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Abstract

We construct different types of quasiperiodically forced circle homeomor-
phisms with transitive but non-minimal dynamics. Concerning the recent
Poincaré-like classification for this class of maps of [1], we demonstrate that
transitive but non-minimal behaviour can occur in each of the different cases.
This closes one of the last gaps in the topological classification.

Actually, we are able to get some transitive quasiperiodically forced circle
homeomorphisms with rather complicated minimal sets. For example, we show
that, in some of the examples we construct, the unique minimal set is a Cantor
set and its intersection with each vertical fibre is uncountable and nowhere
dense (but may contain isolated points).

We also prove that minimal sets of the later kind cannot occur when the
dynamics are given by the projective action of a quasiperiodic SL(2, R)-cocycle.
More precisely, we show that, for a quasiperiodic SL(2, R)-cocycle, any minimal
strict subset of the torus either is a union of finitely many continuous curves,
or contains at most two points on generic fibres.

1 Introduction

We study quasiperiodically forced (qpf) circle homeomorphisms, that is home-
omorphisms of the torus which are homotopic to the identity and have the
form

f : T2 → T2 , (θ, x) 7→ (θ + ω, fθ(x)) , (1.1)

with ω ∈ R \ Q. The class of such maps will be denoted by F .
Skew products like this occur in various situations in physics. One well-

known example is the so-called Harper map, which appears in the study of
quasi-cristals and the corresponding Schrödinger operators (see, for example,
[2, 3]). Another one is the qpf Arnold circle map, which is used as a simple
model for oscillators forced with two or more incommensurate frequencies [4].

The interest in transitive but non-minimal dynamics in this kind of maps
is motivated by a recent classification result in [1], which we briefly want to
discuss in order to motivate the problem.
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Given any lift F : T1 × R → T1 × R, θ ∈ T1 and n ∈ N, let

Fn
θ := Fθ+(n−1)ω ◦ . . . ◦ Fθ .

Then the limit
ρ(F ) = lim

n→∞
(Fn

θ (x) − x)/n (1.2)

exists and does not depend on (θ, x) ∈ T1×R. Furthermore, the convergence in
(1.2) is uniform [5]. ρ(f) = ρ(F ) mod 1 is called the (fibred) rotation number of
f . However, unlike the one-dimensional case, the deviations from the average
rotation, given by

Dn(θ, x) := Fn
θ (x) − x − nρ(F ) , (1.3)

need not be uniformly bounded in n, θ, x anymore.1 This gives rise to a basic
dichotomy: a homeomorphism f ∈ F is called ρ-bounded if supn,θ,x |Dn(θ, x)| <
∞ and ρ-unbounded otherwise.

Another concept which turned out to be fundamental in this context are
(p, q)-invariant strips. These are compact invariant sets which intersect each
vertical fibre {θ} × T1 in exactly pq compact intervals, have an internal p-
periodic structure and certain additional regularity properties. Since the pre-
cise formulation is somewhat technical and we will not use it later, we re-
frain from stating it here and refer to [1] or [7] for the definition. Among
(p, q)-invariant strips are the continuous (p, q)-invariant graphs. These are the
minimal invariant subsets of T2 such that the restriction of p1 : (θ, x) 7→ θ
is a pq-fold covering with p connected components. In order to have a rough
idea, the reader should just think of an invariant strip as a generalisation of
a continuous (p, q)-invariant graph, where each point of the graph is possibly
replaced by a vertical segment. In particular, the existence of such an object
forces the rotation number ρ(f) to be rationally related to ω and the deviations
(1.3) to be bounded [7].

It turns out that in the ρ-bounded case a direct analogue to the Poincaré
Classification Theorem (e.g. [8]) holds, with invariant strips playing the role of
periodic orbits in the unforced case:

Theorem 1.1 (theorems 3.1 and 4.1 in [1]).

(a) If f ∈ F is ρ-bounded, then either there exists a (p, q)-invariant strip
and ρ(f), ω and 1 are rationally dependent or f is semi-conjugate to the
irrational torus translation (θ, x) 7→ (θ + ω, x + ρ(f)) by a continuous
semi-conjugacy h which is fibre-respecting (i.e. p1 ◦ h = p1).

(b) If f ∈ F is ρ-unbounded, then it is topologically transitive.

Since all known examples of ρ-unbounded behaviour are either minimal (all
ρ-unbounded skew rotations are minimal, see [8, proposition 4.2.6]; other exam-
ples are given in [9]) or their topological dynamics have not yet been clarified,
this immediately raises the question whether transitive but non-minimal dy-
namics can occur in the ρ-unbounded case. Similarly, it is not known whether

1In the case of an unforced circle homeomorphism, the uniform bound is 1.
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this is possible when f is semi-conjugate to an irrational rotation - which could
be interpreted as “a Denjoy counter-example without wandering sets”.2

The positive answer to these questions is provided by the following theorem,
which is the main result of this paper:

Theorem 1.2.

• There exists a transitive non minimal qpf circle homeomorphism which is
ρ-unbounded;

• There exists a transitive non minimal qpf circle homeomorphism which is
semi-conjugate to an irrational rotation.

This theorem will follow from a general construction.

Theorem 1.3. Suppose R is a minimal qpf circle homeomorphism. Then
there exist a continuous and surjective map π : T2 → T2 and a qpf circle
homeomorphism f such that π ◦ f = R ◦ π and f is topologically transitive, but
not minimal. In addition, if R is a diffeomorphism,3 then f can be chosen such
that all fibre maps fθ are circle diffeomorphisms and ∂xfθ depends continuously
on (θ, x).

This can be interpreted as follows. If R is a minimal qpf circle homeomor-
phism with certain additional properties, and if these properties are preserved
by topological extension, then there exists f ∈ F with the same properties,
but transitive and non-minimal dynamics. In particular, this is true for the
properties ‘semi-conjugated to an irrational rotation’ and ‘unbounded devia-
tions’. Another such property, related to the structure of the ergodic invariant
measures, will be discussed in section 4.3 .

The proof of theorem 1.3 will be given via propositions 2.2 and 3.1 below
and their addenda, which immediately imply the above statement. The con-
struction we carry out is very similar to Denjoy’s construction of circle home-
omorphisms with wandering sets. The main idea is to start with a continuous
curve Γ and to ‘blow up’ this curve and all its images to small annuli, just as
the points of an orbit are blown up to wandering intervals in Denjoy’s construc-
tion. However, instead of requiring that Γ is disjoint from all its images, which
would lead to wandering sets, we choose the curve Γ such that there are ‘many’
intersections, and this fact is then used to establish the transitivity of f . Fur-
ther, it turns out that in order to make the construction work, the initial curve
must have another, rather surprising property: whenever it intersects any of its
images this must happen over a whole interval - in other words the connected
components of the intersection must not be singletons (see definition 2.1 and
proposition 2.2). This property will turn out to be crucial in order to ensure
the continuity of the semi-conjugacy π during the construction.

The construction of such a curve Γ is first carried out in the case where R
is real-analytic, since this allows to avoid some technical problems and renders
the main ideas more visible.

2In this context, we would also like to mention the constructions by Mary Rees in [13] and
[14] (see also [15]). These equally produce Denjoy-like examples without wandering sets on the
two-torus, but in the fibred case the dynamics will always remain minimal.

3In fact, it suffices that all fibre maps Rθ are circle diffeomorphisms and ∂xRθ depends contin-
uously on (θ, x).

3



It should be mentioned that there exist well-known examples of qpf circle
homeomorphism with transitive but non-minimal dynamics, which are due to
Shnirelman [6] (see also, for example, [8, section 12.6(b)]). However, in these
examples there always exists an invariant curve, which is just a special case
of an invariant strip. Consequently, the resulting minimal set (the invariant
curve) has have a very simple structure. In contrast to this, it is known that
minimal strict subsets of T2 in the absence of invariant strips must be much
more complicated (see proposition 4.1 taken from [7, theorem 4.5 and lemma
4.6]). In particular, we obtain the following result (see subsection 4.2 ).

Proposition 1.4. There exists a transitive non minimal qpf circle homeomor-
phism whose unique minimal set is a Cantor set, and whose intersection with
each fibre {θ} × T1 is uncountable.

Apart from the Denjoy-like constructions, we collect some general properties
of minimal sets of qpf circle homeomorphism. In particular, we prove the
following uniqueness result (see subsection 4.1 for more results).

Proposition 1.5. Suppose f ∈ F has no invariant strip. Then it has a unique
minimal set.

Proposition 1.4 shows that general qpf circle homeomorphisms may pos-
sess quite complicated minimal sets. In the particular case of quasiperiodic
SL(2, R)-cocycles, which has received a lot of attention in the recent years (see,
for example, [11] and references therein), we prove that such “complicated”
minimal sets cannot occur. More precisely, we obtain the following.

Proposition 1.6 (see propositions 4.6, 4.7, 4.8 for more detailed statements).
Suppose f is given by the projective action of a quasiperiodic SL(2, R)-cocycle.
Then any minimal set of f

1. is the whole torus,

2. or is a continuous (p, q)-invariant graph,

3. or intersects generic fibres in one point,

4. or intersects generic fibres in two points.

If f is in addition ρ-unbounded, then any minimal set either is the whole torus,
or intersects generic fibres in only one point.

This proposition seems to improve some recent results of Bjerklöv and John-
son ([16]), by showing that one of the five possible cases of the classification
obtained by these author never occurs.

Finally, we want to mention another result which had originally been a
motivation for the presented work.

Theorem 1.7 ([7, theorem 4.4]). Suppose f ∈ F is C2 and has no invariant
strips. Then f is topologically transitive.

Obvioulsy, this raises again the question whether transitive but non-minimal
behaviour is possible in the absence of invariant strips. However, it must be
said that our results are not directly related to theorem 1.7, since we do not
obtain examples with this type of regularity. As stated, we are only able to
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choose the fibre maps C1, and by some slight modifications one might push this
to C1+α (see section 3.2.3). (Of course, the fact that a Denjoy-like construction
produces this type of regularity is by no means surprising.) Hence, the question
whether the assertion of theorem 1.7 can be improved to minimality is still open.
In fact, this is not even known under much stronger assumptions, for example
if f is real-analytic and ω is Diophantine, or if f is induced by the projective
action of a quasiperiodic SL(2, R)-cocycle.

2 Construction of the graph Γ

2.1 Graphs with flat intersections

Let R be a quasiperiodically forced circle homeomorphism over some circle
irrational rotation θ 7→ θ + ω. We will consider the graphs Γ of continuous
maps γ : T1 → T1. For I ⊆ T1 we define Γ|I := Γ ∩ (I × T1). The C0-
distance between continuous maps induces a distance d between graphs. By
pi : (θ, x) 7→ θ we denote the canonical projection to the i-th coordinate.

Definition 2.1. Suppose γ, γ′ : T1 → T1 are two continuous maps with graphs
Γ, Γ′.

(a) We say Γ and Γ′ have flat intersections if p1(Γ ∩ Γ′) consists of a finite
union of disjoint intervals, none of which is reduced to a single point.

(b) We say Γ and Γ′ cross over some interval I ⊂ T1 if there exists an interval
I ′ ⊂ I and an open interval O ( T1 such that Γ|I′ , Γ′

|I′ ⊂ I ′ ×O and Γ′
|I′

meets both connected components of (I ′ × O) \ Γ.

Proposition 2.2. Let R be a quasiperiodically forced circle homeomorphism.
Assume that R does not admit any continuous (p, q)-invariant graph.

Then there exists a continuous graph Γ which has flat intersections with all
its iterates Rn(Γ) (n ∈ Z).

In the situation of theorem 1.3, the non-existence of continuous (p, q)-
invariant graphs follows immediately from the minimality of R. However, the
the fact that the above proposition holds under this weaker assumption will be
useful in the later sections, and the proof is identical in both cases.

Addendum 2.3. Assume that R is topologically transitive. Then the graph Γ
may be required to satisfy the following property:

(T) For all non-trivial intervals I, J ⊂ T1, there exists some n ≥ 0 such that
Γ and Rn(Γ) cross over I ∩ (J + nω).

The graph Γ required by proposition 2.2 will be the limit of a sequence (Γn),
obtained by induction using proposition 2.4 below. The section is organised as
follows. We first state proposition 2.4 and show that it entails proposition 2.2.
Sections 2.2, 2.3 and 2.4 are mostly devoted to the proof of proposition 2.4.
The addendum is proved at the end of section 2.4.

We say a graph Γ̃ is an ε-modification of a graph Γ over I ⊆ T1 if Γ̃|Ic = Γ|Ic

and d(Γ̃, Γ) < ε, where d denotes the C0-distance.
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Proposition 2.4. Let R be a quasiperiodically forced circle homeomorphism.
Assume that R does not admit any continuous (p, q)-invariant graph. Let Γ be
a continuous graph that has flat intersections with Rk(Γ) for 1 ≤ k ≤ n − 1.

Let ε > 0. Then there exists a continuous graph Γ̃ such that

1. Γ̃ is an ε-modification of Γ over a set of measure less than ε;

2. for 1 ≤ k ≤ n−1, the graph Γ̃ has flat intersections with Rk(Γ̃), moreover
the set p1(Γ̃ ∩ RkΓ̃) contains p1(Γ ∩ RkΓ) and has the same number of
connected components;

3. the graph Γ̃ has flat intersections with Rn(Γ̃).

Proof of proposition 2.2 using proposition 2.4. We begin the induction by choos-
ing Γ1 to be any continuous graph. Let n ≥ 1, and assume inductively that
there exists a continuous graph Γn−1 which has flat intersection with its iter-
ates Rk(Γn−1) for all k such that 1 ≤ k ≤ n − 1. We apply proposition 2.4, to
get a continuous graph Γn = Γ̃n−1 which has flat intersection with its iterates
Rk(Γn) for all k such that 1 ≤ k ≤ n. Furthermore, we can demand that the
graph Γn is a εn-modification of the graph Γn−1, with εn ≤ 1

2n (the choice of
εn will be made more precise below).

Thus we get a sequence (Γn)n≥1 of continuous graphs, which is a Cauchy
sequence for the C0-distance. Let Γ be the limit map. Let k be a fixed positive
integer. The sequence (p1(R

k(Γn)∩Γn))n≥1 is an increasing sequence of subsets
of T1, denote its limit by Ik,

Ik = Clos




⋃

n≥1

p1(R
k(Γn) ∩ Γn)



 .

Note that according to property 2 of proposition 2.4, every set in this sequence
has the same number ak of connected components, so that Ik is again the
disjoint union of at most ak non trivial compact intervals.

This set Ik is included in p1(R
k(Γ) ∩ Γ). To get the reverse inclusion we

have to make a more careful choice of the sequence (εn). For a fixed n ≥ k,
denote by On,k the set of continuous graphs ∆ such that p1(R

k(∆) ∩ ∆) is
included in the 1

n -neighbourhood of p1(R
k(Γn) ∩ Γn) (which we denote by

V 1
n
(p1(R

k(Γn)∩Γn))). This set is open for the C0 distance. Thus we may have

chosen the sequence (εn)n∈N so small that for every n ≥ k, Γ ∈ On,k. This
entails, for every k ≤ n,

p1(R
k(Γn) ∩ Γn) ⊂ p1(R

k(Γ) ∩ Γ) ⊂ V 1
n

(
p1(R

k(Γn) ∩ Γn)
)
.

Letting n tends towards infinity (with fixed k) gives the required equality Ik =
p1(R

k(Γ) ∩ Γ). Thus we get that Γ has flat intersection with Rk(Γ).

2.2 Perturbation boxes

In this section, we introduce the tools required by the proof of proposition 2.4.
We consider a continuous graph Γ and some positive integer n and make the
following escaping hypothesis.

Every point has an iterate outside Γ ∪ R(Γ) ∪ · · · ∪ Rn(Γ).

In the case where R is minimal this is obviously true, in lemma 2.11 below we
show that it also holds under the weaker hypohesis of proposition 2.2 .
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Returning dynamics on Γ

We introduce the first return map T on Γ in time less or equal to n: let D
be the set points z in Γ such that there exists some iterate Rq(z) in Γ with
1 ≤ q ≤ n; we then define the map T on D by T (z) = Rq(z) where q is the
least such integer.

Due to the escaping hypothesis, the orbit of any point of Γ by T is finite.
This allows the following definitions.

Notations and definitions. To any point z ∈ Γ is associated a unique
finite set, N(z) = {q−r < · · · < q0 = 0 < · · · < qs} ⊂ Z, called the itinerary of
z, such that

• for any integer k such that q−r −n ≤ k ≤ qs +n, the point Rk(z) belongs
to Γ if and only if k = qi for some −r ≤ i ≤ s,

• |qi − qi+1| ≤ n for each −r ≤ i < s.

We thus have T i(z) = Rqi(z), and the sequence (Rqi(z))i=−r,...,s is the T -orbit
of z. We will denote by ℓ(z) = s + r the length of this orbit. When we wish to
emphasize the dependence on the point z, we will write r(z), s(z), and so on.
Let us note that the T -orbit of z is reduced to (z) if and only if all the iterates
fk(z) are outside Γ for 0 <| k |≤ n.

More generally, for any sufficiently small interval I ⊂ T1, there exists a finite
set {qi, i = −r, . . . , s}, again called the itinerary of I, such that 0 < qi+1−qi ≤ n
and for all k such that q−r − n ≤ k ≤ qs + n we have

Rk(Γ|I) ∩ Γ 6= ∅ ⇔ k ∈ {qi, i = −r, . . . , s}.

This follows from compactness together with the openness with respect to z of
the property Rk(z) /∈ Γ for a given k.

Definition and existence of perturbation boxes

Definition 2.5. A rectangle B = I × J is a perturbation box if

1. I has a finite itinerary {qi, i = −r, . . . s} and has pairwise disjoint iterates
I + kω with q−r − n ≤ k ≤ qs + n;

2. one of the two endpoints of Γ|I has the same itinerary as I;

3. for all k such that q−r − n ≤ k ≤ qs + n, the graph
(
R−k(Γ)

)
|I

• is contained in B if k = qi for some −r ≤ i ≤ s,

• is disjoint from B otherwise.

We define the itinerary of the box to be the itinerary of I. Next we prove
that every points of Γ belong to a perturbation box.

Lemma 2.6. If z = (θ, x) ∈ Γ, then there exists δ, η arbitrarily small such that
B = [θ, θ + δ] × [x − η, x + η] is a perturbation box whose itinerary coincides
with the itinerary of z.

Proof of the lemma. For δ and η small enough, the rectangle B is disjoint from
the graphs R−k(Γ) with q−r − n ≤ k ≤ qs + n such that k does not belong to
the itinerary of z. For k = qi, the graph R−k(Γ) contains the point z; hence,
if the interval δ is chosen after η and small enough, then

(
R−k(Γ)

)
|[θ,θ+δ]

is

contained in B.

7



Perturbation lemma

If one assumes that the intersections Γ ∩ Rk(Γ) are controled for any k up to
n−1, the perturbation boxes can be used to build a perturbed graph Γ′ whose
intersections Γ′ ∩ Rk(Γ′) are flat for k up to n. These perturbations are given
by the following lemma.

Lemma 2.7 (Perturbation lemma). Let B = I × J be a perturbation box.
Denote by {qi, i = −r, . . . , s} the itinerary of I. Then there exists a perturbation
Γ′ of Γ such that

1. the perturbation is supported in

s⋃

i=−r

Rqi(B), and in particular the graphs

(R−qi(Γ′))|I are still included in B.

2. Let 1 ≤ k ≤ n and define the sets Xk = p1(Γ ∩ RkΓ) and X ′
k = p1(Γ

′ ∩
RkΓ′). Then X ′

k is the union of Xk and a finite number of intervals
meeting Xk. More precisely, for every i such that Xk meets I +qiω, there
exists a non-trivial interval Ji,k satisfying Xk∩(I +qiω) ⊂ Ji,k ⊂ I +qiω,
and we have the equality

X ′
k = Xk ∪

⋃

Xk∩(I+qiω) 6=∅

Ji,k.

Furthermore, if R is real-analytic and Γ is piecewise real-analytic, then Γ′ can
be chosen piecewise real-analytic.

Proof of the perturbation lemma 2.7. We want to construct the new graph Γ′

by modifying the graph Γ above each interval I + qiω. Since all the intervals
I + qiω are pairwise disjoint (item 1 of the definition of perturbation box), this
amounts to modifying each graph R−qi(Γ) above I.

We denote by z the endpoint of Γ|I that has the same itinerary as I (item
2 of the definition of perturbation box). To fix ideas, we assume that z is
the left endpoint (the proof is entirely similar if z is the right endpoint). The
definition of the itinerary entails that z also belongs to R−qi(Γ) for all i. Denote
I = [θ, θ + δ]. Choose some λ ∈ (0, δ) with the property that for any given
i, j ∈ {−r, . . . , s} the graphs R−qi(Γ)|[θ+λ,θ+δ] and R−qj (Γ)|[θ+λ,θ+δ] either
coincide at θ + δ or are disjoint. Above I, we replace each graph R−qi(Γ) by
the union of two straight segments:

• above [θ, θ + λ], the new graph is a horizontal segment (starting at z) ;

• above [θ + λ, θ + δ], the new segment is forced by continuity (it connects
the right endpoint of the first segment to the point of R−qi(Γ) above
θ + δ).

Let us check the new graph Γ′ has the announced properties. The first
one concerning the support is a consequence of item 3 of the definition of a
perturbation box. Let us turn to the second one. For any i, j between −r and
s, let us define the set

Ii,j = p1(R
−qi(Γ′) ∩ R−qj (Γ′)) ∩ I.

This set is either equal to [θ, θ+λ] or to I. In case p1(R
−qi(Γ)∩R−qj (Γ))∩I = I

then we still have Ii,j = I. By the choice of λ, in the opposite cases, [θ, θ + λ]
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contains p1(R
−qi(Γ) ∩ R−qj (Γ)) ∩ I, and then so does Ii,j . Note that in any

case we have the following property:

For all i, j ∈ {−r, . . . , s}, the interval Ii,j is a non-trivial interval
containing p1(R

−qi(Γ) ∩ R−qj (Γ)) ∩ I .
(*)

Claim 2.8. For every k = 1, . . . , n and every i = −r, . . . , s,

Xk ∩ (I + qiω) 6= ∅ ⇔ ∃j, k = qi − qj .

When these equivalent properties hold we define Ji,k = Ii,j + qiω. Note
that according to property (*), Ji,k contains Xk ∩ (I + qiω). Obviously Ji,k is
contained in I + qiω.

Proof of the claim.

∃j, k = qi − qj ⇔ Rk−qi(Γ) ∩ B 6= ∅ (item 3 of definition 2.5)

⇔ z ∈ Rk−qi(Γ) (choice of z)

⇔ Rk−qi(Γ) ∩ (R−qi(Γ))|I 6= ∅

⇔ Xk ∩ (I + qiω) 6= ∅ (apply Rqi).

Now for getting property 2 it only remains to checking the following equal-
ity:

X ′
k = Xk ∪

⋃

qi−qj=k

(Ii,j + qiω) .

Let us define the set J =
⋃s

i=−r I + qiω. In order to check the above equality
we partition T1 into the four sets

J ∩ (J + kω), J \ (J + kω), (J + kω) \ J, T1 \ (J ∪ (J + kω)) .

Let us examine the first set J ∩ (J + kω). According to item 1 of the definition
of the perturbation boxes, we have

J ∩ (J + kω) =
⋃

qi−qj=k

(I + qiω) .

Let i, j be such that qi−qj = k. Restricted to I +qiω, we have X ′
k = Ii,j +qiω,

and, according to property (*), this set contains the restriction of Xk: in other
words,

X ′
k ∩ (I + qiω) = [Xk ∪ (Ii,j + qiω)] ∩ (I + qiω) .

It remains now to check that outside J∩(J+kω), the sets X ′
k and Xk coincides.

The second set J \ (J + kω) is the union of the intervals I + qiω for those i
such that qj 6= qi − k for every j. Choose such an i. According to item 3 of the
definition of perturbation boxes,

Γ|I+qiω ⊂ Rqi(B) and
(
Rk(Γ)

)
|I+qiω

∩ Rqi(B) = ∅,

and in particular Xk ∩ (I + qiω) is empty. According to item 1 of the lemma,
the same relations hold when Γ is replaced by Γ′, thus X ′

k ∩ (I + qiω) is also
empty. Thus Xk and X ′

k coincide in restriction to J \ (J + kω).
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Restricting to the third set (J + kω) \ J , we prove symmetrically that both
sets Xk and X ′

k are empty, and so they also coincide.
On the last set T1 \ (J ∪ (J + kω)), according to item 1 of the lemma, we

have Γ′ = Γ and Rk(Γ′) = Rk(Γ) and thus X ′
k = Xk.

Remark 2.9. In the proof of the perturbation lemma 2.7, we chose to replace
the graph Γ by the simplest possible curve, i. e. the concatenation of two seg-
ments. But of course we could have used more complicated curves, for example
the concatenation of a finite number of segments. Thus, if we are given some
point z within the interior of the perturbation box B, this modification allows us
to force the perturbated curve Γ′ to contain the point z. The same holds for any
finite number of points in Int(B) (obviously having distinct first coordinate).

2.3 Construction of the graph Γ: the real-analytic mini-

mal case

The construction of the graph Γ is easier if R is a minimal rotation, or more
generally if R is minimal and real-analytic. To explain this easy case, we state
a simpler version of proposition 2.4.

Proposition 2.10. Suppose that the assumptions of proposition 2.4 hold and
in addition:

• R is real-analytic and minimal,

• Γ is piecewise analytic.

Then there exists a curve Γ̃ which satisfies the assertions proposition 2.4 and
is piecewise analytic.

Replacing proposition 2.4 by the preceding one (which is much easier to
show), the proof of proposition 2.2 given at the beginning of section 2 can
be easily adapted to prove the statement in the case when R is minimal and
real-analytic.

Proof of proposition 2.10. Using that R is real-analytic and Γ is piecewise real-
analytic, we know that the intersection Γ ∩ RnΓ has finitely many connected
components: these are isolated points and non-trivial curves. We will explain
how to build a modification Γ′ that is piecewise real-analytic, satisfies items 1
and 2 of the proposition 2.4 and moreover

3-bis. the number of connected components of Γ′ ∩ RnΓ′ that are reduced to a
point is strictly less than the corresponding number for Γ ∩ RnΓ.

By repeating this construction finitely many times, one obtains a modification
Γ̃ of Γ that now satisfies the item 3 of the proposition.

Since R is supposed to be minimal, the escaping property is satisfied, and
we can apply section 2.2. Let us consider an isolated point z ∈ Γ ∩ Rn(Γ).
By lemma 2.6 there exists an arbitrarily small perturbation box B containing
z in its boundary and having the same itinerary as z. We now apply the
perturbation lemma 2.7. Since B is arbitrarily small, the perturbation Γ′ is
small: item 1 of proposition 2.4 is satisfied. One can also assume that the
width p1(B) is smaller than half of the distance between any two connected
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components of Γ ∩ Rk(Γ) for any 1 ≤ k ≤ n. Item 2 of lemma 2.7 implies
that Γ′ ∩ Rk(Γ′) contains Γ ∩ Rk(Γ) and has the same number of connected
components. When k < n, one gets item 2 of the proposition. One also obtains
item 3-bis by noting that the component {z} of Γ∩Rn(Γ) has been replaced by
a non-trivial interval. This completes the construction of Γ in the real-analytic
case.

2.4 Construction of the graph Γ: the general case

In this section we prove proposition 2.4 and the addendum 2.3 to proposi-
tion 2.2 .

Escaping hypothesis

We start by checking the escaping hypothesis under which points have finite
itineraries (see section 2.2).

Lemma 2.11. Assume R does not admits any continuous (p, q)-invariant
graph. Then for every continuous graph Γ and every n > 0, the escaping
hypothesis is satisfied.

Proof. If the escaping hypothesis is not satisfied, then there exists a invariant
compact set K included in the union K̂ of a finite number of iterates of some
graph Γ. Let us choose a minimal such K. Then the compact set K is a
continuous (p, q) invariant graph contradicting the assumption. Indeed, since
K is compact and invariant, p1(K) is the whole circle ; thus there is some k
such that the projection of Rk(Γ)∩K has non-empty interior (Baire theorem),
so that K contains some graph α over some interval. By taking a smaller open
interval, we find a graph over an open interval which is an open set of K. By
minimality, K is a one-dimensional topological manifold, thus a union of simple
curves. The same argument shows that p1 is a local homeomorphism on K,
and thus a covering map (by compactness).

Proof of proposition 2.4

The proposition is obtained by applying inductively the following lemma. This
lemma roughly says that if Rn(Γ) has flat intersections with Γ outside some
closed subset F , then we can construct Γ̃ such that Rn(Γ̃) has flat intersections
with Γ̃ outside a closed subset F ′, where F ′ is substantially smaller than F .
Remember that the map T and the function ℓ have been defined on section 2.2;
we will denote by T ′ and ℓ′ the correponding objects with respect to the graph
Γ′.

Lemma 2.12. Let Γ be a continuous graph that has flat intersections with
Rk(Γ) for 1 ≤ k ≤ n − 1. Let F be a non-empty closed set which is a union
of T -orbits. Suppose that (Γ ∩ Rn(Γ)) \ F has a finite number of connected
components, none of which is a single point.

Let ε0 > 0. Then there exists an ε0-perturbation Γ′ of Γ supported on an
arbitrarily small neighbourhood of F , and there exists a non-empty closed set
F ′ ⊂ F which is a union of T -orbits such that

11



1. (Γ′ ∩ Rn(Γ′)) \ F ′ has a finite number of connected components, none of
which is a single point.

2. For 1 ≤ k ≤ n − 1, the graph Γ′ has flat intersections with Rk(Γ′),
moreover the set p1(Γ

′ ∩ RkΓ′) contains p1(Γ ∩ RkΓ) and has the same
number of connected components.

3. Either the set F ′ is empty, or the supremum of the function ℓ′ on F ′ is
strictly less than the supremum of ℓ on F .

Proof of the lemma. We assume the hypotheses of the lemma. If ℓ(z) = 0 for
every z ∈ F , then Rn(Γ)∩F = ∅, and the graph Γ′ = Γ together with its closed
subset F ′ = ∅ satisfies the conclusion of the lemma. From now on we assume
that supF ℓ > 0.

Let
M = {z ∈ F, ℓ(z) = sup

F
ℓ}.

The set M is obviously a non-empty union of T -orbits.

Claim 2.13. The set M is closed.

To prove the claim we consider the map z 7→ N(z) which associates to each
point of Γ its itinerary (see section 2.2). Let z ∈ Γ; by definition of the itinerary,
the points fk(z) are outside Γ for every k ∈ {q−r(z) − n, . . . , qs(z) + n} \ N(z).
We note that these conditions are open, so we have N(z′) ⊂ N(z) for all z′ in
a neighbourhood of z (in other words, the map z → N(z) is semi-continuous).
The claim follows.

We consider the finite partition P of M induced by N : two points y and z
are in the same element P of P if and only if N(y) = N(z). Since the functions
N and ℓ are constant on P we use the notation N(P ) and ℓ(P ). The semi-
continuity of N and the maximality of ℓ on M also entail that the elements of
this partition are closed sets. Let P0 be the family of P ∈ P whose points z
satisfy r(z) = 0. Then the partition P can be written as

P = {T k(P ), P ∈ P0 and 0 ≤ k ≤ ℓ(P )} = {Rq(P ), P ∈ P0 and q ∈ N(P )}.

Claim 2.14. Let P ∈ P0. There exists a finite collection B(P ) of arbitrarily
small perturbation boxes such that

1. each box B has the same itinerary N(B) as the points of P ,

2. the projections p1(B) of the boxes have pairwise disjoint interior,

3. p1(P ) is contained in the interior of the union of all the p1(B).

Proof of the claim. Let z be any point of P . By lemma 2.6, we can find two
arbitrarily small perturbation boxes B−(z) = I−(z)×J−(z), B+(z) = I+(z)×
J+(z) whose itineraries coincide with the itinerary of z, and such that p1(z)
is the right end-point of I−(z) and the left end-point of I+(z). Since p(P ) is
compact it is covered by the interior of finite number of intervals I−(z)∪I+(z).
Thus we find a finite collection B∗(P ) of perturbation boxes having properties 1
and 3 of the claim but maybe not property 2. Then property 2 will be achieved
by replacing some of the intervals I±(z) by smaller subintervals. For this we
first make the following remark. Let z = (θ0, x) ∈ P , and θ1 ∈ Int(I−(z)) =
(θ0 − δ, θ0). Then
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• [θ1, θ0] × J−(z) is a perturbation box,

• if θ1 ∈ p1(P ) then [θ0 − δ, θ1] × J−(z) is a perturbation box,

and in both cases the new box has the same itinerary as the old one. Now
consider any couple of perturbation boxes B1, B2 ∈ B∗(P ) whose interiors are
not disjoint. If the p1-projection of one box contains the other one then we can
just eliminate the smallest one. In the opposite case, the above remark allows
us to replace one of the two boxes, say B1, by a smaller perturbation box B′

1

whose projection by p1 is disjoint from B2 and such that the p1-projection of
B′

1∪B2 equals the p1-projection of B1∪B2. Thus, by considering one by one all
the couples of boxes in B∗(P ), we can construct a new collection B(P ) having
the wanted properties.

Let B = ∪B(P ) be the family of all the constructed boxes. Since the
partition P of M consists of disjoint closed sets, each P ∈ P0 is contained in
an open set U(P ) such that the collection

{Rq(U(P )), P ∈ P0 and q ∈ N(P )}

still consists of pairwise disjoint sets. Thus items 2 and 3 of the claim allows
us to choose the families B(P ) of perturbation boxes such that the elements of
the following family have disjoint interior:

{p1(B) + qω, B ∈ B and q ∈ N(B)}.

Thus we can apply the perturbation lemma 2.7 independently on each box of
the family B, and denote by Γ′ the resulting graph. The graph Γ hence has
been modified only in the domain

Z =
⋃

B∈B

q∈N(B)

p1(R
q(B)) × T1.

We define the set F ′ by F ′ = F \ Int(Z) and we now check the properties.
The set F ′ is clearly a closed subset of F . For any B ∈ B, and any z ∈ B,

the itinerary of z is a subset of the itinerary of B. Thus the full T -orbit of
z is included in the union

⋃
q∈N(B) Rq(B). Also note that the maps T and

T ′ coincide outside Int(Z), and thus on F ′. Consequently, F ′ is a union of
non-trivial T ′-orbits.

Item 2 is obvious (cf property 2 of the perturbation lemma 2.7).
Let us check item 1. We first analyze the set (Γ′∩Rn(Γ′))\F ′ in restriction

to the complementary set of Z. We have

((Γ′ ∩ Rn(Γ′)) \ F ′) \ Z = ((Γ ∩ Rn(Γ)) \ F ) \ Z.

The right-hand set is the restriction of (Γ∩Rn(Γ))\F (the union of finitely many
non-trivial closed graphs) above the union of finitely many open intervals; thus
it is the union of a finite number of non trivial intervals. Then we analyze the set
(Γ′∩Rn(Γ′))\F ′ in restriction to Z. According to lemma 2.7, Γ′∩Rn(Γ′)∩Z has
a finite number of connected components, all of them non-trivial. Furthermore,
by definition of F ′, the set F ′∩Z is included in the boundary of Z and is finite.
Thus ((Γ′∩Rn(Γ′))\F ′)∩Z is again the union of a finite number of non trivial
intervals. Putting everything together, we get item 1.
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Finally for item 3 we note that M ⊂ Int(Z) and thus F ′ does not meet M .
Since the maps T and T ′ coincide on F ′, and according to the definition of the
set M , we have

sup
F ′

ℓ′ = sup
F ′

ℓ < sup
F

ℓ .

This completes the proof.

Proof of proposition 2.4 from lemma 2.12. Let Γ and ε be as in the hypotheses
of the proposition. We fix once and for all the value ε0 = ε

supΓ ℓ+1 . We set Γ0 =

Γ and F0 = Γ. Then Γ0 and F0 satisfy the hypotheses of the lemma. Applying
the lemma provides a new graph Γ1 = Γ′ with a closed subset F1 = F ′. If
F ′ is empty, then we define Γ̃ = Γ1 and note that Γ̃ satisfies the conclusion of
proposition 2.4.

In the opposite case, Γ1 and F1 again satisfy the hypotheses of the lemma.
Applying the lemma recursively provides sequences (Γp) and (Fp). Since the
inequality supFp+1

ℓp+1 < supFp
ℓp holds, there exists some p with Fp = ∅, and

then we can define the graph Γ̃ = Γp. Note that pε0 < ε, so that points 1 and 2
of the proposition concerning the size of the perturbation hold. This completes
the proof of the proposition.

Proof of addendum 2.3

Addendum 2.3 requires the following additional property for the graph Γ: for
any small pieces Γ|I , Γ|J , there exists some positive iterate of the first one that
crosses the second one. In order to get this additional property, we will refine
the construction of the sequence (Γn), by inserting between two successive steps
of the construction another small modification. The modification between steps
n and n + 1 will achieve the wanted property concerning two specific intervals
In, Jn, while keeping the previously obtained properties of the graph Γn. We
will get the modification by applying the following proposition.

Proposition 2.15. Assume that R is topologically transitive. Let Γ be a con-
tinuous graph that has flat intersections with Rk(Γ) for 1 ≤ k ≤ n − 1.

Let ε > 0, and I, J ⊂ T1 be two non-trivial intervals. Then there exists a
Graph Γ̃ such that

1. Γ̃ is an ε modification of Γ over a set of measure less than ε;

2. there exists some integer m > 0 such that Γ and Rm(Γ) crosses over
I ∩ (J + mω);

3. for 1 ≤ k ≤ n−1, the graph Γ̃ has flat intersections with Rk(Γ̃), moreover
the set p1(Γ̃ ∩ RkΓ̃) contains p1(Γ ∩ RkΓ) and has the same number of
connected components.

Proof of proposition 2.15. We first note that, up to replacing I and J by subin-
tervals, we can assume the following additional properties:

• I and J have finite itineraries I and J ;

• there exists vertical intervals I ′, J ′ ⊂ T1 such that the rectangles BI =
I × I ′ and BJ = J × J ′ are perturbation boxes;

• any two intervals I + kω, k ∈ I and J + ℓω, ℓ ∈ J are disjoint.
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Since R is topologically transitive, there exists a point z ∈ Int(B) with
a dense forward orbit. Now we apply the perturbation lemma 2.7 with the
perturbation box BI to construct a first ε-modification Γ̄ of Γ that contains z
(this is possible thanks to remark 2.9). Note that the perturbation is supported
on the iterates of BI corresponding to the itinerary of BI , and thus Γ̄ ∩ BJ =
Γ ∩ BJ .

By hypothesis on z there is an iterate Rm(z) with positive m belonging to
Int(BJ ). Let z1, z2 be two points of Int(BJ∩((I+mω)×T1)) that are separated
in BJ ∩ ((I + mω) × T1) by Rm(Γ̄). Now we perform a second modification
of Γ, this time using the box BJ , to construct a new graph Γ̃ that contains
both points z1, z2. Since Γ̃ ∩ BI = Γ̄ ∩ BI , it follows that Rm(Γ̃)(I+mω) =
Rm(Γ̄)(I+mω): thus z1 and z2 are still separated in BJ ∩ ((I + mω) × T1) by

Rm(Γ̃), that is, Γ̃ and Rm(Γ̃) cross over (I + mω) ∩ J .

Proof of addendum 2.3 using proposition 2.15. We explain how to modify the
inductive proof of proposition 2.4 given at the beginning of section 2 so that
the addendum is satisfied.

Let (Ii) be a countable basis for the topology of T1 which consists of inter-
vals. Let (in, jn)n≥1 be an enumeration of N2, so that (Iin

× Ijn
)n≥1 is a basis

for T1 × T1.
Let n ≥ 1, and assume inductively that there exists a continuous graph

Γn−1 which has flat intersections with its iterates R(Γn−1), . . . , R
n−1(Γn−1).

We first mimic the construction of proposition 2.4 to get a continuous graph
which we denote by Γ′

n; in particular, Γ′
n is an εn-modification of Γn−1 and

has flat intersection with its n first iterates.
Thus we can apply proposition 2.15 to this graph Γ′

n, with intervals I = Iin

and J = Ijn
. We get again a continuous graph Γn wich is an ε′n-modification

of Γ′
n (property 1). This new graph still has flat intersections with its n first

iterates (property 3). Furthermore, it satisfies the following additional property
(property 2): there exists some integer m > 0 such that Γn and Rm(Γn) crosses
over the interval Iin

∩ (Ijn
+ mω).

We note that this last property is an open property among continuous
graphs for the C0 distance. Thus, by choosing the sequences (εn) and (ε′n) to
decrease sufficiently fast, we can ensure that the limit graph Γ also satisfies
this property : for each integer n ≥ 1 there exists an integer m > 0 such
that Γ and Rm(Γ) crosses over the interval Iin

∩ (Ijn
+ mω). In particular, Γ

meets the property required by the addendum. Furthermore, the argument of
proposition 2.4 showing the flat intersection of Γ with Rn(Γ) for all n is still
valid. This completes the proof of the addendum.

3 Blowing up the orbit of Γ

In this section, we consider a quasiperiodically forced circle homeomorphism
R and a continuous graph Γ which has flat intersections with all its iterates
Rn(Γ) (n ∈ Z). We denote the fibres of p1 by T1

θ = {θ} × T1.
Let us first recall that every probablity measure µ on T2 can be disintegrated

with respect to fibres of the projection p1 : (θ, x) 7→ θ. More precisely, one can
find a family (µθ)θ∈T1 of probability measures on the circle T1 such that, for
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every measurable set A,

µ(A) =

∫

T1

µθ(Aθ)dθ . (3.1)

Here we use the notation

Aθ = {x ∈ T1 | (θ, x) ∈ A} ,

where A is any subset of T2. The purpose of this section is to prove the
following.

Proposition 3.1. Let R be a qpf circle homeomorphism and suppose there
exists a curve Γ which satisfies the assertions of proposition 2.2. Define

Ξ :=
⋃

n∈Z

Rn(Γ) . (3.2)

Then there exists a continuous onto map π and a homeomorphism f ,

π : T2 −→ T2

(θ, x) 7−→ (θ, πθ(x))
and

f : T2 −→ T2

(θ, x) 7−→ (θ + ω, fθ(x))

with the following properties:

(i) for all θ ∈ T1 the map πθ is increasing;

(ii) if (θ, x) ∈ Ξ then π−1(θ, x) is a non-trivial interval in the circle T1
θ;

(iii) if (θ, x) /∈ Ξ then π−1(θ, x) is a single point;

(iv) π ◦ f = R ◦ π.

(v) π−1(Ξ) has non-empty interior.

Addendum 3.2. Suppose R is transitive, Γ has the additional property pro-
vided by addendum 2.3 and in addition the set Ξ is dense in T2. Then f is
topologically transitive.

Note that if R is minimal, then the fact that Ξ is dense is obvious. If R is
only transitive, one may construct Γ with this property, see remark 3.10 . We
remark that the proof of the addendum is short and does not depend on the
proof of the proposition (see section 3.4).

Theorem 1.3 now follows immediately from propositions 3.1 and 2.2 and
their addenda. Note that the non-minimality of f follows from property (v) in
the proposition, since this implies that π−1(Ξ)c is a compact invariant strict
subset of T2.

Idea of the proof of proposition 3.1 Remember that we see proposi-
tion 3.1 as a generalisation of the classical Denjoy example on the circle. Here
is one way to construct the Denjoy example. First choose an orbit O for an
irrational rotation R on T1, and let µ be a probability measure which has an
atom at each point of O and no other atom. There is an (essentially unique) in-
creasing map π : T1 → T1 which sends the Lebesgue measure onto the measure
µ. Then one looks for a circle homeomorphism f such that π ◦ f = R ◦ π: this
equality determines f outside π−1(O); then one completes the construction by
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choosing one way to extend f from the interval π−1(x) to π−1(R(x)) for all
x ∈ O.

We will adapt this construction to our setting, with the following modifi-
cations. The role of the orbit O is now played by the orbit of the curve Γ.
The new measure µ is essentially a sum of one-dimensional measures along the
iterates of Γ (µθ has an atom at x if and only if (θ, x) belongs to some iterate of
Γ). As a consequence of the flat intersection hypothesis, there exists as before
a map π sending the Lebesgue measure of T2 to µ. Then we construct a “nice”
measure ν on T2 which satisfies π∗ν = R∗µ. This is the difficult part of the
proof, the difficulty being linked to the fact that ν is not uniquely determined
by this equality. Then f is defined as the (essentially unique) map sending the
Lebesgue measure onto ν. The equality π ◦ f = R ◦π will follow automatically.
The construction is summed up by the following commutative diagram.

T2, Leb

π

��

f
// T2, ν

π

��

T2, µ
R // T2, R∗µ

3.1 The semi-conjugacy π

In this section, we consider any sequence (Γn)n∈Z of curves in T2 such that,
for every i, j ∈ Z, the curves Γi and Γj have flat intersections. We denote
Ξ :=

⋃
n∈Z

Γn.

3.1.1 Construction of the measure µ

For any graph Γ, we denote by δΓ the probability measure on T2 whose condi-
tional δΓ,θ is the Dirac mass at the point x such that (θ, x) ∈ Γ. We choose a
sequence of non-negative real numbers (an)n∈Z such that β := 1 −

∑
n∈Z

an is
positive. Then we define a measure µ as follows:

µ := βLeb +
∑

n∈Z

anδΓn
. (3.3)

3.1.2 Definition of π

The flat intersections hypothesis plays a crucial role in the addendum of the
following proposition.

Proposition 3.3. For any probability measure µ as defined by (3.3), there
exists a continuous onto map π : T2 → T2 of the form (θ, x) 7→ (θ, πθ(x)), such
that, for every θ, the map πθ : T1 → T1 is increasing and maps the Lebesgue
measure onto µθ.

In particular, π satisfies the properties (i), (ii) and (iii) stated in proposi-
tion 3.1.

Addendum 3.4. For any given n0 ∈ Z, it is possible to choose π in proposi-
tion 3.3 such that the set Bn0

= π−1(Γn0
) contains the annulus S1 × [0, an0

].
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Proof of proposition 3.3 and addendum 3.4. Fix an integer n0 ∈ Z. Let Φ :
(θ, x) 7→ (θ, x + α(θ)) be the skew rotation sending the graph Γn0

to the zero
section T1×{0}. If we construct a map π satisfying the statement of the propo-
sition and its addendum with the graphs Γn replaced by Φ(Γn) and the measure
µ replaced by Φ∗µ, then the map π′ = Φ−1 ◦ π will satisfy the statements for
the original objects. Thus we may change coordinates under Φ and assume
that Γn0

is the zero section T1 × {0}. In order to define the map π : T2 → T2,
we will first construct a map π̂ : T1 × [0, 1] → T1 × [0, 1]. The following lemma
is easy but crucial.

Lemma 3.5. Denote by P : T1× [0, 1] → T2 the natural projection. Then there
exists a continuous lift µ̂ of µ, that is, µ̂ is a probability measure on T1 × [0, 1]
such that P∗µ̂ = µ, and such that µ̂θ depends continuously on θ (with respect
to the weak topology on the space of probability measures).

Proof of lemma 3.5. Clearly, the Lebesgue measure on T1 × [0, 1] is a continu-
ous lift of the Lebesgue measure on T2. Seemingly, since Γn0

is the null section,
the measure δT1×{0} in T1 × [0, 1] is a lift of δΓn0

in T2. It remains to prove
that any measure m = δΓ on a graph Γ having a flat intersection with the null
section Γn0

has a continuous lift m̂. Now let θ be such that the points of Γ
and Γn0

on T1
θ are distinct. Then we choose m̂θ to be the only measure that

projects down to mθ, that is, the Dirac mass on P−1(Γθ). By continuity this
determines the value of m̂θ ∈ {δ0, δ1} when θ is an endpoint of a (non trivial)
interval I where Γ coincides with the null section. Then we extend the con-
struction on such an interval I by continuously (e. g. linearly) interpolating
the Dirac masses δ0 and δ1.

Next, we define the map π̂ : T1 × [0, 1] → T1 × [0, 1] by

π̂(θ, x) := (θ, π̂θ(x))

and
π̂θ(x) = min{y ∈ [0, 1] | µ̂θ([0, y]) ≥ x}. (3.4)

Observe that the map π̂ is continuous; indeed:

• the map π̂θ : [0, 1] → [0, 1] is continuous for every θ ∈ T1 since the
measure µ̂θ gives a positive mass to every open set in {θ} × [0, 1] (recall
that β > 0);

• the map π̂θ depends continuously on θ since the measure µ̂θ depends
continuously on θ.

Moreover, by construction, for every θ the map π̂θ is increasing and maps the
Lebesgue measure of [0, 1] onto µ̂θ.

Clearly, the map π̂ : T1 × [0, 1] → T1 × [0, 1] induces a continuous map
π : T2 → T2 having the wanted properties. Note that this map also satisfies
the property required by addendum 3.4.

3.1.3 Uniqueness of π

Proposition 3.6. Let us consider a measure µ as defined in (3.3) on T2 and
two maps π, π′ which both satisfy the assertions of proposition 3.3. Then, there
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exists a continuous skew rotation A : (θ, x) 7→ (θ, x + α(θ)) of T2 such that
π = π′ ◦ A.

Proof. For every θ ∈ T1, both πθ and π′
θ are circle maps which map the

Lebesgue measure of T1
θ onto µθ. It follows that, for every θ ∈ T1, the cir-

cle maps πθ and π′
θ coincide modulo a rotation: for every θ ∈ T1, there exists

α(θ) ∈ T1 such that πθ(y) = π′
θ(y + α(θ)). This provides a skew rotation

A : (θ, x) 7→ (θ, x + α(θ)) of T2 such that π = π′ ◦ A. We are left to show that
A is continuous, i.e. that α(θ) depends continuously on θ.

Fix θ0 ∈ T1, and ǫ > 0. Then choose x0 ∈ T1
θ such that µθ0

({x0}) = 0. For
every θ, we consider the intervals Iθ := π−1

θ ({x0}) and I ′θ := (π′
θ)

−1({x0}).
Since µθ0

({x0}) = 0, both intervals Iθ0
and I ′θ0

consist of a single point.
Moreover, the continuity of π implies that there exists δ > 0 such that, for
θ ∈ [θ0 − δ, θ0 + δ], the interval Iθ (resp. I ′θ) is included in an ǫ-neighbourhood
of the interval Iθ0

(resp. I ′θ0
). Now, for every θ, the rotation y 7→ y + α(θ)

maps the interval Iθ to the interval I ′θ. Consequently α is continuous at θ0,
and as θ0 was arbitrary it follows that α is continuous on the whole of T1.

3.1.4 Description of the sets π−1(Γn)

In order to construct the measure ν in the next section, we will need some more
details about the geometry of the sets Bn := π−1(Γn). Note that the following
proposition will only be used in the construction of ν, and it may be a good
idea to skip the proof for a first reading.

Proposition 3.7. There exists a sequence of open sets (Un), such that for all
n ∈ Z there holds:

(i) Un ⊆ int(Bn);

(ii) Un ∩ Um = ∅ ∀m 6= n;

(iii) Leb(Un,θ) = an;

(iv) for every θ and every n, Un,θ is the union of at most 2|n|+1 open intervals.

Remark 3.8.

(a) Item (i) of this proposition implies property (v) of proposition 3.1 .

(b) For every θ, the union over n of the sets Un,θ is contained in (Int(π−1(Ξ)))θ .
Property (iii) implies that this union has full measure in (π−1(Ξ))θ. There-
fore, for any (θ, x) ∈ Ξ, the intersection (Int(π−1(Ξ)))θ ∩ π−1

θ ({x}) has
full measure in π−1

θ ({x}), and therefore is dense in π−1
θ ({x}). This ob-

servation will be used in the construction of specific examples in section 4.

Addendum 3.9. For any ε > 0 and any n ∈ Z, there exists a compact set
Vn ⊂ Un that satisfies Leb(Vn,θ) ≥ (1 − ǫ)an ∀θ ∈ T1.

Proof of proposition 3.7. Let us first give an idea of the proof, by explaining
the construction of U0 and U1. According to addendum 3.4, we may assume
that π−1(Γ0) contains the annulus A0 := T1 × [0, a0]. We define U0 to be the
interior of this annulus. To construct U1, we first note that the map π can
be factorised as π = π0 ◦ P0 where P0 consists in collapsing the annulus U0.
Furthermore, the map π0 is very similar to the map π: the results concerning
π will also apply to π0, and in particular we will find an annulus A1 included in
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π−1
0 (Γ1) having the desired width. Taking the complement of the curve P0(U0)

in the interior of A1, and bringing this open set back under P0, will provide
the open set U1; note that in each fibre U1 consists of at most two intervals, as
required.

By relabelling the sequence Γn, we can assume that it is indexed over N

instead of Z, which is more suitable for a proof by induction. Formally, every
n in the following proof should read ϕ(n) where ϕ is some bijection between N

and Z. Note in particular that this changes property (iv), that now reads:

(iv-bis) for every θ and every n, Un,θ is the union of at most n+1 open intervals.

The construction will be done by induction on n ∈ N by assuming the
following additional hypotheses.

(v) 1. There exists a fibre respecting monotonic map Pn : T2 → T2 having
the following property: the restriction of the Lebesgue measure to the
complement of U0,θ ∪ · · · ∪ Un,θ is sent to the measure αnLeb where
αn = 1 − a0 − · · · − an.

2. The projections of the open sets U0, . . . , Un by Pn are n+1 continuous
graphs.

3. There exists a fibre respecting monotonic map πn : T2 → T2, such
that for every θ, the map πn,θ : T1 → T1 sends the Lebesgue measure
on the fibre measure µ′(n)θ of the measure

µ′(n) =
1

αn

(
βLeb +

∑

i>n

aiµ
i

)
.

4. We have πn ◦ Pn = π.

Note that the crucial hypothesis here is the fact that the simultaneous col-
lapsing of the sets U0, . . . , Un yields n + 1 continuous graphs (hypothesis (v).2
above). Hypothesis (v) is illustrated by the following commutative diagram,
showing the correspondence between the different measures.

Leb
Pn

**VVVVVVVVVVVVVVVVVVVVV

π

��

αnLeb +
∑n

i=0 aiδPn(Ui)

πn
ttiiiiiiiiiiiiiiiii

µ = αnµ′(n) +
∑n

i=0 aiδΓi

Assume we have constructed the sets U0, . . . , Un and the maps Pn, πn sat-
isfying the above hypotheses.

Let q : T2 7→ T2 be the fibre respecting increasing map that sends the
annulus Ā := T1 × [0, an+1

αn
] on the null section T1 × {0}, and sends the re-

striction of the Lebesgue measure to the complement of [0, an+1

αn
] on the mea-

sure
(
1 − an+1

αn

)
Leb (see the diagram below). Let πn+1 : T2 7→ T2 be a fi-

bre respecting increasing map that sends the nul section on the curve Γn+1,
and sends the Lebesgue measure in each fibre to the measure µ′(n + 1) =
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αn+1
−1
(
βLeb +

∑
i>n+1 aiµ

i
)
, where αn+1 = 1 − a0 − · · · − an+1. The exis-

tence of such a map πn+1 is guaranteed by proposition 3.3 and its addendum,
applied with µ replaced by µ′(n + 1), and choosing n0 = n + 1. In particular,
this implies that property (v).3 is satisfied for n + 1.

Leb
Ω //_____________

πn

��

Leb = LebĀc + LebĀ

q

��
αn+1

αn
Leb + an+1

αn
δT1×{0}

πn+1

ssffffffffffffffffffffff

µ′(n) = αn+1

αn
µ′(n + 1) + an+1

αn
δΓn+1

Now the map πn+1 ◦ q is fibre-respecting and increasing, and it is easy to
see that it sends the Lebesgue measure on the measure µ′(n). The map πn

shares the same properties. According to proposition 3.6, there exists a fibred
rotation Ω such that πn = πn+1 ◦ q ◦Ω. We take Pn+1 = q ◦Ω ◦ Pn. Note that
πn+1 ◦ Pn+1 = πn ◦ Pn = π, so that property (v).4 is satisfied for n + 1. We
have the following commutative diagram.

T2

π

��

Pn

  A
AA

AA
AA

A ED

BC

Pn+1

oo

T2 Ω //

πn

����
��
��
��
��
�
��
��

T2

q

��

T2

πn+1

vvnnnnnnnnnnnnnnn

T2

Let A be the preimage by Ω of the annulus Ā = T1 × [0, an+1

αn
]. Since Ω is a

fibred rotation, by definition of Ā, there exists a continuous map σ : T1 → T1

such that

A =

{
(θ, x), σ(θ) ≤ x ≤ σ(θ) +

an+1

αn

}
.

By the definitions of the maps Ω, q, πn+1, the annulus A is contained in π−1
n (Γn+1).

Let ∆0, . . . , ∆n be the n + 1 continuous graphs Pn(U0), . . . , Pn(Un), provided
by property (v).2 for n. Let

Un+1 = P−1
n (Inte(A) \ (∆0 ∪ · · · ∪ ∆n)) .

This is clearly an open set that is disjoint from U0, . . . , Un. Thus (ii) is satisfied
for n+1. We now check the remaining properties at step n+1. By construction,
we have πn(A) = Γn+1, so that P−1

n (A) ⊂ π−1(Γn+1) = Bn+1. Hence, we have
(i) for n + 1. Note that for any θ

(Inte(A) \ (∆0 ∪ · · · ∪ ∆n))θ = Inte(Aθ) \ (∆0,θ ∪ · · · ∪ ∆n,θ).
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Thus this set is the union of at most n + 1 intervals. Hence, since Pn+1,θ is
increasing, so is the set

Un+1,θ = P−1
n,θ (Inte(Aθ) \ (∆0,θ ∪ · · · ∪ ∆n,θ)) .

This gives (iv-bis). Since Un+1,θ is disjoint from U0,θ ∪ · · · ∪ Un,θ, by the
induction hypothesis (v).1 for n and the definition of A, we have

Leb(Un+1,θ) = αnLeb (Inte(Aθ) \ (∆0,θ ∪ · · · ∪ ∆n,θ)) = αnLeb(Aθ) = an+1.

This yields (iii) for n + 1. Furthermore (Pn,θ)∗(Leb|Un+1,θ
) = αnLeb|Aθ

. Using
the induction hypothesis (v).1 for n, we see that

(Pn,θ)∗(Leb|(U0,θ∪···∪Un+1,θ)c) = αnLeb|Ac
θ
.

As Ωθ is just a rotation, and qθ maps Leb|Āc
θ

to (1 − an+1

αn
)Leb, the projection

Pn+1 satisfies property (v).1. By construction, Pn+1(Un+1) = T1 × {0}, and
this implies property (v).2 for n + 1.

Proof of addendum 3.9. Let us fix ε > 0 and n ∈ Z. For a given θ, the Lebesgue
measure of Un,θ is equal to an. Hence, there exists a closed set Vθ ⊂ T1

contained in Un,θ whose Lebesgue measure is larger than (1 − ε)an. Since
Un is open, for any θ′ in a closed neighborhood Wθ of θ ∈ T1 we still have
Vθ ⊂ Un,θ′ . Consider θ1, . . . , θs such that T1 is covered by the Wθ1

, . . . , Wθs
.

The proposition now holds with the set

Vn =

s⋃

i=1

Wθi
× Vθi

.

3.2 The measure ν

From now on, we assume that Γn = Rn(Γ), where Γ is a curve having flat
intersection with all its iterates. Furthermore, we consider a measure µ as
defined by (3.3) and a map π as provided by proposition 3.3.

As mentioned at the beginning of this section, we construct the homeomor-
phism f via a measure ν on T2. We will require that ν satisfies the following
properties:

(ν1) For all θ ∈ T1 the measure νθ is continuous (has no atom) and has full
support.

(ν2) The mapping θ 7→ νθ is continuous.

(ν3) π∗ν = R∗µ.

(ν4) In case R is a diffeomorphism which preserves the Lebesgue measure,
ν has a continuous and positive density with respect to the Lebesgue
measure.

Note that R∗µ = β.R∗Leb +
∑

n∈Z
anδΓn+1

.
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3.2.1 Construction of ν: the continuous case

In order to construct the measure ν, we first note that, if ǫ > 0, Un and Vn are
chosen as in proposition 3.7, then due to the Lemma of Urysohn there exist
continuous functions gn : T2 → [0, 1] such that

(g1) g−1
n (0, 1] = Un;

(g2) (1 − ǫ)an ≤ bn(θ) ≤ an where bn(θ) :=
∫

Un,θ
gn(θ, x) dx.

(The lower bound in (g2) can be ensured just by requiring gn|Vn
= 1.) Now let

g(θ, x) :=
∑

n∈Z

an

bn+1(θ)
· gn+1(θ, x).

This positive function is in L1
Leb(T

2), since the L1
Leb-norm of the n-th term in

the sum is exactly an. 4 For the same reason, for any θ, x 7→ gn(θ, x) is in
L1

Leb(T1) and has a norm bounded by an. For each n the mapping

T1 → L1
Leb(T1) , θ 7→ gn(θ, .)

is continuous, the same is true for θ 7→ g(θ, .) (as the uniform limit of a se-
quence of continuous functions from T1 to L1

Leb(T1)). Consequently, if we
let ν1 := gLeb, then θ 7→ ν1

θ is continuous with respect to the topology of
weak convergence. Due to (g1) the function x 7→ g(θ, x) is strictly positive on⋃

n∈Z
Un,θ, and due to (iii) in proposition 3.7 this set is dense in Bθ (remem-

ber that B = π−1(Ξ)). Thus ν1
θ has full support in Bθ. By construction, the

measure ν1 projects to
∑

n∈Z
anδΓn+1

.
Further, as π is injective on Bc = π−1(Ξc) and (R∗Leb)(Ξ) = 0, the measure

ν2 defined by ν2(A) := β(R∗Leb) ◦ π(A) is well-defined and obviously projects
to β(R∗Leb). In addition, θ 7→ ν2

θ is continuous, and the fibre measures ν2
θ are

continuous and have full support on int(Bc
θ). Altogether, this implies that

ν := ν1 + ν2

satisfies (ν1)–(ν3).

3.2.2 Construction of ν: the differentiable case

As above we suppose that ǫ, Un and Vn are chosen as in propositions 3.7 and 3.9.
Further, we assume that R is a diffeomorphism which preserves Lebesgue mea-
sure. Note that π projects Leb|Bc to βLeb, and Leb|Un

to anδΓn
. Since

R∗µ = βLeb +
∑

n∈Z
anδΓn+1

, we will construct the measure ν = hLeb by
defining a continuous density h which satisfies h|Bc ≡ 1 and

∫

Un+1,θ

h(θ, x) dx = an ∀θ ∈ T1, n ∈ Z . (3.5)

This is done by

h(θ, x) := 1 −
∑

n∈Z

(an+1 − an) ·
gn+1(θ, x)

bn+1(θ)
. (3.6)

4Note that the function g is not continuous since an

bn+1(θ)
does not tend to 0.
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It is obvious by construction that h satisfies (3.5) and therefore projects to
R∗µ.

It remains to show that, for a suitable choice of an in (3.3) and ǫ in proposi-
tion 3.7, the function h is continuous and strictly positive, such that (ν4) (and
thus also (ν1) and (ν2)) hold. In order to see this, recall that ‖gn‖C0 = 1.
Further ∣∣∣∣

an+1 − an

bn+1(θ)

∣∣∣∣ ≤
|an+1 − an|

(1 − ǫ)an
, (3.7)

and for a suitable choice of the sequence an (fixing any ε ∈ (0, 1) one can choose
an = (|n| + k)−2 for sufficiently large k), we have

∑
n∈Z

an < 1, the right side
of (3.7) is strictly smaller than 1 and converges to 0 as n → ∞. Since all the
gn have disjoint support, this implies that h will be continuous and strictly
positive as required. Further, if k is large enough we also have

∑
n∈Z

an < 1.

3.2.3 C1+α-Examples

Without going too much into detail, we remark that at least in the case where R
leaves the Lebesgue measure invariant, as in the case of an irrational translation
of the torus, it is possible to obtain examples with C1+α fibre maps for any
α ∈ (0, 1/2). For this, it suffices that the density h constructed above is α-
Hölder continuous with respect to θ.

Although this is not explicitly stated in lemma 3.7, it is obvious from the
construction of the sets Un in the proof of this lemma that the functions
(θ, x) 7→ d(x, U c

n,θ) are continuous. In addition, due to (iv) in proposition 3.7,
the sets Un,θ consist of at most 2|n| + 1 connected components on each fibre.
Therefore, the functions

gn(θ, x) := min

{
1,

(
4|n| + 2

ǫan
d(x, U c

n,θ)

)α}

satisfy (g1) and (g2). In addition, they are α-Hölder continuous with respect
to θ with Hölder-constant ((4|n| + 2)/(ǫan))α. In (3.6), the functions gn+1

are multiplied with a factor ≤ |an+1 − an|/(1 − ǫ)an, such that the resulting

product has α-Hölder constant ≤ ((4|n|+2)/ǫ)α(an+1−an)

(1−ǫ)a1+α
n

. Hence, if we choose

(an)n∈Z such that

sup
n∈Z

|n|α|an+1 − an|

aα+1
n

< ∞ , (3.8)

then the resulting sum in (3.6) is α-Hölder continuous (since the functions gn all
have disjoint support). However, (3.8) is true for any sequence an = |n + k|−s

with k ≥ 1 and s ∈ (1, 1/α− 1).
Of course, one should expect that the construction works for all α ∈ (0, 1).

For this, one would need to show that the sets Un in proposition 3.7 can be
chosen such that the number of connected components is bounded by a constant
independent of n. Since this would make the proof much more complicated,
we refrained from doing so.

3.3 The homeomorphism f

In this section, we consider a projection π as provided by proposition 3.3 and a
measure ν which satisfies (ν1)–(ν4), as constructed in the previous sections. We
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denote by γ0, γ1 : T1 → T1 the maps whose respective graphs are Γ0 and Γ1, and
define the two (discontinuous) maps ϕ−

0 , ϕ−
1 by letting ϕ−

i (θ) = Inf(π−1(Γi))
(this has a meaning since T1 is an oriented circle).

Definition of f and verification of π ◦ f = R ◦ π. Due to (ν1), the
map

ηθ : T1 → T1 , x 7→ νθ[ϕ
−
1 (θ), x] mod 1

is a homeomorphism. Using this fact, we let

fθ(x) := η−1
θ+ω(Leb[ϕ−

0 (θ), x]) (3.9)

In other words, we simply define f by requiring that it maps ϕ−
0 to ϕ−

1 and
sends the Lebesgue measure to ν, so that

νθ+ω[ϕ−
1 (θ + ω), fθ(x)] = Leb[ϕ−

0 (θ), x] . (3.10)

For arbitrary x1, x2 ∈ T1, we obtain

νθ+ω[fθ(x1), fθ(x2)] = Leb[x1, x2] . (3.11)

As all fibre maps fθ are circle homeomorphisms, the map f is bijective.
We remark that in the case where the fibre measures νθ have continuous

(α-Hölder-continuous) densities, as in sections 3.2.2 and 3.2.3, it follows imme-
diately from the definition that the fibre maps fθ are C1 (C1+α).

In order to verify the relation π ◦ f = R ◦ π, it suffices to check that for
every (θ, x) ∈ T2 there holds

π−1(R(z)) = f(π−1(z)) . (3.12)

In order to do so, suppose π−1
θ {x} = [ξ−0 , ξ+

0 ] and π−1
θ+ω{Rθ(x)} = [ξ−1 , ξ+

1 ]. We
claim that

νθ+ω[ϕ−
1 (θ + ω), fθ(ξ

±
0 )] = νθ+ω[ϕ−

1 (θ + ω), ξ±1 ] . (3.13)

Since the measure νθ+ω has full support, this implies (3.12). For the left end-
points, we have

νθ+ω[ϕ−
1 (θ + ω), fθ(ξ

−
0 )]

(3.10)
=

= Leb[ϕ−
0 (θ), ξ−0 ] = µθ[γ0(θ), x)

= (R∗µ)θ+ω[γ1(θ + ω), Rθ(x))
(ν3)
= νθ+ω[ϕ−

1 (θ + ω), ξ−1 ] .

The argument for the right endpoints is similar, which proves (3.13).

Continuity of f . We first show that f is continuous in (θ, x) if (θ, x) /∈ B.
Recall that this means that π(θ, x) is not contained in Ξ =

⋃
n∈Z

Rn(Γ), and
consequently the same is true for the point z = R ◦ π(θ, x). Therefore z =
R ◦ π(θ, x) has a unique preimage under π. As R ◦ π = π ◦ f , this preimage is
f(θ, x). Since π is continuous and due to compactness, it follows that for any
point z′ which is sufficiently close to z, the preimage π−1({z′}) is contained in
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a small neighbourhood of f(θ, x). Now suppose (θ′, x′) is close to (θ, x). Then
z′ := R ◦ π(θ′, x′) is close to z by continuity. As f(θ′, x′) must be contained in
π−1({z′}), this shows that f(θ′, x′) is close to f(θ, x). Hence f is continuous
in (θ, x).

Now let (θ, x) ∈ T2 be arbitrary. The set Bc intersects every fibre, since
this is obviously true for its image Ξc under π. Consequently, there exists
a continuity point (θ, x0) of f on the same fibre. Suppose that (θ′, x′) is a
point close to (θ, x). Then (3.11) implies that νθ′+ω([fθ′(x0), fθ′(x′)]) is close
to νθ+ω([fθ(x0), fθ(x)]). As f is continuous in (θ, x0), the points fθ′(x0) and
fθ(x0) are close. Therefore, the fact that νθ+ω has full support and the continu-
ity of θ 7→ νθ imply that fθ′(x′) has to be close to fθ(x). Thus, f is continuous
on all of T2.

3.4 Proof of addendum 3.2

Suppose that R is transitive, Γ has the additional property provided by ad-
dendum 2.3 and Ξ is dense. We have to show that given any two open sets
U, V ⊆ T2 there exists some n ∈ N such that fn(U) ∩ V 6= ∅.

First, we claim that the interior of B = π−1(Ξ) is dense. For suppose
that there exists an open set W ⊆ Bc. For any point z ∈ W , since π−1{z}
is a singleton, compactness and continuity of π imply that there exists some
neighbourhood W̃ of π(z), such that π−1(W̃ ) ⊂ W . However, as W̃ is clearly
disjoint from Ξ, this contradicts the assumptions.

Thus, by reducing both sets further if necessary, we can assume that U
and V are two small rectangles which are included in B. In fact, we can even
restrict to the case where U ⊆ Bk and V ⊆ Bl for some k, l ∈ Z, and that
both I := p1(U) and J := p1(V ) are intervals. However, due to the choice of Γ
there exists some n ∈ N such that Rn(Γk|I) crosses Γl|J over I +nω∩J . As all
the maps πθ are order-preserving this implies that fn(U) has to cross V over
I ′ := (I + nω) ∩ J (more precisely : if O is chosen as in definition 2.1, then
π−1(I ′ × O) \ V consists of two connected components, and fn(U) intersects
both of them). However, this is only possible if fn(U) intersects V .

Remark 3.10. If R is transitive, it is always possible to construct a curve Γ,
such that Ξ is dense, as required by addendum 3.2 . For this, it suffices to
choose each Γn in the construction of Γ in section 2, such that it contains a
point with dense orbit. This is possible due to remark 2.9 . It follows that for
each n ∈ N there exists an integer Nn, such that the first Nn iterates of Γn are
1/n-dense in T2. If all subsequent perturbations are chosen small enough, then
for all k ≥ n the first Nn iterates of Γk will be 2/n-dense. In the limit, this
gives the required property.

4 The minimal set

In this section, we collect some general results which concern the properties
and structure of the minimal sets of a transitive but non minimal qpf circle
homeomorphism. It is known that in the absence of invariant strips such a set
must have a complicated structure:
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Proposition 4.1 ([7, theorem 4.5 and lemma 4.6]). Suppose f ∈ F has no
invariant strips and is transitive, but not minimal. Then any minimal invariant
set M which is a strict subset of T2 has the following two properties:

(a) Every connected component C of M is a vertical segment, i.e. #p1(C) =
1.

(b) For every open set U ⊆ T2, the set p1(U ∩ M) is either empty or it
contains an interval.

4.1 Uniqueness and structure

We start by giving two criteria for the uniqueness of the minimal set. (For a
previous partial result on quasiperiodic SL(2, R)-cocycles, see [5, section 4.17].)

Proposition 4.2. Suppose f ∈ F has no invariant strip, or is transitive. Then
there is only one f -invariant minimal set.

Proof. We choose an orientation on the circle, so that the segment (x, y) is well
defined whenever x, y ∈ T1. Suppose that there exist two minimal sets K 6= K ′.
Then K ∩ K ′ = ∅. We define the set U1 as the union of all vertical segments
{θ}×(x, y) which are disjoint from K∪K ′ and satisfy (θ, x) ∈ K and (θ, y) ∈ K ′.
Similarly we define U2 as the union of all vertical segments {θ} × (x, y) which
are disjoint from K ∪ K ′ and satisfy (θ, x) ∈ K ′ and (θ, y) ∈ K. These two
sets are clearly disjoint and intersect each fibre {θ} × T1. As all fibre maps
fθ are order preserving, they are also invariant. Let us prove that they have
non-empty interior. The mappings θ 7→ Kθ and θ 7→ K ′

θ are semi-continuous,
hence their sets of continuity points are two dense Gδ-sets; in particular they
have a common point θ0. It is easy to see that all the points (θ0, x) in U1

belong to the interior of U1, similar for U2. Thus Int(U1) and Int(U2) are two
disjoint non-empty open invariant sets, and f is not transitive.

It remains to consider the case when f has no invariant strip and is not
transitive. By theorem 1.1, f is semi-conjugate to an irrational torus rotation.
Therefore, due to a result by Furstenberg (see [12, theorem 4.1]), f is uniquely
ergodic, hence it has a unique minimal set.

Concerning the number of connected components in each fibre, we have the
following:

Proposition 4.3. Let f be a qpf circle homeomorphism, and K a minimal set
for f . Let c(θ) ∈ N ∪ {∞} be the number of connected components of Kθ. Let
c(K) = infθ∈T1 c(θ). Then c(θ) = c(K) on a dense Gδ subset of the circle.

Proof. Let Θ1 be the set of continuity points of the semi-continuous map θ 7→
Kθ: this is a dense Gδ subset of the circle. The restriction of the map θ 7→ c(θ)
to Θ1 is again semi-continuous, so it admits a continuity point θ0. By continuity
there exists an open neighbourhood U of θ0 such that c is constant on U ∩Θ1.
Since c is invariant under the circle rotation θ 7→ θ + ω, it is constant on a
dense open subset Θ2 of Θ1, and Θ2 is again a dense Gδ subset of the circle.
Let c0 be the value of c on Θ2, and let us prove that c0 = c(K). For this
consider a fibre θ0 ∈ Θ2. Since θ0 is a continuity point of θ 7→ Kθ, there exists
a neighbourhood U of θ0 on which c(θ) ≥ c0. Using the invariance of c under
the circle rotation, we see that this inequality holds on the whole circle.
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This result raises the following question: for the unique minimal set K of
a non minimal qpf circle map with no invariant strip, can c(K) be finite ?

4.2 Examples

Proposition 4.4.

1. There exists a transitive non minimal qpf circle homeomorphism whose
minimal set K is a Cantor set and its intersection with any fibre {θ}×T1

is uncountable; in particular c(K) = +∞.

2. There exists a transitive non minimal qpf circle homeomorphism whose
minimal set contains a vertical segment.

Proof of item 1. Choose a minimal qpf circle homeomorphism R, and let Γ be a
continuous graph constructed by proposition 2.2 and addendum 2.3. Let f be a
qpf circle homeomorphism given by proposition 3.1, which in particular satisfies
π ◦ f = R ◦ π and is transitive but not minimal. Let Ξ =

⋃
n∈Z

Rn(Γ). Then

we claim that the unique minimal set K for f is the set π−1(Ξc): indeed, since
R is minimal π(K) = T2, thus K contains π−1(Ξc) by (iii) of proposition 3.1.

To construct the first example we suppose that R has no invariant strip and
that for each θ, the set Ξθ is dense in the circle: in particular this is always true
if R is a irrational rotation. It follows from items (ii) and (iii) of proposition 3.1
together with remark 3.8(b) that the set Int(π−1(Ξ)) intersects each fibre in an
open dense set. In particular, Kθ has empty interior. Since Ξc

θ is uncountable,
so is Kθ. Since R has no invariant strip, neither has f . Hence every connected
component of K is included in a fibre (proposition 4.1); consequently K is
totally disconnected. Since K is a minimal infinite set, it is perfect, so K is a
Cantor set.

Sketch of proof of item 2. To construct the second example, we start with an
irrational rotation R0 and choose a curve Γ0 as provided by proposition 2.2
and its addendum. We consider a point (θ0, x0) whose orbit by R0 is disjoint
from Γ0. Applying Rees construction in [13, 15] allows to build a minimal
fibred homeomorphism R that is semi-conjugate to R0 by a semi-conjugacy
Φ such that Φ−1(θ, x) is a nontrivial vertical segment if (θ, x) belongs to the
orbit O of (θ0, x0) under R0 and a single point otherwise. Since Φ−1(O) has
empty interior and R0 is minimal, R is minimal. Now we let Γ = Φ−1(Γ0); Γ
is a continuous graph whose iterates are disjoint from the non-trivial vertical
segment I = Φ−1(θ0, x0). Furthermore, one can check that R and Γ still
satisfy the conclusions of proposition 2.2 and its addendum. We now apply
proposition 3.1. Thus we get a map f whose minimal set K contains the
non-trivial vertical segment π−1(I).

4.3 Ergodic measures

In this subsection, we briefly want to discuss, in a rather informal way, the
consequences of our construction in sections 2 and 3 for the structure of the
invariant measures of the system. First, we recall an old result by Furstenberg
[12], which may be seen as a measure-theoretic counterpart to theorem 1.1.
In order to state it, we note that p1 maps any ergodic invariant probability
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measure µ of a qpf circle homeomorphism f to the Lebesgue measure on T1,
since this is the only invariant probabitity measure for the underlying irrational
circle rotation. Consequently, µ can be decomposed as

µ(A) =

∫

T1

µθ(Aθ) dθ ,

where the probability measures µθ are the conditional measures of µ with re-
spect to the σ-algebra p−1

1 (B(T1)).

Theorem 4.5 (Furstenberg, [12, theorem 4.1]). Either f is uniquely ergodic
and for almost every θ the measure µθ is continuous, or there exists n ∈ N such
that for almost every θ the measure µθ is the equidistribution on n points.

In the second case, one obtains a measurable invariant set Φ := {(θ, x) |
µθ{x} > 0}, which contains exactly n points in every fibre.5 Since such a set
can always be represented as the graph of a measurable n-valued function ϕ,
one speaks of an invariant graph. Conversely, every invariant graph determines
an ergodic invariant measure µΦ, given by

µΦ(A) =

∫

T1

#(Aθ ∩ Φθ)

n
dθ .

(We remark that the requirement that this measure is ergodic is part of the def-
inition of an invariant graph.) For a more detailed discussion of these concepts,
see [7, section 2].

The important fact in our context is that the two alternative cases of the-
orem 4.5 are preserved by topological extension: If f is semi-conjugate to R
via a fibre-respecting semi-conjugacy π, then π projects f -invariant graphs to
R-invariant graphs. Conversely, the preimage of any R-invariant graph under
π intersects every fibre in exactly n connected components, and the endpoints
of the latter constitute invariant graphs for the topological extension f .

In order to describe how our construction affects the invariant measures, we
place ourselves in the situation of proposition 3.1 and consider the two cases
in theorem 4.5 .

1) When the original transformation R has a unique invariant measure
with continuous fibre measures, then nothing much happens. The topological
extension f will still have a unique invariant measure with continuous fibre
measures. The only effect is that the new invariant measure does not have full
topological support in T2 (since f is not minimal).

The question of what happens with an invariant graph Φ when passing from
R to f in proposition 3.1 (and hence in theorem 1.3) mainly depends on the
value of µΦ(Γ). Thus, we have to distighuish to subcases.

2a) When µΦ(Γ) = 0, nothing changes either. The preimage of Φ under π
constitutes an invariant graph for the new map f , and the two systems (R, µΦ)
and (f, µπ−1Φ) are isomorphic in the measure-theoretic sense.

2b) The more interesting case is the one where µΦ(Γ) > 0. In this case,
since µΦ is ergodic and Ξ =

⋃
n∈Z

Rn(Γ) is invariant, we have µΦ(Ξ) = 1.

5A priori, this only holds on almost every fibre. However, by modifying µθ on a set of measure
zero, one one can always assume without loss of generality that it holds on every fibre.
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Consequently, the preimage π−1(θ, x) of almost every point in Φ is a vertical
segment. The endpoints of these segments constitute two distinct invariant
graphs for f , such that the invariant measure µΦ has been (at least) doubled.
A more difficult question, which we have to leave open here, is the one whether
there exist further invariant graphs in the preimage of Φ.

Without going into detail, we remark that both conditions µΦ(Γ) = 0 and
µΦ(Γ) > 0 can be ensured by adapting the construction of the curve Γ in the
proof of proposition 2.2 . In the former case, the crucial fact is that for any
ǫ > 0, it is always possible to render any segment of a given curve disjoint
from Φ on a set of fibres of measure arbitrarily close to 1 by an ǫ-perturbation.
Performing an infinite sequence of smaller and smaller perturbations, this shows
that in any arbitrarily small box there exist continuous curve segments which
intersect Φ only on a set of fibres of measure zero. Using this fact appropriately
in each step of the construction, namely when the modifications are constructed
in the proof of perturbation lemma 2.7 (compare also remark 2.9), allows to
ensure that the limit curve obtained in proposition 2.2 satisfies µΦ(Γ) = 0.

Conversely, in order to ensure µΦ(Γ) > 0, it suffices to start the construction
in section 2 with a curve Γ0 which intersects Φ on a set of positive measure.
This is always possible, since there exists compact sets K ⊆ T1 of measure
arbitrarily close to 1 with the property that the restriction of ϕ to K is con-
tinuous (where ϕ is the measurable function T1 → T1 with graph Φ as above).
If the modifications in each step of the construction are then performed only
over sets of sufficiently small measure, then the resulting limit curve Γ will
still intersect Φ on a set of positive measure. It is even possible to ensure this
condition for any finite number of invariant graphs at the same time.

Finally, we want to mention that it is possible to repeat this “doubling
procedure” as many times as wanted, producing a sequence of topological ex-
tensions f1, f2, . . . of R with more and more invariant graphs in the preimage
of an initial R-invariant graph. Furthermore, the C0-distance between both
fn and fn+1 and the corresponding semi-conjugacies can be made arbitrarily
small in each step. Then the fn converge to a limit f∞, which is a topological
extension of R with an infinite number of invariant graphs that project down
to Φ.

4.4 The linear case

Finally, we restrict ourselves to qpf linear circle homeomorphisms. We identify
the 2-torus T2 with T1 × P1(R) and consider the projective action of SL(2, R)
on P1(R). Then a qpf linear circle homeomorphism is a homeomorpism of
the 2-torus, isotopic to the identity, of the form (θ, x) 7→ (θ + ω, fθ(x)) where
fθ ∈ SL(2, R).

Proposition 4.6. Let f be a qpf linear circle homeomorphism. Assume f is
transitive but not minimal. Let K be the unique minimal invariant set for f .
Then Kθ contains at most two points for every θ in a dense Gδ subset of the
circle. In particular we have c(K) = 1 or 2 in proposition 4.3.

In case there is no invariant strip, the preceeding result can be improved
further. Let us recall that we know no example of a qpf linear circle homeo-
morphism with no invariant strip which is not minimal (so that the following
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statement could turn out to be void).

Proposition 4.7. Let f be a qpf linear circle homeomorphism. Assume f is
not minimal and has no invariant strip. Let K be the unique minimal invariant
set for f . Then Kθ is a singleton for every θ in a dense Gδ subset of the circle.
In particular we have c(K) = 1 in proposition 4.3.

In the case where f has invariant strips, one has the following result:

Proposition 4.8 ([16]). Let f be a qpf linear circle homeomorphism. Assume
f has invariant strips and let K be a minimal invariant set for f . Then there
are two (non exclusive) possibilities:

1. K is a continuous (p, q)-invariant graph, or

2. for every θ in a dense Gδ subset of the circle the cardinality of the set Kθ

is 1 or 2. In particular we have c(K) = 1 or 2 in proposition 4.3.

This result is in [16] formulated for continuous time systems, but the trans-
lation to the discrete time case and vice versa is plain sailing. We provide a
new proof of it. The authors in [16] also show that any minimal set belongs
to one of five different cases, but for one of the possibilities (which they call
“Denjoy extension”) they leave open whether it can be realised or not. The
proposition 4.6 above excludes the existence of such Denjoy extensions.

Proposition 1.6 now follows from propositions 4.7 and 4.8: strict minimal
set K for a qpf linear circle homeomorphism f , if f has no invariant strip then
for a generic θ the cardinality of Kθ is 1 (proposition 4.7); if f has invariant
strips, then the cardinality of Kθ is generically 1 or 2, or K is a (p, q)-invariant
graph (proposition 4.8). Note that if the cardinality of Kθ is generically greater
than 2 then we are in the last case with pq > 2, and then it is easy to see that
f is actually conjugate to a rotation.

Proof of proposition 4.6. Let f and K be as in the proposition. Let Θ1 be the
set of θ0 ∈ T1 such that θ0 is a continuity point of θ 7→ Kθ, and such that for
a dense set of x0 ∈ T1 the positive orbit of (θ0, x0) is dense in T2. Given the
transitivity of f , the set of points whose positive orbit is dense is a dense Gδ

subset of the 2-torus. Thus Θ1 contains a dense Gδ subset of the circle.6

We now suppose that there exists some θ0 ∈ Θ1 such that Kθ0
is not a

single point. We choose a connected component (a, b) of T1 \ Kθ0
; note that

a 6= b.

Claim 4.9. Every map A ∈ SL(2, R) that fixes a and b globally fixes Kθ0
.

In order to prove the claim, we introduce the maps fn
θ ∈ SL(2, R) de-

fined by fn(θ, x) = (θ + nω, fn
θ (x)). By definition of Θ1 there exists a point

z0 = (θ0, x0) ∈ {θ0}×(a, b) with a dense positive orbit. Let z = (θ0, A(x0)), and
consider an increasing sequence (ni) such that fni(z0) converges to z. By defi-
nition of Θ1, the sequence fni

θ0
(Kθ0

) converges to Kθ0
. This implies that fni

θ0
(a)

converges to a and fni

θ0
(b) converges to b. The map g 7→ (g(a), g(z0), g(b)) is a

homeomorphism between SL(2, R) and the space of cyclically ordered triples.

6Recall that for any dense Gδ subset E of T2, there exists a dense Gδ subset of points θ ∈ T1

for which Eθ is a dense Gδ subset in T1.
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Thus the sequence fni

θ0
converges to A, and A(Kθ0

) = Kθ0
, and the claim is

proved.
Since SL(2, R) acts transitively on positively ordered triplets, this claim

implies that Kθ0
either contains [b, a] or is disjoint from (b, a). In the first case

Kθ0
would contain a point with dense positive orbit and K would equal T2, a

contradiction. Thus we have proved that for every θ0 ∈ Θ1 the set Kθ0
contains

either one or two points.

Proof of proposition 4.7. First of all, suppose that f is semi-conjugate to an
irrational rotation. Then it follows from the classification for the dynamics of
qpf linear circle homeomorphisms in [10] that the semi-conjugacy has linear
fibre maps (i.e. πθ ∈ SL(2, R) ∀θ ∈ T1), which further implies that the unique
f -invariant measure is equivalent to the Lebesgue measure. Hence f is minimal.
Due to theorem 1.1, this means that we can assume, without loss of generality,
that f is ρ-unbounded and transitive.

We argue by contradiction. Applying proposition 4.6, we see that Kθ con-
tains exactly two points for a dense Gδ subset Θ2 of the circle. We can also
assume that every point in Θ2 is a continuity point of θ 7→ Kθ.

We fix some θ0 ∈ Θ2. Up to a linear fibred conjugacy, we can assume that
Kθ0

= {1/8, 5/8}. By continuity we can choose an open interval I containing
θ0 such that for each θ ∈ I, Kθ does not meet [1/4, 1/2] neither [3/4, 1], and
meets both (0, 1/4) and (1/2, 3/4).

We choose a lift F of f to T1 × R, and consider the lift K̃ of K. By
the choice of I, for every z ∈ K̃ ∩ (I × R) there exists τ(z) ∈ 1

2Z such that
z ∈ I × (τ(z), τ(z) + 1/4). Now let θ, n be such that θ and θ + nω belong to
I ∩ Θ2. The definitions of I and Θ2 entails that, for a fixed value of θ, the
number τ(Fn(z)) − τ(z) is constant on K̃θ. We denote this number by dn(θ).

Claim 4.10. There exist an interval J ⊂ I and an integer n such that J+nω ⊂
I and the function dn is not constant on J ∩ Θ2.

Let us prove the claim. Let J be any compact non-trivial interval inside I.
There exists n0 > 0 such that every interval J ′ with the same length as J has
an iterate J ′ + mω inside I with 0 ≤ m ≤ n0. Since f is not ρ-bounded, the
vertical diameter of the sequence of iterates Fn(J ×{0}) is not bounded. Thus
there exists N > 0 such that for every m = 0, . . . , n0 the vertical diameter of
FN+m(J × {0}) is greater than 1. By the choice of n0 we can choose such
an m with J + (N + m)ω ⊂ I. Let n = N + m, then dn cannot be constant
on J ∩ Θ2 since this would imply that the vertical diameter of Fn(J × {0}) is
smaller than 3/4. This proves the claim.

For every half integer k let us consider the set Jk = d−1
n {k}. The interval J

is contained in the union of finitely many Jk’s, thus the previous claim implies
that there exist k 6= k′ and θ1 ∈ J ∩ Jk ∩ Jk′ . As θ1 is a limit point of d−1

n (k),
there exist x1 ∈ (0, 1/4) and x2 ∈ (1/2, 3/4) such that Fn

θ1
(x1) ∈ (k, k + 1/4)

and Fn
θ1

(x2) ∈ (k + 1/2, k + 3/4). Similarly there exist x′
1 ∈ (0, 1/4) and x′

2 ∈
(1/2, 3/4) such that Fn

θ1
(x′

1) ∈ (k′, k′ + 1/4) and Fn
θ1

(x′
2) ∈ (k′ + 1/2, k′ + 3/4).

To fix ideas we assume that x1 < x′
1. Since Fn

θ1
is order-preserving this implies

that k′ > k, and thus we also have x2 < x′
2. Since x′

1 < x2 we see that actually
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k′ = k + 1/2. Thus we have

Fn
θ1

((x1x
′
1)) ⊃

[
k +

1

4
, k +

1

2

]
and Fn

θ1
((x2x

′
2)) ⊃

[
k +

3

4
, k + 1

]
.

We consider the projective circle homeomorphism ϕ : x 7→ fn
θ1

(x) − 1/4 − k.
Both intervals [0, 1/4] and [1/2, 3/4] are contained in the interior of their image
by ϕ, and both intervals [1/4, 1/2] and [3/4, 1] are contained in the interior of
their pre-image: thus ϕ is not the identity but has a fixed point inside the
interior of each of these four intervals. This is absurd since ϕ is a projective
map.

Proof of proposition 4.8. Let K be a minimal set. The following properties are
well known.

Claim 4.11. There exists a compact invariant set A ⊆ T2 and n ≥ 1 such that

• K ⊆ A;

• for all θ ∈ T1 the set Aθ consists of exactly n connected components;

• Kθ coincides with Aθ and contains exactly n points whenever θ is a con-
tinuity point of the mapping θ 7→ Kθ.

In particular, for all θ in a dense Gδ subset of T1, the cardinality of Kθ is equal
to n.

Briefly spoken, this is due to the general fact that if f has invariant strips,
then every minimal set is contained in an invariant strip, which can furthermore
be chosen minimal with respect to the inclusion amongst all invariant strips.
Such a minimal invariant strip automatically has the required properties of the
set A above. In order to give precise references, we argue as follows: Recall
that, by assumption, f has an invariant strip. It follows from [7, Lemma 3.9]
that

ρ(f) =
k

q
ω +

l

p
mod 1

for suitable integers k, q, l, p ∈ Z, q, p 6= 0 (which are further specified in [7]).
If we go over to a suitable iterate, consider a lift of f to the q-fold cover
(R/qZ) × T1 and perform a conjugacy of the form (θ, x) 7→ (θ, x − mθ) with
suitable m ∈ Z, then we can assume that ρ(f) = 0. Therefore, we can choose a
lift F : T1 ×R → T1 ×R with ρ(F ) = 0. Let K̃ be the ω-limit set of any point
(θ, x) ∈ T1 × R which lifts a point of K. Since F -orbits are bounded due to
the bounded deviations, K̃ is a minimal F -invariant set, which projects down
to K. It follows from the results in [18], for example corollary 4.4, that the set

Ã := {(θ, x) | inf K̃θ ≤ x ≤ sup K̃θ}

is reduced to a point (and in particular coincides with K̃) on all fibres which
are continuity points of θ 7→ K̃θ. The facts that K̃ ⊆ Ã and that for all θ ∈ T1

the set Ãθ consists of exactly one connected component follows directly from
the definition. By projecting Ã to the torus and redoing the transformations
described above, we obtain the required set A. This proves the claim.
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Now suppose n > 2. We have to show that K is is the graph of a continuous
n-valued curve in this case. If the cardinality of Kθ equals n for any θ ∈ T1,
then this follows easily. Hence, suppose for a contradiction that there exists
some θ0 ∈ T1 with #Kθ0

≥ n + 1. Further, fix some θ1 ∈ T1 which is a
continuity point of θ 7→ Kθ. Note that this implies #Kθ1

= c(K) = n, and let
Kθ1

= {x1, . . . , xn}. Let A ⊇ K be as above and suppose A1
θ0

, . . . , An
θ0

are the
n connected components of Aθ0

. Let nj be an increasing sequence of integers,
such that θ0 + njω → θ1. By going over to a subsequence and relabelling if
necessary, we can assume that each of the sequences f

nj

θ0
(Ai

θ0
) converges to the

point xi. (Note that the continuity of θ 7→ Kθ in θ1 implies that the limit
points of different connected components of Aθ0

are distinct.) Let us choose
arbitrary points y1 ∈ A1

θ0
, y2 ∈ A2

θ0
, y3 ∈ A3

θ0
. As all f

nj

θ0
are the projective

actions of SL(2, R)-matrices, this implies that the f
nj

θ0
themselves converge

to the linear circle homeomorphism g which maps (y1, y2, y3) on (x1, x2, x3).
However, this leads to a contradiction: at least one of the intervals Ai

θ0
must

be non-degenerate (since Kθ0
⊆ Aθ0

and #Kθ0
≥ n + 1), but in the limit it is

contracted by g to a single point xi.
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[15] F. Béguin, S. Crovisier and F. Le Roux. Construction of curious min-
imal uniquely ergodic homeomorphisms on manifolds: the Denjoy-Rees
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