is
externally isolated at a and b.

For every periodic s-boundary point x, we will construct a stable segment
I2(x, z), such that I2(x, z) ⊂ I1(x, z) and such that I2(x, z) is externally isolated.

Construction of the segment I2(x, z). Let x be a periodic s-boundary point.
Let us assume, for instance, that the stable segment I1(x, z) = [x1, x2]

s is externally
isolated at x1, but not externally isolated at x2. Since x2 is a u-boundary point
(remarks 3), there exists a point x′

2 ∈ W s(x) such that ]x′
2, x2[

s∩K = ∅. Since
x1 6= x2 (remarks 3), and since [x1, x2]

s is not externally isolated at x2, the point
x′
2 is necessarily in the segment [x1, x2]

s. Lastly, sinceK is compact, we can suppose
that x′

2 is in K. The segment [x1, x
′
2
s] will be denoted by I2(x, z) (figure 6).

The segment I2(x, z) can also be characterized as follows:

Abstract characterization of the segment I2(x, z). Let x be a periodic s-
boundary point of K. The segment I2(x, z) satisfies the three following properties:
(i) I2(x, z) ⊂ I1(x, z) ; (ii) the ends of I2(x, z) are in K ; (iii) I2(x, z) is exter-
nally isolated. Moreover, I2(x, z) is the biggest of all the segments which satisfies
properties (i), (ii) and (iii).

Lemma 4. The periodic s-boundary point x lies in the stable segment I2(x, z).
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x′
2

x1

Wu(K)

x2

W s(K)

Figure 6. Construction of the segment I2(x, z)

Proof. Let I1(x, z) = [x1, x2]
s. Assume, for instance, that I1(x, z) is externally

isolated at x1, but is not externally isolated at x2. Then, I2(x, z) = [x1, x
′
2]

s, where
]x′

2, x2[
s∩K = ∅. As a consequence, it suffices to prove that the points x and x2

are not equal. This follows from the construction of the segment I1(x, z): if x is
one of the ends of the segment I2(x, z), then one of the stable separatrices of x is
free, and the stable segment I1(x, z) is externally isolated at x. △

Then, we consider the family of stable segments

I2(z) := {I2(x, z) | x is a periodic s-boundary point of K}

By construction, I2(z) is a family of externally isolated segments, which are in-
cluded in the boundary leaves of W s(K). By lemma 4, every periodic s-boundary
point of K lies in ∪I2(z). Moreover, the family I2(z) is positively invariant (since
I1(z) is positively invariant).

Step 2’. Construction of the family of externally isolated unstable segments J2(z).
The definition of the notion of externally isolated unstable segment is similar to
definition . The construction of the family of unstable segments J2(z) is similar to
the construction of the family of stable segments I2(z).

Step 3. Construction of the saturated family of stable segments I3(z).

Definition (unstable arch). An unstable arch is an unstable segment γ, such that
the both ends of γ lie in K, and such that int(γ) ∩K = ∅.

Definitions (saturated family of stable segments). Let I be a family of stable
segments.

A point b ∈ K is said to be connected to I by an unstable arch if b is one of the
ends of an unstable arch γ = [a, b]u, such that a ∈ (∪I).

The family of stable segments I is said to be saturated if it satisfies the following
property: if b is connected to I by an unstable arch, then b ∈ ∪I.

Construction of the segment I3(x, z). For every periodic s-boundary point
x ∈ K, we consider the stable segment I3(x, z) characterized by the following
properties: (i) I2(x, z) is included in I3(x, z) ; (ii) if b ∈ W s(x) is connected to
I2(z) by an unstable arch, then b ∈ I3(x, z) ; (iii) I3(x, z) is the smallest of all the
stable segments which verify (i) and (ii).

Then, we consider the family of stable segments

I3(z) := {I3(x, z) | x is a periodic s-boundary point of K}
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⋃ element of the family

of segments I2(z)
element of the family

unstable arches

arches
unstable

of segments I3(z)

Figure 7. The family of stable segments I3(z)

Definition (adapted family of stable segments). Let I be a family of stable seg-
ments. Assume that every element of I is an externally isolated segment which is
included in a boundary leaf of W s(K), and assume that every periodic s-boundary
point of K lies in ∪I, and assume that I positively invariant and saturated. Then,
we say that I is an adapted family of stable segments.

Lemma 5. I3(z) is an adapted family of stable segments.

Proof. The only true difficulty is to prove that I3(z) is saturated. This follows
from the properties of the family I2(z) and from [2, lemma 4.4.1, item (i)]. △

Step 3’. Construction of the saturated family of unstable segments J3(z). .

If we exchange the stable and the unstable directions in definitions , and , we
obtain the definition of a stable arch, and the definition of a saturated family of
unstable segments, and the definition of an adapted family of unstable segments.
Then, proceeding as in step 3, we can construct an adapted family of unstable
segments J3(z).

Step 4. Construction of the integer pmin(z), of the family of stable segments
I4(z, p), and of the family of unstable segments J4(z, p).

Definitions (rail, equivalence class of rails). Let I be a family of stable segments.
• A rail leaning on I is a non-trivial unstable segment γ, such that the both ends of
γ lie in ∪I, and such that γ is not an unstable arch ( i.e. such that int(γ)∩K 6= ∅).
• Two rails γ1, γ2 leaning on I are said to be equivalent, if γ1 and γ2 are the
unstable sides of a rectangle R whose stable sides are included in ∪I.
• If C is an equivalence class C of rails leaning on I, then it is easy to see that the
elements of C are the unstable cross bars of a rectangle RC ([2, proposition 4.2.1]) ;
the rectangle RC is the domain of the equivalence class C (see figure 8).

Definition (rail, equivalence class of rails). Let J be a family of unstable segments.
• An rail leaning on J is a non-trivial stable segment α, such that the both ends of
α lie in ∪J , and such that α is not a stable arch.
• Two rails α1, α2 leaning on J are said to be equivalent, if α1 and α2 are the
stable sides of a rectangle R whose unstable sides are included in ∪J .
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family of stable
segments I

elements of the

domains of the
equivalence classes
of rails leaning on I

Ws(K)

Wu(K)

Figure 8. A family of stable segments I, and the equivalence
classes of rails leaning on I

• If C is an equivalence class of rails leaning on J , then the elements of C are
the stable cross bars of a rectangle RC ; the rectangle RC is the domain of the
equivalence class C.

Let I be an adapted family of stable segments, and J be an adapted family
of unstable segments. It is easy to prove that there exists an integer p, such that
the unstable sides of the domains of the equivalence class of rails leaning on I are
included in fp(∪J ), and such that the stable sides of the equivalence classes of
rails leaning on fp(J ) are included in ∪I ([2, corollary 4.3.9]). This suggests the
following definition:

Definition of the integer pmin(z). We denote by pmin(z) the smallest of all
the integers p which satisfy the following properties: (i) the unstable sides of the
domains of the equivalence classes of unstable rails leaning on I3(z) are included in
fp(∪J3(z)); (ii) the stable sides of the domains of the equivalence classes of stable
rails leaning on fp(J3(z)) are included in ∪I3(z).

Notation . Let I be a finite family of stable segments and J be a finite family of
unstable segments.
— We denote by DJ (I) the family of stable segments whose elements are the con-
nected components of ∪I minus the interiors of all the stable arches whose both
ends lie in J (see figure 9).
— We denote by DI(J ) the family of unstable segments whose elements are the
connected components of ∪J minus the interiors of all the unstable arches whose
both ends lie in I.

Definition of the families of segments I4(z, p) and J4(z, p). For every p ≥
pmin(z), the family of stable segments I4(z, p) and the family of unstable segments
J4(z, p) are defined by:

I4(z, p) := Dfp(J3(z))(I3(z)) and J4(z, p) := DI3(z)(f
p(J3(z)))

Step 5. Definition of the Markov partition R(z, p). .
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elements of
the family of
unstable segments J

both ends lie on ∪J

stable arch whose

elements of I

elements of DJ (I)

element of DJ (I)

⋃

Figure 9. A family of stable segment I, a family of unstable
segments J , and the family of stable segments DJ (I)

For every p ≥ pmin(z), the family of stable segments I3(z) and the family of
unstable segments fp(J3(z) satisfy the hypothesis of the following proposition:

Proposition 6. Let I be an adapted family of stable segments, and J be an adapted
family of unstable segments. Assume that the unstable sides of the domains of the
equivalence classes of rails leaning on I are included in ∪J , and assume that the
stable sides of the domains of the equivalence classes of rails leaning on J are
included in ∪I. Then, there exists a Markov partition R of K, such that DJ (I) is
the family of the stable sides of the rectangles of R, and DI(J ) is the family of the
unstable sides of the rectangles of R.

Sketch of the proof (see [2, theorem 4.3.3] for a detailed proof). Let R be
the family of rectangles whose elements are the domains of the equivalence classes
of rails leaning on DJ (I). Let R′ be the family of rectangles whose elements are the
domains of the equivalence classes of stable rails leaning on DI(J ). It is quite easy
to see that R (resp. R′) is made of a finite number of rectangles, and that these
rectangles are disjoined. The hypothesis of proposition 6 implies that R = R′. It
also imply that the elements of DJ (I) are the stable sides of the rectangles of R,
and imply that the elements of DI(J ) are the unstable sides of the rectangles of
R′ = R.

Let us denote by R be the union of the elements of R. It is quite easy to prove
that every point of K is on an rail leaning on DJ (I) ; as a consequence, the basic
piece K is included in R. Moreover, the positive invariance of the family I imply
that we have f(∂sR) ⊂ ∂sR, and the negative invariance of the family J imply
that we have f(∂uR) ⊃ ∂uR. As a consequence, R is a Markov partition of the
compact set K. △

Definition of the Markov partition R(z, p). Let p ≥ pmin(z). Proposition 6
implies that there exists a Markov partition R(z, p) of K, such that the elements of
I4(z, p) are the stable sides of the rectangles of R(z, p), and such that the elements
of J4(z, p) are the unstable sides of the rectangles of R(z, p).
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5.2. Definition of the set of geometrical types T (f,K, p). Using the con-
struction of subsection 5.1, we are now going to define the set of geometrical types
T (f,K, p). Let us begin by a remark:

Remark 4. Let f1, f2 be Smale diffeomorphisms of compact surfaces, and K1,K2

be non-trivial saddle basic pieces of f1, f2. Assume that there exists an homeomor-
phism h : ∆(f1,K1) → ∆(f2,K2) which conjugates the restriction of f1 and f2. Let
R1 be a Markov partition of the basic piece K1. Then, h(R1) is a Markov partition
of the basic piece K2 ; moreover, the Markov partitions R1 and h(R1) have the
same geometrical type.
Particular case. Let f be a Smale diffeomorphism of a compact surface, K be a
non-trivial saddle basic piece of f , and R be a Markov partition of K. Then, f(R)
is a Markov partition of K ; moreover, the Markov partitions R and f(R) have the
same geometrical type.

Lemma 6. Let f1, f2 be Smale diffeomorphisms of compact surfaces, and K1,K2

be non-trivial saddle basic pieces of f1, f2. Assume that there exists an homeomor-
phism h : ∆(f1,K1) → ∆(f2,K2) which conjugates the restriction of f1 and f2. Let
z1 be a special point of K, and recall that h(z1) is a special point of K2 (proposi-
tion 5). Then:
— the integers pmin(z1) and pmin(h(z1)) are equal,
— for every integer p ≥ pmin(z1), we have R(h(z1), p) = h(R(z1, p)).

Proof. The lemma follows from the construction of the integer pmin(z), from the
costruction of the Markov partition R(z, p) in subsection 5.1, and from the fact
that h maps W s(K1) to W s(K2), and maps Wu(K1) to Wu(K2). △

Corollary 1. Let f be a Smale diffeomorphism of a compact surface, and K be
a non-trivial saddle basic piece of f . For every special point z ∈ K, we have
pmin(f(z)) = pmin(z). Moreover, for every special point z ∈ K and every integer
p ≥ pmin(z), we have R(f(z), p) = f(R(z, p)).

Proof. Take f = f1 = f2 = h and K = K1 = K2 in lemma 6. △

Let K be a non-trivial saddle basic piece of a Smale diffeomorphism f .

Definition of the integer pmin(f,K). Proposition 5 and corollary 1 imply that
the set {pmin(z) | z is a special point of K} is a finite set. As a consequence, we
may consider the integer

pmin(f,K) := max{pmin(z) | z is a special point of K}

Definition of the set of Markov partitions R(f,K, p). For every integer
p ≥ pmin(f,K), we consider the set of Markov partitions

R(f,K, p) := {R(z, p) | z is a special point of K}

Definition of the set of geometrical types T (f,K, p). For every integer p ≥
pmin(f,K), we consider the set T (f,K, p) made of the geometrical types of all the
geometrizations of all the Markov partitions of the set R(f,K, p).

Remark 5. For every integer p ≥ pmin(f,K), proposition 4, corollary 1, and
remark 4 imply that the set T (f,K, p) is a finite set.

The following proposition states the most important property of set T (f,K, p):

Proposition 7. Let f1, f2 be some Smale difffeomorphisms of compact surfaces,
and K1,K2 be some non-trivial saddle basic pieces of K1 and K2.
(i) Assume that there exists an homeomorphism h : ∆(f1,K1) → ∆(f2,K2)
which conjugates the restrictions of f1 and f2. Then, we have pmin(f1,K1) =
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pmin(f2,K2). Moreover, for every integer p ≥ pmin(f1,K1), we have T (f1,K1, p) =
T (f2,K2, p).
(ii) Conversely, assume that there exists an integer p ≥
max(pmin(f1,K1), pmin(f2,K2)) such that T (f1,K1, p) = T (f2,K2, p). Then,
there exists an homeomorphism h : ∆(f1,K1) → ∆(f2,K2) which conjugates the
restrictions of f1 and f2.

Proof. Assume that the hypothesis of item (i) holds. Then, proposition 5 and
lemma 6 imply that the integers pmin(f1,K1) and pmin(f2,K2) are equal. Moreover,
proposition 5 and lemma 6 imply that, for every integer p ≥ pmin(f1,K1), the
elements of the set of Markov partitions R(f2,K2, p) are the images under h of
the elements of the set of Markov partitions R(f1,K1, p). Remark 4 completes the
proof of item (i).

Item (ii) follows from theorem 1. △

6. Definition of the set of geometrical types T (T, p).

Preliminary: choice of a triple (fT ,KT ,RT ) for every realizable geomet-
rical type T . For every realizable geometrical type T , we choose a Smale diffeo-
morphism fT of a compact surface ST , and a non-trivial saddle basic piece KT of
fT , such that KT admits a geometrized Markov partition RT of geometrical type
T . We denote by R1,T , . . . , R2,T the rectangles of the Markov partition RT . We
denote by RT the union of these rectangles, and we denote by ∂sRT (resp. ∂uRT )
the union of the stable (resp. unstable) sides of these rectangles.

Notation . For every realizable geometrical type T , we consider the integer
pmin(T ) := pmin(fT ,KT ). Moreover, for every realizable geometrical type T and
every integer p ≥ pmin(T ), we consider the finite set of geometrical types T (T, p) :=
T (fT ,KT , p).

Remark 6. Let gT be a Smale diffeomorphism of a compact surface and LT be a
non-trivial saddle basic piece of gT , such that LT admits a geometrized Markov
partition of geometrical type T . Then, by item (i) of proposition 7, we have
pmin(T ) = pmin(gT , LT ). Moreover, proposition 7 implies that, for every integer
p ≥ pmin(T ), we have T (T, p) = T (gT , LT , p).

The most important property of the set of geometrical types T (T, p) is that this
set is a complete invariant of strong equivalence. More precisely:

Proposition 8. Let T1 and T2 be two realizable geometrical types.
(i) If the geometrical types T1 and T2 are strongly equivalent, then
pmin(T1) = pmin(T2), and T (T1, p) = T (T2, p) for every p ≥ pmin(T1),
(ii) Conversely, if there exists p ≥ max(pmin(T1), pmin(T2)) such that T (T1, p) =
T (T2, p), then the geometrical types T1 and T2 are strongly equivalent.

Proof. Item (i) follows from the definition of strong equivalence, and from re-
mark 6. Item (ii) follows from item (ii) of proposition 7 and remark 4. △

7. N-points and N-segments. In this section, we consider a Smale diffeomor-
phism f of a compact surface, a non-trivial saddle basic piece K of f , and a ge-
ometrized Markov partition R of K. We denote by R1, . . . , Rn the rectangles of
the Markov partition R (in particular, n is the number of rectangles of R). We
denote by R the union of the rectangles of R. We denote by ∂sR (resp. ∂uR) the
union of the stable (resp. unstable) sides of the rectangles of R.
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Definition (N -point, N -segment). Let N be a non-negative integer.
• A N -point of (f,K,R) is a point that lies in f−N(∂sR) ∩ fN(∂uR).
• A stable N -segment of (f,K,R) is a segment which is included in f−N (∂sR),
and whose both ends lie in f−N (∂sR) ∩ fN (∂uR).
• An unstable N -segment of (f,K,R) is a segment which is included in fN (∂uR),
and whose both ends lie in f−N (∂sR) ∩ fN (∂uR).

f2(∂uR)

of (f,K,R)
stable 2-segment

f−2(∂sR)

of (f,K,R)
2-point

of (f,K,R)
unstable 2-segment

Figure 10. Some examples of 2-points and 2-segments of
(f,K,R), where f is the so-called “Smale’s horseshoe” (see [8,
chapter 4]), K is the unique non-trivial saddle basic piece of f ,
and R is a one-rectangle basic piece of K

Roughly speaking, the aim of the section is to find an integer N , such that all the
segments involved in the construction of the set of Markov partitions R(f,K, p) are
N -segments of (f,K,R). This integer N will depend on the number n of rectangles
of the Markov partition R.

7.1. Some technical results on N-points and N-segments of (f,K,R). In
this subsection, we will prove some technical results on N -points and N -segments
of (f,K,R). These results will be used in subsections 7.3 and 7.4. Let us begin by
some basic remarks:

Remarks 5. Let N be a non-negative integer.
(i) Clearly, the ends of a N -segment of (f,K,R) are N -points of (f,K,R).
(ii) Every stable (resp. unstable) N -segment of (f,K,R) is a stable (resp. unstable)
segment. Every N -point of (f,K,R) is a point of K.
(iii) There exist only finitely many N -points of (f,K,R). As a consequence, there
exist only finitely many N -segments of (f,K,R).
(iv) The definition of a Markov partition implies that we have: f−N (∂sR) ⊂
f−(N+1)(∂sR) and fN (∂uR) ⊂ fN+1(∂uR). As a consequence, every N -point of
(f,K,R) is also a (N + 1)-point of (f,K,R), and every N -segment of (f,K,R) is
also a (N + 1)-segment of (f,K,R).
(v) The image under f or f−1 of a N -point of (f,K,R) is a (N + 1)-point of
(f,K,R). Similarly, the image under f or f−1 of a N -segment of (f,K,R) is a
(N + 1)-segment of (f,K,R).

Lemma 7. Let I be a stable N -segment of (f,K,R), and δs be a stable cross bar
of the rectangle fN (Ri) (for some i ≤ n). Assume that I ∩ δs 6= ∅. Then, there are
two possibilities: either δs ⊂ I, or I ∩ δs = {x} where x is an end of both I and δs.
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Proof. On one hand, the both ends of the segment I lie on fN (∂uR). On the
other hand, the interior of the stable segment δs does not intersect fN(∂uR). As
a consequence, none of the two ends of the segment I lies in the interior of the
segment δs. This implies the lemma. △

Remark 7. By definition of a Markov partition, the rectangles
fN(R1), . . . , f

N(Rn) are disjoined, and the set K is included in the union of
these rectangles. This implies that every stable cross bar of the rectangle fN(Ri)
is an externally isolated stable segment.

Corollary 2. Let I be a stable N -segment of (f,K,R), and δs be a stable cross
bar of the rectangle fN (Ri) (for some i ≤ n). Assume that I is externally isolated,
and that I ∩ δs is non-empty. Then, δs is included in I.

Proof. By lemma 7, there are two possibilities: either δs ⊂ I, or I ∩ δs = {x}
where x is an end of both I and δs. To prove that the second possibility is absurd,
we argue by contradiction: we suppose that I ∩δs = {x} where x is a end of both I
and δs. Then, the point x lies in the interior of the stable segment I∪δs. Moreover,
since the stable segments I and δs are both externally isolated (see remark 7), the
point x is isolated in K ∩ (I ∪ δs). This contradicts property (vii) of section 2. △

Lemma 8. If x is a periodic s-boundary point of K, then x ∈ ∂sR.

Proof. Let x be a periodic s-boundary point of K. Since R is a Markov partition
of K, there exists an integer i ≤ n such that x ∈ Ri. By proposition 3, one of the
two unstable separatrices of x is a free separatrix. In particular, one of the two
unstable separatrices of x does not intersect ∂sRi (since ∂sRi ⊂ W s(K)). As a
consequence, the point x cannot lie in Ri \ ∂sRi. This completes the proof. △

A stable side δ of a rectangle of the Markov partition R is said to be periodic,
if there exists p > 0 such that fp(δ) ⊂ δ. We denote by ∂s

perR the union of the
periodic stable sides of R.

Remarks 6.
(i) For every stable side δ of R, there exists another stable side δ′ of R, such that
f(δ) ⊂ δ′ (by definition of a Markov partition). Moreover, the set of the stable sides
of R is a finite set of cardinal 2n. As a consequence, the period of a stable side of
R is at most 2n. As another consequence, we have f2n(∂sR) ⊂ (∂s

perR).
(ii) There exists a periodic s-boundary point on each periodic stable side of R.
(iii) By lemma 8, every periodic s-boundary point x of K lies on a stable side δ of
a rectangle of R. Moreover, it is clear that this stable side δ is necessarly periodic
(with the same period as the point x). As a consequence, item (i) implies that the
period of a periodic s-boundary point of K is at most 2n.
(iv) Item (iii) implies that the period of a stable separatrix of a periodic s-boundary
point of K is at most 4n.

Lemma 9. Let I be a stable segment such that the both ends of I are N -points of
(f,K,R). Then, I is a (N + 2n)-segment of (f,K,R).

Proof. We have to prove that the stable segment I is included in f−(N+2n)(∂sR).
By assumption, the both ends of the stable segment I lie in f−N (∂sR). There-
fore, by item (i) of remark 6, the both ends of the stable segment I lie in
f−(N+2n)(∂s

perR). Now, observe that two different connected components of

f−(N+2n)(∂s
perR) cannot be included in the same leaf of W s(K) (since each con-

nected component of f−(N+2n)(∂s
perR) contains a periodic s-boundary point). As
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a consequence, the two ends of the stable segment I must lie on the same con-
nected component of f−(N+2n)(∂s

perR). As a further consequence, the segment I is

included in f−(N+2n)(∂s
perR). △

Lemma 10. Let I be a finite family of stable N -segments of (f,K,R). If none of
the elements of the family I is a trivial segment, and if all the periodic s-boundary
points of K lie in ∪I, then we have (∪I) ⊃ fN (∂s

perR) ⊃ fN+2n(∂sR).

Proof. Recall that the inclusion fN(∂s
perR) ⊃ fN+2n(∂sR) was proved in remark 5.

It remains to prove the inclusion (∪I) ⊃ fN (∂s
perR).

First step. Let x be a periodic s-boundary point of K. By assumption, there
exists a stable segment I ∈ I such that x ∈ I. By lemma 8, the point x lies on a
stable side δ of the rectangle fN (Ri) for some i ≤ n. We will prove that δ ⊂ I.

On the one hand, the segment δ is a stable cross bar of the rectangle fN(Ri)
(since it is a stable side of this rectangle). On the other hand, I ∩ δs is non-empty,
since x ∈ I ∩ δs. Therefore, lemma 7 implies that, either δs ⊂ I, or I ∩ δs = {x}.
Let us prove that I ∩ δs 6= {x}:
— if x /∈ fN (∂uR), then x is in the interior of I. Hence, I ∩ δs 6= {x}.
— if x ∈ fN(∂uR), then x is a periodic u-boundary point. As a consequence, one
of the stable separatrices of x is a free separatrix. Let us denote by W s this stable
separatrix. Since the ends of I are in K, we have I ∩W s = ∅. For the same reason,
δs ∩W s = ∅. As a consequence, the stable segments I and δ lie on the same side of
the point x on the leaf W s(x). As a further consequence, we have δs ⊂ I or I ⊂ δs.
In particular, I ∩ δs 6= {x}.
We have proved that I ∩ δs 6= {x}. Thus, by lemma 7, we have δs ⊂ I.
Second step. Let δs be a connected component of fN (∂s

perR), that is a periodic

stable side of the rectangle fN (Ri) for some i. According to item (ii) of remarks 6,
there exists a periodic s-boundary point x of K which lies on δs. In the first step,
we have proved that there exists an element I of the family I, such that δs ⊂ I.
As a consequence, we have fN(∂s

perR) ⊂ (∪I). △

Lemmas 7, 8, 9 and 10, corollary 2 and remarks 7 and 6 concern the stable N -
segments of (f,K,R). Of course, there exist some analogous statements concerning
the unstable N -segments of (f,K,R).

7.2. N-embrionary separatrices of (f,K,R). Periodic s-boundary (resp. u-
boundary) points of K play an important role in the construction of the set
of Markov partitions R(f,K, p). Nevertheless, a periodic s-boundary (resp. u-
boundary) point of K is not (in general) a N -point of (f,K,R) for any integer
N . These is the reason why we need to introduce some new objects, called N -
embrionary separatrices of (f,K,R). These objects will play an important role in
the proofs of some of the results of subsections 7.3 and 7.4.

Definition (embrionary separatrix). Let N be a non-negative integer.
• A stable N -embrionary separatrix of (f,K,R) is an interval I =]x, z]s included
in f−N (∂sR), such that x is a periodic s-boundary point of K and z is a N -point
of (f,K,R).
• An unstable N -embrionary separatrix of (f,K,R) is an interval J =]y, z]u in-
cluded in fN(∂uR),such that y is a periodic u-boundary point of K, and z is a
N -point of (f,K,R).

Remark 8. Every N -embrionary separatrix of (f,K,R) is also a (N + 1)-
embrionary separatrix of (f,K,R). The image under f or f−1 of a N -embrionary
separatrix of (f,K,R) is a (N + 1)-embrionary separatrix of (f,K,R).
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Lemma 11. Let x be a periodic s-boundary point of K, and let W s be a stable
separatrix of x. Assume that W s is not a free separatrix. Then, there exists a

unique 0-embrionary separatrix Ŵ s of (f,K,R) included in W s.

Proof. By lemma 8, the point x lies on a connected component δs of ∂sR. Let

Ŵ s = W s ∩ δs (figure 11). Observe that Ŵ s is non-empty, since W s is not a free

separatrix. Clearly, Ŵ s is the unique 0-embrionary separatrix of (f,K,R) which is
included in W s. △

δs

W s

Ŵ s

x

Ri

Figure 11. Illustration of the proof of lemma 11

Lemma 12. Let x be a periodic s-boundary point of K, and W s be a stable sep-

aratrix of x. We assume that W s is not a free separatrix, and we denote by Ŵ s

the unique 0-embrionary separatrix of (f,K,R) such that Ŵ s ⊂ W s. If I is a

N -embrionary separatrix of (f,K,R) such that I ⊂ fN(W s), then I ⊃ fN(Ŵ s).

Proof. Let us first observe that fN (Ŵ s) and I are two stable intervals, which
are both included in the stable separatrix fN(W s). Moreover, the point x is an

end of both the stable intervals fN(Ŵ s) and I. As a consequence, there are two

possibilities: either fN (Ŵ s) is included in I, or I is included in the interior of

fN(Ŵ s). We are left to prove that I cannot be included in the interior of fN(Ŵ s).

Since Ŵ s is a 0-embrionary separatrix, we have Ŵ s ⊂ ∂sR. In particular, ∂uR

does not intersect the interior of Ŵ s. Therefore, fN (∂uR) does not intersect the

interior of fN(Ŵ s). Since the ends of I lie in fN (∂uR), this implies that I cannot

be included in the interior of fN (Ŵ s). This completes the proof. △

Lemma 13. Let x be a periodic s-boundary point, and z be a N -point of (f,K,R)
which lies on W s(x). Then, the stable interval I =]x, z]s is a (N +2n)-embrionary
separatrix of (f,K,R).

Proof. The arguments are the same as in the proof of lemma 9. △

Lemma 14. Let W s be a stable separatrix of a periodic s-boundary point of K.
We assume that W s is not a free separatrix. We denote by qs be the period of

W s, and we denote by Ŵ s the unique 0-embrionary separatrix of (f,K,R) such

that Ŵ s ⊂ W s. Then, f−qs(Ŵ s) contains a stable cross bar of a rectangle of the
Markov partition R.

Proof. By definition of a 0-embrionary separatrix of (f,K,R), we have Ŵ s =
]x, a]u, where x is a periodic s-boundary point of K and a ∈ (∂sR∩ ∂uR) (i.e. a is
a corner of a rectangle of the Markov partition R).

Let I = f−qs(Ŵ s) \ Ŵ s =]a, f−qs(a)]s. Since R is a Markov partition, we have
f−qs(∂uR) ⊂ ∂uR. In particular, the point f−qs(a) lies in ∂uR. As a consequence,
I is a non-trivial stable segment whose both ends lie in (∂uR). There are two
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possibilities: either the interior of I is disjoined from R, or the closure of I con-
tains a stable cross bar of a rectangle of R. The first possibility is absurd, since
]a, f−qs(a)[s∩K is clearly non-empty and K ⊂ R. △

Lemma 12, 13 and 14 concern stable N -embrionary separatrices of (f,K,R). Of
course, there exist analogous statements concerning unstable N -embrionary sepa-
ratrices of (f,K,R).

7.3. The special points of K. This subsection is devoted to the proof of the
following result:

Proposition 9. For every special point z of K, there exists an integer k ∈ Z, such
that fk(z) is a (23n2)-point of (f,K,R).

Lemma 15. Let δu be an unstable cross bar of the rectangle Ri. Assume that
f(Ri) ∩ Rj is non-empty. Then0the unstable segment f(δu) contains an unstable
cross bar of the rectangle Rj.

Proof. Let V be a connected component of f(Ri) ∩ Rj . By remark 3, V is a
vertical subrectangle of Rj , and there exists an horizontal subrectangle H of Ri

such that V = f(H). Clearly, δu ∩H is a vertical cross bar of H . Thus, f(δu ∩H)
is a vertical cross bar of f(H) = V . Now, observe that every vertical cross bar of
V is a vertical cross bar of Rj . As a consequence, f(δu) contains a vertical cross
bar of Rj . △

Corollary 3. Let δu be an unstable cross bar of the rectangle Ri, and δs be a stable
cross bar of the rectangle Rj. There exists an integer k ≤ n, such that fk(δu) ∩ δs

is non-empty.

Proof. Since K is transitive, there exists a finite sequence of integers i =
i0, i1, . . . , ik = j such that, for every l ≤ k − 1, the intersection f(Ril) ∩ Ril+1

is non-empty. We may assume that the integers i0, . . . , ik−1 are pairwise different ;
as a consequence, we may assume that the integer k is less than n.

By lemma 15, there an unstable cross bar δu1 of the rectangle Ri1 such that
f(δu) ⊃ δu1 . Using lemma 15 once again, we obtain an unstable cross bar δu2 of the
rectangle Ri2 such that f(δu1 ) ⊃ δu2 . By induction, we obtain an unstable cross bar
δuk of the rectangle Rik = Rj such that fk(δu) ⊃ δuk . Now, we observe that the
intersection δuk ∩ δs is non-empty (since δuk is an unstable cross bar of Rj and δs is
a stable cross bar of Rj). Hence, f

k(δu) ∩ δs is non-empty. △

Corollary 4. Let W s be a stable separatrix of a periodic s-boundary point of (f,K),
and Wu be an unstable separatrix of a periodic u-boundary point of (f,K). Assume

that neither W s, nor Wu is a free separatrix. Let Ŵ s be the unique 0-embrionary

separatrix of (f,K,R) such that Ŵ s ⊂ W s, and Ŵu be a 0-embrionary separatrix

of (f,K,R) such that Ŵu ⊂ Wu. Then, there exists an integer k ≤ 9n, such that

fk(Ŵu) ∩ Ŵ s is non-empty.

Proof. Firstly, lemma 14 implies that there exists an integer k1 ≤ 4n, an integer

i ≤ n, and an unstable cross bar δu of the rectangle Ri, such that fk1(Ŵu) ⊃ δu.
Secondly, a similar argument implies that there exists an integer k2 ≤ 4n, an integer

j ≤ n, and a stable cross bar δs of the rectangle Rj , such that f−k2(Ŵ s) ⊃ δs.
Thirdly, corollary 3 implies that there exists an integer k3 ≤ n such that fk3(δu)∩δs

is non-empty. Hence, we have fk(Ŵu) ∩ Ŵ s 6= ∅ where k = k1 + k2 + k3 ≤ 9n. △

Proof proposition 9. Let z be a special point of K. By definition of a special
point, the point z lies in W s ∩Wu, where W s is a stable separatrix of a periodic
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s-boundary point x, and Wu is an unstable bseparatrix of a periodic u-boundary

point y. Moreover, we have ]x, z]s∩]y, z]u = {z}. As usual, we denote by Ŵ s the

unique 0-embrionary separatrix of (f,K,R) such that Ŵ s ⊂ W s, and we denote

by Ŵu the unique embrionary separatrix of (f,K,R) such that Ŵu ⊂ Wu. We
denote by qs and qu the periods of the separatrices W s and Wu. By item (iv) of
remarks 6, the integers qs, qu are smaller than 4n.

By corollary 4, there exists an integer l ≤ 9n such that Ŵ s ∩ f l(Ŵu) is non-

empty. We consider a point z0 ∈ Ŵ s ∩ f l(Ŵu). Then, the proof of proposition 4
implies that there exists an integer k ∈ Z, such that fk(z) ∈]x, z0]s∩]y, f qsqu(z0)]

u.
By definition of the point z0, we have

]x, z0]
s ⊂ Ŵ s ⊂ ∂sR and ]y, f qsqu(z0)]

u ⊂ f l+qsqu(Ŵu) ⊂ f l+qsqu(∂uR)

Using these inclusions and the inequalities l ≤ 9n and qs, qu ≤ 4n, we obtain

fk(x) ∈ ∂sR ∩ f l+qsqu(∂uR) ⊂ ∂sR ∩ f23n2

(∂uR)

As a consequence, the point fk(z) is a (23n2)-point of (f,K,R). △

7.4. Segments involved in the construction of the Markov parti-
tion R(z, p). In this subsection, we consider a special point z ∈ K. Roughly
speaking, the aim of the subsection is to prove the following informal statement:
Assume that the special point z is a N0-point of (f,K,R) for some non-negative
integer N0. Then, “every segment involved in the construction of the Markov par-
tition R(z, p)” is a (N0 + 46n+ p)-segment of (f,K,R).

Step 0. The family of unstable segments J0(z).

Proposition 10. Assume that the special point z is a N0-point of (f,K,R) for
some non-negative integer N0. Then, each element of the family of unstable inter-
vals J0(z) is a (N0 + 6n)-embrionary separatrix of (f,K,R).

Proof. Recall that, by definition of a special point, the point z lies on the un-
stable manifold of a periodic u-boundary point y. Morover, recall that J0(z) =
{J0(z), . . . , f−2q(J0(z))}, where J0(z) =]y, z]u and q is the period of y. Since z is
N0-point of (f,K,R), lemma 13 implies that J0(z) is (N0 + 2n)-embrionary sep-
aratrix of (f,K,R). As a consequence, f−i(J0(z)) is a (N0 + 2n + i)-embrionary
separatrix of (f,K,R) for every i ∈ N (see remark 5). Lastly, item (i) of remark 6
implies q is smaller than 2n. This completes the proof. △

Step 1. The family of stable segments I1(z). The family of unstable segments J1(z).

Proposition 11. Assume that the special point z is a N0-point of (f,K,R) for
some non-negative integer N0. Then, for every periodic s-boundary point x ∈ K,
the stable segment I1(x, z) is a (N0 + 21n)-segment of (f,K,R).

Before reading the proof of proposition 11, it is necessary to have in mind the
construction of the segment I1(x, z) (see step 1 in subsection 5.1). The following
lemma is the core of the proof of proposition 11.

Lemma 16. Under the hypothesis of proposition 11, the ends of the segment I1(x, z)
are (N0 + 19n)-points of (f,K,R).

Proof. Recall that J0(z) =]y, z]s, where y is a periodic u-boundary point. We
denote by Wu the unstable separatrix of y such that J0(z) ⊂ Wu. We denote by

qu the period of the separatrix Wu, and we denote by Ŵu the unique 0-embrionary

separatrix of (f,K,R) such that Ŵu ⊂ Wu.
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We denote by W s
1 and W s

2 the stable separatrices of x, and we denote by x1

and x2 the ends of the unstable segment I1(x, z) such that x1 ∈ W s
1 ∪ {x} and

x2 ∈ W s
2 ∪ {x}. We denote by Ŵ s

1 and Ŵ s
2 the unique 0-embrionary separatrices

of (f,K,R) such that Ŵ s
1 ⊂ W s

1 and Ŵ s
2 ⊂ W s

2 .
Let i ∈ {1, 2}. We have to prove that the point xi is a (19n2)-point of (f,K,R).

Recall that the definition of xi is divided in two cases (see subsection 5.1):

First case: W s
i is a free separatrix. Then xi = x. By assumption, x is

a periodic s-boundary point. Thus, x lies in ∂sR (lemma 8). Moreover, x is a
periodic u-boundary point (since W s

i is a free separatrix). Thus, x lies in ∂uR
(lemma 8). Hence, the point xi = x lies in ∂sR∩∂uR, i.e. is a 0-point of (f,K,R).

Second case: W s
i is not a free separatrix. Then, xi is the unique point of

W s
i ∩ (∪J0(z)), such that ]x, xi[

s does not intersect ∪J0(z). By corollary 4, there

exists k ≤ 9n, such that f−k(Ŵ s
i ) intersects Ŵu. Moreover, proposition 10 and

lemma 12 imply that fN0+6n(Ŵu) is included in ∪J0(z). Thus, f
−(k+N0+6n)(Ŵ s

i )
intersects ∪J0(z). Since J0(z) is positively invariant, we obtain the following:

Fact 1: f−(k′+N0+6n)(Ŵ s
i ) intersects ∪J0(z) for every integer k′ ≥ k.

Besides, item (iv) of remark 6 implies the following:
Fact 2: there exists k′, such that k ≤ k′ ≤ k + 4n, and such that

f−(k′+N0+6n)(Ŵ s
i ) ⊂ W s

i .
The two properties stated above and the definition of xi imply that xi must lie

in f−(k′+N0+6n)(Ŵ s
i ) ∩ (∪J0(z)). On the other hand, Ŵ s

i is included in ∂sR,

and ∪J0(z) is included in fN0+6n(∂uR) (because Ŵ s
i is a 0-embrionary separatrix

and J0(z) is a family of (N0 + 6n)-embrionary separatrices). As a consequence,
the point xi lies in f−(9n+4n+N0+6n)(∂sR) ∩ fN0+6n(∂uR). In particular, xi is a
(N0 + 19n)-point of (f,K,R).

In both cases, we have proved that the point xi is a (N0+19n)-point of (f,K,R).
This completes the proof of lemma 16 △

Proof of proposition 11. The proposition follows from lemmas 16 and 9. △

Proposition 12. Assume that the special point z is a N0-point of (f,K,R) for
some non-negative integer N0. Then, for ever periodic u-boundary point y, the
unstable segment J1(y, z) is a (N0 + 42n)-segment of (f,K,R).

Proof. Similar to the proof of proposition 11. △

Step 2. The family of stable segments I2(z). The family of unstable segments J2(z).

Proposition 13. Let x be a periodic s-boundary point of K. Assume that the
special point z is N0-point of (f,K,R) for some non-negative integer N0. Then,
the stable segment I2(x, z) is also a (N0 + 21n)-segment of (f,K,R).

Lemma 17. Let α ⊂ W s(K) be a stable arch.
(i) For every integer k ∈ Z, either α ⊂ fk(R) \ fk(∂uR), or int(α) ∩ fk(R) = ∅.
(ii) Moreover, if int(α) ∩ fk(R) = ∅, then the both ends of α lie on fk(∂uR).

Proof of item (i) of lemma 17. We argue by contradiction: we suppose that
α is not included in fk(R) \ fk(∂uR), and that int(α) ∩ fk(R) is non-empty. In
particular, α intersects fk(∂uR).
— If int(α) ∩ fk(∂uR) 6= ∅, then int(α) ∩K 6= ∅ (since α ∩ fk(∂uR) ⊂ W s(K) ∩
Wu(K) and K = W s(K) ∩Wu(K)). This is in contradiction with the fact that α
is a stable arch.
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— If int(α) ∩ fk(∂uR) = ∅, then α is included in the rectangle fk(Ri) for some
i ≤ n, and one of the ends of α lies on fk(∂uRi). Then, property (vii) of section 2
implies that int(α) ∩K is non-empty. Once again, this contradicts the fact that α
is a stable arch.
In each case, we have obtained a contradiction ; this completes the proof. △

Corollary 5. Let α ⊂ W s(K) be a stable arch.
(i) If α 6⊂ f−(N1+2n)(R), then the both ends of α lie in f−(N1+2n)(∂uR).
(ii) If int(α) ∩ fN1(R) 6= ∅, then none of the ends of α lie in fN1(∂uR).

Proof. To prove item (i), apply lemma 17 with k = −(N1+2n). To prove item (ii),
apply lemma 17 with k = N1. △

Proof of item (ii) of lemma 17. Let us assume that int(α)∩fk(R) is non-empty.
Since α is a stable arch, the both ends of α lie in K ; in particular, the both ends

of α lie in fk(R). On the other hand, int(α)∩ fk(R) is empty (by assumption). As
a consequence, the both ends of α lie in fk(∪∂R) = fk(∂sR)∪fk(∂uR). Moreover,
none of the ends of α can lie in fk((∂sR) \ (∂uR)) (since α is a stable segment and
int(α) ∩ fk(R) = ∅). As a consequence, the both ends of α lie in fk(∂uR). △

Proof of proposition 13. Let N1 = N0 + 21n. By proposition 11, the segment
I1(x, z) is a N1-segment of (f,K,R). Let a and b be the ends of the stable segment
I1(x, z). Since I1(x, z) is a N1-segment of (f,K,R), the segment I1(x, z) is included
in f−N1(∂sR), and the points a, b lie in fN1(∂uR).

As a example, we treat the case where the segment I1(x, z) = [a, b]s is externally
isolated near a, but is not externally isolated near b. Then, I2(x, z) = [a, b′]s,
where b′ is the unique point such that b′ ∈]a, b[s∩K and ]b′, b[s∩K = ∅ (see the
construction of the segment I2(x, z) in subsection 5.1). In particular, [b′, b]s is a
stable arch. Since b ∈ fN1(∂uR), lemma 17 implies that b′ ∈ fN1(∂uR). As a
consequence, I2(x, z) = [a, b′]s is a N1-segment of (f,K,R). △

The proof of the following result is similar to the proof of proposition 13:

Proposition 14. Let y be a periodic u-boundary point of K. Assume that the
special point z is a N0-point of (f,K,R) for some non-negative integer N0. Then,
the unstable segment J2(y, z) is also a (N0 + 42n)-segment of (f,K,R).

Step 3. The family of stable segments I3(z). The family of unstable segments J3(z).

Definition (unstable N -arch). Let γ ⊂ Wu(K) be an unstable arch. If γ is a N -
segment of (f,K,R) for some integer N , then we say that γ is an unstable N -arch
of (f,K,R).

We will prove the following proposition:

Proposition 15. Assume that the special point z is a N0-point of (f,K,R) for
some non-negative integer N0, and let N1 = N0 + 21n. Then, for every periodic
s-boundary point x ∈ K:
(i) in the definition of the segment I3(x, z) (see step 3 in subsection 5.1), we can
replace “unstable arches” by “unstable (N1 + 2n)-arches”,
(ii) the stable segment I3(x, z) is a (N1 + 4n)-segment of (f,K,R).

Lemma 18 and corollary 6 below are the key of the proof of proposition 15.
The proofs of this lemma and this corollary are completely similar to the proofs of
lemma 17 and corollary 5.
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Lemma 18. Let γ ⊂ Wu(K) be a unstable arch.
(i) For every integer k ∈ Z, either γ ⊂ fk(R) \ fk(∂sR), or int(γ) ∩ fk(R) = ∅.
(ii) Moreover, if int(γ) ∩ fk(R) = ∅, then the both ends of γ lie in fk(∂sR).

Corollary 6. Let γ ⊂ Wu(K) be an unstable arch.
(i) If γ 6⊂ fN1+2n(R), then the both ends of γ lie in fN1+2n(∂sR).
(ii) If int(γ) ∩ f−N1(R) 6= ∅, then none of the ends of γ lie in f−N1(∂sR).

Let N be a non-negative integer. An unstable N -ribbon of (f,K,R) is the closure
of a connected component of fN(R) \ f−N(R).

Remark 9.
(i) The definition of a Markov partition implies that every unstable N -ribbon of
(f,K,R) is a horizontal subrectangle of fN (Ri) for some integer i ≤ n. In partic-
ular, every stable side of a N -ribbon of (f,K,R) is a stable cross bar of fN (R).
(ii) If γ is an unstable side of an unstable N -ribbon, then γ is included in fN (∂uR),
the both ends of γ lie in f−N (∂sR), and the interior of γ is disjoined from f−N (R) ⊃
K. Consequently, every unstable side of an unstable N -ribbon of (f,K,R) is an
unstable N -arch of (f,K,R).
(iii) Let γ be an unstable segment. Then, γ is an unstable cross bar of a N -ribbon
of (f,K,R) if and only if γ is included in fN(R), the interior of γ is disjoined from
f−N(R), and the both ends of γ lie in f−N(∂sR).

Proof of item (i) of proposition 15. By proposition 13, every element of the
family of stable segments I2(z) is a N1-segment of (f,K,R). As a consequence,
we have (∪I2(z)) ⊂ f−N1(∂sR) (by definition of N1-segments), and (∪I2(z)) ⊃
fN1+2n(∂sR) (by lemma 10).
First observation. Let γ be an unstable arch, such that one (and only one)
of the ends of γ lies in ∪I2(z). Using the inclusions proved above, corollary 5,
and item (iii) of remark 9, we see that γ is an unstable cross bar of an unstable
(N1 + 2n)-ribbon of (f,K,R).
Second observation. Let α be a stable side of an unstable (N1 + 2n)-ribbon
of (f,K,R). The first item of remark 9 and corollary 2 imply that the following
dichotomy holds: either α does not intersect (∪I2(z)), or α is included in (∪I2(z)).

The two observations above imply that, in the definition of the segment I3(x, z),
we can replace “unstable arches” by “unstable sides of unstable (N1 + 2n)-ribbons
of (f,K,R)”. Since every unstable sides of unstable (N1+2n)-ribbons of (f,K,R)
is an unstable (N1 + 2n)-arch of (f,K,R) (remark 9), this completes the proof. △

Proof of item (ii) of proposition 15. The definition of the segment I3(x, z) and
item (i) of the proposition imply that each end of the segment I3(x, z) is either an
end of the segment I2(x, z), or an end of an unstable (N1 + 2n)-arch of (f,K,R).
In particular, each end of the segment I3(x, z) is a (N1 + 2n)-point of (f,K,R).
Then, lemma 9 implies that I3(x, z) is a (N1 + 4n)-segment of (f,K,R). △

The proof of the following proposition is similar to the proof of proposition 15:

Proposition 16. Assume that the special point z is a N0-point of (f,K,R) for
some non-negative integer N0, and consider the integer N1 = N0 + 42n. Then, for
every periodic u-boundary point y ∈ K:
(i) in the definition of the segment J3(y, z) (see step 3 in subsection 5.1), we can
replace “stable arches” by “stable (N1 + 2n)-arches”,
(ii) the unstable segment J3(y, z) is a (N1 + 4n)-segment of (f,K,R).
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Step 4. The integer pmin(f,K). The family of stable segments I4(z, p). The family
of unstable segments J4(z, p).

Proposition 17. Assume that the special point z is a N0-point of (f,K,R) for
some non-negative integer N0, and consider the integer N2 = N0 + 46n. Then
pmin(z) ≤ 2(N2 + 2n).

Proof. Let us recall that pmin(z) is the smallest of all the integers p that satisfy
the two following properties:
(i) the unstable sides of the domain of every equivalence class of rails leaning on
∪I3(z) is included in fp(∪J3(z)),
(ii) the stable sides of the domain of every equivalence class of rails leaning on
fp(∪J3(z)) is included in ∪I3(z).
We will prove that properties (i) and (ii) are satisfied provided that the integer p
is greater or equal than 2(N2 + 2n).

First step. Let γ be a rail leaning on I3(z). We will prove that there exists an
integer i ≤ n, and an horizontal subrectangle Hγ of the rectangle f (N2+2n)(Ri),
such that γ is an unstable cross bar of Hγ .

On the one hand, since γ is a rail leaning on I3(z), we have int(γ)∩(∪I3(z)) = ∅.
On the other hand, since every element of the family of stable segments I3(z)
is a N2-segment of (f,K,R) (proposition 15), we have (∪I3(z)) ⊃ fN2+2n(∂sR)
(lemma 10). Putting these two facts together, we obtain int(γ)∩fN2+2n(∂sR) = ∅.
Moreover, since γ is not an unstable arch, we have int(γ) ∩ fN2+2n(R) 6= ∅. As a
consequence, we have γ ⊂ fN2+2n(Ri) for some integer i ≤ n.

We have proved that γ is an unstable segment included in the rectangle
fN2+n(Ri) for some i. Hence, there exists a (unique) horizontal subrectangle Hγ

of the rectangle fN2+2n(Ri) such that γ is an unstable cross bar of Hγ .

Second step. We consider the rail γ and the horizontal subrectangleHγ introduced
in the first step. For every unstable cross bar γ′ of Hγ , we will prove that γ′ is a
rail leaning on I3(z), and that the rails γ and γ′ are equivalent.

Let us first remark that each of the two sides sides of Hγ has a non-empty
intersection with ∪I3(z) (since the ends of γ lie on ∪I3(z) and γ is an unstable
cross bar of Hγ). Therefore, by corollary 2, we have

∪I3(z) ⊃ ∂sHγ (1)

Now, we prove that ∪I3(z)∩ (Hγ \∂sHγ) = ∅. For that purpose, let x ∈ (∪I3(z))∩
Hγ , and let δs be the stable cross bar of Hγ , such that x ∈ δs. We have:
— δs ⊂ (∪I3(z)) (by corollary 2),
— γ∩δs 6= ∅ (since γ and δs are respectively stable and unstable cross bars of Hγ),
— int(γ) ∩ (∪I3(z)) = ∅ (since γ is a rail leaning on I3(z)).
The three properties above imply that the stable cross bar δs is one of the two
stable sides of the subrectangle Hγ . In particular, x ∈ ∂sHγ . Since x is any point
in (∪I3(z)) ∩Hγ , we have proved that

(∪I3(z)) ∩ (Hγ \ ∂sHγ) = ∅ (2)

Properties (1) and (2) imply that we have (∪I3(z))∩Hγ = ∂sHγ . As a consequence,
every unstable cross bar γ′ of Hγ is a rail leaning on I3(z). Moreover, the rails γ
and γ′ are equivalent.

Third step. By proposition 16, every element of the family of unstable segments
J3(z) is a N2-segment of (f,K,R). Then, by corollary 10, we have fp(∪J3(z)) ⊃
fp−N2(∂uR) for every integer p ≥ 0 On the other hand, the first and second step
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of the proof imply that the unstable sides of the domain of every equivalence class
of rails leaning on I3(z) is included in fN2+2n(∂uR). As a consequence, for every
p ≥ 2(N2 + n), the unstable sides of the domain of every equivalence class of rails
leaning on I3(z) is included in fp(∪J3(z)).

End of the proof. We have proved that property (i) is satisfied by every integer
p ≥ 2(N2+n). By similar arguments, property (ii) is also satisfied by every integer
p ≥ 2(N2 + n). Hence, we have pmin(z) ≤ 2(N2 + n). △

Proof of proposition 1. Proposition 1 follows from proposition 9 and 17. △

Proposition 18. Assume the special point z is a N0-point of (f,K,R) for some
non-negative integer N0, and consider the integer N2 = N0 + 46n. Then, for
every p ≥ pmin(z), every element of the families of segments I4(z, p),J4(z, p) is a
(N2 + p)-segments of (f,K,R).

Proof. By propositions 15 and 16, every element of the families of segments
I3(z), J3(z) is a N2-segment of (f,K,R). Therefore, we have ∪I3(z) ⊂ f−N2(∂sR)
and ∪J3(z) ⊂ fN2(∂uR).

Now, let p ≥ pmin(z), and I be an element of the family of stable segments
I4(z, p). The definition of the family of stable segments I4(z, p) (see step 4 in
subsection 5.1) implies that the segment I is included in ∪I3(z), and implies that
the ends of I lie in fp(∪J3(z)). As a consequence, the segment I is included in
f−N2(∂sR) ⊂ f−(N2+p)(∂sR), and the ends of I lie in fN2+p(∂uR). In other words,
the stable segment I is a (N2 + p)-segment of (f,K,R).

Similar arguments imply that every element of the family of unstable segments
J4(z, p) is a (N2 + p)-segment of (f,K,R). △

8. Elementary combinatorial objects. Proposition 2 claims that there exists
an algorithm taking a geometrical type T and an integer p ≥ pmin(T ) as input, and
giving back the set of geometrical type T (T, p). The purpose of the present section
is to define the “elementary combinatorial objects” that this algorithm manipulates.

More precisely, for every realizable geometrical type T , we will define the N -
s-code of a N -point x of (fT ,KT ,RT ): this is quadruple of integers and binary
symbols, which encodes the position of the point x. We will also define the N -u-
code of a N -point of (fT ,KT ,RT ), and the N -code of a N -segment of (fT ,KT ,RT ).

Before that, we need to define the powers of a geometrical type, we need to
introduce the partial orders ≺s

N
and ≺u

N
, and we need to define the left, right,

bottom and top sides of a rectangle.

8.1. Powers of a geometrical type. Let T be a realizable geometrical type, and
p be a positive integer. We consider the diffeomorphism fT , the basic piece KT ,
and the geometrized Markov partition RT , defined in the preliminary of section 6.
Recall that the rectangles of the geometrized Markov partition RT are denoted
by R1,T , . . . , RnT ,T .

It is easy to verify that the diffeomorphism fp
T is a Smale diffeomorphism, and

that the compact set KT is a non-trivial saddle basic piece of the Smale diffeo-
morphism fp

T . Moreover, it is easy to verify that RT is still a geometrized Markov
partition of KT , when KT is considered as a basic piece of the diffeomorphism fT .

Definition (powers of a geometrical type). The pth power of the geometrical type
T is the geometrical type of the geometrized Markov partition RT , where RT is
considered as a Markov partition of the basic piece KT , and KT is considered as a
basic piece of the diffeomorphism fp

T .
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Notations . The pth power of the geometrical type T will be denoted by

T (p) =
(
nT , h

(p)
T , v

(p)
T , Φ

(p)
T , ε

(p)
T

)

wit h
(p)
T =

(
h
(p)
1,T , . . . , h

(p)
nT ,T

)
and v

(p)
T =

(
v
(p)
1,T , . . . , v

(p)
nT ,T

)

For every i ≤ nT , the connected components of (R1,T ∪ · · · ∪ RnT ,T ) ∩ fp
T (Ri,T )

are the images under fp
T of some horizontal subrectangles of the rectangle Ri,T .

These horizontal subrectangles will be denoted by H
1,(p)
i,T , H

2,(p)
i,T , . . . , the order being

induced by the orientation of the unstable cross bars of the rectangle Ri,T .
For every k ≤ nT , the connected components of Rk,T ∩ f(R1,T ∪ · · · ∪ RnT ,T ) are
some vertical subrectangles of the rectangle Rk,T . These vertical subrectangles will

be denoted by V
1,(p)
k,T , V

2,(p)
k,T , . . . , the order being induced by the orientation of the

stable cross bars of Rk,T .

Let us recall what these notations mean:
— h

(p)
i,T is the number of connected components of (R1,T ∪ · · · ∪RnT ,T ) ∩ fp

T (Ri,T ).

These components are the image of the horizontal subrectangles H
1,(p)
i,T , H

2,(p)
i,T , . . . .

— v
(p)
k,T is the number of connected components of Rk,T ∩ f(R1,T ∪ · · · ∪ RnT ,T ).

These components are the vertical subrectangles V
1,(p)
k,T , V

2,(p)
k,T , . . . .

— Φ
(p)
T (i, j) = (k, l) if the diffeomorphism fp

T maps the horizontal subrectangle

H
j,(p)
i,T to the vertical subrectangle V

l,(p)
k,T ,

— ε
(p)
T (i, j) = + if and only if the diffeomorphism fp

T maps the orientation of the

unstable cross bars of H
j,(p)
i,T to the orientation of the unstable cross bars of V

l,(p)
k,T .

Remark 10. Theorem 1 implies that the geometrical type T (p) does not depend on
the choice of the triple (fT ,KT ,RT ).

8.2. The partial orders ≺s
N

and ≺u
N
. Let T be a realizable geometrical type,

and N be a non-negative integer. We consider the diffeomorphism fT , the basic
piece KT , and the geometrized Markov partition RT , defined in the preliminary of
section 6. Recall that we denote by ∂sRT (resp. ∂uRT ) the union of the stable
(resp. unstable) sides of the rectangles of the Markov partition RT .

On the one hand, recall that the stable cross bars of the rectangles of RT are
oriented (since RT is a geometrized Markov partition). In particular, the stable
sides of the rectangles of RT are oriented. On the other hand, recall that the N -
points of (fT ,KT ,RT ) lie on the connected components of f−N

T (∂sRT ). These two
observations allow us to define the partial order ≺s

N
:

Definition (the partial order ≺s
N
). The N -orientation of the connected compo-

nents of f−N(∂sRT ) is the image under f−N
T of the orientation of the stable sides

of the rectangles of RT . This orientation induces a partial order on the set of the
N -points of (fT ,KT ,RT ) ; we denote this partial order by ≺s

N
.

Similarly, we define the partial order ≺u
N
:

Definition (the partial order ≺u
N
). The N -orientation of the connected compo-

nents of fN(∂uR) is the image under fN
T of the orientation of the unstable sides

of the rectangles of RT . This orientation induces a partial order on the set of the
N -points of (fT ,KT ,RT ) ; we denote this partial order by ≺u

N
.

Remark 11. Two N -points of (fT ,KT ,RT ) are comparable for the order ≺s
N

if

and only if they lie on the same connected component of f−N
T (∂sRT ). Two N -points
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of (fT ,KT ,RT ) are comparable for the order ≺u
N
if and only if they lie on the same

connected component of fN
T (∂uRT ).

8.3. The N-s-code and the N-u-code of a N-point. The N-code of a
N-segment. Let T be a realizable geometrical type, and N be a non-negative in-
teger. We consider the diffeomorphism fT , the basic piece KT , and the geometrized
Markov partition RT , defined in the preliminary of section 6. We use the notations
defined in subsection 8.1.

Definition (left, right, bottom and top side of a rectangle). Let Q be a rectangle
such that the stable (resp. unstable) cross bars of the rectangle Q are oriented.
The unstable sides of the rectangle Q will be called respectively left side of the
rectangle Q and right side of the rectangle Q, in such a way that the orientation
of the stable cross bars of Q goes from the left side of Q towards the right side

of Q. The left side and right side of the rectangle Q will be denoted by ∂leftQ

and ∂rightQ.
The stable sides of the rectangle Q will be called respectively bottom side of the
rectangle Q and top side of the rectangle Q, in such a way that the orientation of
the unstable cross bars of Q goes from the bottom side of Q towards the top side of
Q. The bottom and the top side of the rectangle Q will be denoted respectively by

∂bottomQ and ∂topQ.

Remark 12. For every i, j, k, l, p, our definition allow us to speak of the left, right,

bottom and top sides of the subrectangles V
j,(p)
i,T and H

l,(p)
k,T .

Let x be a N -point of (fT ,KT ,RT ). We recall this means that the point x lies

in f−N
T (∂sRT ) ∩ fN

T (∂uRT ).

• Let y = fN
T (x). On the one hand, the point x lies in f−N

T (∂sRT ). As a conse-
quence, there exists an integer i ≤ nT , and there exists η = bottom or top, such that
the point y lies in ∂ηRi,T . On the other hand, the point x lies in fN

T (∂uRT ) (and
thus, the point y lies in f2N

T (∂uRT )). As a consequence, there exists an integer

j ≤ v
(2N)
i,T , and there exists ξ = left or right, such that the point y lies in ∂ξV

j,(2N)
i,T .

Observe that y is the unique point in ∂ηRi,T ∩ ∂ξV
j,(2N)
i,T = ∂ηV

j,(2N)
i,T ∩ ∂ξV

j,(2N)
i,T

(more precisely, y is the (η, ξ)-corner of the subrectangle V
j,(2N)
i,T ).

• Let z = f−N
T (x). On one hand, the point x lies in fN

T (∪∂uRT ). As a consequence,
there exists an integer k ≤ nT , and there exists ζ = left or right, such that the point
z lies in ∂ζRk,T . On the other hand, the point x lies in f−N

T (∪∂sRT ) (and thus,

the point z lies in f−2N
T (∪∂sRT )). As a consequence, there exists l ≤ v

(2N)
k,T , and

there exists µ = bottom or top, such that the point z lies in ∂µH
l,(2N)
k,T . Observe

that z is the unique point in ∂ζRk,T ∩ ∂µH
l,(2N)
k,T = ∂µH

l,(2N)
k,T ∩ ∂ζH

l,(2N)
k,T (more

precisely, z is the (µ, ζ)-corner of the subrectangle H
l,(2N)
k,T ).

Definition (N -s-code and N -u-code of a N -point). Let x be a N -point of
(fT ,KT ,RT ).
• Let y = fN

T (x). The N -s-code of x is the 4-uple (i, η, j, ξ), where i is an integer
smaller than nT , where η = bottom or η = top, where j is an integer smaller than

v
(2N)
i,T , where ξ = left or ξ = right, and where y is the unique point in ∂ηRi,T ∩

∂ξV
j,(2N)
i,T = ∂ηV

j,(2N)
i,T ∩ ∂ξV

j,(2N)
i,T .

• Let z = f−N
T (x). The N -u-code of x is the 4-uple (k, ζ, l, µ), where k is an

integer smaller than nT , where ζ = left or ζ = right, where l is an integer smaller
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than h
(2N)
k,T , where µ = bottom or µ = top, and where z is the unique point in

∂ζRk,T ∩ ∂µH
l,(2N)
k,T = ∂µH

l,(2N)
k,T ∩ ∂ζH

l,(2N)
k,T .

Lemma 19. Let x and y be two N -points of (fT ,KT ,RT ).
• Let (i1, η1, j1, ξ1) and (i2, η2, j2, ξ2) be the N -s-codes of the points x and y. The
points x and y are comparable with respect to the order ≺N,s if and only if i1 = i2
and η1 = η2. Moreover, if x and y are comparable, then x ≺N,s y if and only if
(j2 > j1) or (j1 = j2, ξ1 = left and ξ2 = right).
• Let (k1, ζ1, l1, µ1) and (k2, ζ2, l2, µ2) be the N -u-codes of the points x and y. The
points x and y are comparable with respect to the order ≺N,u if and only if k1 = k2
and ζ1 = ζ2. Moreover, if x and y are comparable, then x ≺N,u y if and only if
(l2 > l1) or (l1 = l2, µ1 = bottom and µ2 = top).

Proof. This directly follows from the definition of the N -s-code (resp. the N -u-
code) of a N -point, and from the definition of the orders ≺s

N
and ≺u

N
. △

Definition (N -code of a N -segment). Let I be a stable N -segment of
(fT ,KT ,RT ). Let x and y be the ends of I such that x ≺s

N
y. Let (i, η, j1, ξ1)

and (i, η, j2, ξ2) be the N -s-codes of x and y. Then, the N -code of the segment I
is the 6-uple (i, η, j1, ξ1, j2, ξ2).
Let J be an unstable N -segment of (fT ,KT ,RT ). Let x and y be the ends of J such
that x ≺u

N
y. Let (k, ζ, l1, µ1) and (k, ζ, l2, µ2) be the N -u-codes of x and y. Then,

the N -code of the segment J is the 6-uple (k, ζ, l1, µ1, l2, µ2).

9. Elementary operations. In the previous section, we have define some “ele-
mentary combinatorial objects” (the N -s-code and the N -u-code of a N -point, and
the N -code of a N -segment). The purpose of the present section is to define a
few “elementary combinatorial operations” on these elementary objects. In subsec-
tion 9.1, we define the elementary operations. Then, in subsection 9.2, we prove
that these elementary operations are algorithmic.

9.1. Definition of the elementary operations. Recall that, for every realizable
geometrical type T , we have choosen a Smale diffeomorphism fT and a non-trivial
saddle basic piece KT of fT , such that KT admits a geometrized Markov partition
RT of geometrical type T . Here is a list of elementary operations:

Power — Takes a realizable geometrical type T and an integer p as input. Gives
back the pth power T (p) of the geometrical type T (see subsection 8.1).

UnstableCode — Takes a realizable geometrical type T , an integer N , and the
N -s-code of a N -point x of (fT ,KT ,RT ) as input. Gives back the N -u-code of x.

StableCode — Takes a realizable geometrical type T , an integer N , and the N -u-
code of a N -point x of (fT ,KT ,RT ) as input. Gives back the N -s-code of x.

Ends — Takes a realizable geometrical type T , an integer N , and the N -code of
a stable (resp. unstable) N -segment I of (fT ,KT ,RT ) as input. Gives back the
N -s-codes (resp. the N -u-codes) of the two ends of I.

StableSegment — Takes a realizable geometrical type T , an integer N , and the
N -s-codes of two N -points x, y of (fT ,KT ,RT ) as input. Gives back the N -code of
the N -segment [x, y]s (provided that x and y lie on the same connected component

of f−N
T (∂sRT )).

UnstableSegment — Takes a realizable geometrical type T , an integer N , and the
N -u-codes of two N -points x, y of (fT ,KT ,RT ) as input. Gives back the N -code of
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the N -segment [x, y]u (provided that x and y lie on the same connected component
of fN

T (∂uRT )).

StableSides (resp. UnstableSides ) — Takes a realizable geometrical type T
and an integer N as input. Gives back the list of the N -codes of all the stable
(resp. unstable) sides of the rectangles Markov partition RT .

Image — Takes a realizable geometrical type T , an integer N and the N -code of a
(stable or unstable) N -segment I of (fT ,KT ,RT ) as input. Gives back the N -code
of the segment fT (I) (provided that fT (I) is a N -segment of (fT ,KT ,RT )).

InverseImage — Takes a realizable geometrical type T , an integer N and the N -
code of a (stable or unstable) N -segment I of (fT ,KT ,RT ) as input. Gives back
the N -code of the stable segment f−1

T (I) (provided that f−1
T (I) is a N -segment of

(fT ,KT ,RT )).

PeriodicStableSides (resp. PeriodicUnstableSides ) — Takes a realizable ge-
ometrical type T , an integer N ≥ 2nT as input. Gives back the list of the N -codes
of the periodic stable (resp. unstable) sides of the rectangles of the Markov partition
RT .

StablePredecessor — Takes a realizable geometrical type T , an integer N and
the N -s-code of a N -point x of (fT ,KT ,RT ) as input. Gives back the N -s-code of
the predecessor of x with respect to the order ≺s,N (provided that this predecessor
does exist).

The elementary operations StableSuccessor , UnstablePredecessor and
UnstableSuccessor are defined similarly.

StableOrder — Takes a realizable geometrical type T , an integer N and the N -s-
codes of two N -points x, y of (fT ,KT ,RT ) as input. Returns yes if x ≺N,s y, and
no otherwise.

The elementary operation UnstableOrder is defined similarly.

PointsOnStableSegment — Takes a realizable geometrical type T , an integer N
and the N -code of a stable N -segment I of (fT ,KT ,RT ) as input. Gives back the
N -s-codes of all the N -points of (fT ,KT ,RT ) that lie on the segment I.

The elementary operation PointsOnUnstableSegment is defined similarly.

Intersection — Takes a realizable geometrical type T , an integer N , the N -code
of stable N -segment I and the N -code of an unstable N -segment J of T as input.
Gives back the list of the N -s-codes of the N -points that lie in I ∩ J .

StableArch (resp. UnstableArch ) — Takes a realizable geometrical type T , an
integer N and the N -code of a stable (resp. unstable) N -segment I of (fT ,KT ,RT )
as input. Returns yes if I is a stable (resp. unstable) arch, and no otherwise.

9.2. The elementary operations are algorithmic.

Proposition 19. The operation Power is algorithmic.

Proof. See appendix A. △

Proposition 20. The operations StableCode , UnstableCode are algorithmic.

To prove proposition 20, we need to introduce some notations:

Notation . If ε ∈ {+,−} and η ∈ {bottom, top}, then we consider the binary
symbol ε ⋆ η defined in the first array below. Similarly, if ε ∈ {+,−} and ξ ∈
{left, right}, then we consider the binary symbol ε ⋆ ξ defined in the second array
below.
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η = bottom η = top
ε = + ε ⋆ η = bottom ε ⋆ η = top
ε = − ε ⋆ η = top ε ⋆ η = bottom

ξ = left ξ = right
ε = + ε ⋆ ξ = left ε ⋆ ξ = right
ε = − ε ⋆ ξ = right ε ⋆ ξ = left

The following lemma is the key of the proof of proposition 20:

Lemma 20. Let T be a realizable geometrical type, N be a non-negative integer,
and x be a N -point of (fT ,KT ,RT ). Let (i, η, j, ξ) and (k, ζ, l, µ) be respectively the
N -s-code and the N -u-code of x. Then, the following equalities hold:

(i, j) = Φ
(2N)
T (k, l) η = ε

(2N)
T (k, l) ⋆ µ ξ = ε

(2N)
T (k, l) ⋆ ζ

Proof. The definition of the N -u-code of the point x implies that the point f−N
T (x)

lies in ∂ζH
l,(2N)
k,T ∩ ∂µH

l,(2N)
k,T . The definition of the N -s-code of the point x im-

plies that the point fN
T (x) lies in ∂ηV

j,(2N)
i,T ∩ ∂ξV

j,(2N)
i,T . The definitions of the

bijection Φ
(2N)
T and of the function ε

(2N)
T implies that:

(i)The diffeomorphism f2N
T maps the horizontal subrectangleH

l,(2N)
k,T to the vertical

subrectangle V
j,(2N)
i,T where (i, j) = Φ

(2N)
T (k, l).

(ii)The diffeomorphism f2N
T maps ∂µH

l,(2N)
k,T to ∂ηV

j,(2N)
i,T , where η = ε

(2N)
T (k, l) ⋆ µ.

(iii)The diffeomorphism f2N
T maps ∂ζH

l,(2N)
k,T to ∂ξV

j,(2N)
i,T , where ξ = ε(2N)(k, l) ⋆ ζ.

This proves the lemma. △

Proof of proposition 20. This follows from lemma 20 and proposition 19. △

Proposition 21. The operations Ends , StableSegment , UnstableSegment are
algorithmic.

Proof. This trivially follows from the definition of the N -code of a N -segment. △

Proposition 22. The operations StableSides , UnstableSides are algorithmic.

To prove proposition 22, we need to introduce some notations:

Notation . Let p and q be two positive integers such that p ≤ q.

For every i ≤ nT , and every j ≤ h
(p)
i,T , let θ

j,(p),(q)
i,T be the integer defined as follows:

θ
j,(p),(q)
i,T = ♯

{
m | the subrectangle H

m,(q)
i,T is included in the subrectangle H

j,(p)
i,T

}

For every k ≤ nT , and every l ≤ v
l,(p)
k,T , let ν

l,(p),(q)
k,T be the integer defined as follows:

ν
l,(p),(q)
k,T = ♯

{
m | the subrectangle V

m,(q)
k,T is included in the subrectangle V

l,(q)
k,T

}

Lemma 21. The following equalities hold:

• θ
j,(p),(q)
i,T = h

(q−p)
k,T , where k is defined by Φ

(p)
T (i, j) = (k, l).

• ν
l,(p),(q)
k,T = v

(q−p)
i,T , where i is defined by (Φ

(p)
T )−1(k, l) = (i, j).

Proof. By definition, θ
j,(p),(q)
i,T is the number of value of the integer m, such that

the horizontal subrectangle H
m,(q)
i,T is included in the horizontal subrectangleH

j,(p)
i,T .

Now, let us recall that, for every m, the image under f (q) of the horizontal sub-

rectangle H
m,(q)
i,T is a connected component of f q

T (H
j,(p)
i,T ) ∩ RT . As a consequence,

θ
j,(p),(q)
i,T is equal to the number of connected components of f q

T (H
j,(p)
i,T ) ∩ RT . On

the other hand, we have:

f q
T (H

j,(p)
i,T ) = f q−p

T (fp
T (H

j,(p)
i,T )) = f q−p

T (V
l,(p)
k,T ) where (k, l) = Φ

(p)
T (i, j)
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This implies that θ
j,(p),(q)
i,T is equal to the number of connected components of

f q−p
T (V

l,(p)
k,T ) ∩ RT . This number is equal to the number of connected component

of f q−p
T (RT,k) ∩ RT . By definition, the number h

(q−p)
T,k is the number of connected

component of f q−p
T (RT,k) ∩ RT . This completes the proof of the first item ; the

proof of second item is similar. △

Corollary 7. The operations (T, i, j, p, q) 7→ θ
j,(p),(q)
T,i and (T, k, l, p, q) 7→ ν

l,(p),(q)
T,k

are algorithmic.

Proof. This follows immediately from proposition 19 and 21. △

Proof of proposition 22.
First step: the N-s-code of the bottom-left corner of the rectangle Rk,T .
Let T be a geometrical type, and N be a non-negative integer. Given an integer
k ≤ nT , we denote by x the bottom-left corner of the rectangle Rk,T . We want to
find the N -s-code of the point x.

On one hand, the point x lies on the bottom side of the horizontal subrectangle

H
1,(N)
k,T . Thus, the point fN

T (x) lies on ∂ηV
j′,(N)
T,i ⊂ ∂ηRT,i where





(i, j′) = Φ
(N)
T (k, 1)

η = bottom if ε
(N)
T (k, 1) = +

η = top if ε
(N)
T (k, 1) = −

(3)

On the other hand, the point x lies on the left side of the horizontal subrectangle

H
1,(N)
T,k . As a consequence, the point fN

T (x) lies on ∂ξV
j′,(N)
T,i where

{
ξ = left if ε

(N)
T (k, 1) = +

ξ = right if ε
(N)
T (k, 1) = −

(4)

As a further consequence, the point fN
T (x) lies on ∂ξV

j,(2N)
T,i where

{
j =

∑α=j′−1
α=1 ν

α,(N),(2N)
T,i + 1 if ξ = l

j =
∑α=j′

α=1 ν
α,(N),(2N)
T,i if ξ = r

(5)

By definition, the N -s-code of the point x is (i, η, j, ξ).

Second step: end of the proof. Let us consider the operation which takes a
geometrical type T , an integer N and an integer k ≤ nT as input, and gives back
the N -s-code (i, η, j, ξ) of the bottom-left corner of the rectangle Rk,T . Formulas
(3), (4), (5) above imply that this operation is algorithmic. Of course, the similar
operation which deal with the right-bottom, the left-top and the right-top corners
are algorithmic as well. Using proposition 21, this implies that the operations
StableSides and UnstableSides are algorithmic. △

Proposition 23. The operations Image and InverseImage are algorithmic.

Proof.
First step: N-s-code of the image of a N-point. Let T be a geometrical
type. Let x be a N -point of (fT ,KT ,RT ) such that fT (x) is also a N -point of
(fT ,KT ,RT ). Let (i, η, j, ξ) be the N -s-code of the point x. We want to find the
N -s-code of the point fT (x).
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On one hand, by definition of the N -s-code of the point x, the point fN
T (x) lies

on ∂ηV
j,(2n)
i,T ⊂ ∂ηRi,T . Thus, if we consider the integer m defined by:

{
m = 1 if η = bottom

m = h
(1)
i,T if η = top

(6)

then the point fN
T (x) lies on ∂ηH

m,(1)
i,T . And thus, the point fN

T (fT (x)) lies on

∂µV
r,(1)
k,T ⊂ ∂µRk,T where:

{
(k, r) = Φ

(1)
T (i,m)

µ = ε
(1)
T (i,m) ⋆ η

(7)

On the other hand, by definition of j and ξ, the point fN
T (x) lies on

∂ξV
j,(2N)
i,T . Since the point fT (x) is a N -point of (fT ,KT ,RT ) (by assumption),

the point fN
T (x) lies on f2N−1

T (∂uRT ). As a consequence, the point fN
T (x) lies on

∂ξV
j′,(2N−1)
T,i , where the integer j′ is defined by:

{
If ξ = left then j =

∑α=j′−1
α=1 ν

α,(2N−1),(2N)
T,i + 1

If ξ = right then j =
∑α=j′

α=1 ν
α,(2N−1),(2N)
T,i

(8)

The connected components of H
m,(1)
i,T ∩ f2N−1

T (RT ) are vertical subrectangles

of the horizontal subrectangle H
m,(1)
i,T . The point fN

T (x) is in the (j′)th of these

vertical subrectangles (the order of the subrectangles being induced by the orien-

tation of the horizontal cross bars of H
m,(1)
i,T ). The diffeomorphism fT maps the

horizontal subrectangle H
m,(1)
i,T to the vertical subrectangle V

r,(1)
k,T . Moreover, the

diffeomorphism fT maps the orientation of the horizontal cross bars of H
m,(1)
i,T to

the orientation of the horizontal cross bars of V
r,(1)
k,T if and only if ε

(1)
T (i,m) = +. As

a consequence, the point fN
T (fT (x)) = fT (f

N
T (x)) lies in the vertical subrectangle

V
l,(2N)
k,T where l is defined by:

{
l =

∑α=r−1
α=1 ν

α,(1),(2N)
T,k + j′ if ε

(1)
T (i,m) = +

l =
∑α=r

α=1 ν
α,(1),(2N)
T,k + 1− j′ if ε

(1)
T (i,m) = −

(9)

Moreover, since the point fN
T (x) lies on ∂ξV

j′,(2N−1)
T,i , the point fN

T (fT (x)) lies on

∂ζV
l,(2N)
T,k where ζ is defined by:

ζ = ε
(1)
T (i,m) ⋆ ξ (10)

By definition, the N -s-code of the N -point fT (x) is (k, µ, l, ζ) where k, µ, l and ζ
are defined by formulas (6)...(10).

Second step: end of the proof. Let us consider the operation which takes a
geometrical type T , an non-negative integer N , and the N -s-code (i, η, j, ξ) of a
N -point x of (fT ,KT ,RT ) as input, and gives back the N -s-code (k, µ, l, ζ) of the
point fT (x). Formulas (6)...(10) obtained above and proposition 19 imply that this
operation is algorithmic. Using proposition 21, this immediately implies that the
operation Image is algorithmic. △

Proposition 24. The operations StableOrder , UnstableOrder ,
StablePredecessor , StableSuccessor , UnstablePredecessor and
UnstableSuccessor are algorithmic.



SMALE DIFFEOMORPHISMS OF SURFACES 37

Proof. This directly follows from lemma 19. △

Proposition 25. The operations PointsOnStableSegment and
PointsOnUnstableSegment are algorithmic.

Proof. Given a realizable geometrical type T , a non-negative integer N , and the
N -code of a stable N -segment I of (fT ,KT ,RT ),

• Let x and y be the ends of the segment I, such that x ≺s
N
y. The N -s-codes

of the points x and y are given by the operation Ends .
• Observe that a N -point z of (fT ,KT ,RT ) lies on the segment I if and only
if x ≺s

N
z ≺s

N
y. Thus, we can use the operation StableSuccessor to enu-

merate the N -s-codes of the N -points which lie on the segment I. △

Proposition 26. The operations PeriodicStableSides and
PeriodicUnstableSides are algorithmic.

Proof. This follows from propositions 22 and 23, and item (i) of remark 6. △

Proposition 27. The operation Intersection is algorithmic.

Proof. Given a realizable geometrical type T , a poistive integer N , the N -code of
a stable N -segment I and the N -code of an unstable N -segment J of (fT ,KT ,RT ),

• The operation PointsOnStableSegment gives the list LI of the N -s-codes of
the N -points that lie on the stable segment I,

• The operation PointsOnUnstableSegment and StableCode give the list LJ

of the N -s-codes of the N -points that lie on the unstable segment J ,
• Considering the intersection of the lists LI and LJ , we obtain the list of the
N -s-codes of the N -points that lie in I ∩ J . △

Proposition 28. The operations StableArch , UnstableArch are algorithmic.

To prove proposition 28, we need to introduce the notion of minimal N -segment :

Definition (minimal N -segment). Let T be a realizable geometrical type. A N -
segment I of (fT ,KT ,RT ) is said to be minimal, if I is non-trivial and there does
not exist any N -point of (fT ,KT ,RT ) in the interior of I.

Lemma 22. Let I be a stable N -segment of (fT ,KT ,RT ). Then, I is a stable arch
of (fT ,KT ) if and only if I is minimal and I is not included in fN

T (RT ).

Proof. If I is a stable arch, then there does not exist any point of KT in the
interior of I. In particular, if I is a stable arch, then I is a minimal.

From now on, we assume that I is minimal. Since I is a minimal N -segment of
(fT ,KT ,RT ), we have int(I) ∩ fN

T (∂uRT ) = ∅. As a consequence, one of the two
following possibilities holds: either int(I) ∩ fN

T (RT ) = ∅, or I ⊂ fN
T (RT )

Let us first consider the case where int(I)∩fN
T (RT ) = ∅. Then, there is no point

of KT in the interior of I (since KT ⊂ fN
T (RT )), i.e. I is a stable arch of (fT ,KT ).

Now, let us consider the case where I ⊂ fN
T (RT ). Recall that I is a non-

trivial stable segment of (fT ,KT ), such that the both ends of I lie on fN
T (∂uRT ).

Therefore, there exists an integer i ≤ n such that I is a stable cross bar of the
rectangle fN

T (RT,i). As a consequence, the lamination Wu(KT ) does intersect the
interior of I. As a further consequence, the segment I cannot be a stable arch. △

Proof of proposition 28.
First step. Let T be a geometrical type, N be a non-negative integer, and I be
a stable N -segment of (fT ,KT ,RT ). Let (i, η, j1, ξ1, j2ξ2) be the N -code of I. We
will prove that I is a stable arch if and only if j2 = j1 + 1, ξ1 = right and ξ2 = left.
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Let us denote by x and y the ends of the segment I (where x ≺s
N

y). The
N -s-codes of x and y are respectively (i, η, j1, ξ1) and (i, η, j2, ξ2). Now, let us
observe that the N -segment I is minimal if and only if y is the stable successor of
x. Therefore, by lemma 19, the N -segment I is minimal if and only if one of the
two following possibilities hold:
(i) j2 = j1 η1 = left η2 = right
(ii) j2 = j1 + 1 η1 = right η2 = left

• If (i) holds, then fN
T (I) = ∂ηV

j,(2N)
i,T . In particular, fN

T (I) ⊂ f2N
T (RT ), i.e.

I ⊂ fN
T (RT ). Then, lemma 22 implies that I is not a stable arch.

• If (ii) holds, then fN
T (I) is the subsegment of the stable side ∂ηRi,T located

between the vertical subrectangles V
j,(2N)
i,T and V

j+1,(2N)
i,T . In particular, the interior

of the stable segment fN
T (I) is disjoined from f2N

T (RT ), i.e. the interior of the
segment I is disjoined from fN

T (RT ). Then, lemma 22 imply that I is a stable arch.

Second step: end of the proof. We have proved that the operation StableArch

takes a geometrical type T , a non-negative integerN and aN -code (i, η, j1, ξ1, j2, ξ2)
as input, and returns yes if j2 = j1 + 1, ξ1 = right and ξ2 = left, and returns
no otherwise. In particular, the operation StableArch is algorithmic. Similar
arguments imply that the operation UnstableArch is algorithmic. △

10. Description of the algorithm. In this last section, we will describe step
by step an algorithm which takes a realizable geometrical type T , and an integer
p ≥ pmin(T ) as input, and gives back the finite set of geometrical type T (T, p).
This will complete the proof of proposition 2 and theorem 2.

For every geometrical type T and every integer p ≥ pmin(T ), we consider the
integers N0(T ) := 23n2

T and N(T, p) := N0(T ) + 46nT + p.

10.1. Construction of the N(T, p)-codes of some special points of (fT ,KT ).
For every realizable geometrical type T , we consider the set

Sp(T ) := {z | z is a special point of KT and a N0(T )-point of (fT ,KT ,RT )}

Recall that, for every special point z of (fT ,KT ), there exists an integer k ∈ Z

such that fk
T (z) ∈ Sp(T ) (proposition 9). The aim of this subsection is to prove the

following result:

Proposition 29. There exists an algorithm which takes a realizable geometrical
type T and an integer p ≥ p0(T ) as input, and gives back the list of the N(T, p)-
codes of the elements of Sp(T ).

Let T be a realizable geometrical type, and z be a N0(T )-point of (fT ,KT ,RT ).
By item (i) and (ii) of remark 6, the point z lies on the stable manifold of a periodic
s-boundary point x ; we consider the stable interval I0(z) :=]x, z]s. Similarly, z lies
on the unstable manifold of a periodic u-boundary y ; we consider the unstable
interval J0(z) :=]y, z]u. By definition, z is special point (i.e. z ∈ Sp(T )) if and only
if I0(z) ∩ J0(z) = {z}.

The following technical difficulty is arising: in general, the points x and y are
not N -points of (fT ,KT ,RT ) for any integer N ; as a consequence, there is no
straightforward algorithm to decide whether the equality I0(z) ∩ J0(z) = {z} does
or does not hold. To get round this technical difficulty, we will introduce a stable

segment Ĩ0(z) and an unstable segment J̃0(z):

• We denote by Ĩ0(z) the union of all the stable N(T, p)-segments of (fT ,KT ,RT )

which are included in the stable interval I0(z). Observe that Ĩ0(z) is a stable
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N(T, p)-segment of (fT ,KT ,RT ) (since, by lemma 9, the stable interval I0(z) is

included in a connected component of f
N(T,p)
T (∂sRT )). We say that Ĩ0(z) is the

stable N(T, p)-segment associated with z.

•We denote by J̃0(z) the union of all the unstableN(T, p)-segments of (fT ,KT ,RT )

that are included in the unstable interval J0(z). Then, J̃0(z) is an unstable N(T, p)-

segment of (fT ,KT ,RT ). We say that J̃0(z) is the unstable N(T, p)-segment asso-
ciated with z.

Remarks 7. Here are the main properties of the segments Ĩ0(z) and J̃0(z):
(i) If w is a N(T, p)-point of (fT ,KT ,RT ) such that w ∈ I0(z) (resp. such that

w ∈ J0(z)), then w ∈ Ĩ0(z) (resp. w ∈ J̃0(z)) (this follows directly from the

definition of the segment Ĩ0(z)).
(ii) Recall that the point z is a special point of KT , if and only if I0(z)∩J0(z) = {z}.
Then, using item (i) and (ibis), we obtain the following fact: the point z is a special

point of KT , if and only if Ĩ0(z) ∩ J̃0(z) = {z}.

Lemma 23. There exists an algorithm wich takes a realizable geometrical type T ,
an integer p ≥ pmin(T ) and the N(T, p)-s-code of a N0(T )-point z of (fT ,KT ,RT )

as input, and gives back the N(T, p)-code of the stable N(T, p)-segment J̃0(z) asso-
ciated with z.

Proof. Let us consider a realizable geometrical type T , an integer p ≥ p0(T ) and
a N0(T )-point z of (fT ,KT ,RT ). We denote by x the unique periodic s-boundary
point such that z ∈ W s(x), and we denote by y the unique periodic u-boundary
point such that z ∈ Wu(y). We consider the stable interval I0(z) :=]x, z]s and the

unstable interval J0(z) :=]y, z]s. We denote by Ĩ0(z) and J̃0(z) the stable and the
unstable N(T, p)-segments associated with z.

Observation 1. The point z is a N(T, p)-point of (fT ,KT ,RT ) ; as a conse-

quence, z is one of the two ends of the segment Ĩ0(z) (item (i) of remark 7). As a

further consequence, we have Ĩ0(z) =]x̃, z]s where x̃ is the unique N(T, p)-point of
(fT ,KT ,RT ), such that z̃ ∈]x, z]s, and such that there does not exist any N(T, p)-
point of (fT ,KT ,RT ) in ]x, x̃[s.

Observation 2. According to lemma 8, the periodic s-boundary point x lies

in a connected component δs of f
N(T,p)
T (∂s

perRT ). Observe that δs is the unique

connected component of f
N(T,p)
T (∂s

perRT ), such that the ends of δs are comparable
to z for the order ≺s

N(T,p)
. Moreover, by lemma 7, there does not exist any N(T, p)-

point of (fT ,KT , fT ) in the interior of the segment δs. As a consequence, the point
x̃ is one of the ends of the segment δs.

Description of the algorithm. Given a realizable geometrical type T , and the
N(T, p)-s-code of a point z ∈ Sp(T ),

• Using the operations PeriodicStableSides and Image , we obtain the

N(T, p)-codes of the connected components of f
N(T,p)
T (∂s

perRT ).
• Let E(T ) be the set made of the ends of the connected components of

f
N(T,p)
T (∂s

perRT ). since we know the N(T, p)-codes of the connected com-

ponents of f
N(T,p)
T (∂s

perRT ), we can use the operation Ends to obtain the
N(T, p)-s-codes of the elements of E(T ).

• We denote by a and b the two elements of E(T ) that are comparable to z for
the order ≺s

N(T,p)
. The N(T, p)-s-codes of a and b can be found (among the
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N(T, p)-s-codes of the elements of E(T )) thanks to the operation StableOrder

.
• We can use the operation StableOrder to decide whether a ∈ [b, z]s, or
b ∈ [a, z]s. If a ∈ [b, z]s, then we consider the point x̃ := a. If b ∈ [a, z]s, then
we consider the point x̃ := b. In both case, we know the N(T, p)-s-code of x̃.

• The segment [x̃, z]s is the stable N(T, p)-segment associated with z (this fol-
lows from observation 1 and observation 2 above). Since we know the N -s-
codes of the points x̃ and z, we can use the operation StableSegment to get
the N(T, p)-code of this segment. △

Proof of proposition 29. Recall that a point z is in the set Sp(T ), if and only if
z is a N0(T )-point of (fT ,KT ,RT ), and z is a special point of KT . Recall that a

N0(T )-point of (fT ,KT ,RT ) is a point that lies in f
−N0(T )
T (∂sRT )∩f

N0(T )
T (∂uRT ).

Finally, recall that a N0(T )-point z of (fT ,KT ,RT ) is a special point of KT , if and

only if Ĩ0(z) ∩ J̃0(z) = {z} (see remark 7). This leads to the following algorithm:

Description of the algorithm. Given a geometrical type T and p ≥ p0(T ),

• The operations StableSides give the N(T, p)-codes of the stable sides of
the rectangles of the Markov partition RT , i.e. the connected components
of ∂sRT . Then, using the operation InverseImage , we obtain the N(T, p)-

codes of the connected components of f
−N0(T )
T (∂sRT ).

• Similarly, using the operation UnstableSides and Image , we obtain the

N(T, p)-codes of the connected components of f
N0(T )
T (∂uRT ).

• Then, using the operation Intersection , we obtain the N(T, p)-s-codes of

all the points that lie in f
−N0(T )
T (∂sRT )∩ f

N0(T )
T (∂uRT ), that is the N(T, p)-

s-codes of all the N0(T )-points of (fT ,KT ,RT ).
• Given the N(T, p)-s-code of a N0(T )-point z of (fT ,KT ,RT ),

• By lemma 23, there exists an algorithm which gives back the N(T, p)-code

of the stable N(T, p)-segment Ĩ0(z) associated with z,
• Similarly, there exists an algorithm which gives back the N(T, p)-code of

the unstable N(T, p)-segment J̃0(z) associated with z,
• Using the operation Intersection , we obtain the list of the N(T, p)-s-

codes of the points that lie in Ĩ0(z)∩ J̃0(z) ; in particular, we can decide

whether the equality Ĩ0(z)∩J̃0(z) = {z} does or does not hold. The point
z is an element of the set Sp(T ) if and only if this equality does hold. △

10.2. Construction of the N(T, p)-codes of the sides of the rectangles of
the Markov partition R(z, p).

Step 1. The N(T, p)-codes of the elements of the families of segments I1(z) and
J1(z). For realizable geometrical type T and every point z ∈ Sp(T ), proposition 11
implies that each element of the family of stable segments I1(z) is aN(T, p)-segment
of (fT ,KT ,RT ). We will prove the following result:

Proposition 30. There exists an algorithm which takes a geometrical type T , an
integer p ≥ p0(T ), and the N(T, p)-code of a point point z ∈ Sp(T ) as input, and
gives back the N(T, p)-codes of the elements of the family of stable segments I1(z).

Proof of proposition 30.
Notations. Let T be a realizable geometrical type, p ≥ p0(T ) be an integer, and
z be a point in Sp(T ). We will use the following notations:
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— Let y be the periodic u-boundary point of KT , such that z ∈ Wu(y). Recall

that J0(z) is the family of unstable intervals {J0(z), fT (J0(z)), . . . , f
2q−1
T (J0(z))},

where J0(z) =]y, z]u and q is the period of y.

— For every i ∈ N, we denote by J̃ i
0(z) the unstable N(T, p)-segment associ-

ated with the point f i
T (z), as defined in subsection 10.1. By definition, J̃ i

0(z)
is equal to the unio of all the N(T, p)-segments of (fT ,KT ,RT ) which are in-
cluded in the unstable interval f i

T (J0(z)). Then, we consider the family of unstable

N(T, p)-segments J̃0(z) := {J̃0(z), . . . , J̃
2q−1
0 (z))}.

— We denote by E0(z) the set of all the N(T, p)-points of (fT ,KT ,RT ) that lie on⋃
J0(z). Observe that E0(z) is also the set of all the N(T, p)-points of (fT ,KT ,RT )

that lie on
⋃

J̃0(z) (see item (i) of remark 7).
— Let I be a stable N(T, p)-segment of (fT ,KT ,RT ). Let a and b be the ends
of I, such that a ≺s

N(T,p)
b. We consider the sets E−

0 (z, I) and E+
0 (z, I) defined as

follows:

E−
0 (z, I) := {x ∈ E0(z) | x ≺s

N(T,p)
a} and E+

0 (z, I) = {x ∈ E0(z) | b ≺
s
N(T,p)

x}

Preliminary observations. Let T be a realizable geometrical type, p ≥ p0(T )
be an integer, and z be a point in Sp(T ). The following observations are the key of
the proof of proposition 30:
(i) By item (iii) remark 6, we have q ≤ 2nT . As a consequence, we have

⋃
J0(z) = J0(z) ∪ · · · ∪ f4nT−1

T (J0(z)) and
⋃

J0(z) = J̃0(z) ∪ · · · ∪ J̃4nT−1
0 (z)

(ii) Proposition 11 implies that every element of the family I1(z) is a stableN(T, p)-

segment of (fT ,KT ,RT ). Then, lemma 10 implies that f
N(T,p)
T (∂s

perRT ) ⊂
⋃
I1(z).

(iii) Let I be a connected coomponent of f
N(T,p)
T (∂s

perRT ). Let a and b be the ends
of the segment I such that a ≺s

N(T,p)
b. By item (ii) above, there exists a periodic

s-boundary point x ∈ KT such that I ⊂ I1(x, z). Let ã and b̃ be the ends of the

stable segment I1(x, z), such that ã ≺s
N(T,p)

b̃. Since I is included in I1(y, z), we

have ã ≺s
N(T,p)

a and b ≺s
N(T,p)

b̃. Using the definition of the segment I1(x, z) (see

subsection 5.1), we see that the points ã and b̃ can be defined as follows:
— If E−

0 (z, I) is empty, then ã = a.
— If E−

0 (z, I) is non-empty, then ã is the unique element of E−
0 (I) such that

]ã, a[u∩
⋃
J0(z) = ∅, that is ã is the element of E−

0 (z, I) which is maximal with
respect to the order ≺s

N(T,p)
.

— If E+
0 (z, I) is empty, then b̃ = b.

— If E+
0 (z, I) is non-empty, then b̃ is the element of E−

0 (z, I) which is minimal with
respect to the order ≺s

N(T,p)
.

Description of the algorithm. Given a realizable geometrical type T , an integer
p ≥ p0(T ) and the N(T, p)-s-code of a N0(T )-point z of (fT ,KT ,RT ),

• Using the operation Image , we obtain the N(T, p)-s-codes of the points
fT (z), . . . , f

4nT−1
T (z).

• Then, using the operation UnstableCode , we obtain the N(T, p)-u-codes of
the points z, fT (z), . . . , f

4nT−1
T (z).

• By lemma 23, there exists an algorithm which gives back the N(T, p)-codes

of the segments J̃0(z), . . . , J̃
4nT−1
0 (z).
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• Using the operation PointsOnUnstableSegment , we obtain the list of the
N(T, p)-u-codes of the elements of E0(z). Using the operation StableCode ,
we obtain the list of the N(T, p)-s-codes of the elements of E0(z).

• Using the operation PeriodicStableSides and Image , we obtain the

N(T, p)-codes of the connected components of f
N(T,p)
T (∂s

perRT ).

• Given the N(T, p)-code of a connected component I of f
−N(T,p)
T (∂s

perRT ),
• Let a and b be the ends of the unstable segment I, such that a ≺s

N(T,p)
b.

Since we know the N(T, p)-code of the segment I, the N(T, p)-s-codes of
the points a and b can be obtained using the operation Ends .

• Given the N(T, p)-s-code of any element x of E0(z), the operation
StableOrder decides whether x is in E−

0 (z, I) (resp. E+
0 (z, I)) or not.

Therefore, we know the list of the N(T, p)-s-codes of the elements of the
set E−

0 (z, I) (resp. E+
0 (z, I)).

• We consider the N(T, p)-points ã and b̃ defined as follows:
• If the set E−

0 (z, I) is empty, then ã := a.
• Otherwise, ã is the biggest element of the set E−

0 (z, I) for the order
≺s

N(T,p)
. Observe that we can find the N(T, p)-s-code of the point ã

using the operation StableOrder .

• If the set E+
0 (z, I) is empty, then b̃ := b.

• Otherwise, b̃ is the smallest element of the set E+
0 (z, I) for the order

≺s
N(T,p)

. Observe that we can find the N(T, p)-s-code of the point b̃

using the operation StableOrder .
• According to item (iv) of the “preliminary observations”, the segment

[ã, b̃]s is an element of the family I1(z). Since we know the N(T, p)-codes

of the points ã and b̃, we can use the operation UnstableSegment to
obtain the N(T, p)-code of this segment. △

Proposition 31. There exists an algorithm which takes a realizable geometrical
type T , an integer p ≥ pmin(T ), and the N(T, p)-code of a point z ∈ Sp(T ) as
imput, and gives back the N(T, p)-codes of the elements of the family of unstable
N(T, p)-segments J1(z).

Proof. The proof is similar to those of proposition 30 and is left to the reader. △

Step 2. The N(T, p)-codes of the elements of the families of segments I2(z), J2(z).

Proposition 32. There exists an algorithm which takes a geometrical type T , and
the N(T, p)-code of a point z ∈ Sp(T ) as input, and gives back the N(T, p)-codes of
the elements of the families of segments I2(z), J2(z).

Proof. We will describe an algorithm that gives back the N(T, p)-codes of the
elements of the family of stable segments I2(z).

Preliminary observations. Let I1(x, z) be an element of the family of stable
segments I1(z). Let a and b be the ends of I1(x, z), such that a ≺s

N(T,p)
b.

Let us first assume that the segment I1(x, z) = [a, b]s is externally near a. Recall

that b is N(T, p)-points of (fT ,KT ,RT ) (see proposition 11). We denote by b̃ the
N(T, p)-stable predecessor of the N(T, p)-point b for the order ≺s

N(T,p)
.

If the stable segment I1(x, z) = [a, b]s is not externally near b, then there exists a
(unique) point b′ ∈ [a, b[s such that [b′, b]s is a stable arch, and we have I2(x, z)

s =
[a, b′[s (see the construction of the segment I2(x, z) in subsection 5.1). Corollary 5
implies that b′ is a N(T, p)-point of (fT ,KT ,RT ). Then, since [b′, b]s is a stable
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arch, we necessarly have b′ = b̃. By contraposition, we obtain: if [b̃, b] is not a
stable arch, then the segment I1(x, z) = [a, b]s is externally near b and we have
I2(x, z) = I1(x, z).

Conversely, if [b̃, b]s is stable arch, then the stable segment I1(x, z) = [a, b]s is not

externally isolated near b (property 7 of section 2), and we have I2(x, z) = [a, b̃]s.
If the segment I1(x, z) is not externally isolated near a, the discussion is the

same, exept that we also have to consider the N(T, p)-stable successor ã of the
N(T, p)-point a for the order ≺s

N(T,p)
. This leads to the following algorithm:

Description of the algorithm. Given a realizable geometrical type T and an
integer p ≥ p0(T ),

• By proposition 30, there exists an algorithm which gives the N(T, p)-codes of
the elements of the family of stable segments I1(z).

• Given the N(T, p)-code of an element I1(x, z) of the family I1(z),
• Using the operation Ends , we obtain the N(T, p)-codes of the ends a, b
of I1(x, z),

• Using the operation StableSuccessor , we obtain the N(T, p)-code of
the successor ã of the point a for the order ≺s

N(T,p)
. Similarly, using

the operation StablePredecessor , we obtain the N(T, p)-code of the

predecessor b̃ of the point b for the order ≺s
N(T,p)

.

• Then, using the operation StableSegment , we obtain the N(T, p)-codes

of the stable segments [a, ã]s and [b̃, b]s.

• The operation StableArch decides whether [a, ã]s (resp. [b̃, b]s) is a sta-
ble arch or not.

• If neither [a, ã]s nor [b, b̃]s is a stable arch, then I2(x, z) = I1(x, z) (in
particular, we already know the N(T, p)-code of the segment I2(x, z)).

• If [a, ã]s is a stable arch and [b̃, b]s is not a stable arch, then I2(x, z) =
[ã, b]s. Since we know the N(T, p)-codes of ã and b, we can use the oper-
ation StableSegment to get the N(T, p)-code of the segment I2(x, z).

• If [b̃, b]s is a stable arch and [a, ã]s is not a stable arch, then I2(x, z) =

[a, b̃]s. We can use the operation StableSegment to get the N(T, p)-code
of the segment I2(x, z).

• If [a, ã]s and [b̃, b]s are stable arches, then I2(x, z) = [ã, b̃]s. The operation
StableSegment gives the N(T, p)-code of the segment I2(x, z). △

Step 3. The N(T, p)-codes of the elements of the families of segments I3(z), J3(z).

Proposition 33. There exists an algorithm which takes a realizable geometrical
type T , an integer p ≥ p0(T ), and the N(T, p)-code of a point z ∈ Sp(T ) as input,
and gives back the N(T, p)-codes of the elements of I3(z), J3(z).

Proof. We will describe an algorithm which gives back the N(T, p)-codes of the
elements of the family of stable segments I3(z). Let us begin by a two observations:
(i) In the definition of the family of stable segments I3(z), we can replace “unstable
arches” by “unstable N(T, p)-arches of (fT ,KT ,RT )” (see proposition 15).
(ii) If γ = [a, b]u is an unstable N(T, p)-arch of (fT ,KT ,RT ), then b is either the
successor or the predecessor of a for the order ≺s

N(T,p)
. Hence, if b is connected to

I2(z) by an unstable N(T, p)-arch, then there exists a N(T, p)-point a ∈ (∪I2(z))
such that b is either the successor or the predecessor of a for the order ≺s

N(T,p)
.

The two observations above prove that the N(T, p)-codes of the elements of the
family I3(z) can be obtained by the algorithm described below.
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Description of the algorithm. Given a realizable geometrical type T , an integer
p ≥ p0(T ), and the N(T, p)-code of a point z ∈ Sp(T ),

• According to proposition 32, there exists an algorithm which gives back the
N(T, p)-codes of the elements of the family of stable segments I2(z). We
denote by L(z) the set of all the N(T, p)-points which are linked with I2(z)
by an unstable N(T, p)-arch.

First step. Construction of the list of the N(T, p)-s-codes of the elements of L(z).

• We start with the empty list.
• The operation PointsOnStableSegment provides the list of theN(T, p)-codes
of all the N(T, p)-points which lie on

⋃
I2(z).

• For every N(T, p)-point x ∈
⋃
I2(z),

• Using the operation UnstableSuccessor and UnstablePredecessor ,
we obtain the N(T, p)-codes of the predecessor x1 and the successor x2

of the point x for the order ≺u
N(T,p)

.

• Using the operation UnstableSegment , we obtain the N(T, p)-codes of
the unstable N(T, p)-segments [x1, x]

u and [x, x2]
u. The elemantary oper-

ation UnstableArch decides whether the segment [x1, x]
u (resp. [x, x2]

u)
is an unstable arch or not.

• If [x1, x]
u is a u-arch, then we add the N(T, p)-code of x1 to the list L(z).

If [x, x2]
u is a u-arch, then we add the N(T, p)-code of x2 to the list L(z).

Second step. Construction of the N(T, p)-codes of the segment I3(x, z).

• For every element I2(x, z) of the family I2(z),
• Let L(x, z) be the set made of the elements of L(z) which are comparable
to the ends of the segment I2(x, z) for the order ≺s

N(T,p)
. Using the

operation StableOrder , we can find the N(T, p)-s-codes of the elements
of L(x, z) (among the N(T, p)-s-codes of the elements of L(z))

• By definition, the segment I3(x, z) is the smallest of all the stableN(T, p)-
segments which contains the both ends of I2(x, z), and all the points of
L(x, z). As a consequence, the N(T, p)-codes of the ends of the segment
I2(x, z) can be found thanks to the operation StableOrder . Then, it
remains to use the operation StableSegment to obtain the N(T, p)-code
of the segment I3(x, z). △

Step 4. The N(T, p)-codes of the families of segments I4(z, p), J4(z, p).

Proposition 34. There exists an algorithm which takes a realizable geometrical
type T , an integer p ≥ pmin(T ), and the N(T, p)-code of a point z ∈ Sp(T ) as
input, and gives back the N(T, p)-codes of the elements of I4(z, p), J4(z, p).

Proof. Let us consider a realizable geometrical type T , an integer p ≥ pmin(T ),
and a point z ∈ Sp(T ). By definition, the elements of the family I4(z, p) are the
connected components of ∪I3(z) minus the interiors of all the stable arches whose
both ends lie in fp(J3(z)) As a consequence, the following algorithm provides the
N(T, p)-codes of the elements of the family of stable segments I4(z, p):
Description of the algorithm. Given a realizable geometrical type T , an integer
p ≥ p0(T ) and the N(T, p)-code of a point z ∈ Sp(T ),

• We will describe an algorithmic construction of the list of the N(T, p)-codes
of the elements of the family I4(z, p). We start with the empty list.

• According to proposition 32, there exists an algorithm which gives back the
N(T, p)-codes of the elements of the families of segments I3(z) and J3(z).
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• Then, using the operation Image , we obtain the N(T, p)-codes of the ele-
ments of the family of unstable segments fp

T (J3(z)).
• Given the N(T, p)-code of an element I of the family I3(z),

• Let x1, . . . , xr be the elements of I ∩ fp(∪J3(z)). The N(T, p)-codes of
the points x1, . . . , xr can be obtained using the operation Intersection

. Using the operation StableOrder , we can assume that the points
x1, . . . , xr are arranged in ascending order for the order ≺s

N(T,p)

• For i = 1 to r − 1,
• Using the operation StableSegment , we get the N(T, p)-code of the
segment [xi, xi+1]

s

• The operation StableArch decides whether the segment [xi, xi+1]
s

is a stable arch or not. If it is not a stable arch, then we add the
N(T, p)-code of this segment to the list of the N(T, p)-codes of the
elements of the family I4(z, p). △

10.3. Algorithmic construction of the geometrical types of the Markov
partition R(z, p).

Proposition 35. There exists an algorithm which takes a realizable geometrical
type T , an integer p ≥ pmin(T ), and the N(T, p)-s-code of a point z ∈ Sp(T ) and
gives back the list of the geometrical types of all the geometrizations of the Markov
partition R(z, p).

Sketch of the proof According to proposition 34, there exists an algorithm, which
takes a realizable geometrical type T , an integer p ≥ pmin(T ), and the N(T, p)-s-
code of a point z ∈ Sp(T ), and gives back the N(T, p)-codes of the elements of the
families of segments I4(z, p), J4(z, p). The elements of the families I4(z, p), J4(z, p)
are known to be the sides of the rectangles of the Markov partition R(z, p).

Using the elementary operations Image , Intersection , StableOrder and
UnstableOrder , it is very easy to write an algorithmic procedure, which takes
the N(T, p)-codes of the sides of the rectangles of the Markov partition R(z, p) as
input and gives back the geometrical types of all the geometrizations of the Markov
partition R(z, p). This completes the proof. △

10.4. Proofs of proposition 2 and theorem 2. Proof of proposition 2. Let T
be a realizable geometrical type, and p be an integer greater or equal than pmin(T ).
Recall that the set of geometrical types T (T, p) is defined as follows:

T (T, p) = {T (z, p) | z is a special point of KT }

On the one hand, for every special point z, there exists an integer k ∈ Z such
that the point fk

T (z) is a N0(T )-point of (fT ,KT ,RT ), i.e. such that fk
T (z) ∈ Sp(T )

(proposition 9). On the other hand, for every special point z of KT , and every
integer k ∈ Z, we have T (z, p) = T (fk

T (z), p). As a consequence, we have

T (T, p) = {T (z, p) | z ∈ Sp(T )}

Propositions 29 and 35 imply there exists an algorithm which takes a realizable
geometrical type T and an integer p ≥ pmin(T ) as input, and gives back the set of
geometrical types T (T, p) = {T (z, p) | z ∈ Sp(T )}. This completes the proof. △

Proof of theorem 2. Let T1 and T2 be two realizable geometrical types. We
consider the integer p = 50max(2(N0(T1) + 48nT1), 2(N0(T2)+ 48nT2)). By propo-
sition 1, p is greater or equal than max(pmin(T1), pmin(T2)). By proposition 8, the
geometrical types T1 and T2 are equivalent if and only if the finite sets of geomet-
rical types T (T1, p) and T (T2, p) are equal. Besides, proposition 2 implies that
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there exists an algorithm which takes T1 and T2 as input, and gives back the sets
of geometrical types T (T1, p) and T (T2, p). This completes the proof. △

Appendix A. Powers of a geometrical type. The aim of this appendix is to
prove proposition 19. For that purpose, we consider a realizable geometrical type
T , and some positive integers p and q. We will establish some formulas that relates

the geometrical type T (p+q) = (nT , h
(p+q)
T , v

(p+q)
T ,Φ

(p+q)
T , ε

(p+q)
T ) to the geometrical

types T (p) = (nT , h
(p)
T , v

(p)
T ,Φ

(p)
T , ε

(p)
T ) and T (q) = (nT , h

(q)
T , v

(q)
T ,Φ

(q)
T , ε

(q)
T ).

A.1 The integers θ
(p),(p+q)
i,m,T and ν

(q),(p+q)
k,m,T . The two following formulas are direct

consequences of lemma 21:

— for every i ≤ nT , and every m ≤ h
(p)
i,T , we have

θ
(p),(p+q)
i,m,T = h

(q)
km,T where km is given by the equality Φ

(p)
T (i,m) = (km, lm) (11)

— for every k ≤ nT , and every m ≤ v
(q)
i,T , we have

ν
(q),(p+q)
k,m,T = v

(p)
im,T where im satisfies the equality (Φ

(q)
T )−1(k,m) = (im, jm) (12)

A.2 The integers h
(p+q)
i,T and v

(p+q)
k,T . For every i ≤ nT and every j ≤ h

(p+q)
i,T , there

exists m such that H
j,(p+q)
i,T ⊂ H

m,(p)
i,T . Thus, for every i ≤ nT , we have

h
(p+q)
i,T =

m=h
(p)
i,T∑

m=1

θ
(p),(p+q)
i,m,T (13)

Similarly, for every k ≤ nT , we have

v
(p+q)
k,T =

m=v
(q)
i,T∑

m=1

ν
(q),(p+q)
k,m,T (14)

A.3 The function Φ
(p+q)
T . Let i and j be positive integers such that i ≤ nT and

j ≤ h
(p+q)
i,T . We want to find the integers k and l, such that Φ

(p+q)
T (i, j) = (k, l).

In other words, we want to find the integers k and l, such that the vertical sub-

rectangle V
l,(p+q)
k,T is the image of the horizontal subrectangle H

j,(p+q)
i,T under the

diffeomorphism fp+q
T .

First step: the image of the horizontal subrectangle H
j,(p+q)
i,T under fp

T

The horizontal subrectangke H
j,(p+q)
i,T is a connected component of f

−(p+q)
T (RT ) ∩

RT = f
−(p+q)
T (RT ) ∩ f−p

T (RT ) ∩ RT . Thus, the subrectangle fp
T (H

j,(p+q)
i,T ) is a

connected component of f−q
T (RT )∩RT ∩f

q
T (RT ) = (fp

T (RT )∩RT )∩(f
−q
T (RT )∩RT ).

Consequently, there exist an integer α ≤ nT , an integer β ≤ v
(p)
α,T , and an integer

γ ≤ h
(q)
α,T such that fp

T (H
j,(p+q)
i,T ) = V

β,(p)
α,T ∩H

γ,(q)
α,T . The aim of this first step is to

find the integers α, β, γ.

Let j1 be the integer such that H
j,(p+q)
i,T ⊂ H

j1,(p)
i,T . From an algorithmical point

of vue, j1 is the unique integer such that

m=j1−1∑

m=1

θ
(p),(p+q)
i,m,T < j <

m=j1∑

m=1

θ
(p),(p+q)
i,m,T (15)
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By definition of the function Φ(p), we have fp
T (H

j1,(p)
i,T ) = V

β,(p)
α,T where

(α, β) = Φ
(p)
T (i, j1) (16)

Moreover, if we consider the integer j2 defined by

j2 := j −

m=j1−1∑

m=1

θ
(p+q),(p)
i,m,T (17)

then we have fp
T (H

j,(p+q)
i,T ) = V

β,(p)
α,T ∩H

γ,(q)
α,T where γ is defined by

{
γ = j2 if ε

(p)
T (i, j1) = +

γ = θ
(p),(p+q)
i,j1,T

+ 1− j2 if ε
(p)
T (i, j1) = −

(18)

Second step: the image of the subrectangle H
γ,(q)
α,T ∩ V

β,(p)
α,T under f q

T

We have f
(p+q)
T (H

j,(p+q)
i,T ) = f q

T (f
p
T (H

j,(p+q)
i,T )) = f q

T (H
γ,(q)
α,T ∩ V

β,(p)
α,T ). As a conse-

quence, we are left to compute the integers k and l such that f q
T (H

γ,(q)
α,T ∩V

β,(p)
α,T ) =

V
l,(p+q)
k,T . For that purpose, let us first observe that the diffeomorphism f q

T maps

the horizontal subrectangle H
γ,(q)
α,T to the vertical subrectangle V

l1,(q)
k,T , where the

integers k and l1 are given by

Φ
(q)
T (α, γ) = (k, l1) (19)

Now, if we consider the integer l2 defined by
{

l2 := β if ε
(q)
T (k, l1) = +

l2 := ν
(q),(p+q)
k,l1,T

+ 1− β if ε
(q)
T (k, l1) = −

(20)

then the integer l is the lth2 integer such that the vertical subrectangle V
l,(p+q)
k,T is

included in the vertical subrectangle V
l1,(q)
k,T . In particular, the integer l is given by

the following formula:

l =

m=l1−1∑

m=1

ν
(q),(p+q)
k,m,T + l2 (21)

A.4 The function ε
(p+q)
T . Let i and j be two integers such that 1 ≤ i ≤ n and

1 ≤ j ≤ h
(p+q)
i,T . We want to compute ε

(p+q)
T (i, j). For that purpose, we consider

the integers j1, α and β, such that the horizontal subrectangle H
j,(p+q)
i,T is included

in the horizontal subrectangle H
j1,(p)
i,T , and such that the subrectangle fp

T (H
j,(p+q)
i,T )

is included in the horizontal subrectangle H
β,(q)
α,T . Explicit values of the integers j1,

α and β are given by formulas (13) and (14). Moreover, we clearly have:

ε
(p+q)
T (i, j) = ε

(p)
T (i, j1).ε

(q)
T (α, β) (22)

A.5 Proof of proposition 19. If we are given the geometrical type T (p) =

(nT , h
(p)
T , v

(p)
T ,Φ

(p)
T , ε

(p)
T ) and the geomtrical type T (q) = (nT , h

(q)
T , v

(q)
T ,Φ

(q)
T , ε

(q)
T ),

then formulas (11)...(22) provide an algorithmic way to compute the geometri-

cal type T (p+q) = (nT , h
(p+q)
T , v

(p+q)
T ,Φ

(p+q)
T , ε

(p+q)
T ). This clearly implies proposi-

tion 19.
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Appendix B. Construction of the set of Markov partitions R(f,K, p) in
the case of Smale’s horseshoe. Let f be the so-called Smale’s horseshoe diffeo-
morphism (see, for example, [8, chapter 4] for the construction of f). Recall that f
is a Smale diffeomorphism of the sphere S

2, with three basic pieces : a source, a
sink, and a non-trivial saddle basic piece that we denote by K.

Using the construction of f , it is easy to verify that there exists a unique periodic
s-boundary point x in K. Moreover, x is also the unique periodic u-boundary point
of K. The stable manifold and the unstable manifold of the point x are represented
on figure 12.

One can see on figure 12 that there are exactly two orbits of special points in K
(the orbit of the point z1 and the orbit of the point z2). The construction of
the Markov partition R(z2, 2) (following the process of construction described in
section 5.1) is represented on figures 12, 13 and 14. We leave the construction of
the Markov partition R(z1, 2) as an exercice.

f(z1)

f(z1)

Wu(x)

Ws(x)

x

z1 z2

J0(z2)

z2

x

Figure 12. On the left: the periodic s and u-boundary point x,
the stable and the unstable manifold of x, and the special
points z1, z2. On the right: the segment J0(z1).

J1(z2)

z2

I1(z2)

x

J2(z2) = J3(z2)

I2(z2) = I3(z2)

Figure 13. On the left: the segments I1(x1, z1) and J1(x1, z1).
On the right: the segments I2(x, z1) = I3(x, z1) and J2(x, z1) =
J3(x, z1).
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