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Introduction

We recall that a time function on a spacetime M is a submersion 7 : M — R such that 7 is strictly
increasing along every future-directed timelike curve. The fibers of a time function are always Cauchy
surfaces. A CMC time function on a spacetime M is a time function 7 : M — R such that, for every
6 € R, the set 771(0) is a spacelike surface with constant mean curvature 6. The foliation defined by a
CMC time function is sometimes called a York slicing (see, for exemple, [?]).

Using a kind of “maximum principle”, it is not hard to show that a CMC time function with compact
levels is always unique. More precisely, one has the following proposition:

Proposition 0.1. Let M be a globally hyperbolic spacetime, with compact Cauchy hypersurfaces. Assume
that M admits a CMC time function 7. Then, every CMC compact spacelike hypersurface in M is a fiber
of 7. In particular, T is unique.

The aim of the paper is to prove the following theorem:

Theorem 0.2. Let M be a mazimal globally hyperbolic spacetime, locally modelled on AdSs, with closed
orientable Cauchy surfaces. Then, M admits a CMC time function.

1 Unicity of CMC time functions with compact levels

The purpose of this section is to prove proposition 0.1. First of all, in order to avoid any ambiguity
about signs convention, we want to recall the definition of the mean curvature of a spacelike surface in a
lorentzian manifold.

Let ¥ be a smooth spacelike hypersurface in a lorentzian manifold M, and p be a point of . Let n
be the future pointing unit normal of S at p. We recall that the second fundamental form of the surface
S is the quadratic form IT,, on T,¥ defined by II,(X,Y) = —g(Vxn,Y), where g is the lorentzian metric
and V is the covariant derivative. The mean curvature of S at p is the trace of this quadratic form.

Remark 1.1. Let us identify the tangent space of M at p with R™, in such a way that the tangent space
of ¥ at p is identified with R"= x {0}, and the vector n is identified with (0,...,0,1). Let U be a
neighbourhood of p in M. If U is small enough, the image of the surface ¥ NU under the inverse of the
ezponential map exp,, is the graph of a function f : R*~! — R such that f(0) = 0 and Df(0) = 0. It is
easy to verify that the second fundamental form of X at p is the opposite of the hessian of f at the origin.
In particular, the mean curvature of 3 at p is the opposite of the trace of the hessian of f at the origin.

The proof of proposition 0.1 relies on the following well-known lemma:

Lemma 1.2. Let ¥ and X' be two smooth spacelike hypersurfaces in a lorentzian manifold M. Assume
that ¥ and X' are tangent at some point p, and assume that X' is included in the future of X.

Then, the mean curvature of X' at p is smaller or equal than those of .. Moreover, the mean curvatures
of ¥ and X' at p are equal only if ¥ and X' have the same osculating quadric at p.

Proof. We identify the tangent space T, M of M at p with R™, in such a way that the tangent hyperplane
of ¥ and ¥ is identified with R*~! x {0}, and the future-pointing unit normal of ¥ and ¥’ is identified
with the vector (0,...,0,1). Let U be a neighbourhood of p in M. If U is small enough, the image of
¥NU (resp. ¥'NU) under the inverse of the exponential map at p is the graph of a function f : R*~! — R
(resp. of a function f': R*~! — R), such that f(0) = 0 and Df(0) = 0 (resp. f'(0) =0 and Df'(0) = 0).
Since X' is included in the future of ¥, we have f’ > f. This implies that, for every v € R*~!, we have



D2f'(0).(v,v) > D?f(0)(v,v). According to remark 1.1, this implies that the mean curvature of ¥’ at p
is smaller or equal than those of X'.

The case of equality is a consequence of the following observation: given two functions f, f’ : R*~! — R
such that f(0) = f'(0) =0 and Df(0) = Df'(0) =0, and such that f’' > f, the the hessians of f and f’
at p are equal if and only if they have the same trace. O

Proof of proposition 0.1. For every s € 7(R), we denote by X, the Cauchy surface 77!(s). Let ¥ be a
compact spacelike CMC surface in M. Let 51 := inf{s € R | ZNX; # 0} and s, := inf{s € R | ENE; # 0}.
The compacity of ¥ implies that s; and so are finite numbers, and that ¥ does intersect the surfaces ¥,
and ¥,,. Moreover, by definition of s; and s5, the surface ¥ is included in the future the surface ¥, and
in the past of the surface X,. Let p; be a point in ¥ N ¥, , and ps be a point in ¥ N X¥,,. By lemma 1.2,
the mean curvature of ¥ at p; at most s;, and the mean curvature of ¥ at p, is at least s5. Since X is
a CMC surface, and since s;1 < s2, this implies s1 = s2. Moreover, since ¥ is in the future of X, and in
the past of X,,, this implies ¥ = X,;, = X,,. Hence, X is a fiber of the time function 7. O

2 The three dimensional anti-de Sitter space

In this section, we recall the construction of the different models of the three-dimensional anti-de Sitter
space, and we study the geometrical properties (geodesics, causal structure, etc.) of this space.

2.1 The linear model of the anti-de Sitter space

We denote by (21, %2, T3, 74) the standard coordinates on R*. We will also use the coordinates (a, b, ¢, d) =
(1 — T3, —T2 + T4, T2 + T4, 71 + 73). We consider the quadratic form Q = —z% — 23 + 22 + 25 = —ad + be.
We denote by Bg the bilinear form associated with Q).

Let p be a point on the quadric of equation (Q = —1) in R*. When we identify the tangent space of
R* at p with R*, the tangent space of the quadric (Q = —1) at p is identified with the Q-orthogonal of p.
Since @ is a non-degenerate quadratic form of signature (—, —, +, +), and since Q(p) = —1, the restriction
of @ to the Q-orthogonal of p is a non-degenerate quadratic form of signature (—,+,+). This proves
that the quadratic form @ induces a lorentzian metric of signature (—, +,+) on the quadric (Q = -1).
In other words, the restriction of the pseudo-riemannian metric —dx? — dz2 + dr2 + dz? to the quadric
(Q = —1) is a lorentzian metric of signature (—, +, +).

Definition 2.1. The linear model of the three-dimensional anti-de Sitter space, denoted by AdSs, is the
quadric of equation (Q = —1) in R* endowed with the lorentzian metric induced by Q.

One can easily verify that the anti-de Sitter space AdSs is diffeomorphic to S x R%. More precisely,
one can find a diffeomorphism h : S' x R? — AdS; such that the surface h({#} x R?) is spacelike for
every 6, and such that the circle h(S' x {z}) is timelike for every z. In particular, the anti-de Sitter space
AdS3 is time-orientable; from now on, we will assume that a time-orientation has been chosen.

The isometry group of the anti-de Sitter space AdSs is the group O(2,2) of the linear transformations
of R* which preserve the quadratic form Q. The group O(2,2) acts transitively on AdSs andthe stabilizer
of any point is isomorphic to O(2,1); hence, the anti-de Sitter space AdSs; can be seen as the homogenous
space 0(2,2)/0(2,1). We shall denote by Og(2,2) the connected component of the identity of O(2,2);
the elements of Oy (2, 2) preserve the three-dimensional orientation and the time-orientation of AdSs.

Proposition 2.2. The geodesics of AdSs are the connected components of the intersections of AdSs with
the two-dimensional vector subspaces of R*.

Proof. Let P be a two-dimensional vector subspace of R*. The geometry of P N AdSs; depends on the
signature of the restriction of @) to the plane P:

— If the restriction of @ to the plane P is a quadratic form of signature (—,—), then there exists an
element o of 0(2,2) which maps P to the plane (z3 = 0,24 = 0). The intersection of AdS; with the
plane (z3 = 0,z4 = 0) is a closed timelike curve. This curve has to be a geodesic of AdSs, since the
symetry with respect to the plane (z3 = 0,24 = 0) is an isometry of AdSs;. Hence, the intersection of
AdS3 with the plane P is also a closed timelike geodesic of AdSs.

— If the restriction of @ to the plane P is a quadratic form of signature (—,+), then there exists an
element of O(2,2) which maps P to the plane (z1 = 0,23 = 0). Using the same arguments as in the
first case, one can easily see that P N AdSs is the union of two disjoined non-closed spacelike geodesics
of AdSs.

— If the restriction of @) to the plane P is a degenerate quadratic form of signature (0, —), then there



exists an element of O(2,2) which maps P to the plane (1 = 23,24 = 0). Using the same arguments as
in the first case, one can easily see that P N AdSs is a non-closed lightlike geodesic of AdSs.
— Finally, if the restriction of @ to the plane P is a quadratic form of signature (+,+), (0,—) or (0,0),
then one can easily verify that the intersection P N AdSs is empty.

The discussion above implies that each connected component of the intersection of AdSs; with a 2-
dimensional vector subspace of R* is a geodesic of AdS3. The converse follow from the fact that a geodesic
is uniquely determined by its tangent vector at some point. O

Remark 2.3. Let v be a geodesic of AdSs. According to proposition 2.2, there exists a 2-dimensional
vector subspace P, of R* such that v is a connected component of P, N AdSs. Moreover, reading again
the proof of proposition 2.2, we notice that:

— if v is timelike, then the intersection of P, with the quadric (Q = 0) is reduced to (0,0,0,0);

— if 7y is lightlike, then P, is tangent to the quadric (Q = 0) along a line;

— if 7y is spacelike, then P, intersects transversally the quadric (QQ = 0) along two lines.

Remark 2.4. The proof of proposition 2.2 shows that all the timelike geodesics of AdSs are closed, so
that a single point is not an achronal set in AdS3. Moreover, one can prove that the past and the future
in AdSs of any point p € AdSs are both equal to the whole of AdSs. So, the causal structure of AdSs
s not very interesting. This is the reason why, instead of working in AdSs itself, we shall work in some
“large” subsets of AdSs which do not contain any closed geodesics (see subsection 2.3).

Using the same kind of arguments as in the proof of proposition 2.2, one can prove the following:

Proposition 2.5. The two-dimensional totally geodesic space of AdSs are the connected components of
the intersections of AdSs with the three-dimensional vector subspaces of R*.

Remark 2.6. In particular, given any point p € AdSs and any vector plane P in T, AdSs, there ewists
a totally geodesic subspace of AdSs whose tangent space at p is the plane P.

Let p be a point in AdSs. We call dual surface of the point p, and we denote by p*, the intersection
of the hyperplane p* with AdS; (where pt = {¢ € R* | Bg(p,q) = 0}). According to proposition 2.5,
each connected component of p* is a two-dimensional totally geodesic subspace of AdSs. Moreover, one
can eagsily verify that p* is made of two connected components, and that the restriction of () to p* is a
quadratic form of signature (+,+) (it is enough to consider the case where p is the point (1,0, 0, 0) since
0(2,2) acts transitively on AdSs3). Hence, the surface p* is the union of two disjoined spacelike totally
geodesic subspaces of AdSs.

Remark 2.7. Every point of the surface p* can be joined from p by a timelike geodesic segment.

Proof. Let q be a point in p*. We denote by P the 2-dimensional vector subspace spanned by p and ¢ in
R*. We have Q(p) = Q(gq) = —1 and Bg(p,q) = 0; this implies that the restriction of the quadratic form

@ to the plane P is a quadratic form of signature (—, —). Hence, according to the proof of proposition 2.2,
the intersection of the plane P with AdS; is a timelike geodesic. This proves in particular that the points
p and ¢ are joined by a timelike geodesic segment. O

2.2 The projective model of the anti-de Sitter space

We shall now define the “projective model of the anti-de Sitter space”. An interesting feature of this
model is that it allows to define attach a boundary to the anti-de Sitter space. This boundary will play
a fundamental role in the proof of theorem 0.2.

We see the sphere S as the quotient of R* \ {0} by positive homotheties. We denote by 7 the natural
projection of R* \ {0} on S3. We denote by [x1 : 2 : 73 : 24] the “positively homogenous” coordinates on
S? induced by the coordinates (1, 2,23, 74) on RY: one has [z1 : T2 : @3 : 24] = [y1 : y2 : y3 : 4] if and
only if there exists A > 0 such that (z1, 22,3, 24) = A(y1,Y2,Y3,Y4). Similarly, we denote by [a: b: ¢: d]
the positively homogenous coordinates on S? induced by the coordinates (a, b, c,d) on R*. We endow S*
with its canonical riemannian metric.

Remark 2.8. Given a point p € S®, the quantity Q(p) is defined up to multiplication by a positive
number; this means that the sign of Q(p) is well-defined. Similarly, given two points p,q € S3, the sign
of Bo(p,q) is well-defined.

Definition 2.9. The projection ™ maps diffeomorphically AdSs on its image 7(AdS3) C S®. The pro-
jective model of the anti-de Sitter space, that we denote by AdS3, is the image of AdSs under , equipped
with the image of the lorentzian metric of AdSs. We denote by OAdS 3 the boundary of AdSs in S3.



Observe that AdS 3 is made of the points of S? which satisfy the inequation (Q < 0). Hence, OAdS 3 is
the quadric of equation (Q = 0) in S®. This quadric admits two transversal rulings by families of great
circles of §3. The first ruling, that we call left ruling, is the family of great circles {L(x.)}(x:u)erpr Where
Lovy ={la:b:c:d € 0AdSs3 | (a:c) = (b:d) = (X: p) in RP'}. The second ruling, that we call right
ruling, is the family of great circles {R(x..)}(a:p)erpr Where Rix.y = {[a:b:c:d] € 0AdS3 | (a:b) =
(c:d) = (X\:p)in RP'}. Through each point of OAdS3 passes one circle of the left ruling and one circle
of the right ruling. Any circle of the left ruling intersects any circle of the right ruling at two antipodal
points.

The elements of Oy (2,2) preserve the left and the right ruling of 9AdS 3. Hence, for each element o of
00(2,2), we can consider the action of ¢ on the left and the right rulings. This defines a morphism from
00(2,2) to PSL(2,R) x PSL(2,R). It is easy to see that this morphism is onto, and that the kernel of this
morphism is a subgroup of order 2 of Oy(2,2) (remember that two points of AdS3 are on the same circle of
the left and right rulings if and only if their are antipodal). As a consequence, we obtain an isomorphism
from 0y(2,2) to SL(2,R) x SL(2,R)/(—Id,—Id) such that the elements of SL(2,R) x {Id}/(—1d, —Id)
preserve individually each circle of the right ruling, and the elements of {Id} x SL(2,R)/(—Id,—Id)
preserve individually each circle of the left ruling.

Proposition 2.10. The geodesics of AdS3 are the connected components of the intersections of AdSs
with the great circles of S3.

Proof. By construction of AdS 3, the geodesics of AdS3 are the images under 7 of the geodesics of AdSs3.
By proposition 2.2, the geodesics of AdS3 are the connected components of the intersections of AdSs; with
the two-dimensional vector subspaces of R*. The image under 7 of a two-dimensional vector subspace of
R* is a great circle of S®, i.e. a geodesic of S3. Putting everything together, we get proposition 2.10. [

Remark 2.11. Let v be a geodesic of AdS 3. By proposition 2.10, v is a connected component of AdS3N7,
where 7 is a geodesic of S3. Moreover, remark 2.3 and the proof of proposition 2.10 imply that:

—if v is a timelike geodesic, then the great circle 7 is included in AdS3 and v =7,

—if 7y is lightlike, then the great circle 7 is tangent to OAdS3 at two antipodal points points p, —p, and vy
is one of the two connected components of ¥\ {p, —p},

—if v is spacelike, then the great circle 4 intersects OAdS 3 transversally at four points {p1, —p1,p2, —p2},
and v is one of the four connected components of ¥\ {p1,—p1,p2, —p2}.

Remark 2.12. Let q be a point of OAdS3, and p be a point in AdS3. The great 2-sphere S, of S® which
is tangent to the quadric OAdS; at q is Sy = {r € S*| Bg(g,r) = 0}. Consequently, remark 2.11 implies
that there exists a lightlike geodesic 7y passing through p and such that the ends of v in OAdS3 are the
points ¢ and —q if and only if Bg(g,r) = 0.

Using proposition 2.5 and the same arguments as in the proof of proposition 2.10, we obtain:

Proposition 2.13. The two-dimensional totally geodesic subspaces of AdS3 are the connected compo-
nents of the intersections of AdS 3 with the great 2-spheres of the sphere S3.

For every p € AdS3, we call dual surface of p, and denote by p*, the image under 7 of the dual surface
of the p (defined in subsection 2.1), where p is the unique point of AdS3; such that 7(p) = p. Of course,
p* is also the intersection of p~ with AdS3, where p~ = {q € S® | Bg(p,q) = 0}. We denote by p* the
closure on p* in AdS3; U 8AdS;. Of course, p* is also the intersection of p~ with AdSs U OAdS 3.

2.3 The locally affine structure of the anti-de Sitter space

By an open hemisphere of S3, we mean anyone of the two connected components of S minus any great
2-sphere. Given an open hemisphere U, we say that a diffeomorphism ¢ : U — R® is an affine chart is ¢
maps the great circles of S? (intersected with U) to the affine lines of R%. Tt is well-known that, for every
open hemisphere U of S3, there exists an affine chart ¢ : U — R%. This defines a locally affine structure
on S3, which induces a locally affine structure on AdSs. The purpose of this subsection is to define some
particular affine charts of AdSs;.

For every point p € AdS3, we consider the sets

Up:={qe€ S? | Bo(p,q) >0}, Ap:={q € AdS3 | Bg(p,q) > 0} and 0A, := {¢q € 0AdS3 | Bg(p,q) > 0}

Note that Up, is a open hemisphere of S3, and note that A, = AdS3; N U, and dA, = AdS3 N U,. Also
note that 0.4, is not the boundary of A, in S*: it is the boundary of A, in U,. It is also interesting to



observe that the hemisphere U, is the connected component of S*\p' containing p. Similarly, the domain
A, is the connected component of AdS3 \ p* containing p, and A, U A, is the connected component of
(Adgg @] 6AdS3) \F

Let po be the point of coordinates [1:0:0: 0] in S®. We observe that

Upo = {[71: 22 : 23 : 74] € S® | 21 > 0}
and we consider the diffeomorphism

@, - U, — R3

[1: 2223 :24] +— (:1:,y,z)=<w—3 Z4 $_2)

xr1’ 1’ 1

Now, given any point p € AdS3, we can find an element o, of O(2,2), such that o,(p) = po. Then, we
consider the diffeomorphism &, : U, — R® defined by ®, = ®,, o 7).

For every p € AdS3, the diffeomorphism ®, maps the domain A, on the region of R® defined by the
inequation (2 +y*—2? < 1), and maps 8.4, on the one-sheeted hyperboloid (z*+y? —2% = 1). Moreover,
it is well-known that ®,, is an affine chart, i.e. that it maps the great circles of S® to the affine lines of
R®. Combining this with proposition 2.10, we obtain that, for every p € AdS3, the diffeomorphism @,
maps the geodesics of AdS3 to the intersections of the affine lines of R® with the set (z2 + y? — 22 < 1).
Similarly, ®, maps the totally geodesic subspaces of AdS3 to the intersections of the affine planes of R?
with the set (2 +y% — 2% < 1).

Remark 2.14. Let vy be a geodesic of AdSs. Let vy, be the image under ®, of vy N A,. According to the
above remark, vy, is included in an affine line 3, of R®. Moreover, using remark 2.11, we see that:

— if v is timelike, then the line 7, does not intersect the hyperboloid (z® + y? — 22 = 1) and v, = 7,

- if v is lightlike, then the affine line 7, is tangent to the hyperboloid (z2 + y*> — 2% = 1) at one point q
and 7y, is one of the two connected components of 4, \ g,

- if v is spacelike, then the line «y intersects transversally the hyperboloid (x? + y*tz% = 1) at two points
G1,q2 and vy is the bounded connected component of ¥\ {q1,¢2}-

The image under ®, of any geodesic of AdSj is included in an affine line of R*. This implies in
particular that there is no closed geodesic of AdS3 included in A,. Moreover, it is not hard to prove that
there is no closed timelike curve in A,. So, the causal structure of A, is more interesting than those of
AdS3 (see remark 2.4).

2.4 Convex subsets of AdS;

Using the locally affine structures on AdS3, we will define a notion of convexity for subsets of AdSs.

First, we define a convex subset of S® to be a set C included in some open hemisphere U of S3, such
that there exists some affine chart! ¢ : U — R® such that the set ¢(C) is convex subset of R3.

Observe that, if C is a convex subset of S, then, for every open hemisphere V of S3 containing C,
and every affine chart ¢ : V — R®, the set ¢(C) is a convex subset of R®. Also observe that, a set C
included in some open hemisphere of S is a convex subset of S if and only if the positive cone 7~1(C)
is a convex subset of R? (recall that 7 is the natural projection of R* \ {0} on S3).

Now, given a subset E of S such that C is included in some open hemisphere of S, we define the
convez hull Conv(C) of the set C' to be the intersection of all the convex subsets of S® containing C.
Observe that this is well-defined since an open hemisphere is a convex subset of S3. Also observe that, if
U is an open hemisphere containing C' and ® : U — R? is an affine chart, the set Conv(C) is the image
under ®~! of the convex hull in R® of the set ®(C). Lastly, observe that Conv(C) is also the image under
7 of the convex hull in R* of the positive cone 7~1(C).

Now, recall that AdS3 is included in the sphere S2, and let C be a subset of AdS3;. We say that C is
a convex subset of AdSs if it is convex as a subset of S3. We say that C is a relatively subset C of AdSs
if C is the intersection of AdSs with a convex subset of S3. Equivalently, C is a convex subset of AdS3 if
C = Conv(C), and C is a relatively convex subset of AdS3 if C'= Conv(C) N AdS3.

recall that this means that ¢ : U — R3 is a diffeomorphism which maps the great circles of S3 (intersected with U) to
the affine lines of R3.



2.5 The SL(2,R)-model of the anti-de Sitter space

Recall that, if we use the coordinates a, b, ¢,d on R*, the linear model of the anti-de Sitter space is nothing
but the quadric

{(a,b,c,d) € R* | —ad + bc = —1}
endowed with the lorentzian metric induced by the quadratic from Q(a,b,c,d) = —ad + be. Hence, the
linear model of the anti-de Sitter space can be identified with

SL(2,R) = {( ‘ 2) € M2,R) |ad—bc=1}

endowed with the lorentzian metric induced by the quadratic form — det on M (2, R).

Observe that the quadratic form —det on M(2,R) is invariant under left and right multiplication
by elements of SL(2,R) (actually, the lorentzian metric induced by —det on SL(2,R) is a multiple of
the Killing form of the Lie group SL(2,R)). Using this it is easy to see that the isometry group of
(SL(2,R), —det) is SL(2,R) x SL(2,R) acting on SL(2,R) by left and right multiplication, i.e. acting
by (92,9r) - 9 = 9L 9 95 -

2.6 Causal structure of the anti-de Sitter space

Let dt* be the standard riemannian metric on the circle S*; let ds® be the standard riemannian metric
on the 2-dimensional sphere S%; let I? be the open upper-hemisphere of S2, and D? be the closure of D?.
We will prove that AdS3 has the same causal structure as (S! x D? , —dt? + ds?). More precisely:

Proposition 2.15. There exists a diffeomorphism ¥ : AdS; — S' x D? such that the pull back by ¥
of the lorentzian metric —dt? + ds® defines the same causal structure as the original metric of AdSs;.
Moreover, the diffeomorphism ¥ can be extended to a diffeomorphism ¥ : AdSs U OAdS 3 — ST x 2.

To prove proposition 2.15, we will embed AdS3 in the so-called three-dimensional Einstein space. Let
(71, 2,73, 74,75) be the standard coordinates on R?; let @ be the quadratic form on R® defined by
Q(z1, 2, T3, T4, T5) = —32 — 22 + 22 + 32 + 22; let S* be the quotient of R® \ {0} by positive homotheties,
and 7 be the natural projection of R% \ {0} on S%. The three-dimensional Einstien space, denoted by
Fing, is the image under 7 of the quadric (é = 0). There is a natural conformal class of lorentzian metric
on Eing, defined as follows:

— Given an open subset U of Eins, and a local section o : U — R® \ {0} of the projection 7, we define
a lorentzian metric g, on U as follows. For every point p € U and every vector v € T, Eing, we choose a

vector 0 € T,(,)R® such that dr(c(p)).0 = v. The quantity Q(9) does not depend on the choice of the

vector 9: indeed, the vector ¢ is tangent to the quadric (@ = 0), the vector ¢ is defined up to the addition
of an element of 7~1(p), and the half-line 7~!(p) is included the Q-orthogonal of the tangent space of
the quadric (Q = 0) at op. We set g, (v) == Q(d).

— The conformal class of the metric g, does not depend on the section ¢. Indeed, if ¢ and ¢’ are two
sections of the projection 7 defined on U, then we have g,» = A2.g,, where A : U — R is the function
such that ¢’ = A.o.

Proof of proposition 2.15. Let A = {[x1 : x2 : 23 : 24 : 5] € Eing | z5 > 0}, and let A be the boundary
of A. We will consider two particular sections of the projection 7. On the one hand, we consider the
section o, defined on A, whose image is included in the affine hyperplane (x5 = 1). The anti-de Sitter
space AdS 3 is isometric to the set A equipped with the lorentzian metric g,: the most natural isometry
is the diffeomorphism ® defined by ®([z1 : 22 : 23 : 24]) = [#1 : 22 : 3 : 24 : 1]. On the other hand, we
consider the section ¢’, defined on the whole of Eing, whose image is included in the euclidian sphere
(2 + 22 + 22 + 22 + 22 = 2). The set A equipped with the lorentzian metric g, is isometric to the set

{(z1,22,25,24,25) ER® |2} + 23 =1, 25 +2i+2i=1,25 >0} ~S" xD?

equipped with the lorentzian metric —(dz? + dz3) + (dz3 + dz? + dz?) ~ —dt*> + ds®: the most natural
isometry is the diffeomorphism &' = o{,. We consider the diffeomorphism ¥ := &' 0 ® : AdS3 — St x D2.
Since the metric g, and g, are conformally equivalent, the pull back by ¥ of the metric —dt? + ds? is
conformally equivalent to the original metric of AdSs.

The diffeomorphism & can be extended to a diffeomorphism ® : AdS; U OAdS; — AU dA: for every
[z1 : T2 : 23 : 24] in OAdS3, we have ®([z1 : T2 : T3 : 4]) = [1 : @2 : @3 : w4 : 0]. The diffeomorphism

@' can be extended to a diffeomorphism & : AUHA — S! x D?: we have ® = o'y 5,. Hence, the
diffeomorphism ¥ can be extended to a diffeomorphism ¥ = ® o & : AdS; U 0AdS3; — ST x D2, O



Causal structure on AdS3; U 0AdS3. Let g be the lorentzian metric on AdS3 U JAdS 3, obtained by
pulling back the lorentzian metric —dt? +ds® on S! x D? by the diffeomorphism ¥. The lorentzian metric
g defines the same causal structure on AdS3 as the original metric of AdS3. From now on, we endow
AdS 3 UOQAdS 3 with the causal structure defined by the metric g. This causal structure allows us to speak
of timelike, lightlike and spacelike objects in AdS3 U 0AdS3. In particular, we can consider the causal
structure induced on the quadric 0AdS3. Given a point ¢ € JAdS 3, it is easy to verify that the lightcone
of g for this conformally lorentzian structure is made of the circle of the left ruling and of the circle of
the right ruling passing through gq.

Remark 2.16. Let po be the point of coordinates [1:0:0: 0] in S®. Recall that Ay, UDAp, is the subset
of AdS3 U 0AdS3 defined by the inequation (x1 > 0). Hence, the diffeomorphism ¥ defined above maps
Apo UOA,, on {(z1, T2, 73,24, 25) | 23 +23 =1, 31 >0, i +a5+22 =1, 25 > 0} ~ (—7/2,7/2) x D2.

Corollary 2.17. For every p € AdSs3, the domain A, U 0.A, has the same causal structure as the
lorentzian space ((—7r/2,7r/2) x D2 | —dt? + dsQ).

Proof. Since O(2,2) acts transitively on AdS3, it is enough to consider the case where p is the point of
coordinates [1:0:0:0]. This case follows from proposition 2.15 and remark 2.16. O

The two following propositions will play some fundamental roles in the proof of theorem 0.2:

Proposition 2.18. Let p be a point in AdS3, and q be a point in 0A,. A point r € A, UIA, can be
joined from q by a timelike (resp. causal) curve if and only if Bg(g,r) is positive (resp. non-negative).

Proof. Since Og(2,2) acts transitively on AdS3, we can assume that p = [1: 0: 0 : 0]. There exists a
timelike curve joining g to r in A, UOA, if and only if there exists a timelike curve joining ¥,(q) to ¥,(r)

in ((—7r/2,7r/2) x D2 | —dt? + dsQ). We see ((—77/2,7r/2) x D2 | —dt? + ds2) as the set

{($1,$2,$3,1’4,Z‘5) eR’ |$f+x§ =1,z >0, m%—}—mi—}—mg =1, x5 >0}

equipped with the metric —(dz? + dz3) + (dz} + dz} + dz2). First, we observe that Bg(g,r) and
Bz (¥,(q), ¥,(r)) have the same sign (this follows from the definition of the diffeomorphism ¥, see
the proof of proposition 2.15). Second, we observe that the points ¥,(q) and ¥,(r) are joined by a

timelike (resp. causal) curve in ((—7‘[’/2,7‘(’/2) x D2, —dt* + dsz) if and only if Q(¥,(q) — ¥, (r)) is neg-
ative (resp. non-positive). Third, we observe that the quantity Q (¥p(q) — ¥p(r)) and B (¥5(q), ¥p(r))

have opposite signs (since @(\Ilp(q)) =Q (¥,(q)) = 0). Putting everything together, we obtain the
proposition. O

Remark 2.19. Let p be a point in AdSs. Let P be a spacelike totally geodesic subspace of A, (by such
we mean the intersection of A, with a spacelike totally geodesic subspace of AdS3). Then, P divides A,
into two closed regions: the past of P in A, and the future of P in A,.

Proof. We identify A, and P with their images under the embedding ®,. Then, P is the intersection of
A, (i.e. of the set (=22 + y2 + 22 < 1)) with an affine plane P of R®. We consider the two regions of
A, defined as the intersections of A, with the closures two connected components of R? \ P. Since P is
spacelike and connected, the past (resp. the future) of P in .4, is necessarly included in one of these two
regions. Finally, using remark 2.14, it is elementary exercice to verify that, for point ¢ € A, there exists
a timelike geodesic joining ¢ to a point of P. Hence, the union of the past and the future of P must be
equal to Ap,. The proposition follows. O

3 Proof of theorem 0.2 in the case g > 2

The purpose of this section is to prove theorem 0.2 in the case where the genus of the Cauchy surfaces of
the globally hyperbolic spacetime under consideration is at least 2.

All along the section, we consider a maximal globally hyperbolic spacetime M, locally modelled on
AdSs, with closed orientable Cauchy surfaces of genus g > 2. We denote by M the universal covering of
M. We choose a Cauchy surface ¥y in M, and the lift 3¢ of ¥y in M. Since M is locally modelled on
AdS3, we have a locally isometric developping map D : =5 AdS3. We denote So = D(Xg). The developping
map induces a representation p of the fundamental group 71 (M) = 71 (Zo) in Og(2,2). We denote by



T' = p(II; (M)). Identifying O(2,2) with SL(2,R) x SL(2,R)/(—Id, —Id) (see subsection 2.2), we can
see p as a representation of Op(2,2) in SL(2,R) x SL(2,R). Then, we will denote by pr, and pg the
representations of m (M) in SL(2,R) such that p = pr, X pg.

We have to prove that M admits a CMC time function. In subsection 3.1, we will explain why these
reduces to the proof of the existence of a pair of barriers in M. In subsection 3.2, we will study the surface
So and its boundary 8Sp in AdS3UJAdS 3. In subsection 3.3, we study the Cauchy development D(Sy) of
the surface Sg. In particular, we prove that M is isometric to the quotient I'\D(Sp). In subsection 3.4, we
study the intersection Cy of AdS3 with the convex hull of the curve 0Sy. In particular, we prove that the
Cy is included in the Cauchy development D(Sp), so that we may consider the projection I'\Cy of Cp in
I'\D(So) ~ M. In subsection 3.5, we define some notion of convexity and concavity for spacelike surfaces
in AdS 3, and we prove that the boundary of Cy in AdS 3 is the union of two disjoined spacelike topological
surfaces S; and S, repectively convex and concave. The projections ¥y = I'\S;” and I = I'\Sg of
these surfaces in I'\D(Sy) ~ M is “almost a pair of barriers”. There are still two small problems: in
general, the surfaces ¥; and E(J{ have flat regions (whereas, for barriers, we need surfaces with positive
and negative mean curvature), and in general, these are only topological surfaces (whereas, for barriers,
we need surfaces of class C?). The purpose of subsections 3.6 and 3.7 is to approximate the surfaces ¥
and E(J{ by a true pair of barriers.

3.1 Reduction of theorem 0.2 to the existence of a pair of barriers

V. Moncrief has proved that the solutions of the vacuum Einstein equation in dimension 2 + 1 with
compact Cauchy surface can be described as the orbits of a non-autonomous hamiltonian flow on a finite-
dimensional space (namely the Teichmiiller space of the Cauchy surface). Using this hamiltonian flow,
L. Andersson, Moncrief and A. Tromba have obtained the following theorem ([2, corollary 7]):

Theorem 3.1 (Andersson, Moncrief, Tromba). Let N be a 3-dimensional mazimal globally hyper-
bolic spacetime, with constant curvature, and with closed Cauchy surfaces of genus g > 2. Then, N
admits a CMC time function.

Thanks to theorem 3.1, the proof of theorem 0.2 is reduced to the proof of the existence of a CMC
Cauchy surface. The existence of CMC surfaces, in particular the existence of surfaces with zero mean
curvature, has been studied in many context. The problem usually splits into two disjoint steps : a
geometrical step which consists in constructing some surfaces with (non-constant) negative and positive
mean curvature called barriers, and an analitical step which consists in solving the appropriate PDE to
prove the existence of a surface with zero mean curvature assuming the existence of barriers. In our
context, the second step was performed by C. Gerhardt (see [4, theorem 6.1]2):

Definition 3.2. We define a pair of barriers in a three-dimensional globally hyperbolic lorentzian man-
ifold N is a pair of disjoint Cauchy surfaces ¥~ and Xt in N, such that X7 is in the future of ¥,
the supremum of the mean curvature of ¥~ is negative, and the infimum of the mean curvature of Xt is
positive.

Theorem 3.3 (Gerhardt). Let N be a three-dimensional globally hyperbolic lorentzian manifold, with
compact Cauchy surfaces. Assume that there exists a pair of barriers in N. Then, there exists a Cauchy
surface with zero mean curvature in N.

Using proposition 0.1, and the results of Andersson-Moncrief-Tromba and Gerhardt stated above, the
proof of our main theorem reduces to the proof of the existence of a pair of barriers in our spacetime M.

3.2 The spacelike surface 5

The purpose of this subsection is to collect as many information as possible on the surface Sp. In
particular, we will prove that Sy is an open disc properly embedded in AdS3, that the closure Sy of Sp in
AdS3 U OAdSs is a closed topological disc, and that Sy is an achronal set. The results of this subsection
are not original: most of them can be found in the THES preprint of G. Mess ([7]). Yet, we will provide
a proof of each result to keep our paper as self-contained as possible3.

The lorentzian metric of M induces a riemannian metric on the Cauchy surface Xy, which can be
lifted to get a riemannian metric on Xg. Since ¥g is compact, the riemannian metrics on ¥y and Xg

2The result proved by Gerhardt in [4] is more general than the statement that we give here.

3By the way, using the conformal equivalence of AdS 3U 8AdS 3 with (ﬁ2 x S, —dt? + ds?), we were able to simplify some
of the proofs of Mess’s preprint.



are complete. The developping map D induces a locally isometric immersion of the surface f]o in AdSs.
Actually, it appears that this immersion is automatically a proper embedding:

Proposition 3.4. The surface Sy is an open disc properly embedded in AdS3. Moreover, every timelike
geodesic of AdS3 intersects the surface Sy at exactly one point.

Proof. We consider the projection ¢ : AdS3 — R2, defined by ((z1, 22,3, 74) = (73,74). Observe that
the fibers of the projection ¢ are the orbits of a timelike killing vector field of AdS3. We endow R? with
the riemanian metric g¢ defined as follows. Given a point ¢ € R? and a vector v € T,R?, we choose a
point § € (7'(g), and we consider the unique vector ¥ € T;AdS; such that d(;.6 = v and such that ¢
is orthogonal to the fibers (~'(g). We define g¢(v) to be to the norm of the vector © for the lorentzian
metric of AdSs;. This definition does not depend on the choice of the point §, since the fibers of { are the
orbits of a killing vector field. It is easy to verify that R* endowed with the metric g, is isometric to the
hyperbolic plane.

Claim 1. Given any point ¢ € AdSs and any spacelike vector v in T, AdSs, the norm of the vector d¢,(v)
for the metric g¢ is bigger than the norm of v in AdSs.

Indeed, write v = u + w where u is tangent to the fiber of the projection ¢ (in particular, v is timelike)
and w is orthogonal to this fiber. On the one hand, by definition of g, the norm of the vector d¢,(v) for
the metric g¢ is equal to the norm of w in AdS3. On the other hand, the norm of v in AdSj; is less than
the norm of w, since w is timelike. This completes the proof of the claim.

Claim 2. For every locally isometric immersion f : f]o — AdSs3, the map Co f : f)o — R? is an
homeomorphism. In particular, the surface f(Xo) intersects each fiber of ( at exactly one point.

By the first claim, the map ¢ o f is locally distance increasing (when the surface Yo is endowed its
riemannian metric, and R? is endowed with the metric g¢) . Since the riemannian metric of o is
complete that (o f : f]o — R? has the path lifting property, and thus is a covering map. Since H is
simply connected, this implies that o f : ¥y — R? is an homeomorphism. This completes the proof of
claim 2.

Applying claim 2 with f equal to the developping map D, we obtain that D : f]o — AdS3 is a proper
embedding, and that ¥y is homeomorphic to R? (and thus homeomorphic to an open disc). Hence, the
surface Sy = D(io) is an open disc properly embedded in AdS;. Now, let v be a timelike geodesic
of AdSs;. Observe the circle (71(0,0) is a timelike geodesic of AdSs;. Since O(2,2) acts transitively on
the set of timelike geodesic of AdS3, there exists o € O(2,2) such that o(y) = ¢~1(0,0); in particular,
o(7) is a fiber of the projection (. Applying claim 2 with f = o' o D, we obtain that the surface
071(Sp) = 67! 0 D(Sy) intersects each fiber of ¢ at exactly one point. Hence, the surface Sy intersects
the geodesic v at exactly point. O

Remark 3.5. In the proof of proposition 3.4, we have not used any hypothesis on the genus of the surface
Y. Hence, proposition 3.4 is still valid without the assumption that the genus of the surface o is at
least 2. Yet, the proof of proposition 3.4 shows that ¥¢ is homeomorphic to a disc. This proves that there
does not exist globally hyperbolic spacetime, locally modelled on AdS3, with closed orientable Cauchy
surfaces of genus 0.

To prove that the closure of Sp in AdS3UOJAdS3 is a closed topological disc, we will use the conformal
equivalence between AdS3 U OAdS3 and (S! x D2, —dt? + ds?). Let us start with some remarks:

Remark 3.6. (i) Let S be a spacelike (resp. nowhere timelike) surface in (S* x D, —dt? + ds?). Then,
every point of S has a neighbourhood in S which is the graph of a contracting® (resp. 1-Lipschitz) function
f:(U,ds?) — (S1,dt?), where U is an open subset of D?.

(i) Every properly embedded spacelike (resp. mowhere timelike) surface in (S* x D?, —dt® + ds?) is the
graph of a contracting (resp. 1-Lipschitz) function f : (D?,ds?) — (S1,dt?).

(iii) Of course, (i) and (ii) remain true if we replace St by (—m/2,7/2).

Proof. Ttem (i) is an immediate consequence of the product structure of (S x D2, —dt> + ds?). To prove
(ii), we consider a properly embedded spacelike (resp. nowhere timelike) surface S in (S' xD?, —dt?+ds?).
Let po be the projection of S x D? on D?. Using item (i) and the fact that S is properly embedded,
it is easy to show that ps : S — D? is a covering map. Hence, ps : S — D? is a homeomorphism, and
the surface S is the graph of a function f : D* — S!. By item (i), the function f is contracting (resp.
1-Lipschitz). O

4We recall that, given two metric spaces (E,d) and (E’,d'), a function f : (E,d) — (E',d') is said to be contracting if
d'(f(z), f(y)) < d(x,y) for every x # y.



Thanks to remark 3.6, we can define a notion of spacelike topological surface in AdS3 U OAdS 5:

Definition 3.7. Let S be a topological surface (with or without boundary) in AdS3 U OAdS3. Using
the conformal equivalence between AdS3; U OAdS3 and (S* x D?, —dt? + ds?), we can see S as a surface
in S x D2. We will say that the topological surface S is spacelike (resp. nowhere timelike) if every
point of S has a neighbourhood in S which is the graph of a contracting (resp. 1-Lipschitz) function
f:(U,ds?) = (S',dt?), where U is an open subset of D2.

Proposition 3.8. The closure Sy of the surface Sy in AdSs UBAdSs is a nowhere timelike closed topo-
logical disc.

Proof. Using the conformal equivalence between AdS3 U 0AdS; and (S* x D2, —dt? + ds?), we see Sy as
a surface in S! x D?. By proposition 3.4 and remark 3.6, the surface Sy is the graph of a contracting
function f : (D?,ds?) — (S!,dt?). Every contracting function from (D?,ds?) to (S!,dt?) can be extended
as a 1-Lipschtiz function from (D?,ds?) to (S, dt?). The proposition follows. O

Proposition 3.4 and 3.8 imply that the boundary 0.5y of the surface Sy in AdS3UJAdS 5 is a topological
simple closed curve included in AdS 3. Of course, this curve is invariant under the action of the holonomy
group I' = p(m (M)).

Remark 3.9. Accroding to the proof of proposition 3.4, the surface Sy intersects each fiber of the pro-
jection  : AdSs — R? defined by (((x1,T2,T3,74)) = (x3,274). This implies that the curve Sy intersects
each fiber of the projection  : OAdS3 — St defined by (([z1 : T2 : 3 : 14]) = [23 : 4]

Besides, if we idenfify AdSsUOAdS s with (S! x D2, —dt? + ds?), then then the curve S is identified
with the graph of a function from OD? to S'. This implies, in particular, that the curve 8Sy is not
null-homotopic in OAdS 5.

Proposition 3.10. For every p € Sy, the surface Sy is included in the affine domain A, UOA,.

Proof. Let p be a point on the surface Sp. The point p does not belong to its dual totally geodesic surface
p*. Hence, we can find an open neighbourhood U of p such that, for every ¢ in U, the surface ¢* is
disjoined from U. Moreover, since Sy is a spacelike surface without boundary, replacing if necessary U
by a smaller neighbourhood, we may assume that every timelike geodesic meeting U intersects So N U.

Claim. For every q € U, the surface Sy does not intersects the surface g*.

Indeed, consider a point ¢ € U, and a point r on the totally geodesic surface ¢*. Then, the point r is not in
U, and there exists a timelike geodesic 7y passing through ¢ and r (see remark 2.7). By construction of U,
the geodesic v intersects SoNU at some point s. If the point r were on the surface Sy, the geodesic v would
intersect the surface Sy at two different points (the points r and s); this would contradict proposition 3.4.
Hence, the point r is not on Sy. This completes the proof of the claim.

The claim implies in particular that the surface p* is disjoint from Sg. Moreover, the claim implies
that, for every q € U, the surface ¢* is disjoined from the surface Sq. When ¢ describes U, the totally
geodesic surface ¢* describes a neighbourhood of the totally geodesic surface p*. Hence, the closure p* of
p* in AdS3 U OAdS 5 is disjoined from the closure Sy of Sp. Hence, the closed surface Sy is included the
connected components of (AdS3 U JAdS3) \ p* containing p, i.e. is included in A, U 0A,,. O

Proposition 3.11. The topological surface Sy is spacelike.

Remark 3.12. Recall that we are assuming in this section that the the genus of the Cauchy surface ¥
is at least 2. This hypothesis is crucial for proposition 3.11 to be true. Indeed, when Xq is torus, the
curve 0Sy (which can be defined in the same way as in the case where the genus of Xo is at least 2) always
contains lightlike geodesics segments, see remark 4.6.

Proof. We already know that Sy is nowhere timelike, and that Sy is spacelike. Hence, Sy is spacelike if
and only if the curve 85y does not contain any non-trivial lightlike arc. Hence, Sy is spacelike if and only
if 3Sy does not contain any non-trivial arc of some circle of the left or the right ruling of JAdS ;.

Let us denote by RP} (resp. RPL) the space of the circles of the left (resp. right) ruling of OAdSs.
We recall that the action of the holonomy p on RPL reduces to the action of pg (since, py preserves
individually each cicrle of the left ruling). Similarly, the action of p on RP} reduces to the action of py,.

Lemma 3.13. The actions of the representations py, and pg respectively on RP}, and RP} are minimal.
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Proof. Let p be a point of the surface Sy, and n the future-pointing unitary normal vector of Sy at
p. If v is a unitary vector tangent to Sp at p, then n + v is a future pointing lightlike vector. The
lightlike geodesic directed by n + v is tangent to dAdS; at two antipodal points (remark 2.11). These
two antipodal points lie on the same circle of the right ruling; denote by R[y.,) with circle (with [X :
] € RP}). The map (p,v) — (p, R}y,,)) identifies the unitary tangent bundle of the surface o with the
flat RR! bundle over £ given by m1(Zo)\(So x RP!) where the action of 71(2¢) = 71(M) is given by
v. @, A:w) =) (), pr(Y)(A: u])). Hence, the Euler class of the representation py, is the Euler
class of the unitary tangent bundle of £o. By a theorem of Goldman (see [5])°, this implies py, (1 (M))
is a cocompact Fuchsian subgroup of SL(2,R) x Id ~ SL(2,R). In particular, the action of p; on RP}
is minimal. O

End of the proof of proposition 8.11. Denote by U the open subset of 05y, defined as the union of
the interiors of all the non-trivial arcs of circles of left ruling included in 0Sy. Note that the holonomy
p preserves the open set U invariant (since it preserves 8Sp, and maps a circle of the left ruling to a
circle of the left ruling). Now, let Ugr C RP}, be the set of all circles of the right ruling that intersect U.
Then Ug is an open subset of Cg which is preserved by py. Hence, Ug is either empty or equal to Cg.
But the equality Ug = RP}, would imply that 85y is a circle of the left ruling, which is impossible by
proposition 3.10. Hence, Ug is empty, i.e. the curve 85y does not contain any non-trivial arc of circle of
the left ruling. Similarly, for the right ruling. This completes the proof. O

Remark 3.14. on the one hand, proposition 3.4 implies that the action of T' on the surface Sy free and
properly discontinous. On the other hand, lemma 3.13 implies that the action of T on 0Sy is minimal.
As a consequence, the curve 0Sy is the limit set of the action of I' on the surface Sy.

Proposition 3.15. For every p € AdS3 such that Sy C A, UdA,, the surfaceﬁ_o is an strictly achronal
subset of ApUJA, (i.e. a causal curve included in A, UOA, cannot intersect So at two distinct points).

To prove this, we need an analog of remark 3.6 for causal curves in ((—7/2,7/2) x D?, —dt> + ds?):

Remark 3.16. Every timelike (resp. causal) curve in ((—m/2,7/2) x D2, —dt? + ds?) is the graph of a
contracting (resp. 1-Lipschitz) function g : (J,dt?) — (D?,ds?), where J is a subinterval of (—m/2,7/2).

Proof. Proof of proposition 3.15 Let p € AdS3 such that Sy C A, U A, and vy be a causal curve in
A, UOA,. Since the result depends only on the causal structure of 4, U d.4p, we may identify 4, UdA,
with ((—7/2,7/2) x D?, —dt> 4 ds?). Then, the surface Sy is identified with the graph of a contracting
function f : D> — (—7/2,7/2) and the curve v is identified with the graph of a 1-Lipschitz function
g:J C(-m/2,m/2) = D?. The intersection of two such graphs contains at most one point. O

Remark 3.17. Let v be a ligtlike geodesic of AdS3. For every p € AdS3, it is easy to verify that YN A, is
connected, i.e. that v induces a single causal curve in A,. Hence, proposition 3.15 implies that v N Sy is
a single point. Moreover, let ¢ and —q be the two ends of the geodesic v in OAdS3 (see remark 2.11), and
let ¥ := yU {q, —q}. For every p € AdS3, ¥N (A, UBA,) is connected. Hence, proposition 3.15 implies
that ¥ N Sy is a single point. In particular, if ¢ or —q is a point of the curve 8Sy, then the geodesic v
does not intersect the surface Sy.

Remark 3.18. Let p be a point such that the surface Sy is included in A,. Proposition 3.4 implies that
every point of A, is either in the pastS or in the future of the surface So. Moreover, proposition 3.15
implies that a point of A, cannot be simultaneously in the past and in the future of the surface, except if
it is on the surface Sp.

Remark 3.19. All the results of subsection 3.2 remain true if one replaces the Cauchy surface ¥y by
any other Cauchy surface of M.

3.3 Cauchy development of the surface S

In this subsection, we study the Cauchy development of the surface Sy in AdS3. The main goal of the
subsection is to prove that M is isometric to the quotient I'\ D(Sp).

Let us first recall the definition of the Cauchy development of a spacelike surface. Given a spacelike
surface S in AdS3, the past Cauchy development D~ (S) of S is the set of all points p € AdS3 such that

5The hypothesis that the genus of X is at least 2 is crucial for Goldman’s theorem
SHere, we mean the “past in .4,”: a point ¢ in the past of the surface Sp if there exists a future-directed causal curve
including in A, going from So to g. Similarly for the future.
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every future-inextendable causal curve through p intersects S. The future Cauchy development DT (S) of
S is defined similarly. The Cauchy development of S is the set D(S) := D~ (S) U D*(S). The following
technical lemma provides us with a more practical definition of D(S):

Lemma 3.20. Let S C AdS3 be a spacelike surface. The past Cauchy development of S is the set of all
points p such that every future-directed lightlike geodesic ray through p intersects S.

Proof. Let p € AdS3 be a point such that every past-directed lightlike geodesic ray through p intersects
the surface S. Then, every past-directed lightlike geodesic ray through p intersects (transversally) the
surface S at exactly one point (see remark 3.17). Hence, the set C of all the points of S that can be
joined from p by a past-directed lightlike geodesic ray is homeomorphic to a circle. Therefore, C' is the
boundary of a closed disk D C S (recall that S is a properly embedded disc, see proposition 3.4). Let L
be the union of all the segments of lightlike geodesics joining p to a point of C. The union of D and L is a
non-pathological sphere. By Jordan-Schoenflies theorem, this topological sphere is the boundary of a ball
B C AdSs. A non-spacelike curve cannot escape B through L ; as a consequence, every pat-inextendable
non-spacelike curve through p must escape from B through D ; in particular, every past-inextendable
non-spacelike curve through p must intersect S. Hence, the point p is in D*(S5). O

Remark 3.21. If S is a spacelike surface in AdS3, then the only points which belong to both D~(S) and
D*(8) are the points of the surface S itself. Indeed let p be a point which not on S, and let v be a lightlike
geodesic passing through p. By remark 3.17, the geodesic y cannot intersect the surface S both in the past
and in the future of p. Hence, the point p cannot belong to both D~ (S) and DY (S).

Remark 3.22. Since the surface ¢ is a Cauchy surface in M, the range D(M) of the developping map
D must be included in the Cauchy development of the surface So = D(Xo).

Proposition 3.23. The developping map D : M- AdS 3 is one-to-one.
Lemma 3.24. This is no timelike geodesic of AdS3 entirely included in D(Sy).

Proof. Let v be a timelike geodesic of AdS3. We recall that v is a closed geodesic. By proposition 3.4,
the geodesic « intersects the surface Sy at exactly one point p. We assume that v is included in D(Sp).
We will consider the sets v~ := yN D~ (Sy) and v+ := v N DT (Sy). Since « is included in D(Sp), we
have v = v~ U~*. Moreover, by remark 3.21, we have v~ Ny" = yN Sy = {p}. The points of v which
are close enough to p, and in the past of p, are necessarly in D~ (Sp); in particular, 4~ is not reduced to
the point p. Similarly, v is not reduced to the point p. Since + is included in D(Sp) and since D~ (Sp)
is closed in D(Sp) (by remark 3.21), v~ is a closed subset of . Similarly, v is closed subset of . All
these properties are incompatible: a circle cannot be the union of two closed subsets whose intersection
is a single point p, except in the case where one of these two sets is the point p itself. O

Proof of proposition 3.23. Let p and q be two different points in M. Let v be a geodesic segment joining p
to g in M. The image of v under D is a geodesic curve (since D is a local isometry) included in D(Sg) (by
remark 3.22). If D(p) = D(q), then this geodesic curve must be closed. This is forbidden by lemma 3.24
(recall that the only closed geodesic in AdS3 are the timelike geodesics). O

Proposition 3.25. The holonomy group T = p(m (M)) acts freely, and properly discontinuously on the
Cauchy development D(Sy) of the surface Sp.

Proof. First recall that proposition 3.4 implies that the holonomy group I' acts freely and properly
discontinuously on the surface Sop = D(Zo).

Suppose that the group I' does not act freely on the Cauchy development D% (Sp). Then, there exists
an element v of I' which fixes a point p of D~ (Sp). As in the proof of lemma 3.20, we consider the set
C of all the points of Sy that can be joined from p by a past-directed lightlike geodesic ray. The set C
is homeomorphic to a circle, and thus, it is the boundary of a closed disc D C Sy. The disc D must be
invariant under v (since the surface Sy is I-invariant, and since « fixes the point p). Hence, by Brouwer
theorem, -y fixes a point in D. This contradicts the fact that I' acts freely on Sy. A a consequence, the
group T has to act freely on DT (S;). The same arguments show that T' acts freely on D=(S).

Now, let K be a compact subset included in D (Sj). All the points of intersection of the past-directed
geodesic rays emanating from the points of K with the surface Sy belong to some compact subset K’ of the
surface Sy. Since T' maps lightlike geodesic rays on lightlike geodesic rays, the set {y € T' | YK N K # 0}
is included in the set {y € T | yK' N K' # 0}. Hence, the proper discontinuity of the action of T' on
D*(8,) follows from the proper discontinuity of the action of T' on Sp. The same arguments show that
T acts properly discontinuously on D~ (Sp). O
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Proposition 3.26. The developping map D induces a isometry between M and the quotient '\ D(S).

Proof. By proposition 3.25, the quotient I'\ D(Sp) is a manifold (which is automatically a globally hyper-
bolic, since it is the quotient of the Cauchy development D(Sp)). By remark 3.22 and proposition 3.23,
the developping map D induces an isometric embedding of M in I'\D(Sy). Since M is assumed to be
maximal as a globally hyperbolic manifold, this embedding must be onto. O

According to proposition 3.26, constructing a surface in M with some specified geometrical properties
amounts to constructing a I'-invariant surface in D(Sp). In particular, we will use the following remark
several times:

Remark 3.27. If S is a T'-invariant spacelike surface included in the Cauchy development D(Sy), then
T'\S is a Cauchy surface in M =T\D(Sy). Indeed, T'\S is a spacelike compact surface in M = T'\D(Sy),
and every compact spacelike surface in M is a Cauchy surface.

3.4 The convex hull and the black domain of the curve 05,

In this subsection, we will consider the convex hull Conv(9Sy) of the curve 8Sy. The main goal of the
subsection is to prove that the set Conv(0Sg) \ 85y is included in the Cauchy development of the surface
So- To prove this result, we will have to define a new set E(0Sy), that we call the black domain of the
curve 0.

Definition of the set E(9Sy). First, for every g € 0Sy, we consider the set
E(8Sp) = {r € S*| Bg(r,q) <0 for every q € 9o}

We call this set the black domain of the curve 85y (explanations on this terminology are provided below).

Remark 3.28. Here are a few observations about the definition of the set E(9So):

(i) We will prove below (proposition 3.32)) that the black domain E(0Sy) (which is defined above as a
subset of the sphere S®) is actually included in the anti-de Sitter space AdSs;. Moreover, we will prove
that E(0Sy) is included in the affine domain Ap, for a well-chosen point py (proposition 3.35).

(i) Consider a point pg € AdSs such that E(0Sy) is included in Ap,. According to proposition 2.18, the
set E(0Sy) is made of the points r € Ay, such that there does not exist any causal curve joining r to the
curve 0Sy within Ap,. In other words, E(0Sy) is the set of “all the points of Ap, that cannot be seen
from any point of the curve 8So”. This is the reason why we call E(0Sy) the black domain of the curve
9Sp.

(iii) The black domain E(8Sy) is clearly a convexr subset of S* (by construction, it is an intersection of
convez subsets of S®). In particular, E(0Sy) is connected.

(iv) Here is a nice way to visualize the E(8Sy). Consider a point po € AdS3 such that E(8Sy) is included
in the affine domain Ap,. Using the diffeomorphism ®,,, we can identify Ap,, 0A,,, 8So, E(0Sy) with
some subsets of R3; in particular, OA,, is identified with the hyperboloid of equation (z* +y* — 22 =1).
Given q € 85y, the set T, = {r € A, | Bo(g,7) = 0} is the affine plane of R® which is tangent to the
hyperboloid 0 Ay, at q. The set E, = {r € Ay | Bg(g,r) > 0} is one of the two connected components of
R3 \ T,. Moreover, proposition 3.15 and 2.18 imply that 8Sy \ {q} is included in E(q). As a consequence,
the set E(0So) is the intersection over all ¢ € 8So, of the connected component of R® \ T, containing

950 \ {q}-

(v) Let r be a point of the boundary of E(0So) in AdS3. The definition of the set E(0Sy) and the
compacity of the curve 0Sy imply that we have Bg(p,q) = 0 for some point g on the curve 8Sy. Hence,
by remark 2.12, there exists a lightlike geodesic v passing through r, such that one of the two ends of 7y is
a point of the curve 0Sy.

Proposition 3.29. The surface Sy is included in E(8S)).

Proof. The result follows from proposition 3.15 and 2.18. O
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Definition of the set Cy. Recall that we denote by Conv(8Sy) the convex hull in S? of the curve Sy
(see subsection 2.4). We will consider the set

Co = COnV(@SO) N AdS3

The purpose of the subsection is to prove that this set Cy is equal to Conv(9Sp) \ 05y, and that it is
included in the Cauchy development D(Sp).

Proposition 3.30. The set Conv(0Sy) \ 0SSy is included in E(OSy).

Proof. Let ¢ be a point Conv(0Sp) \ 850, and let § be any point in 7=!({g}). Let r be a point in 85, and
let 7 be any point in 77 ({r}). We have to prove that Bg(g,) is negative, i.e. that Bg(g,7) is negative.

Since 7 'is in 771 (Conv(8Sy)), one can find some points @i, . . ., g, € 7 1(8Sp), and some positive numbers
Qi,...,0y, such that a; + --- + a, = 1, and such that § = a1q1 + - -- + @, q,. We denote by q1,...,q,
the projections of the points @i, ...,q,. For each i € {1,...,n}, there are two possibities:

— either ¢; = r, and then we have Bg(g;,7) = Bg(r,7) = 0 (since 7 is on the quadric (Q = 0)),
— or g; # r, and then proposition 3.15 and 2.18 imply that Bg(q;,7) is negative.

Moreover, at least one ¢;’s is different from r (otherwise, we would have ¢; = --- = ¢, = r = ¢, which is
absurd since ¢ is not on 8Sp). Hence, the quantity Bo(q,7) = a1 Bg(q1,7)+ - - -+ anBg(Gn, 7) is negative.
The proposition follows. O

Lemma 3.31. For every point ¢ € OAdSs3, there exists a point r € 0Sy, such that Bg(gq,r) is non-
negative. Moreover, if the point q is not on the curve 05y, then the point r can be choosen such that
Bg(q,r) is positive.

Proof. Let g be a point in OAdS3. Denote by [z1 : @2 : 23 : 4] the coordinates of ¢ in S®. Remark 3.9
imply that there exist z},z} € R such that the point r of coordinates [z} : z} : 23 : z4] is on the curve
dSo. The sign of Bg(g,r) is the sign —z12) — zo2h + 23 +23. Since the point ¢ and r are both on AdS 3,
we have Q([z1 : @2 : z3 : 74]) = Q([#} : 7 : z3 : 74]) = 0. Hence, we have —z17} — z2xh + 23 + 22 =
(1 — 71)? + (z2 — 24)?). As a consequence, Bg(g,r) is non-negative. Moreover, if ¢ is not on the curve
0S50, then (x1,z2) is different from (z,x5), and thus, Bg(g,r) is positive. O

Corollary 3.32. The black domain E(0Sy) is included in AdSs.

Proof. Lemma 3.31 says that the intersection of JAdS 3 with E(8Sy) is empty. Since E(dSy) is connected,
this implies that E(0Sp) is either included in AdSs, or disjoined from AdSj;. But, the intersection
of E(0Sy) with AdS3 is non-empty (by proposition 3.30, for example). Hence, E(9Sy) is included in
AdS ;. O

Remark 3.33. Proposition 3.30 and corollary 3.32 imply that the set Conv(0Sp) \ 0So is included in
AdS3. Hence, we have Conv(0Sp) N AdS3 = Conv(0Sp) \ 850, i.e. Co) = Conv(dSop) \ 850.

We will denote by E(0Sp) the closure of the black domain E(9Sp) in AdS3 U 0AdS 3.

Corollary 3.34. The intersection of E(9Sq) with OAdS 3 is the curve 0Sy.

Proof. Proposition 3.30 implies that every point of the curve 85y is in E(9Sp). Conversely, let ¢ be a
point in dAdS3\ 8Sp. According to lemma 3.31, there exists a point r € 85y such that Bg(g,r) > 0. By
continuity of the bilinear form Bg, there exists a neighbourhood U of g in S3, such that Bg(q',r) > 0 for
every ¢' € U. In particular, there exists a neighbourhood U of ¢ which is disjoint from E(0S). Hence,
g is not in E(0Sy). O

Proposition 3.35. There exists a point po € AdS3 such that E(0Sy) is included in the domain Ap,.

Addendum. If the curve Sy is not flat”, then one can choose the point po such that E(0Sp) is included
in Ap, UOAp,.

Lemma 3.36. For every point p € Co = Conv(0Sy) \ 0So, the black domain E(0Sy) is disjoined from
the totally geodesic surface p* (and thus, it is also disjoined from the closed surface p*).

TWe say that the curve 8Sp is flat if it is the boundary of a totally geodesic subspace of AdS 3, or equivalently, if it is
included in a great 2-sphere in S3.
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Proof. Let p be a point in Cp, and p be a point in R* \ {0} such that 7(p) = p. Since p is in Conv(8Sp),
one can find some points pi,...,p, € 7 *(0Sp) and some positive numbers aq,...,a, such that p =
aip1+- - +a,P,. Let g be a point in E(8Sp) and ¢ be a point in R* \ {0} such that 7(g) = q. Since q is in
E(85Sy), the quantity Bg(p;,q) is negative for every i. Hence, the quantity Bo(p,q) = a1 Bg(p1,9)+---+
anBg(Pn, Q) is negative. In particular, the point ¢ is not on the surface p* = {r € AdS3 | Bo(p,7) = 0}.
This proves that set E(9Sp) is disjoint from the totally surface p*. Since E(9Sp) is included in AdS3, it
is also disjoint from the closed surface p*. O

Proof of proposition 3.35. Let pg be a point in Cy. By lemma 3.36, E(9Sp) is disjoint from the totally
geodesic surface p§. Since E(0Sp) is connected, this implies that E(9S) is included in one of the two
connected components of AdS3 \ p§. By proposition 3.30, the point po is in E(0Sp). Hence, E(9So) is
included in the connected component of AdS3 \ p§ containing po, é.e. is included in A, . O

Proof of the addendum. If 0Sy is not flat, then the set Cp has non-empty interior. Let py be a point
in the interior of Cy. On the one hand, the set E(8Sy) is disjoint from the closed surface p* for every
p € Cy. On the other hand, the union of all the surfaces p* when p ranges over Cy is a neighbourhood
(in AdS3 U 0AdS3) of the surface p§. Hence, E(0S)) is disjoined from a neighbourhood of the surface
pi. Hence, E(0S)) is disjoined from the surface p§. Moreover, by proposition 3.30, the point pq is in
E(8So). Hence, E(dSy) is included in the connected component of (AdS3; U AdS3) \ p§ containing po,
i.e. is included in A, U0 A,,. O

From now on, we fix a point py € AdS3, such that E(9Sp) is included in Ay, UJA,,.
Proposition 3.37. The black domain E(0Sy) coincides with the Cauchy development D(Sp).

Proof. Let us suppose that D(Sp) is not included in E(9Sp). Since D(Sy) and E(8Sy) have a non-empty
intersection (the surface Sy is included in both D(Sy) and E(8Sy)), and since D(Sy) is connected, D(Sp)
must contain some point r of the boundary of E(9Sy). By item (v) of remark 3.28, there exists a lightlike
geodesic v passing through r, such that one of the ends of 7 is a point ¢ on the curve Sy (the other
end is necessarly the antipodal point —q). Since r is in D(Sp), the lightlike geodesic v must intersect
the surface So. But, this is impossible by remark 3.17. This contradiction proves that D(Sp) must be
included in E(8S)).

To prove the other inclusion, we work in the affine domain Ap,,. Let p be a point in E(0Sp). By
remark 3.18, every point of A, is either in the past, or in the future of the surface Sy,. We assume, for
example, that p is in the future of Sy. We will prove that p is in D*(Sy). For that purpose, we consider
a past-directed lightlike geodesic ray v emanating from r, and we denote by g the past end of .

Claim. The geodesic ray v intersects the boundary of E(0So) at some point r situated in the past of So.

To prove this claim, we will argue by contradiction. First, we suppose that the geodesic ray « is entirely
included in E(9Sp). Then, by proposition 3.32 and 3.34, the past end of v must be a point g of the
curve 0Sp. But then, we have Bg(p, q) = 0, and this contradicts the fact that p is in E(0Sp). Now, we
suppose that the geodesic ray « intersects the boundary E(0Sp) at some point r situated in the future
of the surface Sp. By item (v) of remark 3.28, there exists a lightlike geodesic ray 4’ emanating from r,
such that the end of v is a point ¢ of the curve 8Sy. The geodesic ray 7' must be past-directed from
r to g, since r is in the future of the surface Sy. So, we have a past-directed lightlike geodesic segment
going from p to r, and a past-directed geodesic ray going from r to ¢; concatenating these two curves, we
obtain a piecewise C'! causal curve going from p to g € &Sp. This contradicts the fact that p is in E(dSp)
(see item (ii) of remark 3.28) and completes the proof of the claim.

Since the point p is in the future of the surface Sy, and since the point r given by the claim is in
the past of the surface Sy, the geodesic ray v must have intersect the surface So. So, we have proved
that every past-directed geodesic ray emanating from p intersects the surface Sy. Hence, the point p is
in D*(Sg) (lemma 3.20). This proves that F(9Sp) is included in D(Sp). O

Remark 3.38. Proposition 3.37 implies in particular that the Cauchy development D(Sy) depends only
on the curve 8Sy. More precisely, if S is any complete spacelike surface in AdSs such that S = 0y,
then D(S) = D(Sp).

Remark 3.39. Let ¥ be any Cauchy surface in M, and let S := D(X). On the other hand, we have

D(S) = D(So) = D(M). On the one hand, propositions 8.34 and 3.37 imply that the curve 8Sy is
the intersection of the closure in AdS3 U 0AdS3 of D(So) with OAdS3. Similarly, the curve 8S is the
intersection of the closure in AdS3 U AdS3 of D(S) with 0AdS3. As a consequence, we have S = 0Sy.
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Remark 3.40. For every point p € D(Sp) = D(M), one can find a Cauchy surface ¥ in M such that

p € D(X). By remark 3.1 and 3.39, the limit set of the action of T' on the surface S is the curve
0S = 0Sy. As a consequence, the limit of the action of T' on D(Sy) is also the curve 8Sp.

Bord de D(Sg

8,

Figure 1: The affine domain A,,, the curve 85, and the Cauchy development D(S,) represented in R®.

Interlude: proof of theorem 0.2 in the case where 095 is flat

Our strategy for proving the existence of a pair of barriers in M does not work in the particular case
where 05y is flat, mostly because the addendum of proposition 3.35 is false when 9Sy is flat. This is not
a big problem, since there is a direct and very short proof of theorem 0.2 in the particular case where
0S5 is flat:

Proof of theorem 0.2 in the case where Sy is flat. Assume that 05y is flat. Then it is the boundary of
a totally geodesic subspace Py of AdS3. This totally geodesic subspace is necessarly spacelike, since
the curve 05y is spacelike. By construction, Py is included in Cy; hence, it is included in the Cauchy
development D(Sg) (proposition 3.37 and 3.30). Moreover, the holonomy group T' = p(m(M)) preserves
Py (since it preserves the curve 8Sp). As a consequence, I'\ Py is a totally geodesic compact spacelike
surface in I'\D(Sp) ~ M. In particular, '\ P is a Cauchy surface with zero mean curvature in M.
Applying theorem 3.1, we obtain theorem 0.2. o

Assumption. From now on, we assume that the curve 05y is not flat.

3.5 A pair of convex and concave topological Cauchy surfaces

In this subsection, we will first define some notions of convexity and concavity for spacelike surfaces in M.
The main interesting feature of this notion for our purpoe is the fact that the mean curvature of a convex
(resp. concave) spacelike surface is always non-positive (resp. non-negative). Then, we will exhibit a pair
of disjoint topological Cauchy surfaces (X, ng) in M, such that ¥ is convex, ng is concave, and Ear
is in the future of X .

3.5.1 Convex and concave surfaces in AdS3

Let S be a topological surface in Ay, and ¢ be a point of S. A support plane of S at g is a (2-dimesional)
totally geodesic subspace® P of A,,, such that ¢ € P, and such that S is included in the closure of one
of the connected components of Ay, \ P.

Remark 3.41. Let S be a topological surface in Ay,,. If S is spacelike (in the sense of definition 3.7),
then every support plane of S is spacelike. Conversely, if S admits a spacelike support plane at every
point, then S is spacelike.

8By a totally geodesic subspace of Ap,, we mean the intersection of a totally geodesic subspace of AdS 3 with Ap,. Note
that there is a subtility: with this definition, the degenerated totally geodesic subspaces of Ap, are not connected (but their
closure in Ap, U 8Ap, is connected). Do not worry, this subtility does not play any role in the subsequent.
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Remark 3.42. Let S be a topological surface in Ay, and P be a spacelike support plane of S. Then, S
is included in the causal past® of P, or S is included in the future of P (see remark 2.19).

Let S be a topological spacelike surface in A,,. We say that S is convez, if it admits a support plane
at each of its points, and if it is included in the future of all its support planes. We say that S is concave,
if it admits a support plane a each of its points, and if it is included in the past of all its support planes.

Now, let 3 be a topological spacelike surface in M, let S be a lift of ¥ in M, and let S = D(X). Note
that S is a topological spacelike surface included in D(M) C Ap, (see section 3.3). We say that ¥ is
convez (resp. concave) if S is convex (resp. concave).

Proposition 3.43. Let X be a C? spacelike surface in M. If ¥ is convez, then ¥ has non-positive mean
curvature. If ¥ is concave, then ¥ has non-negative mean curvature.

Proof. Let ¥ be alift of ¥ in M, and let S = D(M). Assume that 3 is convex. Then § is convex. Hence,
for every g € S, the surface S admlts a spacelike support plane P, at g, and is included in the future of
P,. By lemma 1.2, the mean curvature of the surface S at g is smaller or equal than the mean curvature
of the support plane P,. But, since P, is totally geodesic, it has zero mean curvature. Hence, the surface
S has non-positive mean curvature. Hence, the surface ¥ also has non-positive mean curvature (since
the developping map D is locally isometric). O

The notions of convexity and concavity defined above can only help us in finding spacelike surfaces
with non-positive (resp. non-positive) mean curvature. Yet, to apply Gerhardt’s theorem 3.3, we need
to find spacelike surfaces with positive (resp. negative) mean curvature. This is the reason why we will
define below a notion of uniformly curved surface in M.

Let S be a topological surface in R?, and ¢ be a point on S. We fix an euclidian metric on R3. We
say that the surface S is more curved than a sphere of radius R at q, if there exists a closed euclidian ball
B of radius R, such that ¢ is on the boundary of B, and such that B contains a neighbourhood of ¢ in S.

Remark 3.44. Assume that the surface S is C2. Then, S is more curved than a sphere of radius R at
q if and only if the osculating quadric of S at q is an ellipsoid of diameter less than 2R.

Now, let ¥ be a topological surface in M, let M be alift of 3, and let S = D( ). We see S as a surface
in R? and we fix a euclidian metric on R3. Let A C 3 be a fundamental domain of the covering & — ¥,
and let D = D(A). We say that the surface ¥ is uniformly curved, if there exists R € (0, +00) such that
the surface S is more curved than a sphere of radius R at each point of D. It is easy to verify that this
definition depends neither on the choice of the fundamental domain A, nor on the choice the euclidian
metric on R? (although one has to change the constant R, when changing the fundamental domain A or
the euclidian metric on R?).

Proposition 3.45. Let X be a C? spacelike surface in M. If ¥ is convex and uniformly curved, then ¥
has negative mean curvature. If ¥ is concave and uniformly curved, then ¥ has positive mean curvature.

Proof. Let 3 be a lift of ¥ in M. ,and let S := D(M ). Assume that ¥ is convex and uniformly curved.
Then, S is convex. So, for every g € S, the surface S admits a support plane P, at ¢, and is included in
the future of P,. Moreover, since ¥ is uniformly curved, the surface S and the plane P, do not have the
same osculating quadric (see remark 3.44). By lemma 1.2, this implies that the mean curvature of S at
q is strictly smaller than the mean curvature of the plane P,. Since F; is totally geodesic, P, has zero
mean curvature. Hence, S has negative mean curvature. Hence, ¥ also has negative mean curvature. [

3.5.2 Boundary of I'-invariant convex sets included in D(Sp)

Proposition 3.46. Let S be a I'-invariant topological surface in A, . Assume that S is included in
D(So), and that the boundary of S in Ap, UOA,, is equal to the curve 0Sy. Then every support plane of
S is spacelike'®

Proof. Using the diffeomorphism &,,, we identify A,, with the region of R?® defined by the inequation
(22 + y*> — 2% < 1), and A, with the one-sheeted hyperboloid (z? + y? — 2% = 1). Let ¢ be a point on
the surface S and P be a support plane of S at g. The totally geodesic subspace P is the intersection of
Ap, with an affine plane P of R3.

On the one hand, since P is a support plane of S, the closure of S must be included in the closure
of one of the two connected components of R? \ P.In particular, the curve Sy must be included in the

9By causal past, we mean causal past in Apo
10Note that, for in general, the surface S does not admit any support plane.
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closure of one of the two connected components of R? \ﬁ On the other hand, 0.5 is a simple closed curve
drawn on the hyperboloid 0.4,,, which is not null-homotopic in .A,, (see remark 3.9). Consequently:

Fact 1. The support plane P = P NAp, does not contain any affine line of R®. Indeed, if P NAp, contains
an affine line of R3, then PN 0A,, is a hyperbola, and the two connected components of 0.4, \13 are
contractible in dA,, (we recall that Ay, is the region (z? + y? — 2% < 1) in R?®). Hence, every curve
included in the closure of a connected component of 8.A4,, \ P is null-homotopic in O0A,,.

Fact 2. If the plane P is tangent to the hyperboloid 0A, at some point r, then r is on the curve 0Sp.
Indeed, if P is tangent to the hyperboloid 8.4,, at some point 7, then every curve included in the closure
of one of the two connected components of 8.A,, \ P which is not null-homotopic in 8.A,, pass through r.

Now, we argue by contradiction: we assume that the totally geodesic plane P is not spacelike. Then,
P is either hyperbolic (i.e. the lorentzian metric restricted to P has signature (+,—)), or degenerated
(i.e. the lorentzian metric restricted to P is degenerated). We will show that the two possibilities lead
to a contradiction.
— If P is hyperbolic, then P contains timelike geodesics. By remark 2.14, a timelike geodesic of A,, is
an affine line of R® which is included in A,,. Hence, P = PN Ay, contains an affine line of R®. This is
absurd according to fact 1 above.
—If P is degenerated then P contains lightlike and spacelike geodesic, but does not contain any timelike
geodesic. By remark 2.14, this implies that P is tangent to the hyperboloid 0.A,, at some point r.
According to fact 2 above, the point 7 must be on the curve 0Sy. But then, according to remark 3.28
item (iv), P is disjoined from E(0Sp). In particular, the point g is not in E(9Sp). This is absurd since,
by hypothesis, the surface S is included in E(9Sy) = D(S). O

Proposition 3.47. Let C be a non-empty T-invariant closed'! convex subset of AdS 3, included in D(Sp).
Then:

(i) The boundary of C in AdS3 is the union of two disjoint T-invariant topological surfaces S~ and ST,
such that S~ is convex, ST is concave, C is in the future of S, and C is in the past of S*.

(i) 7 :=T\S™ and T+ :=T\ST are two disjoint Cauchy surfaces in T\D(So) ~ M. Moreover, ¥~ is
convez, X is concave, and XV is in the future of ™. Of course, the boundary of the set T\C in M is
the union of the surfaces ¥~ and XT.

Proof. Since C is included in D(Sy), it is also included in the affine domain A,,. We denote by 0C the
boundary of C in A,,, we denote by C the closure of C in A,, U9 A,,, and we denote by dC the boundary
of C in Ay, U DAy, Of course, we have C = 9C' N Ay, = OC \ 0A,,-

The set C is a compact convex subset of Ay, UOA,,. So, the diffeomorphism &, maps C to a compact
convex subset of R®. The boundary of a compact convex subset of R® is a topological sphere. Hence, 8C
is a T-invariant topological sphere. We have to understand the intersection of 9C with 0.4,,. On the one
hand, by hypothesis, C is included in D(Sp); hence, C is included in D(Sp). The intersection of D(Sp)
with Ay, is equal to the curve 85y (see propositions 3.34 and 3.37). Hence, the intersection of dC with
0Ap, is included in the curve 8Sy. On the other hand, a non-empty I'-invariant subset of D(Sp). Hence,
the closure of C' must contain the curve 85y (since this curve is the limit set of the action of I on D(Sp).
As a consequence, we have 9C N OAdS 3 = 8S,.

So, we have proved that C = 0C \ 8.A,, is a T-invariant topological sphere minus the T-invariant
Jordan curve 8Sy. Hence, C is the union of two disjoint I'-invariant topological discs S~ and ST, such

that 8S~ = 88T = 8S,. Since the surfaces S~ and ST are included in the boundary of a convex set,
they admit a support plane at each of their points. Hence, by proposition 3.46 and remark 3.41, the
surfaces S~ and ST are spacelike. Since S~ is a spacelike disc with S~ = 8So, it separates A,, into

two connected components: the past and the future of S~. The set C' must be included in one of these
two connected components, so C is included either in the past or in the future of S~. Similarly, for St.
Moreover, C' cannot be in the future (resp. the past) of both S~ and S*. So, up to exchanging ~ and
ST, the set C' is in the future of S~ and in the past of ST. In particular, ST is in the future of S~. Since
C is in the future of S, the surface S~ must be in the future of each of its support planes. Hence, the
surface S~ is convex. Similar arguments show that S* is concave. This completes the proof of (i).
Now, since S~ and S+ are I'-invariant spacelike surfaces in D(Sp), their projections £~ := T'\S~ and
¥+ := I'\S* are Cauchy surfaces in ['\D(Sy) ~ M (we recall that every compact spacelike surface in
M is a Cauchy surface). Of course, 7 is in the future of ¥, since ST is in the future of S~. Finally,

1By such, we mean that C is closed in AdS 3, but not necessarily in AdS 3 U 8AdS3. Actually, a non-empty I'-invariant
subset of AdS3 cannot be closed in AdS3 U dAdS3
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the convexity of ¥~ and the concavity of ¥t follow, by definition, from the convexity of S~ and the
concavity of S~. O

3.5.3 Definition of the topological Cauchy surfaces ¥; and Za"

The set Co = Conv(9Sp) \ 85y satisfies the hypothesis of proposition 3.47. Hence, the boundary in AdSs
of Cp is made of two disjoint T-invariant spacelike topological surfaces S, and Sy, such that S, is convex,
Sg is concave, and Sy is in the future of Sy . Moreover, the surfaces £y := T'\S; and If :=T\Sg are
two disjoint topological Cauchy surfaces in T\D(Sp) ~ M, such that X is convex, X§ is concave, and
Y& is in the future of X7 .

3.6 A pair of uniformly curved convex and concave topological Cauchy sur-
faces

Recall that our goal is to find a pair of barriers in M. By proposition 3.45, this goal will be achieved if we
find two disjoint smooth Cauchy surfaces ¥~ and ¥T in M, such that ¥~ is convex and uniformly curved,
such that ¥t is concave and uniformly curved, and such that ¥t is in the future of ¥~. The Cauchy
surfaces ¥ and E(J{ constructed in the previous subsection satisfy these properties, except for two points:
they are not smooth and they are not uniformly curved. The purpose of the present subsection is to
prove the following proposition:

Proposition 3.48. Arbitrarily close to Sy (resp. X ), there erists a topological surface 7 (resp. ¥7)
which is convex (resp. concave) and uniformly curved.

The idea of the proof of proposition 3.48 is to replace the convex set Co = Conv(0Sy) \ 0So by its
“lorentzian e-neighbourhood”. This idea comes from riemannian geometry. Indeed, it is well-known that
the e-neighbourhood of a convex subset of the hyperbolic space H" is uniformly convex. We will prove
that a similar phenomenon occurs in AdSj; (although many technical problems appear).

We recall that the length of a C' causal curve v : [0,1] — AdS3 is I(y) = fol(—g("y(t),ﬂ(t)))l/zdt,
where g is the lorentzian metric of AdS3;. Given an achronal subset E of A,, and a point p in A, the
distance from p to E is the supremum of the lengths of all the C' causal curves joining p to E in A, (if
there is no such curve, then the distance from p to E is not defined)!? The distance from p to E, where
finite, is lower semi-continuous in p. Moreover, the distance from p to E is continuous in p, when p is in
the Cauchy development of E (see, e.g., [6, page 215]).

Given an achronal subset E of Ay, and € > 0, the e-future of E is the set made of the points p € A,,,
such that p is in the future of E, and such that the distance from p to E is at most £. We define similarly
the e-past of E. We denote by I7 (E) and I} (E) the e-past and the e-future of the set E.

Lemma 3.49. For € small enough, the e-past and the e-future of the surface Sar is included in D(Sg).

Proof. Since the set D(Sp) is a neighbourhood of the surface Sf, and since the surface £f = I'\S{ is
compact, one can find a I-invariant neighbourhood Uy of the surface S, such that Uy is included in
D(Sp), and such that T\Uj is compact.

Claim. There exists € > 0 such that the distance from any point p ¢ U(}" to the surface S{f is at least €.

By contradiction, suppose that, for every n € N, there exists a point x,, € A,, \ Uy such that the distance
from x, to the surface Sy is less than 1/n. Then, for each n, we consider a causal curve v, joining the
point z, to the surface Sg. This curve -, must intersect the boundary of Uj; let 2z, be a point in
YN 6Ugr . Since z, is on a causal curve joining x,, to the surface Sgr , the distance from z, to S(T must be
smaller than 1/n. Now, recall that T\U; is compact. Hence, up to replacing each z, by its image under
some element of T (this operation does not change the distance from 2, to Sy, since I acts by isometries),
we may assume that all the z,,’s are in a compact subset of the boundary of Ugr . Then, we consider a
limit point z of the sequence (2, )nen. By lower semi-continuity of the distance, the distance from z to the
surface S(;r is equal to zero (note that the distance from z to the surface SO+ is well-defined, since every
point of Ay, can be joined from the surface SO+ by a timelike curve, see remarks 3.18 and 3.19). Hence,
the point z is on the surface Sg. This is absurd, since z must be on the boundary of Uy, and since Uy
is a neighbourhood of Sar . This completes the proof of the claim. The lemma follows immediately. O

12The same definition work in the case where the set E is not achronal. But then, the distance from p to E might be
positive even if p € E'!
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Definition of the set ;. From now on, we fix a number £ > 0 such that the e-pasts and e-futures of
the surfaces Sy~ and Sg are included in D(Sp). We consider the set

Cy:=CoUIZ(S5)UIF(SF)

By construction, C; is included in D(Sp). Moreover, it is easy to show that C} is a I'-neighbourhood of
Co- Actually, the set Cy should be thought as a “lorentzian e-neighbourhood” of Cy.

Our aim is to prove that the boundary of the set I'\C; is made of two topological Cauchy surfaces
which are convex/concave and uniformly curved. For that purpose, we first need to prove that C is
convex. Let us introduce some notations. We denote by P(Sg) (resp. by P(Sg)) the set of the support
planes of the surface S; (resp. the surface Sg).

Lemma 3.50. The set C; is made of the points p € Ap, such that:

- for every plane P in P(Sg), the point p is in the past or in the e-future of P,
- for every plane P in P(Sy ), the point p is in the future or in the e-past of P.
In other words:

= () L@urr@|n| (| I @PUIf(P) (1)
PeP(Sy) PeP(SH)

Remark 3.51. Lemma 3.50 is a “lorentzian analog” of the following elementary fact of euclidian geom-
etry: the (euclidian) e-neighbourhood of a convex set C C R™ is the intersection of the e-neighbourhoods
of all the affine half spaces containing C.

Proof of lemma 3.50. We denote by C] the right-hand term of equality (1). Let p be a point of A,
which is not in C}. Assume for instance that there exists a plane P € P(Sy"), such that p is in the future
of P, and the distance from p to P is bigger than ¢. Since the surface Sy is in the past of P, this implies
that p is in the future of Sj and that the distance from p to X¢ is bigger than . Hence, p is not in Cj.

Conversely, let p be a point of A, which is not in C;. Assume for instance that p is in the future
of the surface Sar and the distance from p to Sar is bigger than ¢. Then there exists a timelike curve =y
joining p to a point ¢ € X, such that the length of  is bigger than e. Let P be a support of C such
that ¢ € PN Cy. By definition, P is an element of P(S;), the point p is in the future of P, and the
distance from p to P is bigger than the length of 7. Hence, p is not in Cj. O

Using the diffeomorphism &, (see subsection 2.3), we identify the domain A,, with the region of R?
defined by the inequation (2% + y? — 2% < 1). Let P be the totally geodesic subspace of A,, defined as
the intersection of A, with the affine plane (2 = 0) in R3. It is easy to check that P, is spacelike.

Lemma 3.52. The set I~ (Py) U I (Py) is the region of Ay, defined by the inequation

z <tane.y/1—x2 —y2

Sketch of the proof. All the calculations have to be made in the linear model of the anti-de Sitter space,
using the coordinates zi,z2, 3,24 (because this is the model where we know the exact form of the
lorentzian metric). The equation of Py in this system of coordinates is (z1 = 0). The equation (z =
tane.\/1 — x2 — y2) corresponds to the equation (z; = sing). On the one hand, since Py is a smooth
spacelike surface, the distance from a ¢ € D(P,) to the plane P, is realized as the length of a geodesic
segment joining ¢ to Py and orthogonal to Py (see, for instance, [6, ]). On the other hand, proposition 2.2
implies every point ¢ on the surface (x; = sine) belongs to a unique geodesic which is orthogonal to
Py. So, we are left to prove that, for every point p on Py, the length of the unique segment of geodesic
orthogonal to Py and joining p to the surface (1 = sine) is equal to e. This follows from proposition 2.2
and from an elementary calculation. O

Remark 3.53. Lemma 3.52 shows that I (Py) UIt (Fy) is a relatively convex subset of AdSs. Moreover,
it shows that there exists R such that the boundary of the set I~ (Py)UIF (Py) is more curved than a sphere
of radius R at every point: if we consider the euclidian metric on R® for which (z,y, z) is an orthonormal
system of coordinates, then we can take R = (tang)~1. Although this does not clearly appear in the proof
of lemma 3.52, this phenomenon is related with the fact that the curvature of AdSs is curvature.

Corollary 3.54. The set Cy is conver.
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Proof. Consider a totally geodesic subspace P € P+(Sg). There exists op € Og(2,2), such that yp(Pp) =
P. Of course, op maps the set I~ (FPp) U I} (Fy) to the set I~ (P) U IF(P). By remark 3.53, the set
I (Py) UIf(P) is relatively convex. Hence, the set I~ (P) U IF(P) is also relatively convex. The same
arguments show that, for every P € P~ (Cp), the set I (P) U IT(P) is relatively convex. Together with
lemma 3.50, this shows that the set C; is a relatively convex subset of AdS3;. Moreover, C is included
in D(Sp), which is a convex subset of AdSj; (see item (iii) of remark 3.28 and proposition 3.37). As a
consequence, C is a convex subset of AdS ;. O

Definition of the surfaces S, S;, ¥ and ¥f. The set C; is a T-invariant closed convex subset
of AdS3, containing Co, and included in D(Sp). By proposition 3.47, the boundary of C; in AdSj is
the union of two I-invariant spacelike topological surfaces S; and S;, such that Sy is convex, such
that S is concave, and such that S;" is in the future of S;. Alo by proposition 3.47, 7 := I'\Sy
and f := T'\S; are two disjoint topological Cauchy surfaces in M = I'\D(S)), respectively convex and
concave, and such that ¥7 is in the future of X7 .

Remark 3.55. The surface S; (resp. Sy ) is the set made of all the points of Ap, which are in the past
of the surface Sy (resp. Sy ), at distance exactly ¢ of Sy (resp. Sy ): this follows from the definition of
the set C1, and from the continuity of the distance from a point p to the surface S, (resp. Sy ) when p
ranges in D(So) = D(Sy ) = D(Sy). Thus, the surface ¥ (resp. £ ) is the set made of all the points
of M which are in the past of the surface ¥, (resp. £ ), at distance exactly £ of Xy (resp. TJ ).

Proposition 3.56. The surfaces £ and ¥} are uniformly curved.

Proof. Fix a euclidian metric on R®, and let A} C S;' be a compact fundamental neighbourhood of the
action of I on Si". Let Af be the intersection of the past of Af with the surface Sj". Note that Af
is compact (since Af is compact, and since A} and Sf are included in a globally hyperbolic subset of
AdS3). Let P(Ag) be the set of all the support planes of Sy that meet Si at some point of Ag.

Claim 1. There ezists R such that, for every P € P(AY), the boundary of the set I~ (P)UIX(P) is more
curved than a sphere of radius R.

On the one hand, P(AJ) is a compact subset of the set of all spacelike totally geodesic subspaces of
AdS3. As a consequence, there exists a compact subset K of Oy(2,2) such that P(Af) C K.Py. On the
other hand, there exists Ry such that the boundary of the set I~ (FPy) U IF(P,) is more curved than a
sphere of radius Ry (see remark 3.53). The claim follows.

Claim 2. Every q € AT is on the boundary of the set I~ (P) U I} (P) for some P in P(A]).

Let ¢ € A} C Sf. By definition of S, the point ¢ is in the future of the surface Sj and the distance
from ¢ to S;r is equal to e. Moreover, since ¢ and S;r are included in a globally hyperbolic region of
AdS 3, the distance between q and Sy is realized: there exists a causal curve «y of length & joining q to a
point p € Sy". By construction, the point p is in Af. Let P be any support plane of Sy at p. Of course,
Pisin P(A¢). On the one hand, since v is a causal arc of length ¢ joining g to a point of P, the distance
from p to P is at least €. On the other hand, lemma 3.50 implies that the distance from p to P must be
at most €. The claim follows.

Let ¢ be a point of Af. By claim 2, there exists P € P(A{) such that g is on the boundary of the
set I~ (P)UIF(P). By lemma 3.50, the surface S; is included in 1~ (P)U I} (P). Putting these together
with claim 1, we obtain that the surface S;” is more curved than a sphere of radius R at q. Hence, the
surface 7 is uniformly curved. O

This completes the proof of proposition 3.48.

Remark 3.57. All the results of this subsection are still valid if one replaces ¥y and $F by any two
Cauchy surfaces ¥~ and X1 in M, such that ¥~ is convex, X1 is concave, and Xt is in the future of ¥~
(in the proofs, the set Cy has to be replaced by the image under D of the lift of the region of M situated
between the Cauchy surfaces ¥~ and ¥1).

Remark 3.58. It is well-known that the boundary of the e-neighbourhood of any geodesically convex
subset of R® orH" is a C' hypersurface. Unfortunately, this phenomenon does not generalise to lorentzian
geometry. In particular, the surfaces Sy, Si, £7 and X7 are not C' in general.
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3.7 Smoothing the Cauchy surfaces ] and %]

Recall that, to apply Gerhard’s theorem, we need two disjoint C? Cauchy surfaces ¥~ and XF, such that
¥~ is convex and uniformly curved, ¥t is concave and uniformly curved, and X7 is in the future of ¥ .
The topological surfaces ] and Xj constructed in the previous section satisfy these properties, except
that they are not smooth. The purpose of this subsection is to prove the following proposition:

Proposition 3.59. Arbitriraly close to ¥ and X7, there exist some C>® Cauchy surfaces ¥~ and %1,
such that ¥~ is conver and uniformly curved and Xt is concave and uniformly curved.

Unfortunatly, we could not find any simple proof of proposition 3.59 (see remark 3.60). Our proof is
divided in three steps. In 3.7.1, we approximate the surfaces ¥ and ¥ by some polyhedral Cauchy sur-
faces ¥5 and 7 (respectively convex and concave). Then, in 3.7.2, we describe a method for smoothing
convex and concave polyhedral Cauchy surfaces. Using this method, we obtain two disjoint C*° Cauchy
surfaces X3 and E;f, respectively convex and concave. Finally, in 3.7.3, using the same trick as in sub-
section 3.6, we get a pair of smooth Cauchy surfaces ¥; and ¥, such that ¥, is convex and uniformly
curved, and X} is concave and uniformly curved.

Remark 3.60. The first idea which comes to mind for smoothing a conver surface is to use some con-
volution process. Unfortunately, to make this idea work, one needs a locally euclidian structure'®. This is
the reason why this idea does not fit our situation (there is no locally euclidian structure on the manifold
M ). We think that our proof of proposition 3.59 can be generalized in order to get a method for smoothing
boundaries of convex sets in locally affine manifolds (that are not locally euclidian).

3.7.1 Polyhedral convex and concave Cauchy surfaces

In this subsubsection, we will define a notion of polyhedral surface in M. Then, we will two polyhedral
Cauchy surfaces ¥; and X3 in M, such that ¥, is convex, 37 is concave, and ¥7 is in the future of ¥ .

A subset A of M is a 2-simplex, if there exists an affine chart ® : U ¢ M — R3, such that A C U
and such that ®(A) is a 2-simplex in R®. A compact surface ¥ in M is called polyhedral if it can be
decomposed as a finite union of 2-simplices.

Remark 3.61. Let ¥ be a compact spacelike surface in M, let T bea lift of ¥ in M, and let S := D(f])
Using the embedding ®,, : Ap, = R, we can see S as a surface in R®. Then, ¥ is a polyhedral surface
if and only if S can be decomposed as a finite union of orbits (for T') of 2-simplices of R3.

Remark 3.62. Let ¥ be a compact convex spacelike polyhedral surface in M. Then, one can decomposed
3 as a finite union of subsets ¥ := Ay U---U A, where each A; is the intersection of ¥ with one of
its support planes, and each A; has non-empty interior (as a subset of ). The decomposition is unique
(provided that the A;’s are pariwise distinct). The A;’s called the sides of . Each side of ¥ is a finite
union of 2-simplices, but is not necessarily a topological disc (e.g. in the case where ¥ is totally geodesic).

Definition of the set C3, of the surfaces S5, Si, ¥; and ¥ We consider a [-invariant set E
of points of C; = S; U Sj, such that T\ E is finite (in particular, E is discrete). We denote by C»
the convex hull of E. By construction, Cs is a I'-invariant convex subset of Cy. In particular, Cs is a
[-invariant convex subset of D(Sp). So, by proposition 3.47, the boundary of Cy in AdS;3 is made of
two disjoint T-invariant spacelike achronal surfaces S; and S, such that S5 is convex, Si is concave,
and S is in the future of Sj. Also by proposition 3.47, X5 := T'\S; and B := I'\S; are two disjoint
Cauchy surfaces in M, respectively convex and concave, and X is in the future of X .

Given § > 0, we say that the set E is d-dense in the surfaces S and S, if every euclidian ball
of radius § centered at some point of S; (resp. S;") contains some points of E. The remainder of the
subsection is devoted to the proof of the following proposition:

Proposition 3.63. There exists § > 0 such that, if the set E is 6-dense in the surfaces S; and S;, then
the surfaces X5, and X3 are polyhedral.

Remark 3.64. The proof of proposition 3.63 is quite technical. The reader who is not interested in
technical details can skip the proof of proposition 3.63. Nevertheless, it should be noticed that the boundary
of the convex hull of a discrete set of points is not a polyhedral surface in general. In particular, proposition
3.63 would be false if the surfaces X7 and B1 were not uniformly curved.

13For example, any convex function f : R® — R can be approximated by a smooth conyex function f, obtained as the

convolution of f with an approximation of the unity. Yet, the proof of the convexity of f uses the euclidian structure of
R +1
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Given a set F C R®, we say that an affine plane P of R? splits the set F, if F intersects the two
connected components of R* \ P. The starting point of the proof of proposition 3.63 is the following
well-known fact (which follows from very basic arguments of affine geometry):

Fact 3.65. If F is a finite set of points in R®, then the boundary of Conv(F) is a compact polyhedral
surface; more precisely, the boundary of Conv(F) is the union of all the 2-simplices Conv(p,q,r), such
that the points p,q,r are in F', and such that the plane (p,q,r) does not split F.

Let v be a continuous curve in a euclidian plane, and p be a point on v. We say that the curve v is
more curved than a circle of radius R at p if there exists a euclidian disc A of radius R, such that p is
on the boundary of A, and such that A contains a neighbourhood of p in 7. The proof of the following
lemma uses only elementary planar geometry; we leave it to the reader:

Lemma 3.66. Given two positive numbers p and R, there exists a positive number § = §(p, R) such that:
for every convex set D in an euclidian plane, if there exists a subarc a of the boundary of D, such that
the boundary of D is more curved than a circle of radius R at each point of o, and such that the diameter
of a is bigger than p, then D contains o euclidian ball of radius 6.

Proof of proposition 3.63. Consider a compact fundamental domain U for the action of T on C. Then,
consider a compact neighbourhood V of U in Cf, and a compact neighbourhood W of V in ;. One can
find a positive number p such every euclidian ball of radius p centered in U (resp. V) is included in V
(resp. W). Moreover, since V' is compact, one can find a positive number R, such that the surface S
(resp. S;") is more curved than a sphere of radius R at every point of S; NV (resp. S; NV).

From now on, we assume that the set E is d-dense in the surfaces S; and S;, where § = §(p, R) is
the positive number given by lemma 3.66. Up to replacing ¢ by min(4, p), we can assume that ¢ is smaller
than p. Under these assumptions, we shall prove that the surfaces S, and Sy are polyhedral.

Claim 1. If p,q,r are three points of E, such that the 2-simplex Conuv(p,q,r) intersects U, and such that
the affine plane P := (p,q,r) does not split the set E, then the three points p,q,r are in W.

To prove this claim, we argue by contradiction: we suppose that there exists three points p,q,r in E,
such that the 2-simplex Conv(p, g, r) intersects U, such that the affine plane P := (p,q,r) does not split
the set E, and such that one of the three points p, ¢, r is not in W. We shall show that these suppositions
contradict the d-density of the set E.

Since P does not split the set E, one of the two connected components of A, \ P is disjoint from E.
We denote by Hp this connected component. First of all, we observe that Hp does not intersect the curve
9Sy, since Hp does not contain any point of E, since E is a non-empty I'-invariant subset of D(Sy), and
since the curve 95y is the limit set of the action of T" on D(Sp). Hence, the intersection of Hp with the
boundary of C} is included in one of the two connected components S; and Sfr of 8Cy \ 8Sp. Without
loss of generality, we assume that Hp N JC1 is included in Sf , and we consider the set Dt := Hp N Sf
(see figure 2).

We shall prove that there exists an euclidian ball B of radius § centered at some point of D¥, such
that BN S}t ¢ D*. Since D must be disjoint from E (because Dt C Hp), this will contradict the fact
that E is 6-dense in S;t. For that purpose, we consider the curve v := PN S;'. Observe this curve v
is the boundary of the topological disc Dt. Moreover, the curve v is also the boundary of the convex
subset D := PN C} of the plane P. The curve « passes through the points p, ¢ and r, and the 2-simplex
Conv(p, q,r) is included in the convex set D. We shall distinguish two cases (and get a contradiction in
each case):

First case: the curve v does not intersect the neighbourhood V. We consider a point m in D N U
(such a point does exist, since Conv(p,q,7) NU # @, and since Conv(p,q,r) C D), and we denote by m/
the unique point of intersection of DT with the line passing through m and orthogonal to the plane P.
The point m is in U, and the curve v does not intersect V'; so, by definition of p, the euclidian distance
between m and - must be bigger than p, and thus, bigger than §. Moreover, the euclidian distance
between the point m' and the curve « is bigger than the distance between m and v. So, we have proved
that the euclidian ball B of radius ¢ centered at m' does not intersect the curve . Hence, the connected
component of B N S] containing the point m' is included in D*. Since DT is disjoint from FE, this
contradicts the §-density of E in S;F.

Second case: the curve vy does intersect the neighbourhood V. Then, by definition of p, we can find an
subarc a of the curve +, such that the diameter of « is bigger than p, and such that « is included in .
Since S; is more curved than a sphere of radius R at every point of V, the curve v is more curved than
a circle of radius R at each point of a. So, applying lemma 3.66, we find a point m € D such that the
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euclidian distance between the point m and the curve «y is bigger than §. The same argument as above
shows that this contradicts the J-density of E in the surface S;.
In both case, we have obtained a contradiction. So, we have completed the proof of claim 1.

Claim 2. If W' is a compact subset of A, such that W C W', then the sets Conv(ENW')NU and
Conv(ENW)NU coincide.

This claim is a consequence of Claim 1 and from fact 3.65. Since W' is a compact subset of AdS3, the
set ENW' is finite. Hence, the boundary of the set Conv(E NW') is the union of the 2-simplices [p, g, ],
such that the three points p,q,r are in E N W', and such that the affine plane (p,q,r) does not split
ENW'. By claim 1, such a 2-simplex can intersect U only if the three points p, ¢ and r are in W. Using
once again fact 3.65, this implies that the boundary of Conv(E N W') intersected with U is included in
the boundary of Conv(E N W) intersected with U. But, if the boundary of a convex set is included in
the boundary of another convex set, then these two convex sets must be equal. The claim follows.

End of the proof. Let us consider a increasing sequence (W,,),en of compacts subsets of AdS 3, such that
Unen Wn = AdS. On the one hand, we clearly have Conv(E) = CI(U,,cy Conv(E NW,)). On the other
hand, according to Claim 2, there exists an integer ng such that Conv(ENW,,)NU = Conv(ENW)NU
for every n > ng. As a consequence, we have Conv(E) N U = Conv(ENW)NU. Now, since ENW
is a finite set, the boundary of Conv(E N W) is a compact polyhedral surface. Thus, we have proved
that the boundary of the set Cy = Conv(E) coincides, in U, with a polyhedral surface. Since U contains
a fundamental domain for the action of T on Cs, this implies each of the surfaces S; and Si can be
decomposed as a finite union of orbits of 2-simplices. Hence, the surfaces X5 and E; are polyhedral (see
remark 3.61). O

Dt

Figure 2: The situation in the proof of proposition 3.63

Addendum. There exists § > 0 such that, if the set E is §-dense in the surfaces Sy, S;", then each side
of the polyhedral surfaces ©5,%F is included in the domain of an chart of M.

Proof. From the proof of proposition 3.63, one can extract the following statement: for every p > 0, there
exists > 0 such that, if the set E is 6-dense in the surface S7, then, for every support plane P of the
surface S5, the diameter of the set P NS5 is less than p. Of course, there is a imilar statement for the
surface Sy . The addendum follows immediately. O

3.7.2 Smooth convex and concave Cauchy surfaces
In this subsubsection, we describe a process for smoothing the polyhedral Cauchy surfaces ¥; and E;

More precisely, we prove the following;:

Proposition 3.67. Let X be a convex polyhedral Cauchy surface in M. Assume that each side of X is
included an affine domain of M. Then, arbitrarily close to X, there exists a C*° convex Cauchy surface.

Of course, the analogous statement dealing with concave Cauchy surfaces is also true. The proof of
proposition 3.67 relies on the following technical lemma:

Lemma 3.68. Let U be some subset of R? and f : U — R be a continuous convex function. Then, for
every n > 0, there exists a continuous convex function f : U — R satisfying the following properties:

. fz f, the distance between f and f is less than 2n, and f coincides with f on the set f~1([2n, +oo[);
. f is constant on the set f~1([0,7]); in particular, f is C™ on the set f~1([0,n]);
o if f is C* on some subset U of Dom(f), then fis also C® on U.
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Proof. We consider a C'™ function ¢ : [0, +oo[— [0,+00o[ such that: ¢ is non-decreasing and convex,

@(t) = 37 for every t € [0,n], and ¢(t) = t for every t € [2n,400[. Then, we consider the function

f: U — [0, 4o00[ defined by f:: ¢ o f. This function satisfies all the desired properties. O

We endow M with a riemannian metric; this allows us to speak of the (riemannian) e-neighbourhood
of any subset of M for any £ > 0. We say that a surface ¥ is e-close to another surface X5 if there exists
a homeomorphism ¥ : ¥; — ¥, which is e-close to the identity. The following remark will allow us to
see a polyhedral surface as a collection of graphs:

Remark 3.69. Let X be a convexr compact surface in M, let II be a support plane of ¥ and let A := XNII.
We assume that A is included in an affine domain of M. Then, we can find a neighbourhood V of F in
M, and some local affine coordinates (x,y,z) on V', such that:

—~IINV is the plane of equation (z =0), and XNV is the graph (z = f(x,y)) of a non-negative convex
function f : U — [0,+o0[ (where U is some convez subset of R? ).

—if X' is a conver Cauchy surface close enough to X, then ' NV is the graph z = f'(x,y) of a convex
function f' : U — R. The function f' depends continuously of the surface ¥'. Moreover, if ¥' is in the
future of ¥, then f' > f (and thus, f' >0).

We denote by Ajp,...,A, the sides of the polyhedral surface X. To prove proposition 3.67, we will
construct a sequence of convex Cauchy surfaces ¥, ..., Y%,, where ¥y = 3, and where ¥}, is obtained
by smoothing ¥ in the neighbourhood of Ag41. More precisely, we will prove the prove the following:

Proposition 3.70. For every k € {0,...,n}, for every e > 0 small enough, there exists a convex Cauchy
surface Xy o in M such that:

— the surface X . is in the future of the surface X.
— the surface Xy ¢ is e-close to the surface X,

— the surface Xy . is smooth except maybe in the e-neighbourhoods of the sides Apiq,...,A,.

Notice that proposition 3.70 implies proposition 3.67 (for k = n, the surface £y . is a smooth convex
Cauchy surface, e-close to the initial surface ). So, we are left to prove proposition 3.70.

Proof of proposition 3.70. First of all, we set o . := X for every € > 0. Now, let k € {0,...,n — 1}, and
let us suppose that we have constructed the surface Xy . for every € > 0 small enough. We will construct
the surface ¥4, for every € > 0 small enough.

Since Ay, is a side of X, there exists a support plane II;,; of ¥ such that I3 NY = Agy;. Using
remark 3.69, we find a compact neighbourhood V' of Ap;; in M, and some local affine coordinates (z,y, )
on V', such that in these coordinates, I NV is the plane of equation (z = 0), and the surface ¥NV is
the graph (2 = f(x,)) of a non-negative convex function f : Dom(f) C R? — R. Moreover, the function
f is positive in restriction to 0Dom(f), and thus, the quantity ¢ := inf{f(z,y) | (z,y) € 0Dom(f)} is
positive (0Dom(f) is compact).

Now, we fix some £ > 0 such that £/3 < /2. According the second item of remark 3.69, we can
find ¢’ > 0, such that &' < £/3, and such that the surface Xy NV is the graph of a convex function
g : Dom(g) = Dom(f) — R. Moreover, since X s is in the future of ¥, the function g is bigger than f;
in particular, g is non-negative, and we have g(z,y) > § for every (z,y) € 0Dom(g).

Applying lemma 3.68 to the function g with 7 := £/3, we obtain a convex function § : Dom(g) —
[0, +o00[ satisfying the following properties:

(a) g > g and the distance between g and g is less than 2¢/3,

(b) g is C* on g='([0,/3]),

(c) if g is smooth on some open subset of Dom(g) = Dom(g), then g is also smooth on U,

(d) g coincides with g on g=!([2¢/3, +0o0); in particular, g coincide with g on 8Dom(g) = dDom(g).

We construct the surface X441 . as follows: starting from the surface Xy .+, we cut off £y . NV (i.e. we
cut off the graph of g), and we paste the graph of g. This is possible since the graphs of the functions g
and g coincide near the boundary of V' (property (d)). There is natural a diffeomorphism ¥ between the
surfaces Yy .- and X1 o defined as follows: ¥ coincides with the identity outside V', and maps the point
of coordinates (z,y, g(x,y)) to the point of coordinates (z,y, g(z,y)). By property (a), ¥ is (2¢/3)-close
to the identity; hence, the surface Xy 1 is (2¢/3)-close to the surface Xy .. Since Xy is €'-close to X,
and since &' < €/3, we get that Y1 . is e-close to X.

The inequality g > ¢ implies that 41, is in the future of X4 ./, and a fortiori in the future of
Y. The convexity of the function g implies that Y41, admits a support plane at each of its points.
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By proposition 3.46 and remark 3.41, this implies that ¥, is a spacelike surface. Hence, ;41 is a
Cauchy surface (every compact spacelike surface embedded in M is a Cauchy surface). Now, since Xp41 ¢
is a spacelike surface admitting a support plane at each point, it is either convex or concave; and since it
coincides with ¥y . outside V/, it cannot be concave. So, Xj41, is a convex Cauchy surface.

It remains to study the smoothness of X341 .. Let ¢ be a point on the surface ¥4, which is not
in the union of the e-neighbourhoods of the sides Agio,...,Ap, and let p :== ¥~!(g) € ). Since
the distance between the points p and ¢ is less than 2¢/3, the point p cannot be in the union of the
€/3-neighbourhoods of the sides Ag4a,...,A,. There are two cases:

— if the point p is in the e/3-neighbourhood of the side Ajp41, then the distance between p and the
plane I, is less than /3, and thus, property (b) implies that the surface X;y; . is smooth in the
neighbourhood of ¥(p) = ¢;

— if the point p is not in the €/3-neighbourhood of the side Ayyq, then the surface X . is smooth in the
neighbourhood of p (here, we use the inequality ¢’ < €/3); hence, property (c) implies that the surface

X, is smooth in the nieghbourhood of ¥(p) = ¢.

As a consequence, the surface ¥j11 . is smooth except maybe in the union of the e-neighbourhoods of
the sides Ag4a,...,A,. So, the surface X341 . satisfies all the desired by properties. O

Applying proposition 3.67 to the polyhedral Cauchy surfaces ¥; and X3, we get two disjoint C>
Cauchy surfaces X5 and E;, respectively convex and concave, such that E;r is in the future of X3 .

3.7.3 Smooth uniformly curved convex and concave Cauchy surfaces

The Cauchy surfaces ¥ and X3 are smooth, respectively convex and concave, but not uniformly curved.
Using the same trick as in subsection 3.6, we will aproximate ¥; and £ by some smooth uniformly
curved Cauchy surfaces £; and If.

Definition of the Cauchy surfaces ¥; and X;. Let ¢ be a positive number. Let ¥} be the set
made of the points p € M, such that p is in the past of the surface X5 and such that the distance from
p to £7 is exactly e. If ¢ is small enough, then ¥ is a topological Cauchy surface which is convex and
uniformly curved (see remark 3.57 and remark 3.55). We construct similarly a topological Cauchy surface
Y, which is concave, uniformly curved, and included in the past of X5 . By construction, Ejf is in the
future of ¥ .

Proposition 3.71. If ¢ is small enough, the Cauchy surfaces ¥ and X} are smooth (of class C™).

Proof. We denote by T'M the tangent bundle of M, by 7 the canonical projection of TM on M, and by
(¢")ier the geodesic flow on TM. We consider the subset TnX3 of TM made of the couples (p,v) such
that p is a point of the surface 7 and v is the future-pointing unit normal vector of X3 at p.

Let p be a point on the surface % . By construction of ¥}, the distance from p to E;r is exactly €.
Since M is globally hyperbolic, and since =3 is a smooth spacelike surface, this implies that there exists
a timelike geodesic segment of length exactly €, orthogonal to E;r, joining E;r to p (see, for example, [6,
page 217]). As a consequence, the surface £ is included in the set 7(°(Tn23)).

We are left to prove that the set 7(p°(TwXy§)) is a smooth surface. Since £} is a smooth compact
spacelike surface in M, TNE;r is a smooth compact surface in 7'M, nowhere tangent to the fibers of the
projection 7. Hence, for € small enough, ¢°(TxX]) is a smooth compact surface in T M, nowhere tangent
to the fibers of w. Hence, (¢ (Tn2d)) is a smooth surface in M. O

3.8 End of the proof of theorem 0.2 in the case g > 2

In the previous paragraph, we have constructed a pair of smooth Cauchy surfaces $;, %} in M, such
that %, is convex and uniformly curved, such that ¥ is concave and uniformly curved, and such that
¥, is in the past of ¥} . By proposition 3.45, the surface ¥, have negative curvature and the surface X7
have positive curvature. As a consequence, (X, ,X]) is a pair of barriers in M. By theorem 3.1 and 3.3,
the existence of a pair of barriers implies the existence of a CMC time function. This completes the proof
of theorem 0.2 in the case where the genus of the Cauchy surfaces is at least 2.
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4 Proof of theorem 0.2 in the case g =1

The purpose of this section is to prove theorem 0.2 in the case where the genus of the Cauchy surfaces
of the spacetime under consideration is equal to 1. The proof is very from those of the case g > 2. In
subsection 4.1, we will define a class of spacetimes, called Torus Universes'#, and we will prove that Torus
Universe admits a CMC time function (actually, we will construct explicitly a CMC time function on any
such spacetime). Then, in subsection 4.2, we will prove that every maximal globally hyperbolic spacetime,
locally modelled on AdS3, whose Cauchy surfaces are two-tori, is isometric to a Torus Universe.

4.1 Torus Universes

Consider the 1-parameter subgroup of SL(2,R) of diagonal matrices (g¢);cr Where:

¢
t e 0 _ tA . _ ]. 0
g-(o e_t)—e where: A-(O _1)

We denote by A the set of elements of SL(2, R) x SL(2, R) for which both left and right components belongs
to the one-parameter subgroup (g):cr. Of course, A is a free abelian Lie subgroup of SL(2, R) x SL(2, R).
This group acts isometrically on AdS3 (recall that the isometry group of AdSs3 can be identified with
SL(2,R) x SL(2,R), see subsection 2.2). We denote by Q the union of spacelike A-orbits in AdSs.

We will see below that Q has four connected components which are open convex domains of AdSs.
For any lattices I' € A, the action of I" on 2 is obviously free and properly discontinuous, and preserves
each of the four connected components of 2.

Definition 4.1. A Torus Universe is the quotient I'\U of a connected component U of Q by a lattice T
of A.

Theorem 4.2. Every Torus Universe is a globally hyperbolic spacetime, admitting a CMC time function.

To prove proposition 4.2, we will use the SL(2, R)-model of AdS3 (see subsection 2.5). We recall that
SL(2,R) x SL(2,R) acts on SL(2,R) by (91,9r)-g = nggEI.

Lemma 4.3. For every element g € Q, the A-orbit contains a unique element of the form

cosf siné .
Ry = ( _sind  cosf ) with 6 € [0,27]

When g ranges over €1, the angle 6 varies continously with g, and ranges over the set of all real numbers
in [0, 27| which are not multiples of 7.

Proof. Consider an element g in AdS3; ~ SL(2,R) and write

a b . .
g—(c d) with ad—bc=1

Then, the elements of the A-orbit of g are the matrices
¢ e aet=% betts
999 = cef(t+s) des—t
where s and ¢ range over R. Thus, the A-orbit of g is spacelike if and only if, for every p,q € R, the

determinant of:
( P-aa (p+aqb )
—(p+qc (¢—pMd
is negative, i.e. if and only if the the quadratic form (p — ¢)%2ad — (p + q)cd is positive definite. Since
ad — bc = 1, it follows that the A-orbit of g is spacelike if and only if:

0< ad <1
-1< b <0

In particular, if the A-orbit of g is spacelike, then abed # 0. It follows that, if the A-orbit of g is spacelike,
then the A-orbit of contains a element of the form

R€:< cosf sm9)

—sinf cos@

14These spacetimes were already considered by several authors, see remark 4.7
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(take s,t such that e*(=%) = d/a and e*(***) = ¢/b). The angle  is obviously unique, it is not a multiple
of % (since d # 0 and ¢ # 0), it varies continuously with g, and it takes any value in [0, 27| that is not a
multiple of 7 when g ranges over (2. O

Remark 4.4. If g = < Z Z

is in the A-orbit of g is characterized by the equalities cos’ 8 = ad and —sin®6 = bc (see the proof of
lemma 4.3).

) € Q, then the unique number 6 € [0,2n[ such that the rotation Ry

Lemma 4.3 implies that 2 has four connected components (corresponding to 6 €]0, 7|, 6 €)%, 7],
¢ €]r, 2X[, and 6 €]3F, 2n[).

Remark 4.5. The four connected components of 0 are all isometric one to the other by isometries
centralizing the group A. Hence, with no loss of generality, we may restrict ourselves to Torus Universes
that are obtained as quotients of the connected component corresponding to 0 < § < 7/2.

Proof. Proof of theorem 4.2 Denote by U the connected component of {2 correspoding to 0 < 6 < 7.
Consider a lattice T' in A, and consider the associated Torus Universe M = I'\U. Lemma 4.3 provides
us with a continuous function ¢ : U —]0, 5[. By construction, this function is increasing with time and
P-invariant: it follows that the quotient manifold M = T'\U is equipped with a time function 6.

The equalities cos? § = ad and —sin@ = bc (see lemma 4.3) imply that the connected component U

is exactly

{gz ( Z Z) € SL(2,R) such that 0 < a, 0< b, 0>cand0<d}
Thus, in the spherical model of AdS 3, the connected component U is the interior of a simplex which is the
convex hull of four points in OAdS 3 (these points are nothing but the fixed points of A) (see figure 3). The
main information we extract from this observation is that U is a convex domain in AdS 3, in particular, its
intersection with any geodesic - in particular, nonspacelike geodesics - is connected. Moreover, geodesics
joining two points of QU satisfying both be = 0 (respectively ad = 0) are spacelike. Hence, nonspacelike
segments in U admits two extremities in U, one satisfying bc = 0, and the other ad = 0. The equalities
ad = cos? 8, bc = —sin? § imply that @ restricted to such a nonspacelike segment takes all values between
0, and 3. In other words, every nonspacelike geodesic in U intersects every fiber of §. Hence, every
nonspacelike geodesic in M intersects every fiber of 8: these fibers are thus Cauchy surfaces, and M is
globally hyperbolic.

Since every fiber of 8 is a A-orbit, it obviously admits constant mean curvature «(6). Let us calculate
this mean curvature value at Ry. We will need to take covariant derivatives, and here, the situation is
similar to the familiar situation concerning riemannian embeddings in euclidean spaces: if X, Y are vector
fields in M (2, R) both tangent to G, then the covariant derivative VxY in G is the orthogonal projection
on the tangent space to G of the natural affine covariant derivative VxY for the affine connection on the
ambient linear space.

A straightforward calculation shows that the curve § — Ry is orthogonal to the A-orbits, hence, the
unit normal vector to ARy at Ry is:

n(0) = ( —sinf  cosf )

—cosf —sinf

Moreover, this unit normal vector is indeed future oriented if we consider the orientation of U for which
6 increases with time. Now, for any p, g, consider the curve t = c(t) = gP'n(8)g—9. Its tangent vector

at t =0 is:
v - ( p—q)cosf (g+p)sind
P2\ (¢+p)sing (q—p)cosb

The unit normal vector n(t) to the A-orbit at c(t) = gP*Rgg 1" is

_etr—Dging  ta+P) cog
. gt e sin e cos
g9"'n(0)g " = ( —eta+P) o5  —eta—P) gin g )

Hence, the derivative at t = 0 is:

((q—p)sina (q+p)cos0)
(g+p)cosf (p—q)sind
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The orthogonal projection of this vector tangent vector to ARy at Ry is the covariant derivative of the
unit normal vector along the curve ¢t — ¢(t). It follows that the second fundamental form is:

II(Xp,g; Xp,g) = —(Xpq | Vx, ,n()) = (0 — 9)* — (p + ¢)*) sin(26)
Whereas the first fundamental form, i.e., the metric itself, is:
(Xpg | Xpg) =(p— q)* cos?0 + (p + q)* sin® 0

Therefore, the principal eigenvalues are —2cotanf and 2tan6. It follows that the mean curvature value
is k(0) = —4cotan(20). The function k o is then increasing with time: this is the required CMC time
function. 0

Remark 4.6. The closure of the domain U meets the conformal boundary at infinity OAdS3 on a topo-
logical nontimelike circle, but it is not a spacelike curve. Actually, the intersection of the closure of U
with OAdS 3 is the union of four lightlike geodesic segments (see figure 3).

™S

Intersection of the
closure of U with
dAdSs

The domain U
is the interior of
the tetrahedron

OAdS 3

Figure 3: The domain U represented in the projective model of AdS3 (more precisely, here we use an
affine chart mapping some domain of AdS3 in R?).

Remark 4.7. The Torus Universes as defined above are the same as those described in [3] in the case of
negative cosmological constant (this follows immediatly from the results of subsection 4.2 below). Observe
that the expression of the metric on the A-orbit just above enables to recover easily the features discussed
in [3]: the volume of the slices § = Cte are proportionnal to sin26, and the conformal classes of these
toroidal metrics describe geodesics in the modular space Mod(T) of the torus. More precisely: on the slice
8 = Cte, the conformal class and the second differential form define naturally a point in the cotangent
bundle of Mod(T), and when the Cte is evolving, these data describe an orbit of the geodesic flow on
T*Mod(T). Inversely, every orbit of the geodesic flow on T* Mod(T) correspond to a Torus Universe.

4.2 Every maximal globally hyperbolic spacetime, locally modelled on AdSs,
with closed Cauchy surfaces of genus 1 is a Torus Universe

In this section, we consider a maximal globally hyperbolic lorentzian manifold M, locally modelled on
AdS 3, whose Cauchy surfaces are 2-tori. We will prove that such a spacetime M is isometric to a Torus
Universe (as defined in subsection 4.1). Together with theorem 4.2, this will imply that M admits a CMC
time function. N
__ As in section 3, we consider a Cauchy surface ¥ in M, and the lift ¥y of ¢ in the universal covering
M of M. We have a locally isometric developping map D : M — AdS3, and a holonomy representation
p of m (M) = m1(Z0) in the isometry group of AdS3. We denote I' = p(m(M)) C SL(2,R) x SL(2,R)
(here, we prefer to see the isometry group of AdSs as SL(2,R) x SL(2,R) rather than O(2,2)), and
we denote Sy = D(io). Observe that proposition 3.4 is still valid in the present context (the proof of
proposition 3.4 does not depend on the genus of Xg) ; in particular, Sy is properly embedded in AdSs.
The surface og is a two-torus : hence, the fundamental group of Xy is isomorphic to Z2. Moreover,
according to proposition 3.4, T' = p(m (M) is a discrete subgroup of SL(2,R) x SL(2,R). Hence, I is
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a lattice in some abelian group A = Hy x Hpg, where Hy, = {e'"2};cp (resp. Hp = {e*"R}4cp is a
one parameter subgroup of SL(2,R) x {id} (resp. {id} x SL(2,R)). Since A is isomorphic to R?, these
one-parameter groups are either parabolic or hyperbolic. In other words, up to factor switching and
conjugacy, there are only three cases to consider:

- Hyperbolic - hyperbolic:
1 0
ho = he = ( 0 -1 )
0

o= (31)
1 0 01
hL_(O _1> and hR—(O 0)

Let us consider an orbit O of A. The restriction to O of the ambient lorentzian metric defines a field
of quadratic forms on O. Since A is a group of isometries, the quadratic forms appearing in this field
have a well-defined type: each of them is either spacelike, timelike, lorentzian or degenerate. We call such
a field of quadratic forms a degenerate pseudometric. The following lemma describes all the “isometry”
type of degenerate pseudometrics which can arise by this construction:

- Parabolic - parabolic:

O =

- Hyperbolic - parabolic:

Lemma 4.8. Every orbit O of A has dimension 1 or 2. Moreover:

- If O has dimension 1, then it is isometric to an euclidean line, or to an isotropic line (i.e. equipped
with the trivial degenerate pseudometric).

- If O has dimension 2, then it is isometric to the euclidean plane, to the Minkowski plane, or to the
degenerate plane, i.e. the plane with coordinates (x,y) equipped with the quadratic form dz?.

Proof. An element (et e~*'#) fixes a point g in SL(2,R), then etht = ge"rg~1. Observe that in the
hyperbolic-parabolic case, it implies s = ¢ = 0: in this case, every orbit of A is a 2-dimensional plane. In
the hyperbolic-hyperbolic and parabolic-parabolic cases, it implies s = ¢ and g = e*?£: hence, there is no
0-dimensional orbits, 1-dimensional orbits are lines, and 2-dimensional orbits are planes.

We parametrize the A-orbit O of an element gy of AdS3 ~ SL(2,R) by (s,t) — et goe *"&. The

differential of this parametrization is:
(hret™t goe=*"7)ds — (et goe= "= hy)dt

Since hr and hy commute respectively with their exponential, and since these exponentials have deter-
minant 1, the determinant of this expression reduces to the determinant of:

(hrgo)ds — (gohr)dt

The quadratic form induced on the tangent space of O at (s,t) is —det of this expression.

If O has dimension 1, then gohrgy V= pp = hg, thus this determinant is equal to the determinant
of hpds — hrdt. In the parabolic-parabolic case, we obtain identically 0: O is an isotropic line. In the
hyperbolic-hyperbolic case, we obtain (d(s —t))2: O is an euclidean line.

When O has dimension 2, it is diffeomorphic to the plane. Observe that in the expression above, s
and t appears only by their differentials: it means that the degenerate pseudometric is actually a parallel
field of quadratic forms. In other words, it is given by the quadratic form —det(hrgods — gohgrdt) on the
2-plane O with linear coordinates (s,t). The lemma follows from the classification of quadratic forms on
the plane (the negative definite case and the case —(dr)? are excluded since the quadratic form is obtain
by the restriction of a lorentzian quadratic form). O

Lemma 4.9. The surface Sg intersects only 2-dimensional spacelike orbits of A.

Proof. Let O be the A-orbit of an element zy of Sg. Assume first that O has dimension 1: according to
lemma 4.8, O is a line. Observe that O is preserved by the action of I'. Since T' acts freely on Sy, xg is
not fixed by any element of I'. Hence, every I'-orbit in O is dense. It follows that z¢ admits I'-iterates of
itself arbitrarly near to itself. This is impossible, since I'" acts properly in a neighbourhood of Sy.
Hence, O has dimension 2. Assume that O is not spacelike. According lemma 4.8, it is isometric
to the Minkowski plane or the degenerate plane. Since Sy is spacelike, Sy and O are transverse. Their
intersection is a closed 1-manifold L. Moreover, the ambient lorentzian metric restricts as an euclidean
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metric on L which is complete. The argument used in proposition 3.4 can then be applied once more:
if O is a Minkowski plane, L intersects every timelike line in O in one and only one point, and if O is
degenerate, the same argument proves that L must intersect every degenerate line y = C'te in one and
only one point (in this situation, the projection of L on the coordinate z is an isometry!).

It follows that in both cases, L is connected. Therefore, it is isometric to R. But since O and Sy are
both preserved by I', the same is true for L: we obtain that L ~ R admits a free and properly continuous
isometric action by I' ~ Z2. Contradiction. O

According to the lemma, A must admit spacelike orbits, and it excludes all the cases except the
hyperbolic - hyperbolic case. Hence, A is precisely the abelian group of isometries studied in subsection
4.1 for the definition of the Torus Universes. Moreover, lemma 4.9 states precisely that Sg is contained
in a connected component U of the domain . Since this is true for any Cauchy surface X, and since
M is globally hyperbolic, the image of the developping map is contained in U. Hence, M embedds
isometrically in the Torus Universe I'\U. Since M is maximal as a globally hyperbolic spacetime, M is
actually isometric to this quotient.

Thus, we have proved:

Theorem 4.10. Every maximal globally hyperbolic lorentzian manifold, locally modelled on AdS3, with
closed oriented Cauchy surfaces of genus 1 is isometric to a Torus Universe.

Corollary 4.11. Torus Universes are maximal as globally hyperbolic spacetimes.

Proof. Proof of theorem 0.2 in the case where the genus of the Cauchy surfaces is equal to 1 The result
follows from theorem 4.10 and 4.2. O
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