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Preface

The present monograph is a merged, reorganized, significantly revised and exten-

sively completed version of two chapters, entitled “Boolean Functions for Cryp-

tography and Error Correcting Codes” [236] and “Vectorial Boolean Functions

for Cryptography” [237], which appeared in 2010 as parts of the book “Boolean

Models and Methods in Mathematics, Computer Science, and Engineering” [394]

(Editors, Yves Crama and Peter Hammer). It is meant for researchers but is ac-

cessible to anyone who knows basics in linear algebra and general mathematics.

All the other notions needed are introduced and studied (even finite fields are,

in Appendix).

Since these chapters were written in 2009, about 1500 papers have been pub-

lished which deal with this two-fold topic (which is broad as we see), and this

version is updated with the main references and their main results (with correc-

tions in the rare cases where they were needed). It also contains original results.

New notions on Boolean and vectorial functions and new ways of using them

have also emerged. A chapter devoted to these recent and/or not enough studied

directions of research has been included.

In the limit of a book, we tried to be as complete as possible. Of course, we could

not go into details as much as do papers, but we made our best to ensure a good

trade-off between completeness in scope and in depth. The choice of those papers

which are referred and of those results which are developed may seem subjec-

tive; it has been difficult, given the large number of papers. We tried, within the

length limit of 600 pages and some, to give the proof of a result each time it

was short and simple enough, and when it provided a vision (we tried to avoid

giving too technical proofs whose only - but of course important - value would

have been to convince the reader that the result is true). We would have liked

to avoid, when presenting arguments and observations, to refer to results (and

concepts) to come later in the text, but the large number of results has made this

necessary; otherwise, it would have been impossible to gather in a same place all

the facts related to a same notion.

We have limited ourselves to Boolean and vectorial functions in characteristic

2, since these fit better with applications in coding and cryptography, and since

dealing with p-ary and generalized functions would have reduced the description

of the results on binary functions.
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Notation

|I| size of a set I,

buc integer part (floor) of a real number u,

due ceiling of u (the smallest integer larger than or equal to u),

φ−1(u) pre-image of u by a function φ,

1E indicator (or characteristic) function of a set E: 1E(x) =

{
1 if x ∈ E
0 otherwise,

δa the Dirac (or Kronecker) symbol at a (i.e. the indicator of {a}),
F2 the finite field with two elements 0, 1 (bits),

Fn2 the n-dimensional vector space over F2 (sometimes identified with F2n),

Ln,m the vector space of linear (n,m)-functions,

0n zero vector in Fn2 or in Fnq , n > 1 (in other groups, we just write 0),

1n vector (1, . . . , 1) in Fn2 ,

+ addition in characteristic 0 (e.g., in R), and in Fn2 and F2n for n > 1,∑
i multiple sum of +,

⊕ addition in F2 (i.e. modulo 2); direct sum of two vector spaces,⊕
i multiple sum of ⊕,

x x+ 1n, where x ∈ Fn2 ,

a · x inner product in Fn2 ,

`a(x), ta(x) = a · x, resp. x+ a, where “·” is an inner product in Fn2 ,

FI2 the vector space over F2 of all binary vectors whose indices range in I,

F2n the finite (Galois) field of order 2n, identified with Fn2 as a vector space,

trnm(x) = x+ x2m + x22m

+ · · ·+ x2n−m , trace function from F2n to F2m (m |n),

trn(x) = trn1 (x) =
∑n−1
i=0 x

2i the absolute trace function,

F∗2n F2n \ {0}, where 0 denotes the zero element of F2n ,

α primitive element of F2n ,

⊗ convolutional product of two functions over Fn2 (see page 79),

f, g, h, . . . Boolean functions,

BFn the F2-vector space of all n-variable Boolean functions f : Fn2 → F2,

F,G,H, . . . vectorial functions,

GF graph of a vectorial function: GF = {(x, F (x)); x ∈ Fn2},
wH() Hamming weight (of a vector, of a function),

dH(, ) Hamming distance (between two vectors, two functions),

d(C) minimum (Hamming) distance of code C,

supp() the support (of a vector, of a function),

x � y “x is covered by y” (i.e. supp(x) ⊆ supp(y)),

x ∨ y vector such that supp(x ∨ y) = supp(x) ∪ supp(y),

x ∧ y vector such that supp(x ∧ y) = supp(x) ∩ supp(y),

ei i-th vector of the canonical basis of Fn2 ,
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xI , xu
∏
i∈I xi, I ⊆ {1, . . . , n},

∏n
i=1 x

ui
i , u ∈ Fn2 ,

f 7→ f◦ binary Möbius transform (f◦ : u 7→ au, coef. of xu in the ANF of f),

ϕ̂ Fourier-Hadamard transform of a real-valued function ϕ over Fn2 ,

fχ sign function of a Boolean function f , that is, x 7→ (−1)f(x),

Wf () Walsh transform of a Boolean function f (i.e. f̂
χ
),

WF (, ) Walsh transform of a vectorial function F ,

supp(Wf ) support of Wf : {u ∈ Fn2 ; Wf (u) 6= 0},
NWf

cardinality of the support of Wf ,

F(f)
∑
x∈Fn2

(−1)f(x)(= Wf (0n)),

nl() nonlinearity of a Boolean or vectorial function,

nlr() r-th order nonlinearity of a Boolean function,

ln, log2 natural (Neperian) logarithm, base 2 logarithm,

dalg(f) the algebraic degree of f (i.e. the degree of its ANF),

dnum(f) the numerical degree of f (i.e. the degree of its NNF),

w2(j) 2-weight of integer j (see page 62),

(n,m, t)-function t-resilient (n,m)-function,

AI() algebraic immunity of a function,

Mf,d matrix of the system of equations
⊕

I⊆{1,...,n}
|I|≤d

aIu
I = 0, u ∈ supp(f),

rk(M) the rank of a matrix M ,

FAC() fast algebraic complexity of a function,

FAI() fast algebraic immunity of a function,

Daf,DaF derivatives in the direction a: x 7→ f(x)⊕ f(x+ a), F (x) + F (x+ a),

∆ the symmetric difference between two sets,

∆f (a) autocorrelation function ∆f (a) =
∑
x∈Fn2

(−1)Daf(x),

∆f absolute indicator of f : ∆f = maxa∈Fn2 \{0n} |∆f (a)|,
V(f) sum-of-squares indicator of f :

∑
e∈Fn2

F2(Def) =
∑
a,b∈Fn2

F(DaDbf),

Ef linear kernel of a Boolean function f ,

RM(r, n) Reed-Muller code of order r and length 2n,

ρ(r, n) covering radius of RM(r, n),

βf the symplectic form associated to a quadratic function f ,

f̃ dual of a bent Boolean function (Definition 51, page 221),

M Maiorana-McFarland’s class,

PS partial spread class,

L∗ adjoint operator of a linear automorphism L,

Im(F ) the range (i.e. image set) F (Fn2 ) of an (n,m)-function,

An(f) the F2-vector space of annihilators of a Boolean function f ,

And(f) restriction of An(f) to those functions of algebraic degree at most d,

Bk,l(f) = {g ∈ BFn; dalg(g) ≤ k and dalg(fg) ≤ l},
f defined by f(x) = f(wH(x)), when f is symmetric,

σi(x) elementary symmetric Boolean fct., of ANF:
⊕

I⊆{1,...,n}/ |I|=i x
I ,

Si(x) elementary symmetric pseudo-Boolean fct. NNF:
∑
I⊆{1,...,n}/ |I|=i x

I ,

δF differential uniformity of an (n,m)-function F ,

NbF imbalance of an (n,m)-function, see page 135,

NBF derivative imbalance of an (n,m)-function, see page 161,

x a sharing of x (see page 472),

F a threshold implementation of function F (see page 472),

En,k = {x ∈ Fn2 ; wH(x) = k},
wH(f)k the Hamming weight of the restriction of function f to En,k,
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1 Introduction to cryptography,
codes, Boolean and vectorial
functions

1.1 Cryptography

A fundamental objective of cryptography is to enable two persons to commu-

nicate over an insecure channel (a public channel such as internet) in such a

way that any other person is unable to recover their messages (constituting the

plaintext) from what is sent in its place over the channel (the ciphertext). The

transformation of the plaintext into the ciphertext is called encryption, or en-

ciphering. It is ensured by a cryptosystem. Encryption-decryption is the most

ancient cryptographic activity (ciphers already existed four centuries B. C.) but

its nature has deeply changed with the invention of computers, because the crypt-

analysis (the activity of the third person, the eavesdropper, aiming at recovering

the message, or better, the secret data used by the algorithm, the latter being

assumed public) can use their power. Another important change will occur (see

e.g. [70, 360, 832]), at least for public-key cryptography (see definition below),

when quantum computers become operational.

The encryption algorithm takes as input the plaintext and an encryption key KE ,

and it outputs the ciphertext. The decryption (or deciphering) algorithm takes as

input the ciphertext and a private1 decryption key KD. It outputs the plaintext.

DecryptionEncryption
plaintext ciphertext plaintext

public

channel

KE KD

For being considered robust, a cryptosystem should not be cryptanalysed by an

attack needing less than 280 elementary operations (which represent thousands

of centuries of computation with a modern computer) and less than billions

1 According to principles already stated in 1883 by A. Kerckhoffs [688], who cited a still
more ancient manuscript by R. du Carlet [207], only the key(s) need absolutely to be kept
secret – the confidentiality should not rely on the secrecy of the encryption method – and

a cipher cannot be considered secure if it can be decrypted by the designer himself without

using the decryption key.
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of plaintext-ciphertext pairs. In particular, an exhaustive search of the secret

parameters of the cryptosystem (consisting in trying every possible value of them

until the data given to the attacker matches with the computed data) should not

be feasible in less than 280 elementary operations. In fact, we even most often

want that there is no faster cryptanalysis than exhaustive search.

Note that the term of cryptography is often used indifferently for naming the

two activities of designing cryptosystems and of cryptanalysing them, while the

correct term when dealing with both is cryptology .

1.1.1 Symmetric versus public-key cryptosystems

If the encryption key is supposed to be secret, then we speak of conventional

cryptography or of private-key cryptography . We also speak of symmetric cryp-

tography since the same key can then be used for KE and KD. In practice, the

principle of conventional cryptography relies then on the sharing of a private key

between the sender of a message (often called Alice) and its receiver (often called

Bob). Until the late seventies, only symmetric ciphers existed.

If the encryption key can be public, then we speak of public-key cryptography

(or asymmetric cryptography), which is preferable to conventional cryptogra-

phy, since it makes possible to securely communicate without having previously

shared keys in a secure way: every person who wants to receive secret messages

can keep secret a decryption key and publish an encryption key; if n persons

want to secretly communicate pairwise using a public key cryptosystem, they

need n encryption keys and n decryption keys, when conventional cryptosystems

will need
(
n
2

)
= n(n−1)

2 keys. Of course, it must be impossible to deduce in rea-

sonable time, even with huge computational power, the private decryption key

from the public encryption key. Such requirement is related to the problem of

building one-way functions, that is, functions such that computing the image of

an element is fast (i.e. is a problem of polynomial complexity) while the problem

of computing the pre-image of an element has exponential complexity.

All known public key cryptosystems, like RSA which uses operations in large

rings [846], allow a much lower data throughput; they also need keys of sizes

ten times larger than symmetric ciphers for ensuring the same level of secu-

rity. Some public-key cryptosystems, like those of McEliece and Niederreiter

(based on codes) [846] are faster, but have drawbacks, because the ciphertext

and the plaintext have quite different lengths, and the keys are still larger than

for other public-key cryptosystems2. Private-key cryptosystems are then still

needed nowadays for ensuring the confidential transfer of large data. In practice,

they are widely used for confidentiality in internet, banking, mobile communi-

cations, etc. and their study and design are still an active domain of research.

2 Code-based, lattice-based and other “post-quantum” cryptosystems are however actively
studied, mainly because they would be alternatives to RSA and to the cryptosystems

based on the discrete logarithm, in case an efficient quantum computer could be built in
the future, which would break them.
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Thanks to public key cryptosystems, the share-out of the necessary secret keys

for the symmetric cipher can be done without using a secure channel (the secret

keys for conventional cryptosystems are strings of a few hundreds of bits only

and can then be encrypted by public key cryptosystems). The protagonists can

then exchange safely, over a public channel such as internet, their common pri-

vate encryption-decryption key, called a session key . Protocols specially devoted

to key-exchange can also be used.

The change caused by the intervention of quantum computers will be proba-

bly much less important for symmetric than for public-key cryptography. Most

current symmetric ciphers seem secure against attacks by quantum computers

(Grover’s algorithm [576] which, given a black box with N possible inputs and

some output, deduces with high probability from the results of O(
√
N) evalu-

ations the supposedly unique input3, will probably have as impact to oblige to

double the length of the keys).

1.1.2 Block ciphers versus stream ciphers

The encryption in a symmetric cipher can be treated block by block in a so-

called block cipher (such as the Advanced Encryption Standard AES [403, 404]).

The binary plaintext is then divided into blocks of the same size, several blocks

being encrypted with the same key (and a public data called initial vector being

changed more often). It can also be treated in a stream cipher [463], through

the addition, most often mod 2, of a keystream of the same size as the plaintext,

output by a pseudorandom generator (PRG) parameterized by a secret key (the

keystream can be produced symbol by symbol, or block by block when the PRG

uses a block cipher in a proper mode4). A quality of stream ciphers is to avoid

error propagation, which gives them an advantage in applications where errors

may occur during the transmission.

The ciphertext can be decrypted in the case of block ciphers by inverting the

process and in the case of stream ciphers by the same bitwise addition of the

keystream, which gives back the plaintext. Stream ciphers are also meant to be

faster and to consume less electric power (which makes them adapted to cheap

embedded devices). The triple constraint of being lightweight and fast while en-

suring security is a difficult challenge for stream ciphers, all the more since they

do not have the advantage of involving several rounds like block ciphers (their

security is dependent on the PRG, only). And the situation is nowadays still

more difficult because modern block ciphers like the AES are very fast. This dif-

ficulty has been illustrated by the failure of all six stream ciphers submitted to

the 2000-2003 NESSIE project (New European Schemes for Signatures, Integrity

and Encryption) [901], whose purpose was to identify secure cryptographic prim-

3 Or equivalently finds with high probability a specific entry in an unsorted database of N

entries.
4 Note however that stream ciphers are often supposed to be used on lighter devices than

block ciphers (typically not needing crypto-processors for instance).
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itives. NESSIE has then been followed by the contest eSTREAM [495] organized

later, between 2004 and 2008, by the EU ECRYPT network.

As mentioned in [242], the price to pay for the three constraints described above

is that security proofs hardly exist for efficient stream ciphers as they do for

block ciphers. This is a drawback of stream ciphers, compared to block ciphers5.

The only practical possibility for verifying the security of efficient stream ciphers

(in particular, the unpredictability of the keystream they generate) is to prove

that they resist the known attacks. It is then advisable to include some amount

of randomness in them, so as to increase the probability of resisting future at-

tacks.6

Proving the security of a cipher consists in reducing it to the intractability of a

hard problem (a problem which has been extensively addressed by the academic

community, and for which only algorithms of exponential or sub-exponential

complexity could be found), implying that any potential attack on it could be

used for designing an efficient algorithm (whose worst-case complexity would be

polynomial in the size of its input) solving the hard problem.

Note that provably secure stream ciphers do exist (some proposals are even un-

conditionally secure, that is, are secure even if the attacker has unlimited compu-

tational power, but limited storage or access); see for instance the proposals by

Alexi-Chor-Goldreich-Schnorr (whose security is reducible to the intractability

of the RSA problem) or Blum-Blum-Shub [98] (whose security is reducible to

the intractability of the quadratic residue problem modulo pq, where p and q

are large primes), or the stream cipher QUAD [61] (based on the iteration of a

multivariate quadratic system over a finite field, and whose security is reducible

to the intractability of the so-called MQ problem). But they are too slow and

too heavy for being used in practice. Even in the case of QUAD, which is the

fastest, the encryption speed is lower than for the AES. And this is still worse

when unconditionally security is ensured. This is why the stream ciphers using

Boolean functions (see below) are still much used and studied.

1.2 Error correcting codes

The objective of error detecting / correcting codes in coding theory is to enable

digital communication over a noisy channel, in such a way that the errors of

transmission can be detected by the receiver and, in the case of error correct-

ing codes, corrected. General references are [63, 780, 809, 959]. Shannon’s paper

[1033] is also prominent.

Without correction, when an error is detected, the information needs to be re-

quested again by the receiver and sent again by the sender (such procedure is

5 However, the security of block ciphers is actually proved under simplifying hypotheses, and

it has been said by Lars Knudsen that “what is provably secure is probably not”.
6 Some stream cipher proposals like the Toyocrypt, LILI-128 and SFINKS ciphers, learned

this at their own expense, see [387].
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called an “Automatic Repeat reQuest” ARQ). This is what happened with the

first computers: working with binary words, they could detect only one error (one

bit) in the transmission of (x1, . . . , xk), by adding a parity bit xk+1 =
⊕k

i=1 xi
(this transformed the word of length k into a word of length k + 1 having even

Hamming weight , i.e. even number of nonzero coordinates, which was then sent

over the noisy channel; if an error occurred in the transmission, then, assuming

that only one could occur, this was detected by the fact that the received word

had odd Hamming weight).

With correction, the ARQ is not necessary, but this needs in practice that less

errors have occurred than for detection (see below). Hybrid coding techniques

exist then which make a trade-off between the two approaches.

The aim of error detection/correction is achieved by using an encoding algorithm

which transforms the information (assumed to be a sequence over some alphabet

A) before sending it over the channel. In the case of block coding7, the original

sequence (the message) is treated as a list of vectors (words) of the same length –

say k – called source vectors which are encoded into codewords of a larger length

– say8 n. If the alphabet over which the words are built is the field F2 of order

2, we say that the code is binary. If the code is not binary, then the symbols of

the alphabet will have to be transformed into binary vectors before being sent

over a binary channel.

Thanks to the length extension, called redundancy , the codewords sent over

the channel are some of all possible vectors of length n. The set C of all codewords

is called the code (for instance, in the case of the detecting codes using a parity

bit as indicated above, the code is made of all binary words of length n = k + 1

and of even Hamming weights; it is called the parity code). The only information

the receiver has, concerning the sent word, is that it belongs to C.

DecodingEncoding
message codeword message

noisy

channel

1.2.1 Detecting and correcting capacities of a code

The decoding algorithm of an error-detecting code is able to recognize if a re-

ceived vector is a codeword. This makes possible to detect errors of transmission

if (see [585]), denoting by d the minimum Hamming distance between codewords,

7 We shall not address convolutional coding here.
8 When dealing with Boolean functions, the symbol n will be often devoted to their number

of variables; the length of the codes they will constitute will then not be n but N = 2n, see

Section 1.3.
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i.e. the minimum number of positions at which codewords differ (called the min-

imum distance of the code), no more than d − 1 coordinates of the received

vector differ from those of the sent codeword (condition for having no risk that a

codeword different from the sent one be received and then accepted). In the case

of an error-correcting code, the decoding algorithm can additionally correct the

errors of transmission, if their number is smaller than or equal to the so-called

correction capacity of the code. This capacity equals e =
⌊
d−1

2

⌋
, where “b c”

denotes the integer part (and so, roughly, a code can detect twice more errors

than it can correct), since the condition for having no risk that a vector corre-

sponds, as received vector, to more than one sent codeword with at most t errors

of transmission in each case is that 2t < d. Indeed, in order to be always able

(theoretically) to recover the correct codeword, we need that, for every word y at

distance at most t from a codeword x, there does not exist another codeword x′

at distance at most t from y, and this is equivalent to saying that the Hamming

distance between any two different codewords is larger than or equal to 2t+ 1:

- if there exist a vector y and two codewords x and x′ at Hamming distance at

most t from y, then we have d ≤ 2t by the triangular inequality on distances,

- conversely, if there exist two codewords x and x′ at Hamming distance δ ≤
2t from each other, then there exists a vector y such that dH(x, y) ≤ t and

dH(x′, y) ≤ t (let I be the set of positions where x and x′ coincide; take yi = xi
when i ∈ I and among the δ others, take for instance b δ2c coordinates of y equal

to those of x and the d δ2e others equal to those of x′).

In practice, determining d and then e =
⌊
d−1

2

⌋
and showing that they are large

is not sufficient. We still need to have an efficient decoding algorithm to recover

the sent codeword. The naive method consisting in visiting all codewords and

keeping the nearest one from the received word is inefficient because the number

2k of codewords is too large, in general. Determining the nearest codeword from

a received vector is called maximum likelihood decoding .

The correction capacity e is limited by the Hamming bound (or sphere-packing

bound): since all the balls B(x, e) = {y ∈ An; dH(x, y) ≤ e}, of radius e and

centered in codewords, are pairwise disjoint, and since there are |C| of them, the

size of their union equals |C|
∑e
i=0

(
n
i

)
(q − 1)i, where q is the size of alphabet.

This union is a subset of An. This implies:

|C|
e∑
i=0

(
n

i

)
(q − 1)i ≤ qn.

The codes which achieve this bound with equality are called perfect codes.

Puncturing, shortening and extending codes
The punctured code of a code C is the set of vectors obtained by deleting the

coordinate at some fixed position i in each codeword of C; we shall call such

transformation puncturing at position i. This operation can be iterated and we

shall still speak of puncturing a code when deleting the codeword coordinates at
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several positions.

The shortened code of a code C is the set of vectors obtained by keeping only

those codewords whose i-th coordinate is null and deleting this i-th coordinate.

The extended code of a code C over an additive group is the set of vectors, say,

(c0, c1, . . . , cn), where (c1, . . . , cn) ∈ C and c0 = −(c1 + · · · + cn). Note that

the extended code of C equals the intersection of the code {(c0, c1, . . . , cn) ∈
Fq; (c1, . . . , cn) ∈ C} and of the parity code (c0, c1, . . . , cn) ∈ Fq;

∑n
i=0 xi = 0}.

1.2.2 Parameters of a code

Sending words of length n over the channel instead of words of length k slows

down the transmission of information in the ratio of k
n . This ratio, called the

transmission rate, must be as high as possible, for a given correction capacity,

to make possible fast communication. As we see, the three important parame-

ters of a code C are n, k, d (or equivalently n, |C|, d since if q is the alphabet’s

size, we have |C| = qk), and the first aim9 of algebraic coding is to find codes

minimizing n, maximizing k and maximizing d, for diverse ranges of parameters

corresponding to the needs of communication (see tables of best known codes in

[570]). It is easily seen that k ≤ n − d + 1 (this inequality, valid for any code

over any alphabet, is called the Singleton bound) since erasing the coordinates of

all codewords at d− 1 fixed positions gives a set of qk distinct vectors of length

n − d + 1 where q is the size of the alphabet, and the number of all vectors of

length n−d+1 equals qn−d+1. Codes achieving the Singleton bound with equal-

ity are called maximum distance separable MDS . In the case of binary linear

codes (see below), it can be shown by using the Pless identities (see e.g. [348])

that MDS codes have dimension at most 1 or at least n− 1 and, except for such

codes, the bound becomes then k ≤ n− d.

Another important parameter is the covering radius, which is the smallest inte-

ger ρ such that the spheres of (Hamming) radius ρ centered at the codewords

cover the whole space. In other words, it is the minimal integer ρ such that every

vector of length n lies at Hamming distance at most ρ from at least one code-

word, that is, the maximum number of errors to be corrected when maximum

likelihood decoding (see page 20) is used. The book [375] is devoted to its study.

The sphere covering bound is the lower bound on the covering radius ρ which

expresses that, by definition, the balls B(x, ρ) = {y ∈ An; dH(x, y) ≤ ρ}, of

radius ρ and centered in codewords, cover the whole space An:

|C|
ρ∑
i=0

(
n

i

)
(q − 1)i ≥ qn.

9 The second aim is to find decoding algorithms for the codes found.
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1.2.3 Linear codes

The general class of linear codes gives a simple and wide example of codes and

how they can be used in error correction.

Definition 1 A code is called a linear code if its alphabet is a finite field Fq
(where q is the power of a prime) and if it has the structure of an Fq-linear

subspace of Fnq , where n is its length (see [809]).

A code which is not necessarily linear is called an unrestricted code. The min-

imum distance of a linear code equals the minimum Hamming weight of all

nonzero codewords, since the Hamming distance between two vectors equals the

Hamming weight of their difference. We shall write that a linear code10 over Fq is

an [n, k, d]q-code (and if the value of q is clear from the context, an [n, k, d]-code)

if it has length n, dimension k and minimum distance d. The translates of a

linear code are called its cosets and the elements of minimum Hamming weights

in these cosets are called coset leaders (there may exist several in some cosets).

Generator matrix
Any linear code can be described by a generator matrix G, obtained by choosing

a basis of this vector space and writing its elements as the rows of this matrix.

The code equals the set of all the vectors of the form u×G, where u ranges over

Fkq (and × is the matrix product) and a possible encoding algorithm is therefore

the mapping u ∈ Fkq 7→ u × G ∈ Fnq . When the codeword corresponding to a

given source vector u is obtained by inserting so-called parity check coordinates

in the source vector (whose coordinates are then called information coordinates),

the code is called systematic (it equals then the graph {(x, F (x), x ∈ Fkq} of a

function, up to coordinate permutation). The corresponding generator matrix is

then called a systematic generator matrix and has the form [Ik : M ] where Ik
is the k × k identity matrix, up to column permutation. It is easily seen that

every linear code has such generator matrix: any generator matrix (of rank k)

has k linearly independent columns, and if we place these columns at the k first

positions, we obtain G = [A : M ] where A is a nonsingular k × k matrix; then

A−1 × G = [Ik : A−1 ×M ] is a systematic generator matrix of the permuted

code (since the multiplication by A−1 transforms a basis of the permuted code

into another basis of the permuted code).

Dual code and parity check matrix
The generator matrix is well suited for generating the codewords, but it is not for

checking if a received word of length n is a codeword or not. A characterization

of the codewords is obtained thanks to the generator matrix H of the dual code

C⊥ = {x ∈ Fnq ; ∀y ∈ C, x · y =
∑n
i=1 xi yi = 0} (such a matrix is called a

parity check matrix and “·” is called the usual inner product , or scalar product,

10 The square brackets around n, k, d specify that the code is linear, contrary to standard

parentheses.
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in Fnq ): we have x ∈ C if and only if x×Ht is the null vector. Consequently, the

minimum distance of any linear code equals the minimum number of Fq-linearly

dependent columns in one of its parity check matrices (any one). For instance,

the binary Hamming code of length n = 2m − 1, which has by definition for

parity check matrix the m × (2m − 1) binary matrix whose columns are all the

nonzero vectors of Fm2 in some order, has minimum distance 3. This code, which

by definition is unique up to equivalence, has played an important historical role

since it is the first perfect code found. It still plays a role since many computers

use it to detect errors in their internal communications. It is the basis on which

were built BCH and Reed-Muller codes (see pages 25 and 174). It depends on the

choice of the order, but we say that two codes over Fq are equivalent codes if they

are equal, up to some permutation of the coordinates of their codewords (and,

for nonbinary codes, to the multiplication of each coordinate in each codeword

by a nonzero element of Fq depending only on the position of this coordinate).

Note that such codes have the same parameters.

The dual of the binary Hamming code is called the simplex code. A generator

matrix of this code being the parity check matrix of the Hamming code described

above, and the rows of this matrix representing then the coordinate functions in

Fm2 (sometimes called dictator functions), on which the order chosen for listing

the values is given by the columns of the matrix, the codewords of the simplex

code are the lists of values taken on Fm2 \ {0m} by all linear functions.

Note that the dual of a linear code C permuted by some bijection over the

indices equals C⊥ permuted by this same bijection, and that, if G = [Ik : M ] is

a systematic generator matrix of a linear code C, then [−M t : In−k] is a parity

check matrix of C, where M t is the transposed matrix of M .

The linear codes which are supplementary with their duals (or equivalently which

have trivial intersection with their duals since the dimensions of a code and of

its dual are complementary to n) are called complementary dual codes (LCD)

and will play an important role in Subsection 12.1.5.

The advantages of linearity
Linearity allows considerably simplifying some main issues about codes. Firstly,

the minimum distance being equal to the minimum nonzero Hamming weight,

computing it (if it cannot be determined mathematically) needs only to visit

qk−1 codewords instead of q
k(qk−1)

2 pairs of codewords. Secondly, the knowledge

of the code is provided by a k×n generator matrix and needs then the description

of k codewords instead of all qk codewords. Thirdly, a general decoding algorithm

is valid for every linear code. This algorithm is not efficient in general but it gives

a framework for the efficient decoding algorithms which will have to be found

for each class of linear codes. The principle of this algorithm is as follows: let y

be the (known) received vector corresponding to the (unknown) sent codeword

x. We assume that there has been at most d − 1 errors of transmission, where

d is the minimum distance, if the code is used for error detection, and at most

e errors of transmission, where e = b(d− 1)/2c is the correcting capacity of the
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code, if the code is used for error correction. The error detection is made by

checking if the so-called syndrome s = y×Ht is the zero vector. If it is not, then

denoting by ε the so-called (unknown) error vector ε = y−x, correcting the errors

of transmission is equivalent to determining ε. This can be done by visiting all

vectors z of Hamming weight at most e in Fnq and checking if z×Ht = s (indeed,

by linearity of matrix multiplication, the syndrome of the error vector equals the

syndrome of the received vector, which is known). There exists a unique z of

Hamming weight at most e in Fnq such that z ×Ht = s; this unique z equals ε.

Concatenating codes
Given an Fq-linear [n, k, d] code C (where n is the length, k is the dimension

and d is the minimum distance), where q = 2e, e ≥ 2, a binary [n′, e, d′] code

C ′ and an F2-isomorphism φ : Fq 7→ C ′, the concatenated code C ′′ equals the

[nn′, ke, d′′ ≥ dd′] binary code {(φ(c1), . . . , φ(cn)); (c1, . . . , cn) ∈ C}. Codes C

and C ′ are respectively called outer code and inner code for this construction.

MDS linear codes
Let C be an [n, k, d] code over a field K, let H be its parity check matrix

and G its generator matrix. Then n − k is the rank of H and we have then

d ≤ n − k + 1 since n−k+ 1 columns of H are always linearly dependent and

therefore any set of indices of size n − k + 1 contains the support of a nonzero

codeword. This proves again the Singleton bound: d ≤ n− k + 1.

Recall that C is called MDS if d = n−k+1. The properties of MDS linear codes

are:

1. C is MDS if and only if each set of n− k columns of H has rank n− k.

2. If C is MDS, then C⊥ is MDS.

3. C is MDS if and only if each set of k columns of G has rank k (and their

positions constitute then an information set, see page 185).

Other properties of linear codes
Puncturing, shortening and extending codes preserve their linearity. Puncturing

preserves the MDS property (if n > k).

The following lemma will be useful when dealing with Reed-Muller codes in

Chapter 4 :

Lemma 1 Let C be a linear code of length n over Fq and Ĉ its extended code.

We have Ĉ⊥ = {(y0, . . . , yn) ∈ Fn+1
q ; (y1 − y0, . . . , yn − y0) ∈ C⊥}.

Proof. We have Ĉ⊥ = {(y0, . . . , yn) ∈ Fn+1
q ; ∀(x1, . . . , xn) ∈ C, y0(−

∑n
i=1 xi) +∑n

i=1 xiyi = 0} = {(y0, . . . , yn) ∈ Fn+1
q ; ∀(x1, . . . , xn) ∈ C,

∑n
i=1 xi(yi − y0) =

0} = {(y0, . . . , yn) ∈ Fn+1
q ; (y1 − y0, . . . , yn − y0) ∈ C⊥}. 2
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Uniformly packed codes:
These codes will play a role with respect to APN functions, at page 414.

Definition 2 [50] Let C be any binary code of length N , with minimum distance

d = 2e + 1 and covering radius ρ. For any x ∈ FN2 , let us denote by ζj(x) the

number of codewords of C at distance j from x. The code C is called a uniformly

packed code, if there exist real numbers h0, h1, . . . , hρ such that, for any x ∈ FN2 ,

the following equality holds

ρ∑
j=0

hj ζj(x) = 1.

As shown in [51], this is equivalent to saying that the covering radius of the

code equals its external distance (i.e. the number of different nonzero distances

between the codewords of its dual).

1.2.4 Cyclic codes

2-error correcting Bose-Chaudhuri-Hocquenghem (BCH) codes
The binary Hamming code of length n = 2m− 1 has dimension n−m and needs

m parity check bits for being able to correct 1 error. It happens that 2-error

binary correcting codes can be built with 2m parity check bits. Let us denote by

W1, . . . ,Wn the nonzero binary vectors of length m written as columns in some

order. The parity check matrix of the Hamming code of length n = 2m − 1 is:

H = [W1, . . . ,Wn].

To find a 2-error correcting code C of the same length, we consider the codes

whose parity check matrices H ′ are the 2m× n matrices whose m first rows are

those of H. These codes being subcodes of the binary Hamming code, they are

at least 1-error correcting. For each such matrix H ′, there exists a function F

from Fm2 to itself such that:

H ′ =

[
W1 W2 . . . Wn

F (W1) F (W2) . . . F (Wn)

]
.

Note that, when F is a permutation (i.e. is bijective), the code of generator

matrix H ′ is a so-called double simplex code (and plays a central role in [136]);

it is the direct sum of two simplex codes: the standard one and its permutation

by F .

Going back to general F , assume that two errors are made in the transmission

of a codeword of C, at indices i 6= j. The syndrome of the received vector equals

that of the error vector, that is:[
S1

S2

]
=

[
Wi

F (Wi)

]
+

[
Wj

F (Wj)

]
,
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with S1 6= 0m (where 0m is the length m all-zero vector) since i 6= j. We have

then: {
Wi +Wj = S1 6= 0m

F (Wi) + F (Wj) = S2 .

The code is then 2-error correcting if and only if, for every S1, S2 ∈ Fm2 such that

S1 6= 0m, this system of equations has either no solution (i, j) (which happens

when

[
S1

S2

]
is not the syndrome of an error vector of Hamming weight 2) or

only two solutions (one solution if we impose i < j).

Note that since {W1, . . . ,Wn} equals Fm2 \{0m} and these vectors are all distinct,

it is equivalent to consider the system:{
x+ y = S1 6= 0m

F (x) + F (y) = S2 ,

where x and y range over Fm2 \ {0m}. This is where finite fields of orders larger

than 2 played a historical role in coding theory (see Appendix, page 521, for a

description of finite fields): considering such functions F and such systems of

equations is easier when we have a structure of field (even though the equations

do not involve multiplications). This allows indeed to take F (x) in a polynomial

form, and the first polynomials to be tried are of course monomials. The mono-

mials x and x2, being linear functions, do not satisfy the condition needed for

the code to be 2-error correcting, but the next monomial x3 does satisfy it (this

is easily seen since x3 + y3 = (x + y)3 + x y (x + y) implies that the system is

equivalent to

{
x+ y = S1 6= 0

x y =
S2+S3

1

S1

and such equation results in an equation

of degree 2 which has at most 2 solutions over a finite field).

The condition on F (or more precisely on its extension by taking F (0) = 0) is

equivalent to saying that it is an almost perfect nonlinear (APN) function. This

notion plays a very important role in cryptography, see Chapter 11, page 400.

We need here the notion of primitive element , see page 528. Such element α

satisfies that F2n = {0, 1, α, α2, . . . , α2n−2} and exists for every n.

Definition 3 Let α be a primitive element of F2m . The binary 2-error correcting

BCH code of length n = 2m−1 is the [n, n−2m, 5] code due to Bose, Chaudhuri

and Hocquenghem, of parity check matrix:

H ′ =

[
α α2 . . . αn

α3 α6 . . . α3n

]
.

Ordering the elements of F∗2n as α, α2, . . . , αn−1, αn = 1 (we could have also

chosen 1, α, α2, . . . , αn−1) implies a property which does not seem so important

at first glance but which played a central role in the history of codes and still plays

such role nowadays: the code is (globally) invariant under cyclic permutations

of the codeword coordinates. This property, when added to the linearity of the
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code, confers to them a structure of principal ideal, with very nice theoretical

and practical consequences.

General cyclic codes
A linear code C of length n is a cyclic code if it is (globally) invariant under cyclic

shifts of the codeword coordinates (see [809, page 188]). For this, it is enough

that it is invariant under one of the primitive cyclic shifts, for instance:

(c0, . . . , cn−1) 7→ (cn−1, c0, . . . , cn−2).

Cyclic codes have been extensively studied in coding theory, because of their

strong properties.

Representation of codewords
Each codeword (c0, . . . , cn−1) is represented by the polynomial c0 + c1X + · · ·+
cn−1X

n−1, viewed as an element of the quotient algebra A = Fq[X]/(Xn − 1)

(each element of this algebra is an equivalence class modulo Xn − 1, which will

be always represented by its unique element of degree at most n − 1, equal to

the common rest in the division by Xn − 1 of the polynomials constituting the

class). We shall call c0 + c1X + · · ·+ cn−1X
n−1 the polynomial representation of

codeword (c0, . . . , cn−1). Then it is easily shown that C is cyclic if and only if it

is an ideal of Fq[X]/(Xn − 1), that is, satisfies fC ⊆ C for every nonzero f ∈ A
(C being assumed linear, it is a subgroup of A).

Generator polynomial
The algebra Fq[X]/(Xn − 1) is a principal domain. It is easily shown that any

(linear) cyclic non-trivial11 code has a unique monic element g(X) (whose leading

coefficient equals 1) having minimal degree, which generates the ideal and is

called the generator polynomial of the code. In fact, g(X) is a generator of the

code in the strong sense that every polynomial of degree at most n − 1 is a

codeword if and only if it is a multiple of g(X) in Fq[X] (which implies that it

is a multiple of g(X) in Fq[X]/(Xn − 1)). The code equals then the set of all

those polynomials which include the zeros of g(X) (in the splitting field of g(X))

among their own zeros. It is also easily seen that g(X) is a divisor of Xn − 1.

Zeros of the code
In our framework, the length will have the form n = qm− 1 (we call such length

a primitive length). In such case, since g(X) divides Xn − 1, the zeros of g(X)

all belong to F∗qm . The generator polynomial having all its coefficients in Fq, its

zeros are of the form {αi, i ∈ I} (where α is a primitive element of Fqm), where

I ⊆ Z/nZ is a union of cyclotomic classes of q modulo n = qm − 1 (and vice

versa). The set I is called the defining set of the code. The elements αi, i ∈ I are

called the zeros of the cyclic code, which has dimension n−|I|. The elements αi,

11 i.e. different from {0n}; in fact, we shall consider that the trivial cyclic code has also a
generator polynomial: Xn − 1 itself.
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i ∈ Z/nZ\I are called the nonzeros of the cyclic code. The generator polynomial

of C⊥ is the reciprocal of the quotient of Xn − 1 by g(X), and its defining set

therefore equals {n− i; i ∈ Z/nZ \ I}.
McEliece’s theorem [833] states that a binary cyclic code is exactly 2l-divisible

(that is, l is maximum such that all codeword Hamming weights are divisible by

2l) if and only if l is the smallest number such that l + 1 nonzeros of C (with

repetitions allowed) have product 1 (and recall that αj = 1 if and only if 2n − 1

divides j).

Generating all cyclic codes of some primitive length
Since a polynomial over Fq is the generator polynomial of a cyclic code of length

n if and only if it divides Xn−1, we obtain all cyclic codes from all the divisors of

Xn−1 in Fq. Any such divisor is the product of some irreducible factors of Xn−1

in Fq. These irreducible factors are the polynomials of the form
∏
j∈C(X − αj),

where C is a cyclotomic class of q modulo n. The number of cyclic codes of

length n over Fq is then 2r where r is the number of these cyclotomic classes

(including the trivial cyclic code {0n} and the full one Fnq ). The Hamming code

has for generator polynomial the irreducible polynomial corresponding to the

cyclotomic class containing 1. Its dual, the simplex code, has then for generator

polynomial the polynomial corresponding to all cyclotomic classes except that

of n− 1.

Non-primitive length
If the length is not primitive, the zeros of Xn − 1 live in its splitting field Fqm
(where n divides qm − 1, and m is minimal). If n and q are co-prime, the zeros

of Xn − 1 are simple since the derivative nXn−1 of this polynomial does not

vanish on them, and the same theory applies by replacing Fqm by the group of

n-th roots of unity in Fqm and α by a primitive n-th root of unity.

BCH bound
A very efficient bound on the minimum distance of cyclic codes is the BCH

bound [809, page 201]: if I contains a “string” {l+1, . . . , l+δ−1} of length δ−1

of consecutive12 elements of Z/nZ, then the cyclic code has minimum distance

larger than or equal to δ (which is then called the designed distance of the cyclic

code). A proof of this bound (in the framework of Boolean functions) is given in

the proof of Theorem 23, page 368.

BCH codes
Let n be co-prime with q and δ < n, the BCH codes of length n and designed

distance δ are the cyclic codes which have such string of length δ − 1 in their

zeros (and have then minimum distance at least δ, according to the BCH bound)

and maximal dimension (i.e. minimal number of zeros) with such constraint.

12 Considering of course that 0 is the successor of n− 1 in Z/nZ.
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Reed-Solomon codes
When n = q− 1, the cyclotomic classes of q modulo n are singletons and the set

of zeros of a cyclic code can then be any set of nonzero elements of the field (the

generator polynomial can be any divisor of Xn−1); when it is constituted of con-

secutive powers of a primitive element, this particular case of a BCH code is called

a Reed-Solomon code (RS code). Reed-Solomon codes are important because they

achieve the Singleton bound with equality (i.e. they are maximum distance sep-

arable MDS ). Indeed, the BCH bound gives: δ ≤ d ≤ n− (n− (δ − 1)) + 1 = δ

and the Singleton bound is then achieved with equality.

Remark. There exists another equivalent definition of Reed-Solomon codes,

see the remark at page 62. RS codes are widely used in consumer electronics

(CD, DVD, Blu-ray), data transmission technologies (DSL, WiMAX), broadcast

systems, computer applications, and deep-space communications. 2

Extended Reed-Solomon codes
A cyclic code C of length n being given, recall that the extended code of C

is the set of vectors (c∞, c0, . . . , cn−1), where c∞ = −(c0 + · · · + cn−1). It is a

linear code of length n+ 1 and of the same dimension as C. When C is a Reed-

Solomon code whose defining set has the form {1, 2, . . . , δ − 1}, its extended

code is also MDS, because when (c0, . . . , cn−1) is a codeword of C of minimal

Hamming weight δ, we have c∞ 6= 0 (again according to the BCH bound: if

c∞ = 0, then the polynomial c0 + c1X+ · · ·+ cn−1X
n−1 has also α0 = 1 for zero

and has then Hamming weight at least δ+ 1, thanks to the BCH bound applied

with the string {0, . . . , δ − 1}). Hence, either (c0, . . . , cn−1) is a codeword of C

of minimal Hamming weight δ and then (c∞, c0, . . . , cn−1) has Hamming weight

δ+ 1 or (c0, . . . , cn−1) has Hamming weight at least δ+ 1 and (c∞, c0, . . . , cn−1)

has a fortiori Hamming weight at least δ + 1. Hence the minimum distance of

the extended code is δ+1 = (n+1)− (n−δ+1)+1. The extended code is MDS.

Cyclic codes and Boolean functions
Cyclic codes over F2 and of length 2m − 1 can be viewed as sets of m-variable

Boolean functions. Indeed, any codeword in such cyclic code with defining set I

can be represented in the form
∑l
i=1 trn(aix

−ui), ai ∈ F2m , where u1, . . . , ul are

representatives of the cyclotomic classes lying outside I (see Relation (2.20) in

Subsection 2.2.2, page 62).

1.2.5 The MacWilliams identity and the notion of dual distance

Linear codes
A nice relationship, due to F. J. MacWilliams [809, page 127], exists between

the Hamming weights in every binary linear code13 and those in its dual: let C

13 It exists for every linear code over a finite field and even for more general codes, but we

shall need it only for binary codes.
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be any binary linear code of length n; consider the polynomial WC(X,Y ) =∑n
i=0AiX

n−iY i where Ai is the number of codewords of Hamming weight i.

This polynomial is called the weight enumerator of C and describes14 the weight

distribution (Ai)0≤i≤n of C. Then:

WC(X + Y,X − Y ) = |C|WC⊥(X,Y ). (1.1)

We give a sketch of proof15 of this MacWilliams’ identity : we observe first that

WC(X,Y ) =
∑
x∈C

∏n
i=1X

1−xiY xi ; substituting X by X +Y and Y by X −Y ,

we deduce that WC(X + Y,X − Y ) =
∑
x∈C

∏n
i=1(X + (−1)xiY ). We apply

then the classical relation making possible to expand products of sums: for ev-

ery λ1, . . . , λn, µ1, . . . , µn, we have
∏n
i=1(λi + µi) =

∑
b∈Fn2

∏n
i=1(λ1−bi

i µbii ) (in-

deed, choosing λi in the i-th factor when bi = 0 and µi when bi = 1, provides

when b ranges over Fn2 all the possible terms in the expansion). This gives here:

WC(X + Y,X − Y ) =
∑
x∈C

∑
b∈Fn2

∏n
i=1

(
X1−bi((−1)xiY )bi

)
. We obtain then

WC(X + Y,X − Y ) =
∑
b∈Fn2

(
Xn−wH(b)Y wH(b)

∑
x∈C(−1)b ·x

)
, where “·” is the

usual inner product in Fn2 , and we conclude by observing that, if b 6∈ C⊥, then

the linear form b · x over the vector space C is nonzero, and takes then values

0 and 1 on two complementary hyperplanes, that is, the same number of times

(we will find again this in Relation (2.38), page 77). This proves Relation (1.1).

Of course, we deduce that WC(X,Y ) = 1
|C⊥| WC⊥(X + Y,X − Y ) and the

same method shows, as observed in [37], that for every coset a + C, we have

Wa+C(X,Y ) = 1
|C⊥|

(
2WC⊥∩{0n,a}⊥(X + Y,X − Y )−WC⊥(X + Y,X − Y )

)
.

Remark. We have |C| =
∑n
i=0Ai = WC(1, 1). The fact that the polynomial

1
WC(1,1)WC(X + Y,X − Y ) has non-negative integer coefficients is very spe-

cific (among all homogeneous polynomials P (X,Y ) whose coefficients are non-

negative integers). As far as we know, the characterization of all homogeneous

polynomials P (X,Y ) over N such that 1
P (1,1)P (X + Y,X − Y ) has non-negative

integer coefficients has never been investigated in a paper. 2

Remark. The average Hamming weight of the codewords of a linear binary code

C equals (WC)′Y (1, 1) (the value at (1, 1) of the partial derivative of WC(X,Y )

with respect to Y ), divided by |C|. MacWilliams’ identity writes WC(X,Y ) =
1
|C⊥|WC⊥(X+Y,X−Y ). Differentiating with respect to Y gives (WC)′Y (X,Y ) =

1
|C⊥| (WC⊥)′X(X+Y,X−Y )− 1

|C⊥| (WC⊥)′Y (X+Y,X−Y ) and thus (WC)′Y (1, 1) =

1
|C⊥| (WC⊥)′X(2, 0)− 1

|C⊥| (WC⊥)′Y (2, 0) = n2n−1

|C⊥| −
1
|C⊥| (WC⊥)′Y (2, 0), and the av-

erage Hamming weight of codewords equals n
2−2−n(WC⊥)′Y (2, 0), which depends

on the number of words of Hamming weight 1 in C⊥ (see more in [809, page 131]

on the moments of the weight distribution of codes) and is bounded above by n
2 .

In fact, it is easily seen directly that the average Hamming weight of codewords

14 WC is a homogeneous version of classical generating series for the weight distribution of C.
15 The classical proof uses Fourier-Hadamard transform; since this transform will be

addressed later in this book, in Section 2.3, we give a proof more coding theory oriented.
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equals n−r
2 , where r is the number of positions where all codewords are null,

since if there is a codeword with 1 at position i, the average value of codewords

at position i equals 1
2 . 2

Remark. Some authors call weight enumerator of C the univariate polynomial

AC(Z) =
∑n
i=0AiZ

i. Mac Williams’ identity writes then (1 + Z)nAC

(
1−Z
1+Z

)
=

|C|WC⊥(Z), where n is the length of the binary code C. 2

The MacWilliams identity gives information on self-dual codes (i.e. codes equal

to their duals) through the Gleason theorem which says that the weight enumer-

ator of a self-dual code is in the ring generated by X2 + Y 2 and XY − Y 2 (see

[809, page 602]).

Unrestricted codes
The principle of MacWilliams’ identity can also be applied to unrestricted codes.

When C is not linear, the weight distribution of C has no great relevance. The

distance distribution has more interest. We consider the distance enumerator

of C:

DC(X,Y ) =
1

|C|

n∑
i=0

BiX
n−iY i,

where Bi is the size of the set {(x, y) ∈ C2; dH(x, y) = i}. Note that, if C is

linear, then DC = WC . Similarly as above, we see that:

DC(X,Y ) =
1

|C|
∑

(x,y)∈C2

n∏
i=1

X1−(xi⊕yi)Y xi⊕yi ;

we deduce that:

DC(X + Y,X − Y ) =
1

|C|
∑

(x,y)∈C2

n∏
i=1

(X + (−1)xi⊕yiY ).

Expanding these products by the same method as above, we obtain:

DC(X + Y,X − Y ) =
1

|C|
∑

(x,y)∈C2

∑
b∈Fn2

n∏
i=1

(
X1−bi((−1)xi⊕yiY )bi

)
,

that is:

DC(X + Y,X − Y ) =
1

|C|
∑
b∈Fn2

Xn−wH(b)Y wH(b)

(∑
x∈C

(−1)b·x

)2

. (1.2)

Hence, DC(X + Y,X − Y ) has non-negative coefficients (but DC(X,Y ) is not

necessarily the weight enumerator of a code; note however that it is one in the

case of distance-invariant codes, like Kerdock codes, see Section 6.1.22).
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Definition 4 The smallest nonzero exponent of Y with nonzero coefficient in

the polynomial DC(X + Y,X − Y ), that is, the number:

min

{
wH(b); b 6= 0n,

∑
x∈C

(−1)b·x 6= 0

}
,

often denoted by d⊥(C), is called the dual distance of C.

The dual distance of C is strictly larger than an integer t if and only if the

restriction to C of any sum of at least one and at most t coordinate functions

in Fn2 is balanced (i.e., has uniform distribution), that is, any of the punctured

codes of length t of C equals the whole vector space Ft2 and each vector in Ft2
is matched the same number of times16. Hence, as we shall see again at page

108, the size of a code of dual distance d is divisible by 2d−1; note that for linear

codes, this tells more than the Singleton bound applied to the dual.

This notion will play an important role with Boolean functions (see Definition

21, page 105; this is why we include Lemma 2 below)) and with a recent kind of

cryptanalysis which plays an important role nowadays: side channel attacks (see

Section 12.1, page 460).

Lemma 2 1. Any coset a + C of a binary unrestricted code has the same dual

distance as C. Any union of cosets of a linear code C has at least the same

dual distance as C.

2. The dual distance of a punctured code is larger than or equal to the dual

distance of the original code (assuming that the latter has minimum distance

at least 2).

3. The dual distance of the Cartesian product of two binary unrestricted codes

equals the minimum of their dual distances.

4. Let C1 and C2 be binary unrestricted codes of the same length n and

C ′′ = {(c1, c1 + c2); c1 ∈ C1, c2 ∈ C2},

then d′′
⊥

= min(d⊥1 , 2 d
⊥
2 ).

The proof of this lemma is also an easy consequence of the properties of the

Fourier-Hadamard transform that we shall see in Section 2.3.

Remark. When C is linear, d⊥ equals the minimum distance of the dual code

C⊥. Hence, since the minimum distance of a linear code over Fq equals the

minimum nonzero number of Fq-linearly dependent columns in its parity check

matrix, its dual distance equals the minimum nonzero number of Fq-linearly

dependent columns in its generator matrix. 2

16 This is a consequence of the properties of the Fourier-Hadamard transform that we shall

see in Section 2.3, applied to the indicator of C, see Corollary 6, page 108 and Theorem 5.
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1.3 Boolean functions

We call Boolean functions (and sometimes we specify n-variable Boolean func-

tions or Boolean functions in dimension n) the (single-output) functions from

the n-dimensional vector space Fn2 over F2, to F2 itself. Their set is denoted by

BFn. Number n will be named the number of variables, or of input bits. More

generally17, we call n-variable pseudo-Boolean functions the functions from Fn2
to R.

Boolean functions will also be viewed in some cases as taking their input in

the field F2n . Indeed, this field is an n-dimensional vector space over F2 and it

can then be identified with the vector space Fn2 through the choice of a basis.

Boolean functions play roles in both cryptographic and error correcting coding

activities in information protection:

- every binary unrestricted code of length 2n, for some positive integer n, can be

interpreted as a set of Boolean functions, since every n-variable Boolean function

can be represented by its truth table (an ordering of the set of binary vectors of

length n being first chosen) and thus associated with a binary word of length 2n,

and vice versa; important codes (Reed-Muller, Kerdock codes, see Sections 4.1

and 6.1.22) can be defined this way as sets of Boolean functions;

- the role of Boolean functions in conventional cryptography is even more impor-

tant: cryptographic transformations can be designed by appropriate composition

of Boolean functions18.

In both frameworks, n is rarely large, in practice:

- the error correcting codes derived from n-variable Boolean functions have

length 2n; so, taking n = 10 already gives codes of length 1024,

- for reason of efficiency, the Boolean functions used in stream ciphers had about

10 variables until algebraic attacks were invented in 2003, and the number of

variables is now most often limited to at most 20, except when the functions are

particularly fast to compute.

Despite their low numbers of variables, the Boolean functions used in cryp-

tography and satisfying the desired conditions (see Section 3.1 below) can not

be determined or studied by an exhaustive computer investigation: the num-

ber |BFn| = 22n of n-variable Boolean functions is too large when n ≥ 6. We

give in Table 1.1 below the values of this number for n ranging between 4 and 8.

Assume that visiting an n-variable Boolean function, and determining whether it

has the desired properties, needs one nano-second (10−9 seconds), then it would

need millions of hours to visit all functions in 6 variables, and about one hundred

billions times the age of the universe to visit all those in 7 variables. The number

17 When we will consider Boolean functions as particular pseudo-Boolean functions, by
viewing their output values 0 and 1 as elements of Z rather than F2 (for instance when
defining their numerical normal form in Subsection 2.2.4 or their Fourier-Hadamard
transform in Section 2.3), adding their values will be made in Z, with notation +;
otherwise, it will be made modulo 2, with notation ⊕.

18 Boolean functions play also a role in hash functions, but we shall not develop this aspect,

for lack of space, and in the inner protection of some chips.
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n 4 5 6 7 8

|BFn| 216 232 264 2128 2256

≈ 6 · 104 4 · 109 1019 1038 1077

Table 1.1 Number of n-variable Boolean functions

of 8-variable Boolean functions approximately equals the number of atoms in the

whole universe! We see that trying to find functions satisfying the desired condi-

tions by simply picking up functions at random is also impossible for these values

of n, since visiting a non-negligible part of all Boolean functions in 7 or more

variables is not feasible, even when parallelizing. The study of Boolean functions

for constructing or studying codes or ciphers is essentially mathematical. But

clever computer investigation is very useful to imagine or to test conjectures,

and sometimes to generate interesting functions.

Remark. Boolean functions play an important role in computational complexity

theory, with the notion of NP-complete decisional problem (where “NP” stands

for “nondeterministic polynomial time”), for which satisfiability problems (in

particular, the 3-SAT problem) are central. These problems are related to rep-

resentations of Boolean functions by disjunctive and conjunctive normal forms,

which do not ensure uniqueness and are not much used in cryptography and

error correcting coding. We refer the reader interested in satisfiability problems

and in the related complexity theory of Boolean functions to [31, 81, 1117]. 2

A nice site under construction at the moment this book is written can be found

at URL http://boolean.h.uib.no/mediawiki.

1.3.1 Boolean functions and stream ciphers

Stream ciphers are based on the so-called Vernam cipher (see Figure 1.1) in

which the plaintext (a binary string of some length) is bitwise added to a (bi-

nary) secret key of the same length, in order to produce the ciphertext. The

Vernam cipher is also called the one time pad because a new random secret key

must be used for every encryption. Indeed, the bitwise addition of two cipher-

texts corresponding to the same key equals the addition of the corresponding

plaintexts, which gives much information on these plaintexts when they code for

instance natural language (it is often enough to recover both plaintexts, even

when one of them is reversed; some secret services and spies learned this at their

own expense).

The Vernam cipher, which is the only known cipher offering unconditional

security (see [1034]) if the key is truly random and if it is changed for every

new encryption, was used for the communication between the heads of USA and

USSR during the cold war (the keys being carried by diplomats) and by some

secret services.

In practice (except in the very sensitive situations indicated above), since in
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Key

Plaintext
⊕

Ciphertext
. . .

Key

Ciphertext
⊕

Plaintext

Figure 1.1 Vernam cipher

the Vernam cipher, the length of the private key must be equal to the length of

the plaintext (which is impractical), a so-called pseudorandom generator (PRG)

is used for producing a long pseudorandom sequence (the keystream, playing

the role of the private key in the Vernam cipher) from the short random secret

key. Only the latter is actually shared19. The unconditional security is then no

longer ensured (this is the price to pay for making the cipher lighter). If the

keystream only depends on the key (and not on the plaintext), the cipher is

called synchronous20. Stream ciphers, because they operate on data units as

small as a bit or a few bits, are suitable for fast telecommunication applications.

Having also a very simple construction, they are easily implemented both in

hardware and software. They need to resist all known attacks (see in Section 3.1

those which are known so far). The so-called attacker model for these attacks

(that is, the description of the knowledge the attacker is supposed to have) is

as follows: some knowledge on the plaintext may be unavoidable and it is then

assumed that the attacker has access to a small part of it. Since the keystream

equals the XOR of the plaintext and the ciphertext, the attacker is then assumed

to have access to a part of the keystream, and he/she needs to reconstruct the

whole sequence.

A first method for generating pseudorandom sequences from secret keys has used

Linear Feedback Shift Registers (LFSR) [550]. In such an LFSR (see Figure 1.2,

where × means multiplication), at every clock-cycle, the bits sn−1, . . . , sn−L
contained in the flip-flops of the LFSR move to the right. The right-most bit

is the current output (a keystream of length N will then be produced after

N clock-cycles) and the left-most flip-flop is fed with the linear combination⊕L
i=1 cisn−i, where the ci’s are bits. Thus, such an LFSR outputs a recurrent

19 The PRG is supposed to be public since taking a part of the secret for describing it would
reduce in practice the length of the key.

20 There also exist self-synchronizing stream ciphers, in which each keystream bit depends on

the private key and on the n preceding ciphertext bits, which makes it possible to
re-synchronize after n bits if an error of transmission occurs between Alice and Bob
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sn−1 . . . sn−L+1 sn−L

sn

⊕⊕⊕

×cL×cL−1×c1

Figure 1.2 LFSR

sequence satisfying the relation

sn =

L⊕
i=1

cisn−i.

Such sequence is always ultimately periodic21 (if cL = 1, then it is periodic; we

shall assume that cL = 1 in the sequel, because otherwise, the same sequence

can be output by an LFSR of a shorter length, except for its first bits, and

this can be exploited in attacks) with period at most 2L − 1. The generating

series s(X) =
∑
i≥0 siX

i of the sequence can be expressed in a nice way (see

the chapter by Helleseth and Kumar in [959] and Section 10.2 “LFSR sequences

and maximal period sequences” by Niederreiter in [890]): s(X) = G(X)
F (X) , where

G(X) =
∑L−1
i=0 Xi

(⊕i
j=0 ci−jsj

)
is a polynomial of degree smaller than L and

F (X) = 1+c1X+ · · ·+cLXL is the feedback polynomial (an equivalent represen-

tation uses the characteristic polynomial which is the reciprocal of the feedback

polynomial). The minimum length of the LFSR producing a sequence is called

the linear complexity of the sequence (and sometimes its linear span). It equals

L if and only if the polynomials F and G above are co-prime and is equal in

general to N − deg (gcd(XN + 1, S(X))), where N is a period and S(X) is the

generating polynomial S(X) = s0 + s1X + · · ·+ sN−1X
N−1. An m-sequence (or

maximum length sequence) is a sequence of period 2L − 1 where L is the linear

complexity. Assuming that L = L, this corresponds to taking a primitive feed-

back polynomial (see page 529). The sequence can then be represented in the

form si = trn(aαi) where α is a primitive element of F2n (see page 528) and trn
is the trace function from F2n to F2 (see pages 60 and 530). The m-sequences

have very strong properties; see the chapter by Helleseth and Kumar in [959].

The initialization s0, . . . , sL−1 of the LFSR and the values of the feedback coef-

ficients ci must be kept secret (they are then computed from the secret key); if

21 Conversely, every ultimately periodic sequence can be generated by an LFSR.
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the feedback coefficients were public, the observation of L consecutive bits of the

keystream would allow recovering all the subsequent sequence.

Berlekamp-Massey attack
The use of LFSRs as pseudorandom generators is cryptographically weak because

of an attack found in the late seventies called the Berlekamp-Massey (BM) al-

gorithm [826]: let L be the linear complexity of the sequence, assumed to be

unknown from the attacker; if he knows at least 2L consecutive bits of the se-

quence, the BM algorithm allows him to recover the values of L and of the

feedback coefficients of an LFSR of length L generating the sequence, as well

as the initialization of this LFSR. The BM algorithm has quadratic complexity,

that is, works in O(L2) elementary operations. Improvements of the algorithm

exist, which have lower complexity: the main idea22 is to use the extended Eu-

clidean (EE) algorithm (or its variants). The way to use this algorithm is shown

in the section “Linearly recurrent sequences” (Section 12.3) of the book “Mod-

ern Computer Algebra” by J. von zur Gathen and J. Gerhard [533] (Algorithm

12.9 in this book is essentially EE algorithm). The complexity of EE algorithm

being O(M(L) log(L)) where M(L) is the cost of the multiplication between two

polynomials of degree L, and this latter cost being quasi-linear, the complexity

of finding the retroaction polynomial of an LFSR is roughly O(L log(L)). The

data complexity is still 2L but these 2L bits of the sequence do not need to be

strictly consecutive: having k strings of 2L/k consecutive bits is enough, thanks

to a matrix-version of the BM algorithm found by Coppersmith, coupled with an

algorithm due to Beckerman and Labahn, or with a simpler (and implemented)

one due to Thomé, see more in [1085].

The role of Boolean functions
Many keystream generators still use LFSRs, and to resist the Berlekamp-Massey

attack, either combine several LFSRs (and possibly some additional memory)

like in the case of E0, the keystream generator which is part of the Bluetooth

standard, or use Boolean functions, see [1006]. The first model which appeared

in the literature for such use is the combiner model (see Figure 1.3).

Notice that the feedback coefficients of the n LFSRs used in such a generator can

be public. The Boolean function is also public, in general, and the (short) secret

key is necessary only for the initialization of the n LFSRs (also depending on an

initial vector, which being public can be changed more often than the key): if

we want to use for instance a 128 bit long secret key, this makes possible using

n LFSRs of lengths L1, . . . , Ln such that L1 + · · ·+ Ln = 128.

Such system clearly outputs a periodic sequence whose period is at most the

LCM of the periods of the sequences output by the n LFSRs (assuming that

cL = 1 in each LFSR; otherwise, the sequence is ultimately periodic and the

period is shorter). So, this sequence satisfies a linear recurrence and can therefore

22 We thank Pierrick Gaudry for his kind explanations.
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LFSR n

LFSR 2

LFSR 1

...

f

x1

xn

x2
output si

Figure 1.3 Combiner model

be produced by a single LFSR. However, as we shall see, well-chosen Boolean

functions allow the linear complexity of the sequence to be much larger than

the sum of the lengths of the n LFSRs. Nevertheless, choosing LFSRs producing

sequences of large periods, choosing these periods pairwise co-prime in order

to have the largest possible global period, and choosing f such that the linear

complexity is large enough too are not sufficient. As we shall see, the combining

function should also not leak information about the individual LFSRs and behave

as differently as possible from affine functions, in several different ways.

The combiner model is only a model, useful for studying attacks and related

criteria. In practice, the systems are more complex (see for instance at URL

http://www.ecrypt.eu.org/stream/ how are designed the stream ciphers of the

eSTREAM Project [495]).

A more recent model is the filter model , which uses a single LFSR (of a

longer length). A filtered LFSR outputs f(x1, . . . , xn) where f is some n-variable

Boolean function, called a filtering function, and where x1, . . . , xn are the bits

contained in some flip-flops of the LFSR, see Figure 1.4.

Such system is equivalent to the combiner model using n copies of the LFSR.

However, the attacks, even when they apply to both systems, do not work simi-

larly (a first obvious difference is that the lengths of the LFSRs are different in

the two models). Consequently, the criteria that the involved Boolean functions

must satisfy to allow resistance to these attacks need to be studied for each model

(we shall see that they are in practice not so different, except for one criterion

which will be necessary for the combiner model but not for the filter model).

Note that in both models, the PRG is made of a linear part (constituted by

the LFSRs), the linearity allowing speed, and a nonlinear part (made of the

combiner/filter function) providing confusion (see the meaning of this term in

Section 3.1). Generalizations of the two models have been proposed with the

same structure “linear part, nonlinear part” [901, 495]. In practice, models will

not be used as is; we shall add memory and/or few combinatoric stages and/or

initialization registers; a high level security is ensured by the fact that the model,
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x1 xi xn

f(x1, x2, . . . , xn)

output

Figure 1.4 Filter model

as is, is proved resistant to all known attacks, and the additional complexity will

make the work of the attacker still more difficult.

Other kinds of pseudorandom generators exist, which are not built on the same

principle. A feedback shift register (FSR) has the same structure as an LFSR,

but the left-most flip-flop is fed with g(xi1 , . . . , xin) where n ≤ L and xi1 , . . . , xin
are bits contained in the flip-flops of the FSR, and where g is some n-variable

Boolean function called feedback function (if g is not affine then we speak of

NFSR where N stands for nonlinear). The linear complexity of the produced

sequence can be near 2L (see [640] for general FSRs and [344] for FSRs with

quadratic feedback function, see definition of “quadratic” at page 53). Some

finalists of the eSTREAM project [495] like Grain and Trivium use NFSRs. But

the theory of NFSRs is not completely understood. The linear complexity is

difficult to study in general. Even the period is not easily determined, although

some special cases have been investigated [630, 702, 1045, 1046]. Nice results

similar to those on the m-sequences exist in the case of FCSRs (Feedback with

Carry Shift-Registers), see [703, 559, 30, 560].

1.3.2 Boolean functions and error correcting codes

As explained above, every binary unrestricted code whose length equals 2n for

some positive integer n can be interpreted as a set of Boolean functions. A par-

ticular class of codes has its very definition given by means of Boolean functions.

This class is that of Reed-Muller codes. We shall see in Chapter 2 that an in-

teger lying between 0 and n and called algebraic degree can be associated to

every Boolean function over Fn2 . The Reed-Muller code of order k ∈ {0, . . . , n} is

made of all Boolean functions over Fn2 whose algebraic degree is bounded above

by k, see Section 4.1. This linear code has length 2n since each Boolean function
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is identified to the list of its values over Fn2 , in some order. It is linear and has

nice particularities, thanks to which Reed-Muller codes are still used nowadays,

even if their parameters are not very good, except for the first-order Reed-Muller

code. The second-order Reed-Muller code contains a nonlinear code, called the

Kerdock code, which has minimum distance almost the same as that of the first-

order Reed-Muller code of the same length and size roughly the square of its size.

In fact, the parameters of the Kerdock code are so good that they are provably

optimal among all unrestricted codes, see Section 6.1.22.

1.4 Vectorial functions

The functions from Fn2 to Fm2 are called (n,m)-functions. Such function F be-

ing given, the Boolean functions f1, . . . , fm defined at every x ∈ Fn2 by F (x) =

(f1(x), . . . , fm(x)), are called the coordinate functions of F . When the num-

bers m and n are not specified, (n,m)-functions are called multi-output Boolean

functions or vectorial Boolean functions. Those vectorial functions whose role

is to ensure confusion23 in a cryptographic system are called substitution boxes

(S-boxes).

Note that (n,m)-functions can also be viewed as taking their input in F2n as

we have seen with Boolean functions, and if m divides n then we shall see that

the output can then be expressed as a polynomial function of the input. We shall

be in particular interested in power functions F (x) = xd, x ∈ F2n .

1.4.1 Vectorial functions and stream ciphers

In the pseudorandom generators of stream ciphers, (n,m)-functions can be used

to combine the outputs of n linear feedback shift registers (LFSR), or to filter the

content of a single one, generating m bits at each clock cycle instead of only one,

which increases the speed of the cipher (but risks decreasing its robustness). The

attacks, described about Boolean functions are obviously also efficient on these

kinds of ciphers. They are in fact often more efficient, see Section 3.3, page 151,

since the attacker can combine in any ways the m output bits of the function.

1.4.2 Vectorial functions and block ciphers

Vectorial functions play mainly a role with block ciphers. All known block ciphers

are iterative, that is, are the iterations of a transformation depending on a key

over each block of plaintext. The iterations are called rounds and the key used in

an iteration is called a round key . The round keys are computed from the secret

key (called the master key) by a key scheduling algorithm. The rounds consist of

vectorial Boolean functions combined in different ways and involve the round key.

23 See Section 3.1 for the meaning of this term.
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Remark.

Boolean functions also play an important role in block ciphers, each of which

admits as input a binary vector (x1, . . . , xn) (a block of plaintext) and outputs a

binary vector (y1, . . . , ym); the coordinates y1, . . . , ym are the outputs of Boolean

functions (depending on the key) over (x1, . . . , xn), see Figure 1.5.

x1 xn

E
Key

Plaintext:

Ciphertext:

. . .

. . .

y1 ym

Figure 1.5 Block cipher

But the number n of variables of these Boolean functions being large (often more

than a hundred), they are hardly analyzed precisely. 2

We give in Figures 1.6 and 1.7 a description of the rounds of the Data Encryption

Standard (DES) [88] and of the Advanced Encryption Standard (AES) [404].

++ S EP

Round key

Figure 1.6 A DES round

The input to a DES round is a binary string of length 64, divided into two

strings of 32 bits each (in the figure, they enter the round, from above, on the left

and on the right); confusion is achieved by the S-box, which is a nonlinear trans-

formation of a binary string of 48 bits24 into a 32 bit long one. So, 32 Boolean

functions on 48 variables are involved. But, in fact, this nonlinear transforma-

tion is the concatenation of eight sub-S-boxes, which transform binary strings

of 6 bits into 4 bit long ones. Before entering the next round, the two 32 bit

24 The E-box has expanded the 32 bit long string into a 48 bit long one.
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+

S1 S16. . .

linear permutation

Round key

Figure 1.7 An AES round

long halves of data are swapped. Such Feistel cipher structure does not need the

involved vectorial functions (in particular the S-boxes) to be injective, for the

decryption to be possible. Indeed, any function of the form (x, y) 7→ (y, x+φ(y))

is a permutation. The number of output bits can be smaller than that of input

bits like in the DES; it can also be larger, like in the CAST cipher [6], where

input dimension is 8 and output dimension is 32. However if the S-boxes are

not balanced (that is, if their output is not uniform), this represents a weakness

against some attacks and it obliges the designer to complexify the structure (for

instance by including expansion boxes), see more in [957].

In the (standard) AES round, the input is a 128 bit long string, divided into 16

strings of 8 bits each; the S-box is the concatenation of 16 sub-S-boxes corre-

sponding to 16×8 Boolean functions in 8 variables. Such substitution permutation

network (SPN) needs the vectorial functions (in particular the S-boxes) to be

bijective, so that decryption is possible. Then n = m. Another well-known exam-

ple of such cipher is PRESENT [100]. A third general structure for block ciphers

is ARX structure, see [708].

Remark. Klimov and Shamir [705] have identified a particular kind of vectorial

functions usable in stream and block ciphers (and in hash functions), called

T-functions. These are mappings F from Fn2 to Fm2 such that each i-th bit of

F (x) depends only on x1, . . . , xi. For example, addition and multiplication in

Z, viewed in binary expansion, are T-functions; logical operations (XOR, AND,

that is, addition and multiplication in F2) are T-functions too. Any composition

of T-functions is a T-function as well. Their simplicity makes them appealing
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for lightweight cryptography. But they may be too simple for providing enough

confusion; they have suffered attacks. 2

1.4.3 Vectorial functions and error correcting codes

We shall see in Chapter 4 that interesting linear subcodes of the Reed-Muller

codes and other (possibly nonlinear) codes can be built from vectorial functions.



2 Generalities on Boolean and
vectorial functions

The set Fn2 of all binary vectors1 of length n will be viewed as an F2-vector

space (with null element 0n). This vector space will sometimes be also en-

dowed with the structure of the field F2n (denoted by GF (2n) by some au-

thors), with null element 0; indeed, this field being an n-dimensional vector

space over F2, each of its elements can be identified with the binary vector of

length n of its coordinates relative to a fixed basis. The set of all Boolean func-

tions f : Fn2 → F2 will be denoted by BFn. It is a vector space over F2. The

Hamming weight wH(x) of a binary vector x ∈ Fn2 being the number of its

nonzero coordinates (i.e. the size of supp(x) = {i ∈ {1, . . . , n}; xi 6= 0}, the

support of vector x), the Hamming weight wH(f) of a Boolean function f on Fn2
is (also) the size of supp(f) = {x ∈ Fn2 ; f(x) 6= 0}, the support of function

f . Note that if we denote by ∆ the symmetric difference between two sets, we

have supp(f⊕g) = supp(f) ∆ supp(g). The Hamming distance dH(f, g) between

two functions f and g is the size of the set {x ∈ Fn2 ; f(x) 6= g(x)}. Thus it

equals wH(f ⊕ g).

Note. Some additions of bits will be considered in Z (in characteristic 0) and

denoted then by +, and some will be computed in characteristic 2 and denoted

by ⊕. These two different notations will be necessary for F2 because some rep-

resentations of Boolean functions will live in characteristic 2 and some will live

in characteristic 0. But the addition in the finite field F2n will be denoted by +,

as usual in mathematics, as well as the addition in Fn2 when n > 1, since Fn2 will

often be identified with F2n , and because there will be no ambiguity.

2.1 A hierarchy of equivalence relations over Boolean and vectorial
functions

Each notion that we shall study on Boolean or vectorial functions will be pre-

served by some equivalence relations, that we need to define. It is important to

determine precisely, for each notion, those equivalence relations which preserve

it. Indeed, if we prove that some function has some property, say P, preserved by

a given equivalence relation, this implies automatically that all functions in the

equivalence class containing this function share the same property P; to classify

1 Coders say “words”.
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the set of functions satisfying P, we need to determine all equivalence classes

of functions sharing P. This is often a difficult task. Even determining the size

of the union of these classes may be quite difficult. If classification is elusive,

a possible contribution to the domain is to provide constructions of functions

satisfying P. For being able to say that some construction of functions satisfying

P provides new functions, it is needed to prove that at least one function ob-

tained through this construction is inequivalent (for every equivalence relation

preserving P) to all known functions satisfying P. This may be a huge work.

There are five main notions of equivalence among vectorial functions and four in

the subcase of Boolean functions (because the fifth notion is then equivalent to

the fourth one). We give the definitions for vectorial functions; the correspond-

ing definitions for Boolean functions are with m = 1 (then all the permutations

composed with the functions on their left can be taken equal to identity).

Remark. In the next definition and in the sequel, we present linear functions over

Fn2 in the form L : (x1, x2, . . . , xn) 7→ (x1, x2, . . . , xn)×M , with (x1, x2, . . . , xn)

a row vector, as it is usual in information protection, rather than dealing with

a column vector as it is usual in mathematics. Applying transposition to the

expressions allows to translate a representation into the other. 2

Definition 5 The main notions of equivalence on Boolean and vectorial func-

tions are as follows:

1. Two (n,m)-functions F and τ ◦F ◦σ, where σ is a permutation of {1, . . . , n},
extended to a permutation of Fn2 by:

σ : (x1, x2, . . . , xn) ∈ Fn2 7→ (xσ(1), xσ(2), . . . , xσ(n)) ∈ Fn2

and τ is a permutation of {1, . . . ,m}, similarly extended to a permutation of

Fm2 , are called permutation equivalent.

2. Two (n,m)-functions F and L′ ◦ F ◦ L where

L : (x1, x2, . . . , xn) ∈ Fn2 7→ (x1, x2, . . . , xn)×M ∈ Fn2

is an F2-linear automorphism of Fn2 , M being a nonsingular n × n matrix

over F2, and L′ is an F2-linear automorphism of Fm2 , are called linearly equiv-

alent.

3. Two (n,m)-functions F and L′ ◦ F ◦ L, where

L : (x1, x2, . . . , xn) ∈ Fn2 7→ (x1, x2, . . . , xn)×M + (a1, a2, . . . , an)

is an affine automorphism of Fn2 and L′ is an affine automorphism of Fm2 , are

called affinely equivalent or affine equivalent [907].

4. Two (n,m)-functions F and L′◦F ◦L+L′′, where L is an affine automorphism

of Fn2 , L′ is an affine automorphism of Fm2 and L′′ : (x1, x2, . . . , xn) ∈ Fn2 7→
(x1, x2, . . . , xn)×M ′′+(a1, a2, . . . , am) ∈ Fm2 is an affine (n,m)-function, M ′′

being an n×m binary matrix, are called (extended affine) EA equivalent.
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5. Two (n,m)-functions F and G whose graphs GF = {(x, y) ∈ Fn2 × Fm2 ; y =

F (x)} and GG = {(x, y) ∈ Fn2 × Fm2 ; y = G(x)} are affinely equivalent (i.e.

such that L(GF ) = GG for some affine automorphism L on Fn2×Fm2 ) are called

(Carlet-Charpin-Zinoviev) CCZ equivalent2 (the notion is from [257] and the

term from [163]).
A property or a parameter will be called a permutation invariant (resp. a linear

invariant, an affine invariant, an EA invariant, a CCZ invariant) if it is preserved

by permutation (resp. linear, affine, extended affine, CCZ) equivalence.

In [432] is given an asymptotic estimate for the number of EA equivalence classes

of Boolean functions.

Note that if F and G are CCZ equivalent and if we write L = (L1, L2) where

L is the automorphism in Definition 5 (Item 5) with L1 : Fn2 × Fm2 7→ Fn2 and

L2 : Fn2 ×Fm2 7→ Fm2 , and if, for every x ∈ Fn2 , we define F1(x) = L1(x, F (x)) and

F2(x) = L2(x, F (x)), then function F1 is bijective because, G being a function,

F1 is surjective. We have G = F2 ◦F−1
1 . Note also that, given a function F , find-

ing all functions CCZ equivalent to F consists in finding all affine automorphisms

L = (L1, L2) such that F1 is bijective. Moreover, CCZ equivalent functions cor-

responding to a same F , a same L1 and different L2 are EA equivalent, see [163],

where is shown that an (n, n)-function G is EA equivalent to a function F or to

F−1 (if it exists) if and only if there exists an affine permutation L = (L1, L2)

where L1 depends only on x or y, and such that L(GF ) = GG.

CCZ equivalence can be translated in terms of codes, see the remark, page 411.

Proposition 1 For n and m ranging over N, each equivalence relation in Defi-

nition 5 is a strict particular case of the next one.

Proof. The only non-obvious facts are that EA equivalence implies CCZ equiva-

lence and that the converse is false. This can be seen as follows:

- if φ1 and φ2 are affine automorphisms of Fn2 , Fm2 , respectively, and if G =

φ2 ◦ F ◦ φ1, then defining L1(x, y) = φ−1
1 (x) and L2(x, y) = φ2(y), we have that

L = (L1, L2) is an affine automorphism of Fn2 × Fm2 which maps GF onto GG,

since G(φ−1
1 (x)) = φ2(F (x)), and F and G are then CCZ equivalent3;

- if φ(x) is an affine function from Fn2 to Fm2 and G(x) = F (x) + φ(x) then

L(x, y) = (x, y + φ(x)) is an affine automorphism which maps GF onto GG and

F and G are CCZ equivalent;

- EA equivalence preserves algebraic degree (see Definition 6, page 52) when it

is larger than 1 and it is shown in [162, 163] that CCZ equivalence does not. 2

Note that if m = n and (L1, L2)(x, y) = (y, x), then F2 ◦ F−1
1 is equal to F−1.

2 This notion has been rediscovered by L. Breveglieri, A. Cherubini and M. Macchetti at
Asiacrypt 2004.

3 Conversely, if F and G are CCZ equivalent and L1(x, y) and L2(x, y) depend only on x

and y, respectively, say L1(x, y) = φ−1
1 (x) and L2(x, y) = φ2(y), then φ1 and φ2 are affine

automorphisms of Fn2 and Fm2 , respectively, and G = φ2 ◦ F ◦ φ1.



2.2 Representations of Boolean functions and vectorial functions 47

2.1.1 Relations between these equivalences

For a lack of space, in this subsection, we shall refer to papers for the proofs.

It has been proved in [163] that CCZ equivalence between (n, n)-functions4 is

strictly more general than EA equivalence together with taking inverses of per-

mutations, by exhibiting functions which are CCZ equivalent to the function

F (x) = x3 on F2n , but which cannot be obtained from F by any sequence of

applications of EA equivalence and inverse transformation; see also [771].

However, CCZ equivalence coincides with EA equivalence when restricted to

some classes of functions (whose definitions will be, in some cases, given after):

1. Boolean (i.e. single-output) functions5, as shown in [149] (on the contrary,

CCZ equivalence is shown strictly more general than EA equivalence in the

case of (n,m)-functions when n ≥ 5 and m is larger than or equal to the

smallest divisor of n different from 1, e.g. when n is even and m ≥ 2),

2. bent functions (see page 297) as proved in [148, 150] and more generally,

functions having surjective derivatives (see page 55), as proved in [164],

3. quadratic APN functions (see page 309), as shown in [1139] (extending [119]).

CCZ equivalence also coincides with EA equivalence (see page 309 as well):

• for n even, with plateaued APN functions, one of which is a power function,

• for a quadratic APN function and a power (APN) function (they are then EA

equivalent to one of the Gold functions).

And the CCZ equivalence between two power functions coincides with their EA

equivalence or with the EA equivalence between one function and the inverse of

the other if it is bijective (see Proposition 113, page 310).

Remark. It has been shown in [149] that the CCZ equivalence (i.e. the EA

equivalence, thanks to 1. above) between the indicators (i.e. characteristic func-

tions) of the graphs of two functions coincides with their CCZ equivalence. 2

Finding new EA inequivalent functions by using CCZ equivalence is not easy

(this could be done in particular cases, see pages 429, 437). If (L1, L2) and

(L1, L
′
2) are linear permutations of Fn2 × Fm2 and F1 = L1(x, F (x)) is a permu-

tation of Fn2 , then since the functions F ′ and F ′′ obtained by CCZ equivalence

from F by using (L1, L2) and (L1, L
′
2) are EA equivalent, finding EA inequivalent

functions by using CCZ equivalence needs to find new permutations F1.

2.2 Representations of Boolean functions and vectorial functions

Among the classical representations of Boolean (resp. vectorial) functions, the

most well-known is the truth-table (resp. the look-up table LUT), equal to the

4 For (n,m)-functions, see [149, 966].
5 If one function is Boolean (and viewed as multi-ouput thanks to F2 ⊂ F2m ), this suffices.
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list of all pairs of an element of Fn2 and of the value of the function at this input

(an ordering of Fn2 being chosen).

2.2.1 Algebraic normal form

The truth table is not much used for defining Boolean functions in the frame-

works of cryptography and coding theory, because the features of Boolean func-

tions which play a role in these two domains are not easily captured by such

representation (except for the Hamming weight). The most used representation

in cryptography and coding is the algebraic normal form (in brief the ANF )6.

Algebraic normal form of Boolean functions
This is an n-variable polynomial representation over F2, of the form f(x) =⊕
I⊆{1,...,n}

aI

(∏
i∈I

xi

)
=

⊕
I⊆{1,...,n}

aI x
I ∈ F2[x1, . . . , xn]/(x2

1 ⊕ x1, . . . , x
2
n ⊕ xn).

(2.1)

Every coordinate xi appears in this polynomial with exponents at most 1, be-

cause every bit in F2 equals its own square.

Example: let us consider the function f whose truth-table is

x1 x2 x3 x in hexa f(x)

0 0 0 0 0

0 0 1 1 1

0 1 0 2 0

0 1 1 3 0

1 0 0 4 0

1 0 1 5 1

1 1 0 6 0

1 1 1 7 1

It is the sum (modulo 2 or not, no matter) of the atomic functions f1, f2, f3:

x1 x2 x3 x in hexa f1(x) f2(x) f3(x)

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 0 2 0 0 0

0 1 1 3 0 0 0

1 0 0 4 0 0 0

1 0 1 5 0 1 0

1 1 0 6 0 0 0

1 1 1 7 0 0 1

6 It can have other names in circuit theory, like Zhegalkin polynomial, modulo-2

sum-of-products, Reed-Muller-canonical expansion, positive polarity Reed-Muller form.
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The function f1(x) takes value 1 if and only if 1⊕ x1 = 1⊕ x2 = x3 = 1, that is,

(1⊕ x1)(1⊕ x2)x3 = 1. Thus the ANF of f1 can be obtained by expanding the

product (1⊕x1)(1⊕x2)x3. After similar observations on f2 and f3, we see that the

ANF of f equals (1⊕x1)(1⊕x2)x3⊕x1(1⊕x2)x3⊕x1x2x3 = x1x2x3⊕x2x3⊕x3. 2

Another possible representation of this same ANF uses an indexation by means of

vectors of Fn2 instead of subsets of {1, . . . , n}; if, for any such vector u, we denote

by au what is denoted by asupp(u) in Relation (2.1) (where supp(u) denotes the

support of u), we have the equivalent representation:

f(x) =
⊕
u∈Fn2

au

 n∏
j=1

xj
uj

 .

The monomial
∏n
j=1 xj

uj is often denoted7 by xu. We have xuxv = xu∨v where

supp(u ∨ v) = supp(u) ∪ supp(v).

Existence and uniqueness of the ANF
By applying the method described in the example above, it is a simple matter

to show the existence of the ANF of any Boolean function: we have

f(x) =
∑
a∈Fn2

f(a)δa(x) =
⊕
a∈Fn2

f(a)δa(x) (2.2)

where the function δa is the Dirac (or Kronecker) symbol at a and equals

δa(x) =
∏n
i=1(xi ⊕ ai ⊕ 1). Replacing in (2.2) each δa by this expression, ex-

panding it and simplifying (mod 2) gives an expression (2.1) for f which shows

the existence of an ANF of any Boolean function. This implies that the mapping

from polynomials P ∈ F2[x1, . . . , xn]/(x2
1⊕x1, . . . , x

2
n⊕xn) to the corresponding

functions x ∈ Fn2 7→ P (x), is onto BFn. Since the size of BFn equals the size

of F2[x1, . . . , xn]/(x2
1⊕ x1, . . . , x

2
n⊕ xn), this correspondence is one to one8. But

more can be said:

Relationship between a Boolean function and its ANF
The product xI =

∏
i∈I xi is nonzero if and only if xi is nonzero (i.e. equals 1)

for every i ∈ I, that is, if I is included in the support of x; hence, the Boolean

function f(x) =
⊕

I⊆{1,...,n} aI x
I takes value

f(x) =
⊕

I⊆supp(x)

aI , (2.3)

where supp(x) denotes the support of x.

If we use the notation f(x) =
⊕

u∈Fn2
aux

u, we obtain the relation f(x) =

7 The reader should not confuse this notation with a univariate monomial.
8 Another argument is that this mapping is a linear mapping from a vector space over F2 of

dimension 2n to a vector space of the same dimension.
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⊕
u�x au, where u � x means that supp(u) ⊆ supp(x) (we say that u is covered

by x). A Boolean function f◦ can be associated to the ANF of f : for every x ∈
Fn2 , we set f◦(x) = asupp(x), that is, with the notation f(x) =

⊕
u∈Fn2

aux
u:

f◦(u) = au. Relation (2.3) shows that f is the image of f◦ by the so-called

binary Möbius transform. The converse is also true:

Theorem 1 Let f be a Boolean function on Fn2 and let
⊕

I⊆{1,...,n} aI x
I be its

ANF. We have:

∀I ⊆ {1, . . . , n}, aI =
⊕

x∈Fn2 ; supp(x)⊆I

f(x). (2.4)

Proof. Let us denote
⊕

x∈Fn2 ; supp(x)⊆I f(x) by bI and consider the function g(x) =⊕
I⊆{1,...,n} bI x

I . We have

g(x) =
⊕

I⊆supp(x)

bI =
⊕

I⊆supp(x)

 ⊕
y∈Fn2 ; supp(y)⊆I

f(y)


=
⊕
y∈Fn2

f(y)

 ⊕
I⊆{1,...,n}; supp(y)⊆I⊆supp(x)

1

 .

The sum
⊕

I⊆{1,...,n}; supp(y)⊆I⊆supp(x) 1 is null if y 6= x. Indeed, if supp(y) 6⊆
supp(x), then the sum is empty and if supp(y) ⊆ supp(x), then the set {I ⊆
{1, . . . , n}; supp(y) ⊆ I ⊆ supp(x)} contains 2wH(x)−wH(y) elements. Hence,

g = f and, by the uniqueness of the ANF of f , bI = aI for every I. 2

Algorithm (Fast binary Möbius transform)
There exists a simple divide-and-conquer butterfly algorithm to compute the

ANF from the truth-table (or vice-versa), called the fast Möbius transform. For

every u = (u1, . . . , un) ∈ Fn2 , the coefficient au of xu in the ANF of f equals⊕
(x1,...,xn−1)�(u1,...,un−1)

[f(x1, . . . , xn−1, 0)] if un = 0 and

⊕
(x1,...,xn−1)�(u1,...,un−1)

[f(x1, . . . , xn−1, 0)⊕ f(x1, . . . , xn−1, 1)] if un = 1.

Hence if, in the truth-table of f , the binary vectors are ordered in lexicographic

order, with the bit of higher weight on the right, the table of the ANF equals the

concatenation of the ANFs of the (n − 1)-variable functions f(x1, . . . , xn−1, 0)

and f(x1, . . . , xn−1, 0) ⊕ f(x1, . . . , xn−1, 1). This gives the recursive algorithm

below. Note that taking the lexicographic order with the bit of higher weight on

the left (i.e. the standard lexicographic order) would work as well (as would any

other order corresponding to a permutation of {1, . . . , n}).

1. write the truth-table of f , in which the binary vectors of length n are in lex-

icographic order with the bit of higher weight on the right;
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2. let f0 and f1 be the restrictions of f to Fn−1
2 × {0} and Fn−1

2 × {1}, respec-

tively9; replace the values of f1 by those of f0 ⊕ f1;

3. apply recursively step 2, separately to the functions now obtained in the places

of f0 and f1.

When the algorithm ends (i.e. arrives to functions in one variable each), the

global table gives the values of the ANF of f . The complexity of this algorithm

is of n 2n XORs; it is then in O(N log2N) where N = 2n is the size of its input f .

Data: tt ← truth table, n ← number of variables

Result: anf ← algebraic normal form

for i = 0 to n− 1 do

for j = 0 to 2n−1 − 1 do

t[j] = tt[2 ∗ j];
u[j] = tt[2 ∗ j]⊕ tt[2 ∗ j + 1];

end

for k = 0 to 2n−1 − 1 do

anf [k] = t[k];

anf [2n−1 + k] = u[k];

end

end

Algorithm 1: Computing the algebraic normal form

We give in Table 2.1 an example of the computation of the ANF from the

truth table using the algorithm of the fast binary Möbius transform, and of the

computation of the truth table from the ANF, using this same algorithm.

Remark. The algorithm does not work if the order on F2n is not a permuted

lexicographic order (for instance, an order by increasing weights of inputs). 2

ANF of the graph indicator of a vectorial function
Denoting by 1GF (x, y) the indicator (i.e. the characteristic function) of the graph

GF = {(x, F (x)); x ∈ Fn2} of an (n,m)-function F (sometimes called its code-

book), Relation (2.4) applied to 1GF gives that, for every I ⊆ {1, . . . , n}, J ⊆
{1, . . . ,m}, the coefficient of xIyJ in its ANF equals:

aI,J = |{x ∈ Fn2 ; supp(x) ⊆ I and supp(F (x)) ⊆ J}| [mod 2].

We have also:

Proposition 2 [253, 254] Let F be any (n,m)-function and let f1, . . . , fm be its

9 The truth-table of f0 (resp. f1) corresponds to the upper (resp. lower) half of the table

of f .
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x1 x2 x3 x4 x in hexa f(x) f◦(x) f(x)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 2 1 1 1 1 1 1 1 1 1

1 1 0 0 3 1 1 1 1 0 0 0 0 1

0 0 1 0 4 0 0 0 0 0 0 0 0 0

1 0 1 0 5 0 0 0 0 0 0 0 0 0

0 1 1 0 6 1 1 0 0 0 0 1 1 1

1 1 1 0 7 0 0 1 1 1 1 1 1 0

0 0 0 1 8 0 0 0 0 0 0 0 0 0

1 0 0 1 9 1 1 1 1 1 1 1 1 1

0 1 0 1 a 1 0 0 0 0 1 1 1 1

1 1 0 1 b 0 1 1 0 0 0 0 1 0

0 0 1 1 c 0 0 0 0 0 0 0 0 0

1 0 1 1 d 1 1 0 0 0 0 1 1 1

0 1 1 1 e 1 0 0 0 0 0 1 1 1

1 1 1 1 f 1 1 0 0 0 1 1 0 1

Table 2.1 ANF of a function from its truth-table and re-calculation of the truth table
from ANF (for function f(x) = x2 ⊕ x1x2x3 ⊕ x1x4; x = (x1, x2, x3, x4))

coordinate functions. We have:

1GF (x, y) =

m∏
j=1

(yj ⊕ fj(x)⊕ 1) =
⊕

J⊆{1,...,m}

yJ
∏

j∈{1,...,m}\J

(fj(x)⊕ 1).

Indeed, for every y, y′ ∈ Fm2 , we have y = y′ if and only if
∏m
j=1(yj ⊕ y′j ⊕ 1) = 1.

This, with y′ = F (x), proves the first assertion and the rest is straightforward.

Note that, if F is a permutation (m = n), then 1GF (x, y) = 1GF−1 (y, x), where

F−1 is the compositional inverse of F , and thus:⊕
J⊆{1,...,n}

yJ
∏

j∈{1,...,n}\J

(fj(x)⊕ 1) =
⊕

I⊆{1,...,n}

xI
∏

i∈{1,...,n}\I

(f ′i(y)⊕ 1), (2.5)

where the f ′i ’s are the coordinate functions of F−1.

Algebraic degree of a Boolean function
Definition 6 The degree of the ANF shall be denoted by dalg(f) and is called

the algebraic degree of the function10: dalg(f) = max{|I|; aI 6= 0}, where |I|
denotes the size of I (with the convention that the zero function has algebraic

degree 0).

This makes sense thanks to the existence and uniqueness of the ANF.

Of course, given two n-variable Boolean functions f, g, we have dalg(f ⊕ g) ≤
max(dalg(f), dalg(g)) and dalg(f g) ≤ dalg(f) + dalg(g).

10 Some authors also call it the nonlinear order of f but this terminology is more or less

obsolete.
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Note that a Boolean function is affine if and only if it has algebraic degree

at most 1. We shall call quadratic functions the Boolean functions of algebraic

degree at most 2 and cubic functions those of algebraic degree at most 3. Note

that this means for instance that an affine function is a particular quadratic

function (just as, by definition, a constant function is a particular affine function).

This may be a little confusing for the reader, but we are obliged to adopt this

terminology, since otherwise, we would have sentences like “all derivatives of a

Boolean function are affine if and only if the function is quadratic or affine”, “all

second-order derivatives are affine if and only if the function is cubic or quadratic

or affine”, etc.

According to Relation (2.4), we have directly:

Proposition 3 The algebraic degree dalg(f) of any n-variable Boolean function

f equals the maximum dimension of the subspaces {x ∈ Fn2 ; supp(x) ⊆ I} on

which f takes value 1 an odd number of times. In particular:

- dalg(f) = n if and only if wH(f) is odd,

- dalg(f) = n−1 if and only if (1) wH(f) is even and (2) there exists i such that

|{a ∈ supp(f); ai = 0}| is odd, or equivalently thanks to (1),
∑
a∈supp(f) a 6= 0.

The index i is indeed characterized by
⊕

a∈supp(f) ai 6= 0. The two latter prop-

erties above will be seen under another viewpoint in Corollary 2, page 64.

The algebraic degree is an affine invariant (i.e. it is invariant under the ac-

tion of the general affine group, see Section 2.1): for every affine automorphism

L : (x1, x2, . . . , xn) ∈ Fn2 7→ (x1, x2, . . . , xn) ×M + (a1, a2, . . . , an), where M is

a nonsingular n × n matrix over F2, we have dalg(f ◦ L) = dalg(f). Indeed, the

composition by L clearly cannot increase the algebraic degree, since the coordi-

nates of L(x) have degree 1. Hence we have dalg(f ◦ L) ≤ dalg(f) (in fact, for

every affine homomorphism). And applying this inequality to f ◦ L in the place

of f and to L−1 in the place of L shows the inverse inequality.

Note in particular that, if F is an (n, n)-permutation, then we have dalg(1GF ) =

dalg(1GF−1 ): these two indicators correspond to each other by swapping x and y.

For functions of algebraic degree strictly larger than 1, the algebraic degree is

an EA invariant (but not a CCZ invariant, see [162, 163]).

The algebraic degree being an affine invariant, Proposition 3 implies that it also

equals the maximum dimension of all the affine subspaces of Fn2 on which f takes

value 1 an odd number of times. Equivalently:

Proposition 4 A Boolean function has algebraic degree at most d if and only if

its restriction to any (d + 1)-dimensional flat (i.e. affine subspace) has an even

Hamming weight.

This shows in particular that, given an n-variable Boolean function f and an

affine subspace A = a+E of Fn2 (where E is the vector space equal to the direc-

tion of A), the restriction of f to A, viewed as a k-variable function where k is

the dimension of A (by identifying the elements of a+E with the vectors of Fk2
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through the choice of a basis of E), has algebraic degree at most dalg(f).

It is shown in [955] that, for every nonzero n-variable Boolean function f ,

denoting by g the binary Möbius transform of f , we have dalg(f) + dalg(g) ≥ n.

This same paper deduces characterizations and constructions of the functions

which are equal to their binary Möbius transform, called coincident functions.

Remarks. 1. Every atomic function has algebraic degree n, since its ANF

equals (x1 ⊕ ε1)(x2 ⊕ ε2) . . . (xn ⊕ εn), where εi ∈ F2. Thus, a Boolean func-

tion f has algebraic degree n if and only if, in its decomposition as a sum of

atomic functions, the number of these atomic functions is odd, that is, if and

only if wH(f) is odd. This property will have an important consequence on the

Reed-Muller codes and it will be also useful in Chapter 4.

2. If we know that the algebraic degree of an n-variable Boolean function f is

bounded above by d < n, then the whole function can be recovered from some

of its restrictions (i.e., a unique function corresponds to this partially defined

Boolean function). Precisely, according to the existence and uniqueness of the

ANF, the knowledge of the restriction f|E of the Boolean function f (of alge-

braic degree at most d) to a set E implies the knowledge of the whole function

if and only if the system of the equations f(x) =
⊕

I⊆{1,...,n}; |I|≤d aI x
I , with

indeterminates aI ∈ F2, and where x ranges over E (this makes |E| equations),

has a unique solution11.

This happens with the set Ed of all words of Hamming weights smaller than or

equal to d (and then, by affine equivalence, it happens with every set E affinely

equivalent to Ed), since Relation (2.4) gives the value of aI for |I| ≤ d and the

others are null by hypothesis. And since |Ed| = |{I ⊆ {1, . . . , n}; |I| ≤ d}|, any

choice of f|Ed works.

Notice that Relation (2.3) makes possible to express the value of f(x) for ev-

ery x ∈ Fn2 by means of the values taken by f on E. For instance, for E = Ed,

we have (using the notation au instead of aI , see above, and still using that

dalg(f) ≤ d):

f(x) =
⊕
u�x

au =
⊕
u�x
u∈Ed

au =
⊕
y�x
y∈Ed

f(y) |{u ∈ Ed ; y � u � x|

=
⊕
y�x
y∈Ed

f(y)

d−wH(y)∑
i=0

(
wH(x)− wH(y)

i

) [mod 2]

 .
These observations generalize to pseudo-Boolean (that is, real-valued) functions,

if we consider the numerical degree (see below) instead of the algebraic degree,

11 Note that taking f(x) = 0,∀x ∈ E, leads to another problem: determine the so-called
annihilators f of the indicator 1E of E (the characteristic function of E, defined

by 1E(x) = 1 if x ∈ E and 1E(x) = 0 otherwise); this is the core analysis of Boolean

functions from the viewpoint of algebraic attacks, see Section 3.1.
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cf. [1090]. 2

The simplest functions, from the viewpoint of the ANF, are those Boolean func-

tions of algebraic degree at most 1, that is, affine functions (the sums of linear

and constant functions, sometimes called parity functions, see e.g. [914]):

f(x) = a0 ⊕ a1 x1 ⊕ · · · ⊕ an xn; ai ∈ F2.

Denoting by a · x the usual inner product a · x = a1 x1 ⊕ · · · ⊕ an xn in Fn2 (al-

ready encountered in Section 1.2), or any other inner product (that is12, any

symmetric bivariate function such that, for every a 6= 0, the function x→ a ·x is

a nonzero linear form13 on Fn2 ), the general form of an n-variable affine function

is a · x ⊕ a0 = `a(x) ⊕ a0 (with a ∈ Fn2 ; a0 ∈ F2), since the non-degeneracy

of the bilinear form implies that the mapping a 7→ `a is injective and therefore

bijective.

Affine functions play an important role in coding (they are involved in the defini-

tion of the Reed-Muller code of order 1, see Section 4.1) and in cryptography (the

Boolean functions used as “nonlinear functions” in cryptosystems must behave

as differently as possible from affine functions, see Section 3.1).

Algebraic degree and derivation
The derivation of Boolean functions must not be confused with the derivation of

polynomials:

Definition 7 Let f be an n-variable Boolean function and let a be any vector

in Fn2 . We call derivative14 of f in the direction a (or with the input difference

a) the Boolean function Daf(x) = f(x)⊕ f(x+ a).

For instance, the derivative of a function expressed in the form g(x1, . . . , xn−1)⊕
xn h(x1, . . . , xn−1) in the direction (0, . . . , 0, 1) equals h(x1, . . . , xn−1).

Proposition 5 Any derivative of any non-constant Boolean function f has al-

gebraic degree strictly smaller than the algebraic degree of f and there exists at

least one derivative of algebraic degree dalg(f)− 1.

Proof. The first assertion can be checked easily for each monomial xI where

I 6= ∅: we have xI ⊕ (x+ a)I =
⊕

J⊂I,J 6=I

(∏
j∈I\J aj

)
xJ . The second assertion

is a direct consequence, by affine invariance of the algebraic degree, of the fact

observed just above for direction (0, . . . , 0, 1). 2

Note that this implies that a function is affine if and only if all its derivatives

are constant (this is more generally valid for every function defined over a vector

space). And it is quadratic if and only if all its derivatives are affine. For a general

12 In nonzero characteristic, there is no possible notion of positivity.
13 i.e. “·” is a nondegenerate bilinear form.
14 Some authors write “directional derivative”.
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function, the sets of those vectors a such that Daf is constant (resp. affine) are

vector subspaces of Fn2 , see page 120.

In [275] are studied Boolean functions f whose restrictions to all affine hy-

perplanes have the same algebraic degree equal to dalg(f) and functions whose

derivatives Daf(x), a 6= 0n, have all the same algebraic degree dalg(f)−1. Three

classes of Boolean functions are presented; the first class satisfies both condi-

tions, the second class satisfies the first condition but not the second and the

third class satisfies the second condition but not the first. In this same paper

is given, for any fixed positive integer k and for all integers n, p, s such that

p ≥ k + 1, s ≥ k + 1 and n ≥ ps, a class Cn,p,s of n-variable Boolean functions

whose restrictions to all k-codimensional affine subspaces of Fn2 have the same

algebraic degree as the function.

Higher order derivatives have been introduced by Lai [735].

Definition 8 Let f be an n-variable Boolean function and let a1, . . . , ak be k

vectors in Fn2 . We call k-th order derivative of f in the directions a1, . . . , ak the

Boolean function Da1
Da2
· · ·Dakf(x).

It is easily seen by induction on k that if a1, . . . , ak are linearly independent, then

Da1
Da2
· · ·Dakf(x) =

⊕
a∈E f(x + a), where E is the F2-vector space spanned

by a1, . . . , ak, and otherwise Da1Da2 · · ·Dakf(x) = 0.

Corollary 1 Any k-th order derivative of any Boolean function f of algebraic

degree at least k has algebraic degree at most dalg(f)− k.

The Algebraic Normal Form of vectorial functions
The notion of algebraic normal form of Boolean functions can easily be extended

to (n,m)-functions. Given such function F , each coordinate function of F is

uniquely represented by its ANF, which is an element of F2[x1, . . . , xn]/(x2
1 ⊕

x1, , . . . , x
2
n⊕xn). Function F is then represented in a unique way as an element

of Fm2 [x1, . . . , xn]/(x2
1 ⊕ x1, . . . , x

2
n ⊕ xn):

F (x) =
∑

I⊆{1,...,n}

aI

(∏
i∈I

xi

)
=

∑
I⊆{1,...,n}

aI x
I , (2.6)

where aI belongs to Fm2 (maybe should we write F (x) =
∑

I⊆{1,...,n}

(∏
i∈I

xi

)
aI =∑

I⊆{1,...,n}

xIaI , since
∏
i∈I xi is a scalar and aI is a vector). According to our

convention on the notation for additions, we used
∑

to denote the sum in Fm2 ,

but recall that, coordinate by coordinate, this sum is a
⊕

.

This polynomial is called the algebraic normal form (ANF) of F . According to

Relation (2.3), we have F (x) =
∑
I⊆supp(x) aI and according to Relation (2.4),

we have aI =
∑
x∈Fn2 ; supp(x)⊆I F (x) (these sums being calculated in Fm2 ).
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Remark. An (n,m)-function F (x) being given by its ANF and an (m, r)-function

G(y) being given by the ANF of the indicator 1GG(y, z) of its graph GG =

{(y,G(y)); y ∈ Fm2 }, the ANF of the indicator 1GG◦F (x, z) of the graph of the

composite function G ◦ F equals 1GG(F (x), z), where we denote a function and

its ANF the same way.

If we are given the ANF of 1GF rather than that of F (x), then as observed in

[253, 254], 1GG◦F (x, z) can be obtained by the elimination of y from the two

equations 1GF (x, y) = 1 and 1GG(y, z) = 1. Since for every x, there is exactly one

y such that 1GF (x, y) = 1, then 1GG◦F (x, z) equals
∑
y∈Fm2

1GF (x, y)1GG(y, z) =⊕
y∈Fm2

1GF (x, y)1GG(y, z). This formula can be easily iterated (with more than

two functions) and we shall see that it gives an information which is more ex-

ploitable than 1GG◦F (x, z) = 1GG(F (x), z) because it deals with a multiplication

instead of a composition. 2

Algebraic degree of a vectorial function
The algebraic degree of an (n,m)-function is by definition the global degree of

its ANF: dalg(F ) = max{|I|; I ⊆ {1, . . . , n}, aI 6= 0m}. It therefore equals the

maximal algebraic degree of the coordinate functions of F . It also equals the

maximal algebraic degree of the component functions (in brief, components) of

F , that is, the nonzero linear combinations of the coordinate functions, i.e. the

functions of the form v · F , where v ∈ Fm2 \ {0m} and “·” is an inner product in

Fm2 . The algebraic degree of vectorial functions is an affine invariant (that is, its

value does not change when we compose F , on the right or on the left, by an

affine automorphism). For functions of algebraic degree strictly larger than 1, it

is an EA invariant , but it is not a CCZ invariant. In particular, the algebraic

degrees of a permutation and its compositional inverse are in general not equal. It

is however observed in [106] that if an (n, n)-permutation F has algebraic degree

n−1 (the maximum for a permutation), then its inverse has also algebraic degree

n − 1. In fact, this is a direct consequence of Relation (2.5) by considering the

terms xIyJ where |I| = |J | = n−1. Note that, according to Proposition 2 on the

graphs of (n,m)-functions, writing 1GF (x, y) in the form
⊕

J⊆{1,...,m} ϕJ(x)yJ ,

we have that dalg(F ) = max|J|=m−1 dalg(ϕJ(x)) and:

dalg(1GF ) = max
J⊆{1,...,m}

(
dalg

( ∏
j∈{1,...,m}\J

(fj ⊕ 1)
)

+ |J |
)

(2.7)

≥ max(m,m− 1 + dalg(F )). (2.8)

If the algebraic degree of 1GF is low (i.e. close to m), then all the products of a

few coordinate functions of F have low algebraic degree.

Proposition 2 and the relation 1GG◦F (x, z) =
⊕

y∈Fm2
1GF (x, y)1GG(y, z) lead in

[254] to the bounds:

dalg(G ◦ F ) ≤ dalg(1GF ) + dalg(G)−m and (2.9)

dalg(H ◦G ◦ F ) ≤ dalg (1GF ) + dalg (1GG) + dalg(H)−m− r, (2.10)
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for every (n,m)-function F , (m, r)-function G and (r, s)-function H. This is

generalized to the composition of any number of functions in [254].

If F is a permutation, then, as observed in [253, 254], 1GG◦F (x, z) is equal to⊕
y∈Fm2

1GF−1 (y, x)1GG(y, z), that is, according to Proposition 2, page 51, and

Proposition 3, page 53:

1GG◦F (x, z) =
⊕

I⊆{1,...,n}
K⊆{1,...,r}

xIzK

⊕
y∈Fm2

[∏
i∈Ic

(f ′i(y)⊕ 1)
∏
k∈Kc

(gk(y)⊕ 1)

]
=

⊕
I⊆{1,...,n},K⊆{1,...,r};

dalg(
∏
i∈Ic (f′

i
⊕1)

∏
k∈Kc (gk⊕1))=n

xIzK , (2.11)

where Ic = {1, . . . , n} \ I, Kc = {1, . . . , r} \K and the f ′i ’s are the coordinate

functions of F−1 and the gk’s are those of G. Then, still according to Proposition

2 and as proved in [254], we have directly from (2.11) that:

dalg(G◦F ) = max
k∈{1,...,r}

(
max

{
|I|; dalg

(
(gk ⊕ 1)

∏
i∈Ic

(f ′i ⊕ 1)

)
= n

})
. (2.12)

This is generalized to the composition of any number of functions in [254]. We

shall see at page 137 that this leads to an upper bound on dalg(G ◦ F ). Note

that, according to Relation (2.5), page 52, and as observed by [106] (but in a

more complex way), for every every integers k, l, the maximal algebraic degree

of the product of at most k coordinate functions15 of F , that we shall denote by

d
(k)
alg(F ), satisfies: d

(k)
alg(F ) < n− l⇐⇒ d

(l)
alg(F

−1) < n− k.

The case of functions over F2n is also studied in [254].

Another notion of degree is also relevant to cryptography (and is also affine

invariant): the minimum algebraic degree of all the component functions16 of F ,

often called the minimum degree:

dmin(F ) = min{dalg(v · F ) : 0m 6= v ∈ Fm2 } 6dalg(F ).

2.2.2 Univariate and trace representations

A second kind of representation plays an important role in sequence theory, and

is also used for defining and studying Boolean functions. For instance, it allows

to define the S-box of the AES and leads to the construction of the Kerdock

codes (see Section 6.1.22). Recall that, for every n, there exists a (unique up to

isomorphism) field F2n (also denoted by GF (2n) in some papers) of order 2n,

see [775, 890]. For making this book self-contained, we recall in Appendix (Chap-

ter 14, page 521), the basics on finite fields, permutation polynomials and equa-

tions over finite fields. The vector space Fn2 can be endowed with the structure

15 The algebraic degree of the product of k coordinate functions equals n if k = n and is

strictly smaller if k < n, as can be easily shown and is characteristic of permutations.
16 Not just the coordinate functions; the notion would then not be affine invariant.
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of this field F2n (by construction and because F2n has the structure of an n-

dimensional F2-vector space; if we choose an F2-basis (α1, . . . , αn) of this vector

space, then every element x ∈ Fn2 can be identified with x1 α1+· · ·+xn αn ∈ F2n).

We shall still denote by x this element of the field.

Univariate representation of (n, n)-functions
Every mapping from F2n into F2n (and hence any (n, n)-function17) admits a

(unique) representation as a polynomial over F2n in one variable and of (univari-

ate) degree at most 2n − 1:

F (x) =

2n−1∑
i=0

δix
i; δi ∈ F2n . (2.13)

Indeed, the function mapping every such polynomial to the corresponding poly-

nomial function from F2n to F2n is F2n -linear and has trivial kernel since a

nonzero polynomial cannot have a number of distinct zeros larger than its de-

gree. Since the dimensions of the F2n-vector space of such polynomials and of the

F2n -vector space of all (n, n)-functions both equal 2n, this function is a bijection.

Definition 9 We call univariate representation of an (n, n)-function F the unique

polynomial
∑2n−1
i=0 δiX

i satisfying (2.13).

We shall also sometimes write that F is in univariate form.

Remark. F2n is the set of solutions of equation x2n +x = 0. We can then better

view the univariate representation of (n, n)-functions as lying in the quotient

ring F2n [X]/(X2n +X), each element of this ring being then represented as the

remainder in the division by X2n +X. 2

Note that the univariate representation of any (n, n)-function can be obtained

by the Lagrange interpolation method or as follows: since every element x in

F∗2n satisfies x2n−1 = 1, the function x2n−1 + 1 equals the Dirac (or Kronecker)

symbol (i.e. the indicator of {0}), the polynomial
∑
a∈F2n

F (a)((X+a)2n−1 +1)

is the univariate representation of F . Note in particular that the coefficient of

x2n−1 in this univariate representation equals the sum of all values F (a). A way

of obtaining more directly the univariate representation is by using the so-called

Mattson-Solomon polynomial that we shall see at page 61.

Univariate representation of Boolean functions
Any Boolean function on F2n is a particular case of a vectorial function from

F2n to F2n (since F2 is a subfield of F2n) and has then a (unique) univari-

ate representation. Recall that the mapping x 7→ x2 is a field automorphism

17 Note that if m divides n, then any function from F2n into F2m is a function from F2n into
F2n ; hence we also cover such (n,m)-functions here. When m does not divide n, we can

view the elements of Fm2 as elements of Fm2 × {0n−m} ⊂ Fn2 and represent them as

elements of F2n , but this is a little more artificial.
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called the Frobenius automorphism. The polynomial
∑2n−1
i=0 δiX

i, δi ∈ F2n , is

the univariate representation of a Boolean function if and only if the functions(∑2n−1
i=0 δix

i
)2

and
∑2n−1
i=0 δix

i take the same value at every x ∈ F2n , that is if

and only if
∑2n−1
i=0 δ2

iX
2i ≡

∑2n−1
i=0 δiX

i [mod X2n +X], that is, δ0, δ2n−1 ∈ F2

and, for every i = 1, . . . , 2n−2, δ2i = δ2
i , where the index 2i is taken mod 2n−1.

Absolute trace representation of Boolean functions and
vectorial functions
The absolute trace function on F2n , trn(x) = x + x2 + x22

+ · · · + x2n−1

, is

addressed at page 530 (it is F2-linear, satisfies (trn(x))2 = trn(x2) = trn(x) and

is valued in F2). The function (x, y) 7→ trn(x y) is an inner product in F2n (recall

that this means it is symmetric and, for every y 6= 0, the function x→ trn(x y)

is a nonzero linear form over F2n). Every Boolean function can be written in the

form f(x) = trn(F (x)) where F is a mapping from F2n into F2n (an example

of such mapping F is defined by F (x) = λ f(x) where trn(λ) = 1 and f(x) is

in univariate representation). Thus, every n-variable Boolean function f can be

also represented in the form

f(x) = trn

(
2n−1∑
i=0

βi x
i

)
, (2.14)

where βi ∈ F2n . Note that, thanks to the fact that trn is F2-linear and trn(x2) =

trn(x) for every x ∈ F2n , each term βi x
i in (2.14) can be replaced by its 2j-th

power, for every j and without changing the value of the expression. We can

then transform (2.14) into an expression trn
(∑

i∈I γi x
i
)

where I contains at

most one element of each cyclotomic class {i × 2j [ mod (2n − 1)] ; j ∈ N} of 2

modulo 2n − 1 (but this still does not make the representation unique).

More generally, if m is a divisor of n, then any (n,m)-function F admits a

univariate polynomial representation in the form:

F (x) = trnm(

2n−1∑
j=0

δjx
j), (2.15)

where trnm(x) = x+ x2m + x22m

+ x23m

+ · · ·+ x2n−m is the trace function from

F2n to F2m . Indeed, there exists a function G from F2n to F2n such that F equals

trnm ◦G (for instance, G(x) = λF (x), where trnm(λ) = 1, since trnm is a F2m-linear

form). But there is no uniqueness of G in this representation as well.

Definition 10 We shall call the representation (2.14), resp. (2.15), an absolute

trace representation of Boolean function f (resp. of (n,m)-function F ).

Its use is convenient, with the drawback of non-uniqueness which makes more

difficult to determine when two functions are equal.
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Subfield trace representation of Boolean functions
We come back to the univariate representation

∑2n−1
i=0 δiX

i. We have seen that

for any Boolean function, we have δ0, δ2n−1 ∈ F2 and, for every i = 1, . . . , 2n−2,

δ2i = δ2
i , where the index 2i is taken modulo 2n−1. Gathering all the elements of

a same cyclotomic class of 2 modulo 2n−1 provides the univariate representation

of f in the following form:

f(x) =
∑

j∈Γ(n)

trnj (βjx
j) + β2n−1x

2n−1, with

{
∀j ∈ Γ(n), βj ∈ F2nj ,

β2n−1 ∈ F2
(2.16)

where Γ(n) is a set of representatives of the cyclotomic classes of 2 modulo 2n−1

(the most usual choice of representative is the smallest element in the cyclotomic

class, called the coset leader of the class) and nj is the size of the cyclotomic

class containing j. It is easily seen that nj divides n and that βj ∈ F2nj because

β2nj
j = βj . We also have that the j-th power of every x ∈ F2n belongs to

F2nj because j 2nj ≡ j [mod 2n − 1] implies (xj)2nj = xj . Hence, trnj takes as

argument an element of F2nj , as it should. This representation allows uniqueness.

Definition 11 We call (2.16) the subfield trace representation of function f .

We shall also sometimes write more simply that f is in trace form.

Calculating the univariate and subfield trace representations of
a Boolean function from its truth table
Denoting by α a primitive element of the field F2n (recall that this means that

F2n = {0, 1, α, α2, . . . , α2n−2}), the Mattson-Solomon polynomial18 of the vector

(f(1), f(α), f(α2), . . . , f(α2n−2)) is the polynomial [809, page 239]:

A(x) =

2n−1∑
j=1

Ajx
2n−1−j =

2n−2∑
j=0

A2n−1−jx
j (2.17)

with:

Aj =

2n−2∑
k=0

f(αk)αkj . (2.18)

Note that Aj = a(αj), where a(x) =
∑2n−2
k=0 f(αk)xk.

We have, for every 0 ≤ i ≤ 2n − 2:

A(αi) =

2n−1∑
j=1

Ajα
−ij =

2n−1∑
j=1

2n−2∑
k=0

f(αk)α(k−i)j = f(αi) (2.19)

(since, if 1 ≤ k 6= i ≤ 2n−2, then

2n−1∑
j=1

α(k−i)j =

2n−2∑
j=0

α(k−i)j =
α(k−i)(2n−1) + 1

αk−i + 1
=

0, and if k−i = 0, then
∑2n−1
j=1 α(k−i)j = 1). Note that, with the usual convention

18 The Mattson-Solomon transform is a discrete Fourier transform (over F2n ); other discrete
Fourier transforms exist (e.g. over the complex field, like in [1111]).
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00 = 1, we have A(0) = A2n−1. Hence, if f(0) = A2n−1 =
∑2n−2
k=0 f(αk), that

is, if f has even Hamming weight (i.e. algebraic degree strictly less than n), the

Mattson-Solomon polynomial A(x) equals the univariate representation of f(x).

Otherwise, we have f(x) = A(x)+1+x2n−1, since 1+x2n−1 equals the Dirac (or

Kronecker) function at 0 (i.e. takes value 1 at 0 and 0 at every nonzero element

of F2n). This provides the univariate representation:

f(x) = f(0) +

2n−2∑
j=1

Ajx
2n−1−j + (wH(f) [mod 2])x2n−1

and the subfield trace representation:

f(x) =
∑

j∈Γ(n)

trnj (A2n−1−jx
j) + (wH(f) [mod 2])(1 + x2n−1).

Remark. For any Boolean function f , we have in (2.18) that A2j = A2
j and

this allows to gather the terms corresponding to a same cyclotomic class. This

provides the subfield trace representation of f . We can also, thanks to a change

of the coefficients, write

f(αj) =

2n−2∑
j=1

trn(ajα
−ij) (2.20)

and obtain the absolute trace representation of f . This shows what was asserted

at the end of Subsection 1.2.4. 2

Remark on RS codes.

Relations (2.17), (2.18) and (2.19) are valid for every function f from F∗2n to

F2n . In this framework, A(x), which according to Relation (2.17) is the polyno-

mial representation (see page 27) of codeword (A2n−1, A2n−2, . . . , A1), belongs

to the Reed-Solomon code (see page 29) over F2n of length 2n − 1 and zeros

α2n−δ, α2n−δ+1, . . . , α2n−2 (whose designed distance is δ) if and only if a(x) has

degree at most 2n − 1 − δ (according to Relation (2.19)), and the codeword

(A2n−1, A2n−2, . . . , A1) is an evaluation vector of this polynomial over F∗2n , ac-

cording to Relation (2.18). The BCH bound in this case corresponds to the fact

that a nonzero polynomial of degree at most 2n − 1− δ has at most 2n − 1− δ
zeros in F2n and therefore has at least δ nonzeros in F∗2n . This generalizes to RS

codes over Fq. 2

Calculating the ANF of a Boolean function or a vectorial
function from its univariate representation
We express x in the form

∑n
i=1 xiαi, where (α1, . . . , αn) is a basis of the F2-

vector space F2n . Recall that, for every j ∈ Z/(2n − 1)Z, the binary expansion

of j has the form
∑
s∈E 2s, where E ⊆ {0, 1, . . . , n − 1}. The size of E is often

called the 2-weight of j and written w2(j). We write more conveniently the binary
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expansion of j in the form:
∑n−1
s=0 js2

s, js ∈ {0, 1}. We have then:

F (x) =

2n−1∑
j=0

δj

(
n∑
i=1

xiαi

)j

=

2n−1∑
j=0

δj

(
n∑
i=1

xiαi

)∑n−1
s=0 js2

s

=

2n−1∑
j=0

δj

n−1∏
s=0

(
n∑
i=1

xiα
2s

i

)js
.

Expanding these last products and simplifying gives the ANF of F .

Proposition 6 Any Boolean function (resp. any (n, n)-function) whose univari-

ate representation equals (2.13) has algebraic degree maxj=0,...,2n−1; δj 6=0 w2(j).

Proof. According to the above equalities, the algebraic degree is bounded above

by this number, and it cannot be strictly smaller, because the dimension of

the F2-vector space (resp. the F2n -vector space) of Boolean n-variable functions

(resp. of (n, n)-functions) of algebraic degree at most d equals
∑d
i=0

(
n
i

)
, which

is also the dimension of the vector space of those polynomials
∑2n−1
j=0 δjx

j such

that δ0, δ2n−1 ∈ F2, δj ∈ F2n , δ2j = δ2
j ∈ F2n for every j = 1, . . . , 2n − 2 and

maxj=0,...,2n−1; δj 6=0 w2(j) ≤ d (resp. of those polynomials
∑2n−1
j=0 δjx

j such that

δj ∈ F2n for every j = 0, . . . , 2n − 1 and maxj=0,...,2n−1; δj 6=0 w2(j) ≤ d). 2

In particular, an (n, n)-function F is F2-linear (resp. affine) if and only if F (x)

is a linearized polynomial over F2n : F (x) =
∑n−1
j=0 βjx

2j ;x, βj ∈ F2n (resp. a

linearized polynomial plus a constant).

We have also:

Proposition 7 [209] Let a be any element of F2n and k any integer [mod 2n−1].

If f(x) = trn(axk) is not the null function, then it has algebraic degree w2(k).

Proof. Let nk be again the size of the cyclotomic class containing k. Then the

univariate representation of f(x) equals(
a+ a2nk + a22nk

+ · · ·+ a2n−nk
)
xk +

(
a+ a2nk + a22nk

+ · · ·+ a2n−nk
)2

x2k

+ · · ·+
(
a+ a2nk + a22nk

+ · · ·+ a2n−nk
)2nk−1

x2nk−1k.

All the exponents of x have 2-weight w2(k) and their coefficients are nonzero if

and only if f is not null. 2

Remark. An alternative (more complex but enlightening) way of showing Propo-

sition 7 is also given in [209] as follows: let r = w2(k); we consider the r-linear
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function φ over the field F2n whose value at (x1, . . . , xr) ∈ (F2n)r equals the sum

of the images by f of all the 2r possible linear combinations of the xj ’s. Then

φ(x1, . . . , xr) equals the sum, for all bijective mappings σ from {1, . . . , r} onto

E (where k =
∑
s∈E 2s) of trn(a

∏r
j=1 x

2σ(j)

j ). Proving that f has degree r is

equivalent to proving that φ is not null, and it can be shown that if φ is null,

then f is null. 2

Remark. For calculating the univariate representation from the ANF, we can

only propose to calculate the truth table (resp. the LUT) by the fast Möbius

transform and then to apply the method of page 61. Note however that the coef-

ficient of
∏n
i=1 xi in the ANF of F is directly linked to the coefficient of x2n−1 in

its univariate representation since these two coefficients are equal to each other

(up to the correspondence between Fn2 and F2n) because they are both equal to

the sum of all values F (x). 2

To complete this subsection, we give a corollary of Proposition 6 (which for

d = n− 2, n− 1 gives back the two last properties in Proposition 3, page 53):

Corollary 2 A vectorial function F : F2n 7→ F2n has algebraic degree at most d

if and only if, for every non-negative integer k of 2-weight at most n− d− 1, we

have: ∑
x∈F2n

xkF (x) = 0.

The condition is necessary by applying to function xkF (x) the fact that, for every

(n, n)-function G of algebraic degree at most n − 1, we have
∑
x∈F2n

G(x) = 0,

and since, for every non-negative integer i, we have w2(k + i) ≤ w2(k) + w2(i).

The condition is also sufficient since, for every (n, n)-function G of algebraic

degree n, we have
∑
x∈F2n

G(x) 6= 0, and since, for every i of 2-weight strictly

larger than d, there exists k of 2-weight at most n−d−1 such that w2(k+i) = n;

if i is taken with highest possible 2-weight in the univariate representation of F ,

we can manage that
∑
x∈F2n

xk+j = 0 for other j 6= i such that xj has nonzero

coefficient in the univariate representation.

See more on the algebraic degree, in particular for composite functions, in

ANF or univariate representations, in [253, 254].

2.2.3 Bivariate representation of functions with even number of input bits

The bivariate representation of n-variable Boolean functions f and of (n,m)-

functions F where n is even and m = n
2 is as follows: we identify Fn2 with

F2m × F2m and we consider then the input to F as an ordered pair (x, y) of ele-

ments of F2m . There exists a unique bivariate polynomial
∑

0≤i,j≤2m−1 ai,jx
iyj

over F2m such that the given function is the bivariate polynomial function

over F2m associated to it. Then the algebraic degree of the function equals
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max(i,j) | ai,j 6=0(w2(i) + w2(j)), and in the case of a Boolean function, the bi-

variate representation can be written in the form f(x, y) = trm(P (x, y)) where

P (x, y) is some polynomial in two variables over F2m . This latter absolute trace

representation is not unique. A unique representation uses relative traces, see

[245, Section 2.4.2].

Moving from bivariate to univariate representation and vice
versa
Any bivariate Boolean or vectorial function F (x, y) over F2n/2 and valued in

F2n/2 can be represented as a function of X ∈ F2n , that we can denote by F (X)

by abuse of notation, by posing x = trnn/2(aX) = aX + (aX)2n/2

and y =

trnn/2(bX) = bX + (bX)2n/2 for some Fn/22 -linearly independent elements a, b ∈
F2n (constituting a basis of F2n over F2n/2 ; choosing another basis would result

in a linearly equivalent function). The obtained expression can be expressed

by means of trn by using that, for every λ ∈ F2n/2 , we have trn/2(λ) = trn(aλ)

where trnn/2(a) = a+a2n/2 = 1. Conversely, given a Boolean or vectorial function

F (X) over F2n valued in F2n/2 in univariate representation and a basis (u, v) of

F2n over F2n/2 , we get its bivariate representation by decomposing X over this

basis into X = ux + vy. The obtained expression can be expressed by means

of trn/2 by using that, for every u ∈ F2n , we have trn(u) = trn/2(trnn/2(u)) =

trn/2(u+ u2n/2

).

2.2.4 Representation over the reals (numerical normal form)

This version over R (in fact, over Z, for Boolean and integer-valued functions over

Fn2 ) of the algebraic normal form has proved itself useful for characterizing several

cryptographic criteria [220, 292, 293] (see Chapters 6 and 7). When studied in

these papers, it was already known in other domains of Boolean functions (see

e.g. [886, 905]), but rather informally studied.

Definition 12 [292] We call numerical normal form ( NNF) the representation

of pseudo-Boolean functions (i.e. real-valued functions over Fn2 ) in the quotient

ring R [x1, . . . , xn]/(x2
1−x1, . . . , x

2
n−xn) (or Z [x1, . . . , xn]/(x2

1−x1, . . . , x
2
n−xn)

for integer-valued functions).

The existence of this representation for every pseudo-Boolean function can be

shown with the same arguments as for the ANFs of Boolean functions (writing

1−xi instead of 1⊕xi). In the case of a Boolean function, it can also be directly

deduced from the existence of the ANF, since, denoting xI =
∏
i∈I xi, we have:

f(x) =
⊕

I⊆{1,...,n}

aI x
I ⇐⇒ (−1)f(x) =

∏
I⊆{1,...,n}

(−1)aI x
I

⇐⇒ 1− 2 f(x) =
∏

I⊆{1,...,n}

(1− 2 aI x
I) (2.21)
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and expanding (2.21) gives the NNF of f(x).

The uniqueness of the NNF of any pseudo-Boolean function is deduced from

its existence by the usual argument: the linear mapping from every element of

the 2n-dimensional R-vector space R [x1, . . . , xn]/(x2
1 − x1, . . . , x

2
n − xn) to the

corresponding pseudo-Boolean function on Fn2 being surjective, it is therefore

one to one (the R-vector space of pseudo-Boolean functions on Fn2 having also

dimension 2n).

Remark. The NNF does not contain properly speaking more information on

a Boolean function than its ANF, since both are unique representations and

contain then full information on the function. But the NNF contains more ex-

ploitable information in the sense that the coefficients of the ANF contain indi-

vidually little information on the function, while we shall see that those of the

NNF contain more. 2

Definition 13 [292] We call the degree of the NNF of a Boolean or pseudo-

Boolean function f its numerical degree and denote it by dnum(f).

Since the ANF of a Boolean function is the mod 2 version of its NNF, the nu-

merical degree is always bounded below by the algebraic degree.

It is shown in [905] that, if a Boolean function f has no ineffective variable

(i.e. if it actually depends on each of its variables), then the numerical degree

of f is larger than or equal to log2 n−O(log2 log2 n) (we shall give a proof of this

bound - in fact of a slightly more precise and stronger bound - in Proposition

15, page 86).

The numerical degree is permutation invariant but is not affine invariant. Nev-

ertheless, the NNF leads to an affine invariant (see a proof of this fact in [293])

which is more discriminant than the algebraic degree:

Definition 14 [293] Let f be a Boolean function on Fn2 . We call generalized

degree of f the sequence
(
di
)
i≥1

defined as follows:

for every i ≥ 1, di is the smallest integer d > di−1 (if i > 1) such that, for every

multi-index I of size strictly larger than d, the coefficient λI of xI in the NNF

of f is a multiple of 2i.

Example: the generalized degree of any nonzero affine function is the sequence

of all positive integers.

Similarly as for the ANF, a (pseudo-) Boolean function f(x) =
∑
I⊆{1,...,n} λI x

I

takes value:

f(x) =
∑

I⊆supp(x)

λI . (2.22)

But, contrary to what we observed for the ANF, the reverse formula is not

identical to the direct formula:
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Proposition 8 [292] Let f be a pseudo-Boolean function on Fn2 and let its NNF

be
∑
I⊆{1,...,n} λI x

I . Then:

∀I ⊆ {1, . . . , n}, λI = (−1)|I|
∑

x∈Fn2 ; supp(x)⊆I

(−1)wH(x)f(x). (2.23)

In other words, function f and its NNF are related through the Möbius transform

over integers and its inverse (for which there exist algorithms similar to the fast

binary Möbius transform).

Proof. Let us denote the number (−1)|I|
∑

x∈Fn2 ; supp(x)⊆I

(−1)wH(x)f(x) by µI and

consider the function g(x) =
∑
I⊆{1,...,n} µI x

I . We have

g(x) =
∑

I⊆supp(x)

µI =
∑

I⊆supp(x)

(−1)|I|
∑

y∈Fn2 ; supp(y)⊆I

(−1)wH(y)f(y)


and thus

g(x) =
∑
y∈Fn2

(−1)wH(y)f(y)

 ∑
I⊆{1,...,n}; supp(y)⊆I⊆supp(x)

(−1)|I|

 .

The sum
∑

I⊆{1,...,n}; supp(y)⊆I⊆supp(x)

(−1)|I| is null if supp(y) 6⊆ supp(x). It is also

null if supp(y) is included in supp(x), but different. Indeed, denoting |I|−wH(y)

by i, it equals ±
∑wH(x)−wH(y)
i=0

(
wH(x)−wH(y)

i

)
(−1)i = ±(1− 1)wH(x)−wH(y) = 0.

Hence, g = f and, by uniqueness of the NNF, we have µI = λI for every I. 2

Remark. According to Relation (2.4), page 50, the coefficient of xI in the ANF

of a Boolean function f is equal to zero if and only if supp(f)∩{x ∈ Fn2 ; supp(x) ⊆
I} has even size. According to Relation (2.23), the coefficient of xI in the NNF of

a Boolean function f is equal to zero if and only if supp(f)∩{x ∈ Fn2 ; supp(x) ⊆
I} ∩ {x ∈ Fn2 ;wH(x) even} has same size as supp(f) ∩ {x ∈ Fn2 ; supp(x) ⊆
I} ∩ {x ∈ Fn2 ;wH(x) odd}. 2

Remark. Denoting function
⊕n

i=1 xi by `(x) and taking I 6= ∅, Relation (2.23)

can be interpreted as λI = (−1)|I|
∑

x∈Fn2 ; supp(x)⊆I

(
(−1)`(x)

2
− (−1)f(x)⊕`(x)

2

)
,

and, since I is not empty, ` is linear and non-constant over the vector space

EI = {x ∈ Fn2 ; supp(x) ⊆ I}, and we have
∑
x∈Fn2 ; supp(x)⊆I

(−1)`(x)

2 = 0. After

replacing (−1)f(x)⊕`(x) by 1− 2(f ⊕ `)(x), this gives

λI = (−1)|I|
(
wH((f ⊕ `)|EI )− 2|I|−1

)
,

where (f ⊕ `)|EI is the restriction of the Boolean function f ⊕ ` to EI . Applying

this to the function f ⊕ ` instead of f , we can see that the coefficients in the
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NNF of f ⊕ ` give the Hamming weights of the restrictions of f to all vector

subspaces of Fn2 of the form {x ∈ Fn2 ; supp(x) ⊆ I}. 2

We have seen that the ANF f(x) =
⊕

I⊆{1,...,n} aIx
I of any Boolean function

can be deduced from its NNF f(x) =
∑
I⊆{1,...,n} λIx

I by reducing it modulo

2, and that, conversely, the NNF can be deduced from the ANF. The formula is

obtained by expanding (2.21) (and has been first obtained in [292] by a slightly

more complex way):

λI =

2n∑
k=1

(−2)k−1
∑

{I1,...,Ik} |
I1∪···∪Ik=I

aI1 . . . aIk , (2.24)

where “{I1, . . . , Ik}; I1 ∪ · · · ∪ Ik = I” means that the multi-indices I1, . . . , Ik
are all distinct, in indefinite order, and that their union equals I.

For instance, for the Boolean function f(x) =
⊕n

i=1 xi, we have λI = (−2)|I|−1.

This, applied to fi in the place of xi, implies that, for every Boolean functions

f1, . . . , fk, we have:

k⊕
i=1

fi =
∑

∅6=I⊆{1,...,k}

(−2)|I|−1
∏
i∈I

fi. (2.25)

Applying then Relation (2.25) to each J ⊆ {1, . . . , k} instead of {1, . . . , k} pro-

vides the system of the relations
⊕

i∈J fi =
∑
∅6=I⊆J(−2)|I|−1

∏
i∈I fi which can

be inverted and gives the expression of the product of the fi’s by means of their

linear combinations over R:

l∏
i=1

fi =
1

2l−1

∑
∅6=J⊆{1,...,l}

(−1)|J|−1

(⊕
i∈J

fi

)
. (2.26)

Indeed,
∑
J; I⊆J⊆{1,...,l}(−1)|J|−1 equals (−1)l−1 if I = {1, . . . , l} and is null

otherwise and this shows that the matrices of the two systems of relations are

inverses of each other.

A polynomial P (x) =
∑
J⊆{1,...,n} λJ x

J , with real coefficients, is the NNF of

some Boolean function if and only if we have P 2(x) = P (x), for every x ∈ Fn2
(which is equivalent to P = P 2 in R [x1, . . . , xn]/(x2

1 − x1, . . . , x
2
n − xn)), or

equivalently, denoting supp(x) by I:

∀I ⊆ {1, . . . , n},

∑
J⊆I

λJ

2

=
∑
J⊆I

λJ . (2.27)

Remark. Imagine that we want to generate a random Boolean function through

its NNF (this can be useful, since we will see below that the main cryptographic

criteria, on Boolean functions, can be characterized, in simple ways, through

their NNFs). Assume that we have already chosen the values λJ for every J ⊆ I
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(where I ⊆ {1, . . . , n} is some multi-index) except for I itself. Let us denote the

sum
∑
J⊆I | J 6=I λJ by µ. Relation (2.27) gives (λI +µ)2 = λI +µ. This equation

of degree 2 has two solutions. One solution corresponds to the choice P (x) = 0

(where I = supp(x)) and the other one corresponds to the choice P (x) = 1. 2

Thus, verifying that a polynomial P (x) =
∑
I⊆{1,...,n} λI x

I with real coeffi-

cients represents a Boolean function can be done by checking 2n relations. But

it can also be done by verifying a simple condition on P and checking a single

equation.

Proposition 9 [293] Any polynomial P ∈ R [x1, . . . , xn]/(x2
1 − x1, . . . , x

2
n − xn)

is the NNF of an integer-valued function if and only if all of its coefficients

are integers. Assuming that this condition is satisfied, then P is the NNF of a

Boolean function if and only if:
∑
x∈Fn2

P 2(x) =
∑
x∈Fn2

P (x).

Proof. The first assertion is a direct consequence of Relations (2.22) and (2.23).

If all the coefficients of P are integers, then we have P 2(x) ≥ P (x) for every x;

this implies that the 2n equalities (one for each x), expressing that the corre-

sponding function is Boolean, can be reduced to the single one
∑
x∈Fn2

P 2(x) =∑
x∈Fn2

P (x). 2

According to Relation (2.27), the translation of this characterization in terms

of the coefficients λI of P (x) writes:

∑
I⊆{1,...,n}

2n−|I|
∑

J,J ′⊆{1,...,n}; I=J∪J′
λJ λJ′ =

∑
I⊆{1,...,n}

2n−|I|λI , (2.28)

since the number of those x ∈ Fn2 such that I ⊆ supp(x), equals 2n−|I|.

More results related to the NNF can be found in [292] and [293].

Case of vectorial functions

An extention of the NNF to (n,m)-functions is given in [484], but it seems simpler

to consider the NNF of the indicator 1GF of the graph GF = {(x, F (x)); x ∈ Fn2}.
We obtain a (unique) characterization of the form:

∀x ∈ Fn2 ,∀y ∈ Fm2 , (y = F (x))⇔

 ∑
I⊆{1,...,n}
J⊆{1,...,m}

λI,Jx
IyJ = 1

 .
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Note that, if we have the NNF of each coordinate function fj of F , for j =

1, . . . ,m, then the NNF of 1GF can be deduced from:

1GF (x, y) =

m∏
j=1

(
1− (fj(x)− yj)2

)
=

m∏
j=1

(1− fj(x) + yj(2fj(x)− 1))

=
∑

J⊆{1,...,m}

 ∏
j∈{1,...,m}\J

(1− fj(x))
∏
j∈J

(2fj(x)− 1)

 yJ .

Note that in the case of a Boolean function f (i.e. in the case of m = 1), we have

then 1GF (x, y) = 1− f(x) + (2f(x)− 1) y, for x ∈ Fn2 and y ∈ F2.

Remark. As we can see, some representations of Boolean functions (resp. of

vectorial function) like the ANF are such that any object having the form of

an ANF is the ANF of some function. Some others like the NNF do not have

such property. The Fourier-Hadamard and Walsh transforms that we shall see

below provide also representations of Boolean and vectorial functions, which are

of the latter kind. Some other representations also exist, see e.g. [484] where their

relationships are studied as well as their behavior with respect to composition,

and their eigenanalysis in relation with graphs (see page 89), in the case of

representations by square matrices. 2

2.3 The Fourier-Hadamard transform and the Walsh transform

2.3.1 Fourier-Hadamard transform of pseudo-Boolean functions

Almost all the characteristics needed for Boolean functions in cryptography

and for sets of Boolean functions in coding can be expressed by means of the

weights of two kinds of related Boolean functions: f ⊕ ` where ` is linear19, and

Daf(x) = f(x)⊕ f(x+ a) (the derivatives of f). In this framework, the Fourier-

Hadamard transform is an efficient tool: for a given Boolean function f , the

Fourier-Hadamard transform of f provides the knowledge of the weights of all

the functions f ⊕ `, where ` is a linear (or an affine) form, and the weights of the

derivatives Daf are also directly related to the Fourier-Hadamard transform.

Definition 15 The Fourier-Hadamard transform20 is the R-linear mapping which

19 As far as we know, and as reported in [555, 1111], the weights of these functions have been
originally considered by S. Golomb [549] to define what he called invariants: given a

positive integer t ≤ n, the t-th invariant defined by Golomb is the unordered set of values

max(wH(f(x)⊕ u · x), wH(f(x)⊕ u · x⊕ 1)), where a ranges over Fn2 .
20 We write “Fourier-Hadamard” because “Fourier” would be ambiguous (and for the reason

that the matrix involved in the transform is the Hadamard matrix [609], see page 214);

even “discrete Fourier” would be ambiguous, see e.g. [1111].
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maps any pseudo-Boolean function ϕ on Fn2 to the function ϕ̂ defined on Fn2 by

ϕ̂(u) =
∑
x∈Fn2

ϕ(x) (−1)u·x, (2.29)

where “·” is some chosen inner product in Fn2 . We call Fourier-Hadamard spec-

trum of ϕ the multi-set of all the values ϕ̂(u), where u ∈ Fn2 and Fourier-

Hadamard support of ϕ the set of those u such that ϕ̂(u) 6= 0.

Remark. The most used inner product in Fn2 is the usual inner product u · x =

u1 x1⊕· · ·⊕un xn. If Fn2 is identified to the finite field F2n , then u ·x = trn(ux);

u, x ∈ F2n , is better used; and if n is even, say n = 2m, and Fn2 is identified to

F2
2m , then it is (u1, u2) · (x1, x2) = trm(u1x1 + u2x2); u1, u2, x1, x2 ∈ F2m . In all

cases, the Walsh functions (−1)u·x constitute an orthogonal basis of the vector

space RFn2 over R, according to properties we shall see at page 77. 2

Recall that every linear form over Fn2 equals `u : x 7→ u · x for some unique

u in Fn2 . If ϕ is a Boolean function (viewed as an integer-valued function), then

ϕ̂(0) equals wH(ϕ) and, for u 6= 0n, ϕ̂(u) =
∑
x∈Fn2

ϕ(x) (1 − 2u · x) equals

wH(ϕ)− 2wH(ϕ `u) = wH(ϕ⊕ `u)− wH(`u) = wH(ϕ⊕ `u)− 2n−1. This proves

what we asserted above. And we shall show a relation between wH(Daf) and

the Fourier-Hadamard transform.

Algorithm (Fast Fourier-Hadamard transform)
There exists a simple divide-and-conquer butterfly algorithm to compute ϕ̂,

called the fast Fourier-Hadamard transform (FFT). Let us give it in the case

where “·” is the usual inner product. For every a = (a1, . . . , an−1) ∈ Fn−1
2 and

every an ∈ F2, the number ϕ̂(a1, . . . , an) equals∑
x=(x1,...,xn−1)∈Fn−1

2

(−1)a·x [ϕ(x1, . . . , xn−1, 0) + (−1)anϕ(x1, . . . , xn−1, 1)] .

Hence, if in the tables of values of the functions, the vectors are ordered for

instance in lexicographic order with the bit of highest weight on the right, the

table of ϕ̂ equals the concatenation of those of the Fourier-Hadamard transforms

of the (n− 1)-variable functions ψ0(x) = ϕ(x1, . . . , xn−1, 0) + ϕ(x1, . . . , xn−1, 1)

and ψ1(x) = ϕ(x1, . . . , xn−1, 0) − ϕ(x1, . . . , xn−1, 1). We deduce the following

algorithm:

1. write the table of the values of ϕ (its truth-table if ϕ is Boolean), in which the

binary vectors of length n are in lexicographic order with the bit of highest

weight on the right;

2. let ϕ0 be the restriction of ϕ to Fn−1
2 × {0} and ϕ1 the restriction of ϕ to
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Step 3: ϕ̂

Figure 2.1 Fast Fourier-Hadamard transform

Fn−1
2 ×{1}21; replace the values of ϕ0 by those of ϕ0 +ϕ1 and those of ϕ1 by

those of ϕ0 − ϕ1;

3. apply recursively step 2, separately to the functions now obtained in the places

of ϕ0 and ϕ1.

When the algorithm ends (after arriving to functions in one variable each), the

global table gives the values of ϕ̂. The complexity of this algorithm is of n 2n

additions/substractions; it is then in O(N log2N) where N = 2n is the size of

its input f .

As for the fast binary Möbius transform, taking the lexicographic order with

the bit of higher weight on the left (i.e. the standard lexicographic order) works

as well because, for every permutation σ of {1, . . . , n}, we have u · x = σ(u) ·
σ(x) for every u, x, and this implies that ϕ̂ ◦ σ(u) =

∑
x∈Fn2

ϕ(σ(x)) (−1)u·x =∑
x∈Fn2

ϕ(x) (−1)u·σ
−1(x) =

∑
x∈Fn2

ϕ(x) (−1)σ(u)·x = ϕ̂ ◦ σ(u) and the final val-

ues are the same (but not the intermediate ones).

Remark. Here again, the algorithm may not work if the order on F2n is not a

coordinatewise permuted version of lexicographic order (for instance, if it is an

order by increasing Hamming weights of inputs). 2

Figure 2.1 illustrates how this algorithm works (with a display of the rows in a

different order, better adapted to apprehend the figure).

2.3.2 Fourier-Hadamard and Walsh transforms of Boolean functions

For a given Boolean function f , the Fourier-Hadamard transform can be applied

to f itself, viewed as a function valued in {0, 1} ⊂ Z (we denote then by f̂ the

corresponding Fourier-Hadamard transform of f). Notice that f̂(0n) equals the

Hamming weight of f . Thus, the Hamming distance dH(f, g) = |{x ∈ Fn2 ; f(x) 6=

21 The table of values of ϕ0 (resp. ϕ1) corresponds to the upper (resp. lower) half of the table

of ϕ.
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g(x)}| = wH(f ⊕ g) between two functions f and g equals f̂ ⊕ g(0n).

Note that, by linearity of the Fourier-Hadamard transform, Relations (2.25),

page 68, and (2.26) imply:

k̂⊕
i=1

fi =
∑

∅6=I⊆{1,...,k}

(−2)|I|−1
∏̂
i∈I

fi, (2.30)

l̂∏
i=1

fi =
1

2l−1

∑
∅6=J⊆{1,...,l}

(−1)|J|−1
⊕̂
i∈I

fi. (2.31)

The Fourier-Hadamard transform can also be applied to the pseudo-Boolean

function fχ(x) = (−1)f(x) (often called the sign function22 of f) instead of f

itself.

Definition 16 We call Walsh transform23 of a Boolean function f the Fourier-

Hadamard transform of the sign function fχ and we denote it24 by Wf :

Wf (u) =
∑
x∈Fn2

(−1)f(x)⊕u·x.

We call Walsh spectrum of f the multi-set of all the values Wf (u), where u ∈ Fn2 .

We call extended Walsh spectrum25 of f the multi-set of their absolute values,

and Walsh support of f the set of those u such that Wf (u) 6= 0.

22 The symbol χ is used here because the sign function is the image of f by the non-trivial
character over F2 (usually denoted by χ).

23 Some authors specify “Walsh-Hadamard transform” like in signal processing, but most do
not, since the risk of ambiguity is weaker than for the Fourier transform; note that some
rare authors use “Walsh” or “Hadamard-Walsh” for what we call “Fourier-Hadamard”; we
shall use the term of “Walsh” only when dealing with the sign function.

24 This notation is now widely used; a few years ago, diverse notations were used.
25 “extended” is in the sense of “extended by the addition of constant Boolean functions to

f”, since knowing |Wf (u)| is equivalent to knowing the unordered pair {Wf (u),Wf⊕1(u)},
because Wf⊕1 and Wf take opposite values; we shall sometimes call extended Walsh
transform of f the function |Wf |.
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Data: tt ← truth table, n ← number of variables

Result: wt ← Walsh-Hadamard spectrum

for i = 0 to 2n − 1 do

wt[i] = (−1)tt[i];

end

for i = 1 to n do

for r = 0 to 2n − 1 by 2i do

t1 = r;

t2 = r + 2i−1;

for j = 0 to 2i−1 − 1 do

a = wt[t1];

b = wt[t2];

wt[t1] = a+ b;

wt[t2] = a− b;
t1 = t1 + 1;

t2 = t2 + 1;

end

end

end

Algorithm 2: Computing the Walsh-Hadamard transform

We give in Table 2.2 an example of the computation of the Walsh transform,

when the inner product chosen in Fn2 is the usual inner product, using the algo-

rithm of the fast Fourier-Hadamard transform26.

Notice that fχ being equal to 1− 2f , we have

Wf = 2n δ0 − 2f̂ (2.32)

where δ0 denotes the Dirac (or Kronecker) symbol , i.e. the indicator of the sin-

gleton {0n}, defined by δ0(u) = 1 if u is the null vector and δ0(u) = 0 otherwise;

see Proposition 10 for a proof of the relation 1̂ = 2n δ0. Relations (2.30) and

(2.31) give then:

W⊕k
i=1 fi

(a) = 2n−1(1 + (−1)k)δ0(a) +
∑

∅6=I⊆{1,...,k}

(−2)|I|−1W∏
i∈I fi

(a), (2.33)

and W∏l
i=1 fi

(a) =(
2n − 2n−l+1

)
δ0(a) +

1

2l−1

∑
∅6=J⊆{1,...,l}

(−1)|J|−1W⊕
i∈I fi

(a), (2.34)

since we have 1 −
∑
∅6=I⊆{1,...,k}(−2)|I|−1 = 1 − (1−2)k−1

(−2) = 1+(−1)k

2 and 1 −

26 The truth table of the function is first directly calculated; we could also have applied the

fast binary Möbius transform to obtain it; this has been done in Table 2.1 for the same
function.
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x1 x2 x3 x4 hexa x1x2x3 x1x4 f(x) fχ(x) Wf (x)

0 0 0 0 0 0 0 0 1 2 4 0 0

1 0 0 0 1 0 0 0 1 0 0 0 0

0 1 0 0 2 0 0 1 -1 -2 -4 8 8

1 1 0 0 3 0 0 1 -1 0 0 0 8

0 0 1 0 4 0 0 0 1 2 0 0 0

1 0 1 0 5 0 0 0 1 0 0 0 0

0 1 1 0 6 0 0 1 -1 -2 0 0 0

1 1 1 0 7 1 0 0 1 0 0 0 0

0 0 0 1 8 0 0 0 1 0 0 0 4

1 0 0 1 9 0 1 1 -1 2 4 4 -4

0 1 0 1 a 0 0 1 -1 0 0 0 4

1 1 0 1 b 0 1 0 1 -2 0 4 -4

0 0 1 1 c 0 0 0 1 0 0 0 -4

1 0 1 1 d 0 1 1 -1 2 0 -4 4

0 1 1 1 e 0 0 1 -1 0 0 0 4

1 1 1 1 f 1 1 1 -1 2 -4 4 -4

Table 2.2 truth table and Walsh spectrum of f(x) = x1x2x3 ⊕ x1x4 ⊕ x2

1
2l−1

∑
∅6=I⊆{1,...,l}(−1)|I|−1 = 1 + 1

2l−1 ((1− 1)l − 1) = 1− 1
2l−1 .

Relation (2.33) has been originally obtained by induction and calculation in [204].

Relation (2.32) gives conversely f̂ = 2n−1δ0 − Wf

2 and in particular:

wH(f) = 2n−1 − Wf (0n)

2
. (2.35)

The mapping f 7→ Wf (0n) playing an important role, and being applied in the

sequel to various functions deduced from f , we shall also use the specific notation

F(f) = Wf (0n) =
∑
x∈Fn2

(−1)f(x). (2.36)

Relation (2.35) applied to f ⊕ `a, where `a(x) = a · x, gives:

dH(f, `a) = wH(f ⊕ `a) = 2n−1 − Wf (a)

2
. (2.37)

Remark. The Walsh transform represents the correlation between Boolean func-

tions and affine functions and is related to attacks on stream ciphers using LFSR.

The best affine approximations of f(x) are the functions a · x⊕ ε where |Wf (a)|
is maximal and ε equals 0 if Wf (a) > 0 (since f(x)⊕a ·x has then low Hamming

weight), and 1 otherwise.

In [704, 302] is studied the arithmetic Walsh transform of Boolean functions,

which is based on modular arithmetic and is related to FCSRs (Feedback with

Carry Shift-Registers, having the operation of retroaction made with carry). 2

The supports of the Walsh transforms of Boolean functions have been studied

in [308], among which we find all possible affine subspaces of Fn2 and the com-
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plements of singletons (for n ≥ 10).

Remark. The relationship between the algebraic degree and the Walsh support

needs to be better understood. Of course, any n-variable Boolean function having

an odd Hamming weight (i.e. having algebraic degree n) has Fn2 for Walsh sup-

port. Note also that, according to the properties seen in Subsection 2.2.1 and in

the present subsection, an n-variable Boolean function f having even Hamming

weight has algebraic degree n− 1 if and only if there is a hyperplane H (that we

can take linear) on which f has an odd Hamming weight, and this hyperplane

can be taken equal to the set {x ∈ Fn2 ; supp(x) ⊆ supp(u)} where u has Hamming

weight n− 1. Hyperplane H has equation x · a = 0 for some a 6= 0, and we have

then Wf (a) +Wf (0) = 2
∑
x∈H(−1)f(x) ≡ 4 (mod 8), assuming that n ≥ 3, and

Wf (a) + Wf (0) is then nonzero. If we take H = {x ∈ Fn2 ; supp(x) ⊆ supp(u)}
where u has Hamming weight n − 1, then a has Hamming weight 1 (i.e. H has

equation xi = 0). It is easily shown that the function a → Wf (a) − Wf (0)

(mod 8) is linear from Fn2 to Z/8Z (more precisely to {0, 4}); the set of those a

such that Wf (a)−Wf (0) ≡ c (mod 8) for some c (equal to 0 or 4) is then either

empty or is an affine hyperplane or is the whole space. 2

In [582] is proposed an algorithm, deduced from the formulae relating NNF

and Walsh transform that we shall see in Subsection 2.3.4, page 85, for computing

the Walsh transform (for a small set of points) from the ANF when the FFT

is not efficient for computing it from the truth table (because the number of

variables is too large, which happens when n is significantly larger than 30).

For example, it is possible in certain cases to run their algorithm for 50 to 100

variable functions having a few hundreds of terms in their ANF.

In [373] are given concise representations of Walsh transform by binary decision

diagrams (BDD) for functions with several hundred variables.

2.3.3 Properties of the Fourier-Hadamard and Walsh transforms of Boolean
functions

The Fourier-Hadamard transform, as other Fourier transforms, has very nice and

useful properties. The number of these properties and the richness of their mutual

relationship are impressive. All of these properties are very useful in practice

for studying Boolean functions. We shall often refer to the relations below, by

applying them to the Fourier-Hadamard transforms of pseudo-Boolean functions

or to the Walsh transforms of Boolean functions (which are a particular case).

Almost all properties can be deduced from the next two lemmas and proposition.

Lemma 3 Let E be any vector space over F2 and ` any nonzero linear form

on E. Then
∑
x∈E(−1)`(x) is null.

Proof. The linear form ` being nonzero, its support is an affine hyperplane of E



2.3 The Fourier-Hadamard transform and the Walsh transform 77

and has 2dimE−1 = |E|
2 elements27. Thus,

∑
x∈E(−1)`(x) being the sum of 1’s

and -1’s in equal numbers, it is null28. 2

Proposition 10 Let E be any vector subspace of Fn2 . Denote by 1E its indica-

tor (i.e. the Boolean function defined by 1E(x) = 1 if x ∈ E and 1E(x) = 0

otherwise). Then:

1̂E = |E| 1E⊥ , (2.38)

where E⊥ = {x ∈ Fn2 ; ∀y ∈ E, x · y = 0} is the orthogonal space of E with

respect to the inner product “·”.

In particular, for E = Fn2 , we have 1̂ = 2n δ0.

Proof. For every u ∈ Fn2 , we have 1̂E(u) =
∑
x∈E(−1)u·x. If the linear form x ∈

E 7→ u · x is not null on E (i.e. if u 6∈ E⊥) then 1̂E(u) is null, according to

Lemma 3. And if u ∈ E⊥, then 1̂E(u) clearly equals |E|. 2

This proposition leads to the very important Poisson formula below. To be

able to state this formula in its general form, we need the:

Lemma 4 For every pseudo-Boolean function ϕ on Fn2 and every elements a, b

and u of Fn2 , the value at u of the Fourier-Hadamard transform of the function

(−1)a·x ϕ(x+ b) equals (−1)b·(a+u) ϕ̂(a+ u).

Proof. The value at u of the Fourier-Hadamard transform of the function x 7→
(−1)a·x ϕ(x+ b) equals

∑
x∈Fn2

(−1)(a+u)·xϕ(x+ b) =
∑
x∈Fn2

(−1)(a+u)·(x+b)ϕ(x)

and thus equals (−1)b·(a+u) ϕ̂(a+ u). 2

We deduce from Proposition 10 and Lemma 4 the Poisson summation formula,

which has been used to prove many cryptographic properties in [759], [797], [212]

and later in [190, 191], and whose most general statement is:

Corollary 3 For every pseudo-Boolean function ϕ on Fn2 , for every vector sub-

space E of Fn2 , and for every elements a and b of Fn2 , we have:∑
u∈a+E

(−1)b·u ϕ̂(u) = |E| (−1)a·b
∑

x∈b+E⊥
(−1)a·x ϕ(x). (2.39)

Proof. For a = b = 0n, the sum
∑
u∈E ϕ̂(u) equals

∑
u∈E

∑
x∈Fn2

ϕ(x)(−1)u·x =∑
x∈Fn2

ϕ(x) 1̂E(x) by definition. Hence, according to Proposition 10:∑
u∈E

ϕ̂(u) = |E|
∑
x∈E⊥

ϕ(x). (2.40)

We apply this equality to function (−1)a·x ϕ(x+ b). Using Lemma 4, we deduce

27 Another way of seeing this is to choose a ∈ E such that `(a) = 1 and observe that the

mapping x 7→ x+ a is a bijection between ker ` and its complement.
28 Alternatively, choosing again a ∈ E such that `(a) = 1, we have∑

x∈E(−1)`(x) =
∑
x∈E(−1)`(x+a) = (−1)`(a)

∑
x∈E(−1)`(x) = −

∑
x∈E(−1)`(x).
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∑
u∈E(−1)b·(a+u) ϕ̂(a+ u) = |E|

∑
x∈E⊥(−1)a·x ϕ(x+ b), that is, (2.39). 2

Relation (2.39) applied to ϕ(x) = f
χ
, the sign function of f , gives:∑

u∈a+E

(−1)b·uWf (u) = |E| (−1)a·b
∑

x∈b+E⊥
(−1)f(x)⊕a·x. (2.41)

Note that, according to this latter relation, for every Boolean function f , every

vector subspace E of Fn2 , and every a, b ∈ Fn2 , we have |
∑
u∈a+E(−1)b·uWf (u)| ≤

2n (with equality if and only if f(x)⊕ a · x is constant on b+ E⊥).

Relation (2.39) with a = 0n and E = Fn2 gives:

Corollary 4 For every pseudo-Boolean function ϕ on Fn2 :̂̂ϕ = 2n ϕ. (2.42)

Thus, the Fourier-Hadamard transform is a permutation on the set of pseudo-

Boolean functions on Fn2 and is its own inverse, up to the division29 by the

constant 2n. Relation (2.42) is called the inverse Fourier-Hadamard transform

formula and writes
∑
u∈Fn2

ϕ̂(u) (−1)u·x = 2nϕ(x). It means that, viewing ϕ

as a function of xχ = ((−1)x1 , . . . , (−1)xn), the number 2−nϕ̂(u) is the NNF

coefficient indexed by u of the resulting function30. Applied to a sign function,

Relation (2.42) is called the inverse Walsh transform formula and writes:∑
u∈Fn2

Wf (u) (−1)u·x = 2n(−1)f(x). (2.43)

Corollary 4 allows to show easily that a given property observed on the Fourier-

Hadamard transform of any pseudo-Boolean function ϕ having some specificity,

is in fact a necessary and sufficient condition for ϕ having this specificity. For

instance, according to Proposition 10, the Fourier-Hadamard transform of any

constant function ϕ takes null value at every nonzero vector. Since the Fourier-

Hadamard transform of a function null at every nonzero vector is constant, Corol-

lary 4 implies that the Fourier-Hadamard transform is a bijection between the set

of constant functions and the set of those functions null at every nonzero vector.

Similarly, ϕ is constant on Fn2 \ {0n} if and only if ϕ̂ is constant on Fn2 \ {0n}.
A classical property of the Fourier transform is to be an isomorphism from

the set of functions endowed with the so-called convolutional product (denoted

by ⊗), into this same set, endowed with the usual product (denoted by ×). We

recall the definition31 of the convolutional product between two functions ϕ and

29 In order to avoid this division, the Fourier-Hadamard transform is often normalized, that
is, divided by

√
2n = 2

n
2 , so that it becomes its own inverse. We do not use this

normalized transform here because the functions we consider are integer-valued, and we

want their Fourier-Hadamard transforms to be also integer-valued.
30 In [693, 779, 914], they call Fourier transform this representation of ϕ as a polynomial in

xχ.
31 Since the operations take place in Fn2 , we have a “+” in the formula, where for general

groups we would have a “−”.
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ψ:

(ϕ⊗ ψ)(x) =
∑
y∈Fn2

ϕ(y)ψ(x+ y).

Proposition 11 Let ϕ and ψ be any pseudo-Boolean functions on Fn2 . We have:

ϕ̂⊗ ψ = ϕ̂×ψ̂. (2.44)

Consequently:

ϕ̂⊗ ψ̂ = 2n ϕ̂×ψ. (2.45)

Proof. We have

ϕ̂⊗ ψ(u) =
∑
x∈Fn2

(ϕ⊗ ψ)(x) (−1)u·x =
∑
x∈Fn2

∑
y∈Fn2

ϕ(y)ψ(x+ y) (−1)u·y⊕u·(x+y).

Thus, by the change of variable (x, y)→ (x+ y, y):

ϕ̂⊗ ψ(u) =

∑
y∈Fn2

ϕ(y)(−1)u·y

∑
x∈Fn2

ψ(x) (−1)u·x

 = ϕ̂(u) ψ̂(u).

This proves the first equality. Applying it to ϕ̂ and ψ̂ in the places of ϕ and ψ,

we obtain
̂̂
ϕ⊗ ψ̂ = 22n ϕ×ψ, according to Corollary 4. Applying again this same

corollary, to ϕ̂⊗ ψ̂, we deduce Relation (2.45). 2

Relation (2.45) applied at 0n gives a relation sometimes called Plancherel’s

formula: ∑
x∈Fn2

ϕ̂(x)ψ̂(x) = 2n
∑
x∈Fn2

ϕ(x)ψ(x). (2.46)

Taking ψ = ϕ in (2.46), we obtain Parseval’s relation:

Corollary 5 For every pseudo-Boolean function ϕ, we have:∑
u∈Fn2

ϕ̂ 2(u) = 2n
∑
x∈Fn2

ϕ2(x).

If ϕ takes values ±1 only, this becomes:∑
u∈Fn2

ϕ̂ 2(u) = 22n. (2.47)

This is why, when dealing with Boolean functions, we most often prefer using the

Walsh transform of f instead of the Fourier-Hadamard transform of f . Parseval’s

relation for Walsh transform writes:∑
u∈Fn2

W 2
f (u) = 22n. (2.48)

According to the inverse Walsh transform and Parseval formulae, we have for

every function f that
(∑

u∈Fn2
Wf (u)

)2

=
(
2n(−1)f(0n)

)2
=
∑
u∈Fn2

W 2
f (u), that
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is,
∑
u6=vWf (u)Wf (v) = 0. Note that this proves (as observed in [312]) that it

is impossible, except when the function is affine, i.e. when the Walsh transform

is null except at one point, that all nonzero values of the Walsh transform have

the same sign.

Relation (2.45) applied at a 6= 0n gives

ϕ̂⊗ ψ̂(a) = 2n ϕ̂×ψ(a) = 2n
∑
x∈Fn2

ϕ(x)ψ(x)(−1)a·x. (2.49)

If ϕ takes values ±1 only and ψ = ϕ, this becomes:∑
u∈Fn2

ϕ̂ (u)ϕ̂ (u+ a) = 0. (2.50)

This provides the relation that some authors call the Titsworth relation:∑
u∈Fn2

Wf (u)Wf (u+ a) = 0, ∀a 6= 0n. (2.51)

Note that in some cases (for instance for designing correlation immune func-

tions of low Hamming weights, see Section 7.1.9, page 332) using the Fourier-

Hadamard transform of a Boolean function is more convenient.

When Fn2 is identified to F2n , with inner product u · x = trn(ux), Parseval’s re-

lation is a particular case (corresponding to a = 1) of the more general relation:∑
u∈F2n

Wf (u)Wf (au) =
∑

u,x,y∈F2n

(−1)f(y)⊕f(x)⊕trn(uy+aux)

= 2n
∑
x∈F2n

(−1)f(x)⊕f(ax).

Relation (2.44) applied with ψ = ϕ = fχ implies the Wiener-Khintchine formula:

̂fχ ⊗ fχ = W 2
f , (2.52)

which involves in fact the derivatives of the Boolean function, since for every

a ∈ Fn2 , we have (fχ ⊗ fχ)(a) =
∑
x∈Fn2

(−1)Daf(x) = F(Daf) (the notation F
was defined at Relation (2.36), page 75).

Definition 17 The function a 7→ F(Daf) is called the autocorrelation function

of f and denoted by ∆f .

Relation (2.52) means that W 2
f is the Fourier-Hadamard transform of the auto-

correlation function of f :

∀u ∈ Fn2 , ∆̂f (u) =
∑
a∈Fn2

∆f (a)(−1)u·a = W 2
f (u). (2.53)

Equivalently, by applying the inverse Fourier transform formula, we have

∆f (a) = 2−n
∑
u∈Fn2

W 2
f (u)(−1)u·a. (2.54)

This property was first used (as far as we know) in the domain of cryptography
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in [211] to study the so-called partially-bent functions (see Section 6.2). It leads

also to a lower bound on the numerical degree of Boolean functions by means of

the Hamming weights of their derivatives (in directions of Hamming weight 1),

first given in [905], that we shall give (and prove) as Relation (2.63), page 86.

Applied at vector 0n, Relation (2.53) gives

∆̂f (0n) =
∑
a∈Fn2

F(Daf) = F2(f). (2.55)

Corollary 3 (the Poisson summation formula), page 77, and Relation (2.53) imply

that, for every vector subspace E of Fn2 and every vectors a and b (cf. [191]):∑
u∈a+E

(−1)b·uW 2
f (u) = |E|(−1)a·b

∑
e∈b+E⊥

(−1)a·eF(Def) . (2.56)

This leads to an interesting relation, first shown in [191] for Boolean functions

(but similar relations exist in other domains like sequences and learning, see e.g.

[779]), and that, because of its similarity with the Poisson summation formula,

we shall call the second-order Poisson summation formula32:

Proposition 12 Let E and E′ be supplementary subspaces33 of Fn2 (i.e. be two

subspaces such that E ∩ E′ = {0n} and whose direct sum equals Fn2 ). For every

a ∈ E′, let ha be the restriction of f to the coset a+E (ha can be identified with

a function on Fk2 where k is the dimension of E). Then∑
u∈E⊥

W 2
f (u) = |E⊥|

∑
a∈E′

F2(ha) . (2.57)

Proof. Every element of Fn2 can be written in a unique way in the form x + a

where x ∈ E and a ∈ E′.
For every e ∈ E, we have that F(Def) =

∑
x∈E;a∈E′(−1)f(x+a)⊕f(x+e+a) =∑

a∈E′ F(Deha). We deduce from Relation (2.56), applied with E⊥ instead of E,

and with a = b = 0n, that

∑
u∈E⊥

W 2
f (u) = |E⊥|

∑
e∈E
F(Def) = |E⊥|

∑
e∈E

(∑
a∈E′

F(Deha)

)

= |E⊥|
∑
a∈E′

(∑
e∈E
F(Deha)

)
.

Thus, according to Relation (2.55) applied with E in the place of Fn2 (recall that

E can be identified with Fk2 where k is the dimension of E):
∑
u∈E⊥W

2
f (u) =

|E⊥|
∑
a∈E′ F2(ha). 2

32 This formula is sometimes more convenient to use than the Poisson summation formula.
An example where it helps proving more can be found in Section 10.4.

33 Some authors say “complementary” but we prefer avoiding the confusion with
complementary sets and use “supplementary”.
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Fourier-Hadamard transform and affine automorphisms
A last relation that must be mentioned shows what the composition with a linear

isomorphism implies on the Fourier transform of a pseudo-Boolean function:

Proposition 13 Let ϕ be any pseudo-Boolean function on Fn2 . Let M be a non-

singular n×n binary matrix and L the linear automorphism L : (x1, x2, . . . , xn) 7→
(x1, x2, . . . , xn) ×M . Let us denote by M ′ the transpose of M−1 and by L′ the

linear automorphism L′ : (x1, x2, . . . , xn) 7→ (x1, x2, . . . , xn) ×M ′ (note that L′

is the adjoint operator of L−1, that is, satisfies u · L−1(x) = L′(u) · x for every

x and u, where · is the usual inner product). Then

ϕ̂ ◦ L = ϕ̂ ◦ L′. (2.58)

Proof. By the change of variable x 7→ L−1(x), we have that for every u ∈ Fn2 ,

ϕ̂ ◦ L(u) =
∑
x∈Fn2

ϕ(L(x))(−1)u·x equals
∑
x∈Fn2

ϕ(x)(−1)u·L
−1(x) and, by the

definition of L′, equals then
∑
x∈Fn2

ϕ(x)(−1)L
′(u)·x. 2

It is easily deduced from this Relation (2.58) and from Lemma 4, page 77 that

the affine equivalence of Boolean functions translates into the affine equivalence

of their extended Walsh transforms and in particular of their Walsh supports.

Given linear bijections L1, L2, a linear function L3 and vectors a, b, c, the value

of W(L1+a)◦F◦(L2+b)+L3+c(u, v) = ±
∑
x∈Fn2

(−1)v·(L1(F (L2(x)+b))+L3(x))⊕u·x equals

±WF ((L3 ◦ L2
−1)∗(v) + (L2

−1)∗(u), L1
∗(v)), where ∗ is the adjoint operator.

Relationship between algebraic degree and Walsh transform
The following bound was shown in [737] (see also [212, Lemma 3]):

Theorem 2 Let f be an n-variable Boolean function (n ≥ 2), and let 1 ≤
k ≤ n. Assume that the Walsh transform values of f are all divisible by 2k

(i.e., according to Relation (2.32), that its Fourier-Hadamard transform takes

values divisible by 2k−1, or equivalently, according to Relation (2.37), that all

the Hamming distances between f and affine functions are divisible by 2k−1).

Then f has algebraic degree at most n− k + 1.

Proof. Let us suppose that f has algebraic degree d > n − k + 1 and, consider

a term xI of degree d in its algebraic normal form. The Poisson summation for-

mula (2.40) applied to ϕ = fχ and to the vector space E = {u ∈ Fn2 ; ∀i ∈
I, ui = 0} gives

∑
u∈EWf (u) = 2n−d

∑
x∈E⊥ fχ(x). The orthogonal E⊥ of E

equals {u ∈ Fn2 ; ∀i 6∈ I, ui = 0} = {u ∈ Fn2 ; supp(u) ⊆ I}. According to Rela-

tion 2.4, we have that
∑
x∈E⊥ f(x) is not even and therefore

∑
x∈E⊥ fχ(x) is not

divisible by 4. Hence,
∑
u∈EWf (u) is not divisible by 2n−d+2 and it is therefore

not divisible by 2k. A contradiction. 2

Remark. The result is of course also valid for those vectorial (n,m)-functions
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whose Walsh transform values are divisible by 2k. It is shown in [204] that for any

(n,m)-function F having such divisibility property and for every (m, r)-function

G, we have dalg(G ◦ F ) ≤ n − k + dalg(G). This bound on the algebraic degree

of composite functions is a direct consequence of Relation (2.34), page 74: all

component functions of F having Walsh transform values divisible by 2k, then

for every l = 1, . . . , k, all products of l coordinate functions of F have Walsh

transform divisible by 2k−l+1, and thanks to Theorem 2, they have then alge-

braic degree at most n − k + l. If dalg(G) ≤ k, this completes the proof since

G ◦ F is a linear combination of such products with l ≤ dalg(G), and otherwise,

there is nothing to prove since n−k+dalg(G) > n. As shown in [254], the bound

of [204] is also a direct consequence of Relation (2.9), page 57. 2

Remark.

- 1. The converse of Theorem 2 is valid if k = 1 (since the Walsh transform values

of all Boolean functions are even by definition). It is also valid if k = 2, since the

n-variable Boolean functions of degrees at most n−1 are those Boolean functions

of even Hamming weights, and f(x)⊕u ·x has degree at most n−1 too for every

u, since n ≥ 2. It is finally also valid for k = n, since the affine functions are

characterized by the fact that their Walsh transforms take values ±2n and 0 only

(more precisely, their Walsh transforms take value ±2n once, and all their other

values are null). The converse is false for any other value of k. Indeed, it is false

for k = n−1 (n ≥ 4), since there exist quadratic functions f whose Walsh trans-

forms take values ±2
n
2 for n even, ≥ 4, and ±2(n+1)/2 for n odd, ≥ 5 (see Section

5.2, page 193). It is then an easy task to deduce that the converse of Theorem

2 is also false for any value of k such that 3 ≤ k ≤ n− 2: we choose a quadratic

function g in 4 variables, whose Walsh transform value at 0n equals 22, that is,

whose weight equals 23 − 2 = 6, and we take f(x) = g(x1, x2, x3, x4)x5 . . . xl
(5 ≤ l ≤ n). Such function has algebraic degree l − 2 and its weight equals 6;

hence its Walsh transform value at 0n equals 2n−12 and is therefore not divisible

by 2k with n− 2 ≥ k = n− (l − 2) + 1 = n− l + 3 ≥ 3.

- 2. It is possible to characterize the functions whose Walsh transform values are

all divisible by 2n−1 (i.e. equal 0, ±2n−1 and/or ±2n): according to Theorem

2, they have algebraic degree at most 2, and the characterization follows from

the results of Section 5.2 on quadratic functions (see the last remark of page

196); these functions are the sums of an affine function and of the product of

two affine functions (see for instance the observation after Theorem 10, page

195). Determining those Boolean functions (in the Reed-Muller code of order

n − k + 1) whose Walsh transform is divisible by 2k is an open problem for

3 ≤ k ≤ n − 2. The Poisson summation formula provides some information; it

shows by applying the proof of Theorem 2 to Wf (a+ u) that, for every supple-

mentary subspaces E and E′ of Fn2 (i.e. such that E∩E′ = {0n} and whose direct

sum equals Fn2 ) where E has dimension d ≥ n − k, denoting for every a ∈ E′
by ha the restriction of f to the coset a + E, the value of F(ha) is divisible by

2k+d−n; and we also have that the arithmetic mean (i.e. average) of F(ha) when
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a ranges over E′ is divisible by 2k+d−n (indeed,
∑
a∈E′ F(ha) = F(f) = Wf (0n)

is divisible by 2k). The second-order Poisson summation formula also provides

complementary information on such functions: the quadratic mean (i.e. the root

mean square) of F(ha) when a ranges over E′ is also divisible by 2k+d−n. In-

deed,
∑
a∈E′ F2(ha) = 1

|E⊥|
∑
u∈E⊥W

2
f (u) is divisible by 22k+d−n; hence, the

arithmetic mean of F2(ha) is divisible by 22k+2d−2n. Summarizing, we have that

the integer sequence 2−(k+d−n)F(ha), of length 2n−d, has integer arithmetic and

quadratic means. Note that, according to McEliece’s theorem (see page 28),

given a monomial Boolean function f(x) = trn(xd) where gcd(d, 2n−1) = 1, the

largest possible exponent of a power of 2 dividing each Walsh transform value of

f equals min{w2(t0) +w2(t1); 1 ≤ t0, t1 < 2n − 1, t0 + t1d ≡ 0 [mod 2n − 1] (see

the definition of w2 at page 62). See bounds in [674, 676].

- 3. It is possible to characterize the fact that a Boolean function has algebraic

degree at most d by means of its Fourier-Hadamard or Walsh transforms: since,

as seen in Proposition 4, page 53, a Boolean function has algebraic degree at

most d if and only if its restriction to any (d + 1)-dimensional flat (i.e. affine

subspace) has even Hamming weight, we can apply Poisson summation formula

(2.39). For instance in terms of the Walsh transform, f has algebraic degree at

most d if and only if, for every (n− d− 1)-dimensional vector subspace E of Fn2
and every b ∈ Fn2 , the sum

∑
u∈E(−1)b·uWf (u) is divisible by 2n−d+1. But this

characterization is not simple. 2

Characterizing the Fourier-Hadamard transforms of
pseudo-Boolean functions and the Walsh transforms of
Boolean functions
According to the inverse Fourier-Hadamard transform formula (2.42), the Fourier-

Hadamard transforms of integer-valued functions (resp. the Walsh transforms of

Boolean functions) are those integer-valued functions over Fn2 whose Fourier-

Hadamard transforms take values divisible by 2n (resp. take values ±2n). Also,

according to the inverse Walsh transform formula (2.43), page 78, the Walsh

transforms of Boolean functions are those integer-valued functions ψ over Fn2
such that (ψ̂)2 equals the constant function 22n; they are then those integer-

valued functions ψ such that ψ̂ ⊗ ψ = 22n (according to Relation (2.44) applied

with ϕ = ψ), that is ψ ⊗ ψ = 22n δ0.

These characterizations need to check 2n divisibilities by 2n for the Fourier-

Hadamard transforms of integer-valued functions, and 2n equalities for the Walsh

transforms of Boolean functions.

Case of monomial (or power) Boolean functions: So-called monomial Boolean

(univariate) functions are those functions over F2n of the form f(x) = trn(axd)

(recall from page 60 that when Fn2 is identified with F2n , an inner product is then

(x, y) 7→ trn(x y)). We shall give at page 92 the known results and a conjecture

on the Walsh spectrum of such functions.
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2.3.4 Fourier-Hadamard (and Walsh) transform and numerical normal form

Since the main cryptographic criteria on Boolean functions will be characterized

as properties of their Fourier-Hadamard/Walsh transforms (see Section 3.1), it

is useful to clarify the relationship between these and the NNF representation.

Note that there is a similarity between the Fourier-Hadamard transform and the

NNF of pseudo-Boolean functions:

- the functions (−1)u·x, u ∈ Fn2 , constitute an orthogonal basis of the space of

pseudo-Boolean functions, and the Fourier-Hadamard transform can be seen as

a classical decomposition over an orthogonal basis;

- the NNF is defined similarly with respect to the basis of monomials, which is

non-orthogonal but allows as well simple calculation of the coefficients in this

decomposition.

Let us see now how each representation can be expressed by means of the other.

Let ϕ(x) be any pseudo-Boolean function and let
∑
I⊆{1,...,n} λIx

I be its NNF.

For every vector x ∈ Fn2 , we have: ϕ(x) =
∑
I⊆supp(x) λI . Setting 1n = (1, . . . , 1),

we have ϕ(x+ 1n) =
∑

I⊆{1,...,n}; supp(x)∩I=∅

λI (since the support of x+ 1n equals

Fn2 \ supp(x)). Hence, ϕ(x+ 1n) =
∑
I⊆{1,...,n} λI 1EI , where EI is the (n− |I|)-

dimensional vector subspace of Fn2 equal to {x ∈ Fn2 ; supp(x) ∩ I = ∅}, whose

orthogonal space equals {u ∈ Fn2 ; supp(u) ⊆ I}. Applying Lemma 4 with a = 0n
and b = 1n, and Proposition 10, we deduce (as proved in [292]):

ϕ̂(u) = (−1)wH(u)
∑

I⊆{1,...,n}; supp(u)⊆I

2n−|I|λI . (2.59)

Remark. Applying Relations (2.59) and (2.23), given the NNF
∑
I⊆{1,...,n} λI x

I

of ϕ, we can calculate the NNF
∑
I⊆{1,...,n} µI x

I of its Fourier-Hadamard trans-

form ϕ̂. We obtain that µI equals (−1)|I|
∑

u∈Fn2 ; supp(u)⊆I
J⊆{1,...,n}; supp(u)⊆J

2n−|J|λJ , that is,

(−1)|I|
∑
J⊆{1,...,n} 2n+|I∩J|−|J|λJ . 2

We deduce from Relation (2.59):

λI = 2−n(−2)|I|
∑

u∈Fn2 ; I⊆supp(u)

ϕ̂(u). (2.60)

Indeed, according to Relation (2.59), we have 2−n(−2)|I|
∑
u∈Fn2 ; I⊆supp(u) ϕ̂(u) =

2−n(−2)|I|
∑
J⊆{1,...,n}

(∑
u∈Fn2 ; I⊆supp(u)⊆J(−1)wH(u)

)
2n−|J|λJ , and the sum

inside the parentheses equals 0 if I 6⊆ J and otherwise is also null if J 6= I

since it equals (−1)|I|
∑
u∈Fn2 ; supp(u)⊆J\I(−1)wH(u) = (−1)|I|(1− 1)|J\I|.

Relation (2.60) has been proved in [292] in a slightly more complex way. Applied

when ϕ equals a Boolean function f and using that Wf (u) = 2nδ0(u) − 2f̂(u),

we get:

Wf (u) = (−1)wH(u)+1
∑

I⊆{1,...,n}; supp(u)⊆I

2n−|I|+1λI if u 6= 0n, (2.61)
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Wf (0n) = 2n −
∑

I⊆{1,...,n}

2n−|I|+1λI ,

and

λI = 2−n(−2)|I|−1
∑

u∈Fn2 ; I⊆supp(u)

Wf (u) if I 6= ∅, (2.62)

λ∅ = −2−(n+1)

∑
u∈Fn2

Wf (u)− 2n

 .

Remark. This provides a simpler proof of Theorem 2, page 82: according to Re-

lations (2.61) and (2.62), the hypothesis of the theorem is equivalent to saying

that, for every I such that |I| ≥ n− k+ 1, the coefficient λI of xI in the NNF of

f is divisible by 2|I|+k−n−1, and this implies that for |I| ≥ n− k + 2, it is even.

This gives also more information on those functions whose Walsh transform val-

ues are all divisible by 2k. For instance, if |I| ≥ n−k+3, then since λI is divisible

by 4, using Relation (2.24), page 68, we have that
∑
{I1,I2} |
I1∪I2=I

aI1aI2 is even, that

is,
⊕
{I1,I2} |
I1∪I2=I

aI1aI2 = 0. This is exploited in [301] for bounding numbers of func-

tions (see pages 269 and 341). Other similar (but more complex) properties of

the coefficients aI can be obtained by considering the divisibility of λI by powers

of 2 larger than 4. 2

We deduce from Relations (2.59), (2.60), (2.61) and (2.62):

Proposition 14 Any pseudo-Boolean function ϕ has numerical degree at most

d if and only if ϕ̂(u) = 0 for every vector u of Hamming weight strictly larger

than d. Any Boolean function f has numerical degree at most d if and only if

Wf (u) = 0 for every such vector.

In other words, the numerical degree equals the maximal Hamming weight of

those u ∈ Fn2 such that Wf (u) 6= 0.

This allows proving the fact mentioned at page 66 that, if a Boolean function f

has no ineffective variable, then the numerical degree of f is larger than or equal

to log2 n − O(log2 log2 n). In fact, we can prove a little more with the same

method as in the sketch of proof given in [905]:

Proposition 15 Let f be any n-variable Boolean function. Denoting by ei the

i-th vector of the canonical basis of Fn2 , the numerical degree of f satisfies:

dnum(f) ≥ 2−n
n∑
i=1

wH(Deif). (2.63)

If each variable xi is effective in f(x), that is, if each derivative Deif is not the

zero function, then we have

dnum(f) ≥ n 2−dalg(f)+1. (2.64)
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and a fortiori

n ≤ dnum(f) 2dnum(f)−1. (2.65)

Consequently:

dnum(f) ≥ 1 + log2 n− log2(1 + log2 n). (2.66)

Proof. According to Relation (2.54), page 80, we have:

n∑
i=1

∆f (ei) = 2−n
∑
u∈Fn2

W 2
f (u)

n∑
i=1

(−1)u·ei = 2−n
∑
u∈Fn2

W 2
f (u)[n− 2wH(u)],

and therefore, since ∆f (ei) = 2n − 2wH(Deif):

n∑
i=1

wH(Deif) = n2n−1 − 2−(n+1)
∑
u∈Fn2

W 2
f (u)[n− 2wH(u)]. (2.67)

Using Parseval’s relation, we deduce that

n∑
i=1

wH(Deif) = 2−n
∑
u∈Fn2

W 2
f (u) wH(u) ≤ 2−ndnum(f)

∑
u∈Fn2

W 2
f (u) = 2ndnum(f).

This proves Relation (2.63).

If each derivative Deif is nonzero, then wH(Deif) is at least 2n−dalg(Deif) ≥
2n−dalg(f)+1 ≥ 2n−dnum(f)+1, since the minimum nonzero Hamming weight of

n-variable Boolean functions of algebraic degree at most r equals 2n−r, as we

shall see in Theorem 7, page 176. According to Relation (2.63), we have then

Relation (2.64) and that dnum(f) 2dnum(f) ≥ 2n and this proves Relation (2.65).

Relation (2.66) is directly deduced, since for x ≥ 1, function x 2x is increas-

ing and we have x 2x = y ⇒ x + log2 x = log2 y ⇒ x ≤ log2 y and therefore

x 2x = y ⇒ x = log2 y − log2 x ≥ log2 y − log2 log2 y. 2

The value of 2−nwH(Deif) is called in [905, 914] the influence of variable xi and

the sum of these values the total influence. See more in [652, 653].

Bound (2.66) is tight up to approximately the term in log2 log2 n. Indeed, the

so-called address function f(x, y) = xϕ(y), x ∈ F2k

2 , y ∈ Fk2 , where ϕ(y) =

1 +
∑k
i=1 yi2

i−1, has for NNF:
∑
u∈Fk2

xϕ(u)δu(y) =
∑
u∈Fk2

xϕ(u)

∏k
i=1(1 − yi −

ui + 2yiui). It has then n = k + 2k variables and numerical degree 1 + k.

Remark. According to the calculations above, bound (2.63) is an equality if

and only if the Walsh support of f is included in the set of vectors of Hamming

weight dnum(f) (i.e. the Walsh transform of f is homogeneous; example: affine

functions). Under this condition, Bound (2.65) is an equality if and only if, for

every i = 1, . . . , n, we have that dnum(Deif) = dalg(f)− 1 and Deif is the indi-

cator of an affine space (see Theorem 8). We do not know if such function exists.

2
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Remark. Functions of very low numerical degree d ≈ log2 n (like the address

function) have a Walsh support of size at most D =
∑d
i=0

(
n
i

)
≈ nlog2 n

blog2 nc!
, ac-

cording to Proposition 14. It is interesting to see that the Walsh support’s size

can be that small, while the function depends on all its variables and can be

rather complex. In fact, this size is still smaller when f is the address func-

tion above, since for every a ∈ F2k

2 and b ∈ Fk2 , we have then Wf (a, b) =∑
y∈Fk2

(−1)b·y
∑
x∈F2k

2
(−1)xϕ(y)⊕a·x and therefore Wf (a, b) = 0 if a has Ham-

ming weight different from 1, and the Walsh support of f has size 22k < n2

(the size is exactly 22k since, if a is the j-th vector of the canonical basis of F2k

2 ,

then, for every b ∈ Fk2 we have Wf (a, b) = 22k(−1)b·y 6= 0, where y is the unique

element such that ϕ(y) = j). The Walsh support is the union of 2k cosets of the

k-dimensional linear subspace {02k} × Fk2 of F2k

2 × Fk2 .

The address function is a particular case of a general class of functions called

Maiorana-McFarland, that we shall see at page 188, and which can provide more

cases of small Walsh supports (see after Proposition 53, page 189). 2

Determining, for all n, the exact minimum numerical degree of n-variable Boolean

functions depending on all their variables is open.

Of course, if a function does not depend on all its n variables, we still have the

bound dnum(f) ≥ 1 + log2m− log2(1 + log2m), where m is the number of effec-

tive variables in f(x).

Remark. The NNF presents the interest of being a polynomial representation,

but it can also be viewed as the transform which maps any pseudo-Boolean

function f(x) =
∑
I⊆{1,...,n} λI x

I to the pseudo-Boolean function g defined

by g(x) = λsupp(x). Let us denote this mapping by Φ. Three other transforms

have also been used for studying Boolean functions:

- the mapping Φ−1 (the formulae relating this mapping and the Walsh transform

are slightly simpler than for Φ; see [985]);

- a mapping defined by a formula similar to Relation (2.23), but in which

supp(x) ⊆ I is replaced by I ⊆ supp(x); see [579];

- the inverse of this latter mapping. 2

Remark. An interesting question is: given a Boolean function f , what is the

minimum numerical degree of all the Boolean functions affine equivalent to f

(that is, thanks to the fact that the affine equivalence of functions implies the

linear equivalence of their Walsh supports (see page 82), what is the minimum

for all the sets S which are linearly equivalent to the Walsh support of f , of the

maximum Hamming weight of the elements of S). Note that there exist functions

such that this minimum is strictly larger than the algebraic degree (this is the

case of bent functions, see Definition 19, page 100, for instance, since for these

functions the minimum is n and the algebraic degree equals n/2). Note also that

if we replace “minimum” by “maximum”, the number is n for every non-constant
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Boolean function, since given any element of Fn2 , there exists a linear permutation

which maps this element to the all-1 vector. 2

2.3.5 The size of the support of the Fourier-Hadamard transform and Cayley
graphs

In graph theory , an undirected graph is an ordered pair (V,E) where V is a set

of points called vertices or nodes, and E is a set of pairs of vertices (that we shall

assume distinct) called edges (more generally, in the case of hypergraphs, edges

are subsets of nodes). The degree of a vertex equals the number of edges it is in.

Let f be a Boolean function and let Gf be the Cayley graph associated to f : the

vertices of this graph are the elements of Fn2 and there is an edge between two

vertices u and v if and only if the vector u+ v belongs to the support of f . Then

(see [68]), the values f̂(a), a ∈ Fn2 , of the Fourier-Hadamard transform of f are

the eigenvalues of the graph Gf (that is, by definition, the eigenvalues of the

adjacency matrix (Mu,v)u,v∈Fn2 of Gf , whose term Mu,v equals 1 if u+ v belongs

to the support of f , and equals 0 otherwise). Their product equals then the

determinant of the adjacency matrix. Indeed, the matrix is 2n× 2n and we have

the 2n linearly independent eigenvectors ((−1)a·v)v∈Fn2 , each one corresponding

to an eigenvalue, since for every a ∈ Fn2 , we have
∑
v∈Fn2 ;u+v∈supp(f)(−1)a·v =∑

x∈supp(f)(−1)a·(u+x) = f̂(a)(−1)a·u,∀u ∈ Fn2 .

As a consequence, the size Nf̂ of the support {a ∈ Fn2 ; f̂(a) 6= 0} of the Fourier-

Hadamard transform of any n-variable Boolean function f is larger than or

equal to the size Nĝ of the support of the Fourier-Hadamard transform of any

restriction g of f , obtained by keeping constant some of its input bits. Indeed,

the adjacency matrix Mg of the Cayley graph Gg is a submatrix of the adjacency

matrix Mf of the Cayley graph Gf ; the number Nĝ equals the rank of Mg, and

is then smaller than or equal to the rank Nf̂ of Mf .

This property can be generalized to any pseudo-Boolean function ϕ, with a

simpler proof using the Poisson summation formula (2.39): let I be any subset

of {1, . . . , n}; let E be the vector subspace of Fn2 equal to {x ∈ Fn2 ; xi = 0, ∀i ∈
I}; we have E⊥ = {x ∈ Fn2 ; xi = 0, ∀i ∈ {1, . . . , n} \ I} and the sum of E

and of E⊥ is direct; then, for every a ∈ E⊥ and every b ∈ E, the equality∑
u∈a+E(−1)b·u ϕ̂(u) = |E| (−1)a·b ψ̂(a), where ψ is the restriction of ϕ to b+E⊥,

implies that, if Nϕ̂ = k, that is, if ϕ̂(u) is nonzero for exactly k vectors u ∈ Fn2 ,

then clearly ψ̂(a) is nonzero for at most k vectors a ∈ E⊥.

Coming back to the case where ϕ is a Boolean function, say ϕ = f where f has

algebraic degree d, choosing for I a multi-index of size d such that xI is part

of the ANF of f , then the restriction ψ = g has odd weight and its Fourier-

Hadamard transform takes therefore nonzero values only. We deduce (as proved

in [68]) that:

Nf̂ = |{a ∈ Fn2 ; f̂(a) 6= 0}| ≥ 2dalg(f).
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Notice that Nf̂ equals 2dalg(f) if and only if at most one element (that is, exactly

one) satisfying f̂(u) 6= 0 exists in each coset of E, that is, in each set obtained

by keeping constant the coordinates xi such that i ∈ I.

The number Nϕ̂ is also bounded above by
∑D
i=0

(
n
i

)
, where D is the numerical

degree of ϕ. This is a direct consequence of Proposition 14.

The graph viewpoint gives insight on those Boolean functions whose Fourier-

Hadamard spectra have at most three values, as can be seen in [68]. Bent func-

tions (see Chapter 6) are those Boolean functions whose Cayley graphs are

strongly regular of a particular type [68, 69]: those graphs such that, for all

distinct vertices u, v, the number of those vertices which are adjacent to both u

and v are the same.

A hypergraph (see page 89) can also be related to the ANF of a Boolean function

f . A related (weak) upper bound on the nonlinearity of Boolean functions (see

definition in Section 3.1) has been pointed out in [1179].

2.3.6 The Walsh transform of vectorial functions

Assuming that an inner product in Fn2 and an inner product in Fm2 have been

chosen, both denoted by “·”, we call Walsh transform of an (n,m)-function F ,

and we denote by WF , the function which maps any ordered pair (u, v) ∈ Fn2×Fm2
to the value at u of the Walsh transform of the Boolean function v · F :

WF (u, v) =
∑
x∈Fn2

(−1)v·F (x)⊕u·x; u ∈ Fn2 , v ∈ Fm2 .

We call Walsh spectrum of F the multi-set of all the values WF (u, v) where

u ∈ Fn2 , v ∈ Fm2 . We call extended Walsh spectrum of F the multi-set of their abso-

lute values, and Walsh support of F the set of those (u, v) such thatWF (u, v) 6= 0.

Remark. If we denote by GF the graph {(x, y) ∈ Fn2 × Fm2 ; y = F (x)} of F ,

and by 1GF its indicator (taking value 1 on GF and 0 outside), then we have

WF (u, v) = 1̂GF (u, v). The Walsh transform of any vectorial function is the

Fourier-Hadamard transform of the indicator of its graph.

The autocorrelation function (a, v)→
∑
x∈Fn2

(−1)v·(F (x)+F (x+a)) is directly con-

nected to the Fourier transform of the function implementing the difference table

DF (a, b) = |x;F (x) + F (x+ a) = b| since we have
∑
x∈Fn2

(−1)v·(F (x)+F (x+a)) =∑
b∈Fn2

DF (a, b)(−1)v·b, and DF (a, b) is then recovered from the autocorrelation

function by the inverse Fourier transform formula for Boolean functions. 2

The inverse Walsh transform formula (2.43) for vectorial functions writes:∑
u∈Fn2

WF (u, v) (−1)u·x = 2n(−1)v·F (x). (2.68)

There is a simple way of expressing the value of the Walsh transform of the

composition of two vectorial functions by means of those of the functions:
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Proposition 16 If we write the values of the function WF in a 2m × 2n ma-

trix (Mv,u)v∈Fm2 ,u∈Fn2 where Mv,u = WF (u, v), then, the matrix similarly corre-

sponding to the composite function F ◦H, where H is an (r, n)-function, equals

2−n M ×N , where N is defined similarly with respect to H.

Proof. For every w ∈ Fr2 and every v ∈ Fm2 , we have∑
u∈Fn2

WF (u, v)WH(w, u) =
∑

u∈Fn2 ;x∈Fr2;y∈Fn2

(−1)v·F (y)⊕u·(y+H(x))⊕w·x

= 2n
∑

x∈Fr2;y∈Fn2 ; y=H(x)

(−1)v·F (y)⊕w·x

= 2nWF◦H(w, v),

since
∑
u∈Fn2

(−1)u·(y+H(x)) equals 2n if y = H(x), and is null otherwise. 2

Remark. Because of Proposition 16, it could seem more convenient to exchange

the positions of u and v in WF (u, v). But we shall not do so because the common

use is to respect the order (input,output). 2

Remark. We have WF (u, v) =
∑
b∈Fm2

ϕ̂b(u)(−1)v·b, where ϕ̂b is the Fourier-

Hadamard transform of the indicator function ϕb of the pre-image F−1(b) =

{x ∈ Fn2 ; F (x) = b}. 2

In [201] is shown that the possibility of building a function CCZ equivalent

to a given (n,m)-function F depends on the structure of the set of zeros of its

Walsh transform. Given an affine permutation A = L+ (a, b) of Fn2 ×Fm2 (where

L = (L1, L2) is a linear permutation and (a, b) a point in Fn2×Fm2 ), the image by A

of the graph GF of F is the graph of a function if and only if the image of Fn2×{0m}
by the adjoint operator L∗ of L is included in the set W−1

F (0) ∪ {(0n, 0m)}.
This is immediate: a necessary and sufficient condition is that L1(x, F (x)) be

a permutation and according to Proposition 35, page 134, this is equivalent to

∀u 6= 0n,
∑
x∈Fn2

(−1)(u,0m)·L(x,F (x)) =
∑
x∈Fn2

(−1)L
∗(u,0m)·(x,F (x)) = 0. A trans-

formation called twisting allows then to move to another EA equivalence class

within the same CCZ equivalence class: the output of F is viewed in the form

(Ty(x), Ux(y)) ∈ Ft2×Fm−t2 , where t ≤ min(n,m), x ∈ Ft2, y ∈ Fn−t2 and where Ty
is assumed to be a permutation for every y. Then the t-twisting of F is the func-

tion (T−1
y (x), UT−1

y (x)(y)), whose graph is obtained from that of F by swapping,

in each vector of the graph, the sub-vector of indices 1, . . . , t and the sub-vector

of indices n+ 1, . . . , n + t. It is shown in [201] that every CCZ equivalent func-

tion to F can be obtained from F in three steps: applying EA equivalence, then

twisting, then applying EA equivalence again. The number of EA equivalence

classes in the CCZ equivalence class of F is bounded above by the number of

n-dimensional vector spaces in W−1
F (0) ∪ {(0n, 0m)} and below by this same

number divided by the order of the automorphism group of function F (i.e. the

group of those affine automorphisms which preserve the graph of F ).
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The case of power functions
When Fn2 is identified with F2n , we have seen at page 40 that power functions are

those functions of the form F (x) = xd. They usually have a lower implementation

cost in hardware. Such F is a permutation of F2n if and only if d is co-prime

with 2n − 1. An inner product being for instance (x, y) 7→ trn(x y), for every

(u, v) ∈ (F∗2n)2 and every d, we have (by the change of variable x 7→ x
u ) that

WF (u, v) = WF (1, v
ud

), and if xd is a permutation of F2n , then we have (by the

change of variable x 7→ x

v
1
d

) that WF (u, v) = WF ( u

v
1
d
, 1).

It has been conjectured in 1976 by Helleseth34 in [592] that, for every n ≥ 2 and

every value of d co-prime with 2n−1, there exists a ∈ F∗2n such that WF (a, 1) = 0.

This conjecture is still open. It has been checked for n ≤ 25 by Langevin and

proved for d = 2n−2 (inverse function) in [733] (see more at page 239). We have:

Proposition 17 [39] For every power permutation F (x) = xd, there exists a ∈
F∗2n such that WF (a, 1) ≡ 0 [mod 3].

Proposition 18 [673] If gcd(d, 2n− 1) = 1 and if the set {Wf (a); a ∈ F∗2n} has

three distinct values exactly, then one of these values is 0.

Proposition 19 [673] If gcd(d, 2n − 1) = 1 and n is a power of 2, then the set

{Wf (a); a ∈ F∗2n} cannot have three distinct values exactly.

See more in [675]. Some results related to Gauss sums are also given in [38] and

we have:

Proposition 20 [174] For every n equal to a power of 2 and every non-linear

power permutation F (x) = xd over F2n , there exists a ∈ F∗2n such that WF (a, 1)

is not divisible by 2
n
2 +1.

It is observed in [38] that if n is even and F (x) = xd is constant over F∗
2
n
2

and

not over F∗2n , then there exists a ∈ F∗2n such that WF (a, 1) = −2
n
2 . And using

McEliece’s theorem, it is proved that:

Proposition 21 [194, 196] Let l and n be two positive integers. The Walsh

values of a power function F (x) = xd over F2n are all divisible by 2l if and only

if, for all u ∈ Z/(2n − 1)Z, w2(ud) ≤ w2(u) + n− l.

See also [746]. These results are complementary of Theorem 2, page 82 (recall

that the algebraic degree of xd equals w2(d)). The latter will have consequences

for the characterization of almost bent functions, see page 415.

34 The conjecture is stated for every characteristic p such that d ≡ 1 [mod p− 1].
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Relation between Walsh transform and NNF of the graph
indicator
We know that WF (u, v) = 1̂GF (u, v). Relation (2.59), page 85, and Relation

(2.60) show then that if the NNF of 1GF (x, y) equals
∑

I⊆{1,...,n}
J⊆{1,...,m}

λI,J x
IyJ , then:

WF (u, v) = (−1)wH(u)+wH(v)
∑

I⊆{1,...,n},J⊆{1,...,m}
supp(u)⊆I,supp(v)⊆J

2n+m−|I|−|J|λI,J ,

λI,J = 2−(n+m)(−2)|I|+|J|
∑

u∈Fn2 ,v∈F
m
2

I⊆supp(u),J⊆supp(v)

WF (u, v).

2.3.7 The multidimensional Walsh transform

K. Nyberg defines in [911] a polynomial representation, called the multidimen-

sional Walsh transform; let us define:

W(F )(z1, . . . , zm) =
∑
x∈Fn2

m∏
j=1

z
fj(x)
j ∈ Z[z1, . . . , zm]/(z2

1 − 1, . . . , z2
m − 1),

where f1, . . . , fm are the coordinate functions of F .

The multidimensional Walsh transform maps every linear (n,m)-function L to

the polynomial W(F + L)(z1, . . . , zm). This is a representation with uniqueness

of F , since, for every L, the knowledge of W(F + L) is equivalent to that of the

evaluation ofW(F +L) at (ξ1, . . . , ξm) for every choice of ξj , j = 1, . . . ,m, in the

set {−1, 1} of roots of the polynomial z2
j − 1. For such a choice, let us define the

vector v ∈ Fm2 by vj = 1 if ξj = −1 and vj = 0 otherwise. For every j = 1, . . . ,m,

let us denote by aj the vector of Fn2 such that the j-th coordinate of L(x) equals

aj · x. We denote then by u the vector
∑m
j=1 vjaj ∈ Fn2 . Then this evaluation

equals
∑
x∈Fn2

(−1)v·F (x)⊕u·x. We see that the correspondence between the mul-

tidimensional Walsh transform and the Walsh transform is the correspondence

between a multi-variate polynomial of Z[z1, . . . , zm]/(z2
1 − 1, . . . , z2

m − 1) and its

evaluation over {(z1, . . . , zm) ∈ Zm / z2
1 − 1 = · · · = z2

m − 1 = 0} = {−1, 1}m.

Consequently, the multidimensional Walsh transform satisfies a relation equiva-

lent to the Parseval’s relation (see [911]).

2.4 Fast computation of S-boxes

We shall see in Chapter 11 that substitution boxes are almost always expressed

in univariate polynomial form
∑2n−1
j=0 bjx

j (where x, bj ∈ F2n), because the

structure of field is needed to generate them, although the multiplication plays

no role in the criteria they must satisfy (only the addition playing a role). In

such polynomial expression, the additions and scalar multiplications being linear

mappings are fast to compute. Those multiplications whose two operands include
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variables (that we shall exceptionally represent explicitly by ×) are more complex

to process fastly. Methods exist for multiplication processing (see more in [320]):

• The most efficient in terms of timing is complete tabulation, by reading the

content of a table in ROM containing all the pre-computed results. The size

of the table is of n22n bits, the timing is around 5 cycles.

• The most efficient in terms of memory is direct processing. The timing com-

plexity is of order O(nlog3(2)) with large constants, thanks to Karatsuba’s

method repeated recursively until getting low-cost multiplications:

m =
⌈n

2

⌉
; (ahX

m + al)× (bhX
m + bl) = chX

2m + chlX
m + cl ,

where ah, al, bh, bl, ch, chl, cl are polynomials of degree ≤ m

ch = ah × bh, cl = al × bl,
chl = (ah + al)× (bh + bl)− ch − cl.

• A compromise is the so-called log-alog method, which assumes that the func-

tions:

log : x ∈ F2n 7→ i = logα(x) and alog : i 7→ x = αi

have been tabulated in ROM for some primitive element α of the field. The

processing of a× b then simply consists in processing:

c = alog[(log[a] + log[b]) mod 2n − 1] .

Its memory complexity is n2n+1 bits and its timing complexity is constant.

• Another compromise is obtained with the tower field approach. For n = 2m

even, the elements of F2n are viewed as elements of F2m [X]/(X2 +X + β),

where X2 +X + β is a degree-2 polynomial irreducible over F2m . The field

isomorphism mapping an element a ∈ F2n into the pair (ah, al) ∈ F2
2m is

denoted by L. The multiplication a× b is then executed as follows:

(ah, al) ← L(a); (bh, bl)← L(b); cl ← ah × bh × β + al × bl
ch ← ah × (bh + bl) + al × bh; c← L−1(ch, cl).

This is recursively applied if n is a power of 2.

Methods also exist for evaluating whole polynomials (e.g. the cyclotomic method

and the Knuth-Eve method) that we shall present in Section 12.1.2 because they

play a role with respect to countermeasures against side channel attacks.



3 Boolean functions, vectorial
functions and cryptography

The design of conventional cryptographic systems relies on two fundamental

principles introduced by Shannon [1034]: confusion and diffusion. Confusion

aims at concealing any algebraic structure in the system. It is closely related

to the complexity1 of the involved (so-called nonlinear) functions. Diffusion con-

sists in spreading out the influence of any minor modification of the input data

or of the key over all outputs. These two principles were stated more than half

a century ago. Since then, many attacks have been found against the diverse

known cryptosystems, and the relevance of these two principles has always been

confirmed. In this chapter, we describe the main attacks on symmetric cryptosys-

tems and the related criteria on Boolean and vectorial functions. Two books exist

on Boolean and vectorial functions for cryptography [401, 1125], which partly

cover the state of the art. Several sections of the Handbook of Finite Fields [890]

are also devoted to this same subject (in a reduced format). In the subsequent

chapters, we shall develop as completely as possible the study of each criterion.

3.1 Cryptographic criteria (and related parameters) for Boolean
functions

The known attacks on stream ciphers lead to criteria [842, 844, 970, 1041]

that the implemented cryptographic functions must satisfy to resist attacks

[388, 391, 826, 843, 1042]. More precisely, the resistance of the cryptosystems

to the known attacks can be quantified through some fundamental characteris-

tics (some, more related to confusion, and some, more related to diffusion) of the

Boolean functions used in them; and the design of these cryptographic functions

needs to consider various characteristics simultaneously. Some of these charac-

teristics are affine invariants. Of course, all characteristics cannot be optimum

at the same time, and trade-offs must be considered (see below).

1 That is, the cryptographic complexity, which is different from circuit complexity, for

instance.
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3.1.1 Balancedness

Cryptographic Boolean functions must be balanced (their output must be uni-

formly, i.e. equally, distributed over {0, 1}) for avoiding statistical dependence

between the plaintext and the ciphertext. Indeed, we wish that it is not possible

to distinguish the pair of a random plaintext and of the corresponding ciphertext

from a random pair. Notice that f is balanced if and only if Wf (0n) = F(f) = 0.

3.1.2 Algebraic degree

Cryptographic functions must have high algebraic degrees (see Definition 6, page

52). Indeed, all cryptosystems using Boolean functions for confusion (combin-

ing or filtering functions in stream ciphers, functions involved in the S-boxes

of block ciphers, ...) can be attacked if the functions have low algebraic de-

grees. For instance, in the case of combining functions (see Figure 1.3, page

38), if n LFSRs having lengths L1, . . . , Ln are combined by the function f(x) =⊕
I⊆{1,...,n}

aI

(∏
i∈I

xi

)
, then the sequence produced by f has linear complexity

L ≤
∑

I⊆{1,...,n}

aI

(∏
i∈I

Li

)

(and L equals this number under the sufficient condition that the sequences

output by the LFSRs are m-sequences of pairwise co-prime periods), see [1007,

1183]. In the case of the filter model (see Figure 1.4, page 39), we have a less

precise result [1006]: if L is the length of the LFSR and if the feedback polynomial

is primitive, then the linear complexity of the sequence satisfies:

L ≤
dalg(f)∑
i=0

(
L

i

)
.

Moreover, if L is a prime, then L ≥
(

L
dalg(f)

)
, and the fraction of functions f

of given algebraic degree which output a sequence of linear complexity equal to∑dalg(f)
i=0

(
L
i

)
is at least e−1/L. In both models, the algebraic degree of f has to

be high so that L can have high value (the number of those nonzero coefficients

aI , in the ANF of f , such that I has large size, can also play a role, but clearly

a less important one).

When n tends to infinity, random Boolean functions have almost surely algebraic

degrees at least n− 1 (the number 2
∑n−2
i=0 (ni) = 22n−n−1 of Boolean functions of

algebraic degree at most n− 2 is negligible with respect to the number 22n of all

Boolean functions). But we shall see that the functions of algebraic degree n− 1

or n do not allow achieving some other characteristics like resiliency.

We have seen in Section 2.2 that the algebraic degree is an affine invariant.
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3.1.3 Nonlinearity and higher-order nonlinearity

In order to provide confusion, cryptographic functions must lie at large Hamming

distance from all affine functions. Let us explain why.

Correlations with linear functions and attacks
We shall say that there is a nonzero correlation between a Boolean function f

and a linear function ` if dH(f, `) is different from 2n−1 (precisely, the correlation

between f and `a(x) = a · x, where a ∈ Fn2 , equals
∑
x∈Fn2

(−1)f(x)⊕`a(x), that is

Wf (a)). Because of Parseval’s Relation (2.48), page 79, and of Relation (2.37),

page 75, any Boolean function has nonzero correlation with at least one linear

function. But all correlations should be small (in magnitude). Indeed, a large

positive correlation between a Boolean function f involved in a cryptosystem

and a linear function ` means that dH(f, `) is small, and f is then efficiently

approximated by `; a large negative one means that it is approximated by `⊕ 1.

The existence of such affine approximations of f allows in various situations

(block ciphers, stream ciphers) to build attacks on this system.

In the case of stream ciphers, these attacks are the so-called fast correlation

attacks [843, 203, 369, 517, 645, 646, 647]: let ` be a linear approximation of f

(or of f ⊕ 1, but then we shall study f ⊕ 1) whose distance to f is smaller than

2n−1, denoting by Prob [E] the probability of an event E, we have:

p = Prob [f(x1, . . . , xn) 6= `(x1, . . . , xn)] =
dH(f, `)

2n
=

1

2
− ε,

where ε > 0. The pseudorandom sequence s corresponds then to the transmission

with errors of the sequence σ which would be produced by the same model with

the same LFSRs, but with ` instead of f . Attacking the cipher can be done by

correcting the errors as in the transmission of the sequence σ over a noisy channel.

Assume that we have N bits su, . . . , su+N−1 of the pseudorandom sequence s,

then Prob [si 6= σi] ≈ p. The set of possible sequences σu, . . . , σu+N−1 is a vector

space, that is, a linear code of length N and dimension at most L, where L is

the size of the linear part of the PRG (the length of the LFSR in the case of the

filter generator). We then use a decoding algorithm to recover σu, . . . , σu+N−1

from su, . . . , su+N−1 and since ` is linear, the linear complexity of the sequence

σ is small and we obtain for instance by the Berlekamp-Massey (BM) algorithm

the initialization of the LFSR. We can then compute the whole sequence s.

There are several ways for performing the decoding. The method exposed in

[843] and improved by [369] is as follows. We call a parity check polynomial

any polynomial a(x) = 1 +
∑r
j=1 ajx

j (ar 6= 0) which is a multiple of the

feedback polynomial of an LFSR generating the sequence σi. Denoting by σ(x)

the generating function
∑
i≥0 σix

i, the product a(x)σ(x) is a polynomial of

degree less than r. We use for the decoding a set of parity check polynomials

satisfying three conditions: their degrees are bounded by some integer m, the

number of nonzero coefficients aj in each of them is at most some number t ≥ 3

(i.e., each polynomial has Hamming weight at most t + 1) and for every j =
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1, . . . ,m, at most one polynomial has nonzero coefficient aj . Each parity check

polynomial a(x) = 1 +
∑r
j=1 ajx

j gives a linear relation σi =
∑r
j=1 ajσi−j =∑

j=1,...,r ; aj 6=0 σi−j for every i ≥ m and the relations corresponding to different

polynomials involve different indices i − j. If we replace the (unknown) σi’s by

the si’s then some of these relations become false but it is possible by using the

method of Gallager [524] to compute a sequence zi such that Prob (zi = σi) >

1−p. Then it can be proved that iterating this process converges to the sequence

σ (with a speed which depends on m, t and p). The number N of bits needed to

be known in the keystream, the off-line time complexity P and the on-line time

complexity T are (see [203]):

N = 2
L
t−1

(
1

2ε

) 2(t−2)
t−1

P =
N t−2

(t− 2)!
T = 2

L
t−1

(
1

2ε

) 2t(t−2)
t−1

,

where L is the length of the LFSR and ε is the bias of the nonlinearity with

respect to 2n−1, that is, ε = 2n−1−nl(f)
2n , where nl(f) is defined below. Note that

the number of variables of the function does not play an explicit role.

In the case of block ciphers, we shall see in Section 3.4 that the Boolean functions

involved in their S-boxes must also lie at large Hamming distances to affine

functions, to allow resistance to the linear attacks [829].

The corresponding parameter and criterion for Boolean
functions
Definition 18 The nonlinearity of a Boolean function f is the minimum Ham-

ming distance between f and affine functions. We shall denote it by nl(f).

The larger is the nonlinearity, the larger is p in the fast correlation attack and the

less efficient is the attack. Hence, from the designer point of view, the nonlinearity

must be large (in a sense that will be clarified below) and we shall see that

this condition happens to be necessary against other attacks as well. A high

nonlinearity is surely one of the most important cryptographic criteria.

By definition, the nonlinearity of any Boolean function is bounded above by its

Hamming weight. The set of those Boolean functions which achieve this bound

with equality (i.e. of all possible coset leaders of the first-order Reed-Muller code)

is unknown. Some functions belong obviously to it: n-variable Boolean functions

of Hamming weight at most 2n−2 (since nonzero affine functions have weight

at least twice, and according to the triangular inequality); bent functions (see

Definition 19 below) of Hamming weight 2n−1−2
n
2−1; more generally, plateaued

functions (see Definition 63, page 285) of amplitude 2r and Hamming weight

2n−1 − 2r−1. But the set is not completely determined. Note that each coset

of the first-order Reed-Muller code contains at least one element of this set. In

[1138] are studied the Boolean functions of nonlinearities 2n−2 and 2n−2 + 1.

The nonlinearity is an EA invariant , since dH(f ◦L⊕`′, `) = dH(f, (`⊕`′)◦L−1),

for every functions f , ` and `′, and for every affine automorphism L, and since

(`⊕ `′) ◦ L−1 ranges over the whole set of affine functions when ` does.
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Note also that, given two n-variable Boolean functions f1 and f2, we have the

inequality nl(f1⊕f2) ≤ nl(f1)+nl(f2), because for every affine Boolean functions

`1 and `2, we have nl(f1 ⊕ f2) ≤ dH(f1 ⊕ f2, `1 ⊕ `2) = wH(f1 ⊕ f2 ⊕ `1 ⊕ `2) =

wH(f1⊕ `1⊕f2⊕ `2) ≤ wH(f1⊕ `1)+wH(f2⊕ `2) = dH(f1, `1)+dH(f2, `2), and

we can choose `1 and `2 such that nl(f1) = dH(f1, `1) and nl(f2) = dH(f2, `2).

The nonlinearity can be computed through the Walsh transform: let `a(x) =

a1x1⊕· · ·⊕anxn = a ·x be any linear function; according to Relation (2.37), we

have dH(f, `a) = 2n−1− 1
2Wf (a) and we deduce dH(f, `a⊕ 1) = 2n−1 + 1

2Wf (a);

the nonlinearity of f is therefore equal to:

nl(f) = 2n−1 − 1

2
max
a∈Fn2

|Wf (a)|. (3.1)

Hence a function has high nonlinearity if and only if all of its Walsh values have

low magnitudes. The value maxa∈Fn2 |Wf (a)| is called the “linearity of f” by

some authors and its “spectral amplitude” by some others.

Upper and lower bounds, bent functions
Parseval’s relation

∑
a∈Fn2

W 2
f (a) = 22n implies that the arithmetic mean ofW 2

f (a)

equals 2n. The maximum of W 2
f (a) being larger than or equal to its arithmetic

mean, we deduce that maxa∈Fn2 |Wf (a)| ≥ 2
n
2 . This implies:

Theorem 3 For every n-variable Boolean function f , we have:

nl(f) ≤ 2n−1 − 2
n
2−1. (3.2)

This bound, valid for every Boolean function and tight for every even n as we shall

see, is called the covering radius bound2. It can be improved (i.e. lowered) when

we restrict ourselves to some subclasses of functions: resilient and correlation

immune functions (see Chapter 7); functions tr(axd) such that a ∈ F∗2n and

gcd(d, 2n − 1) = 1, since their nonlinearity equals that of the vectorial function

xd and is then bounded above by 2n−1 − 2
n−1

2 , according to Theorem 6, page

140. A Boolean function will be considered as highly nonlinear if its nonlinearity

lies near3 the upper bound in its class. Note that, for general Boolean functions,

there is no direct correlation between the nonlinearity and the algebraic degree:

highly nonlinear n-variable functions can have algebraic degree as low as 2 (see

Section 5.2) and as large as n (but then the nonlinearity cannot be optimal, see

Theorem 13, page 224) and functions with low nonlinearity (e.g. functions of

Hamming weight at most 2n−2, whose nonlinearity equals the Hamming weight

since the minimum distance of the Reed-Muller code of order 1 equals 2n−1 and

because of the triangular inequality on Hamming distance) can have algebraic

degree between 2 and n as well.

Olejár and Stanek [917] have shown that, when n tends to infinity, random

Boolean functions on Fn2 have almost surely nonlinearity larger than 2n−1 −
2 The covering radius of the Reed-Muller code of order 1 equals by definition the maximum

nonlinearity of Boolean functions, see Section 4.1.
3 The meaning of “near” depends on the framework, see [650].



100 Boolean functions, vectorial functions and cryptography

√
n 2

n−1
2 (this is easy to prove by counting – or more precisely by bounding

from above – the number of functions whose nonlinearities are lower than or

equal to a given number, see e.g. [224, 229], and using the so-called Shannon

effect, see page 125). Rodier [1000] has shown later a more precise and strong

result: asymptotically, almost all Boolean functions have nonlinearity between

2n−1 − 2
n
2−1
√
n
(√

2 ln 2 + 4 lnn
n

)
and 2n−1 − 2

n
2−1
√
n
(√

2 ln 2− 5 lnn
n

)
and

therefore located in the neighborhood of 2n−1− 2
n
2−1
√

2n ln 2, where ln denotes

the natural (i.e. Neperian) logarithm.

The probability Prob (maxw |WF (w)| ≥ y) is equal to 1 when y = 2n/2; it de-

creases slowly when y increases, decreases then suddenly to the neighborhood

of 0 when y is approaching 2n/2
√

2n ln 2, then it decreases slowly to 0 when y

increases to 2n. Further details can be given around 2n/2
√

2n ln 2. The article

[784] provides sharper results by a different method. In particular, for n > 164,

we have Prob (maxw |WF (w)| ≥ 2n/2
√

2n ln 2) ≤ (1 + o(1))/
√
nπ ln 2.

Equality occurs in (3.2) if and only if |Wf (a)| = 2
n
2 for every vector a, since the

maximum of W 2
f (a) equals the arithmetic mean if and only if W 2

f (a) is constant.

Definition 19 An n variable Boolean function is called bent if its nonlinearity

equals 2n−1 − 2
n
2−1, or equivalently, Wf (a) = ±2

n
2 for every a ∈ Fn2 .

Such functions exist only for even values of n, because 2n−1 − 2
n
2−1 must be an

integer (in fact, they exist for every n even). Chapter 6 is devoted to them.

For n odd, Inequality (3.2) cannot be tight. The maximum nonlinearity of n-

variable Boolean functions, that is, the covering radius of RM(1, n), lies then

between 2n−1− 2
n−1

2 (which can always be achieved e.g. by quadratic functions,

see Section 5.2) and 2b2n−2 − 2
n
2−2c [617]. It has been shown in [597, 894] that

it equals 2n−1 − 2
n−1

2 when n = 1, 3, 5, 7, and in [936, 937], by Patterson and

Wiedemann4 (with rotation symmetric functions, see Definition at page 275),

that it is strictly larger than 2n−1−2
n−1

2 if n ≥ 15 (a review on what was known

in 1999 on the best nonlinearities of functions on odd numbers of variables is given

in [515], see also [133, 747, 815]). This value 2n−1 − 2
n−1

2 is called the quadratic

bound because, as we already mentioned, such nonlinearity can be achieved by

quadratic functions. It is also called the bent concatenation bound since it can also

be achieved by the concatenation xnf(x1, . . . , xn−1)⊕ (xn⊕1)g(x1, . . . , xn−1) of

two bent functions f, g in n− 1 variables. It has been later proved by Kavut et

al. in [684, 686] (see also [816] where balanced functions are obtained), thanks

to rotation symmetric functions as well, that the best nonlinearity of Boolean

functions in odd numbers of variables is strictly larger than the quadratic bound

for any n > 7. See Table 3.1 for the best known nonlinearities for n odd between

4 It has been later proved (see [1027, 466, 820, 696, 1016]) that balanced functions with

nonlinearity strictly larger than 2n−1 − 2
n−1

2 , and with algebraic degree n− 1, or

satisfying PC(1), see Definition 24, page 118, exist for every odd n ≥ 15.
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5 and 15 compared to the quadratic (or bent concatenation) lower bound and to

the upper bound.

Bent functions being not balanced (since we have seen that f is bent if and only

n 5 7 9 11 13 15

2n−1 − 2
n−1

2 12 56 240 992 4032 16256

nl 12 56 242 996 4040 16276

2b2n−2 − 2
n
2
−2c 12 58 244 1000 4050 16292

Table 3.1 Best known nonlinearities nl of Boolean functions in small odd dimension [815]

if |Wf (a)| equals 2
n
2 for every vector a and then Wf (0n) 6= 0), and having too low

algebraic degree (as we shall see with Theorem 13, page 224), they are improper

for use in cryptosystems. For this reason, even when they exist (for n even), it

is also necessary to study those functions which have large nonlinearities, say

between 2n−1 − 2
n−1

2 and 2n−1 − 2
n
2−1, but are not bent, among which some

balanced functions exist. The maximum nonlinearity of balanced functions is

unknown for any n ≥ 8. See Table 3.2 for best known nonlinearities for n between

4 and 15 compared to the upper bound bnd = 2b2n−2 − 2
n
2−2c. Note that the

15-variable function can be made 1-resilient (see Definition 21, page 105).

n 4 5 6 7 8 9 10 11 12 13 14 15

nl 4 12 26 56 116 240 492 992 2010 4036 8120 16272

bnd 6 12 28 58 120 244 496 1000 2016 4050 8128 16292

Table 3.2 Best known nonlinearities nl of balanced Boolean functions in small dimension
[685, 815, 816, 1016]

As first observed in [1169, 1173], relations exist between the nonlinearity and

the derivatives of Boolean functions. We give here simpler proofs of these facts.

Applying Relation (2.56) to E = {0n, e}⊥, where e 6= 0n, and to b = 0n and all

a ∈ Fn2 , and using that maxu∈a+EW
2
f (u) ≥ 1

|E|
∑
u∈a+EW

2
f (u), we have:

Proposition 22 For every n ≥ 1 and every n-variable Boolean function f , we

have:

nl(f) ≤ 2n−1 − 1

2

√
2n + max

e 6=0n
|F(Def)|.

This directly proves an important property of bent functions that we shall revisit

in Chapter 6: f is bent if and only if all its derivatives Def, e 6= 0n, are balanced.

The obvious relation wH(f) ≥ 1
2 wH(Def) = 1

2

(
2n−1 − 1

2F(Def)
)
, valid for

every e ∈ Fn2 , leads when applied to the functions f(x)⊕ a · x⊕ ε, where a ∈ Fn2
and ε ∈ F2, to the inequality dH(f, a · x ⊕ ε) ≥ 1

2

(
2n−1 − 1

2 (−1)a·eF(Def)
)
≥

1
2

(
2n−1 − 1

2 |F(Def)|
)
. Hence, taking the maximum of this last expression when

e ranges over Fn2 , we deduce the lower bound:

Proposition 23 For every positive integer n and every n-variable function f ,
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we have:

nl(f) ≥ 2n−2 − 1

4
min

e∈Fn2 ,e6=0n
|F(Def)|. (3.3)

Another lower bound on the nonlinearity is given at the end of the remark located

after Theorem 7, page 176, and a further one is given in [248, Subsection 4.2]:

Proposition 24 Let f be any n-variable Boolean function. Let S = supp(f) =

{x ∈ Fn2 ; f(x) = 1} be the support of f and let Mf =

maxz∈Fn2 \{0n}
∣∣{(x, y) ∈ S2; x+ y = z

}∣∣+ minz∈Fn2 \{0n}
∣∣{(x, y) ∈ S2; x+ y = z

}∣∣
2

and let Ef =

maxz∈Fn2 \{0n}
∣∣{(x, y) ∈ S2; x+ y = z

}∣∣−minz∈Fn2 \{0n} |
{

(x, y) ∈ S2; x+ y = z
}
|

2
.

Then:

nl(f) ≥ 2n−1 −max

(
|2n−1 − |S||,

√
|S| −Mf + (2n − 1)Ef

)
. (3.4)

Any bent function achieves (3.4) with equality and it would be interesting to

determine all functions f such that (3.4) is an equality.

Nonlinearity and codes
The nonlinearity of a Boolean function f equals the minimum distance of the

linear code RM(1, n) ∪ (f ⊕RM(1, n)). See more in Chapter 4. More generally,

the minimum distance of an unrestricted code defined as the union of cosets

f ⊕ RM(1, n) of the Reed-Muller code of order 1, where f ranges over a set

F , equals the minimum nonlinearity of the functions f ⊕ g, where f and g are

distinct and range over F , since dH(f ⊕h, g⊕h′) = dH(f ⊕ g, h⊕h′) and h⊕h′
ranges over RM(1, n) when h, h′ do. This observation allows constructing some

optimal nonlinear codes such as Kerdock codes (see Section 6.1.22).

Higher-order nonlinearity
Changing one or a few bits in the output (in the truth-table) of a low degree

Boolean function gives a function with high degree and does not fundamentally

modify the robustness of the system using it (explicit attacks using approxima-

tions by low degree functions exist for block ciphers but not for all stream ciphers

however, see e.g. [707]). A relevant parameter is the nonlinearity profile:

Definition 20 Let n and r ≤ n be positive integers. Let f be an n-variable

Boolean function. We call r-th order nonlinearity (and if r is not specified, the

higher-order nonlinearity) of f and we denote by nlr(f), its Hamming distance

to the Reed-Muller code of order r. The nonlinearity profile of f is the sequence

of its r-th order nonlinearities, for all values of r < n.
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Several papers have shown the role played by this EA-invariant parameter against

some cryptanalyses (but contrary to the first order nonlinearity, it must have low

value for allowing attacks) and studied it from an algorithmic viewpoint [387, 544,

638, 707, 831, 882]. It is related to the minimal distance to functions depending

on a subset of variables (which plays a role with respect to the correlation attack,

see below in Subsection 3.1.7, and is not EA-invariant) since a function depending

on k variables has algebraic degree at most k. Hence the r-th order nonlinearity

is a lower bound for the distance to functions depending on at most r variables.

The former is much more difficult to study than the latter. The best possible

r-th order nonlinearity of Boolean functions equals the covering radius of the

r-th order Reed-Muller code, see Subsection 4.1.6, page 180.

Upper and lower bounds and asymptotic behavior
An upper bound on nlr(f) is given in [309] for r ≥ 2, that we shall address in

Section 4.1 (see page 182). Asymptotically, it gives:

nlr(f) ≤ 2n−1 −
√

15

2
· (1 +

√
2)r−2 · 2n2 +O(nr−2).

An asymptotic lower bound, given in [229], is as follows: let c ∈ R, c > 0; for

every r ≥ 0, the density of the set of functions such that:

nlr(f) > 2n−1 − c

√√√√ r∑
i=0

(
n

i

)
2
n−1

2

(i.e. the probability for a function to satisfy this inequality) is larger than

1 − 2(1−c2 log2 e)
∑r
i=0 (ni) and, if c2 log2 e > 1, it tends to 1 when n tends to

∞. This is easily proved: the number of functions of algebraic degree at most

r equals 2
∑r
i=0 (ni). For every such function h, the number of Boolean functions

f whose Hamming distance to h is bounded above by some number D equals∑
0≤i≤D

(
2n

i

)
. Hence, the number of Boolean functions f such that dH(f, h) ≤

2n−1− c

√√√√ r∑
i=0

(
n

i

)
2
n−1

2 equals
∑

0≤i≤2n−1−c
√∑r

i=0 (ni) 2
n−1

2

(
2n

i

)
. We know from

[14] that, for every N , we have
∑

0≤i≤λN
(
N
i

)
< 2Ne−2N(1/2−λ)2

. We deduce that

the number of Boolean functions f such that dH(f, h) ≤ 2n−1−c
√∑r

i=0

(
n
i

)
2
n−1

2

is bounded above by 22n−c2
∑r
i=0 (ni) log2 e. Thus, the number of those Boolean

functions which have r-th order nonlinearity smaller than or equal to 2n−1 −
c
√∑r

i=0

(
n
i

)
2
n−1

2 is smaller than 22n+(1−c2 log2 e)
∑r
i=0 (ni). The rest of the proof

is straightforward.

A more precise and more recent result is given by K.-U. Schmidt in [1021], which

generalizes the result on r = 1 by Rodier [1000] recalled at page 100, and a result

from [435] which dealt with r = 2: for every r ≥ 1, the ratio 2n−1−nlr(f)√
2n−1(nr) ln 2

tends



104 Boolean functions, vectorial functions and cryptography

to 1 almost surely when n tends to infinity (see more details in [1021]).

Unfortunately, this does not help obtaining explicit functions with non-weak r-th

order nonlinearity.

Remark. We shall see in Section 4.1 that the minimum Hamming weight of

nonzero n-variable Boolean functions of algebraic degree at most r (i.e. the mini-

mum distance of the Reed-Muller codeRM(r, n)) is equal to 2n−r for every r ≤ n.

Hence, applying this property to r+ 1 instead of r, we have nlr(f) ≥ 2n−r−1 for

every function f of algebraic degree exactly r+1 ≤ n. Moreover, we shall also see

that the minimum weight n-variable Boolean functions of algebraic degree r+ 1

are the characteristic functions of (n − r − 1)-dimensional flats. Such functions

have r-th order nonlinearity 2n−r−1 since the null function is the closest function

of algebraic degree at most r to such function. 2

Computing the r-th order nonlinearity of a given function with algebraic de-

gree strictly larger than r is a hard task for r > 1 (for the first order, we have seen

that much is known in theory and algorithmically thanks to the Walsh transform,

which can be computed by the algorithm of the Fast Fourier-Hadamard Trans-

form; but for r > 1, very little is known). Even the second order nonlinearity is

known only for a few peculiar functions and for functions in small numbers of

variables. Some simple but useful facts are shown in [232]. A nice algorithm due

to G. Kabatiansky and C. Tavernier and improved and implemented by Fourquet

and Tavernier [518] works well for r = 2 and n ≤ 11 (in some cases, n ≤ 13),

only. It can be applied for higher orders, but it is then efficient only for very

small numbers of variables. Proving lower bounds on the r-th order nonlinearity

of functions (and therefore proving their good behavior with respect to this cri-

terion) is also a quite difficult task. Until 2008, there had been only one attempt,

by Iwata-Kurosawa [638], to construct functions with r-th order nonlinearity

bounded from below. But the obtained value, 2n−r−3(r+ 5), of the lower bound

was small. Also, lower bounds on the r-th order nonlinearity by means of the

algebraic immunity of Boolean functions have been derived (see Chapter 9) but

they are small too. In [232] is introduced a method for efficiently bounding from

below the nonlinearity profile of a given function when lower bounds exist for

the (r − 1)-th order nonlinearities of the derivatives of f :

Theorem 4 Let f ∈ BFn and let 0 < r < n be an integer. We have:

nlr(f) ≥ 1

2
max
a∈Fn2

nlr−1(Daf) , and

nlr(f) ≥ 2n−1 − 1

2

√
22n − 2

∑
a∈Fn2

nlr−1(Daf).

The first bound is easily deduced from the inequality wH(f) ≥ 1
2wH(Daf) ap-

plied to f⊕h, dalg(h) ≤ r, and the second one comes from the equalities nlr(f) =
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2n−1 − 1

2
max

h∈BFn ; dalg(h)≤r

∣∣∣∣∣∣
∑
x∈Fn2

(−1)f(x)⊕h(x)

∣∣∣∣∣∣ and

∑
x∈Fn2

(−1)f(x)⊕h(x)

2

=

∑
a∈Fn2

∑
x∈Fn2

(−1)Daf(x)⊕Dah(x) = 22n − 2
∑
a∈Fn2

dH(Daf,Dah).

These bounds ease the determination of efficient lower bounds on the second

order nonlinearities of functions in some infinite classes, by reducing the problem

to calculations and summations of first-order nonlinearities (often tricky, but

feasible). This has been done in a series of papers (see e.g. in [714] the references

and the table comparing the obtained second order nonlinearities, see also [538])

that we shall not all cite. Such lower bounds were given as examples (about

power functions, including the Welch function) in [232], but also bounds for

the whole nonlinearity profile of the multiplicative inverse function trn(x2n−2):

the r-th order nonlinearity of this function is approximately bounded below by

2n−1−2(1−2−r)n and therefore asymptotically equivalent to 2n−1, for every fixed

r. Note that the extension of the Weil bound that we shall see in Section 5.6 is

efficient for bounding below the r-th order nonlinearity of the inverse function

only for r = 1. Indeed, already for r = 2, the univariate degree of a quadratic

function in trace form can be bounded above by 2b
n
2 c + 1 only and this gives a

bound in 2n on the maximum absolute value of the Walsh transform and therefore

no information on the nonlinearity. In [240] is similarly studied the (simplest)

Dillon bent function (x, y) 7→ xy2n/2−2, x, y ∈ F2n/2 (with an improvement in

[1067]) and a univariate function. In [607] is asymptotically studied, for p an odd

prime, the Boolean function taking value 0 over the binary expansions of the

quadratic residues modulo p.

The relative positions of the two bounds of Theorem 4 with respect to each other

have been studied in [872], where it is shown that for r = 2, there exist functions

for which the first bound is stronger and others where it is vice versa.

3.1.4 Correlation immunity and resiliency

We have seen that the Boolean functions used in stream ciphers must be bal-

anced. In both models of pseudorandom generators, there is a stronger condition

related to balancedness to satisfy.

In the combiner model
Any combining function f(x) must stay balanced when some number of coordi-

nates xi of x are kept constant.

Definition 21 Let n be a positive integer and t ≤ n a non-negative integer. An

n-variable Boolean function f is called an t-th order correlation immune function

if its output distribution probability is unaltered when at most t (or, equivalently,
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exactly t) of its input bits are kept constant. It is called a t-resilient function5 if

it is balanced and t-th order correlation immune, that is, if any of its restrictions

obtained by fixing at most t (or exactly t) of its input coordinates xi is balanced.

Note that, by definition, 0-th order correlation immunity is an empty condition

and 0-resiliency means balancedness.

Nota Bene. When we say that a function f is t-th order correlation immune

(t-resilient if it is balanced), we do not mean that t is the maximum value of k

such that f is k-th order correlation immune. We will call this maximum value

the correlation immunity order of f (resp. its resiliency order if it is balanced).

The notion of correlation immune function has been introduced by Siegenthaler

in [1041]. It has been observed later in [181] that the notion existed already

in combinatorics and statistics. Indeed, saying that a function f is t-th order

correlation immune is equivalent to saying that the array (i.e. matrix) whose

rows are the vectors of the support of f is a simple binary orthogonal array6 of

strength t.

Definition 22 [988] An array (a matrix) over an alphabet A is an orthogonal

array of strength t if, when we select any t columns in it, each vector of At

appears the same number λ of times as a row in the array restricted to these

columns. This orthogonal array is called simple if no two rows are equal. It is

often called a t−(|A|, n, λ) orthogonal array, where n is the number of columns in

the array (in the case of correlation immune functions, the number of variables,

with |A| = 2).

Orthogonal arrays play a role in statistics, for the organization of experiments.

Each row corresponds to the organization of an experiment and the n columns

correspond to parameters. It is necessary to organize the experiments so that any

combination of some number k of parameters will appear in the same number of

experiments. This is achieved if all possible |A|n experiments are made, but this

is not a solution since the number of rows needs to be minimized (exactly as in

the case of countermeasures to side channel attacks, see Subsection 12.1.1, page

467). There exist bounds: the number of rows in a binary orthogonal array of

strength k is larger than or equal to
∑b k2 c
i=0

(
n
i

)
(Rao [988]) and to 2n

(
1− n

2(k+1)

)
(Friedman, [520]). There exists a monograph on orthogonal arrays [591].

Correlation immunity is a criterion for the resistance to an attack on the

combiner model due to Siegenthaler, called correlation attack [1042]: if f is not

t-th order correlation immune, then there exists a correlation between the output

of the function and (at most) t coordinates of its input; if t is small, a divide-and-

conquer attack uses this weakness for attacking a system using f as combining

function; in the original attack by Siegenthaler, all the possible initializations of

5 The term of resiliency was introduced in [370], in relationship with another cryptographic
problem.

6 This also relates then correlation immune functions to mutually orthogonal latin squares

and threshold secret sharing schemes.
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the t LFSRs corresponding to these coordinates are tested (in other words, an

exhaustive search of the initializations of these specific LFSRs is done); when

we arrive to the correct initialization of these LFSRs, we observe a correlation

(before that, the correlation is negligible, as for random pairs of sequences); now

that the initializations of the t LFSRs are known, those of the remaining LFSRs

can be found with an independent exhaustive search (or by applying again the

Siegenthaler attack if possible).

An additional condition
It is shown in [203, 187] that, to make the correlation attack on the combiner

model with a t-resilient combining function as inefficient as possible, the coef-

ficient Wf (u) of the function has to be small for every vector u of Hamming

weight higher than but close to t. This condition is satisfied under the sufficient

condition that the function is highly nonlinear (i.e. has high nonlinearity). Hence

we see that nonlinearity plays a role with respect to this attack as well.

Characterization of correlation immunity and resiliency by the Walsh
transform
Resiliency and correlation immunity have been nicely characterized by means of

the Fourier-Hadamard and Walsh transforms of f , first by S. Golomb in [549]

(which is not widely known) and later by Xiao and Massey in [1128]. We propose

to call this the Golomb-Xiao-Massey characterization:

Theorem 5 [549] Any n-variable Boolean function f is t-th order correlation

immune if and only if, for all u ∈ Fn2 such that 1 ≤ wH(u) ≤ t, we have

Wf (u) = 0, i.e. f̂(u) = 0. And f is t-resilient if and only if Wf (u) = 0 for all

u ∈ Fn2 such that wH(u) ≤ t.

Proof. Let us prove the first assertion. The second is a direct consequence. By

applying the Poisson summation formula (2.39), page 77, to ϕ = fχ, a = 0n
and EI = {x ∈ Fn2 ; xi = 0, ∀i 6∈ I}, b ranging over Fn2 , we obtain since

E⊥I = {x ∈ Fn2 ; xi = 0, ∀i ∈ I} that f is t-th order correlation immune if and

only if, for every I of size t, the value of the sum
∑
u∈EI (−1)b·uWf (u) is inde-

pendent of b. If, for every nonzero u of weight at most t, we have Wf (u) = 0 (that

is, f̂(u) = 0 according to Relation (2.32)), then the sum
∑
u∈EI (−1)b·uWf (u)

is independent of b. Conversely, if this latter property is satisfied for every I of

size t, then since
∑
u∈EI (−1)b·uWf (u) is the Fourier-Hadamard transform of the

function equal to Wf (u) if u ∈ EI and to 0 otherwise, by the inverse Fourier-

Hadamard transform formula (2.42), we have Wf (u) = 0 for every nonzero u of

weight at most t. 2

Remark. For f balanced, there is another proof: we apply the second-order Pois-

son formula (2.57) to E = {x ∈ Fn2 ; xi = 0, ∀i ∈ I} where I is any set of indices

of size t; the sum of E and E⊥ = {x ∈ Fn2 ; xi = 0, ∀i 6∈ I} is direct and equals Fn2 ;

hence we can take E′ = E⊥ and we get
∑
u∈E⊥W

2
f (u) = |E⊥|

∑
a∈E⊥ F2(ha),
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where ha is the restriction of f to a+E, that is, the restriction obtained by fixing

the coordinates of x whose indices belong to I to the corresponding coordinates

of a. The number F(ha) is null if and only if ha is balanced and clearly, all the

numbers F(ha), a ∈ E⊥ are null if and only if all the numbers Wf (u), u ∈ E⊥ are

null. Since this is valid for every multi-index I of size t, this completes the proof.2

Another characterization of correlation immune and resilient functions exists,

by the discrete Fourier transform: j ∈ {0, . . . , 2n − 1} 7→
∑2n−1
k=0 (−1)f(k)ξ−kj ,

where j and k are identified respectively with their binary expansions and ξ =

e
2π
√
−1

2n , see [1111].

Theorem 5 directly implies:

Corollary 6 Let f be any n-variable Boolean function and t ≤ n. Then f is t-

th order correlation immune if and only if its support, viewed as an unrestricted

code, has dual distance at least t+ 1.

Proof. Let C denote the support of f . The dual distance of C equals (by Definition

4, page 32) the number min{wH(u); u 6= 0n,
∑
x∈C(−1)u·x = f̂(u) 6= 0}. 2

See more in [422, 423] (see also in [828] a generalization of this result to arrays

over finite fields and other related nice results).

Hence, since the Hamming weight of a t-th order correlation immune function is

by definition divisible by 2t, the size of a code of dual distance d is divisible by

2d−1, as we saw at page 32.

Automorphism group
Contrary to the algebraic degree, to the nonlinearity and to balancedness, the

correlation immunity and resiliency orders are not affine invariants (they are

permutation invariants), except for the null order (and for the order n, but the

set of n-th order correlation immune functions is the set of constant functions and

the set of n-resilient functions is empty, because of Parseval’s Relation (2.47),

page 79). They are both invariant under any translation x 7→ x+ b, according to

Lemma 4 and Theorem 5. The automorphism group of the set of t-resilient func-

tions (that is, the group of all permutations σ of Fn2 which preserve resiliency)

and the orbits under its action have been studied in [622]).

The whole Chapter 7 is devoted to correlation immune and resilient functions.

Remark. An interesting question is: given a Boolean function (resp. a balanced

Boolean function) f , what is the best possible correlation immunity (resp. re-

siliency) order of the Boolean functions affine equivalent to f? Of course, the

highest possible power of 2 dividing wH(f) plays a role, but the reply is not

straightforward. 2
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In the filter model
The divide-and-conquer method valid for the combiner model does not apply to

the filter model, since there is only one LFSR in this model. The condition of high

order resiliency is then not needed. But a stronger condition than balancedness

is also necessary in this model, in order to avoid so-called distinguishing attacks.

These attacks are able to distinguish the pseudorandom sequence, say (si)i∈N,

from a random sequence. A way of doing so is to observe that the distribution

of the sequences (si+γ1
, . . . , si+γn) is not uniform, where γ1, . . . , γn are (for in-

stance) the positions where the input bits to the filtering function are chosen

[20]. Golić [545] has observed that if the feedback polynomial of the LFSR is

primitive and if the filtering function has the form g(x1, . . . , xn−1) ⊕ xn (up to

a permutation of variables), then the property of uniformity is satisfied what-

ever are the tap positions (where the input bits to the filter function are taken).

Canteaut [189] has proved that this condition on the function is also necessary

for having uniformity. For choosing a filtering function, we can choose a function

g satisfying the cryptographic criteria listed in the present section, and use f

defined by means of g in one of the two ways above. But better can be done

(see Subsection 9.1.6, page 375). More is said in [567] on the requirements on

the filter function.

3.1.5 Algebraic immunity and fast algebraic immunity

A new kind of attacks, called algebraic attacks, has been introduced in 2003

(see [391, 497, 388]) and has significantly changed the situation with Boolean

functions in stream ciphers. These attacks recover the secret key, or at least

the initialization of the system, by solving a system of multivariate algebraic

equations.

Shannon’s criterion
The idea that the key bits in a cryptosystem can be characterized as the solu-

tions of a system of multivariate equations translating the specifications of the

cryptosystem comes from C. Shannon [1034]. Until the invention of algebraic

attacks, this bright observation led more to a design criterion (i.e. the system

should not be solvable in reasonable time with current means) than to an ac-

tual attack. Indeed, in practice, for cryptosystems which are robust against the

usual attacks (e.g. for stream ciphers resisting the Berlekamp-Massey attack),

this system is too complex to be solved (its equations being highly nonlinear and

the number of unknowns being too large for a nonlinear system of equations).

However, in the case of stream ciphers, we can get a very overdefined system (i.e.

a system with a number of linearly independent equations much larger than the

number of unknowns). Let us consider the combiner or the filter model, or any

model with a linear part (the n LFSRs in the case of the combiner model, the

single LFSR in the case of the filter model) of size N filtered by an n-variable

Boolean function f . There exists a linear permutation L : FN2 7→ FN2 updating
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the current state of the linear part into its next state7, and a linear function

L′ : FN2 7→ Fn2 mapping the linear part to the n bits selected as input to f .

Denoting by (u1, . . . , uN ) the initialization of the linear part, the current state

of the linear part at i-th clock-cycle equals Li(u1, . . . , uN ). Denoting by (si)i≥0

the pseudorandom sequence output by the generator, we have, for every i ≥ 0:

si = f(L′ ◦ Li(u1, . . . , uN )). (3.5)

These equations have all the same degree dalg(f). The number of those which

are exploitable by the attacker equals the number of bits si known by him/her,

and can then be much larger than the number of unknowns (but of course, the

larger the number of equations, the weaker the attack). The system of these

equations can then be much overdefined if necessary8. This makes less complex

the resolution of the system by using Gröbner bases (see [497]), and even allows

linearizing the system9 (i.e. obtaining a system of linear equations by replacing

every monomial of degree larger than 1 by a new unknown). The linear system

obtained after linearization has however too many unknowns: this number is

roughly
∑dalg(f)
j=0

(
N
j

)
.

Courtois’ and Meier’s improvement for stream ciphers
Courtois and Meier have had a simple but efficient idea. Assume that there exist

functions g 6= 0 and h of low algebraic degrees (say, of algebraic degree at most

d) such that f g = h (where f g denotes the Hadamard product of f and g, whose

support is the intersection of the supports of f and g). For every i ≥ 0, Relation

(3.5) implies:

si g(L′ ◦ Li(u1, . . . , uN )) = h(L′ ◦ Li(u1, . . . , uN )). (3.6)

This equation in u1, . . . , uN has degree at most d, since L and L′ are linear, and

the system of equations obtained after linearization has then at most
∑d
j=0

(
N
j

)
unknowns and may be solved by Gaussian elimination (if d is small enough)

in O
((∑d

i=0

(
N
i

))ω)
operations, where ω ≈ 3 is the exponent of the Gaussian

reduction10. The attack needs about
∑d
i=0

(
N
i

)
bits of the keystream.

Low degree relations have been shown to exist for several well known construc-

tions of stream ciphers, which were immune to all previously known attacks. This

7 In the filter model, the matrix of L is simply a companion matrix; in the combiner model,

it is a slightly more complex matrix having companion matrices around its diagonal and
zeros elsewhere.

8 The probability that N random equations in N variables have rank N equals roughly 1
2

since the determinant of this system lives in F2.
9 The known algorithms are, starting from the simplest one: linearization, XL, Buchberger,

F4 and F5 (by Faugère); they have different complexities and do not need the same
numbers of linearly independent equations.

10 It can be taken equal to log2 7 ≈ 2.8 and the coefficient in the O can be taken equal to 7,

according to Strassen [1052]; a still better exponent is due to Coppersmith and Winograd
but the multiplicative constant is then inefficiently high for our framework.
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was the case for instance with functions whose ANF s had only few nonzero coef-

ficients. Such functions had been used as combining/filter functions for reasons

of efficiency in the design of some stream ciphers11 (e.g., LILI-128 and Toyocrypt

stream ciphers, see the references in [842]).

Krause and Armknecht [28] extended algebraic attacks to combiners with mem-

ory. They studied the algebraic equations satisfied by such combiners and proved

an upper bound on their possible degree by means of the input and memory sizes.

Courtois [389] generalized their results to multi-output functions.

Algebraic immunity
As observed in [391], if we know the existence of a nonzero low algebraic degree

multiple h of f , then the support of h being included in that of f , we have

(f ⊕ 1)h = 0, and taking g = h, we have the desired relation fg = h. But the

existence of such multiple h of f is only a sufficient condition for having relation

fg = h. A necessary and sufficient condition has been found in [842]:

Proposition 25 Let f be any n-variable Boolean function. The existence of

functions g 6= 0 and h, both of algebraic degree at most d, such that fg = h, is

equivalent to the existence of a function g 6= 0 of algebraic degree at most d such

that fg = 0 or (f ⊕ 1)g = 0.

Proof. Equality fg = h implies f2g = fh, that is (since f2 = f), f(g ⊕ h) = 0,

which gives the desired equality of the form fg = 0 (with g 6= 0) if g 6= h by

replacing g⊕h by g; and if g = h then fg = h is equivalent to (f ⊕1)g = 0. This

proves the implication from top to bottom. The converse is straightforward. 2

Note that Proposition 25 implies that the existence of a low algebraic degree

nonzero multiple of f or of f ⊕ 1 is a necessary and sufficient condition for the

existence of low algebraic degree g 6= 0 and h such that fg = h (since being a

multiple of f , resp. of f⊕1, is equivalent to having null product with f⊕1, resp.

with f).

Definition 23 [842] Let f be any n-variable Boolean function. An n-variable

Boolean function g such that fg = 0 is called an annihilator of f .

The minimum algebraic degree of nonzero annihilators of f or f ⊕ 1, i.e. the

minimum algebraic degree of nonzero multiples of f ⊕1 or f , or equivalently, the

minimal value d such that there exist g 6= 0 and h, both of algebraic degree at

most d, such that fg = h, is called the algebraic immunity of f and is denoted

by AI(f).

This notion has been generalized to functions over general finite fields in [52],

with an upper bound on it.

Remark. The set of all annihilators of function f is equal to the ideal of all the

11 The designers of these stream ciphers had forgotten at their own expense the basic rule of
choosing, for cryptosystems, primitives behaving as randomly as possible.
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multiples of f ⊕ 1. 2

Remark. Algebraic immunity plays also a role in computational complexity, see

[770], where a stronger notion is studied (for symmetric functions). 2

The whole Chapter 9 is devoted to algebraic immunity.

Let g be a generic n-variable Boolean function of algebraic degree at most d.

Let the ANF of g equal
⊕

I⊆{1,...,n};|I|≤d aIx
I , where the coefficients aI can be

any elements of F2. Then g is an annihilator of f if and only if f(x) = 1 implies

g(x) = 0, that is, if and only if the coefficients aI satisfy the system of homoge-

neous linear equations
⊕

I⊆{1,...,n};|I|≤d aIu
I , where u ranges over the support of

f . In this system, we have
∑d
i=0

(
n
i

)
number of variables (the coefficients of the

monomials of degrees at most d) and wH(f) many equations12. We shall denote

by Mf,d the matrix of this system.

Algebraic immunity is an affine invariant but not an EA invariant. More

precisely, its automorphism group (that is, the group of all permutations σ of Fn2
such that AI(f ◦ σ) = AI(f) for every Boolean function f) equals the general

affine group (as for Reed-Muller codes). Indeed, denoting by An(f) the F2-vector

space of annihilators of f , we have An(f ◦ σ) = An(f) ◦ σ.

A strength of algebraic attack comes from the fact that the algebraic degrees

of g and h can always be made lower than or equal to the Courtois-Meier bound

dn2 e:

Proposition 26 [391] The algebraic immunity of any n-variable Boolean func-

tion is bounded above13 by dn2 e and by dalg(f).

Proof. The number of monomials of algebraic degree at most dn2 e is strictly larger

than 2n−1. The disjoint union of the family of these monomials and of the fam-

ily of the products of f by these monomials has then size strictly larger than

2n, which is the dimension of the F2-vector space BFn. The functions in this

disjoint union are then necessarily F2-linearly dependent. Given a linear com-

bination equal to function 0 and having not all-zero coefficients, let us gather

separately the part dealing with the first family and the part dealing with the

second. This gives two functions h and g, both of degree at most dn2 e, such

that h = f g and (g, h) 6= (0, 0), i.e. g 6= 0. This proves the first upper bound.

The second comes from the fact that f and f⊕1 are annihilators of each other.2

12 Those corresponding to u’s of small weights may be used to simplify those corresponding

to u’s of larger weights as shown in [27].
13 Consequently, it is bounded above by dk/2e if, up to affine equivalence, it depends only on

k variables, and by dk/2 + 1e if it has a linear kernel (see below) of dimension n− k, since

it is then equivalent, according to Proposition 28, to a function in k variables plus an affine

function.
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Remark For n odd, according to Proposition 26 and since 2
∑n−1

2
i=0

(
n
i

)
= 2n, we

have AI(f) = n+1
2 if and only if the family {xIf, |I| ≤ n−1

2 } ∪ {x
J(f ⊕ 1), |J | ≤

n−1
2 } is a basis of the F2-vector space BFn. Note that this leads to new codes: for

every k ≤ n−1
2 , the code Cf,k of length 2n and dimension 2

∑k
i=0

(
n
i

)
generated

by {xIf, |I| ≤ k} ∪ {xJ(f ⊕ 1), |J | ≤ k}. For k = n−1
2 , it equals the whole

space BFn. For k = 1, it equals the direct sum of the first-order Reed-Muller

code punctured at the positions in the support of f and of the first-order Reed-

Muller code punctured at the positions in the co-support, and has minimum

distance 1
2nl(f), since wH(fg) equals 2n−1 if g = 1 (because f is balanced,

according to Relation (9.5), page 361) and wH(fg) = wH(f)+wH(g)−wH(f⊕g)
2 =

2n−wH(f⊕g)
2 = wH(f⊕g⊕1)

2 if g is affine non-constant, and we have the same for

wH((f ⊕ 1)h). Note that the known functions f such that AI(f) = n+1
2 have

diverse nonlinearities. 2

Algebraic immunity of random functions
Random functions behave well with respect to algebraic immunity14: it has been

proved in [437] (see a slightly more complete proof in [307] and its extension to

vectorial functions) that, for all a < 1, when n tends to infinity, AI(f) is almost

surely larger than n
2 −

√
n
2 ln

(
n

2a ln 2

)
.

Consequences of the invention of algebraic attack on the
design of stream ciphers
A difference by 1 in the algebraic immunity of a function f , used as combiner

or filter in a stream cipher, makes a big difference in the efficiency of algebraic

attack. The designer needs then to choose f with optimal or near-optimal al-

gebraic immunity. Let then an n-variable function f , with algebraic immunity

dn2 e, be used for instance as filter on an LFSR of length N ≥ 2k, where k

is the length of the key (otherwise, it is known that the system is not robust

against an attack called time-memory-data trade-off attack). Then the com-

plexity of an algebraic attack using one annihilator of degree dn2 e is roughly

7
((
N
0

)
+ · · ·+

(
N
dn2 e
))log2 7

≈ 7
((
N
0

)
+ · · ·+

(
N
dn2 e
))2.8

(see [391]). Let us choose

k = 128 (which is usual) and N = 256, then it is for n ≥ 13 that the complexity

of algebraic attack is at least 280 (which is considered nowadays as just enough);

and it is larger than the complexity of an exhaustive search, that is 2128, for

n ≥ 15. If the attacker knows several linearly independent annihilators of degree

dn2 e, then the number of variables must be enhanced! In practice, the number

of variables will have to be near 20 (but this poses then a problem of efficiency

of the stream cipher). This has quite changed the situation with Boolean func-

tions at the beginning of this century, since before algebraic attacks, the Boolean

functions used had rarely more than 10 variables.

14 No result is known on the behavior of random functions against fast algebraic attacks.
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Fast algebraic attack
A high value of AI(f) is even not a sufficient property for a resistance to al-

gebraic attacks, because other algebraic attacks have been later invented. The

fast algebraic attack (FAA) is an improvement to the standard algebraic at-

tack. It can work even if the algebraic immunity of the function is large15, pro-

vided that there exist n-variable Boolean functions g nonzero of low algebraic

degree, and h of reasonable algebraic degree (i.e. of algebraic degree possibly

larger than n
2 but significantly smaller than n) such that fg = h, see [388].

This attack is based on the observation that it is possible to obtain a low de-

gree equation from several ones of the form (3.6), by eliminating the large de-

gree terms in the right-hand sides of these equations, and that such elimination

may be made off-line by the attacker (that is, before that values of the si’s

are known by him/her) and therefore benefit of a much longer time of compu-

tation. The efficiency of the pre-computation and substitution steps has been

improved by Hawkes and Rose [590] for the filter model (allowing a complex-

ity of O((
∑dalg(h)
i=0

(
N
i

)
) log3

2(
∑dalg(h)
i=0

(
N
i

)
)+(

∑dalg(h)
i=0

(
N
i

)
)N log2

2N) operations,

needing 2(
∑dalg(g)
i=0

(
N
i

)
) bits of stream for the former, and an on-line complexity

of O((
∑dalg(g)
i=0

(
N
i

)
)3 + 2(

∑dalg(g)
i=0

(
N
i

)
)(
∑dalg(h)
i=0

(
N
i

)
) log2((

∑dalg(h)
i=0

(
N
i

)
))) oper-

ations) and by Armknecht [25] for the combiner model, also when they are made

more complex by the introduction of memory. Fast algebraic attacks need more

data than standard ones (since several values si need to be known to obtain one

equation), but may also be faster. Armknecht and Ars [26] introduced a vari-

ant of the FAA which reduced the data complexity (but not the time complexity).

On the existence of g and h
Given non-negative integers d and e such that e+d ≥ n, the number of monomials

of degrees at most e and the number of monomials of degrees at most d have

sum strictly larger than 2n, and there exist16 then g 6= 0 of algebraic degree at

most e and h of algebraic degree at most d such that fg = h. An n-variable

Boolean function f is then optimal with respect to fast algebraic attacks if there

do not exist two functions g 6= 0 and h such that fg = h, dalg(g) < dn2 e and

dalg(g) + dalg(h) < n. Since fg = h implies fh = f2g = fg = h, we see that h

is then an annihilator of f ⊕ 1, and if h 6= 0, its algebraic degree is then at least

equal to the algebraic immunity of f .

Complexity of the attack and related parameters on Boolean functions
The complexity of FAA is roughly of the order (see [590]):

O
(

min
{
Nmax[dalg(g)+dalg(fg),3dalg(g)], g 6= 0

})
.

15 Fast algebraic attack has worked on the eSTREAM [495] proposal SFINKS [390], while the
cipher was designed to withstand algebraic attack.

16 We do not require here that fg 6= 0; if such requirement is imposed, the result is no more
true, as observed by Gong [553].
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It can be seen that FAA with g = 1 is less efficient than the Rønjom-Helleseth

attack (see below) and that FAA with dalg(g) ≥ AI(f) is in fact the algebraic

attack. This has led in [324] to studying the so-called fast algebraic complexity :

FAC(f) = min {max [dalg(g) + dalg(fg), 3dalg(g)] ; 1 ≤ dalg(g) < AI(f)} ,

whose value is invariant by changing f into f ⊕ 1, and is bounded above by n

and below by the so-called fast algebraic immunity :

FAI(f) = min (2AI(f),min {dalg(g) + dalg(fg); 1 ≤ dalg(g) < AI(f)}) ;

which had been informally introduced in a preliminary version of the paper [791]

and used in [324, 870, 1106]. Note that FAI is also invariant by changing f into

f ⊕ 1, and is easier to study. If this latter parameter is close to n then FAC is

too and the function provides then a good resistance to FAA.

Remark. Since, for the resistance against FAA, there must not exist g 6= 0

such that dalg(g) is small and dalg(fg) is reasonably large, then if dalg(f) is not

large, f does not resist FAA. Because of the Siegenthaler bound (see Proposition

117, page 313) and of the fact that functions in the combiner model must be

correlation immune, the combiner model cannot be used nowadays without extra

protections. 2

Other algebraic attacks
Algebraic attack on the augmented function
Considering now f as a function in N variables, to simplify description, this at-

tack due to [509] works with the vectorial function F (x) whose output equals the

vector (f(x), f(L(x)), . . . , f(Lm−1(x))), where L is the (linear) update function

of the linear part of the generator. This attack can be more efficient than the

standard algebraic attack. But the efficiency of the attack not only depends on

the function f ; it also depends on the update function (and naturally also on

the choice of m), since for two different update functions L and L′, the vectorial

functions F (x) and F ′(x) = (f(x), f(L′(x)), . . . , f(L′
m−1

(x)) are not linearly

equivalent; they are even not CCZ equivalent in general. The resistance to this

attack is then more a matter with the pair (f, L) rather than with the single

function f .

The Rønjom-Helleseth attack
This attack, introduced in [1003] and improved in [1002, 1004, 556, 600, 1001],

also adapts the idea of algebraic attacks due to Shannon, but in a different way.

An LFSR with a primitive retroaction polynomial (or equivalently a primitive

characteristic polynomial) generates a sequence of the form ui = trN (λαi) where

α is a primitive element of F2N . Essentially, an LFSR generates the field F∗2N and

a classical filter generator keystream sequence is formed by applying a Boolean

function in n variables to n of the N bits of the coefficient vector of the element
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ui. Rønjom and Helleseth then observe that the coefficients in front of a particu-

lar monomial in the sequence of multivariate equations expressing the keystream

bits form a so-called coefficient sequence that inherits highly structural finite

field properties from the LFSR. In particular, from this observation they gain

fine-grained control over the linear dependencies in the multivariate equation

system which enables very efficient reductions. They take advantage of this by

proposing an attack whose computational complexity is in about
∑d
i=0

(
N
i

)
op-

erations, where d is the algebraic degree of the filter function and N is the size

of the LFSR (rather than O
((∑AI(f)

i=0

(
N
i

))ω)
in the case of standard algebraic

attack, where AI(f) is the algebraic immunity of the filter function and ω ≈ 3

is the exponent of the Gaussian reduction). It needs about
∑d
i=0

(
N
i

)
consecu-

tive bits of the keystream output by the pseudo-random generator (rather than∑AI(f)
i=0

(
N
i

)
). Since d is supposed to be close to the number n of variables of

the filter function, the number
∑d
i=0

(
N
i

)
is comparable to

(
N
n

)
. Since AI(f) is

supposed to be close to dn2 e, we can see that denoting by C the complexity of

the Courtois-Meier attack and by C ′ the amount of data it needs, the complexity

of the Rønjom-Helleseth attack roughly equals C2/3 and the amount of data it

needs is roughly C ′
2
. From the viewpoint of complexity, it is more efficient and

from the viewpoint of data it is less efficient.

It has been later observed (see [556, 600, 1001]) that the multivariate representa-

tion essentially hides away more of the underlying finite field structure stemming

from the LFSR, and that it follows straightforwardly from a univariate repre-

sentation that the equation systems are cyclic Vandermonde-type. In particular,

in the univariate representation one has even more complete control over the

dependencies of each coefficient and more freedom in comparison to the multi-

variate case. Here the keystream sequence is simply viewed as ai = P (ui) where

P is a univariate polynomial over F2N . Then [556] introduced a parameter on

sequences, called spectral immunity , an analogue to the algebraic immunity, but

related to the approach of the Rønjom-Helleseth attack and to its improvements

(in particular, the so-called selective DFT attack, which multiplies the portion of

known keystream by a sequence of smaller linear complexity, and which possibly

results in a more efficient attack than FAA, or is able to work when the number

of known consecutive bits of the keystream is too small for FAA). The spec-

tral immunity SI(s) of a binary sequence s is the lowest linear complexity of a

nonzero binary annihilator s (i.e. binary sequence a, satisfying a s = 0). In terms

of univariate polynomials, the spectral immunity is equal to the minimal weight

of a multiple of P or P +1 in F2N , thus linking security directly to the minimum

distance of the associated algebraic codes defined by the univariate filter polyno-

mials. Moving to a univariate representation over finite fields seems to be a more

natural representation for this type of generator. For instance, it has been an

open question in [188] whether the irregular equation systems resulting from an

annihilator attack on the filter generator have full rank. As observed in [1001],

from the univariate representation, this directly translates to a question about
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the singularity of generalized Vandermonde matrices over finite fields, which has

already been solved by Shparlinski [1038] (most of such matrices have full rank).

It has been shown that univariate cryptanalysis becomes particularly effective

in practice in comparison to multivariate attacks when the LFSR is defined over

larger fields (i.e. word-based stream ciphers), see for instance [1001]. Although

filter generators are usually building blocks in more complex designs, the tech-

nique has been used to practically break several ciphers, including a large part

of the Welch-Gong family of generators and the recent Keccak/Farfalle-based

pseudo-random function Kravatte [342]. It is an open problem how this change

of representation can be used to also improve algebraic attacks on ciphers like

SNOW-3G, which use word-based LFSRs as components in more complex de-

signs.

3.1.6 Variants to these criteria in relationship with guess and determine attacks

The guess and determine attacks make hypotheses on the values of some bits

or some linear combinations of bits in the data processed by the stream cipher.

Given the complexity, say C, of the attack when the hypothesis is satisfied, the

global complexity of the attack is obtained by dividing C by the probability that

the hypothesis is satisfied. There is then a trade-off to be found between this

probability and C. In such framework, the input to the Boolean function at one

moment in the process belongs, in the simplest case, to an affine subspace of Fn2
(which may be a different one at each moment). For a given Boolean function f to

be used as combiner or filter function, all the criteria introduced in the previous

subsections need then to be also studied for the restrictions of f to such affine

spaces. It is difficult to say in general which affine spaces exactly are concerned

and, as in the case of attacks on the augmented function, such study is hardly

viewed as a study of the single Boolean function, except in particular cases. It

depends on the whole cryptosystem. We shall see in Section 12.2 another case

where functions need to be studied on subsets of Fn2 (which are no more affine

spaces but sets of vectors of fixed Hamming weights).

3.1.7 Avalanche criteria, nonexistence of nonzero linear structure, correlation with
subsets of indices

Strict avalanche criterion, propagation criterion and global
avalanche criteria
The strict avalanche criterion (SAC) has been introduced by Webster and

Tavares [1116] and this concept was generalized into the propagation criterion

(PC) by Preneel et al. [970] (see also [969]). The SAC, and its generalizations, are

based on the properties of the derivatives of Boolean functions. These properties

describe the behavior of a function whenever some coordinates of the input are

complemented. Thus, they are related to the property of diffusion of the cryp-
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tosystems using the function. They concern more the Boolean functions involved

in block ciphers.

Definition 24 Let f be a Boolean function on Fn2 and E a subset of Fn2 . Function

f satisfies the propagation criterion PC with respect to E if, for all a ∈ E, the

derivative Daf(x) = f(x)⊕ f(a+ x) is balanced. It satisfies PC(l) if it satisfies

PC with respect to the set of all nonzero vectors of weight at most l. In other

words, f satisfies PC(l) if the autocorrelation coefficient F(Daf) is null for every

a ∈ Fn2 such that 1 ≤ wH(a) ≤ l. Criterion SAC corresponds to PC(1).

It is needed, for some cryptographic applications, to have Boolean functions

which still satisfy PC(l) when a certain number k of coordinates of the input x

are kept constant (whatever are these coordinates and whatever are the constant

values chosen for them). We say that such functions satisfy the propagation cri-

terion PC(l) of order k. This notion, introduced in [970], is a generalization of

the strict avalanche criterion of order k, SAC(k) (which is equivalent to PC(1)

of order k), introduced in [516]. Obviously, if a function f satisfies PC(l) of order

k ≤ n− l, then it satisfies PC(l) of order k′ for any k′ ≤ k.

There exists another notion, which is similar to PC(l) of order k, but stronger

[970, 968] (see also [219]): a Boolean function satisfies the extended propagation

criterion EPC(l) of order k if every derivative Daf , with a 6= 0n of weight at

most l, is k-resilient.

These parameters are not affine invariants.

A weakened version of the PC criterion has been studied in [721].

Global avalanche criteria: sum-of-squares and absolute indicators
The second moment of the autocorrelation coefficients:

V(f) =
∑
b∈Fn2

F2(Dbf) (3.7)

has been introduced by Zhang and Zheng [1166] for measuring the global ava-

lanche criterion (GAC), and is also called the sum-of-squares indicator . The

absolute indicator ∆f = maxb∈Fn2 , b 6=0n | F(Dbf) | is the other global avalanche

criterion. Functions with high absolute indicator are weak against cube attacks

[465]. Both indicators are clearly affine invariants. In order to achieve good dif-

fusion, cryptographic functions should have low sum-of-squares indicators and

absolute indicators. Obviously, we have V(f) ≥ 22n, since F2(D0f) = 22n. Note

that every lower bound of the form V(f) ≥ V straightforwardly implies that

the absolute indicator is bounded below by
√

V−22n

2n−1 . The functions achieving

V(f) = 22n are those functions whose derivatives Dbf(x), b 6= 0n, are all bal-

anced. We shall see in Chapter 6 that these are the bent functions, which are

unbalanced. In [1180] and references therein are studied the balanced functions

with minimal sum-of-square indicator 22n + 2n+3.
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If f has a k-dimensional linear kernel {e ∈ Fn2 ; Def = cst} (see the next subsec-

tion), then

V(f) ≥ 22n+k (3.8)

(with equality if and only if f is partially-bent, see page 283).

Note that, according to Relation (2.55), page 81, applied to Dbf for every b, we

have

V(f) =
∑
a,b∈Fn2

F(DaDbf), (3.9)

where DaDbf(x) = f(x)⊕ f(x+ a)⊕ f(x+ b)⊕ f(x+ a+ b) is the second order

derivative of f .

Note also that, according to Relation (2.45), page 79 (expressing the convo-

lutional product of Fourier-Hadamard transforms), applied to ϕ(b) = ψ(b) =

F(Dbf), and using that, according to Relation (2.53), the Fourier-Hadamard

transform of ϕ equals W 2
f , we have for any n-variable Boolean function f :

∀a ∈ Fn2 ,
∑
b∈Fn2

W 2
f (b)W 2

f (a+ b) = 2n
∑
b∈Fn2

F2(Dbf)(−1)b·a ,

and thus, for a = 0n: ∑
b∈Fn2

W 4
f (b) = 2n V(f), (3.10)

as observed in [191].

We have:
∑
b∈Fn2

W 4
f (b) ≤

( ∑
b∈Fn2

W 2
f (b)

)(
max
b∈Fn2

W 2
f (b)

)
= 22n max

b∈Fn2
W 2
f (b) (accord-

ing to Parseval’s Relation (2.47), page 79), and we deduce, using Relation (3.10)

and inequality V(f) ≥ 22n: maxb∈Fn2 W
2
f (b) ≥ V(f)

2n ≥
√
V(f); thus, according

to Relation (3.1), page 99, relating the nonlinearity to the Walsh transform, we

have (as first shown in [1169, 1173]):

Proposition 27 For every n-variable Boolean function f , we have:

nl(f) ≤ 2n−1 − 2−
n
2−1

√
V(f) ≤ 2n−1 − 1

2
4
√
V(f),

with equality on the left-hand side if and only if f is plateaued (see Definition

63, page 285), in which case V(f) = 2nλ2 where λ is the amplitude.

Denoting by NWf
the cardinality of the support {a ∈ Fn2 ; Wf (a) 6= 0} of the

Walsh transform of f , Relation (3.10) also implies the following relation, first

observed in [1173]: V(f) × NWf
≥ 23n. Indeed, using for instance the Cauchy-

Schwarz inequality, we see that
(∑

a∈Fn2
W 2
f (a)

)2

≤
(∑

a∈Fn2
W 4
f (a)

)
×NWf

and

we have
∑
a∈Fn2

W 2
f (a) = 22n, according to Parseval’s Relation.

According to the observations made above and below Proposition 27, the func-

tions which satisfy nl(f) = 2n−1 − 2−
n
2−1

√
V(f) (resp. V(f)×NWf

= 23n) are

the functions whose Walsh transforms take one nonzero absolute value (i.e. are
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plateaued), and the functions satisfying nl(f) = 2n−1 − 1
2

4
√
V(f) are the bent

functions.

Constructions of balanced Boolean functions with low absolute indicators and

high nonlinearities have been studied in [813, 1073].

Remark. Zhang and Zheng conjectured that the absolute indicator of any bal-

anced Boolean function of algebraic degree at least 3 is lower-bounded by 2b
n+1

2 c,

but counter-examples were found by many people (Maitra-Sarkar, Burnett et al.,

Gangopadhyay-Keskar-Maitra, Kavut). 2

Remark. A related but different parameter is max
a∈Fn2 ,a 6=0n

∆f (a) (recall that ∆f (a) =∑
x∈Fn2

(−1)Daf(x) is the autocorrelation function), without absolute value. It has

appeared recently in the framework of side channel attacks (see Section 12.1).2

Nonexistence of nonzero linear structure
The set of linear structures of a Boolean functions plays a role in its study,

particularly when the function is a quadratic function (see Section 5.2).

Definition 25 The linear kernel of an n-variable Boolean function f is the set

of those vectors e such that Def is a constant function. It is denoted by Ef . Any

element of the linear kernel is called a linear structure17 of f .

More generally a linear structure e of a vectorial function F is such that DeF

equals a constant function. Since, for every n-variable Boolean function f (more

generally, any vectorial function) and any a, b ∈ Fn2 , we have Daf(x)⊕Dbf(x) =

f(x+ a)⊕ f(x+ b) = Da+bf(x+ a), the linear kernel of any Boolean function is

an F2-subspace of Fn2 . Moreover, the restriction f ′ of f to its linear kernel or to

any of its cosets is affine since its derivatives Daf
′, a ∈ Ef , are all constant. More

generally, for every r ≤ n, the set of those e ∈ Fn2 such that Def has algebraic

degree at most r is a vector space, and the restriction of f to this vector space

has algebraic degree at most r + 1.

Nonlinear cryptographic functions used in block ciphers should have no nonzero

linear structure (see [496]). The existence of nonzero linear structures, for the

functions implemented in stream ciphers, is a potential risk and is better avoided.

Proposition 28 Any n-variable Boolean function f(x1, . . . , xn) has a nonzero

linear structure if and only if it is linearly equivalent to a function of the form

g(x1, . . . , xn−1)⊕ ε xn, (3.11)

where ε ∈ F2. More generally, the linear kernel of f has dimension at least k if

and only if f is linearly equivalent to a function of the form

g(x1, . . . , xn−k)⊕ εn−k+1 xn−k+1 ⊕ · · · ⊕ εn xn, (3.12)

17 We also call linear structure a pair (a, b) ∈ Fn2 × F2 such that Daf equals constant function

b.
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where εn−k+1, . . . , εn ∈ F2.

Proof. The conditions are clearly sufficient. Conversely, let f have a nonzero

linear structure e, then by composing f on the right by a linear automor-

phism L on Fn2 such that L(0, . . . , 0, 1) = e, we have D(0,...,0,1)(f ◦ L)(x) =

f ◦ L(x) ⊕ f ◦ L(x + (0, . . . , 0, 1)) = f ◦ L(x) ⊕ f(L(x) + e) = Def(L(x)). And

it is easily seen that D(0,...,0,1)(f ◦ L) being then constant, f ◦ L has the form

g(x1, . . . , xn−1)⊕ ε xn. The case of dimension k is similar. 2

Note that, according to Proposition 28, if f admits a nonzero linear structure,

then since nonlinearity is an EA invariant, nl(f) equals the nonlinearity of g given

by (3.11) and viewed as an n-variable function, which equals 2nl(g) where g is

now viewed as an (n−1)-variable. Hence, according to the covering radius bound

(3.2), page 99, applied to this (n− 1)-variable function, nl(f) is bounded above

by the bent concatenation bound 2n−1 − 2
n−1

2 . This implies that the functions

achieving strictly larger nonlinearities (obtained by Patterson and Wiedemann

and by Kavut et al., see Section 3.1.3)) cannot have any nonzero linear structure.

Similarly, if k is the dimension of the linear kernel of f , we have that nl(f) ≤
2n−1 − 2

n+k−2
2 as seen in [190], since nl(f) = 2knl(g), where g is the (n − k)-

variable function given in (3.12) and according to the covering radius bound

applied on g with n− k in the place of n.

Another characterization of linear structures is by the Walsh transform [736,

486] (see also [193]). In the next proposition, we separate the case where the

linear structure e is such that Def is the null function and the case where it is

function 1.

Proposition 29 Let f be any n-variable Boolean function. The derivative Def

equals the null function (resp. function 1) if and only if the support supp(Wf ) =

{u ∈ Fn2 ; Wf (u) 6= 0} of Wf is included in {0n, e}⊥ (resp. in its complement).

Proof. Relation (2.56), page 81, with b = 0n and E = {0n, e}⊥, gives the equality∑
u∈a+E

W 2
f (u) = 2n−1(2n + (−1)a·eF(Def)). (3.13)

If Def is null, then let us fix a such that a · e = 1 and if Def = 1, then let us

fix it such that a · e = 0. Then Wf (u) is null for every u ∈ a + E, according to

Relation (3.13). This proves the implication from top to bottom. The converse

is straightforward. 2

Notice that, if Def is the constant function 1 for some e ∈ Fn2 , then f is

balanced (indeed, the relation f(x + e) = f(x) ⊕ 1 implies that f takes the

values 0 and 1 equally often). Thus, a non-balanced function f has no nonzero

linear structure if and only if there is no nonzero vector e such that Def is null.

According to Proposition 29, we deduce:
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Corollary 7 Any non-balanced function f has no nonzero linear structure if

and only if the support of its Walsh transform has rank n.

A similar characterization exists for balanced functions by replacing the function

f(x) by a non-balanced function f(x) ⊕ b · x. It is deduced in [354] (see more

in [1082]) that resilient functions of high orders must have linear structures.

Distance to linear structures
The dimension of the linear kernel is an affine invariant . Hence, so is the cri-

terion of nonexistence of nonzero linear structure. But, contrary to the criteria

viewed before it, it is an all-or-nothing criterion. Meier and Staffelbach intro-

duced in [844] a related criterion, leading to a characteristic (that is, a criterion

which can be satisfied at levels quantified by numbers): a Boolean function on Fn2
being given, its distance to linear structures is its distance to the set of all Boolean

functions admitting nonzero linear structures, among which we have all affine

functions (hence, this distance is bounded above by the nonlinearity) but also

other functions, such as all non bent quadratic functions.

Proposition 30 [844] The distance to linear structures of any n-variable Boolean

function f equals 2n−2 − 1
4 maxe∈Fn2 \{0n} |F(Def)|,.

Proof. Given e in Fn2 \ {0n} and ε in F2, let Le,ε be the set of those n-variable

Boolean functions g such that Deg = ε. Then a function g in Le,ε lies at minimum

Hamming distance from f , among all elements of Le,ε, if and only if, for every x ∈
Fn2 such that Def(x) = ε, we have g(x) = f(x) (and g(x+e) = f(x+e)), and for

every x ∈ Fn2 such that Def(x) = ε⊕1, we have g(x) = f(x) or g(x+e) = f(x+e)

(and only one such equality can then happen). The Hamming distance between f

and g equals then 1
2 |{x ∈ Fn2 ; Def(x) = ε⊕1}| = 1

2

(
2n−1 − (−1)ε

2 F(Def)
)

. This

completes the proof since the set of functions admitting nonzero linear structures

equals
⋃
e∈Fn2 \{0n},ε∈F2

Le,ε. 2

Note that Proposition 30 proves again Relation (3.3), page 102, and also proves,

according to Theorem 12, page 216, that the distance of f to linear structures

equals 2n−2 if and only if f is bent.

The maximum correlation with respect to a subset I of indices
This parameter has been introduced in [1155].

Definition 26 Let f be any n-variable Boolean function and I ⊆ {1, . . . , n}.

The maximum correlation with respect to I equals Cf (I) = max
g∈BFI,n

F(f ⊕ g)

2n
=

max
g∈BFI,n

|F(f ⊕ g)|
2n

, where BFI,n is the set of n-variable Boolean functions de-

pending on {xi, i ∈ I} only.

According to Relation (2.35), page 75, the Hamming distance from f to BFI,n
is equal to 2n−1(1−Cf (I)). As we saw already, denoting the size of I by r, this
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distance is bounded below by the r-th order nonlinearity of f (i.e. the minimum

Hamming distance to functions of algebraic degree at most r). It can be much

larger.

The maximum correlation of any combining function with respect to any subset

I of small size should be small (i.e. its distance to BFI,n should be large). It is

straightforward to prove, by decomposing the sum F(f ⊕ g) and using that an

unrestricted Boolean function over FI2 can take any binary value at any input

x ∈ FI2, that Cf (I) equals
∑2|I|

j=1
|F(hj)|

2n , where h1, . . . , h2|I| are the restrictions

of f obtained by keeping constant the xi’s for i ∈ I, and to see that the distance

from f to BFI,n is achieved by the functions g taking value 0 (resp. 1) when

the corresponding value of F(hj) is positive (resp. negative), and that we have

Cf (I) = 0 if and only if all hj ’s are balanced (thus, f is m-resilient if and only

if Cf (I) = 0 for every set I of size at most m).

The Cauchy-Schwarz inequality gives
(∑2|I|

j=1 |F(hj)|
)2

≤ 2|I|
∑2|I|

j=1 F2(hj), and

the second-order Poisson formula (2.57), page 81, directly implies then the fol-

lowing inequality observed in [187]:

Cf (I) ≤ 2−n

 ∑
u∈Fn2 ;

supp(u)⊆I

W 2
f (u)


1
2

≤ 2−n+
|I|
2 max
u∈Fn2

|Wf (u)|

= 2−n+
|I|
2 (2n − 2nl(f)) (3.14)

or equivalently:

dH (f,BFI,n) ≥ 2n−1 − 1

2

 ∑
u∈Fn2 ;

supp(u)⊆I

W 2
f (u)


1
2

≥ 2n−1 − 2
|I|
2 −1 max

u∈Fn2
|Wf (u)|

= 2n−1 − 2n+
|I|
2 −1 + 2

|I|
2 nl(f).

This latter inequality shows that, contrary to the case of approximation by func-

tions of algebraic degree at most r, for avoiding close approximations of f by

functions of BFI,n when I has small size, it is sufficient that the first-order non-

linearity of f be large.

Parameter maxI⊆{1,...,n},|I|≤k Cf (I) is permutation invariant . A related (but dif-

ferent) affine invariant parameter, also related to the distance to linear struc-

tures, is the minimum Hamming distance to those Boolean functions g whose

linear kernel {e ∈ Fn2 ; Deg = 0} has dimension at least n− k. Indeed, the linear

kernels of functions in BFI,n contain F{1,...,n}\I2 . The results on the maximum

correlation above generalize to this criterion [187].

Results in the domain of Boolean functions for circuit design and learning ex-

press that, if the total influence 2−n
∑n
i=1 wH(Deif) of an n-variable Boolean

function f is low, then the sum
∑
u∈Fn2 ;wH(u)≥kW

2
f (u) is small for large k (and
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the function is “essentially determined by few coordinates”), see [519, 914]. This

is related to Relation (2.67), page 87.

3.1.8 Complexity parameters

Among the criteria viewed above, the main cryptographic complexity param-

eters (related to Shannon’s notion of confusion) are the algebraic degree, the

nonlinearity and higher order nonlinearity, the algebraic immunity and the fast

algebraic immunity. Other complexity parameters exist. Note that, as pointed

out by Meier and Staffelbach in [843], they are supposed to be affine invari-

ants, because the composition by affine automorphisms should not modify the

complexity. And indeed, the attacks on cryptosystems using Boolean functions

(stream or block ciphers) often work with similar complexities when using two

affinely equivalent functions (maybe not exactly the same complexity, because

diffusion plays also a role and may be different with both functions).

Algebraic thickness
This parameter has been evoked in [844] and later studied in [222, 224, 229].

Definition 27 Let f be any n-variable Boolean function. The minimum number

of terms in the algebraic normal forms of all functions affinely equivalent to f ,

is called the algebraic thickness of f . We shall denote it by AT (f).

As far as we know, this parameter is not directly related to an attack. Note

however that if a function has very low algebraic thickness, then it has low alge-

braic immunity, since, for every set I of non-empty multi-indices of {1, . . . , n},
an annihilator of the Boolean function of ANF

⊕
I∈I x

I equals
∏
I∈I(xiI ⊕ 1),

where, for every I ∈ I, iI is an index chosen in I (any one). We deduce that

AI(f) ≤ AT (f) for every Boolean function.

In the case of affine functions, and more generally of the indicators of flats

(in particular, of function δ0(x) =
∏n
i=1(xi ⊕ 1) =

⊕
I⊆{1,...,n} x

I which has all

monomials in its ANF), AT (f) equals 1.

In the case of quadratic functions, thanks to the existence of the Dickson form

of these functions that we shall see in Theorem 10, page 195, AT (f) equals at

most dn+1
2 e, which is also rather small.

Boolean functions of algebraic degree not close to n − 1 have also moderate

algebraic thickness, since AT (f) ≤
∑dalg(f)
i=0

(
n
i

)
.

But it has been shown that, asymptotically, almost all Boolean functions f (in

the sense of probability theory) have large algebraic thickness. This property is

related to the fact that the number 22n of n-variable Boolean functions is strongly

increasing when n grows, which allows proving in some cases the existence of

functions possessing some complexity features, without being always able to

exhibit any such function. This is possible by bounding above the number of

functions which do not possess these features and showing that it is negligible

when compared to 22n . This phenomenon on Boolean functions, which is also
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valid with codes, is the so-called Shannon effect (this term has been introduced in

[807]): Shannon in [1035] could prove this way the existence of Boolean functions

with high circuit complexity.

Concerning algebraic thickness, it has been first proved in [222] that for every

number λ < 1/2, the density in BFn of the subset {f ∈ BFn | AT (f) ≥ λ 2n}
is larger than 1 − e−2n+1(1/2−λ)2+(n2+n) log2(e) and tends to 1 when n tends to

infinity. A more precise bound has been proved shortly later:

Proposition 31 [224] Let c be any strictly positive real number. The density

in BFn of the subset {f ∈ BFn | AT (f) ≥ 2n−1 − c n 2
n−1

2 } is larger than

1−2n
2+n e−c

2n2

and, if c2 log2 e > 1, then this density tends to 1 when n tends to

infinity. For every n ≥ 3, a Boolean function f such that AT (f) ≥ 2n−1−n 2
n−1

2

exists.

Proof. Let k be any positive integer. The number of n-variable Boolean functions

whose ANF have at most k monomials equals 1 +
(

2n

1

)
+ · · ·+

(
2n

k

)
. The number

of affine automorphisms on Fn2 equals (2n−1)(2n−2)(2n−4) · · · (2n−2n−1) 2n <

2n
2+n. Thus, the number of Boolean functions f such that AT (f) ≤ k is smaller

than N(n, k) =
(

1 +
(

2n

1

)
+ · · ·+

(
2n

k

))
2n

2+n. We have seen already at page

103, that, for every N , we have
∑

0≤i≤λN
(
N
i

)
< 2Ne−2N(1/2−λ)2

. Hence, ap-

plying this with N = 2n and λ = 1/2 − c n 2−(n+1)/2, we deduce that the

density of the set {f ∈ BFn | AT (f) ≥ 2n−1 − c n 2(n−1)/2} is larger than

1 − N(n,2n−1−c n 2(n−1)/2)
22n > 1 − 2n

2+n e−c
2n2

= 1 − 2n
2+n−c2n2 log2 e, and tends

to 1, if c2 log2 e > 1. The last sentence is easy to check. 2

Proposition 31 implies that, for every λ < 1/2, there exists m such that, for

every n ≥ m, a Boolean function f such that AT (f) ≥ λ 2n exists. But, unless λ

is small, m is greater than 3. We can take m = 9 for λ = 1
4 and m = 12 for λ = 3

8 .

Hence, almost all n-variable Boolean functions have algebraic thickness larger

than half the whole number 2n of monomials (see more in [956]). It may seem

surprising that taking the minimum number of terms in the ANFs of all func-

tions affinely equivalent to f does not affect significantly the number of terms

in the ANF of a random function. This is due to the small number of affine

automorphisms compared to the number of Boolean functions.

The lower bound of Proposition 31 is accompanied by an upper bound:

Proposition 32 [222] For every f ∈ BFn, we have AT (f) ≤ 2
3 2n.

Proof. The proof is by induction on n. The assertion is clearly valid for n = 1. Let

n be any integer larger than 1 and assume that the assertion is valid for n−1. Let

f be any Boolean function in BFn and let f0 and f1 be the Boolean functions on

Fn−1
2 such that f(x1, · · · , xn) = f0(x1, · · · , xn−1)⊕xnf1(x1, · · · , xn−1). We shall

denote by |f | the number of terms in the ANF of f . We have |f | = |f0|+ |f1|. By

hypothesis, there exists an affine automorphism A of Fn−1
2 such that |f1 ◦ A| ≤
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2
3 2n−1. Thus, we can assume without loss of generality that |f1| ≤ 2

3 2n−1.

Assume that |f | = |f0| + |f1| is larger than 2
3 2n. Let r be the number of

terms which are in both ANFs of f0 and f1. We have |f0| + |f1| − r ≤ 2n−1,

since 2n−1 is the total number of monomials in n − 1 variables. Thus r is

larger than or equal to 2
3 2n − 2n−1 = 1

3 2n−1. Changing xn into xn ⊕ 1

in the ANF of f keeps f1 unchanged and replaces f0 by f0 ⊕ f1. We have

|f0 ⊕ f1|+ |f1| = (|f0|+ |f1| − r)− r+ |f1] ≤ 2n−1 − 1
3 2n−1 + 2

3 2n−1 = 2
3 2n. 2

Given Propositions 31 and 32, we can consider that a function f has large

thickness if AT (f) equals λ 2n where λ is near 1/2. Note that the algebraic

degrees of such functions cannot be substantially smaller than n
2 , since we have

seen already that AT (f) ≤
∑dalg(f)
i=0

(
n
i

)
. There exist functions with low algebraic

thicknesses and with highest possible nonlinearity (e.g. quadratic bent functions).

There also exist functions with high algebraic thicknesses and low nonlinearities,

since there exist functions with high algebraic thicknesses and low Hamming

weights: take λ < λ′ < 1/2; the number of functions of Hamming weights smaller

than or equal to 2nλ′ equals
∑2nλ′

i=0

(
2n

i

)
≥ 22n H2(λ′)√

2n+3λ′(1−λ′)
(cf. [809, page 310]),

where H2(x) = −x log2(x)− (1−x) log2(1−x) is the entropy function. We have

seen above that the number of functions f such that AT (f) ≤ 2nλ is smaller

than or equal to:(
1 +

(
2n

1

)
+ · · ·+

(
2n

k

))
2n

2+n ≤ 22nH2(λ)+n2+n ;

thus, the latter is asymptotically smaller than the former and there exist func-

tions of weights smaller than or equal to 2nλ′ satisfying AT (f) > 2nλ.

There also exist functions with algebraic degree at least n − 1, nonlinearity at

least 2n−1 − 2
n−1

2
√
n and algebraic thickness at least λ 2n, with λ < 1/2 as

close to 1/2 as we wish, since the probabilities that f has algebraic degree at

most n − 2, resp. nonlinearity at most 2n−1 − 2
n
2−1
√
n
(√

2 ln 2 + 4 lnn
n

)
, resp.

algebraic thickness at most λ 2n tend all three to 0 (see Section 3.1).

Non-normality
Hans Dobbertin has introduced in [466] the following notion: for any n even, an n-

variable Boolean function is a normal function (resp. a weakly normal function)

if it is constant (resp. affine) on at least one n
2 -dimensional flat. He used this

notion for constructing balanced functions with high nonlinearities (see more at

page 325). The notion has been generalized and extended (see e.g. [222, 224]):

Definition 28 Let n and k ≤ n be positive integers. An n-variable Boolean

function f is called a k-normal function (resp. a k-weakly-normal function) if

there exists a k-dimensional flat on which f is constant (resp. affine). For n

even, n
2 -normal functions are simply called normal.

The notion of normality has been later related to an attack on stream ciphers
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[881]. The related parameter is studied in [276] as well as two other parameters

which complete the information it gives. The notion of k-nonnormal function is

a particular case of that of affine disperser of dimension k and is also related to

that of affine extractor, a stronger notion needed for the extraction of random-

ness from few independent sources; see more precise definitions and constructions

in [110, 1036]. It is also related to a similar notion coming from computational

number theory: that of k-wise independent random variables, see [12].

The complexity criterion we are interested in is k-nonnormality with small k.

Even if almost all Boolean functions satisfy it as we shall see, it is not satisfied

by simple ones:

- Every quadratic Boolean function f on Fn2 is n
2 -normal if n is even and n+1

2 -

weakly-normal if n is odd, according to the properties of quadratic functions

that we shall see in Section 5.2.

- Every symmetric Boolean function (i.e. every function whose output is invariant

under permutation of its input bits, and depends then only on the Hamming

weight of the input, see Section 10.1) is
⌊
n
2

⌋
-normal and

⌈
n
2

⌉
-weakly-normal

since its restriction to the
⌈
n
2

⌉
-dimensional flat:{

(x1, . . . xn) ∈ Fn2 | xi+bn2 c = xi ⊕ 1,∀i ≤
⌊n

2

⌋}
is constant if n is even and affine if n is odd. Indeed, if n is even, all the elements

of this flat have same Hamming weight n
2 and f(x) takes therefore constant

value; if n is odd, we have f(x) = f(x1, · · · , xn−1, 0) ⊕ xn[f(x1, · · · , xn−1, 0) ⊕
f(x1, · · · , xn−1, 1)] where the functions f(x1, · · · , xn−1, 0) and f(x1, · · · , xn−1, 1)

are constant on this flat.

- Every Boolean function on Fn2 with n ≤ 7 is
⌊
n
2

⌋
-normal, as can be checked by

computer investigation.

There is a mutual upper bound on k and on the nonlinearity of the function:

Proposition 33 Let f be a k-weakly-normal Boolean function on Fn2 . Then

nl(f) ≤ 2n−1 − 2k−1,

or equivalently k ≤ log2[2n−1 − nl(f)] + 1.

Proof. Applying the Poisson summation formula (2.39), page 77, to the sign

function fχ, we see that if f ⊕a ·x is constant on the flat b⊕E⊥, then the mean

of (−1)b·uWf (u) when u ranges over a ⊕ E equals ±|E⊥|. And the maximum

absolute value of a sequence of numbers is larger than or equal to the absolute

value of its arithmetic mean. 2

Hence, k-normality with large k implies low nonlinearity. Notice that, since

every Boolean function has nonlinearity bounded above by 2n−1− 2
n
2−1, Propo-

sition 33 gives no information if k ≤ n
2 . But the high nonlinearity 2n−1 − 2

n
2−1

of bent functions implies that they cannot be (n2 + 1)-weakly-normal.
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Remark. A more general result due to Zhang, Zheng and Imai, proved in a

complex way in [1179], can be proved similarly: let A be any k-dimensional flat

(k ≤ n). Let f be a Boolean function on Fn2 and f ′ its restriction to A. Denote

by nl(f ′) the nonlinearity of f ′ (i.e. the minimum Hamming distance between

f ′ and any affine function on A). Then we have18:

nl(f)− nl(f ′) ≤ 2n−1 − 2k−1.

Indeed, according to the Poisson summation formula applied to fχ with A =

b ⊕ E⊥, we have: maxu∈Fk2 |Wf ′(u)| ≤ maxv∈Fn2 |Wf (v)| which completes the

proof.

In fact, a little more can be said, as seen in [191]. Recall that, given two subspaces

E of dimension k and E′ of Fn2 such that E ∩ E′ = {0n} and whose direct sum

equals Fn2 , and denoting for every a ∈ E′ by ha the restriction of f to the coset

a+E, the second-order Poisson formula (2.57) in Proposition 12 (page 81) implies

max
u∈Fn2

W 2
f (u) ≥

∑
a∈E′

F2(ha)

(indeed, the maximum of W 2
f (u) is larger than or equal to its mean). Hence we

have: maxu∈Fn2 W
2
f (u) ≥ F2(ha) for every a. Applying this property to f ⊕ `,

where ` is any linear function, and using Relation (3.1), page 99, between the

nonlinearity and the maximum absolute value of the Walsh transform, we deduce:

∀a ∈ E′, nl(f) ≤ 2n−1 − 2k−1 + nl(ha). (3.15)

The approaches by the first and the second Poisson formulae lead to two differ-

ent necessary conditions for the case of equality in (3.15), see [224], where the

case of equality is studied. The proof above shows that, if equality occurs in the

inequality nl(f) ≤ 2n−1 − 2k−1 for a given function f which coincides with an

affine function ` on a k-dimensional flat, then f ⊕ ` is balanced on every other

coset of this flat. 2

As a consequence of Proposition 33, the maximum possible nonlinearity of

quadratic functions (i.e. the covering radius of the Reed-Muller code RM(1, n)

in the Reed-Muller code RM(2, n)) is bounded above by 2n−1 − 2
n
2−1 if n is

even, which tells nothing, and by 2n−1 − 2
n−1

2 if n is odd (these values are in

fact the exact ones).

For every α > 1, when n tends to infinity, random Boolean functions are

almost surely [α log2 n]-non-normal:

Proposition 34 [222] Let c be larger than 1. Let (kn)n∈N∗ be a sequence of

positive integers such that c log2 n ≤ kn ≤ n. The density in BFn of the set

of all Boolean functions on Fn2 which are not kn-weakly-normal is larger than

1 − 2n(kn+1)−2kn . This density tends to 1 when n tends to infinity. Therefore,

18 Note that in Proposition 33, we have nl(f ′) = 0.
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there exists a positive integer N such that, for every n ≥ N , kn-nonnormal

functions exist. For kn =
⌊
n
2

⌋
we can take N = 12.

Proof. Let λn be the number of kn-dimensional flats in Fn2 . Fix such a flat A.

Let µn be the number of Boolean functions whose restrictions to A are affine

(clearly, this number does not depend on the choice of A). The number of kn-

weakly-normal functions on Fn2 is smaller than or equal to λn µn.

The number of kn-dimensional vector subspaces of Fn2 equals (cf. e.g. [809]):[
n

kn

]
=

(2n − 1)(2n − 2)(2n − 22) · · · (2n − 2kn−1)

(2kn − 1)(2kn − 2)(2kn − 22) · · · (2kn − 2kn−1)

and the number of kn-dimensional flats in Fn2 is: λn = 2n−kn
[
n

kn

]
.

We choose now as particular kn-dimensional flat the set Fkn2 × {0kn}. The re-

striction to Fkn2 × {0kn} of a Boolean function on Fn2 is affine if and only if the

algebraic normal form of the function contains no monomial of degree at least

2 involving the coordinates x1, · · · , xkn only. The number of such functions is

µn = 2νn , where νn = 2n − 2kn + 1 + kn. The number of kn-weakly-normal

functions on Fn2 is then smaller than or equal to 2n−kn
[
n

kn

]
2νn . The number

of Boolean functions on Fn2 being equal to 22n , the density of the subset An in

BFn of all Boolean functions on Fn2 which are not kn-weakly-normal is larger

than or equal to: 1− 2n−kn
[
n

kn

]
2νn−2n .

We have

[
n

kn

]
< 2nkn−k

2
n+kn , since every factor in the numerator of

[
n

kn

]
is smaller than 2n and every factor in its denominator is larger than or equal to

2kn−1. Thus, the density of An is larger than or equal to

1− 2n(kn+1)+kn+1−k2
n−2kn > 1− 2n(kn+1)−2kn .

The exponent n(kn + 1) − 2kn is smaller than or equal to 2kn/c(kn + 1) − 2kn

and thus tends to −∞ when n tends to +∞. The last sentence of the proposi-

tion can be checked by computation (the sequences 1− 2n−kn
[
n

kn

]
2νn−2n , n

even and n odd are increasing and positive respectively for n ≥ 12 and n ≥ 13). 2

Remark 1. The result of Proposition 34 is easy to prove but pretty astonishing:

the size of a kn-dimensional flat is close to n.

2. Proposition 34 also remains essentially valid (except for the number “12”)

if, in the definition of k-weakly-normal functions, we replace “there exists a k-

dimensional flat on which the function is affine” by “there exists a k-dimensional

flat such that the restriction of the function to this flat has degree ≤ l”, where

l is some fixed positive integer: the value of νn has then to be changed into
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2n − 2kn + 1 +
(
kn
1

)
+ . . .+

(
kn
l

)
. 2

The deterministic function with asymptotically lowest known normality, due to

Shaltiel [1036], has normality 2log0.9 n. Other constructions are given in [47].

The behavior of normality for fixed algebraic degree functions is also interest-

ing to determine. X.-D. Hou has shown in [616] that, for any odd n ≤ 13, the

maximum nonlinearity of all cubic functions is the same as for quadratic func-

tions: 2n−1 − 2
n−1

2 . So we can wonder whether cubic Boolean functions behave

for generic n as quadratic functions with respect to maximum nonlinearity or

to normality. For nonlinearity, this is an open problem. But for normality, kn-

nonnormal Boolean functions of algebraic degree 3 exist, where kn is negligible

with respect to n (this confirms the feeling that cubic functions behave merely

as general functions, considering their Hamming weights, see Section 5.3, page

204). Indeed, it has been shown in [222] that for every λ > 1
2 and any sequence

(kn)n∈N∗ of positive integers such that nλ ≤ kn ≤ n, the density of the set of all

Boolean functions of algebraic degree at most 3 on Fn2 which are not kn-weakly-

normal in the set of all Boolean functions of algebraic degree at most 3 is larger

than or equal to 1−2n(kn+1)−k2
n−(kn2 )−(kn3 ). This density tends to 1 when n tends

to infinity.

As proved later in [377] (and recalled in [111]), for any constant d, a random

algebraic degree d Boolean function has normality Ω(n1/(d−1)).

Remark

1. All the results above are essentially valid if we restrict ourselves to balanced

functions. Indeed, the number of balanced functions on Fn2 equals
(

2n

2n−1

)
=

(2n)!
((2n−1)!)2 ∼

√
2π2n(2n)2ne−2n

(
√

2π2n−1(2n−1)2n−1e−2n−1)
2 =

√
2
π 22n−n2 , according to Stirling’s

formula, and all our arguments can be used, replacing the number of functions,

22n , by
(

2n

2n−1

)
.

2. We can also deal with the distance to linear structures. Since the existence

of a linear structure for a function f is equivalent to the existence of a Boolean

function g on Fn−1
2 and of a linear function l on F2 such that f(x1, . . . , xn) is

affinely equivalent to the function g(x1, . . . , xn−1) ⊕ l(xn), the number of func-

tions admitting linear structures is smaller than or equal to 22n−1

, times the

number of affine automorphisms, times 2. Thus, it is smaller than 22n−1+n2+n+1.

Moreover, let ρ be a positive number smaller than 1/2. The number of Boolean

functions on Fn2 which lie at distance smaller than or equal to ρ 2n from this set

is smaller than or equal to 22n−1+n2+n+1
∑ρ 2n

i=0

(
2n

i

)
≤ 22n−1+n2+n+1+2nH2(ρ).

Thus, this number is negligible with respect to 22n if H2(ρ) < 1/2 and, asymp-

totically, almost all functions lie then at distance greater than ρ 2n from the set

of all Boolean functions admitting linear structures. 2

We have seen that a low algebraic degree of Boolean functions does not imply
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their normality. Conversely, k-normality does not imply either low algebraic de-

gree: take a function of high algebraic degree on Fn−1
2 (considered as a subspace

of Fn2 ) and complete it by 0 to obtain a function on Fn2 .

There exist functions f with low algebraic thicknesses (e.g. functions of alge-

braic degree 3) which are k-nonnormal with small k; and there exist functions

with high algebraic thicknesses which are k-normal with large k: take a func-

tion g on Fn−1
2 with high AT (g) and complete it by 0 to obtain a function f

on Fn2 ; it is a simple matter to check that AT (f) ≥ AT (g). In [111, 377] (and

references therein) is studied the relationship between algebraic thickness and

non-normality. The most interesting is that almost all functions have high alge-

braic degrees, nonlinearities and algebraic thicknesses and are non-k-normal with

small k’s.

Spectral complexity
The size of the support of the Walsh transform of an n-variable function f , that

is, 2n minus the number of its zeros, is called the spectral complexity of f . We

shall denote it by SC(f). This criterion has been studied in [968, 1008]. Since,

according to the inverse Walsh transform formula (2.43), page 78, the Walsh

transform values Wf (u) provide the decomposition of the sign function of f over

the basis of the so-called Walsh functions (−1)u·x, and since these functions

are realized by simple circuits, the spectral complexity is related to the circuit

complexity of Boolean functions.

Note that, for every n-variable Boolean function f , an easy lower bound can be

derived from the Cauchy-Schwarz inequality:

SC(f) ≥

(∑
u∈Fn2

W 2
f (u)

)2

∑
u∈Fn2

W 4
f (u)

=
(22n)2

2n
∑

(x,y,z,t)∈(Fn2 )4

x+y+z+t=0n

(−1)f(x)⊕f(y)⊕f(z)⊕f(t)

=
23n∑

(x,y,z)∈(Fn2 )3(−1)f(x)⊕f(y)⊕f(z)⊕f(x+y+z)
.

Note that, for any nonzero function f and according to Relation (2.32), page 74,

we have that SC(f) equals Nf̂ if f is not balanced and Nf̂ − 1 if f is balanced.

According to what we have seen at page 89, we have then:

SC(f) ≥ 2dalg(f) − 1 if f is balanced, SC(f) ≥ 2dalg(f) otherwise.

The average spectral complexity of n-variable Boolean functions, equal to 2n −
2−2n

∑
f∈BFn |{u ∈ Fn2 ;Wf (u) = 0}|, is also easily determined: for every f ∈

BFn and u ∈ Fn2 , we have Wf (u) = 0 if and only if function f(x) ⊕ u · x is

balanced. We have then |{f ∈ BFn;Wf (u) = 0}| =
(

2n

2n−1

)
for every u. Hence,

the average number of zeros of the Walsh transform equals
2n( 2n

2n−1)
22n ∼

√
2
π 2

n
2

and the average spectral complexity equals 2n − 2n( 2n

2n−1)
22n .

Ryazanov in [1008] shows the more precise result that the random variable equal



132 Boolean functions, vectorial functions and cryptography

to
(

π
2n+3

) 1
2 times the number of zeros of the Walsh transform tends in distri-

bution to the constant function 1
2 over {0, 1}. The proof is too long for being

included here. He also studies the number of zeros of the Walsh transform of

functions of even Hamming weights and shows then that the same random vari-

able converges to 1 (in particular, functions of even Hamming weights have in

average twice more zeros than general Boolean functions; this can be simply

proved with the same method as above).

The evaluation can also be done for random (n,m)-functions. When F ranges

over the set of (n,m)-functions and v ranges over Fm2 \ {0m}, the component

function v · F ranges 2m − 1 times over the set of n-variable Boolean functions.

Since for v = 0m we have WF (u, v) = 0 for every u 6= 0n and WF (0n, 0m) = 2n,

we deduce that the average number of zeros of the Walsh transform of (n,m)-

functions equals 2n − 1 + (2m − 1)
2n( 2n

2n−1)
22n .

And when restricting ourselves to (n, n)-permutations, we know that when v 6=
0n, the component function v ·F ranges uniformly over the set of balanced func-

tions when F ranges over the set of permutations. Distinguishing the cases “u =

v = 0n”, “u = 0n, v 6= 0n”, “u 6= 0n, v = 0n” and “u 6= 0n, v 6= 0n”, we obtain an

average of 2(2n − 1) +
(2n−1)2(2n−1

2n−2)
2

( 2n

2n−1)
, since |{f ∈ BFn, f balanced;Wf (u) = 0}|

equals
(

2n−1

2n−2

)2
for every u 6= 0n, because u · x and f(x) ⊕ u · x need to be both

balanced, that is, we need wH(f(x)(u · x)) = wH(f(x)(u · x⊕ 1)) = 2n−2, where

f(x)(u · x) is the product of f(x) and u · x.

As in the case of Boolean functions above, by the Cauchy-Schwarz inequality, the

spectral complexity of (n,m)-functions SC(F ) = |{(u, v) ∈ Fn2 ×Fm2 ; WF (u, v) 6=
0}| of F satisfies:

SC(F ) ≥ 1 +

(∑
u∈Fn2 ,v∈Fm2 ,v 6=0m

W 2
F (u, v)

)2∑
u∈Fn2 ,v∈Fm2 ,v 6=0m

W 4
f (u, v)

=

1 +
(2m − 1)2 24n

2n+m
∣∣∣{(x, y, z, t) ∈ (Fn2 )4;

x+ y + z + t = 0n
F (x) + F (y) + F (z) + F (t) = 0m

}∣∣∣− 24n

=

1 +
(2m − 1)2 23n

2m|{(x, y, z) ∈ (Fn2 )3; F (x) + F (y) + F (z) + F (x+ y + z) = 0m}| − 23n
.

In the case of an APN (n, n)-function (see Definition 41, page 159), this gives:

SC(F ) ≥ 1 +
(2n − 1)2 22n

2 · 22n − 2n+1
= 1 + (2n − 1) 2n−1 ≈ 22n−1.
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Nonhomomorphicity
For every even integer k such that 4 ≤ k ≤ 2n, the k-th order nonhomomorphicity

[1171] of a Boolean function equals the number of k-tuples (u1, . . . , uk) of vectors

of Fn2 such that u1 + · · · + uk = 0n and f(u1) ⊕ · · · ⊕ f(uk) = 0. It is a simple

matter to show that it equals 2(k−1)n−1 + 2−n−1
∑
u∈Fn2

W k
f (u). This parameter

should be small (but no related attack exists on stream ciphers). It is maximum

and equals 2(k−1)n if and only if the function is affine. It is minimum and equals

2(k−1)n−1 + 2
nk
2 −1 if and only if the function is bent.

Conclusion of this section
As we can see, there are numerous cryptographic criteria for Boolean functions

to be used in stream ciphers. The ones which must be necessarily satisfied are

balancedness, a high algebraic degree, a high nonlinearity, a high algebraic im-

munity and a good resistance to fast algebraic attacks. It is difficult but not

impossible to find functions satisfying good trade-offs between all these criteria

(see Chapter 9). Achieving additionally resiliency of a sufficient order, which

is necessary for the combiner model, is impossible because of the Siegenthaler

bound19. Hence, the filter model is more appropriate.

We saw that, asymptotically, almost all Boolean functions (in the sense of prob-

ability theory) have high algebraic degree, high nonlinearity and high algebraic

immunity. They have also high algebraic thickness and low normality. The re-

lated following randomness criteria for n-variable Boolean functions seem then

appropriate:

• algebraic degree close to n − 1 (since the number of functions of algebraic

degree at most n− 2 is negligible compared to 22n),

• nonlinearity lying within the interval[
2n−1 − 2

n
2−1
√
n

(√
2 ln 2 +

4 lnn

n

)
; 2n−1 − 2

n
2−1
√
n

(√
2 ln 2− 5 lnn

n

)]
(according to Rodier’s results, see Subsection 3.1.3),

• algebraic immunity at distance at most lnn from n
2 (according to Didier’s

results, see Subsection 3.1.5),

• algebraic thickness equal to λ2n with λ near 1
2 .

Of course, these criteria make really sense asymptotically only.

3.2 Cryptographic criteria for vectorial functions in stream and
block ciphers

Vectorial functions can be used (in the place of Boolean functions) as combiners

or filters in stream ciphers (they allow then the PRG to generate several bits at

19 But to render f 1-resilient by composing it with a linear automorphism - which preserves

the other features - we just need that there exist n linearly independent vectors at which
the Walsh transform vanishes.
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each clock cycle, which increases the speed of the cipher), or as S-boxes in block

ciphers. These two situations are very different, but some criteria of resistance

to attacks are the same. We study them in this section. We shall study in the

two next sections those criteria and parameters which are specific to each use.

3.2.1 Balancedness of vectorial functions

Recall that an (n,m)-function is called balanced if its output distribution is uni-

formly distributed (with m ≤ n), that is, if it takes every value of Fm2 the same

number 2n−m of times. By definition, F is then balanced if every Boolean func-

tion ϕb = 1{b} ◦ F has Hamming weight 2n−m. A vectorial function used as

combiner or as filter needs to be balanced because any combination of its output

bits can be made and for avoiding such combination to give statistical informa-

tion allowing to distinguish when a pair of texts is a pair (plaintext,ciphertext),

this needs the vectorial function to be balanced.

S-boxes in block ciphers are also better balanced. In every SPN (see Subsection

1.4.2), the S-boxes need to be permutations (with m = n) and are then balanced.

In Feistel ciphers, we have seen that the S-boxes do not need to be balanced,

but that it has been shown for instance in [957] that an attack exists then, which

obliges the designer to complexify the encryption algorithm, for instance with

expansion boxes. Hence, balanced S-boxes are preferred.

Characterization through the component functions
The balanced S-boxes (and among them, the permutations) can be nicely char-

acterized by the balancedness of their component functions:

Proposition 35 [775] An (n,m)-function F is balanced if and only if its com-

ponent functions v ·F , v 6= 0m, are all balanced, that is, if and only if, for every

nonzero v ∈ Fm2 , we have WF (0n, v) = 0.

Proof. The relation:∑
v∈Fm2

(−1)v·(F (x)+b) =

{
2m if F (x) = b

0 otherwise
= 2m ϕb(x), (3.16)

is valid for every (n,m)-function F , every x ∈ Fn2 and every b ∈ Fm2 , since the

function v 7→ v · (F (x) + b) being linear, it is either balanced or null. Thus, we

have: ∑
x∈Fn2 ;v∈Fm2

(−1)v·(F (x)+b) = 2m |F−1(b)| = 2m wH(ϕb), (3.17)

where wH denotes the Hamming weight. Hence, the Fourier-Hadamard transform

of the function v 7→
∑
x∈Fn2

(−1)v·F (x) equals the function b 7→ 2m |F−1(b)|. We

know that a pseudo-Boolean function has constant Fourier-Hadamard transform

if and only if it is null at every nonzero vector. We deduce that F is balanced if
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and only if the function v 7→
∑
x∈Fn2

(−1)v·F (x) is null on Fm2 \ {0m}. 2

Equivalently, F is balanced if and only if
∑
a∈Fn2

F(Da(v · F )) = 0 for every

v 6= 0m (according to Wiener-Khintchine’s formula (2.53), page 80). Note that,

for m = n, F is a permutation if and only if
∑
v∈Fn2

F(Da(v · F )) = 0 for every

a 6= 0n (since
∑
v∈Fm2

F(v ·G) = 2m|G−1(0m)| for every (n,m)-function G).

If F is balanced, then the fi’s (16i6m) being balanced, we have dalg(F )6n− 1.

Much more can be said, in particular for permutations: F is a permutation if

and only if the product of strictly less than n coordinate functions of F has even

Hamming weight, that is, algebraic degree strictly less than n, and the product

of all n coordinate functions has algebraic degree n. The condition is clearly nec-

essary and it is easily seen that it is sufficient (since “|F−1(a)| is odd for every

a ∈ Fn2 ” implies F bijective). Note that the relation between this characteriza-

tion and Proposition 35 is given by Relations (2.25) and (2.26).

There is a nice property of the Walsh transform of permutations:

∀v 6= w,
∑
u∈Fn2

WF (u, v)WF (u,w) = 0. (3.18)

Indeed, we have
∑
u∈Fn2

WF (u, v)WF (u,w) =
∑

u,x,y∈Fn2

(−1)u·(x+y)⊕v·F (x)⊕w·F (y) =

2n
∑
x∈Fn2

(−1)(v+w)·F (x). Note that for v = w, the sum in (3.18) equals 22n (this

is Parseval’s relation on the Boolean function v · F ). Of course, Relation (3.18)

can be also applied to F−1 and since

WF−1(u, v) = WF (v, u),

we obtain:

∀v 6= w,
∑
u∈Fn2

WF (v, u)WF (w, u) = 0.

Imbalance of an (n,m)-function
A natural way of quantifying the fact that some (n,m)-function F is unbalanced

is by the variance of the random variable b→ |F−1(b)|, where |F−1(b)| denotes

the size of the pre-image of b by F . In [267], the variance is multiplied by 2m to

give the following integer-valued parameter20, that we shall call the imbalance

of F :

NbF =
∑
b∈Fm2

(∣∣F−1(b)
∣∣− 2n−m

)2
=
∑
b∈Fm2

∣∣F−1(b)
∣∣2 − 22n−m. (3.19)

It has the following properties:

20 The framework of [267] is functions from Abelian groups to Abelian groups; we stick here

to Boolean functions.
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• NbF ≥ 0, for every vectorial function F , and NbF = 0 if and only if F is

balanced;

• NbF is invariant under composition of F by permutations (on the right and

on the left); in particular, it is affine invariant ;

• NbF = |{(x, y) ∈ (Fn2 )2 ; F (x) = F (y)}| − 22n−m ≤ 22n − 22n−m and NbF =

22n − 22n−m if and only if F is constant;

• NbF =
∑
a∈Fn2

∣∣(DaF )−1(0m)
∣∣− 22n−m.

Parameter NbF can be expressed by means of the Walsh transform. We have

∑
v∈Fm2

W 2
F (0n, v) =

∑
x,y∈Fn2

∑
v∈Fm2

(−1)v·(F (x)+F (y))


= 2m|{(x, y) ∈ Fn2 |F (x) = F (y)}| = 2m(NbF + 22n−m).

Hence:

NbF = 2−m
∑

v∈Fm2 ,v 6=0m

W 2
F (0n, v). (3.20)

3.2.2 Algebraic degree of vectorial functions

The algebraic degree of vectorial functions has been defined at page 56. The out-

put of the function used in a stream cipher being also the output of the PRG,

the output bits can be combined and used in a Berlekamp-Massey attack. The

algebraic degree is then an important parameter.

In block ciphers, the algebraic degree is a security parameter against structural

attacks, such as integral [709], higher-order differential, cube [465] or, recently,

attacks based on the division property21 [1086] (see also the two first sections

of [106] and the references therein). In particular, the higher-order differential

attack [735, 706] (see also [204]) exploits the fact that the algebraic degree of

the S-box F is low, or more generally that there exists a low dimensional vec-

tor subspace V of Fn2 such that the function DV F (x) =
∑
v∈V F (x + v) (i.e.

Da1
· · ·DakF (x) where {a1, . . . , ak} is a basis of V ) is constant. A probabilistic

version of this attack [638] allows the derivative not to be constant and the S-

box must then have high higher-order nonlinearity (notion defined for Boolean

functions in Definition 20, page 102; for vectorial functions, see page 381 in Sub-

section 9.2.4). Stricto sensu, the higher-order differential attack has been proved

efficient for quadratic functions only. But since cryptographers like to have some

security margin, even cubic functions may be viewed as weak (unless, as usual

in cryptography, some precautions are taken with the global cipher). Quadratic

S-boxes, if used, need care. It is observed in [204, 108, 106] (see page 82 and

below) that the algebraic degree of the function resulting from the first rounds

21 A very elementary notion, from a viewpoint of Boolean functions, whose properties given

in diverse papers are in fact well-known properties of Reed-Muller codes.
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of the cipher may increase less than expected.

The algebraic degree of the computational inverse of a permutation plays also

a role in the algebraic degree of the iterated rounds implementing it. This

is shown in [106] by proving that dalg(G ◦ F ) < n −
⌊
n−1−dalg(G)
dalg(F−1)

⌋
for ev-

ery (n, n)-permutation F and every (n, r)-function G. We do not recall the

proof given in [106] for this bound22, since as seen in [254] we have directly

from Relation (2.12), page 58, that dalg(G ◦ F ) ≤ n −
⌈
n−dalg(G)
dalg(F−1)

⌉
, implied by

n = dalg
(
(gk ⊕ 1)

∏
i∈Ic(f

′
i ⊕ 1)

)
≤ dalg(G)+(n−|I|) dalg(F−1). And dalg(G◦F )

is bounded above by max{t; dG,F−1(n− t) = n}, where dG,F−1(n− t) equals the

maximal numerical degree of the linear combinations in BFn of at most one

coordinate function of G and at most n − t coordinate functions of F−1 (or

more precisely of the parts of the NNFs of these functions which are not divis-

ible by 2n−t). Indeed, in the framework of Relation (2.12) again, we have n =

dalg
(
(gk ⊕ 1)

∏
i∈Ic(f

′
i ⊕ 1)

)
≤ dnum

(
(gk ⊕ 1)

∏
i∈Ic(f

′
i ⊕ 1)

)
≤ dG,F−1(n− |I|),

the latter inequality being due to Relation (2.26), page 68. This is generalized

to the composition of any number of functions in [254].

Remark It is an open problem to know whether those high algebraic degree

functions which are CCZ equivalent to low algebraic degree functions could be

attacked by a modification of the higher-order differential attack. Thus, it is

not clear whether the designer should also avoid functions CCZ equivalent to

quadratic functions. 2

3.2.3 Nonlinearity of vectorial functions

In stream ciphers, since the output bits can be combined by the attacker, the

nonlinearity of all component functions must be large, and the minimum of

these nonlinearities, called the nonlinearity of the vectorial function, is then

a parameter related to the resistance to the fast correlation attack [843]. But

nonlinear combinations of the output bits can also be used by the attacker and

this will lead in Subsection 3.3.2 to the introduction of a parameter more adapted

to this framework.

In block ciphers, the linear attack , introduced by Matsui [829], is based on an

idea from [1084]. It may have been unknown by the NSA at the time it was

introduced; this could explain why it works better23 than the differential attack

on the DES. It seems that it was known or partly known from the USSR. It is,

with the differential attack that we shall describe at page 157, one of the two most

powerful general purpose cryptographic attacks known to date. Its most common

version is an attack on the reduced cipher , that is, the cipher obtained from the

22 Note that a nice simpler proof is given in Udovenko’s PhD thesis “Design and
Cryptanalysis of Symmetric-Key Algorithms in Black and White-box Models”.

23 The differential attack needs 247 pairs (plaintext, ciphertext) while the linear attack needs
“only” 243 pairs.
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original one by removing its last round24 (or more generally an attack on a round

whose inputs and outputs can be computed from the plaintext and ciphertext

and a number of key bits hopefully “small”). We describe the principle of the

attack in the case it is applied to the reduced cipher. In Figure 3.1 below, Y (r−1)

denotes the output of the reduced cipher corresponding to a plaintext Y (0), and

Y (r) denotes the ciphertext. Assume that it is possible to distinguish the outputs

F F F F

value of kr

k1 k2 kr−1

Y (0) Y (r)

kr

Y (r − 1)

Bias in the distribution

of (Y (0), Y (r − 1))

compute Y (r − 1) = F−1(Y (r), kr)

for all values of kr

comparison

Figure 3.1 Last round attacks

of the reduced cipher from random outputs, by observing some statistical bias in

their value distribution. The existence of such distinguisher allows recovering the

key used in the last round, either by an exhaustive search, which is efficient if this

key is shorter than the master key, or by using specificities of the cipher allowing

replacing the exhaustive search by, for instance, solving algebraic equations.

We describe now the attack in the case of exhaustive search, which is simpler to

describe. The attacker, who knows a number of pairs (plaintext, ciphertext) of the

(complete) cipher, visits all possible last round keys. For each try, he/she applies

24 The output of the reduced cipher is unknown if the last round key is unknown, but it is
convenient to name this reduced cipher for describing the attack.
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to all the ciphertexts in these pairs the inverse of what is the last round when the

key corresponds to the try (this is possible since all except the key is supposed

known to him/her; if not, say, if some parameter is unknown, he will have to

try all possibilities). He obtains in the case of the correct key guess the output

of the reduced cipher and has then a number of pairs (plaintext,ciphertext) of

the reduced cipher, on which he can observe the statistical bias. In all the other

cases (incorrect guesses), the obtained pairs (plaintext, ciphertext) correspond

to a cipher equal to the original cipher with an additional round whose round

key is random, and the pairs are then assumed random, with no observable bias.

Such assumption is verified in practice. The number of pairs (m, c) which are

known to him needs then to be large enough to distinguish the bias (the smaller

the bias, the larger the number of known pairs needed).

For distinguishing pairs (plaintext,ciphertext) of the reduced cipher, the linear

attack uses triples (α, β, γ) of binary strings such that, a block m of plaintext and

a key k being randomly chosen, the bit α ·m⊕β · c⊕γ ·k, where “·” denotes the

usual inner product (between two strings of the same length) and c denotes the

(reduced) ciphertext related to m, has a probability different from 1/2 of being

null. The more distant from 1/2 the probability, the more efficient the attack.

Note that when searching for triples (α, β, γ), both m and k are supposed ranging

uniformly over their definition spaces (indeed, the plaintext can be any binary

string of a given length and the round key can be as well any string of a given

length), while during the attack, m still ranges uniformly but k is fixed.

The related criterion on any S-box F used in the cipher for allowing resistance to

the attack is that the component functions v ·F , v 6= 0m, be at Hamming distance

to affine Boolean functions u · x⊕ ε as close to 2n−1 as possible. In other words,

the nonlinearities of all these component functions must be as large as possible.

The generalization to vectorial functions of the notion of nonlinearity introduced

by Nyberg [907] and studied by Chabaud and Vaudenay [341], is then:

Definition 29 The nonlinearity of an (n,m)-function is the minimum nonlin-

earity of its component functions:

nl(F ) = 2n−1−1

2
max

v∈Fm2 \{0m}
u∈Fn2

|WF (u, v)| ; WF (u, v) =
∑
x∈Fn2

(−1)v·F (x)⊕u·x. (3.21)

Note that “ max
v∈Fm2 \{0m}; u∈Fn2

” can be replaced by “ max
(u,v)∈Fn2×Fm2 ;(u,v)6=(0n,0m)

”, since

we have
∑
x∈Fn2

(−1)u·x = 0 for every nonzero u.

Nonlinearity is an EA invariant (see Definition 5, page 45), that is, does not

change when we compose the function by affine automorphisms nor when we

add an affine function to it (this implies for instance that if A is a surjective

affine function from Fr2 into Fn2 , then nl(F ◦A) = 2r−nnl(F ), since by affine in-

variance, we can assume without loss of generality that A is a projection and the

equality is then easily shown). Nonlinearity is more strongly a CCZ invariant .

Indeed, in Relation (3.21), WF (u, v) equals the Fourier-Hadamard transform of

the graph {(x, F (x)), x ∈ Fn2} of F and maxv∈Fm2 ∗,u∈Fn2 |WF (u, v)| is then invari-
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ant under affine transformation of this graph.

S. Dib has shown in [436] that for 0 < β < 1/4 and m ≤ n, when n tends to

infinity, the nonlinearity of almost all (n,m)-functions (in terms of probability)

is bounded above by 2n−1 − 2
n−1

2

√
(n+m) log 2 (1 − β) and that for β > 0,

when n + m tends to infinity, the nonlinearity of almost all (n,m)-functions is

bounded below by 2n−1 − 2
n−1

2

√
(n+m) log 2 (1 + β).

The covering radius bound 2n−1 − 2
n
2−1 (see page 99) on the nonlinearity of

any n-variable Boolean function is obviously valid for (n,m)-functions. Naturally,

this has led researchers to extend the notion of bentness to vectorial functions:

Definition 30 Given two integers n and m (with n necessarily even), an (n,m)-

function F is called bent if its nonlinearity nl(F ) achieves the optimum 2n−1 −
2n/2−1.

We shall see with Proposition 104, page 296, that bent (n,m)-functions do not

exist if m > n
2 . This has led to asking whether better upper bounds than the

covering radius bound could be proved in this case. Such bound has been found by

Chabaud and Vaudenay in [341]. In fact, a bound on sequences due to Sidelnikov

[1040] is equivalent for power functions to the bound obtained by Chabaud and

Vaudenay and its proof is valid for all functions. This is why the bound is now

called the Sidelnikov-Chabaud-Vaudenay bound (SCV bound):

Theorem 6 Let n and m be any positive integers such that m ≥ n − 1. Let F

be any (n,m)-function. Then:

nl(F ) ≤ 2n−1 − 1

2

√
3× 2n − 2− 2

(2n − 1)(2n−1 − 1)

2m − 1
.

Proof. Recall that nl(F ) = 2n−1 − 1

2
max

v∈Fm2 \{0m}; u∈Fn2
|WF (u, v)|. We have:

max
v∈Fm2 \{0m}

u∈Fn2

W 2
F (u, v) ≥

∑
v∈Fm2 \{0m}

u∈Fn2

W 4
F (u, v)∑

v∈Fm2 \{0m}
u∈Fn2

W 2
F (u, v)

. (3.22)

Parseval’s relation states that, for every v ∈ Fm2 :∑
u∈Fn2

W 2
F (u, v) = 22n. (3.23)

Using that any character sum
∑
x∈E(−1)`(x) associated to a linear function `
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over any F2-vector space E is nonzero if and only if ` is null on E, we have:∑
v∈Fm2 , u∈Fn2

W 4
F (u, v)

=
∑

x,y,z,t∈Fn2

∑
v∈Fm2

(−1)v·(F (x)+F (y)+F (z)+F (t))

∑
u∈Fn2

(−1)u·(x+y+z+t)


= 2n+m

∣∣∣∣{(x, y, z, t) ∈ F4n
2 ;

{
x+ y + z + t = 0n
F (x) + F (y) + F (z) + F (t) = 0m

}∣∣∣∣
= 2n+m|{(x, y, z) ∈ F3n

2 ; F (x) + F (y) + F (z) + F (x+ y + z) = 0m}| (3.24)

≥ 2n+m|{(x, y, z) ∈ F3n
2 ; x = y or x = z or y = z}|. (3.25)

Clearly, |{(x, y, z); x = y or x = z or y = z}| equals:

3 · |{(x, x, y); x, y ∈ Fn2}| − 2 · |{(x, x, x); x ∈ Fn2}| = 3 · 22n − 2 · 2n.

Hence, according to Relation (3.22):

max
v∈Fm2 \{0m}; u∈Fn2

W 2
F (u, v) ≥

2n+m(3 · 22n − 2 · 2n)− 24n

(2m − 1) 22n
= 3× 2n − 2− 2

(2n − 1)(2n−1 − 1)

2m − 1

and this gives the desired bound, according to Relation (3.21), page 139. 2

The condition m ≥ n− 1 is assumed in Theorem 6 to make non-negative the

expression located under the square root. Note that for m = n − 1, this bound

coincides with the covering radius bound. For m ≥ n, it strictly improves upon

it. For m > n, the square root in it cannot be an integer (see [341]). Hence, the

SCV bound can be tight only if n = m with n odd, in which case it states:

nl(F ) ≤ 2n−1 − 2
n−1

2 . (3.26)

We shall see that, under this condition, it is actually tight.

Definition 31 [341] The (n, n)-functions F which achieve (3.26) with equality

are called almost bent (AB).

Remark. The term of almost bent is a little misleading. It gives the feeling that

these functions are not optimal. But they are, according to Theorem 6. Proposi-

tion 104, page 296, will give the values of n and m such that bent (n,m)-functions

exist. 2

According to Inequality (3.22), page 140, the AB functions are those (n, n)-

functions such that, for every u, v ∈ Fn2 , v 6= 0n, the sum
∑
x∈Fn2

(−1)v·F (x)⊕u·x =

WF (u, v) equals 0 or ±2
n+1

2 (indeed, the maximum of a sequence of non-negative

and not all null integers equals the ratio of the sum of their squares over the sum

of their values if and only if these integers take one nonzero value exactly). We
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shall see at page 289 that this is equivalent to saying that all component func-

tions are near-bent . Note that this condition does not depend on the choice of

the inner product.

We shall see that AB functions exist for every odd n ≥ 3. Function F (x) = x3,

x ∈ F2n , is the simplest one. Chapter 11 covers their topic.

Bounds on nonlinearity by means of imbalance
We follow [239] in this subsection. A bound is given on the nonlinearity of (n,m)-

functions, by means of their imbalance (see definition at page 135):

Proposition 36 Let F be any (n,m)-function. The nonlinearity of F satisfies:

nl(F ) ≤ 2n−1 − 1

2

√
2m

2m − 1
NbF .

Proof. We have, using Relation (3.20), page 136:

max
v∈Fm2 / v 6=0m

u∈Fn2

W 2
F (u, v) ≥ max

v∈Fm2 / v 6=0m
W 2
F (0n, v) ≥ 1

2m − 1

∑
v∈Fm2 / v 6=0m

W 2
F (0n, v)

=
2m

2m − 1
NbF .

Relation (3.21), page 139, completes the proof. 2

This bound shows that, to have a chance of having a high nonlinearity, a function

must not differ too much from a balanced function.

The bound of Proposition 36 is tight (it is achieved with equality for instance

by bent functions, since both inequalities above are equalities in that case).

Moreover, it can be applied to F + L (which has the same nonlinearity as F )

for every linear (n,m)-function L. Note that we have in general NbF+L 6= NbF .

Proposition 36 implies, denoting by Ln,m the set of linear (n,m)-functions:

nl(F ) ≤ 2n−1 − 1

2

√
2m

2m − 1
max

L∈Ln,m
NbF+L, (3.27)

which is obviously tight too.

Remark. We have v · L(x) = L∗(v) · x where L∗ is the adjoint operator of L.

Hence max
v∈Fm2 / v 6=0m

u∈Fn2

W 2
F (u, v) = max

v∈Fm2 / v 6=0m
L∈Ln,m

W 2
F+L(0n, v). 2

Relation (3.27) raises the question of determining the mean of NbF+L:

Proposition 37 [239] Let F be any (n,m)-function. The mean of the random

variable L ∈ Ln,m → NbF+L equals 2n − 2n−m. We have max
L∈Ln,m

NbF+L ≥

2n − 2n−m, with equality if and only if F is bent.
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Proof. For every L ∈ Ln,m, we have:

NbF+L =
∑
a∈Fn2

|(Da(F + L))−1(0m)| − 22n−m

=
∑
a∈Fn2

|(DaF )−1(L(a))| − 22n−m. (3.28)

The size of Ln,m equals 2mn. Given any nonzero element a of Fn2 and any element

b of Fm2 , the number of linear functions L such that L(a) = b equals 2m(n−1).

We have then, distinguishing the case a = 0n from the others:∑
L∈Ln,m

∑
a∈Fn2

|(DaF )−1(L(a))| = 2mn 2n + 2m(n−1)
∑
a∈Fn2
a 6=0n

∑
b∈Fm2

|(DaF )−1(b)|

= 2(m+1)n + 2m(n−1)(2n − 1)2n.

The mean 1
|Ln,m|

∑
L∈Ln,m

∑
a∈Fn2

|(DaF )−1(L(a))| equals 2n + 2n−m(2n − 1) =

22n−m + 2n − 2n−m. This proves the first assertion. The second is then straight-

forward and the case of equality is when the function (a, b) ∈ (Fn2 \{0n})×Fm2 7→
|(DaF )−1(b)| is constant and we shall see in Section 6.4 that this is characteristic

of bent functions. 2

Remark. The definition of nonlinearity given in Definition 29, page 139, is re-

lated to Matsui’s linear attack [829], but the term of nonlinearity can also evoke

the behavior of the functions F +L where L is any linear (n,m)-function, which

could lead to other “nonlinearity” notions. We see with Proposition 37 that bent

functions, which are related to the classical notion of nonlinearity, are also re-

lated to the imbalance of functions F + L. 2

Proposition 37 and Relation (3.27) give the covering radius bound, and show

that the constancy of function L ∈ Ln,m → NbF+L is characteristic of bent

functions.

The fact that the average value of NbF+L is the same for all (n,m)-functions is

not surprising: Relation (3.20) applied to the function F + L gives

NbF+L = 2−m
∑

v∈Fm2 ,v 6=0m

∑
x∈Fn2

(−1)v·F (x)⊕L∗(v)·x

2

,

where L∗ is the adjoint operator of L. Summing up this equality when L ranges

over Ln,m allows, for every v 6= 0m, the vector L∗(v) to cover uniformly Fn2 , and

Parseval’s relation leads then to the mean.

Remark.

The number maxL∈Ln,m NbF+L is, after nl(F ), a second parameter quantifying

the non-affineness of F (in a different way from nl(F ) but in a coherent one,

according to Relation (3.27)). We shall see that it is also closely related to a
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third parameter NBF that we shall introduce at page 161. Some easily proved

properties of maxL∈Ln,m NbF+L are:

- if F is affine, that is, if F +L0 is constant for some linear function L0, then we

know that maxL∈Ln,m NbF+L = NbF+L0
= 22n − 22n−m is maximal;

- if, on the opposite side, F is bent then, for every L, we have NbF+L = 2n−2n−m

and maxL∈Ln,m NbF+L = 2n − 2n−m is minimal (according to Proposition 37);

we can say that, for every L, the function F + L is “almost balanced”, which is

the best which can be achieved for every linear function L;

- F 7→ maxL∈Ln,m NbF+L is EA-invariant since Nb is affine-invariant.

For m = n = 5, max
L∈Ln,m

NbF+L = 52 < 2 (2n − 1) = 62 for every AB function. 2

Other bounds
Bounds have been obtained in relation with codes [267]:

nl(F ) < 2n−1 − m

2
× 2n−1

2n−1 − 1
; m < 2n − 2, (3.29)

and using the sphere packing bound:

bnl(F )−1
2 c∑
i=0

(
2n

i

)
≤ 22n−n−m−1, (3.30)

and the Griesmer bound:
m+n∑
i=0

⌈
nl(F )

2i

⌉
≤ 2n. (3.31)

A construction using concatenated codes (see page 24) is given in [53], which

allows approaching these bounds. Precisely, a (2e − 1, (k − 2)e)-function F is

obtained for every e ≥ 2, k ≥ 3, such that nl(F ) = 2e−2(2e − k + 1).

A lower bound on the nonlinearity of vectorial functions is given in [234] and

upper bounds in [1133] by means of parameter NbF of page 135, under particular

conditions, in some cases. A table of the best known nonlinearities is given in [53].

Another notion of nonlinearity of vectorial functions, sometimes denoted by nlv,

has been introduced in [266] and studied further in [788]: their minimum Ham-

ming distance to affine vectorial functions.

Higher-order nonlinearity
This notion (see Definition 20, page 102) can be extended to vectorial functions

by taking the minimum r-th order nonlinearity of component functions: nlr(F ) =

minv 6=0m nlr(v ·F ). We can more generally consider F composed by functions of

higher degrees:

Definition 32 For every (n,m)-function F , for every positive integers s ≤ m

and t ≤ n+m, and every non-negative integer r ≤ n, we define:

nls,r(F ) = min{nlr(f ◦ F ); f ∈ BFm, dalg(f) ≤ s, f 6= cst},
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and NLt(F ) = min{wH(h(x, F (x))); h ∈ BFn+m, dalg(h) ≤ t, h 6= cst}.

Definition 32 excludes f = cst and h = cst for obvious reasons.

Clearly, for every function F and every integers t ≤ t′, s ≤ s′ and r ≤ r′, we

have NLt(F ) ≥ NLt′(F ) and nls,r(F ) ≥ nls′,r′(F ). Note also that we have

NL1(F ) = nl1,1(F ) = nl(F ).

As recalled in [233, Section 3], which is devoted to these notions, T. Shimoyama

and T. Kaneko have exhibited in [1037] several quadratic functions h and pairs

(f, g) of quadratic functions showing that the nonlinearities NL2 and nl2,2 of

some sub-S-boxes of the DES are null (and therefore that the global S-box of

each round of the DES has the same property). They deduced a “higher-order

non-linear” attack (an attack using the principle of the linear attack by Matsui

but with non-linear approximations) which needs 26% less data than Matsui’s

attack. This improvement is not very significant, practically, but the notions

of NLt and nls,r may be related to potentially more powerful attacks. Note

that we have NLmax(s,r)(F ) ≤ nls,r(F ) by taking h(x, y) = g(x) ⊕ f(y) (since

f 6= cst implies then h 6= cst) and the inequality can be strict if s > 1 or r > 1

since it may happen that a function h(x, y) of low algebraic degree and such

that wH(h(x, F (x))) is small exists while no such function exists with separated

variables x and y. This is the case, for instance, of the S-box of the AES for

s = 1 and r = 2 (see below).

Proposition 38 [233] For every positive integers n, m, r ≤ n and s ≤ m and

every (n,m)-function F , we have: NLs(F ) ≤ 2n−s and nls,r(F ) ≤ 2n−s. These

inequalities are strict if F is not balanced (that is, if its output is not uniformly

distributed over Fm2 ).

Indeed, there necessarily exists an (m− s)-dimensional affine subspace A of Fm2
(whose indicator 1A has algebraic degree s) such that |F−1(A)| ≤ 2n−s, and we

can take f(y) = h(x, y) = 1A(y). See in [233] the rest of the proof.

The bound nls,r(F ) ≤ 2n−s is asymptotically almost tight (in a sense which will

be specified in Proposition 40, page 146) for permutations when r ≤ s ≤ .227n.

Existence of permutations with higher-order nonlinearities
bounded from below
The case of permutations is more interesting and useful than that of general

functions when dealing with higher-order nonlinearity, but it is more delicate.

Proposition 39 Let n and s be positive integers and let r be a non-negative

integer. Let D be the greatest integer such that

D∑
t=0

(
2n

t

)
≤

(
2n

2n−s

)
2
∑s
i=0 (ni)+

∑r
i=0 (ni)

.

There exist (n, n)-permutations F whose higher-order nonlinearity nls,r(F ) is

strictly larger than D.
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Proof. We recall the proof from [233]. Given a number D, a permutation F of

Fn2 and two n-variable Boolean functions f and g, let us consider the support

E = supp((f ◦ F ) ⊕ g), that is, E = (F−1(supp(f))) ∆ supp(g), where ∆ is

the symmetric difference operator. Then F−1 maps supp(f) onto supp(g) ∆E

(since the equality 1E = f ◦ F ⊕ g implies f ◦ F = g ⊕ 1E) and Fn2 \ supp(f)

onto (Fn2 \ supp(g)) ∆E. If we have dH(f ◦ F, g) ≤ D then E has size at most

D. For every integers i ∈ [0, 2n] and r, let us denote by Ar,i the number of

codewords of Hamming weight i in the Reed-Muller code of order r. If i is the

size of supp(f) (with 0 < i < 2n, since f 6= cst), then for every set E such

that |supp(g) ∆E| = |supp(f)| = i and |(Fn2 \ supp(g)) ∆E| = |Fn2 \ supp(f)| =
2n − i, the number of permutations whose restriction to supp(f) is a one-to-one

function onto supp(g) ∆E and whose restriction to Fn2 \ supp(f) is a one-to-one

function onto (Fn2 \ supp(g)) ∆E equals i! (2n − i)!. We deduce that the number

of permutations F such that nls,r(F ) ≤ D is bounded above by

D∑
t=0

(
2n

t

) 2n−1∑
i=1

2n∑
j=0

As,iAr,j i! (2n − i)!

Since the non-constant codewords of the Reed-Muller code of order s have Ham-

ming weights between 2n−s and 2n−2n−s, we deduce that the probability Ps,r,D
that a permutation F chosen at random (with uniform probability) satisfies

nls,r(F ) ≤ D is bounded above by

D∑
t=0

(
2n

t

) 2n∑
j=0

Ar,j
∑

2n−s≤i≤2n−2n−s

As,i
i! (2n − i)!

2n!
=

D∑
t=0

(
2n

t

) 2n∑
j=0

Ar,j
∑

2n−s≤i≤2n−2n−s

As,i(
2n

i

)

<

(∑D
t=0

(
2n

t

))
2
∑s
i=0 (ni)+

∑r
i=0 (ni)(

2n

2n−s

) . (3.32)

We deduce that, under the hypothesis of Proposition 39, we have Ps,r,D < 1 and

there exist permutations F from Fn2 to itself whose higher-order nonlinearity

nls,r(F ) is strictly larger than D. This completes the proof. 2

This lemma is translated into a table for small values of n in [233]. Let us see

now what happens when n tends to∞. Let H2(x) = −x log2(x)−(1−x) log2(1−
x) be the binary entropy function.

Proposition 40 Let sn
n tend to a limit ρ such that 1−H2(ρ) > ρ (which is ap-

proximately equivalent to ρ ≤ .227) when n tends to ∞. If rn ≤ µn for every n,

where 1−H2(µ) > ρ (e.g. if rn/sn tends to a limit strictly smaller than 1), then

for every ρ′ > ρ, almost all permutations F of Fn2 satisfy nlsn,rn(F ) ≥ 2(1−ρ′)n.
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Proof. We recall the proof from [233]. We know (see e.g. [809, page 310]) that, for

every integer n and every λ ∈ [0, 1/2], we have
∑
i≤λn

(
n
i

)
≤ 2nH2(λ). According

to the Stirling formula, we have also, when i and j tend to ∞: i! ∼ iie−i
√

2πi

and
(
i+j
i

)
∼ ( i+ji )i( i+jj )j

√
2π

√
i+j
ij . For i+ j = 2n and i = 2n−sn , this gives(

2n

2n−sn

)
∼ (2sn)2n−sn

√
2π(1− 2−sn)2n−2n−sn

√
2sn

2n − 2n−sn

=
2sn2n−sn

√
2π 2(2n−2n−sn ) ln(1−2−sn ) log2 e

√
2sn

2n − 2n−sn
.

We deduce then from Inequality (3.32), page 146:

log2 Psn,rn,Dn = O

(
2n
[
H2

(
Dn

2n

)
+ 2−n(1−H2(sn/n)) + 2−n(1−H2(rn/n))

−2−sn+log2(sn) − 2−sn(1− 2−sn) log2 e
])

(we omit − sn
2n+1 + n

2n+1 log2(1− 2−sn) inside the brackets above; it is negligible).

If lim sn
n = ρ where 1−H2(ρ) > ρ, then there exists ρ′ > ρ such that 1−H2(ρ′) >

ρ′ and such that asymptotically we have sn ≤ ρ′ n; hence 2−n(1−H2(sn/n)) is

negligible with respect to 2−sn . And if rn ≤ µn where 1 −H2(µ) > ρ, then we

have 2−n(1−H2(rn/n)) = o(2−sn) and for Dn = 2(1−ρ′)n where ρ′ is any number

strictly larger than ρ, we have H2

(
Dn
2n

)
= H2

(
2−ρ

′ n
)

= ρ′ n 2−ρ
′ n − (1 −

2−ρ
′ n) log2(1 − 2−ρ

′ n) = o(2−ρ n) = o(2−sn). We obtain that, asymptotically,

nlsn,rn(F ) > 2(1−ρ′ )n for every ρ′ > ρ. 2

The inverse S-box
For Finv(x) = x2n−2 and finv(x) = trn(Finv(x)), we have nlr(Finv) = nlr(finv)

as for any power permutation. Recall that, for r = 1, this parameter equals

2n−1 − 2
n
2 when n is even and is close to this number when n is odd, and that

for r > 1, it is approximately bounded below by 2n−1 − 2(1−2−r)n (see more in

[232]). We have NL2(Finv) = 0, since we have wH(h(x, Finv(x))) = 0 for the

bilinear function h(x, y) = trn(axy) where a is any nonzero element of null trace

and xy denotes the product of x and y in F2n . Indeed we have xFinv(x) = 1 for

every nonzero x. As observed in [392], we have also wH(h(x, Finv(x))) = 0 for

the bilinear functions h(x, y) = trn(a(x + x2y)) and h(x, y) = trn(a(y + y2x))

where a is now any nonzero element, and for the quadratic functions h(x, y) =

trn(a(x3 + x4y)) and h(x, y) = trn(a(y3 + y4x)). These properties are the core

properties used in the tentative algebraic attack on the AES by Courtois and

Pieprzyk.

It is proved in [233] that, for every ordered pair (s, r) of strictly positive inte-

gers, we have:

• nls,r(Finv) = 0 if r + s ≥ n;

• nls,r(Finv) > 0 if r + s < n;
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and that, in particular, for every ordered pair (s, r) of positive integers such that

r + s = n − 1, we have nls,r(Finv) = 2. The other values are unknown when

r + s < n, except for small values of n.

3.2.4 Algebraic immunities of vectorial functions

Algebraic attacks can be performed on stream ciphers and on block ciphers; this

is why we address the algebraic immunities of vectorial functions in the present

section. But there are several definitions and the relevant ones are not the same in

both frameworks. Algebraic attacks can be applied to those stream ciphers which,

for increasing the speed, use as combiners or filters vectorial (n,m)-functions F

instead of single-output Boolean functions. Figures 3.2 and 3.3 below display

how vectorial functions can be used in the pseudorandom generators of stream

ciphers to speed up the ciphers.

LFSR n

LFSR 2

LFSR 1

...

F

x1

xn

x2
output

si,1
...

si,m

Figure 3.2 combiner model

The output bits of F can be combined in any way, that is by applying any

m-variable Boolean function h, and the algebraic attack can be performed on

the combiner or filter model using the resulting Boolean function h ◦ F . The

minimum algebraic immunity of all these functions clearly equals the minimum

algebraic immunity of the indicators of the pre-images F−1(z) for z ∈ Fm2 . This

will lead to Definition 34.

Algebraic attacks also exist on block ciphers (see [392]), exploiting the existence

of multivariate equations involving the input x to the S-box and its output y. In

the case of the AES, whose S-box is the power function x ∈ F28 → x28−2 ∈ F28 ,

an example of such equation is x2y = x, where x, y ∈ F28 . The main parameter

playing a role in the complexity of algebraic attacks, to be studied for a given

S-box F in a cipher, is the lowest algebraic degree d of Boolean relations between

inputs and ouputs to F . If these are viewed in Fn2 and Fm2 , the simplest relations

to be considered are of the form
∑
I⊆{1,...,n},J⊆{1,...,m} aI,J x

I(F (x))J = 0; aI,J ∈
F2. Another parameter is the number of linearly independent relations of degree

d. Since, for an (n,m)-function, the number of unknowns aI,J in the equations

above equals
∑d
i=0

(
n+m
i

)
and the number of equations is 2n, the number of
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si+L−1 . . . si+1 si

⊕⊕⊕

x1 xi xn

F (x1, x2, . . . , xn)

output

si,1
...

si,m

Figure 3.3 filter model

linearly independent relations of degree d is at least
∑d
i=0

(
n+m
i

)
− 2n.

But the actual efficiency of algebraic attacks on block ciphers is difficult to study.

The global number of variables in the large system of equations expressing the

whole cipher, that is, the number of data bits and key bits in all the rounds of

the cipher, is much larger than for stream ciphers and the resulting systems of

equations are not as overdefined as for stream ciphers; nobody is able to predict

correctly the complexity of solving such polynomial systems. The AES allowing

bilinear relations between the input and the output bits of the S-boxes, this

may represent a threat, if an idea is found which would reduce the number of

unknowns without increasing too much the degrees of the equations. In [392] was

written that “it is not completely unreasonable to believe, that the structure of

Rijndael and Serpent could allow attacks with complexity growing slowly with

the number of rounds” and the authors added “In this paper, it seems that we

have found such an attack” but it is widely believed today that such attack is

not efficient on these two cryptosystems.

Several notions of algebraic immunity of vectorial functions have been studied

in [29, 32]. We first need to recall the definition of annihilator and give the

definition of the algebraic immunity of a set:

Definition 33 We call annihilator of a subset E of Fn2 any n-variable Boolean

function vanishing on E. We call algebraic immunity of E, and we denote by

AI(E), the minimum algebraic degree of all the nonzero annihilators of E.

Note that the algebraic immunity of a Boolean function f equals by definition
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min(AI(f−1(0)), AI(f−1(1))).

The first generalization of algebraic immunity to S-boxes is its direct extension:

Definition 34 The basic algebraic immunity of an (n,m)-function F is defined

as:

AI(F ) = min{AI(F−1(z)); z ∈ Fm2 }.

Note that AI(F ) also equals the minimum algebraic immunity of all the indi-

cators ϕz of the pre-images F−1(z) since, the algebraic immunity being a non-

decreasing function over sets, we have AI(Fn2 \F−1(z)) ≥ AI(F−1(z′)) for every

distinct z, z′ ∈ Fm2 .

This version of algebraic immunity is relevant to stream ciphers. A second notion

of algebraic immunity of S-boxes, more relevant to S-boxes in block ciphers, has

been called the graph algebraic immunity and is defined as follows:

Definition 35 The graph algebraic immunity of an (n,m)-function F is the

algebraic immunity of the graph {(x, F (x)); x ∈ Fn2} of the S-box, and is denoted

by AIgr(F ).

Two other notions studied in [32] are essentially different expressions for the

same AI(F ) and AIgr(F ).

A third notion seems also natural:

Definition 36 The component algebraic immunity of an (n,m)-function F is

defined as:

AIcomp(F ) = min{AI(v · F ); v ∈ Fm2 \ {0m}}.

Properties and relative bounds
It has been observed in [29] that, for any (n,m)-function F , we have AI(F ) ≤
AIgr(F ) ≤ AI(F ) + m. The left-hand side inequality is straightforward (by re-

stricting an annihilator of the graph to a value of y such that the annihilator

does not vanish) and is shown tight in [235], and the right-hand side inequality

comes from the fact that, since there exists z and a nonzero annihilator g(x)

of F−1(z) of algebraic degree AI(F ), the function g(x)
∏m
i=1(yj ⊕ zj ⊕ 1) is an

annihilator of algebraic degree AI(F ) +m of the graph of F .

It has been also observed in [29] that, denoting by d the smallest integer such

that
∑d
i=0

(
n
i

)
> 2n−m, we have AI(F ) ≤ d (indeed, there is at least one z such

that |F−1(z)| ≤ 2n−m; the annihilators of F−1(z) are the solutions of |F−1(z)|
linear equations in

∑d
i=0

(
n
i

)
unknowns - which are the coefficients in the ANF

of an unknown annihilator of algebraic degree at most d - and the number of

equations being strictly smaller than the number of unknowns, the system must

have non-trivial solutions). It has been proved in [500] that this bound is tight.

Note that it shows that for having a chance that AI(F ) be large, we need m

small enough: we know (see [809, page 310]) that
∑d
i=0

(
n
i

)
≥ 2nH2(d/n)√

8d(1−d/n)
, where

H2(x) = −x log2(x)− (1−x) log2(1−x); for AI(F ) being possibly larger than a
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number k, we must have
∑k
i=0

(
n
i

)
≤ 2n−m, and therefore 2nH2(k/n)√

8k(1−k/n)
≤ 2n−m,

that is, m ≤ n (1 − H2(k/n)) + 1
2 (3 + log2(k(1 − k/n))). It also implies that

AI(F ) ≤ n−m, see more in [235].

Finally, it has also been proved in [29] that, denoting by D the smallest integer

such that
∑D
i=0

(
n+m
i

)
> 2n, we have AIgr(F ) ≤ D (the proof is similar, consid-

ering annihilators in n+m variables of the graph) but it is not known whether

this bound is tight (it is shown in [29] that it is tight for n ≤ 14). This implies

that AIgr(F ) ≤ n, see more in [235].

Since the algebraic immunity of any Boolean function is bounded above by its

algebraic degree, the component algebraic immunity of any vectorial function is

bounded above by its minimum degree and therefore by its algebraic degree:

AIcomp(F ) ≤ dalg(F ).

We have also:

AIcomp(F ) ≥ AI(F ),

since AIcomp(F ) equaling the algebraic immunity of the Boolean function v · F
for some v 6= 0m, it equals AI(F−1(H)) for some affine hyperplane H of Fm2 ,

and AI is a non-decreasing function over sets. We have:

AIcomp(F ) ≥ AIgr(F )− 1

since:

- if g is a nonzero annihilator of v · F , v 6= 0m, then the product h(x, y) =

g(x) (v · y) is a nonzero annihilator of the graph of F ;

- if g is a nonzero annihilator of v · F ⊕ 1 then h(x, y) = g(x) (v · y) ⊕ g(x) is a

nonzero annihilator of the graph of F .

More bounds on these three parameters are given in [235].

Remark As in the case of Boolean functions, see Subsection 3.1.6, page 117,

the variants of these parameters (and of the ones to come in the next sections)

in relationship with guess and determine attacks should be studied as well. 2

3.3 Cryptographic criteria and parameters for vectorial functions in
stream ciphers

3.3.1 Correlation immunity and resiliency of vectorial functions

The notion of resilient Boolean function, when extended to vectorial functions,

is relevant in cryptology to quantum cryptographic key distribution (see [58])

and to stream ciphers with multi-output combiners or filters.

Recall that an (n,m)-function is called balanced if the distribution of F (x) when

x ranges over Fn2 is uniform over Fm2 .
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Definition 37 Let n and m be two positive integers. Let t be an integer such

that 0 ≤ t ≤ n. An (n,m)-function F (x) is called t-th order correlation immune

if its output distribution does not change when at most t coordinates xi of x are

kept constant. It is called t-resilient if it is balanced and t-th order correlation

immune, that is if it stays balanced when at most t coordinates xi of x are kept

constant.

This notion has a relationship with another notion which plays also a role in

cryptography: an (n,m)-function F is called a multipermutation (see [1095]) if

any two ordered pairs (x, F (x)) and (x′, F (x′)), such that x, x′ ∈ Fn2 are distinct,

differ in at leastm+1 distinct positions (that is, collide in at most n−1 positions);

such (n,m)-function ensures then a perfect diffusion; an (n,m)-function is a

multipermutation if and only if the indicator of its graph {(x, F (x)); x ∈ Fn2} is

an n-th order correlation immune Boolean function (see [179]).

Since S-boxes must be balanced, we shall focus on resilient functions, but most

of the results below can also be stated for correlation immune functions.

We call an (n,m) function which is t-resilient an (n,m, t)-function. Clearly, if

such a function exists, then m ≤ n − t, since balanced (n,m)-functions can

exist only if m ≤ n. This bound is weak (it is tight if and only if m = 1 or

t = 1). It is shown in [370] (see also [79]) that, if an (n,m, t)-function exists, then

m ≤ n− log2

[∑t/2
i=0

(
n
i

)]
if t is even and m ≤ n− log2

[(
n−1

(t−1)/2

)
+
∑(t−1)/2
i=0

(
n
i

)]
if t is odd. This can be deduced from the bound on orthogonal arrays due to

Rao [988], see page 106. But, as shown in [79] (see also [760]), potentially better

bounds can be deduced from the linear programming bound due to Delsarte [421]:

if an (n,m, t)-function exists, then t ≤
⌊

2m−1 n
2m−1

⌋
− 1 and t ≤ 2

⌊
2m−2(n+1)

2m−1

⌋
− 1.

Note that composing a t-resilient (n,m)-function by a permutation on Fm2 does

not change its resiliency order (this obvious result was first observed in [1168]).

Also, the t-resiliency of S-boxes can be expressed by means of the t-resiliency

and t-th order correlation immunity of Boolean functions:

Proposition 41 Let n and m be two positive integers and 0 ≤ t ≤ n. Let F

be an (n,m) function. Then F is t-resilient if and only if one of the following

conditions is satisfied:

1. for every nonzero vector v ∈ Fm2 , the Boolean function v · F (x) is t-resilient,

that is, WF (u, v) = 0, for every u ∈ Fn2 such that wH(u) ≤ t,
2. for every balanced m-variable Boolean function g, the n-variable Boolean func-

tion g◦F is t-resilient, that is,
∑
x∈Fn2

(−1)g(F (x))⊕u·x = 0, for every u ∈ Fn2 such

that wH(u) ≤ t,
3. for every vector b ∈ Fm2 , the Boolean function ϕb = δ{b} ◦ F is t-th order

correlation immune and has Hamming weight 2n−m.

Proof. We prove that the t-resiliency of F implies Condition 2, which implies

Condition 1, which implies Condition 3, which implies that F is t-resilient.

- If F is t-resilient, then, for every balanced m-variable Boolean function g, the

function g ◦ F is t-resilient, by definition; hence Condition 2 is satisfied.
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- Condition 2 clearly implies Condition 1, since the function g(x) = v · x is bal-

anced for every nonzero vector v.

- If Condition 1 is satisfied, then Relation (3.16), page 134, implies that, for

every nonzero vector u ∈ Fn2 such that wH(u) ≤ t and for every b ∈ Fm2 , we have

ϕ̂b(u) = 2−m
∑
x∈Fn2 ,v∈Fm2

(−1)v·(F (x)+b)⊕u·x = 0, and ϕb is t-th order correlation

immune for every b. Also, according to Proposition 35, page 134, Condition 1

implies that F is balanced, i.e. ϕb has Hamming weight 2n−m, for every b. These

two conditions obviously imply, by definition, that F is t-resilient. 2

Consequently, the t-resiliency of vectorial functions is invariant under the same

transformations as for Boolean functions.

3.3.2 Unrestricted nonlinearity of vectorial functions

The classical notions of nonlinearity of vectorial functions (Definition 29, page

139) and higher-order nonlinearity (Definition 32, page 144), have been intro-

duced in the framework of block ciphers: due to the iterative structure of these

ciphers, the knowledge of a function f such that nl(f ◦ F ) or nlr(f ◦ F ) is low

does not necessarily lead to an attack, unless the algebraic degree of f is low,

and r is low too in the latter case. This is why, in Definition 32, the algebraic

degree of f is also specified.

On the contrary, the structure of pseudorandom generators in stream ciphers is

not iterative, and all of the m output bits of the (n,m)-function used as combiner

or filter can be combined by a linear or nonlinear (but non-constant) m-variable

Boolean function f to perform (fast) correlation attacks. Consequently, a second

generalization to (n,m)-functions of the notion of nonlinearity has been intro-

duced (in [318], directly related to the Zhang-Chan attack [1156]).

Definition 38 Let F be an (n,m)-function. The unrestricted nonlinearity of F ,

denoted by unl(F ), is the minimum Hamming distance between all non-constant

affine functions and all Boolean functions g◦F , where g is a non-constant Boolean

function in m variables.

If unl(F ) is small, then one of the linear or nonlinear (non-constant) combina-

tions of the output bits of F has high correlation to a non constant affine function

of the input, and a (fast) correlation attack is feasible.

Remark.

1. In Definition 38, the considered affine functions are non-constant, because the

minimum distance between all Boolean functions g ◦ F (g non-constant) and

all constant functions equals minb∈Fm2 |F
−1(b)| (each number |F−1(b)| is indeed

equal to the distance between the null function and g ◦ F , where g equals the

indicator of the singleton {b}); it is therefore an indicator of the balancedness of

F . It is bounded above by 2n−m (and it equals 2n−m if and only if F is balanced).

2. We can replace “non constant affine functions” by “nonzero linear functions”
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in the statement of Definition 38 (replacing g by g ⊕ 1, if necessary).

3. Thanks to the fact that the affine functions considered in Definition 38 are

non-constant, we can relax the condition that g is non-constant: the distance

between a constant function and a non-constant affine function equals 2n−1, and

unl(F ) is clearly always smaller than 2n−1. 2

The unrestricted nonlinearity of any (n,m)-function F is obviously unchanged

when F is right-composed with an affine invertible mapping. Moreover, if A is a

surjective linear (or affine) function from Fp2 (where p is some positive integer)

into Fn2 , then it is easily shown that unl(F ◦ A) = 2p−nunl(F ). Also, for every

(m, p)-function φ, we have unl(φ◦F ) ≥ unl(F ) (indeed, the set {g◦φ, g ∈ BFp},
where BFp is the set of p-variable Boolean functions, is included in BFm), and

if φ is a permutation on Fm2 , then we have unl(φ ◦F ) = unl(F ) (by applying the

inequality above to φ−1 ◦ F ).

A further generalization of the Zhang-Chan attack, called the generalized cor-

relation attack has been introduced in [299]: considering implicit equations which

are linear in the input variable x and of any degree in the output variable

z = F (x), the following probability is considered, for any non-constant func-

tion g and every functions wi : Fm2 → F2:

Prob [g(z) + w1(z)x1 + w2(z)x2 + · · ·+ wn(z)xn = 0], (3.33)

where z = F (x) and where x uniformly ranges over Fn2 .

The knowledge of such approximation g with a probability significantly higher

than 1/2 leads to an attack, because z = F (x) corresponding to the output

keystream is known, and therefore g(z) and wi(z) are known for all i = 1, . . . , n.

This led to a new notion of generalized nonlinearity:

Definition 39 Let F : Fn2 → Fm2 . The generalized Hadamard transform F̂ :

(F2m

2 )n+1 → R is defined as:

F̂ (g(·), w1(·), . . . , wn(·)) =
∑
x∈Fn2

(−1)g(F (x))+w1(F (x)) x1+···+wn(F (x)) xn ,

where the input is in BFn+1
m .

Let W be the set of all n-tuple functions w(·) = (w1(·), . . . , wn(·)) ∈ BFnm, where

w(z) 6= 0n for all z ∈ Fm2 .

The generalized nonlinearity is defined as:

gnl(F ) = min
{

min
06=u∈Fm2

(
wH(u · F ), 2n − wH(u · F )

)
, nlgenF

}
,

where

nlgenF = 2n−1 − 1

2
max

g∈BFm,w∈W
F̂ (g(·), w1(·), . . . , wn(·)). (3.34)

The generalized nonlinearity can be much smaller than the other nonlinearity
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measures and provides linear approximations with better bias for (fast) correla-

tion attacks.

Relations to the Walsh transforms and lower bounds
The unrestricted nonlinearity of F can be related to the values of the Fourier-

Hadamard transforms of the functions ϕb = 1{b} ◦F (see page 134), and a lower

bound (observed in [1156]) depending on nl(F ) can be directly deduced:

Proposition 42 For every (n,m)-function, we have

unl(F ) = 2n−1 − 1

2
max

u∈Fn2 \{0n}

∑
b∈Fm2

|ϕ̂b(u)| ≥ 2n−1 − 2m/2
(
2n−1 − nl(F )

)
.

(3.35)

This bound does not give an idea of the best possible unrestricted nonlineari-

ties: even if nl(F ) is close to the nonlinearity of bent functions 2n−1 − 2
n
2−1, it

implies that unl(F ) is approximately larger than 2n−1 − 2
n+m

2 −1, whereas there

exist balanced (n, n2 )-functions F such that unl(F ) = 2n−1 − 2
n
2 (see below).

Proposition 43 [299] Let F : Fn2 → Fm2 and let w(·) denote the n-tuple of m-bit

Boolean functions (w1(·), . . . , wn(·)). Then

nlgenF = 2n−1 − 1/2
∑
z∈Fm2

max
w(z)∈Fn2 \{0n}

|ϕ̂b(w(z))|

= 2n−1 − 1

2m+1

∑
z∈Fm2

max
06=w(z)∈

Fn2

∣∣∣∣∣∣
∑
v∈Fm2

(−1)v·zWF (w(z), v)

∣∣∣∣∣∣ ,
where WF denotes the Walsh transform. Hence

gnl(F ) ≥ 2n−1 − (2m − 1)
(
2n−1 − nl(F )

)
.

Upper bounds
If F is balanced, the minimum distance between the component functions v · F
and the affine functions cannot be achieved by constant affine functions, because

v · F , which is balanced, has distance 2n−1 to constant functions. Hence:

Proposition 44 (covering radius bound) For every balanced S-box F :

unl(F ) ≤ nl(F ) ≤ 2n−1 − 2
n
2−1. (3.36)

Another upper bound:

unl(F ) ≤ 2n−1 − 1

2

22m − 2m

2n − 1
+

√
22n − 22n−m

2n − 1
+

(
22m − 2m

2n − 1
− 1

)2

− 1


has been obtained in [318]. It improves upon (i.e. is lower than) the covering

radius bound only for m ≥ n
2 + 1, and the question of knowing whether it is

possible to improve upon the covering radius bound for m ≤ n
2 is open. In any
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case, this improvement will not be dramatic, at least for m = n
2 , since it is

shown (by using Relation (3.35)) in this same paper that the balanced function

F (x, y) =

{
x
y if y 6= 0

x if y = 0
satisfies unl(F ) = 2n−1 − 2

n
2 (see other examples

of S-boxes in [698], whose unrestricted nonlinearities seem low, however). It is

pretty astonishing that an S-box with such high unrestricted nonlinearity exists;

but it can be shown that this balanced function does not contribute to a good

resistance to algebraic attacks and has null generalized nonlinearity (see below).

Proposition 45 Let F : Fn2 → Fm2 . Then the following inequality holds.

nlgenF ≤ 2n−1 − 1

4

∑
z∈Fm2

√
2n+2|F−1(z)| − 4|F−1(z)|2

2n − 1
.

Furthermore if F (x) is balanced, then we have:

gnl(F ) ≤ 2n−1 − 2n−1

√
2m − 1

2n − 1
.

It is proved in [300] that the balanced function F (x, y) =

{
x
y if y 6= 0

x if y = 0

has null generalized nonlinearity. Hence, a vectorial function may have very high

unrestricted nonlinearity and have zero generalized nonlinearity. Some functions

with good generalized nonlinearity are given in [300]:

1. F (x) = trnm(xk) where k = 2i + 1, gcd(i, n) = 1, is a Gold exponent;

2. F (x) = trnm(xk) where k = 22i−2i+ 1 is a Kasami exponent, 3i ≡ 1 [mod] n,

where m divides n and n is odd, and where trnm is the trace function from F2n

to F2m , have generalized nonlinearity satisfying gnl(F ) ≥ 2n−1 − 2(n−1)/2+m−1.

Power functions and sums of power functions represent for the designer of

the cryptosystem using them the interest of being more easily computable than

general functions (which makes possible using them with more variables while

keeping a good efficiency). Power functions have the peculiarity that, denoting

the set {xd; x ∈ F∗2n} by U , two functions trn(axd) and trn(bxd) such that

a/b ∈ U are linearly equivalent . It is not clear whether this is more an advantage

for the designer or for the attacker of a system using such function.

3.4 Cryptographic criteria and parameters for vectorial functions in
block ciphers

We have seen in Subsection 3.2.3 a first example of the role played by S-boxes

in the robustness of the block ciphers in which they are involved, and of how

the main attacks on block ciphers result in design criteria for the S-boxes they

implement. We shall see now a second example, whose importance is comparable.
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3.4.1 Differential uniformity

The differential attack , introduced by Biham and Shamir [82] (but which was

already known since 1974 by IBM and still earlier by the NSA and kept secret),

is anterior to the linear attack. It assumes the existence of ordered pairs (α, β),

α 6= 0, of binary strings of the same length as the blocks (which are binary strings

too), such that, a block m of plaintext being randomly chosen and c and c′ being

the ciphertexts related to m and m+α, the bitwise difference c+c′ (recall that +

denotes the bitwise addition/difference in Fn2 ) has a larger probability to equal β

than if c and c′ were randomly chosen binary strings. Such an ordered pair (α, β)

corresponding to a bias in the output distribution is called a differential and can

be exploited in differential attacks; the larger the probability of the differential,

the more efficient the attack. As for the linear attack, there are several ways to

mount such differential cryptanalysis. The most common (and most efficient) is

to use differentials for the reduced cipher (see Figure 3.1, page 138). The exis-

tence of a differential allows to distinguish, in a last round attack , the reduced

cipher output from a random permutation. The existence of such distinguisher

allows recovering the key used in the last round, by an exhaustive search, which

is efficient if this key is shorter than the master key, or by using specificities

of the cipher allowing replacing the exhaustive search by, for instance, solving

algebraic equations.

Here also, we describe the attack in the case of exhaustive search, which is sim-

pler to describe. Similarly to what we have seen at page 138, the attacker, who

knows a number of pairs (plaintext, ciphertext), corresponding to the original

cipher and of the form (m, c) and (m + α, c′) where (α, β) is a differential for

the reduced cipher, visits all possible last round keys. For each try of such a

candidate as last round key, he inverts the last round and obtains in the case

of the correct key guess the output of the reduced cipher; he observes then the

statistical bias of the differential. In all the other cases (incorrect guesses), the

obtained binary string is considered as random, with no observable bias. The

number of pairs (m, c) and (m + α, c′) which are known to him/her needs then

to be large enough to distinguish the bias. This number depends on how the

probability of the differential is larger than for a random pair. In the case of

DES, the number was 247 (which is huge and made the attack impractical).

The existence of differential attacks leads to a criterion on (n,m)-functions F ,

when used as S-boxes in the round functions of the cipher, which corresponds

to minimizing the possibilities for the attacker to find differentials whose prob-

ability is large. Since the differentials cannot be determined by direct computer

investigation and must then be approximately evaluated by “chaining” differ-

entials inside each round, the criterion is that the output of the derivatives

DaF (x) = F (x) + F (x + a); x, a ∈ Fn2 , a 6= 0n, be as uniformly distributed as

possible. This leads to the following parameter.

Definition 40 [906, 912, 907] Let n, m, δ be positive integers. An (n,m)-

function F is called differentially δ-uniform if, for every nonzero a ∈ Fn2 and



158 Boolean functions, vectorial functions and cryptography

every b ∈ Fm2 , the equation F (x) + F (x + a) = b has at most δ solutions. The

minimum of those values δ having such property, that is, the maximum num-

ber of solutions of such equations, is denoted by δF and called the differential

uniformity of F .

The differential uniformity δF is necessarily even since the solutions of equation

DaF (x) = b go by pairs: if x is a solution of F (x) + F (x+ a) = b then x+ a is

also a solution. The lower is δF , the better is the contribution of the S-box to

the resistance to the differential attack, as shown in [912, 908]. The differential

uniformity δF of any (n,m)-function F is bounded below by 2n−m (as observed

by Nyberg) since DaF being an (n,m)-function, at least one element of Fm2 has

at least 2n−m pre-images by DaF . The differential uniformity equals 2n−m if and

only if every derivative DaF , a 6= 0n, is balanced. We say then that F is perfect

nonlinear and we shall see in Chapter 6 that this is equivalent to saying that F

is bent. According to a result from Nyberg that we shall see in Proposition 104,

page 296, (n,m)-functions have differential uniformity strictly larger than 2n−m

when n is odd or m > n/2.

Differential uniformity is in fact a notion on the graph GF = {(x, y) ∈ Fn2 ×
Fm2 ; y = F (x)} of the function: it is the maximum number of solutions (X,Y ) ∈
G2
F of the equation X + Y = (a, b) when (a, b) ∈ (Fn2 \ {0n}) × Fm2 . For this

reason, differential uniformity is a CCZ invariant (see Definition 5, page 45). The

differential uniformity of an S-box being determined, its differential spectrum also

affects the security of the corresponding cipher. The differential spectrum is the

multiset of the values:

δF (a, b) = |{x ∈ Fn2 ; DaF (x) = F (x)+F (x+a) = b}| = (1GF⊗1GF )(a, b), (3.37)

(where 1GF is the graph indicator of F , see page 51) and the difference distribu-

tion table (DDT ) is the table which displays them (note that, given a permuta-

tion F , all these data are the same for F and F−1, up to exchanging a and b,

since 1GF (x, y) = 1GF−1 (y, x)).

For every u ∈ Fn2 and v ∈ Fm2 , we have
∑
a∈Fn2 ,b∈Fm2

δF (a, b)(−1)u·a⊕v·b =∑
a,x∈Fn2

(−1)u·a⊕v·DaF (x) =
∑
a∈Fn2

∆v·F (a)(−1)u·a, by the change of variable

b = DaF (x) and since v ·DaF = Da(v · F ), and the Wiener-Khintchine formula

(2.53), page 80 (or Property (2.44), page 79 applied to expression (3.37)), shows

that the Fourier transform of function δF equals W 2
F .

The necessary and sufficient condition, recalled from [201], that we reported at

page 91, ensuring that the image by an affine permutation A = L + (a, b) of

the graph GF of F is the graph of a function, is equivalent to the fact that the

image of {0n} × Fm2 by L−1 is included in the set δ−1
F (0) ∪ {(0n, 0m)}: we have

WF (L∗(u, 0m)) = 0 for all u 6= 0n if and only if we have
∑
u∈Fn2

W 2
F (L∗(u, 0m)) =

22n, and according to the Poisson summation formula (2.39), page 77, this gives∑
(α,β)∈(L∗(Fn2×{0m}))⊥

δF (α, β) = 2n, which proves the result since (L∗(Fn2 ×
{0m}))⊥ = L−1({0n}×Fm2 ), because (α, β) ·L∗(u, 0m) = L(α, β) · (u, 0m) equals
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0 for every u if and only if L(α, β) ∈ {0n} × Fm2 .

It is observed in [910, 1060] that, because of the truncated differential attack

[706], the differential uniformity of the (so-called chopped) functions obtained

by withdrawing a few coordinate functions should also be considered and can be

low for some vectorial functions having good differential uniformity.

Note that if a function has good nonlinearity then it does not have necessarily

a good differential uniformity too: take an (n,m)-function F and consider the

(n+1,m)-function F ′ such that F ′(x, xn+1) = F (x) for every x ∈ Fn2 , xn+1 ∈ F2;

the nonlinearity of F ′ is twice that of F and can then be rather good while the

differential uniformity of F ′ equals 2n and is then bad. The converse is not true

either: take any (n,m)-function F and consider the (n,m + 1)-function F ′ ob-

tained by adding a null coordinate function; the nonlinearity of F ′ is null while

the differential uniformity equals that of F and can then be good.

The asymptotic behavior of δF for general (n, n)-functions F has been studied

in [1098], after being studied in [643] for power functions over F2n :

Proposition 46 [1098] For any d > 4 with d ≡ 0, 3 [mod 4], the limit when n

to infinity of the ratio:∣∣∣∣{F ∈ F2n [x]; deg(F ) = d and δF =
d− 1 for d odd

d− 2 for d even

}∣∣∣∣
|{F ∈ F2n [x]; deg(F ) = d}|

,

where deg(F ) denotes the polynomial degree, equals 1.

For more general (n,m)-functions, see [405, 589, 913]; the average differential

uniformity of (n,m)-functions is much larger than 2n−m.

Almost perfect nonlinear functions
The smaller the differential uniformity, the better the contribution to the resis-

tance against differential cryptanalysis. When m ≥ n, the smallest possible value

of δF (which is always even) is 2, and differentially 2-uniform functions can exist

only when m ≥ n (indeed, we need m ≥ n−1 and m = n−1 is impossible except

if n ≤ 2 since differentially 2-uniform (n, n − 1)-functions are perfect nonlinear

and we would then need to have n − 1 ≤ n/2 as we shall see in Proposition

104, page 296). We use the term of APN function only when m = n. Note that

the notion of APN function and the differential property of the multiplicative

inverse function had been investigated starting from 1968 by V. Bashev and B.

Egorov in USSR.

Definition 41 [912, 71, 908] An (n, n)-function F is called almost perfect non-

linear ( APN) if it is differentially 2-uniform, that is, if for every a ∈ Fn2 \ {0n}
and every b ∈ Fn2 , the equation F (x) + F (x + a) = b has 0 or 2 solutions (i.e.
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|{DaF (x), x ∈ Fn2}| = 2n−1). Equivalently, for distinct elements x, y, z, t of Fn2 ,

the equality x+y+z+t = 0n implies F (x)+F (y)+F (z)+F (t) 6= 0n, that is, the

restriction of F to any 2-dimensional flat (i.e. affine plane) of Fn2 is non-affine.

We have already encountered APN functions when proving the SCV bound and

the equivalence between these three properties is easily seen: Inequality (3.25),

page 141, is an equality if and only if F (x) + F (y) + F (z) + F (x+ y + z) = 0n
can be achieved only when x = y or x = z or y = z and this is equivalent to any

of the following properties:

- the restriction of F to any 2-dimensional flat (i.e. affine plane) of Fn2 is non-

affine, that is, does not sum up to 0n (indeed, the set {x, y, z, x + y + z} is

a flat and it is 2-dimensional if and only if x 6= y and x 6= z and y 6= z; and

F (x)+F (y)+F (z)+F (x+y+z) = 0n is equivalent to saying that the restriction

of F to this flat is affine, since we know that a function F is affine on a flat A if

and only if, for every x, y, z in A we have F (x+ y + z) = F (x) + F (y) + F (z));

- for every distinct nonzero (that is, F2-linearly independent) vectors a and a′, the

second order derivative DaDa′F (x) = F (x)+F (x+a)+F (x+a′)+F (x+a+a′)

takes only nonzero values;

- the equality F (x) +F (x+ a) = F (y) +F (y+ a) (obtained from F (x) +F (y) +

F (z)+F (x+y+z) = 0n by denoting x+z by a) can be achieved only for a = 0n
or x = y or x = y + a;

- for every a ∈ Fn2 \ {0n} and every b ∈ Fn2 , the equation DaF (x) = F (x) +

F (x+ a) = b has at most 2 solutions (that is, 0 or 2 solutions, since if it has one

solution x, then it has x+ a for second solution).

Remark. As in the case of AB functions, the term of almost perfect nonlinear

gives the feeling that these functions are almost optimal while they are optimal. 2

Chapter 11 covers the whole topic of APN functions.

Related nonlinearity parameters
- We have seen at page 143 the nonlinearity parameter alternative to the classi-

cal nonlinearity, equal to the maximum imbalance of the sums of F and linear

functions: maxL∈Ln,m NbF+L.

If m = n and F is APN, then according to the properties seen at page 135,

NbF+L =
∑
a∈Fn2

∣∣(DaF )−1(L(a))
∣∣−2n =

∑
a∈Fn2 \{0n}

∣∣(DaF )−1(L(a))
∣∣ is boun-

ded above by 2 (2n − 1), for every L, which implies that maxL∈Ln,m NbF+L lies

in the interval ]2n− 1; 2 (2n− 1)] (since we know from Proposition 37, page 142,

that it is larger than or equal to 2n − 2n−m and we know that it cannot equal

2n − 2n−m since F would be bent). Moreover, when n is even, the maximum

2 (2n − 1) is achieved by all APN power functions; indeed, Dobbertin proved

(and we shall see in Proposition 165, page 417) that for any APN power func-

tion F , there are 2n−1
3 elements of F∗2n having three pre-images each by F , and
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all the other elements of F∗2n have no pre-image (see e.g. [237]), which implies,

using (3.19), that NbF = 1 + 9 · 2n−1
3 − 2n = 2 (2n − 1).

APN functions in 5 variables have been classified under EA equivalence and CCZ

equivalence in [134]. When F is the inverse function, maxL∈Ln,m NbF+L equals

56. There is no other APN and non-AB function for n = 5.

For m = n = 6 and m = n = 8, the functions CCZ equivalent to x3, found in

[162, 163] match the maximum 2 (2n−1) as do the APN power functions. We do

not know if some APN functions can have smaller value of maxL∈Ln,m NbF+L

for n even. And it is not clear to us whether maxL∈Ln,m NbF+L can take diverse

values when F is AB for n odd and whether it is CCZ-invariant.

- The bentness/perfect nonlinearity of a function being characterized by the

balancedness of its derivatives, the following nonlinearity indicator has been in-

troduced in [267]:

NBF =
∑

a∈Fn2 \{0n}

NbDaF =
∑

a∈Fn2 \{0n}

∑
b∈Fm2

|(DaF )−1(b)|2 − (2n − 1)22n−m.

(3.38)

This indicator is directly related to Nyberg’s and Chabaud-Vaudenay’s results

and proofs; it allows clarifying some properties found by them (see e.g. Relation

(3.40) below) and saying a bit more. We shall call it the derivative imbalance of

F . It has the following properties, as mentioned in [267, 239]:

• NBF ≥ 0, for every function F , and NBF = 0 if and only if F is bent/perfect

nonlinear;

• NB is CCZ invariant sinceNBF equals
∑
a∈Fn2 \{0n}

|{(x, y) ∈ (Fn2 )2 /DaF (x) =

DaF (y)}| − (2n − 1)22n−m and equals therefore:∣∣∣∣{(x, x′, y, y′) ∈ (Fn2 )4 /
x+ x′ = y + y′ 6= 0n

F (x) + F (x′) = F (y) + F (y′)

}∣∣∣∣− (2n−1)22n−m

=
∣∣{(X,X ′, Y, Y ′) ∈ G4

F /X +X ′ = Y + Y ′ 6= 0n+m

}∣∣− (2n − 1)22n−m,

where GF = {(x, F (x)) ∈ Fn2 × Fm2 } is the graph of F ;

• NBF ≥ (2n − 1)(2n+1 − 22n−m) (this inequality comes from the Cauchy-

Schwarz inequality
∑
b∈Fm2

∣∣F−1(b)
∣∣2 ≥ (∑

b∈Fm2
|F−1(b)|

)2

|Im(F )| = 22n

|Im(F )| applied

to DaF and from |Im(DaF )| ≤ 2n−1; see an improvement in [522, Proposi-

tion 3]); note that this proves again that (n, n)-functions cannot be perfect

nonlinear; there is equality if and only if, for every a 6= 0n, |Im(DaF )|
equals 2n−1 and |(DaF )−1(b)| is constant for b ∈ Im(DaF );

for n = m, there is then equality if and only if F is APN;

• NBF =
∑

a,a′∈Fn2
linearly indept

∣∣(DaDa′F )−1(0m)
∣∣− (2n − 1)(22n−m − 2n+1);

• NBF ≤ (2n − 1)(22n − 22n−m), for every function F : Fn2 → Fm2 (see a
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refinement in [522, Proposition 4]) and NBF = (2n − 1)(22n − 22n−m) if

and only if F is affine.

Remark. A parameter25 has been introduced afterwards in [925, 922] and stud-

ied further26 in [923, 921, 924], without comparing it to NBF . We give here its

definition for (n,m)-functions but, as NBF , it can be defined for any function

from an Abelian group to an Abelian group: the ambiguity A(F ) equals:∑
i≥0

(
i

2

)
|{(a, b) ∈ (Fn2 \ {0n})× Fm2 ; |(DaF )−1(b)| = i}|.

A(F ) is the same as NBF , up to a constant and to the multiplication by 1
2 :

A(F ) =
1

2

∑
(a,b)∈(Fn2 \{0n})×Fm2

|(DaF )−1(b)|2 − 1

2

∑
(a,b)∈(Fn2 \{0n})×Fm2

|(DaF )−1(b)|

=
1

2
(NBF + (2n − 1)22n−m)− (2n − 1)2n

2

=
1

2
NBF + (2n − 1)(22n−m−1 − 2n−1).

In [522] is made the necessary work of unification of the results on NBF and on

ambiguity. The known bounds on NBF and those on ambiguity are compared

and all the results are translated from one definition to the other. More results

are also given. 2

Parameter NBF can be expressed by means of the Walsh transform. Thanks to

Relation (3.20), page 136, we have:

NBF = 2−m
∑

a∈Fn2 ,a 6=0n

∑
v∈Fm2 ,v 6=0m

W 2
DaF (0n, v). (3.39)

Chabaud-Vaudenay’s calculations recalled in the proof of Theorem 6, more pre-

cisely at page 141, show that:
∑

v∈Fm2 ,v 6=0m

u∈Fn2

W 4
F (u, v) =

2n+m|{(x, y, a) ∈ F3n
2 /F (x) + F (x+ a) = F (y) + F (y + a)}| − 24n = 23n+m +

2n+m
∑

a∈Fn2 ,a 6=0n

|{(x, y) ∈ F3n
2 /DaF (x) = DaF (y)}| − 24n =

23n+m − 24n + 2n+m
∑

a∈Fn2 ,a6=0n

∑
b∈Fm2

|DaF
−1(b)|2 =

23n(2m − 1) + 2n+mNBF . (3.40)

25 A second parameter called deficiency is also introduced and studied in the same papers:

D(F ) = |{(a, b) ∈ (Fn2 \ {0n})× Fm2 ; |(DaF )−1(b)| = 0}|; it plays a less important role.
26 In particular for functions from Z/nZ (resp. from the additive / multiplicative group of a

finite field) to itself, and for some specific functions over finite fields, including all

permutation polynomials over finite fields up to degree 6 and reversed Dickson polynomials

(that we shall see more in details at page 422).
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The Sidelnikov-Chabaud-Vaudenay bound can then be specified as follows:

nl(F ) ≤ 2n−1 − 1

2

√
2n +

2m−n

2m − 1
NBF , (3.41)

(this obviously implies the covering radius bound since NBF ≥ 0, and the SCV

bound, because of the inequality NBF ≥ (2n−1)(2n+1−22n−m) recalled above).

We can immediately see that the bound in (3.41) is tight for m ≤ n/2, n even

(since the covering radius bound is then tight) and for m = n, n odd (since the

Sidelnikov-Chabaud-Vaudenay bound is then tight). In fact, it is tight for all

values of n and m: the proof in [267] shows that it is an equality for a given F if

and only if F is plateaued with single amplitude (see Definition 67, page 302). It

would be interesting to determine for which triples (n,m,NBF ), or equivalently

for which triples (n,m, nl(F )), the bound is tight (which would be determined if

we know all possible amplitudes for plateaued (n,m)-functions with single am-

plitude).

Two other bounds on the nonlinearity involving the imbalance are given in [1133].

We have seen with Proposition 37, page 142, that the mean of the random

variable L → NbF+L is the same for every function. We shall see now that its

variance equals NBF , up to a multiplicative factor.

Proposition 47 [267, 239] Let F be any (n,m)-function. The variance of the

random variable L ∈ Ln,m → NbF+L equals 2−mNBF .

Proof. Let us denote by VF the variance of the random variable L ∈ Ln,m →
NbF+L, equal to that of the random variable L→

∑
a∈Fn2 \{0n}

|(DaF )−1(L(a))|
according to Relation (3.28), page 143, whose mean equals 22n−m − 2n−m, ac-

cording to Proposition 37. Hence VF equals:

1

|Ln,m|
∑

L∈Ln,m
a,a′∈Fn2 \{0n}

|(DaF )−1(L(a))| |(Da′F )−1(L(a′))| −
(
22n−m − 2n−m

)2
.

Let us distinguish the case where a = a′ 6= 0n and the case where a and a′ are

linearly independent. We have seen that, when a is a fixed nonzero vector, the

number of linear functions L such that L(a) = b equals 2m(n−1) = 2−m|Ln,m|,
for every vector b; similarly, when a, a′ are fixed linearly independent vectors,

the number of linear functions L such that L(a) = b and L(a′) = b′ equals

2m(n−2) = 2−2m|Ln,m|, for every vectors b, b′. We obtain:
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VF = 2−m
∑

a∈Fn2 \{0n}

∑
b∈Fm2

|(DaF )−1(b)|2 + 2−2mµF −
(
22n−m − 2n−m

)2
, where

µF =
∑

a,a′∈Fn2 \{0n}
a 6=a′

∑
b,b′∈Fm2

|(DaF )−1(b)| |(Da′F )−1(b′)|

=
∑

a,a′∈Fn2 \{0n}
a 6=a′

∑
b∈Fm2

|(DaF )−1(b)|

∑
b∈Fm2

|(Da′F )−1(b)|


= (2n − 1)(2n − 2) 22n.

Then by the definition of NBF , VF = 2−m(NBF + (2n − 1)22n−m) + 24n−2m −
3 · 23n−2m + 2 · 22n−2m − (24n−2m − 2 · 23n−2m + 22n−2m) = 2−mNBF . 2

Remark. In [239], it is shown that the mean of NbF+L when L ranges over the

subset of balanced linear (n,m)-functions is the highest when F is balanced, but

that its value is then not much larger than the mean in Proposition 37. 2.

A recent stronger criterion for permutations
Boomerang attacks [1101] (and their variants called sandwich attacks) are a

possible alternative to differential attacks when differentials (see Subsection 3.4.1,

page 157) having sufficiently large probability are not known. The parameter

which quantifies the contribution of an (n, n)-permutation F to the resistance to

these attacks (the smaller the parameter, the better the resistance), see [371], is

the so-called Boomerang uniformity (see [107]):

max
(a,b)∈(Fn2 \{0n})2

|{x ∈ Fn2 ;F (F−1(x) + a) + F (F−1(x+ b) + a) = b}| = (3.42)

max
(a,b)∈(Fn2 \{0n})2

|{y ∈ Fn2 ;F−1(F (y) + b) + F−1(F (y + a) + b) = a}| =

max
(a,b)∈(Fn2 \{0n})2

|{(x, y) ∈ Fn2
2;F (x+ a) + F (y + a) = b and F (x) + F (y) = b}|

(the first equality being shown by using that F (F−1(x) + a) + F (F−1(x+ b) +

a) = b is equivalent to F−1(x + b) + a = F−1(F (F−1(x) + a) + b) and setting

y = F−1(x) + a). It is easily shown that the Boomerang uniformity is affine

invariant and as we can see, it is also invariant when changing F into F−1, but

it is not EA-invariant (see [107]) and therefore not CCZ-invariant. We have that,

denoting y = F−1(x) + a and z = F−1(x + b) + a, the Boomerang uniformity

equals max
(a,b)∈(Fn2 \{0n})2

|{(x, y) ∈ (Fn2 )2;F (y) + F (z) = F (y + a) + F (z + a) = b}|.

The necessary condition F (y) +F (z) = F (y+ a) +F (z + a) being equivalent to

DaF (y) = DaF (z), if F is APN then, since this latter equality implies y = z or

y = z + a and since y = z is impossible because b 6= 0n, the Boomerang unifor-

mity equals 2. But APN permutations are known only for n odd and n = 6. For

general permutations, we can see by considering the particular case z = y + a

that the Boomerang uniformity is larger than or equal to the differential uni-

formity δF (see Definition 40, page 157). In [107] is shown that the boomerang
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uniformity of the multiplicative inverse (n, n)-function for n even equals 6 if 4

divides n and 4 otherwise. Its value is characterized when n = 4 for all differen-

tially 4-uniform permutations (showing that it is at least 6). It is shown that if

F is differentially 4-uniform and quadratic then its Boomerang uniformity is at

most 12.

Quadratic permutations whose Boomerang Connectivity Table (BCT) is optimal

(in the sense that the maximal value in the BCT equals the lowest known differ-

ential uniformity) have been derived in [875]. Moreover, boomerang uniformities

of some specific permutations (mainly the ones with low differential uniformity)

as well as a characterization by means of the Walsh transform of those functions

F from F2n to itself with boomerang uniformity δF have been considered in [762].

3.4.2 Other features also related to attacks

Univariate degree
The interpolation attack [639] is efficient when the degree of the univariate poly-

nomial representation of the S-box over F2n is low or when the distance of the

S-box to the set of low univariate degree functions is small. A vectorial function

should then not have low degree univariate representation nor be approximated

by such function.

Attacks without related criteria on Boolean functions
The slide attack [89], when it can be mounted, has a complexity independent

of the number of rounds in the block cipher, contrary to the attacks previously

described. It analyzes the weaknesses of the key schedule (the most common case

of weakness being when round keys repeat in a cyclic way) to break the cipher.

The slide attack is efficient when the cipher can be decomposed into multiple

rounds of an identical F function vulnerable to a known-plaintext attack.

3.5 Search for functions achieving the desired features

3.5.1 The difficulty of designing good S-boxes

Substitution boxes in block ciphers need to satisfy many criteria.

• The S-boxes for SPN networks must be bijective. The S-boxes for Feistel

cryptosystems are better surjective and in fact balanced, see [995, 957].

• The S-boxes are better APN or differentially 4-uniform, or at least differen-

tially 6-uniform.

• They have better high nonlinearity, say near 2n−1 − 2n/2.

• They have better not too low algebraic degree; degree 2 is often too small

because of the higher-order differential attack [706, 735].
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• For reason of efficiency (see page 434), in software, n is better even, n/2 too

... that is, n is better a power of 2. In hardware, n can be any number. But

general purpose cryptosystems must be implementable in both hardware

and software. Then n = 4, 8 are preferred (n = 4 for lightweight ciphers).

• The S-box should be easy to protect against physical (side channel and fault

injection) attacks, see Section 12.1.1, page 467. Hence, the number of non-

linear multiplications in F2n to compute the output (when the S-box is

expressed over this field) should be small.

Examples of S-boxes used in practice:

• (4, 4)-S-boxes: Serpent, PRESENT, CLEFIA, NOEKEON, LED, RECTAN-

GLE,

• (6, 4)-S-boxes: DES

• (8, 8)-S-boxes (inverse function): AES, CLEFIA, CAMELLIA

• (9, 9) and (7, 7)-S-boxes, combined (AB functions Gold x5 and Kasami x13 ∼
x81): MISTY, KASUMI

• (8, 32)-S-boxes: CAST

Other examples:

• Key-dependent S-boxes: CAST, Twofish

• Pseudorandomly generated (4, 4)-S-boxes: KHAZAD

• Round function based on x3 in F237 or F233 according to the versions: KN

• Mixing operations from different groups: IDEA, CAST, RC6.

3.5.2 Constructions versus computer investigations of Boolean and vectorial
functions

We shall give in Chapters 5-11 constructions of Boolean and vectorial functions

satisfying the criteria we have seen in the present chapter. We shall study how

these constructions can allow obtaining functions providing good trade-offs be-

tween several criteria. Such constructions provide in general infinite classes of

functions (in any numbers of variables ranging over some infinite sets). These

functions are rather well structured, compared with random functions satisfying

the same criteria. This is a quality (it simplifies the study of criteria) but also a

drawback (the structure may be usable by attackers).

It is then also useful to search by computer investigation for functions, in num-

bers of variables small enough for search to be feasible, meeting one or several

criteria, and if possible to classify as in [124] these functions under proper no-

tions of equivalence (which needs mathematical tools as well). Of course, such

searches are also useful to guess infinite classes and constructions. They often

show that the functions built by algebraic constructions have peculiarities.
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General classification
The classification of Boolean functions dates back to the fifties [549] and sixties

[588]. It has been realized in [66] under affine equivalence for all Boolean func-

tions up to 5 variables (with 48 equivalence classes), for all 6-variable Boolean

functions in [812] (see also Fuller’s thesis “Analysis of affine equivalent Boolean

functions for cryptography”, Queensland University of Technology, 2003), for

those 7-variable Boolean functions of algebraic degree at most 3 modulo those of

degree 1 in [613, 102], for those 8-variable Boolean functions of algebraic degree

4 modulo those of degree 3 in [739], and under CCZ, EA, affine and permutation

equivalences for (4, 4)-functions in [756, 183, 1009, 1158]. Note that Burnside’s

Lemma [171] states that, if G is a group of permutations acting on a set X, then

the number of orbits induced on X is given by 1
|G|
∑
σ∈G |{x ∈ X ; σ(x) = x}|.

More targeted computer investigations
Many papers report computer searches of specific functions (made after mathe-

matical work). A few first examples are [1005] for 6-variable bent Boolean func-

tions, [741] for 8-variable bent Boolean functions, [134] for APN (5, 5)-functions

(with a classification) and [135] for APN (n, n)-functions with n = 6, 7, 8.

The survey of the recent literature shows that many results using heuristics

(providing specific instances of Boolean functions, not general ones that algebraic

constructions can give, but allowing to create many different solutions satisfy-

ing certain properties) are now obtained with evolutionary algorithms and to a

lesser extent with other methods used for diverse kinds of searches. For instance,

[694] implements hill climbing algorithms, which are a different type of heuristics

than evolutionary algorithms (even if evolutionary algorithms can work as hill

climbing algorithms). Other examples are [1051], which uses SAT solvers and

[74], which uses similarly a satisfiability modulo theory tool.

Usually, there is no guarantee that the solutions are not equivalent to each oth-

ers, and a hard part of the work (when it is done) is to check inequivalence.

A list of recent papers making computer investigations can be found in [952].

As far as we know, the first application of genetic algorithms (GA) to the evo-

lution of cryptographically suitable Boolean functions has been done in [884],

where the aim was to reach high nonlinearity. The authors worked up to 16 vari-

ables and concluded that GA combined with hill climbing is much faster than

random search.

In [946, 945] are used several types of evolutionary algorithms to find correlation

immune Boolean functions with minimal Hamming weight, and [951] is the first

attempt (as far as we are aware) to mathematically show why finding balanced

Boolean functions with high nonlinearity is hard for evolutionary algorithms.

In [947] are evolved secondary constructions of bent Boolean functions (i.e. of

bent functions from bent functions), the goal being to reach many dimensions;

there is no further analysis whether such obtained constructions are valid for an

infinite number of dimensions or whether they are new, up to equivalence.

These results show that techniques with heuristics can compete with algebraic
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constructions of Boolean functions when the numbers of inputs are not too big

(for larger n, it becomes a computationally intensive process to examine a large

number of functions generated by heuristics).

For vectorial Boolean functions, the situation is less positive. In [883] are used

genetic algorithms to evolve S-boxes with high nonlinearity and low autocorre-

lation value. The selection of the appropriate genetic algorithm parameters is

discussed. In [372] are used simulated annealing and hill climbing algorithms to

evolve bijective S-boxes of sizes up to 8×8 with high nonlinearity values. In [170]

is used a heuristic method to generate MARS-like S-boxes, generating a num-

ber of S-boxes of appropriate size that satisfy all the requirements placed on the

MARS S-box and even managing to find S-boxes with improved nonlinearity val-

ues. Bent (n,m)-functions are obtained in [948] with evolutionary computation.

Picek et al. use several types of evolutionary algorithms to find differentially-6

uniform (n, n−2) functions but are not able to report success for any previously

unknown size [949]. In [682] are searched functions with particular symmetries.

The results for vectorial Boolean functions obtained with heuristics cannot re-

ally compete with algebraic constructions even when considering the nonlinearity

property. While algebraic constructions reach nonlinearity of 112 for 8× 8 S-box

size, the best result for heuristics is currently 104. Optimal values of nonlinearity

and differential uniformity have been obtained with heuristics only recently for

sizes larger than 4× 4 (see [950] where proper cellular automata rules are found

and used to construct S-boxes). The biggest advantage of using heuristics in the

design of S-boxes lies in the fact that such techniques can account for prop-

erties, like resistance against side-channel attacks, that algebraic constructions

cannot (see e.g. [297]). Finally, if we consider not only cryptographic properties

of S-boxes but also their implementation cost (like area and power), then the

heuristics could have an advantage over algebraic constructions. As an example

of such a direction, Picek et al. use evolutionary algorithms to construct S-boxes

that are either area or power efficient [953].

3.6 Boolean and vectorial functions for diffusion, secret sharing,
authentication

Designing diffusion layers for block ciphers is related to codes and to Boolean

vectorial functions. It is addressed in Subsection 4.2.3, page 185. The motivation

for secret sharing is cryptographic and that is why we cover it in this chapter,

but it could have also been covered in the next one.

3.6.1 Secret sharing, access structures and minimal codes

In [1030], Shamir has introduced a simple and elegant way to (probabilistically)

split a secret a ∈ Fq into a number n of shares so that no set of shares with

cardinality (strictly) less than m gives any information on a, where m is some
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positive integer smaller than or equal to n, and at least m shares allow recon-

structing (deterministically) the secret. Such scheme is called an (n,m) threshold

secret sharing scheme. Blakeley in [90] presented independently an idea for real-

izing the same; we shall not describe his slightly less efficient scheme. Shamir’s

scheme associates the secret a with a polynomial Pa(X) over Fq defined as

Pa(X) = a +
∑m−1
i=1 uiX

i, where the ui’s denote random coefficients. Then,

n ≥ m distinct non-zero elements α0, . . . , αn−1 are publicly chosen in F∗q and

the polynomial Pa(X) is evaluated in the αi to construct a so-called n-sharing

(a0, a1, · · · , an−1) of a such that ai = Pa(αi) for every i ∈ [0, . . . , n − 1]. To

re-construct a from at least m shares (αi, ai); i ∈ I, Lagrange’s polynomial inter-

polation is first applied to re-construct Pa(X) =
∑
i∈I ai

∏
k∈I,k 6=i

X−αk
αi−αk . Then,

the polynomial is evaluated in 0. This allows a dealer to distribute the shares to

n players so that at least m of them are able to reconstruct the secret, while less

have no information on it. We have

a =
∑
i∈I

ai · βi , (3.43)

where the constants βi are defined as follows: βi =
∏

k∈I,k 6=i

αk
αk − αi

, and can be

precomputed once for all and be public.

Shamir’s scheme is related to a problem in distributed storage systems, the exact

repair problem, described in [583]: a file (cut into blocks) to be stored is inter-

preted as a degree d polynomial F over a field F, each block being a coefficient

of the polynomial; to distribute the file over n nodes, n elements α1, . . . , αn of

F are chosen, and F (αi) is sent to node i; if a node fails, we may recover it by

polynomial interpolation from the information on any m other nodes; it is possi-

ble to organize the distribution by breaking symbols into sub-symbols belonging

to subfields, in order that for repairing a failed node is needed only a part of the

information from other nodes (more than m nodes, but with a smaller amount

of information needed globally). A lower bound is given in [583] on the amount

of information needed (the repair bandwidth), and empirical constructions are

proposed which allow to approach it.

Secret sharing schemes play also a central role in multiparty computation proto-

cols, first introduced in [1136], in which n participants (also called players) are

supposed to compute the image of a given function by making computations on

the shares of the input provided by a secret sharing scheme, each player having

one share. Such protocol is supposed to enable the coalition of players to securely

evaluate the function, while some of the players are corrupted by an adversary.

The protocol is called t-private if any t players cannot get from the protocol ex-

ecution more information than their own shares; this is possible for any function

when the number of players is at least 2t+ 1. This happens to be closely related

to the problematics of masking functions (S-boxes) and of probing security that

we shall see in Chapter 12, and is also connected with threshold implementation

(see the same chapter).
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Shamir’s scheme is a linear secret sharing scheme in the sense that the set

{(a, a0, a1, · · · , an−1) ∈ Fn+1
q } of those vectors of all possible a ∈ Fq concatenated

with all possible sharings of a is a vector subspace of Fn+1
q (a linear code) and a

is a linear function of the vector of its shares. As observed by Massey27 in [827],

given any linear [n + 1, k, d]q-code with (in the framework of the present book)

q = 2n (and assuming in practice that d ≥ 2 and that the corresponding dual

code has a minimum distance d⊥ ≥ 2, even if this is not specified by Massey), one

can define a (linear) n-sharing over Fq. Indeed, let G denote a generator matrix of

the code; we assume that its first column is non-zero (this can be ensured by per-

muting the codeword coordinates if necessary, thanks to the fact that d⊥ ≥ 2),

then the sharing (a0, a1, · · · , an−1) of a is built from a k-tuple (r1, · · · , rk) such

that a equals the (usual) inner product between (r1, · · · , rk) and the first col-

umn of G, and chosen with a uniform probability under this constraint, and the

sharing (a0, a1, · · · , an−1) is defined by (a, a0, a1, · · · , an−1) = (r1, · · · , rk) ×G.

For simplicity, up to a permutation of codeword coordinates again, and to a

change of generator matrix, we can assume that the first column of G equals the

first vector (1, 0, . . . , 0) of the canonical basis of Fkq (we can even assume that

G is in systematic form G = [Ik | M ], where Ik is the k-dimensional identity

matrix over Fq), and we have then r1 = a (and the other ri’s are random).

The reconstruction of a from its sharing (a0, · · · , an−1) is obtained by choosing

a row of a parity check matrix whose first coordinate is nonzero (which exists

because we have d ≥ 2: otherwise the vector (1, 0, . . . , 0) would belong to the

code; note that it is not the only nonzero one since d⊥ ≥ 2) and writing that the

(usual) inner product between this row and (a, a0, a1, · · · , an−1) equals 0. The

next proposition is from [991].

Proposition 48 Given a linear [n + 1, k, d]q-code used for secret sharing as

described above, with d, d⊥ ≥ 2, the knowledge of any d⊥ − 2 shares gives no

information on the secret and n− d+ 2 shares allow reconstructing the secret.

Indeed, those vectors of length d⊥−1 whose first term equals a generic secret and

the other ones are the shares of this secret at d⊥ − 2 positions cover uniformly

the whole vector space Fd⊥−1
q , by definition of the dual distance (see the obser-

vations and footnote after Definition 4, page 32), and the code of length n−d+1

built the same way with n− d+ 2 shares instead of d⊥− 2 has straightforwardly

minimum distance at least 2 and has dual distance at least 2 as well (since the

dual distance of this punctured code is larger than or equal to the dual distance

of the original code, see Lemma 2, page 32).

Some of such known secret sharing schemes use Boolean or vectorial functions,

as initiated in [269] and developed in other papers, see [456, 867, 874] and the

references therein. And as already observed in 1996 in [461, page 148 and Figure

7.1], correlation immune and resilient Boolean functions (see Definition 21, page

105) being related to the dual distance of codes by Corollary 6, page 108, they

27 We shall borrow much from his paper in the present subsection.
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can, in accordance with Proposition 48, be employed for secret sharing.

But the determination of the so-called qualified coalitions of players, which are

able to (uniquely) reconstruct the secret, is more difficult to do in general than

for Shamir’s construction (which is equivalent to using as code a possibly punc-

tured Reed-Solomon code, and is simple because such code being MDS , any set

of k positions is an information set, see pages 24 and 185, and any k positions of a

codeword determine then the full codeword uniquely). As also observed in [461]

(see Theorem 2.5), MDS codes lead then to so-called threshold secret sharing

schemes (in which qualified sets are exactly those of sufficient sizes), and con-

versely. For general codes, the set of all qualified coalitions satisfies the monotone

property. An important notion is then the access structure of a secret sharing

scheme, that is, the class of minimal qualified coalitions (for which, if any share

is removed, the remaining shares give no information about the secret).

Let us recall how the access structure of a code can be determined28. Recall that

we say that a vector u over a finite field Fq covers a vector v and we write v � u
if supp(v) ⊆ supp(u). A nonzero codeword u of a code C is called a minimal

codeword of C if it covers no codeword of C different from au, with a ∈ Fq (i.e.

no Fq-linearly independent codeword) [103, 104]. Minimum weight codewords

are minimal, but the converse is in general not true, except for MDS codes, in

which the minimal codewords are the codewords of weight n− k + 1.

As observed by Massey, no two Fq-linearly independent minimal codewords of a

linear code can have the same support, since otherwise any linear combination

would be a codeword that both of the former codewords would cover. This means

that each support of a minimal codeword corresponds uniquely to this minimal

codeword, up to linear dependency. In fact, as shown in [33], a set I of indices

is the support of a minimal codeword if and only if a parity check matrix H re-

stricted to the columns indexed by I has rank |I|−1 (the fact that it has rank less

than |I| is equivalent to the existence of a codeword whose support is included

in I, and the fact that it has rank |I|−1, say that the columns indexed in I ′ ⊂ I
with |I ′| = |I| − 1 are linearly independent, is then equivalent to the fact that

this codeword has support I and is minimal, since otherwise we could find by

linear combination a codeword whose support would be I ′, a contradiction) and

this is a condition on I which does not require to know the minimal codeword

of support I. This also proves that any minimal codeword has Hamming weight

at most n− k + 1.

Every codeword is a linear combination of minimal codewords, since if a code-

word u is not minimal, it covers a minimal codeword v and there exists a linear

combination u + cv, c ∈ Fq, which has Hamming weight strictly smaller than

wH(u); the process can continue (with u + cv) a finite number of steps and,

when it ends, it provides a linear decomposition of u over minimal codewords it

covers. Hence, for every nonzero position in a codeword, this codeword covers a

minimal codeword which is nonzero at this position.

28 In practice, this is often a very hard task.
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As shown by Massey [827] (and recalled in [33]), the access structure of the se-

cret sharing scheme corresponding to a linear code is specified by those minimal

codewords in the dual code, whose first component is nonzero (the set of shares

corresponding then to the locations where this minimal codeword is non-zero,

except the first). Indeed, as we saw, the secret is a linear combination of the

shares and the vector of the coefficients of the resulting null linear combination

belongs to the dual. Note that this property also proves that codewords of Ham-

ming weight at most 2d−1 in a binary [n, k, d] code are minimal. More generally,

it is shown in [33] for every [n, k, d]q code that the codewords of Hamming weight

at most qd
q−1 − 1 are all minimal, since given such codeword u, and supposing

the existence of a nonzero codeword v � u linearly independent of u, we have∑
c∈F∗q

wH(u− cv) = (q− 1)wH(u)−wH(v) ≤ (q− 1)wH(u)− d and the average

of wH(u−cv) when c ∈ F∗q is then at most wH(u)− d
q−1 ≤

qd
q−1 −1− d

q−1 = d−1;

one of these codewords has then Hamming weight at most this value, a contra-

diction since none can be the zero codeword by hypothesis.

The minimal codewords have been determined in [33] for the (not necessarily

binary) Hamming codes and for the binary Reed-Muller codes of order at most

2 (all nonzero codewords in RM(1, n) are minimal except the all-1 codeword,

and all codewords in RM(2, n) are minimal except those of Hamming weight

2n−1 +2n−1−h for h = 0, 1, 2 and for some of those of Hamming weight 2n−1; the

proof, too technical for being included here, is based on the facts that 2d = 2n−1

and that any non-minimal codeword in a binary code equals the sum of two

codewords with disjoint supports).

The codes whose nonzero codewords are all minimal are particularly interesting

(this makes the code easily decodable and simplifies the access structures of the

secret sharing scheme; it plays also a role in multiparty computation, see e.g.

[339]). A code having such property is called a minimal code. We have:

Proposition 49 [33] Let C be a linear code over Fq. If wmin
wmax

> q−1
q , where wmin

and wmax denote respectively the minimum and maximum nonzero weights in C,

then C is minimal.

We do not give the proof. The hypothesis of Proposition 49 seems very strong

as soon as q is large, but many examples of codes satisfying it exist and no

example of a non-binary minimal code not satisfying it is known in characteristic

2. Infinite families of minimal binary linear codes (related to Boolean functions)

not meeting this condition have been recently found in [345, 456].

A recent necessary and sufficient condition for linear codes to be minimal is:

Proposition 50 [456, 602] A linear code C over Fq is minimal if and only if,

for each pair of Fq-linearly independent codewords u and v in C, we have:∑
c∈F∗q

wH(u+ cv) 6= (q − 1)wH(u)− wH(v). (3.44)

Hence, the minimality of C is completely determined by the weights of its code-
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words, and it is more easily handled if the numbers of these weights is small.

Minimal codes derived from finite geometry (hyperovals, see page 245) are given

in [862] in relation with bent vectorial functions.

A code is called a two-weight code if its nonzero elements have two possible

weights only. Examples related to Boolean functions will be seen with Propo-

sition 68, page 219. It is shown in [602] that if C is a two-weight linear code

with length N and weights w1 and w2, such that 0 < w1 < w2 < N and

jw1 6= (j − 1)w2 for every integer j such that 2 ≤ j ≤ q, then C is minimal.

Binary three weight minimal codes are also investigated in [456].

3.6.2 Authentication schemes

The framework is as follows: Alice wishes to transmit to Bob a message m (a

vector over the field F2n) in the form (m, t) where t is a tag corresponding to m

and depending on a secret key k shared between Alice and Bob, in order that

Bob can verify the validity of the signature and nobody else than Alice and Bob

can forge a valid message.

A systematic authentication scheme is a tuple (M,T,K, {Ek : k ∈ K}), where

Ek : M 7→ T is the encoding rule related to k. To transmit an information m ∈M
to Bob, Alice calculates t = Ek(m) and sends the tuple (m, t) to Bob over the

public channel. Bob verifies that the relation t = Ek(m) is satisfied. There exist

two kinds of attacks: the attacker can try to forge (m, t) from scratch, hoping

that it is accepted by Bob, this is called the ”impersonation attack”, or he can

observe a valid tuple (m, t) and try to modify it, this is called the ”substitution

attack”. The maximal success probabilities of these attacks are denoted by PI
and PS , respectively.

PI = max
m∈M,t∈T

|{k ∈ K;Ek(m) = t}|
|K|

;

PS = max
m 6=m′∈M,t,t′∈T

|{k ∈ K;Ek(m) = t and Ek(m′) = t′}|
||{k ∈ K;Ek(m) = t}|

.

An example
Let F2h be a subfield of F2n and F a vectorial function from F2n to F2n . We define

the following scheme from [268]: M = F2n ×F2n , T = F2h , K = F2n ×F2h , E =

{Ek : k ∈ K}, where for every k = (k1, k2) ∈ K and m = (a, b) ∈ M , we have

Ek(m) = trnh(aF (k1) + bk1) + k2, where trnh is the trace function from F2n into

F2h : trnh(a) =
∑n

h−1
j=0 a2hj .

Function k 7→ Ek is a bijection from K to E and:

PI =
1

2h
, PS ≤

1

2h
+

(
1− 1

2h

)(
1− nl(F )

2n−1

)
where nl(F ) denotes the nonlinearity of F and |M | = 22n, |T | = 2h, |K| =

|E| = 2n+h. Other examples can be found for instance in [268, 303, 460].
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functions and error correcting codes

Nota Bene: Symbol n being traditionally used to denote the number of variables

of Boolean functions, what was denoted by m in Section 1.2 is changed in this

chapter into n. The codes have then length 2n, and not n as it is usual in coding.

4.1 Reed-Muller codes

Reed-Muller codes have been introduced by David Muller in [891] and their

decoding algorithm has been given by Irving Reed in [989]. They have played

an important role in the history of error correcting codes. For instance, they

were used in the sixties and early seventies for the transmission of the first

photographs of Mars by the Mariner series of spacecrafts. A Reed-Muller code

of length 32, dimension 6 and minimum distance 16 was used (precisely, the

first-order Reed-Muller code RM(1, 5)). Each codeword corresponded to a level

of darkness, this made 64 different levels and up to
⌊

16−1
2

⌋
= 7 errors could

be corrected in the transmission of each codeword. Reed-Muller codes were also

used in the 3rd generation (3G) of mobile phones (developed in the late 1990s

for release in the early 2000s), in the so-called “Transport Format Combination

Indicator” TFCI (part of the initial “handshake” between the mobile device and

the base station, designed to inform the receiver of what type of communication

will come next), for which it is extremely important to get information correct.

The same code as for Mariner spacecrafts was first used and it was later replaced

by a punctured subcode of the second-order Reed-Muller code RM(2, 5), which

had dimension 10 and minimum distance 12.

Reed-Muller codes still play an important role thanks to their specific prop-

erties (see e.g. [1, 457]) and their roles with respect to new problematics (like

Locally Correctable Codes [778]), despite the fact that their parameters are not

good1, except for the lowest and largest orders. They also constitute a useful

framework for the study of Boolean functions.

Definition 42 For every non-negative integer r and every positive integer n ≥
r, the Reed-Muller code RM(r, n) of order r and length 2n is the binary linear

code of all words of length 2n corresponding to the evaluations over Fn2 (on which

1 In the late seventies, for transmitting color photographs of Mars, the Voyager spacecrafts

used the extended binary Golay code and later Reed-Solomon codes.
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some order has been chosen) of all n-variable Boolean functions of algebraic

degree at most r.

In other words, codewords are the last columns in the truth-tables of these func-

tions. By abuse of language, we shall say that RM(r, n) is the F2-vector space of

all n-variable Boolean functions of algebraic degree at most r.

For r = 0, RM(0, n) equals the pair of constant functions.

For r = 1, RM(1, n) equals the vector space of all affine functions. Note that we

have seen in Section 1.2 that the codewords of the simplex code are the lists of

values taken on Fn2 \{0n} by all linear functions. Hence RM(1, n) is the F2-vector

space generated by the extended simplex code and the constant function 1.

For r = n, RM(n, n) equals the whole space of n-variable Boolean functions,

since every n-variable Boolean functions has an ANF and then algebraic degree

at most n.

The dimension of RM(r, n) equals 1+n+
(
n
2

)
+ · · ·+

(
n
r

)
since this is the number

of monomials of degrees at most r, which constitute a basis of RM(r, n).

Remark Let G = F2[Fn2 ] be the so-called group algebra of Fn2 over F2, consisting

of the formal sums
∑
g∈Fn2

ag g where ag ∈ F2. The algebra G has only one

maximal ideal, called its radical :

R =
{ ∑

g∈Fn2

xgX
g ;

∑
g∈Fn2

xg = 0
}
,

whose elements correspond to the words of even Hamming weight. The ideals

Rj , j ≥ 1, generated by the products of j elements of R, provide the decreasing

sequence

G ⊃ R ⊃ · · · ⊃ Rn = {02n , 12n} ,

with RiRj = Ri+j . Berman [67] observed that, for any r, RM(r, n) = Rn−r. 2

RM(r, n) being a linear code, it can be described by a generator matrix G. For

instance, a generator matrix of the Reed-Muller code RM(1, 4) can be:

G =


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1

0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1

0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1

0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1

 .

The first row corresponds to the monomial of degree 0 (the constant function

1) and the other rows correspond to the monomials of degree 1 (the coordinate

functions x1, . . . , x4), when ordering the words of length 4 by increasing Ham-

ming weights (we could choose other orderings, we have seen that this would

lead to so-called equivalent codes, see page 23).
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4.1.1 Minimum distance and minimum weight codewords

Theorem 7 The minimum distance of RM(r, n) equals 2n−r.

This was historically proved by double induction over r and n (see [809, page

375]), but there exists a simpler proof.

Proof. Code RM(r, n) being linear, its minimum distance d equals the minimum

nonzero Hamming weight of codewords. Let us first prove that d ≥ 2n−r. Since

2n−r is a decreasing function of r, it is sufficient to show the bound for functions

of algebraic degree r. Let
∏
i∈I xi be a monomial of degree r in the ANF of

a Boolean function f of algebraic degree r; consider the 2n−r restrictions of f

obtained by keeping fixed the n− r coordinates of x whose indices lie outside I.

Each of these restrictions, viewed as a function on Fr2, has an ANF of degree r

because, when fixing these n−r coordinates, the monomial
∏
i∈I xi is unchanged

and all the monomials different from
∏
i∈I xi in the ANF of f give either 0 or

monomials of degrees strictly less than r. Thus, any such restriction has an odd

(and hence a nonzero) Hamming weight (see Section 2.2). The Hamming weight

of f being equal to the sum of the Hamming weights of its restrictions, f has

Hamming weight at least 2n−r.

To complete the proof, we just need to exhibit a codeword of Hamming weight

2n−r. The simplest example is the Boolean function f(x) =
∏r
i=1 xi, that is, the

indicator of the affine space{(1, . . . , 1)} × Fn−r2 . 2

Remark.

1. The proof of Theorem 7 shows in fact that, if a monomial
∏
i∈I xi has coeffi-

cient 1 in the ANF of f , and if every other monomial
∏
i∈J xi such that I ⊂ J

has coefficient 0 (i.e. if I is maximal), then the function has Hamming weight at

least 2n−|I|. Applying this observation to the Möbius transform f◦ of f - whose

definition has been given after Relation (2.3), page 49, - shows that, if there

exists a vector x ∈ Fn2 such that f(x) = 1 and f(y) = 0 for every vector y 6= x

whose support contains supp(x) (i.e. if x is maximal in the support of f), then

the ANF of f has at least 2n−wH(x) terms; this has been first observed in [1179].

Indeed, the Möbius transform of f◦ is f .

2. The d-dimensional subspace E = {x ∈ Fn2 ; xi = 0,∀i 6∈ I}, in the proof of

Theorem 7, is a maximal odd weighting subspace: the restriction of f to E has

odd Hamming weight (i.e. has algebraic degree equal to the dimension d when

viewed as a d-variable function), and the restriction of f to any of its proper

superspaces has even Hamming weight (i.e. the restriction of f to any coset

of E has odd Hamming weight). Similarly as above, it can be proved, see [1179],

that any Boolean function admitting a d-dimensional maximal odd weighting

subspace E has Hamming weight at least 2n−d, and if d ≥ 2, applying this ob-

servation to f⊕` where ` is affine, we have that f has nonlinearity at least 2n−d.

Indeed, the restriction of f to a d-dimensional affine space has algebraic degree

d if and only if the restriction of f ⊕ ` does. See more in [191], where the proofs

are given in terms of group rings/algebras (see page 175; see [283, 323] for other
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examples where these are used). 2

Notice that all non-constant affine functions have Hamming weight 2n−1, their

supports being affine hyperplanes. Thus, non-constant affine functions are the

codewords of minimum Hamming weight in RM(1, n). More generally, the code-

words of minimum Hamming weight in RM(r, n) have been characterized (see

e.g. [809]). We give below another proof, more Boolean function oriented, of this

characterization.

Theorem 8 The Boolean functions of algebraic degree r and of Hamming weight

2n−r are the indicators of (n−r)-dimensional flats (i.e. the functions whose sup-

ports are (n− r)-dimensional affine subspaces of Fn2 ).

Proof. The indicators of (n− r)-dimensional flats have clearly Hamming weight

2n−r and they have algebraic degree r, since they are affinely equivalent to the

function
∏r
i=1 xi, because two affine subspaces of Fn2 of the same dimension are

affinely equivalent (and recall from page 53 that the algebraic degree is an affine

invariant). Conversely, let f be a function of algebraic degree r and of Hamming

weight 2n−r. Let
∏
i∈I xi be a monomial of degree r in the ANF of f and let

Ic = {1, . . . , n} \ I. For every vector α ∈ FIc2 , let us denote by fα the restriction

of f to the flat {x ∈ Fn2 ; ∀j ∈ Ic, xj = αj}, viewed as a function over FI2.

According to the proof of Theorem 7, and since f has Hamming weight 2n−r,

each function fα is the indicator δaα of a singleton {aα} of FI2. Moreover, the

mapping α ∈ FIc2 → aα ∈ FI2 is affine, i.e., for every α, β, γ ∈ FIc2 , we have

aα+β+γ = aα + aβ + aγ . Indeed, the r-variable function fα ⊕ fβ ⊕ fγ ⊕ fα+β+γ

being the restriction to FI2 of Dα+βDα+γf(x+α) where Dα+βDα+γf is a second-

order derivative of f , it has algebraic degree at most r−2, according to Corollary

1, page 56. And it is easily seen by using that δa(x) =
∏n
i=1(xi ⊕ ai ⊕ 1) or by

using Relation (2.3), page 49, that, for every i ∈ {1, . . . , n}, the coefficient of

the degree r − 1 monomial
∏
j 6=i xj in (fα ⊕ fβ ⊕ fγ ⊕ fα+β+γ)(x) (which is

null) equals the i-th coordinate of aα + aβ + aγ + aα+β+γ . This completes the

proof since, denoting by xI (resp. xIc) the restriction of x to I (resp. to Ic), the

support of f equals the set {x ∈ Fn2 ; xI = axIc} and that the equality xI = axIc
is equivalent to r linearly independent linear equations. 2

See more in [34], from a design viewpoint. The minimum weight codewords of

RM(r, n) generate the code over F2, see [420].

4.1.2 Dual

The dual of a Reed-Muller code is a Reed-Muller code:

Theorem 9 For every positive n and every non-negative r < n, the dual

RM(r, n)⊥ = {f ∈ BFn; ∀g ∈ RM(r, n), f · g =
⊕
x∈Fn2

f(x) g(x) = 0}

equals RM(n− r − 1, n).
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Proof. We have seen in Section 2.2 that the n-variable Boolean functions of even

Hamming weights are the elements of RM(n−1, n) (which equals then the parity

code of length 2n). Thus, RM(r, n)⊥ is the set of those functions f such that, for

every function g of algebraic degree at most r, the product function fg (whose

value at any x ∈ Fn2 equals f(x)g(x)) has algebraic degree at most n− 1. This is

clearly equivalent to the fact that f has algebraic degree at most n− r − 1. 2

Note that, since RM(1, n) is the F2-vector space generated by the extended

simplex code and the constant function 1, its dual RM(n−2, n) is the intersection

of the dual of the extended simplex code and the parity code. It also equals the

extended Hamming code, according to Lemma 1, page 24, applied to RM(1, n).

Characterization in the field F2n

If the vector-space Fn2 is identified with the field F2n , then the family of those

functions trn(axj) such that a ∈ F2n \ {0} and w2(j) ≤ n − r − 1 generates

RM(n − r − 1, n) (according to what we have seen on the trace representa-

tion of Boolean functions). We have then that a Boolean function f belongs to

RM(r, n) if and only if, for every nonzero j such that w2(j) ≤ n− r−1, we have∑
x∈F2n

f(x) trn(axj) = trn(a
∑
x∈F2n

f(x)xj) = 0 for every a ∈ F2n , that is:

Corollary 8 For every positive n and every non-negative r < n, a Boolean

function f over F2n belongs to RM(r, n) if and only if, for every nonzero j such

that w2(j) ≤ n− r − 1, we have
∑
x∈F2n

f(x)xj = 0.

4.1.3 Automorphism group

The Reed-Muller codes are invariant under the action of the general affine group

(i.e. the group of affine permutations over Fn2 ). More precisely, it is a simple

matter to show that:

Proposition 51 For any 1 ≤ r ≤ n − 1, the automorphism group of RM(r, n)

(that is, the group of all permutations σ of Fn2 such that f ◦ σ ∈ RM(r, n) for

every f ∈ RM(r, n)) equals the general affine group.

The sets RM(r, n) or RM(r, n)/RM(r′, n) have been classified under this action

for some values of r, of r′ < r and of n, see [611, 613, 615, 130, 812, 1053, 1057].

4.1.4 Cyclicity of the punctured code R∗(r, n)

Let us identify Fn2 with the finite field F2n . The punctured code R∗(r, n) ob-

tained from RM(r, n) by erasing in each codeword f the coordinate at zero

input, and ordering the resulting vector as (f(1), f(α), f(α2), . . . , f(α2n−2)),

where α is a primitive element of F2n , is a cyclic code. Indeed, the cyclic shift

(f(1), f(α), f(α2), . . . , f(α2n−2)) 7→ (f(α2n−2), f(1), f(α), . . . , f(α2n−3)) is equiv-

alent to changing function f(x) into f( xα ), and such transformation on Boolean
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functions does not change the algebraic degree since it is linear bijective. For

any r < n, the Reed-Muller code RM(r, n) is then an extended cyclic code [809,

page 383].

Proposition 52 For every r < n, the zeros of the punctured Reed-Muller code

R∗(r, n) of order r and length 2n−1 are the elements αi such that 1 ≤ i ≤ 2n−2

and such that the 2-weight of i is at most n− r − 1.

Proof. We have seen that any Boolean function f of algebraic degree at most

r has a univariate polynomial representation of the form
∑

0≤j≤2n−2
w2(j)≤r

fj x
j . The

codeword (f(1), f(α), f(α2), . . . , f(α2n−2)) of the cyclic code R∗(r, n) is repre-

sented by the polynomial
∑

0≤l≤2n−2 f(αl)X l (see Section 1.2), whose value at

αi equals

∑
0≤l≤2n−2

f(αl)αli =
∑

0≤j≤2n−2
w2(j)≤r

fj

 ∑
0≤l≤2n−2

αl(i+j)

 .

The sum
∑

0≤l≤2n−2 α
l(i+j) equals 0 when w2(i) ≤ n− r−1 and w2(j) ≤ r since

i + j ≥ i ≥ 1 cannot equal 2n − 1 since w2(i + j) ≤ w2(i) + w2(j), and then,

αi+j cannot equal 1, and then
∑

0≤l≤2n−2 α
l(i+j) = 1+α(2n−1)(i+j)

1+αi+j = 0. Hence,

the αi’s such that 1 ≤ i ≤ 2n − 2 and w2(i) ≤ n − r − 1 are zeros of the code.

Since their number equals the co-dimension of the code, they are the only zeros

of the code. 2

4.1.5 The problem of determining the weight distributions of Reed-Muller codes

What are in RM(r, n) the possible Hamming distances between codewords, or

equivalently the possible Hamming weights (or better, the weight distribution)?

The answer, useful for improving the efficiency of the decoding algorithms, for

evaluating their complexities, and for many other issues, is known for every

n if r ≤ 2: see Section 5.2. For r ≥ n − 3, it can also be deduced from the

MacWilliams identity (1.1), which theoretically allows to deduce the weight dis-

tribution of RM(n− r− 1, n) from the weight distribution of RM(r, n). Practi-

cally, it is necessary to be able to explicitly expand the factors (X+Y )2n−i(X−
Y )i and to simplify the obtained expression for WC(X + Y,X − Y ); this is pos-

sible up to some value of n (around 35) by running a computer.

The cases 3 ≤ r ≤ n− 4 remain unsolved (except for small values of n, see [66],

and for n = 2r, because the code is then self-dual, see [809, 959]). Asymptotically

tight bounds exist [679].

McEliece’s theorem [833] or Ax’s theorem [41] (see also the Stickelberger theorem,

e.g. in [740, 746]) shows that the Hamming weights (and thus the distances) in

RM(r, n) are all divisible by 2d
n
r e−1 = 2b

n−1
r c, where due denotes the ceiling

(the smallest integer larger than or equal to u) and buc denotes the integer part.

For instance, it is shown in [677] (see also [623]) that if dalg(g) ≤ dalg(f), then
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dH(f, g) ≡ wH(f)
[

mod 2

⌈
n−dalg(g)

dalg(f)

⌉]
and this proves the McEliece’s divisibility

property by taking g = f .

McEliece’s divisibility bound is tight and can also be shown by using the prop-

erties of the NNF ; it is deduced in [292] from the fact that, if s is the number

of monomials of degree dalg(f) > 0 in the ANF of f , then the coefficient λu of

xu in its NNF is a multiple of 2

⌊
wH (u)−1

dalg(f)

⌋
if wH(u) > 0 and of 2

⌊
wH (u)−s−1

dalg(f)−1

⌋
if

wH(u) > s and dalg(f) > 1. Moreover, it is also shown in [292] that if s < n
dalg(f) ,

then the Hamming weight of f is a multiple of 2

⌈
n−s

dalg(f)−1

⌉
−1

(larger than what

gives McEliece’s theorem).

Further properties of Hamming weights are given in [185] within the coset f ⊕
RM(1, n).

Kasami and Tokura [670] have shown that, for r ≥ 2, the only Hamming weights

in RM(r, n) occurring in the range [2n−r; 2n−r+1[ are of the form 2n−r+1−2i for

some i; and they have completely characterized the codewords: the corresponding

functions are affinely equivalent either to x1 · · ·xr−2(xr−1xr ⊕ xr+1xr+2 ⊕ · · · ⊕
xr+2l−3xr+2l−2), 2 ≤ 2l ≤ n−r+2, or to x1 · · ·xr−l(xr−l+1 · · ·xr⊕xr+1 · · ·xr+l),
3 ≤ l ≤ min(r, n − r). The functions whose Hamming weights are strictly less

than 2.5 times the minimum distance 2n−r have later been studied in [671].

It is shown in [210] (and reported in Section 5.3 below, page 204) that for ev-

ery Boolean function f on Fn2 , there exists an integer m and a Boolean func-

tion g of algebraic degree at most 3 on Fn+2m
2 whose Walsh transform satisfies:

Wg(0n+2m) = 2mWf (0n). Hence, the Hamming weight of f is related in a simple

way to the Hamming weight of a cubic function (in a number of variables which

can be exponentially larger). This shows that the distances in RM(3, n) can be

very diverse, contrary to those in RM(2, n). See also [65].

4.1.6 Covering radius

The covering radius of RM(r, n), that we shall denote by ρ(r, n), equals by defi-

nition (see Section 1.2) the maximum, when f ranges over BFn, of the minimum

Hamming distance between f and all n-variable Boolean functions of algebraic

degree at most r (i.e. of the distance between f and RM(r, n); this distance is

called the r-th order nonlinearity of f , and more simply its nonlinearity when

r = 1, see Section 3.1).

• We have ρ(1, n) = 2n−1 − 2
n
2−1 when n ≥ 2 is even (see Chapter 6). When

n is odd, as we already saw in Section 3.1, ρ(1, n) is unknown, except for

n ≤ 7, in which case it equals 2n−1−2
n−1

2 [894]. For n ≥ 9 odd, ρ(1, n) lies

strictly between 2n−1− 2
n−1

2 and 2b2n−2− 2
n
2−2c [936, 937, 684, 686, 617].

• We have limn→∞

(
2n/2 − ρ(1,n)

2n/2−1

)
= 1 (this fact, conjectured by Patterson

and Wiedemann in 1983, has been proved by Schmidt [1022] in 2019, who

also proved the same limit when restricting to balanced functions).
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• ρ(2, n) is known for n ≤ 7 (see [1104]). In [715] is calculated the second

order nonlinearity of all Boolean functions in the infinite class of those cu-

bic functions2 whose degree 3 part, up to affine equivalence, has the form⊕s
i=1 xiqi(x), s ≤ n, where s is minimal and the qi’s are quadratic on sep-

arate sets of variables, and where each qi does not depend on x1, . . . , xi.

This is done by translating in a systematic way what is known on the best

affine approximations of quadratic functions, and deducing formulae allow-

ing a direct computation of the second order nonlinearity of the cubic func-

tions above, without needing the Walsh transform. This provides a lower

bound on ρ(2, n) (more precisely, on the covering radius of RM(2, n) in

RM(3, n)). This lower bound is compared with the upper bound from [309]

that we shall recall as Relation (4.1) below; for n ≤ 20 the lower and upper

bounds are not that far from each other, and the lower bound performs also

well asymptotically. These results are extended to more general Maiorana-

McFarland functions in [714], with a focus on functions f(x, y) = x · φ(y)

where φ is perfect nonlinear, showing that some of these functions have best

quadratic approximation achieved by affine functions and that the lower

bound of [715] on ρ(2, n) can be improved. See also [1109].

• ρ(n, n), ρ(n− 1, n) and ρ(n− 2, n) equal respectively 0, 1 and 2.

• ρ(n − 3, n), n ≥ 3, has been determined in [837]: it equals n + 1 if n is odd

and n+ 2 if n is even.

• More results can be found in [610, 612, 614, 616].

We summarize what is known for small numbers of variables in Table 4.1.

r\n 1 2 3 4 5 6 7 8 9

1 0 1 2 6 12 28 56 120 242-244
[686]

2 0 1 2 6 18
[1020]

40
[1104]

84-100 171-220

3 0 1 2 8 20-23
[610]

43-67 111-167
4 0 1 2 8 22-31 58-98
5 0 1 2 10 23-41
6 0 1 2 10
7 0 1 2
8 0 1
9 0

Table 4.1 Lower and upper bounds on the covering radii of Reed-Muller codes for small n

General lower and upper bounds and more results are given in [375, 378,

379]. A first lower bound is simply the translation of the sphere covering bound:

21+n+(n2)+···+(nr)
∑ρ(r,n)
i=0

(
n
i

)
≥ 22n , and two other lower bounds are due to [378]:

ρ(r, n) ≥
{

2n−r−3(r + 4), r even

2n−r−3(r + 5), r odd
for r ≤ n− 3 and ρ(r, n) ≥ 2n−r for 2 ≤ r ≤

2 These functions are closely related to Maiorana-McFarland’s (MM) functions, see page 188;

in the case of the so-called separable functions, they are MM (up to quadratic functions).
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n− 3 and n ≥ 6. The best known upper bound, from [309], is as follows:

- a bound is first obtained for r = 2:

ρ(2, n) ≤

⌊
2n−1 −

√
15

2
· 2n2 ·

(
1− 122929

21 · 2n
− 155582504573

4410 · 22n

)⌋
(4.1)

- this bound is generalized to every r by using the inequality ρ(r, n) ≤ ρ(r −
1, n− 1) + ρ(r, n− 1) which is easily proved,

- and this implies that, asymptotically, ρ(r, n) is bounded above by:

2n−1 −
√

15

2
· (1 +

√
2)r−2 · 2n2 +O(nr−2).

The principle of the proof of (4.1) is to use that, for any two n-variable Boolean

functions f and g, we have
∑
x∈Fn2

(−1)f(x)⊕g(x) = 2n − 2 dH(f, g), which shows:

ρ(2, n) = 2n−1 − 1

2
min
f∈BFn

max
g∈RM(2,n)

∣∣∣∣∣∣
∑
x∈Fn2

(−1)f(x)⊕g(x)

∣∣∣∣∣∣
and to use that:

max
g∈RM(2,n)

∣∣∣∣∣ ∑
x∈F2n

(−1)f(x)⊕g(x)

∣∣∣∣∣ ≥
√√√√√√
∑
g∈RM(2,n)

(∑
x∈Fn2

(−1)f(x)⊕g(x)
)2k+2

∑
g∈RM(2,n)

(∑
x∈Fn2

(−1)f(x)⊕g(x)
)2k

.

We have: ∑
g∈RM(2,n)

∑
x∈Fn2

(−1)f(x)⊕g(x)

2k

=

∑
x1,...,x2k∈Fn2

(−1)
⊕2k
i=1 f(xi)

 ∑
g∈RM(2,n)

(−1)
⊕2k
i=1 g(xi)

 ,

and the mapping g ∈ RM(2, n) 7→
⊕2k

i=1 g(xi) being an F2-linear form over

RM(2, n), the sum
∑
g∈RM(2,n)(−1)

⊕2k
i=1 g(xi) equals the size of RM(2, n) when⊕2k

i=1 g(xi) is the null function, and otherwise, this sum equals 0. We refer to

[309] for the rest of the proof, which is more technical.

We have seen at page 103 that the suitably normalised r-th order nonlinearity of

a random Boolean function converges strongly for all r ≥ 1 as shown in [1021],

but no limit on ρ(r, n) similar to the one recalled above for ρ(1, n) is known yet.

Remark. The so-called “Gowers norm” (whose definition involves k-th order

derivatives of Boolean functions) is related to the covering radius of Reed-Muller

codes. We devote Section 12.4 to it. 2

A notion on cosets of the first-order Reed-Muller code called orphan or urcoset

is related to the notion of plateauedness of Boolean functions, see page 289.
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4.2 Other codes related to Boolean functions

4.2.1 Linear codes

There exist mainly two principles of constructions of linear codes (which are

binary3) from Boolean functions and vectorial functions (surveys can be found

in [454] and [455]):

• Codes from Boolean functions: Let f be an n-variable Boolean function. Re-

call that we denote its support by supp(f). We choose an order on it and

assume that it has rank n. We define the linear code Csupp(f) whose code-

words are the lists of values of the restrictions to supp(f) of the linear

functions v · x, where v ∈ Fn2 and “·” is an inner product in Fn2 . In other

words, Csupp(f) equals the code of all linear functions punctured at all the

positions which are not in supp(f). Any linear code whose generator ma-

trix G has its columns all different 4 can be obtained by this construction,

introduced in the early 1970s and called nowadays the defining-set con-

struction. Indeed, the codewords of such code are obtained as (v×G)v∈Fk2 .

The support of f being assumed to have rank n, the parameters of this

code are [wH(f), n, d], where d needs to be determined for each function

f . A generator matrix is made of the elements of supp(f) put in columns.

When f is a bent function in n ≥ 4 variables (n even), the code has two

weights (this property is characteristic) and d is their minimum (see [1120]

and other papers by Wolfmann written in French, whose results have been

rediscovered in [453] among many other results); we recall why in Chap-

ter 6 at page 219 and give more characterizations. More generally we can

consider the code obtained from any Reed-Muller code by puncturing it at

all positions outside supp(f). Note that Fn2 can be identified with F2n , and

the inner product can then be v · x = trn(vx).

Cyclic codes are also related to algebraic immunity, see page 357.

• Codes from vectorial functions:

- Given inner products in Fn2 and Fm2 (that we shall both denote by “·”
for simplicity), can be associated to each vectorial function F : Fn2 7→ Fm2
having no affine component (i.e. having strictly positive nonlinearity), the

subcodes C ′F and C ′′F of RM(r, n) where r ≥ 2 is the algebraic degree of

F , whose codewords are the Boolean functions v ·F (x)⊕u ·x, respectively

v ·F (x)⊕ u · x⊕ ε, where u ranges over Fn2 , v over Fm2 and ε over F2. More

precisely, the codewords are the lists of values of these functions, some order

being chosen on Fn2 . The Hamming weight of codeword v ·F (x)⊕u ·x (resp.

v ·F (x)⊕ u · x⊕ ε) equals 2n−1− 1
2WF (u, v) (resp. 2n−1− (−1)ε

2 WF (u, v)).

Code C ′′F equals the union of the cosets v·F+RM(1, n), where v ranges over

Fm2 . The parameters of C ′′F are [2n, n+m+1, d] where d is the nonlinearity

3 There also exist constructions of non-binary codes from so-called p-ary functions, that is,

Boolean-like functions in characteristic p.
4 Such codes are sometimes called projective codes.
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of F , see more in [257, 269, 1147, 1099, 53]. A generator matrix of C ′F is[
. . . x . . .

. . . F (x) . . .

]
, and a generator matrix of C ′′F is

 . . . 1 . . .

. . . x . . .

. . . F (x) . . .

,

where x and F (x) are column vectors and x ranges over Fn2 . Conversely,

let C be a linear [2n, k, d] binary code such that k > n + 1 and including

the Reed-Muller code RM(1, n) as a subcode. Let (b1, . . . , bk) be a basis of

C completing a basis (b1, . . . , bn+1) of RM(1, n). The n-variable Boolean

functions corresponding to the vectors bn+2, . . . , bk are the coordinate func-

tions of an (n, k − n− 1)-function whose nonlinearity is d.

The CCZ equivalence between (n,m)-functions can be expressed in terms

of these codes (see the remark at page 411).

Often, we have m = n and Fn2 is identified with F2n , the inner product

being then u · x = trn(ux).

- When m = n, the dual of the code C ′F
∗
, equal to C ′F punctured at the

zero position, plays an important role with respect to APN functions F

(defined in Definition 41, page 159) such that F (0n) = 0m, see Proposition

160, page 410; the dual of C ′′F plays a similar role with respect to general

APN functions (see the remark at page 411). When F is a power func-

tion, C ′F
∗

is cyclic; we find among such codes related to APN functions in

particular the dual of the historical 2-error-correcting BCH code of length

2n − 1.

- Codes (which are constant-weight) are deduced in [862] from o-polynomials

in relation with vectorial bent functions (see Definition 30, page 140).

- The other notion of nonlinearity of vectorial functions nlv introduced at

page 144 has been studied in [788] in relation with codes.

A hybrid construction is proposed in [1072] and other constructions of cyclic

codes from vectorial (possibly APN) functions are given in [452, 464].

We have seen (in the remark at page 113) connections between algebraic immu-

nity and linear codes; connections exist with cyclic codes, see page 357.

4.2.2 Unrestricted codes

Boolean functions play an important role with nonlinear codes, as we shall see

in Section 6.1.22 about Kerdock codes.

Vectorial functions also play a role. Given any (n,m)-function F , we can consider

the code GF = {(x, F (x));x ∈ Fn2} (the graph of F viewed as a code). When F

is linear, GF is a linear code, but it happens that nonlinear functions F provide

better parameters, as in the case of Kerdock and Preparata codes.

Codes of the form GF are systematic: the set of n first indices has the property

that every possible n-tuple occurs in exactly one codeword within the coordi-

nates of indices 1, . . . , n. We call {1, . . . , n} an information set of C. Conversely,

if a subset I of {1, . . . , N}, where N is the length C, is an information set, then,
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up to permutation of the coordinates, it has the form GF . It is easily shown that

all linear codes have such property: the generator matrix having rank k, it has k

linearly independent columns and placing them in the k first positions, we can

multiply the resulting permuted generator matrix on the left by the inverse of the

invertible square matrix made of its first k columns; this provides a systematic

permuted generator matrix.

Such codes play a role in relation with countermeasures to side channel attacks,

see Section 12.1.1, page 467. They need then to be complementary information

set codes (CIS) (see the same page) in the sense that they admit two comple-

mentary information sets. This is a necessary and sufficient condition so that F

can be a permutation.

4.2.3 Codes and diffusion layers in block ciphers

The diffusion (see definition at page 95) ensured by a mapping F can be studied

by analyzing the pairs (x − y, F (x) − F (y)). In practice, q will be a power of 2

and “−” will be the same as “+”.

These pairs play also a role with respect to the differential attack.

Definition 43 Let q be a power of a prime. The differential branch number

of a function F : Fnq 7→ Fmq is defined as: β(F ) = minx,y∈Fnq ,x 6=y{dH(x, y) +

dH(F (x), F (y))}, the minimum distance of code GF . The differential branch

number of a linear function F : Fnq 7→ Fmq (or of its matrix) is then defined

as: β(F ) = minx∈Fnq ,x 6=0n{wH(x) + wH(F (x))}.

β(F ) quantifies the level of diffusion induced by F when it is used as a diffusion

layer in a block cipher. When q = 2n and F diffuses the outputs of (n, n)-S-boxes,

β(F ) indicates the minimum number of active S-boxes.

Also, the larger β(F ), the more difficult the research of characteristics needed

for mounting differential attacks (see page 157). An r-round characteristic con-

stitutes an (r+1)-tuple of difference patterns: (∆X0,∆X1, . . . ,∆Xr). The prob-

ability of this characteristic is the probability that an initial difference pattern

∆X0 propagates to difference patterns ∆X1, . . . ,∆Xr after 1, 2, . . . , r rounds.

If F is linear5, then GF is linear and the diffusion is studied by analyzing the

pairs (a, F (a)).

It is easily shown that the differential branch number of a linear permutation

equals that of its inverse and that, for every F : Fnq 7→ Fmq , we have β(F ) ≤ m+1,

with equality if and only if the code GF = {(x, F (x)); x ∈ Fnq } is MDS .

If GF is an MDS [N, k, d]-code such thatN > k then any punctured code obtained,

for instance, by erasing the last coordinate of each codeword is an MDS [N −
1, k, d−1] code. For every prime power q, every N < q and every k ≤ N , we know

5 Contrary to a substitution layer, a diffusion layer does not need to be nonlinear; for
reasons of speed, it is then better to choose it linear.
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that there exist MDS codes over Fq of parameters [N, k,N−k+1] (Reed-Solomon

codes, for instance). This allows to build optimal diffusion layers.

Definition 44 The linear branch number of a linear function F : Fnq 7→ Fmq is

defined as:

β′(F ) = min
a,b∈Fnq , (a,b)6=(0n,0n)

a·x⊕b·F (x)unbalanced

{wH(a) + wH(b)}.

The linear branch number of a function F : Fnq 7→ Fmq is the dual distance of the

code {(x, F (x)), x ∈ Fnq }. Then if F is linear and F ′ is the linear mapping whose

matrix is the transpose of that of F , we have β′(F ) = β(F ′).

In [795] is proposed a nonlinear diffusion layer based on Kerdock codes.

4.2.4 Codes and association schemes

Association schemes, originated in statistics, have been used in coding theory

and combinatorics in the seventies by Delsarte, McEliece and others, to obtain

strong upper bounds on the size of codes and other combinatorial objects, and

to characterize those objects (such as perfect codes) which meet these bounds.

They have also been studied in relation to Boolean functions. They are related to

graphs (that we encountered at page 89). For more details, the reader is referred

to [411, 424].

Definition 45 Let V be a finite set of vertices and {G0, G1, . . . , Gd} be bi-

nary relations on V with G0 = {(x, x) : x ∈ V }. Then the decomposition

(V ;G0, G1, . . . , Gd) (represented in short as (V, {Gi}0≤i≤d)) is called an asso-

ciation scheme of class d on V provided that the following properties hold:

- V × V = G0 ∪G1 ∪ · · · ∪Gd and Gi ∩Gj = ∅ for i 6= j;

- tGi = Gi′ for some i′ ∈ {0, 1, . . . , d}, where tGi = {(x, y) : (y, x) ∈ Gi}; (If

i′ = i, then we call Gi symmetric.)

- for i, j, k ∈ {0, 1, . . . , d} and x, y ∈ V with (x, y) ∈ Gk, the number pkij :=

#{z ∈ V : (x, z) ∈ Gi, (z, y) ∈ Gj} is a constant.

An association scheme is said to be symmetric if each Gi is symmetric.

One of the well-known construction methods of association schemes is to use

Schur rings. Constuctions of association schemes from bent functions (in odd

characteristic) have been considered in the literature (see e.g. [964]). In [506] have

been studied Boolean functions arising in some popular association schemes.

4.2.5 Codes and secret sharing

We have seen in Subsection 3.6.1, page 168, how codes play a role with respect

to secret sharing and that Boolean functions can play a role in this domain.



5 Functions with weights, Walsh
spectra and nonlinearities easier to
study

In this chapter, we visit diverse types of Boolean and vectorial functions, whose

study is simpler than for general functions. We will encounter them again in

almost all subsequent chapters.

5.1 Affine functions and their combinations

Affine functions are weak cryptographically (see Sections 3.1 and 3.4), and many

criteria seen in Chapter 3 quantify the difference between cryptographic functions

and affine functions. However, good functions can be obtained by combining

affine functions in different ways. Before presenting them, we briefly address

affine functions themselves.

Affine Boolean functions
The Hamming weights and the Walsh spectra of affine Boolean functions (i.e. of

the codewords of RM(1, n)) are peculiar.

The Hamming weight of any non-constant affine function is 2n−1 since this is

the size of any affine hyperplane. The Hamming weights of the two constant

functions are of course 0 and 2n.

Recall from page 55 that, given any inner product “·”, any affine Boolean function

can be written in the form `(x) = a · x⊕ ε, where a ∈ Fn2 and ε ∈ F2. The Walsh

transform of such function takes null value at every vector u 6= a and takes value

2n (−1)ε at a. The Walsh support is then a singleton.

Conversely, every Boolean function whose Walsh support is a singleton is an

affine function, according to the inverse Walsh transform formula (2.43), page

78, and to Parseval’s Relation (2.47), page 79.

Of course, the nonlinearity of any affine Boolean function is null and this is

characteristic of affine functions.

Affine vectorial functions
The component functions of affine (n,m)-functions are affine Boolean functions

(this property is characteristic of affine vectorial functions). If F (x) = L(x) + a

where L is a linear (n,m)-function and a ∈ Fm2 , then, for every (u, v) ∈ Fn2 ×
Fm2 , WF (u, v) =

∑
x∈Fn2

(−1)v·L(x)⊕u·x⊕v·a =
∑
x∈Fn2

(−1)(L∗(v)+u)·x⊕v·a equals
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2n(−1)v·a if u = L∗(v) and is null otherwise, where L∗ is the adjoint operator of

L, that is, where v · L(x) = L∗(v) · x for every v and x (in the case where “·” is

the usual inner product , the matrix of L∗ is simply the transpose of that of L).

Of course, the nonlinearity of any affine vectorial function is null, but this is not

characteristic of affine vectorial functions (it is characteristic of the fact that at

least one component function of F is affine).

5.1.1 Maiorana-McFarland functions

Since the Walsh transform of affine functions behaves so simply, it is natural to

try building more robust functions by using them as building blocks in construc-

tions. A first way is based on the additive structure of Fn2 as an F2-vector space.

This leads to considering those functions whose restrictions to each coset a+E

of some F2-vector subspace E of Fn2 are affine. Up to affine equivalence, we can

take E = Fr2 × {0n−r}. Then the corresponding functions are called Maiorana-

McFarland (MM) functions, since originally, the idea of such functions comes

from Maiorana and McFarland [834], as reported in [441]. The general class,

obtained by considering all affinely equivalent functions to Maiorana-McFarland

functions, is called the completed Maiorana-McFarland class.

Maiorana-McFarland Boolean functions
They have been first investigated for building bent functions, see Section 6.1.15,

page 233, and later been considered in [181] for constructing correlation immune

and resilient functions, see Subsection 7.1.8, page 319. Recall that every affine

Boolean function has the form a · x ⊕ ε. The idea of Maiorana-McFarland’s

construction corresponds to making a and ε vary. For convenience, instead of

denoting the input to the global function by x = (x1, . . . , xn), we denote it then

by (x, y), where x = (x1, . . . , xr) and y = (xr+1, . . . , xn).

Definition 46 Let n and r be any positive integers such that r ≤ n. We call

Maiorana-McFarland’s function any n-variable Boolean function of the form:

f(x, y) = x · φ(y)⊕ g(y); x ∈ Fr2, y ∈ Fn−r2 , (5.1)

where φ is a function from Fn−r2 to Fr2 and g is an (n − r)-variable Boolean

function. We denote by MMr the corresponding class.

The size of this class roughly equals 2(r+1)2n−r .

An example already seen of Maiorana-McFarland Boolean function is the ad-

dress function (see page 87), with r ≈ n − log2(n). Note that, for every r < n,

we have MMr+1 ⊆ MMr (this can be seen directly with Relation (5.1) or by the

fact that the restriction of an affine function to an affine subspace is affine) and

that MM1 = BFn (since every function in one variable is necessarily affine).

The algebraic degree of f in (5.1) is at most n − r + 1 (and at most n − r if∑
y∈Fn−r2

φ(y) = 0r) since the algebraic degree of φ is at most n− r (and at most

n − r − 1 if
∑
y∈Fn−r2

φ(y) = 0r). We shall see in Section 5.2 that all quadratic
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functions belong to the completed MMdn2 e class.

Remark Maiorana-McFarland functions can be viewed as the concatenations of

affine functions. Indeed, let us order all the binary words of length n in lexi-

cographic order, with the bit of higher weight on the right handside. Then, the

truth-table of f is the concatenation of the truth-tables of its restrictions ob-

tained by fixing the values of the n − r last bits of the input and letting the r

first input bits freely range over F2. And f is an MMr function if and only if all

these restrictions are affine. 2

The calculation of Hamming weight, Walsh spectrum and nonlinearity are

easier for functions in MMr, r ≥ 2, than for general Boolean functions, and

in some cases can be completely determined. Note that since the input to f is

written in the form (x, y) where x ∈ Fr2, y ∈ Fn−r2 , the input to Wf is better

written (u, v), where u ∈ Fr2, v ∈ Fn−r2 .

Proposition 53 Let f be the function given by Relation (5.1). Then, assuming

that the inner product in Fr2 × Fn−r2 writes (u, v) · (x, y) = u · x ⊕ v · y (where

we use the same notation “ ·” for denoting inner products in Fr2 and Fn−r2 ), we

have:

Wf (u, v) = 2r
∑

y∈φ−1(u)

(−1)g(y)⊕v·y; u ∈ Fr2, v ∈ Fn−r2 ,

where φ−1(u) denotes the pre-image of u by φ. Hence:

wH(f) = 2n−1 − 2r−1
∑

y∈φ−1(0r)

(−1)g(y)

and

nl(f) = 2n−1 − 2r−1 max
u∈Fr2, v∈F

n−r
2

∣∣∣∣∣∣
∑

y∈φ−1(u)

(−1)g(y)⊕v·y

∣∣∣∣∣∣ .
Proof. We have

Wf (u, v) =
∑

x∈Fr2,y∈F
n−r
2

(−1)f(x,y)⊕u·x⊕v·y

=
∑

y∈Fn−r2

(−1)g(y)⊕v·y
∑
x∈Fr2

(−1)(φ(y)+u)·x


= 2r

∑
y∈φ−1(u)

(−1)g(y)⊕v·y,

since
∑
x∈Fr2

(−1)(φ(y)+u)·x is null when φ(y) 6= u. 2

Proposition 53 shows that the Walsh support of f is included in Im(φ)×Fn−r2 .

Note that this Walsh support can be made very small (minimizing the size of
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Im(φ) and the value of n − r), even while ensuring some properties like the

nonexistence of linear structure.

We shall see that MMr class provides easy constructions of bent (or highly

nonlinear) functions, correlation immune functions and resilient functions. It

will then be important to be able to say if a given Boolean function is in the

completed MMr class or not. The following proposition is an easy extension of

an observation from [441]:

Proposition 54 An n-variable Boolean function f belongs to the completed

MMr class if and only if there exists an r-dimensional vector space E such that

DaDbf is the null function for every a, b ∈ E.

Proof. The condition is clearly necessary. It is also sufficient since it means that

each restriction of f to a coset of E is affine. 2

Note that for such function, E is in general not the linear kernel of f (see Defi-

nition 25, page 120); it can be a superset of the linear kernel.

Maiorana-McFarland vectorial functions
It is easily seen that an r-variable vectorial function is linear if and only if all

its component functions are linear. Let n, r and m be positive integers such that

r ≤ n. Let F be any function of the form:

F : (x, y) ∈ Fr2 × Fn−r2 7→ ψ(x, y) +G(y) ∈ Fm2 , (5.2)

where G is any function from Fn−r2 to Fm2 and ψ : Fr2×Fn−r2 7→ Fm2 is such that,

for every y ∈ Fn−r2 , the function x 7→ ψ(x, y) is linear. Then, for every y ∈ Fn−r2

and w ∈ Fm2 , there exists φ(y, w) ∈ Fr2 such that w · ψ(x, y) = φ(y, w) · x,

and this property is characteristic of the functions of the form (5.2). For every

(u, v, w) ∈ Fr2 × Fn−r2 × Fm2 , we have:

WF ((u, v), w) =
∑

(x,y)∈Fr2×F
n−r
2

(−1)(φ(y,w)+u)·x⊕w·G(y)⊕v·y

= 2r
∑

y∈Fn−r2 ; φ(y,w)=u

(−1)w·G(y)⊕v·y.

Remark If r divides n, then we can endow Fn2 with the structure of the field

F2n and Fr2 with the structure of subfield F2r of F2n . In particular, if r = n
2

(which will be well suited for designing bent functions), we can identify Fn2 with

F
2
n
2
× F

2
n
2

and we consider the functions of the form

F (x, y) = L(xφ(y)) +G(y), (5.3)

where the product xφ(y) is calculated in F
2
n
2

and L is any linear or affine

function from F
2
n
2

to Fm2 , φ is any function from F
2
n
2

to itself and G is any

(n2 ,m)-function. 2
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5.1.2 Niho and PSap-like functions

When Fn2 is identified with F2n , we can also use the multiplicative structure

of F∗2n to build Boolean functions from affine functions. Similarly to the case of

Maiorana-McFarland functions, in which we considered additive subgroups of Fn2
and their cosets, we can consider multiplicative subgroups of F∗2n and their cosets.

A natural choice1 as a subgroup is the multiplicative group of a subfield F2m of

F2n (where m is a divisor of n). We can view F∗2n as the union of the cosets µF∗2m
of F∗2m , where µ ranges over a subset U of F∗2n containing one representative

of each coset of F∗2m and one only (U has then 2n−1
2m−1 elements). Under some

condition, it is possible to take U equal to the multiplicative subgroup of F∗2n
of order 2n−1

2m−1 . This is possible when 2m − 1 and 2n−1
2m−1 are co-prime (which is

always the case if n is even and m = n
2 , in which case the representation of the

elements of F∗2n in the form µx, x ∈ F∗2m , is often called polar representation2),

since there exist then relative integers i, j such that i(2m − 1) + j 2n−1
2m−1 = 1, and

given a primitive element α of F2n , we have then α = (α2m−1)i
(
α

2n−1
2m−1

)j
and

α2m−1 ∈ U , α
2n−1
2m−1 ∈ F∗2m . It is observed in [804] that, if3 n = 2m, any (n, n)-

function F (and therefore any n-variable Boolean function) can then be uniquely

represented by a polynomial in the form F (µx) =
∑2m−2
s=0

∑2m

t=0 as,tµ
txs, where

as,t ∈ F2n , µ ∈ U, x ∈ F∗2m (with additionally the indication of the value of F (0)),

and that if F (0) =
∑
µ∈U,x∈F∗

2m
F (µx), its algebraic degree equals the maximal

2-weight of s(2m + 1)u + t(2m − 1)v [mod 2n − 1] such that as,t 6= 0, where

(2m + 1)u+ (2m − 1)v = 1.

We consider then those n-variable Boolean functions whose restrictions to the

cosets µF∗2m , where m divides n, coincide with affine functions:

f(µx) = trm(xφ(µ)) + g(µ); µ ∈ U, x ∈ F∗2m , (5.4)

where φ is a function from U to F2m and g is a Boolean function over U . And

a value must still be chosen for f(0). Note that if each restriction to µF2m has

algebraic degree less than m (in particular if dalg(f) < m), then the univari-

ate representation f(z) =
∑2n−2
i=0 aiz

i of f satisfies “(i 6= 0 and ai 6= 0) ⇒
(i [mod 2m− 1] ∈ I)”, where I = {2j ; j = 0, . . . ,m− 1}: this sufficient condition

is indeed necessary since, assuming without loss of generality that a0 = 0, for

every ω ∈ F∗2n , the function x ∈ F2m 7→ f(ωx) =
∑2n−2
i=0 aiω

ixi[mod 2m−1] being

linear, we have that k 6∈ I ⇒
∑

0≤i≤2n−2
i≡k [mod 2m−1]

aiω
i = 0, and by uniqueness of the

univariate representation of the functions of ω ∈ F2n , this completes the proof

[311].

Recall that functions trn, trm and trnm (see page 60) satisfy that, for every

1 But not the only one; investigations could be made on other subgroups, like those of order
2n−1
2m−1

, where m divides n (for which affinity would no more be the property on which the

functions would be built).
2 A slightly different representation is the trace 0/trace 1 representation, see [547].
3 More general cases are studied there.
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a ∈ F2n , we have trn(a) = trm(trnm(a)), and that, for every u ∈ F2n and

x ∈ F2m , we have trnm(ux) = x trnm(u). Therefore, for µ ∈ U, x ∈ F2m , we

have trn(uµx) = trm(xtrnm(uµ)). We have then, for every u ∈ F2n :

Wf (u) = (−1)f(0) +
∑

µ∈U,x∈F∗
2m

(−1)trm(x [φ(µ)+trnm(uµ)])⊕g(µ)

= (−1)f(0) −
∑
µ∈U

(−1)g(µ) + 2m
∑

µ∈U ;φ(µ)+trnm(uµ)=0

(−1)g(µ), (5.5)

wH(f) = 2n−1 − 1

2

(−1)f(0) −
∑
µ∈U

(−1)g(µ) + 2m
∑

µ∈φ−1(0)

(−1)g(µ)


and

nl(f) = 2n−1−1

2
max
u∈F2n

∣∣∣∣∣∣(−1)f(0) −
∑
µ∈U

(−1)g(µ) + 2m
∑

µ∈U ;φ(µ)+trnm(uµ)=0

(−1)g(µ)

∣∣∣∣∣∣ .
A subcase is when function g is null in (5.4) (i.e. when the restrictions to the

cosets µF∗2m coincide with linear functions), which leads (when n = 2m) to the

so-called Niho Boolean functions (the name comes from a theorem by Niho [902]

dealing with power functions; see a survey on their applications in [769]):

f(µx) = trm(xφ(µ)); µ ∈ U, x ∈ F∗2m , (5.6)

among which are bent functions, see Subsection 6.1.15. Another subcase is (also

when n = 2m) when function φ is null in (5.4) (i.e. when the restrictions to

the cosets µF∗2m coincide with constant functions), which leads to the so-called

PSap-like class of Boolean functions:

f(µx) = g(µ); µ ∈ U, x ∈ F∗2m , (5.7)

among which are also bent functions, see Subsection 6.1.15 as well. In [769] are

studied Niho power functions with few Walsh values.

Niho and PSap-like classes in bivariate form
The last sum in (5.5) is not always easily simplified further since it deals with

U , which has no additive structure in general. This can be circumvented when

n = 2m (this case can be generalized) by representing the elements of F2n by

ordered pairs of elements of F2m (which is possible since F2n is a plane over F2m).

It is then easily seen that the subset U introduced at the beginning of the present

subsection can be taken equal to {(0, 1)} ∪ {(1, λ), λ ∈ F2m} and one of the

cosets of F∗2m becomes then {(0, y), y ∈ F∗2m} and the others become the sets

{x, λx), x ∈ F∗2m} where λ ∈ F2m . We have then:

f(x, y) =


trm

(
xφ( yx )

)
+ g( yx ); x ∈ F∗2m , y ∈ F2m

trm(a y) + ε; x = 0, y ∈ F∗2m
f(0, 0); x = y = 0,

(5.8)
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where a ∈ F2m , ε ∈ F2, φ is a function from F2m to F2m , g is a Boolean function

over F2m , and where the products xφ( yx ) and a y are calculated in F2m .

We have then, for every u, v ∈ F2m , that Wf (u, v) equals:

(−1)f(0) +
∑
y∈F∗

2m

(−1)trm(y (a+v))+ε +
∑

x∈F∗
2m
,y∈F2m

(−1)trm(x [φ( yx )+u+v yx ])+g( yx )

= (−1)f(0) − (−1)ε +
∑
y∈F2m

(−1)trm(y (a+v))+ε +
∑
x∈F∗

2m
z∈F2m

(−1)trm(x [φ(z)+u+vz])+g(z)

= (−1)f(0) + (2mδa(v)− 1)(−1)ε + 2m
∑

z∈F2m ;

φ(z)+u+vz=0

(−1)g(z) −
∑
z∈F2m

(−1)g(z).(5.9)

We have then: wH(f) =

2n−1−1

2

(−1)f(0) + (2mδ0(a)− 1)(−1)ε + 2m
∑

z∈φ−1(0)

(−1)g(z) −
∑
z∈F2m

(−1)g(z)


and

nl(f) = 2n−1 − 1

2
A,

where A equals

max
u,v∈F2m

∣∣∣∣∣∣∣(−1)f(0) + (2mδa(v)− 1)(−1)ε + 2m
∑

z∈F2m ;

φ(z)+u+vz=0

(−1)g(z) −
∑
z∈F2m

(−1)g(z)

∣∣∣∣∣∣∣ .

5.2 Quadratic functions and their combinations

The next functions to be naturally considered after affine ones are quadratic ones.

We shall see that they offer a compromise between robustness and simplicity.

They will play roles in almost all domains addressed in the subsequent chapters.

5.2.1 Quadratic Boolean functions

The behavior of quadratic Boolean functions (i.e. of the codewords of RM(2, n))

is rather simple (less, though, than that of affine functions). There are many

results on their Walsh transform, that we shall try to present completely, but

without being able to give all proofs, since this would take too much space.

Absolute value of the Walsh transform
Recall that Relation (2.55), page 81, states that, for every Boolean function f , we

have F2(f) =
∑
b∈Fn2

F(Dbf), where F(f) =
∑
x∈Fn2

(−1)f(x). If f is quadratic,
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then Dbf is affine for every b ∈ Fn2 , and is therefore either balanced or constant.

Since F(g) = 0 for every balanced function g, we deduce:

F2(f) = 2n
∑
b∈Ef

(−1)Dbf(0n), (5.10)

where Ef is the linear kernel (i.e. the set of all b ∈ Fn2 such that Dbf is constant,

see Section 3.1). Since f is quadratic, Ef is also the kernel {x ∈ Fn2 ; ∀y ∈
Fn2 , βf (x, y) = 0} of the symplectic4 form associated to f :

βf (x, y) = f(0n)⊕ f(x)⊕ f(y)⊕ f(x+ y).

In other words, Ef is the radical of the quadratic form.

The restriction of the function b 7→ Dbf(0n) = f(b) ⊕ f(0n) to Ef being linear,

since we have already seen after Definition 25, page 120, that the restriction of

f to Ef is affine, we deduce from (5.10) that F2(f) equals 2n |Ef | if f(b)⊕ f(0n)

is null on Ef (i.e. if f is constant on Ef ), and is null otherwise. Note that in

the former case, f is constant on any coset a + Ef of Ef , since f and Daf are

constant on Ef . According to Relation (2.35), page 75 (and since the linear kernel

of f(x)⊕a·x equals that of f), this proves the following proposition, which shows

in particular that the absolute value of the Walsh transform of every quadratic

Boolean function takes only two values, one of which is 0 (such functions will be

called plateaued in Section 6.2).

Proposition 55 [209] Let n be any positive integer. Any n-variable quadratic

function f is unbalanced if and only if its restriction to its linear kernel Ef ( i.e.

the kernel of its associated symplectic form) is constant, or equivalently, if every

constant derivative of f is null. Then, f is constant on any coset of Ef and the

Hamming weight of f equals 2n−1 ± 2
n+k

2 −1 where k is the dimension of Ef .

For every a ∈ Fn2 and every n-variable quadratic function f , Wf (a) is nonzero if

and only if the restriction of f(x)⊕ a · x to Ef is constant. Then, Wf (a) equals

±2
n+k

2 .

Note that Proposition 55 implies that f is balanced if and only if there exists b ∈
Fn2 such that the derivative Dbf(x) = f(x)⊕f(x+b) equals the constant function

1. For non-quadratic Boolean functions, this condition for f to be balanced is

sufficient but not necessary.

Note that, according to Parseval’s relation, there exists a such that Wf (a) 6= 0.

Proposition 55 implies then that n+k
2 is an integer (because the Hamming weight

is an integer), and then that the co-dimension of Ef must be even. This co-

dimension is the rank of βf , also called by abuse of language the rank of f . Note

that, given two quadratic functions f and g, we have |rank(f ⊕ g)− rank(f)| ≤
rank(g) because the rank of matrices is sub-additive: rank(A+B) ≤ rank(A) +

rank(B).

We also deduce:

4 Bilinear, symmetric, and null for x = y; the associated matrix is called a symplectic matrix .
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Corollary 9 Let n be any positive integer and f any n-variable quadratic func-

tion. The nonlinearity of f equals 2n−1 − 2
n+k

2 −1 = 2n−1 − 2n−
rk(f)

2 −1, where k

is the dimension of the linear kernel of f and rk(f) is the rank of βf .

The Hamming weight of an n-variable quadratic Boolean function belongs then

to the set {2n−1} ∪ {2n−1 ± 2i; i =
⌈
n
2

⌉
− 1, . . . , n− 1} and can be any element

of this set, since it is easily seen that the dimension of the linear kernel in the

case of function x1x2 ⊕ x3x4 ⊕ · · · ⊕ x2r−1x2r equals n − 2r. The nonlinear-

ity of an n-variable quadratic Boolean function can be any element of the set

{2n−1−2i; i =
⌈
n
2

⌉
−1, . . . , n−1}, and if f has Hamming weight 2n−1±2i, then

for every affine function l, the Hamming weight of the function f ⊕ l belongs to

the set {2n−1 − 2i, 2n−1, 2n−1 + 2i}.

The method seen above is particularly simple5, but it does not allow determin-

ing whether the Hamming weight is 2n−1 − 2i or 2n−1 + 2i when the function is

not balanced, nor determining the sign of the Walsh transform. It may be much

more difficult to calculate this sign than the absolute value. Such calculation

is sometimes necessary. This is the case for instance when trying to determine

the absolute value of the Walsh transform of a cubic function by applying Re-

lation (2.55), page 81, or when we calculate the size of the pre-image of an

element u ∈ Fm2 by a quadratic function F : Fn2 7→ Fm2 , thanks to the formula

|{x ∈ Fn2 ;F (x) = u}| = 2−m
∑
x∈Fn2 , v∈Fm2

(−1)v·(F (x)+u).

Dickson form of a quadratic function
A first important step, anterior to the method above, has been made by Dickson

for calculating explicitly the Hamming weight of quadratic functions, by showing

as described in [809, page 438] that any non-affine quadratic Boolean function f

over Fn2 is affinely equivalent to:

x1x2 ⊕ · · · ⊕ x2r−1x2r ⊕ `, (5.11)

where 2r is the rank of the quadratic function and ` is an affine function (which

can be taken equal, up to affine equivalence, to 0, 1 or x2r+1). This is easily

shown: by hypothesis, f has a monomial of degree 2 in its ANF, and we can as-

sume without loss of generality that this monomial is x1x2. The function has then

the form x1x2⊕x1f1(x3, . . . , xn)⊕x2f2(x3, . . . , xn)⊕f3(x3, . . . , xn) where f1, f2

are affine functions and f3 is quadratic. Then, f(x) = (x1⊕ f2(x3, . . . , xn))(x2⊕
f1(x3, . . . , xn))⊕ f1(x3, . . . , xn)f2(x3, . . . , xn)⊕ f3(x3, . . . , xn) is affinely equiva-

lent to the function x1x2⊕f1(x3, . . . , xn)f2(x3, . . . , xn)⊕f3(x3, . . . , xn). Applying

this method recursively shows:

Theorem 10 Every quadratic non-affine function is affinely equivalent to

x1x2 ⊕ · · · ⊕ x2r−1x2r ⊕ x2r+1 (5.12)

5 Theoretically; in practice, calculating the dimension of the linear kernel is not always an
easy task.
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(where r ≤ n−1
2 ) if it is balanced, to

x1x2 ⊕ · · · ⊕ x2r−1x2r (5.13)

(where r ≤ n
2 ) if it has Hamming weight smaller than 2n−1 and to

x1x2 ⊕ · · · ⊕ x2r−1x2r ⊕ 1 (5.14)

(where r ≤ n
2 ) if it has Hamming weight larger than 2n−1.

The unique expressions (5.12), (5.13) and (5.14) are called the Dickson form of

the quadratic function. They allow describing precisely the weight distribution

of RM(2, n) [809, page 441].

Walsh transform when the function is given by its ANF
We have seen how a quadratic Boolean function can be put in the form g(L(x)+b)

where L is a linear automorphism and g is in Dickson form. Thanks to Relation

(2.58), page 82 and to Lemma 4, page 77, it is then enough to be able to calculate∑
x∈Fn2

(−1)x1x2⊕···⊕x2r−1x2r⊕u·x, for every u ∈ Fn2 and every r ∈ {1, . . . , bn2 c}.
This sum equals:∑

x∈Fn2

(−1)
⊕r
i=1[(x2i−1⊕u2i)(x2i⊕u2i−1)⊕u2i−1u2i]⊕u2r+1x2r+1⊕···⊕unxn

and equals then 2n−r(−1)
⊕r
i=1 u2i−1u2i if u2r+1 = · · · = un = 0 and 0 otherwise.

Since the dimension k of the kernel Ef of the symplectic form βf (x, y) equals

n−2r, this shows again that the Walsh transform Wf (u) lies in {0,±2(n+k)/2} =

{0,±2n−r} for every u. But we have also the sign of Wf (u).

Remark. Any quadratic function belongs to the completed Maiorana-McFarland

class; this can be easily seen from its Dickson form. Note however that given a

quadratic function in Maiorana-McFarland form f(x, y) = x · (L(y) + b)⊕ g(y),

where x ∈ Fk2 , y ∈ Fn−k2 and L is linear, the linear kernel of f is not E = Fk2×{0k},
in general, despite the fact that DaDa′f is null for a, a′ ∈ E. Indeed, writing

a = (a1, a2), we have Daf(x, y) = x · L(a2) ⊕ a1 · L(y + a2) ⊕ a1 · b ⊕Da2
g(y),

and we do not have necessarily that Daf is contant for a ∈ E. 2

Remark. According to Theorem 2, page 82, the functions whose Walsh trans-

form values are all divisible by 2n−1 are quadratic. According to Theorem 10,

they are the sums of an affine function and of the product of two affine functions.

This proves one of the points that we asserted at page 83. 2

More general approach on the Walsh transform
Calculating the Dickson form of a quadratic Boolean function in generic number

n of variables is most often impossible when the function is given by its trace

representation. As originally shown by Dillon and Dobbertin in [448, Appendix

A] for the case of functions trn(x2i+1) and generalized by Hou to all quadratic
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functions, there is a possibility of relating all the values of the Walsh transform

to one of them (which needs of course to be nonzero; we know by the Parseval

relation that such nonzero value necessarily exists). If the sign of one of these

nonzero Walsh values is known, then all will be deduced.

X. Hou in [625] calculates the product of two nonzero Walsh values, instead of

calculating the square of one value as we did in Proposition 55. This has the

interest of providing the sign of every value Wf (u), knowing one of them. Hou

works with quadratic functions in trace form. This does not reduce theoretically

the generality of his results since any function admits a trace form. However,

in practice, if a Boolean function is given by its ANF , it is non-negligible work

to first determine its trace representation; and if, instead of working with a

particular function in a particular number of variables, we work with all functions

with an ANF of some form in arbitrary number of variables, it is most often

impossible. We shall then revisit Hou’s result in a way which will not depend on

a particular representation of the functions. Subsequently, we shall see what this

result gives in trace representation.

Hou needs to assume that Wf (0n) 6= 0 (i.e. that f is unbalanced). This does not

reduce the generality since, if f is balanced, we can apply the result to one of

the unbalanced functions f(x) ⊕ b · x. We assume then that Wf (0n) 6= 0. This

means according to Proposition 55 that any constant derivative of f is null on

Fn2 , i.e., for every x ∈ Ef , we have f(x) = f(0n).

We have Wf (0n)Wf (a) =
∑

x,y∈Fn2

(−1)f(x)⊕f(y)⊕a·y =
∑

x,y∈Fn2

(−1)f(x+y)⊕f(y)⊕a·y.

For every x ∈ Fn2 , function y 7→ f(x + y) ⊕ f(y) ⊕ a · y is affine. We are then

in the same situation as in Proposition 55, but with the advantage that we

shall know the product of the signs of Wf (0n) and Wf (a) when Wf (a) will be

nonzero. The sum
∑
y∈Fn2

(−1)f(x+y)⊕f(y)⊕a·y is nonzero if and only if function

y 7→ f(x + y) ⊕ f(y) ⊕ a · y is constant over Fn2 . The set of those x ∈ Fn2
having such property either is empty or is a coset of the linear kernel Ef , since

f(x + y) ⊕ f(y) ⊕ a · y ⊕ f(x′ + y) ⊕ f(y) ⊕ a · y = Dx+x′f(x + y). Moreover,

the constant values of f(x+ y)⊕ f(y)⊕ a · y are the same for all those x which

belong to this coset, since Wf (0n) being nonzero, Dxf is the zero function for

every x ∈ Ef (according to Proposition 55). The next proposition is a version

made as general as possible of the main result from [625].

Proposition 56 Let n be any positive integer and f any unbalanced quadratic

n-variable function. Let Wf be the Walsh transform associated to some inner

product “ ·”. Then, for every a ∈ Fn2 , the value of Wf (a) is nonzero if and only if

there exists x in Fn2 such that the function y 7→ f(x+ y)⊕ f(y)⊕a · y is constant

on Fn2 . The set of such x is then a coset of Ef and we have Wf (0n)Wf (a) =

2n+dim Ef (−1)f(x)⊕f(0n).

The determination, for given a, of the set of those x such that a · y coincides

with function Dxf(y) or with function Dxf(y)⊕ 1 leads in Hou’s method to the

resolution of an equation, which is over F2n in his paper since f is taken in trace
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representation, and that we shall see below. This determination is necessary for

calculating Wf (a) explicitly and is the difficult part of this method in practice.

We now introduce a slightly different viewpoint (which has never been ad-

dressed as is, as far as we know). We start with the vector space {a ∈ Fn2 ;∃x ∈
Fn2 ;∀y ∈ Fn2 , a·y = βf (x, y)}, that we denote by E ′f , for reasons which will appear

below. After identification between Fn2 and the vector space of its linear forms6

through the correspondence a←→ (y → a ·y), we can view E ′f as the image of Fn2
by the linear function x→ (y → βf (x, y)). This linear function having kernel Ef ,

the dimension of E ′f equals n− dim Ef . Moreover, if a ∈ E ′f then a · y is null over

Ef , and since the dimension of the vector space E⊥f = {a ∈ Fn2 ;∀y ∈ Ef , a ·y = 0}
is equal to n− dim Ef as well, we have:

E ′f = E⊥f .

According to Proposition 55, for every b ∈ Fn2 , Wf (b) is nonzero if and only if

the function x 7→ f(x) ⊕ f(0n) ⊕ b · x is null on Ef , and the Walsh support of

f equals then b + E⊥f = b + E ′f . For every a ∈ E ′f , choosing x ∈ Fn2 such that

a · y = βf (x, y), we have:

Wf (a+ b) =
∑
y∈Fn2

(−1)f(y)⊕(a+b)·y =
∑
y∈Fn2

(−1)f(y)⊕βf (x,y)⊕b·y

=
∑
y∈Fn2

(−1)f(x+y)⊕f(x)⊕f(0n)⊕b·y =
∑
y∈Fn2

(−1)f(y)⊕f(x)⊕f(0n)⊕b·(x+y)

= (−1)f(x)⊕f(0n)⊕b·x
∑
y∈Fn2

(−1)f(y)⊕b·y = (−1)f(x)⊕f(0n)⊕b·x Wf (b).

Proposition 57 Let f be any quadratic n-variable Boolean function and let Wf

be its Walsh transform associated to some inner product “ · ”. Let βf (x, y) =

f(x + y) ⊕ f(x) ⊕ f(y) ⊕ f(0n) be the symplectic form associated to f . Let b

be any element of Fn2 such that Wf (b) 6= 0. Then, for every a ∈ Fn2 , we have

Wf (a + b) 6= 0 if and only if a ∈ E⊥f = {u ∈ Fn2 ; u · y = 0,∀y ∈ Ef}, which is

equivalent to saying that there exists x ∈ Fn2 such that the functions y 7→ a · y
and y 7→ βf (x, y) coincide over Fn2 , and we have then:

Wf (a+ b) = (−1)f(x)⊕f(0n)⊕b·xWf (b).

Quadratic functions in trace form
We know (see Subsection 2.2.2, page 58) that any quadratic function f(x) over

F2n can be written in a unique way under the form:

f(x) = trn

b(n−1)/2c∑
k=1

akx
2k+1

⊕ q(x); ak ∈ F2n , (5.15)

6 This vector space is called in mathematics the dual space (here of Fn2 ), but we shall avoid

using this denomination for obvious reasons.
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where:{
if n is even, q(x) = trn/2

(
an/2x

2n/2+1
)

+ `(x); an/2 ∈ F2n/2 , ` affine,

if n is odd, q(x) = `(x); ` affine.
(5.16)

We have then, using that, for every u ∈ Fn2 and j ∈ N, we can replace trn(u) by

trn(u2j ) and u2n by u:

βf (x, y) = trn

y[ b(n−1)/2c∑
k=1

(
akx

2k + a2n−k

k x2n−k
)]+ βq(x, y),

where βq(x, y) = trn/2(an/2(x2n/2y + xy2n/2)) = trn/2(an/2tr
n
n/2(x2n/2y)) =

trn(an/2yx
2n/2) for n even and βq(x, y) = 0 for n odd. We have then:

Ef =


{
x ∈ F2n ;

∑n
2−1

k=1

(
akx

2k + a2n−k

k x2n−k
)

+ an/2x
2n/2

= 0
}

, for n even,{
x ∈ F2n ;

∑n−1
2

k=1

(
akx

2k + a2n−k

k x2n−k
)

= 0
}

, for n odd.

Hou has observed a useful property for evaluating the size of Ef , and therefore

the nonlinearity of any quadratic Boolean function in trace form:

Proposition 58 [625] Let f be any quadratic n-variable function in the form

(5.15), with q = 0. Denoting by K the maximal value of k such that ak 6= 0, |Ef |
equals the degree of the following polynomial:

gcd


b(n−1)/2c∑

k=1

(
akx

2k + a2n−k

k x2n−k
)2K

, x2n + x

 .

Indeed, x2n + x splits completely over F2n and |Ef | equals the number of solu-

tions in F2n of the equation
∑b(n−1)/2c
k=1

(
akx

2k + a2n−k

k x2n−k
)

= 0, which has

no repeated root, because its derivative (as a polynomial) has no common zero

with the equation.

Let us see now how the method we introduced works in univariate representa-

tion. According to Proposition 57, and taking for inner product a · x = trn(ax),

we have the following:

Proposition 59 Let f(x) be any quadratic function. Let

trn

b(n−1)/2c∑
k=1

akx
2k+1

+ q(x)

be its trace form, where q(x) is defined in Relation (5.16). Let:

Pf (x) =

b(n−1)/2c∑
k=1

(
akx

2k + a2n−k

k x2n−k
)

if n is odd, (5.17)
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and

Pf (x) =

b(n−1)/2c∑
k=1

(
akx

2k + a2n−k

k x2n−k
)

+ an/2x
2n/2

if n is even. (5.18)

Let b be any element of F2n such that Wf (b) is nonzero. For every a ∈ F2n ,

Wf (a+ b) is nonzero if and only if there exists x ∈ F2n such that a = Pf (x) and

we have then:

Wf (a+ b) = (−1)f(x)⊕f(0)⊕b·xWf (b).

Remark The observation that E⊥f is at the same time equal to {a ∈ F2n ;∃x ∈
F2n ;∀y ∈ F2n , a · y = βf (x, y)} and to {a ∈ F2n ;∀y ∈ Ef , a · y = 0} gives, when

applied to function f in (5.15), that Pf (a) = 0 if and only if there exists x ∈ F2n

such that a = Pf (x), where Pf is defined by (5.17) (resp. (5.18)). This gives a

parameterized form of the set of the solutions of this equation. 2

Particular classes of quadratic functions
Particular quadratic Boolean functions have been successfully investigated in the

70’s. For some of them, the explicit Walsh transform could be given in a rather

simple statement. This begun with Kerdock [689] when he constructed the so-

called Kerdock codes (but the question of the sign was not posed, because his

code is a union of cosets of the first-order Reed-Muller code, and two complemen-

tary functions f and f⊕1 have opposite Walsh transforms). Then Carlitz showed

in [332] the following equalities on so-called cubic sums
∑
x∈F2n

(−1)trn(wx3+ux),

w 6= 0, (this name being a reference to the polynomial degree of the functions,

not to their algebraic degree which is 2):

• Let n be an odd integer and u ∈ F2n . For trn(u) = 1, we denote by γ ∈ F2n

any element in F2n such that u = γ4 + γ + 1. We have:∑
x∈F2n

(−1)trn(x3+ux) =

{
(−1)trn(γ3+γ)( 2

n ) 2
n+1

2 when trn(u) = 1

0 when trn(u) = 0,

where ( 2
n ) denotes the Jacobi symbol which equals (−1)

n2−1
8 when n is odd.

If we know the sign of the Walsh transform at 1, this can be deduced from

Proposition 55 and Proposition 59, after observing that the linear kernel of

function trn(x3) equals {x ∈ F2n ;x2+x2n−1

= 0} = {0}∪{x ∈ F2n ;x3 = 1}
which equals F2 since n is odd. The additional information we have thanks

to Carlitz is the sign of the Walsh transform at 1.

The value of
∑
x∈F2n

(−1)trn(wx3+ux) equals
∑
x∈F2n

(−1)
trn
(
x3+ u

w1/3
x
)

(by

the change of variable x 7→ x

w
1
3

; note that since n is odd, function x3 is a

permutation of F2n ; we denote the inverse function by x
1
3 ; the value of 1

3

can be found in [907, 731]).

• Let n be an even integer. Then we have two cases according to whether w is

a cube or not:
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- If w 6= 0 is a cube, say w = v3, then for trn2 (uv−1) = 0, we denote by γ0

any element in F2n such that γ4
0 + γ0 = u2v−2. We have:

∑
x∈F2n

(−1)trn(wx3+ux) =

{
(−1)

n
2 +1+trn(γ3

0)2
n
2 +1 when trn2 (uv−1) = 0

0 when trn2 (uv−1) 6= 0.

If we know the sign of the Walsh transform at 0, this is deduced from

Propositions 55 and 59, after observing that the linear kernel of function

trn(wx3) equals {x ∈ F2n ;wx2 + (wx)2n−1

= 0} = {0} ∪ {x ∈ F2n ;wx3 =

1} = vF4.

- If w is not a cube, then let γ1 be the unique element in F2n such that

w2γ4
1 +wγ1 = u2. Such γ1 exists and is unique because the linear function

γ 7→ w2γ4 +wγ has a trivial kernel (the linear kernel of function trn(wx3)

equals {0} since w is not a cube) and is then bijective. Then, we have:∑
x∈F2n

(−1)trn(wx3+ux) = (−1)
n
2 +trn(wγ3

1)2
n
2 .

Coulter [384, 385] and Dillon-Dobbertin [448] generalized Carlitz’ results to ex-

ponents of the form 2k+1 instead of 3. Their results can be deduced from Propo-

sition 59 as well. To illustrate how, let us assume that n is odd and gcd(k, n) =

1. Then x2k+1 is a permutation. We can then reduce ourselves to the sums∑
x∈F2n

(−1)trn(x2k+1+ux). The linear kernel of quadratic function trn(x2k+1)

has equation x2k + x2−k = 0, that is, x22k

+ x = 0, which has for solutions in

F2n the elements of F2gcd(2k,n) = F2, and trn(x2k+1 + ux) is then balanced if and

only if trn(u) = 0. We assume then trn(u) = 1, and there exists a such that u =

1+a2k +a2−k . Then since trn((x+a)2k+1) = trn(x2k+1 +(a2k +a2−k)x+a2k+1),

we have
∑
x∈F2n

(−1)trn(x2k+1+ux) = (−1)trn(a2k+1)
∑
x∈F2n

(−1)trn(x2k+1+x).

As we wrote, much work has been done on the Walsh transform of quadratic

functions in univariate form. We shall give the next ones without giving clues on

their proofs.

For n odd, the quadratic functions of nonlinearity 2n−1− 2
n−1

2 (called semi-bent

functions or near-bent functions; their extended Walsh spectra only contain val-

ues 0 and 2
n+1

2 , see Section 6.2) of the form trn(
∑(n−1)/2
i=1 cix

2i+1) have been

studied by Khoo, Gong and Stinson [697, 699]. The study of such function is

simplified when all coefficients ci belong to F2 since the linearized polynomial∑(n−1)/2
i=1 (cix

2i + (cix)2n−i) =
∑(n−1)/2
i=1 ci(x

2i + x2n−i) is then a 2-polynomial

over F2 (see page 532) and its study can be done through its 2-associate poly-

nomial c(x) =
∑(n−1)/2
i=1 ci(x

i + xn−i), more precisely, its gcd with xn + 1 (e.g.

near-bentness is equivalent to gcd(c(x), xn + 1) = x + 1), and the factoriza-

tion of xn + 1 (see [697, 699] and see more in [19, 510, 672, 840, 841]). If n

and 2n + 1 are primes, the function is near-bent for all non-all zero ci’s. This

study has been generalized to n even by Charpin, Pasalic and Tavernier in [355]

(“gcd(c(x), xn + 1) = x + 1” is then replaced by gcd(c(x), xn + 1) = x2 + 1)

and non-quadratic bent functions have been deduced by concatenation of such
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near-bent functions. Further functions of this kind have been given and studied

in [629, 672, 699, 840, 841].

In [734] is studied the sign of the values of the Walsh transform of AB Gold and

Kasami functions (see pages 230 and 256). The former are quadratic (the latter

are not but they are related to quadratic functions). In [548], the result of [734]

is generalized: for every AB power function xd over F2n whose restriction to any

subfield of F2n is also AB, the value
∑
x∈F2n

(−1)trn(xd+x) equals 2
n+1

2 if n ≡ ±1

[mod 8] and −2
n+1

2 if n ≡ ±3 [mod 8]. In [383] are studied the Walsh transform

values of the functions trn(x2a+1 + x2b+1), gcd(b− a, n) = gcd(b+ a, n) = 1.

X. Hou in [625] has been able to address whole subclasses of quadratic func-

tions (and even more since he could view such functions over every field extension

of F2n). With the method of calculating Wf (0)Wf (a), he determined the Walsh

transform of any quadratic function whose trace form involves exponents of the

form 2k + 1, where k has fixed 2-valuation.

X. Zhang, X. Cao and R. Feng in [1165] use that, given a linear function

L(x) =
∑n−1
k=0 akx

2k ∈ F2n [x], and denoting L̃(x) =
∑n−1
k=0 a

2n−k

k x2n−k , we have

trn(xL(y))) = trn(yL̃(x)) for every x, y ∈ F2n . For every linear permutation L

and linear function L′, we have trn
(
x (L̃ ◦ L′ ◦ L(x))

)
= trn

(
L(x) (L′ ◦ L(x))

)
,

and then:∑
x∈F2n

(−1)trn(x(L̃◦L′◦L(x))) =
∑
x∈F2n

(−1)trn(L(x) (L′◦L(x))) =
∑
x∈F2n

(−1)trn(xL′(x)).

The functions f(x) = trn

(
x (L̃ ◦ L′ ◦ L(x))

)
and g(x) = trn (xL′(x)) satisfy

then F(f) = F(g). This provides in fact an equivalence relation between quadratic

functions, which preserves the mapping f 7→ F(f).

5.2.2 Concatenations of quadratic functions

Concatenated quadratic functions (instead of affine functions) generalize the

Maiorana-McFarland construction. These functions are a little harder to study

than Maiorana-McFarland’s functions, but they are more numerous and they

avoid the property of null second-order derivatives seen in Proposition 54, page

190, which may be a cryptographic weakness. There are at least two classes:

• A first class [221] is built on the Dickson form of quadratic functions:

fψ,φ,g(x, y) =

t⊕
i=1

x2i−1x2i ψi(y)⊕ x · φ(y)⊕ g(y), (5.19)

with x ∈ Fr2, y ∈ Fs2, where n = r + s, t =
⌊
r
2

⌋
, and where ψ : Fs2 → Ft2,

φ : Fs2 → Fr2 and g : Fs2 → F2 can be chosen arbitrarily.

The size of this class roughly equals 2(t+r+1)2s . The Walsh transform is

easily deduced from the observation that, for every quadratic Boolean func-

tion of the form f(x) =
⊕t

i=1 uix2i−1x2i⊕
∑2t
j=1 vjxj ⊕ c, where ui, vj , c ∈

F2, x ∈ F2t
2 , and for every element a of F2t

2 , if there exists i = 1, · · · , t
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such that ui = 0 and v2i−1 6= a2i−1 or v2i 6= a2i, then we have Wf (a) = 0,

and otherwise, Wf (a) is equal to 22t−wH(u)(−1)
∑t
i=1(v2i−1⊕a2i−1)(v2i⊕a2i)⊕c,

where u = (u1, . . . , ut). This implies that, for every function f of the form

(5.19), for every a ∈ Fr2 and every b ∈ Fs2, we have:

Wfψ,φ,g (a, b) =
∑
y∈Ea

2r−wH(ψ(y))(−1)
∑t
i=1(φ2i−1(y)⊕a2i−1)(φ2i(y)⊕a2i)⊕g(y)⊕y·b,

where Ea is the superset of φ−1(a) equal if r is even to

{y ∈ Fs2/ ∀i ≤ t, ψi(y) = 0⇒ (φ2i−1(y) = a2i−1 and φ2i(y) = a2i)} ,

and if r is odd to{
y ∈ Fs2/

{
∀i ≤ t, ψi(y) = 0⇒ (φ2i−1(y) = a2i−1 and φ2i(y) = a2i)

φr(y) = ar

}
.

• A second class [317] has for elements the concatenations of quadratic functions

of rank at most 2, of the form:

fφ1,φ2,φ3,g(x, y) = (x · φ1(y)) (x · φ2(y))⊕ x · φ3(y)⊕ g(y), (5.20)

with x ∈ Fr2, y ∈ Fs2, where φ1, φ2 and φ3 are three functions from Fs2
into Fr2 and g is any Boolean function on Fs2. The size of this class roughly

equals 2(3r+1)2s (the exact number, which is unknown, is smaller since a

function can be represented in this form in several ways) and is larger than

for the first class.

The Walsh transform is deduced from the fact that, for every positive

integer r and every Boolean function f on Fr2 of the form (u ·x)(v ·x)⊕w ·x;

u, v, w ∈ Fr2:

- if u and v are F2-linearly independent (i.e. u 6= 0r, v 6= 0r and u 6= v),

then f is balanced if and only if w is outside the vectorspace < u, v >=

{0r, u, v, u+ v} spanned by u and v, and otherwise, if w ∈ {0r, u, v}, then∑
x∈Fr2

(−1)f(x) equals 2r−1, and if w = u+ v, then it equals −2r−1;

- if u and v are F2-linearly dependent, then if we have w = 0r and u = 0r or

v = 0r, or if we have u = v = w, then
∑
x∈Fr2

(−1)f(x) equals 2r; otherwise,∑
x∈Fr2

(−1)f(x) is null.

We deduce that for any function fφ1,φ2,φ3,g of the form (5.20) with φ2(y) 6=
0r for every y ∈ Fs2, denoting by E the set of all y ∈ Fs2 such that the

vectors φ1(y) and φ2(y) are F2-linearly independent, for every a ∈ Fr2 and

every b ∈ Fs2, Wfφ1,φ2,φ3,g
(a, b) equals

2r−1
∑
y∈E;

φ3(y)+a∈{0r,φ1(y),φ2(y)}

(−1)g(y)⊕b·y −

2r−1
∑
y∈E;

φ3(y)+a=φ1(y)+φ2(y)

(−1)g(y)⊕b·y + 2r
∑

y∈Fs2\E;

φ3(y)+a=φ1(y)

(−1)g(y)⊕b·y.
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5.3 Cubic functions

The Hamming weights and the Walsh spectra of non-quadratic cubic Boolean

functions (i.e. of the codewords in RM(3, n) \RM(2, n)) behave in a much less

peculiar way than quadratic functions7. This has been shown in [210] as follows.

Let f1, f2 and f3 be any Boolean functions on Fn2 . Define the function on Fn+2
2 :

f(x, y1, y2) = y1y2 ⊕ y1f1(x)⊕ y2f2(x)⊕ f3(x). Then we have

F(f) =
∑

x∈Fn2 ; y1,y2∈F2

(−1)(y1⊕f2(x))(y2⊕f1(x))⊕f1(x)f2(x)⊕f3(x)

=
∑

x∈Fn2 ; y1,y2∈F2

(−1)y1y2⊕f1(x)f2(x)⊕f3(x) = 2
∑
x∈Fn2

(−1)f1(x)f2(x)⊕f3(x).

So, starting with a function g = f1f2⊕f3, we can relate F(g) to F(f), in two more

variables, in which the term f1f2 has been replaced by y1y2⊕ y1f1(x)⊕ y2f2(x).

Applying this repeatedly (“breaking” this way all the monomials of degrees at

least 4), this shows that, for every Boolean function g on Fn2 , there exists an

integer m and a Boolean function f of algebraic degree at most 3 on Fn+2m
2 whose

Walsh transform takes value Wf (0n+2m) = 2mWg(0n) at zero. This proves that

the functions of algebraic degree 3 can have Hamming weights much more diverse

than functions of degrees at most 2, since function g from which we started can

have for Hamming weight any integer between 0 and 2n, and then Wg(0n) can

take any even value between −2n and 2n.

Note however that the weights of some cubic functions (and even some quartic

ones) are easily determined. The weight of the product fg of two quadratic

functions and of its sum with any affine function can be deduced from fg =
f+g−(f⊕g)

2 . And the Fourier-Hadamard transform being R-linear, we have f̂g =
f̂+ĝ−f̂⊕g

2 . This works for instance for σ3 = σ1σ2, where σi is the i-th elementary

symmetric Boolean function. See also [745].

5.4 Indicators of flats

As we have already seen, a Boolean function f is the indicator of a flat A of

co-dimension r if and only if it has the form f(x) =
∏r
i=1(ai · x ⊕ εi) where

a1, . . . , ar ∈ Fn2 are F2-linearly independent and ε1, . . . , εr ∈ F2. Then f has

Hamming weight 2n−r. Moreover, for any a ∈ Fn2 , if a is F2-linearly independent

of a1, . . . , ar , then the function f(x)⊕ a · x is balanced (and hence Wf (a) = 0),

since it is linearly equivalent to a function of the form g(x1, . . . , xr) ⊕ xr+1. If

a is F2-linearly dependent of a1, . . . , ar, say a =
∑r
i=1 ηi ai with ηi ∈ F2, then

a · x takes constant value
⊕r

i=1 ηi (ai · x) =
⊕r

i=1 ηi (εi ⊕ 1) on the flat; hence,

f̂(a) =
∑
x∈A(−1)a·x equals 2n−r(−1)

⊕r
i=1 ηi (εi⊕1). Thus, if a =

∑r
i=1 ηi ai 6= 0n,

7 Except that, according to McEliece’s theorem, the Hamming weights are divisible

by 2d
n
3 e−1 and the Walsh transform values are divisible by 2d

n
3 e).
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then we have Wf (a) = −2n−r+1(−1)
⊕r
i=1 ηi (εi⊕1); and we have Wf (0n) = 2n −

2|A| = 2n − 2n−r+1.

Note that the nonlinearity of f equals 2n−r and is bad as soon as r ≥ 2. But

indicators of flats can be used to design Boolean functions with good nonlineari-

ties, by concatenating sums of indicators of flats and of affine functions, see below.

Remark As recalled in Section 4.1, the functions of RM(r, n) whose weights

occur in the range [2n−r; 2n−r+1[ have been characterized by Kasami and Tokura

[670]; any such function is the product of the indicator of a flat and of a quadratic

function or is the sum (modulo 2) of two indicators of flats. The Walsh spectra

of such functions can also be precisely computed. 2

5.4.1 Concatenations of sums of indicators of flats and affine functions

Concatenating sums of indicators of flats and of affine functions gives another

super-class, studied in [226], of Maiorana-McFarland’s class. The functions of

this generalized class are of the form:

f(x, y) =

t(y)∏
i=1

(x · φi(y)⊕ gi(y)⊕ 1)⊕ x · φ(y)⊕ g(y); (x, y) ∈ Fr2 × Fs2, (5.21)

where t is a function from Fs2 into {0, 1, . . . , r}, and where φ1, . . . , φr, φ are func-

tions from Fs2 into Fr2 such that, for every y ∈ Fs2, the vectors φ1(y), . . . , φt(y)(y)

are linearly independent; g1, . . . , gr and g are Boolean functions on Fs2.

Let f be defined by (5.21). For every a ∈ F r2 and every b ∈ F s2 , we have

Wf (a, b) = 2r
∑

y∈φ−1(a)

(−1)g(y)⊕b·y −
∑
y∈Fa

2r−t(y)+1(−1)g(y)⊕b·y⊕
⊕t(y)
i=1 ηi(a,y) gi(y),

where Fa is the set of all the vectors y of the space Fs2 such that a belongs to the

flat φ(y)+ < φ1(y), . . . , φt(y)(y) > (by convention equal to {φ(y)} if t(y) = 0),

and where ηi(a, y) is defined (with uniqueness) for every i ≤ t(y) by the relation

a+ φ(y) =
∑t(y)
i=1 ηi(a, y)φi(y).

The cryptographic parameters of such functions are studied in [226, Section 5].

5.5 Functions admitting (partial) covering sequences

5.5.1 The case of Boolean functions

The notion of covering sequence of a Boolean function has been introduced

in [326].

Definition 47 Let f be an n-variable Boolean function. An integer-valued8 se-

quence (λa)a∈Fn2 is called a covering sequence of f if the integer-valued function

8 or real-valued, or complex-valued; but taking real or complex sequences instead of
integer-valued ones has no practical sense.
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∑
a∈Fn2

λaDaf(x) takes a constant value. This constant value is called the level of

the covering sequence. If the level is nonzero, we say that the covering sequence

is a non-trivial covering sequence.

For instance, any balanced quadratic function admits a non-trivial atomic cover-

ing sequence (see page 194). Note that the sum
∑
a∈Fn2

λaDaf(x) involves both

kinds of additions: the addition
∑

in Z and the addition ⊕ in F2 (which is con-

cealed inside Daf). It has been shown in [326] that any function admitting a

non-trivial covering sequence is balanced (see Proposition 61 below for a proof)

and that any balanced function admits the constant sequence 1 as covering se-

quence (the level of this sequence is 2n−1).

A characterization of covering sequences by means of the Walsh transform was

also given in [326]: denote again by supp(Wf ) the support {u ∈ Fn2 | Wf (u) 6= 0}
of Wf ; then:

Proposition 60 Let f be any n-variable Boolean function and λ = (λa)a∈Fn2 an

integer-valued sequence. Then f admits λ as covering sequence if and only if the

Fourier-Hadamard transform λ̂ of the function a 7→ λa takes a constant value

on supp(Wf ). This constant value is
(∑

a∈Fn2
λa − 2ρ

)
, where ρ is the level of

the covering sequence.

Proof. Replacing Daf(x) by 1
2 −

1
2 (−1)Daf(x) = 1

2 −
1
2 (−1)f(x)(−1)f(x+a) in the

equality
∑
a∈Fn2

λaDaf(x) = ρ, we see that f admits the covering sequence λ

with level ρ if and only if, for every x ∈ Fn2 , we have
∑
a∈Fn2

λa(−1)f(x+a) =(∑
a∈Fn2

λa − 2ρ
)

(−1)f(x). These two integer-valued functions are equal if and

only if their Fourier-Hadamard transforms are equal to each other, that is, if for

every b ∈ Fn2 , the sum
∑
a,x∈Fn2

λa(−1)f(x+a)⊕x·b, which by changing x into x+a

equals
(∑

a∈Fn2
λa(−1)a·b

)
Wf (b) = λ̂(b)Wf (b), equals

(∑
a∈Fn2

λa − 2ρ
)
Wf (b).

The characterization follows. 2

Any Boolean function f on Fn2 is balanced (i.e. satisfies 0n 6∈ supp(Wf )) if and

only if it admits at least one non-trivial covering sequence: the condition is clearly

sufficient according to Proposition 60 (since λ̂(0n) =
∑
a∈Fn2

λa and ρ 6= 0), and

it is also necessary since the constant sequence 1 is a covering sequence for all

balanced functions. See more in [308].

We shall see in Chapter 7 that covering sequences play a role with respect to

correlation immunity and resiliency. But knowing a covering sequence for f gives

no information on the nonlinearity of f , since it gives only information on the

support of the Walsh transform, not on the nonzero values it takes. In [231] is

weakened the definition of covering sequence, so that it can help computing the

(nonzero) values of the Walsh transform.

Definition 48 Let f be a Boolean function on Fn2 . A partial covering sequence

for f is a sequence (λa)a∈Fn2 such that
∑
a∈Fn2

λaDaf(x) takes two values ρ and
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ρ′ (distinct or not) called the levels of the sequence. The partial covering sequence

is called non-trivial if one of the constants is nonzero.

The interest of non-trivial partial covering sequences is that they give infor-

mation on the Hamming weight and the Walsh transform.

Proposition 61 Let (λa)a∈Fn2 be a partial covering sequence of a Boolean func-

tion f , of levels ρ and ρ′.

Let A = {x ∈ Fn2 ;
∑
a∈Fn2

λaDaf(x) = ρ′} (assuming that ρ′ 6= ρ; otherwise,

when λ is in fact a covering sequence of level ρ, we set A = ∅).

Then, for every vector b ∈ Fn2 , we have:(
λ̂(b)− λ̂(0n) + 2 ρ

)
Wf (b) = 2 (ρ− ρ′)

∑
x∈A

(−1)f(x)⊕b·x.

Hence, if ρ 6= 0, we have:

2n − 2wH(f) = Wf (0n) =

(
1− ρ′

ρ

)∑
x∈A

(−1)f(x).

Proof. By definition, we have, for every x ∈ Fn2 :∑
a∈Fn2

λaDaf(x) = ρ′ 1A(x) + ρ 1Ac(x)

and therefore:∑
a∈Fn2

λa(−1)Daf(x) =
∑
a∈Fn2

λa(1− 2Daf(x)) =
∑
a∈Fn2

λa − 2 ρ′ 1A(x)− 2 ρ 1Ac(x).

We deduce:

∑
a∈Fn2

λa(−1)f(x+a) = (−1)f(x)

∑
a∈Fn2

λa − 2 ρ′ 1A(x)− 2 ρ 1Ac(x)

 . (5.22)

We have already seen that the Fourier-Hadamard transform of the function

(−1)f(x+a) maps every vector b ∈ Fn2 to the value (−1)a·b Wf (b). Hence, taking

the Fourier-Hadamard transform of both terms of equality (5.22), we get:∑
a∈Fn2

λa(−1)a·b

Wf (b) =

∑
a∈Fn2

λa

Wf (b)− 2 ρ′
∑
x∈A

(−1)f(x)⊕b·x − 2 ρ
∑
x∈Ac

(−1)f(x)⊕b·x,

that is

λ̂(b) Wf (b) = λ̂(0n) Wf (b)− 2 ρWf (b) + 2 (ρ− ρ′)
∑
x∈A

(−1)f(x)⊕b·x.
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Hence: (
λ̂(b)− λ̂(0n) + 2 ρ

)
Wf (b) = 2 (ρ− ρ′)

∑
x∈A

(−1)f(x)⊕b·x. 2

A simple example of non-trivial partial covering sequence is as follows: let E
be any set of derivatives of f . Assume that E contains a nonzero function and is

stable under addition (i.e. is a non-trivial F2-vector space). Then
∑
g∈E g takes

on values 0 and |E|2 . Thus, if E = {Daf ; a ∈ E} (where we choose E minimum,

so that any two different vectors of the set E give different functions of E), then

1E is a non-trivial partial covering sequence.

Corollary 10 Let E be any set of derivatives of an n-variable Boolean func-

tion f . Assume that E contains a nonzero function and is stable under addition

( i.e. is a non-trivial F2-vector space). Then

2n − 2wH(f) = Wf (0n) =
∑
x∈A

(−1)f(x).

See more in [231], with the notion of linear set of derivatives (which are sets

of derivatives stable under addition and provide partial covering sequences),

combined with Proposition 61, and applied to the computation of the Hamming

weights and Walsh spectra of quadratic and Maiorana-McFarland functions and

of other examples of functions.

5.5.2 The case of vectorial functions

The generalization of the notion of covering sequence to vectorial functions has

been studied in [319]. A covering sequence for a Boolean function can be seen

as a function ϕ from Fn2 into R such that
∑
a∈Fn2 ; DaF (x)=1 ϕ (a) = ρ, for every

x ∈ Fn2 . This generalizes to vectorial functions:

Definition 49 We call covering sequence of an (n,m)-function F , a pair of

functions (ϕ,ψ) from, respectively, Fn2 and Fm2 into R, such that:

∀x ∈ Fn2 ,∀b ∈ Fm2 ,
∑

a∈Fn2 ; DaF (x)=b

ϕ (a) = ψ (b) . (5.23)

Note that this equality between functions b 7→
∑
a∈Fn2 ; DaF (x)=b ϕ(a) and b 7→

ψ(b) is equivalent to the equality between their Fourier transforms, that is:

∀v ∈ Fm2 , ∀x ∈ Fn2 ,
∑
a∈Fn2

ϕ(a)(−1)v·DaF (x) =
∑
b∈Fm2

ψ(b)(−1)v·b,

which is equivalent to:∑
a∈Fn2

ϕ(a)(−1)v·F (x+a) = (−1)v·F (x)ψ̂(v),
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that is:

ϕ⊗ χF (·, v) = ψ̂(v)χF (·, v), (5.24)

where χF (·, v) denotes function x 7→ χF (x, v) = (−1)v·F (x) and ⊗ is the convo-

lutional product.

Proposition 62 An (n,m)-function F is balanced if and only if it admits at

least one covering sequence (ϕ,ψ) satisfying ψ̂(v) 6= ϕ̂(0n) for every nonzero

vector v of Fm2 . Any balanced (n,m)-function F admits the pair of constant

functions (1, 2n−m) for covering sequence.

Proof. Assume that (ϕ,ψ) is a covering sequence of F , then Equation (5.24)

is satisfied and by applying the Fourier transform at 0n to both sides of this

functional equality, we obtain:

∀v ∈ Fm2 , ϕ̂(0n)WF (0n, v) = ψ̂(v)WF (0n, v) ,

that is, (ϕ̂(0n) − ψ̂(v))WF (0n, v) = 0 for every v ∈ Fm2 . This gives ϕ̂(0n) =

ψ̂(0m). If ϕ̂(0n) − ψ̂(v) is nonzero for every nonzero v ∈ Fm2 , then the function

v 7→WF (0n, v) is null on Fm2 \{0m}, which implies that F is balanced, according

to Proposition 35.

Conversely, if F is balanced, then, for every pair (b, x) ∈ Fm2 × Fn2 , the cardi-

nality of the set {a ∈ Fn2 ;DaF (x) = b} is constant equaling 2n−m since the

equation DaF (x) = b is equivalent to F (x+ a) = b+ F (x). Let ϕ : Fn2 7→ R and

ψ : Fm2 7→ R be respectively the constant function x 7→ 1 and the constant func-

tion y 7→ 2n−m, then the pair (ϕ,ψ) is a covering sequence of F satisfying the

relation ψ̂(v) = 0 6= ψ̂(0m) = ϕ̂(0n) = 2n−m for every element v of Fm2 \ {0m}. 2

Remark Finding a second covering sequence is often a difficult problem. It is

shown in [319] that the Maiorana-McFarland functions which satisfy the hypoth-

esis of Proposition 128, page 345, admit several covering sequences. 2

Definition 50 A covering sequence (ϕ,ψ) of an (n,m)-function F is said to

be non-trivial if ψ̂(v) never equals ϕ̂(0n) (that is ψ̂(0m)) when v ranges over

Fm2 \ {0m}.

Thus, according to Proposition 62, an (n,m)-function F is balanced if and only

if it admits a non-trivial covering sequence. This definition and this observation

generalize what was known for Boolean functions.

Remark If ψ is a function from Fm2 into R+, then we have ψ̂(v) 6= ψ̂(0m) for

every element v of Fm2 \ {0m} if and only if the support of ψ has rank m (i.e.

spans the whole vector space Fm2 ). Indeed, we have

∀v ∈ Fm2 \ {0m}, ψ̂(v) 6= ψ̂(0m)⇐⇒ ∀v ∈ Fm2 \ {0m},
∑

b∈Fm2 ,b∈(v⊥)c

ψ(b) 6= 0
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and, since ψ(b) ≥ 0, ∀b ∈ Fm2 , this relation is equivalent to saying that the sup-

port of ψ is not included in a linear hyperplane of Fm2 . 2

Let us now generalize to vectorial functions the characterization of covering

sequences of Boolean functions by means of their Fourier transforms and of the

Walsh support of F .

Proposition 63 Let F be an (n,m)-function and let (ϕ,ψ) be any pair of real-

valued functions respectively defined on Fn2 and on Fm2 . Then, F admits (ϕ,ψ)

for covering sequence if and only if, for every pair (u, v) belonging to Supp WF ,

we have ϕ̂(u) = ψ̂(v).

Proof. Thanks to the bijectivity of the Fourier transform, for every nonzero

vector v ∈ Fm2 , the functions ψ̂(v)χF (·, v) and ϕ⊗χF (·, v) of Relation (5.24) are

equal if and only if their Fourier transforms on Fn2 are equal, that is:

∀v ∈ Fm2 , ∀u ∈ Fn2 , ϕ̂(u)WF (u, v) = ψ̂(v)WF (u, v),

that is, if and only if

((u, v) ∈ Supp WF ) =⇒
(
ϕ̂(u) = ψ̂(v)

)
. 2

Corollary 11 Let F be an (n,m)-function admitting (ϕ,ψ) for covering se-

quence. If the sets ϕ̂ ({u ∈ Fn2/wH(u) ≤ t}) and ψ̂(Fm2 \ {0m}) are disjoint, then

F is t-resilient.

It is deduced in [319] from Proposition 63 that if an (n,m)-function F admits

a covering sequence (ϕ,ψ) such that the functions ϕ and ψ are, respectively,

different from the zero function on Fn2 and different from the zero function on

Fm2 \ {0m}, then, for every vector u ∈ Fn2 , there exists v ∈ Fm2 \ {0m} such that

WF (u, v) = 0, and for every vector v ∈ Fm2 , there exists a vector u ∈ Fn2 such

that WF (u, v) = 0.

We show now that the notion of covering sequence behaves well with respect

to composition.

Proposition 64 [319] Let F : Fn2 7→ Fm2 and G : Fm2 7→ Fk2 be two functions

admitting respectively (ϕ,ψ) and (ψ, θ) for covering sequences. Then, (ϕ, θ) is a

covering sequence of G ◦ F .

Proof. For every pair (x, a) ∈ Fn2 × Fn2 , we have, denoting DaF (x) by b:

Da[G◦F ](x) = G(F (x))+G(F (x+a)) = G(F (x))+G(F (x)+b) = (DbG)(F (x)).

Thus, for every pair (x, c) ∈ Fn2 × Fk2 , we have:

∑
a∈Fn2 ,Da[G◦F ](x)=c

ϕ (a) =
∑

b∈Fm2 ,(DbG)(F (x))=c

 ∑
a∈Fn2 ,DaF (x)=b

ϕ(a)

 .
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For every pair (x, b) ∈ Fn2 ×Fm2 , we have
∑
a∈Fn2 ,DaF (x)=b ϕ (a) = ψ (b) and thus:∑

a∈Fn2 ,Da[G◦F ](x)=c

ϕ (a) =
∑

b∈Fm2 ,(DbG)(F (x))=c

ψ (b) .

Let y denote F (x), then:∑
a∈Fn2 ,Da[G◦F ](x)=c

ϕ (a) =
∑

b∈Fm2 ,DbG(y)=c

ψ(b) . (5.25)

Since (ψ, θ) is a covering sequence of G, the sum
∑
b∈Fm2 ,DbG(y)=c ψ (b) takes

constant value θ (c) for every pair (y, c) ∈ Fm2 × Fk2 and we deduce

∀x ∈ Fn2 , ∀c ∈ Fk2 ,
∑

a∈Fn2 ,DaG◦F (x)=c

ϕ (a) = θ (c) . 2

In [319] is given a similar (more technical) result on the concatenation of

functions, with consequences on Maiorana-McFarland functions. An attack on

ciphers using functions admitting covering sequences is also presented.

5.6 Functions with low univariate degree and related functions

The following Weil’s Theorem is very well-known in finite field theory (cf. [775,

Theorem 5.38]):

Theorem 11 Let q be a prime power and F (x) ∈ Fq[x] a univariate polynomial

of degree d ≥ 1 with gcd(d, q) = 1. Let χ be a non-trivial character of Fq. Then∣∣∣∣∣∣
∑
x∈Fq

χ(F (x))

∣∣∣∣∣∣ ≤ (d− 1) q1/2.

For q = 2n, this Weil’s bound means that, for every nonzero a ∈ F2n , we have:∣∣∣∑x∈F2n
(−1)trn(aF (x))

∣∣∣ ≤ (d− 1) 2
n
2 . And since adding a linear function trn(bx)

to the function trn(aF (x)) corresponds to adding (b/a)x to F (x) and does not

change its univariate degree, we deduce that, if d > 1 is odd and a 6= 0, then:

nl(trn(aF )) ≥ 2n−1 − (d− 1) 2
n
2−1.

An extension of the Weil bound to the character sums of functions of the form

F (x) + G(1/x) (where 1/x = x2n−2 takes value 0 at 0), among which are the

so-called Kloosterman sums
∑
x∈F2n

(−1)trn(1/x+ax), has been first obtained by

Carlitz and Uchiyama [333] and extended by Shanbhag, Kumar and Helleseth

[1032]: if F and G have odd univariate degrees, then∑
x∈F2n

(−1)trn(F (x−1)+G(x)) ≤ (dalg(F ) + dalg(G)) 2
n
2 .

More can also be found in [678] for the case a function with sparse univariate

representation is added to F .



6 Bent functions and plateaued
functions

Bent functions are fascinating extremal mathematical objects. Bent Boolean

functions play a role in coding theory, with Kerdock codes (see Subsection 6.1.22,

page 280), and in other domains of communications (for instance, they are used

to build the so-called bent function sequences for telecommunications [919] and

are related to Golay Complementary Sequences [416]). Bent vectorial functions

allow constructing good codes [453, 866, 865] and pose interesting problems re-

lated to coding theory [278, 854].

The role of bent Boolean functions in cryptography is less obvious nowadays

since, because of fast algebraic attacks and Theorem 22, page 363 (which shows

that Boolean functions obtained from bent functions by modifying a few values

can not allow resisting them), we do not know an efficient construction using

bent functions which would provide Boolean functions having all the necessary

features for being used in stream ciphers. Concerning block ciphers, since bent

vectorial functions are not balanced and do not exist when m > n
2 , they are

rarely used as substitution boxes in block ciphers1. Bijectivity is mandatory in

the kind of ciphers called Substitution-Permutation Networks, and unbalanced-

ness can represent a weakness in the other kind of ciphers called Feistel (see

e.g. [957]). But vectorial bent functions can however be used in block ciphers

at the cost of additional diffusion/compression/expansion layers, or as building

blocks for constructions of substitution boxes. Moreover, constructions of bent

Boolean functions are often transposable into constructions of Boolean functions

for stream ciphers and bent vectorial functions are used to construct algebraic

manipulation detection codes (see Section 12.1.6), which play an important role

in cryptography. Hence, even from a cryptographic viewpoint, it seems impor-

tant to devote a chapter to them. This is all the more true that bent (Boolean

or vectorial) functions possess properties which are cryptographically very inter-

esting: they have optimal nonlinearity, by definition, and their derivatives are

balanced (in other words, changing the input to a bent function by the addition

of a nonzero vector induces a uniform change among the 2n outputs; this has of

course relationship with the differential attack on block ciphers). And it often

1 But the S-boxes in the block ciphers CAST-128 and CAST-256 are modified from bent
functions, as well as the round functions in the cryptographic hash algorithms MD4, MD5
and HAVAL, and the nonlinear-feedback shift registers (NLFSR) in the stream cipher

Grain.
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happens that the cryptographic interest of notions on Boolean functions be re-

newed with the apparition of new ways of using them (see Section 12.1).

The notion of bent function has been generalized to functions over Z4 and to the

wider domain of generalized bent functions. The page limit of this book does not

allow us to address them.

Plateaued functions are a generalization of bent functions which free them-

selves from some cryptographic weaknesses inherent to bent functions (in partic-

ular their unbalancedness, the fact that their numbers of variables are necessarily

even, and for vectorial functions the nonexistence of bent (n,m)-functions when

m > n/2) but not all of them (for instance, they also have limited algebraic

degree, which represents a weakness with respect to fast algebraic attacks).

The history of bent functions begins in the sixties2. The first paper in English

on bent Boolean functions has been written by O. Rothaus in 1966 and published

ten years later [1005]. It seems that, already in 1962, bent functions had been

studied in the Soviet Union under the name of minimal functions, as mentioned

by Tokareva in [1089]. V.A. Eliseev and O.P. Stepchenkov had proved that their

algebraic degree is bounded above by half the number of variables (except in

the case of two variables); they had also proposed an analogue of the Maiorana-

McFarland construction. Their technical reports have never been declassified.

The extension of the notion to vectorial (n,m)-functions is due to Kaisa Nyberg

[906]. A book by S. Mesnager [865] that we recommend and a slightly more

recent survey [313] exist on bent functions.

The introduction of plateaued Boolean functions is due to Zheng and Zhang

[1173] as a generalization of partially-bent functions [211]. Recently has been

shown in [247] that plateaued vectorial functions share with quadratic vectorial

functions most of their nice properties, which considerably simplify in particular

the study of their APNness, see Chapter 11 (but the property of plateauedness

is not easy to prove in general).

6.1 Bent Boolean functions

We first recall for the convenience of the reader what we have seen on bent

functions in Section 3.1, and we add some observations:

• A Boolean function f on Fn2 (n even) is called bent if its Hamming distance

to the code RM(1, n) of n-variable affine functions (the nonlinearity of f)

equals 2n−1 − 2
n
2−1 (i.e. is optimal).

• f is bent if and only if its Walsh transform Wf (with respect to some inner

2 But the supports of bent Boolean functions being difference sets [651] in elementary
Abelian 2-groups, bent functions had been studied before the adjective “bent” was

invented; nevertheless, mathematicians were not much interested in such groups at that

time.
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product) takes values ±2
n
2 only3. This characterization is independent of

the choice of the inner product on Fn2 , since any other inner product has the

form 〈x, s〉 = x ·L(s), where L is an auto-adjoint linear automorphism, i.e.,

when “·” is the usual inner product , an automorphism whose associated

matrix is symmetric. The condition in this characterization can be slightly

weakened, without losing the property of being necessary and sufficient:

Lemma 5 Let n ≥ 2 be even. Any n-variable Boolean function f is bent

if and only if, for every a ∈ Fn2 , we have Wf (a) ≡ 2
n
2

[
mod 2

n
2 +1
]
, or

equivalently f̂(a) ≡ 2
n
2−1

[
mod 2

n
2

]
.

Proof. This necessary condition is also sufficient, since, if it is satisfied,

then writing Wf (a) = 2
n
2 λa, where λa is odd for every a, Parseval’s Rela-

tion (2.47) implies
∑
a∈Fn2

λ2
a = 2n, and hence λ2

a = 1 for every a. 2

A slightly different viewpoint on bent functions is that of bent sequences:

for each vector X in {−1, 1}2n , define: X̂ = 1√
2n
HnX, where Hn is the

Walsh-Hadamard matrix, recursively defined by:

Hn =

[
Hn−1 Hn−1

Hn−1 −Hn−1

]
, H0 = [1].

The vectors X such that X̂ belongs to {−1, 1}2n are called bent sequences.

They are the images by character χ = (−1)· of the bent functions on Fn2 .

In [993] are considered some generalized bent notions (among which the

nega-bent notion) from the domain of quantum error correcting codes, cor-

responding to flat spectra with respect to some unitary transforms (whose

matrices U are such that UU† equals the identity matrix, where “†” means

transpose-conjugate, and generalize Walsh-Hadamard matrices).

• An n-variable Boolean function f is bent if and only if its Hamming distance

to any affine function equals 2n−1 ± 2
n
2−1; then half of the elements of the

Reed-Muller code of order 1 lie at distance 2n−1 + 2
n
2−1 from f and half

lie at distance 2n−1− 2
n
2−1 (since if ` lies at distance 2n−1 + 2

n
2−1 from f ,

then `⊕ 1 lies at distance 2n−1 − 2
n
2−1 and vice versa).

Conversely, a Boolean function is affine if and only if it lies at maximal

Hamming distance from the set of bent functions (this is shown in [1088]

but was probably known earlier by Dillon, Dobbertin and others, although

maybe not explicitly written). In other words, the set of affine functions

and the set of bent functions are metric complements of each other and

constitute a so-called pair of metrically regular sets in the Boolean hy-

percube. Indeed, let us first observe that this maximal distance is at least

2n−1−2
n
2−1 (the distance from affine functions to the set of bent functions),

and that it cannot be more, because bentness being stable under the addi-

tion of affine functions, all the elements of the coset of RM(1, n) containing

3 In [1093] is shown that Boolean functions with two Walsh values are affine functions and
bent functions, possibly modified at 0n.
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a function at maximal distance to the set of bent functions would be at the

same distance to this set, and Parseval’s relation prevents any such coset

to be at a distance larger than 2n−1 − 2
n
2−1 from any bent function. Only

affine functions lie at such distance, because, as observed by Tokareva, for

any non affine Boolean function f in even dimension, there exists a bent

function g such that f ⊕ g is not bent, that is, whose distance to affine

functions is strictly smaller than 2n−1−2
n
2−1, and it is easily shown that f

lies then at distance strictly smaller than 2n−1−2
n
2−1 from bent functions,

thanks once again to the fact that bentness is stable under the addition of

affine functions.

• Bent Boolean functions are not balanced. As soon as n is large enough (say

n ≥ 20), the difference 2
n
2−1 between their Hamming weights and the

weight 2n−1 of balanced functions is very small with respect to this weight.

However, according to [42, Theorem 6], 2n bits of the pseudorandom se-

quence output by f in a combiner or a filter model are enough to distinguish

it from a random sequence. Nevertheless, we shall see that highly nonlinear

balanced functions can be built from bent functions.

Remark. Given a bent Boolean function f , the functions f ⊕ ` where ` is affine

are not balanced, but their weights are globally as close to 2n−1 as possible:

according to Parseval’s relation, there do not exist functions f such that the

functions f ⊕ ` have all weights closer to 2n−1. 2

6.1.1 Extended affine invariance of bentness and automorphism group of a
function

The nonlinearity being an EA invariant , so is the notion of bent function. A

class of bent functions shall be called a complete class if it is preserved by EA

equivalence.

The automorphism group of the set of bent functions (let us denote it by G)

is the general affine group. It indeed contains the general affine group, and the

reverse inclusion is a direct consequence of the property that, given a Boolean

function g, if for every bent function f , function f⊕g is also bent, then g is affine

(which shows that the image of any affine function by an element of G is affine

and then that G is included in the automorphism group of all affine functions;

Proposition 51, page 178, completes then the proof).

Other notions of equivalence between bent functions come from design theory,

see Subsection 6.1.9.

Given a (Boolean or vectorial) function f , recall that the group (already seen

at page 91) of those affine automorphisms A which preserve f (alternatively4,

those which preserve its graph) is called the automorphism group of function

f and is denoted by Aut(f). The determination of Aut(f) for f bent is often

a difficult problem, see [56, 426, 659]. In [1162] is only studied the so-called

4 In the cases of Boolean functions and of bent functions, it makes less difference [149, 150].
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symmetric group (the sub-group of those input coordinate permutations which

preserve the function).

6.1.2 Characterization of bentness by the derivatives

Characterization by first-order derivatives
Thanks to Relation (2.53), page 80, and to the fact that the Fourier-Hadamard

transform of a pseudo-Boolean function is constant if and only if the function

equals δ0 times some constant, we have:

Theorem 12 Any n-variable Boolean function (n even5) is bent if and only if,

for any nonzero vector a, the Boolean function Daf(x) = f(x) ⊕ f(x + a) is

balanced, that is, if and only if f satisfies PC(n).

In [190, 191] (see also [353]) is observed that, for every linear hyperplane H of

Fn2 , the condition of Theorem 12 can be weakened into “for any nonzero a in

H, function Daf is balanced”. Indeed, for H = {0n, α}⊥, we have W 2
f (α) =∑

a∈Fn2
(−1)a·αF(Daf), W 2

f (0n) +W 2
f (α) = 2

∑
a∈H F(Daf) and this necessary

condition is also sufficient since n being even, the sum of these two squares equals

2n+1 if and only if each square equals 2n (see e.g. [191]). The functions whose

derivatives Daf , a ∈ H, a 6= 0n are all balanced for n odd are also characterized

in [190, 191] as well as, for every n, the functions whose derivatives Daf , a ∈ E,

a 6= 0n are all balanced, where E is a vector subspace of Fn2 of dimension n− 2.

Because of Theorem 12, bent (Boolean) functions are also called perfect nonlinear

functions6. Equivalently, as noted by Rothaus and Welch, f is bent if and only

if the 2n×2n matrix H = [(−1)f(x+y)]x,y∈Fn2 is a Hadamard matrix (i.e. satisfies

H × Ht = 2n I, where I is the identity matrix). This implies that the Cayley

graph Gf (see Subsection 2.3.5, page 89) is strongly regular (see [68] for more

precision and for a characterization).

Characterization by second-order derivatives and second-order
covering sequences
Proposition 65 [317] An n-variable Boolean function f is bent if and only if:

∀x ∈ Fn2 ,
∑
a,b∈Fn2

(−1)DaDbf(x) = 2n. (6.1)

Proof. If we multiply both terms of Relation (6.1) by fχ(x) = (−1)f(x), we

obtain the (equivalent) relation: ∀x ∈ Fn2 , fχ ⊗ fχ ⊗ fχ(x) = 2n fχ(x); in-

deed, we have fχ ⊗ fχ ⊗ fχ(x) =
∑
b∈Fn2

(∑
a∈Fn2

(−1)f(a)⊕f(a+b)
)

(−1)f(b+x) =

5 In fact, according to the observations above, “n even” is implied by “f satisfies PC(n)”;

functions satisfying PC(n) do not exist for odd n.
6 The characterization of Theorem 12 leads to a generalization of the notion of bent function

to non-binary functions. In fact, several generalizations exist [16, 718, 802] (see [266] for a
survey); the equivalence between being bent and being perfect nonlinear is no more valid if

we consider functions defined over residue class rings (see e.g. [271]).
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∑
a,b∈Fn2

(−1)f(a+x)⊕f(a+b+x)⊕f(b+x). According to the bijectivity of the Fourier-

Hadamard transform and to Relation (2.44), page 79, this is equivalent to :

∀u ∈ Fn2 , W 3
f (u) = 2nWf (u) .

Thus, we have
∑
a,b∈Fn2

(−1)DaDbf(x) = 2n if and only if, for every u ∈ Fn2 ,

Wf (u) equals ±
√

2n or 0. According to Parseval’s relation, the value 0 cannot

be achieved by Wf and this is therefore equivalent to the bentness of f . 2

Relation (6.1) is equivalent to the relation
∑
a,b∈Fn2

(1− 2DaDbf(x)) = 2n, that

is
∑
a,b∈Fn2

DaDbf(x) = 22n−1 − 2n−1, and hence to the fact that f admits the

second order covering sequence with all-1 coefficients and with level 22n−1−2n−1.

6.1.3 Characterization of bentness by power moments of the Walsh transform

For every even integer w ≥ 4, bent functions are characterized by the property

that the sum
∑
a∈Fn2

Wf
w(a) is minimum:

Proposition 66 Let n be any positive integer and f be any n-variable Boolean

function. Then, for every even integer w ≥ 4, we have∑
u∈Fn2

Ww
f (u) ≥ 2(w2 +1)n,

with equality if and only if f is bent.

This is straightforward for w = 4 by using for instance the Cauchy-Schwarz

inequality and its case of equality, and for w ≥ 6, it is a direct consequence of

the well-known inequality on the Lw norm: if w′ ≥ w then (
∑
i∈I |λi|w

′
)

1
w′ ≥

|I| 1
w′−

1
w (
∑
i∈I |λi|w)

1
w .

Such sums (for even or odd w) play a role with respect to fast correlation

attacks [203, 189] (when these sums have small magnitude for low values of w,

this contributes to a good resistance to fast correlation attacks).

Note that for w = 4, we have, according to (3.10) and (3.9), page 119:∑
u∈Fn2

W 4
f (u) = 2nV(f) = 2n

∑
x,a,b∈Fn2

(−1)DaDbf(x).

Hence:

Corollary 12 Let n be any positive integer and f any n-variable Boolean func-

tion. Then ∑
x,a,b∈Fn2

(−1)DaDbf(x) ≥ 22n,

with equality if and only if f is bent.

Remark. There is no such characterization for w odd, except in particular cases,

like Niho functions, see Proposition 82, at page 248. 2
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Corollary 13 Let n be any positive integer, w any even integer larger than or

equal to 4 and E an F2-vector space of n-variable Boolean functions. There exists

an (n,m)-function F such that E \ {0} is the set of component functions of F .

All functions except the null one in E are bent if and only if F is bent and this

happens if and only if

|{(x1, . . . , xw) ∈ (Fn2 )w;

w∑
i=1

F (xi) = 0m and

w∑
i=1

xi = 0n}| =

2(w−1)n−m + (2m − 1) · 2wn2 −m.

Proof. The two first assertions are by definition, and, according to Proposition

66, the component functions v · F , v ∈ Fm2 \ {0m}, are all bent if and only if we

have
∑
u∈Fn2 ,v∈Fm2

Ww
F (u, v) = 2wn + (2m − 1) · 2(w2 +1)n (distinguishing the case

v = 0m from the cases v 6= 0m), that is, if and only if we have:∑
u,x1,...,xw∈Fn2 ,v∈Fm2

(−1)v·
∑w
i=1 F (xi)⊕u·

∑w
i=1 xi =

2n+m|{(x1, . . . , xw) ∈ (Fn2 )w;

w∑
i=1

F (xi) = 0m and

w∑
i=1

xi = 0n}| =

2wn + (2m − 1) · 2(w2 +1)n. 2

6.1.4 Characterization of bentness by the NNF

The ANF does not allow directly characterizing bent functions, but the NNF

does, and this provides then a possible characterization through the ANF by

using Relation (2.24), page 68 (however, this characterization is complex and we

then do not state it explicitly).

The direct relationship between the Walsh transform values and the coefficients

of the NNF gives:

Proposition 67 [292] Let f(x) =
∑
I⊆{1,...,n} λI x

I be the NNF of a Boolean

function f on Fn2 . Then f is bent if and only if:

1. for every I such that n
2 < |I| < n, the coefficient λI is divisible by 2|I|−

n
2 ;

2. λ{1,...,n} ≡ 2
n
2−1 [mod 2

n
2 ].

Proof. According to Lemma 5, page 214, f is bent if and only if, for every a ∈ Fn2 ,

f̂(a) ≡ 2
n
2−1

[
mod 2

n
2

]
. We deduce that, according to Relation (2.59), page 85,

applied with ϕ = f , Conditions 1. and 2. are sufficient for f to be bent.

Conversely, Condition 1. is necessary, according to Relation (2.60). Condition 2.

is also necessary since f̂(1n) = (−1)nλ{1,...,n}, from Relation (2.59) or (2.60). 2

The related characterization of bent functions by the ANF mentioned above im-

plies conditions on the coefficients of the ANFs of bent functions, which have
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been observed and used in [301] (see more at page 269) and also partially ob-

served by Hou and Langevin in [627].

Point 1 in Proposition 67 can be expressed by a single equation, see [293]. It

is proved in this same reference that bentness can also be characterized by the

generalized degree introduced at page 66.

6.1.5 Characterization of bentness by codes

A way of looking at bent functions deals with linear codes (as we mentioned in

Section 4.1, at page 183): let f be any n-variable Boolean function (n even); we

write its support supp(f) = {x ∈ Fn2 ; f(x) = 1} as {u1, . . . , uwH(f)}; we consider

the matrix G whose columns are all the vectors of supp(f), without repetition,

and call C the linear code generated by the rows of this matrix. Then C is the

set of all the vectors Uv = (v · u1, . . . , v · uwH(f)), where v ranges over Fn2 , and:

Proposition 68 [1120] Let n ≥ 4 be an even integer. Any n-variable Boolean

function f is bent if and only if the linear code C whose generator matrix is the

matrix whose columns are all the vectors of supp(f) has dimension n, and has

exactly two nonzero Hamming weights: 2n−2 and wH(f)− 2n−2.

Indeed, for every nonzero v in Fn2 , the Hamming weight of codeword Uv equals∑
x∈Fn2

f(x)×v ·x =
∑
x∈Fn2

f(x) 1−(−1)v·x

2 = f̂(0n)−f̂(v)
2 . Hence, according to Re-

lation (2.32), page 74, relating Fourier-Hadamard and Walsh transforms, wH(Uv)

equals 2n−2 +
Wf (v)−Wf (0n)

4 . Thus, if f is bent, this weight is never null and C

has then dimension n; moreover, either Wf (v) = Wf (0n) and wH(Uv) = 2n−2, or

Wf (v) = −Wf (0n) and wH(Uv) = 2n−2−Wf (0n)
2 = 2n−2− 2n−2wH(f)

2 = wH(f)−
2n−2. Conversely, if C has dimension n and has exactly the two nonzero Ham-

ming weights 2n−2 and wH(f)− 2n−2, then according to the relation wH(Uv) =

2n−2 +
Wf (v)−Wf (0n)

4 , for every v we have either Wf (v) = Wf (0n) or Wf (v) =

Wf (0n)+4wH(f)−2n+1 = −Wf (0n) and, according to Parseval’s Relation (2.48),

page 79, Wf (v) equals then ±2
n
2 for every v, i.e. f is bent.

C being linear, the minimum distance of C equals the minimum of these two

nonzero weights: 2n−2 if wH(f) = 2n−1 + 2
n
2−1 and 2n−2 − 2

n
2−1 if wH(f) =

2n−1 − 2
n
2−1.

There exist two other characterizations by Wolfmann [1120] dealing with C:

1. C has dimension n and C has exactly two weights, whose sum equals wH(f);

2. The length wH(f) of C is even, C has exactly two weights, and one of these

weights is 2n−2.

Of course, any bent Boolean function f can also be viewed as a (vectorial)

(n, 1)-function and be related to the code C ′f seen at page 183, which has then
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Hamming weight Multiplicity

0 1

2n−1 2n − 1

2n−1 − 2
n
2
−1 2n−1 + (−1)f(0n)2

n
2
−1

2n−1 + 2
n
2
−1 2n−1 − (−1)f(0n)2

n
2
−1

Table 6.1 Weight distribution of Cf for f bent

weight distribution given by Table 6.1 (deduced from the Parseval and inverse

Walsh transform formulae).

In [633, 634] is introduced the so-called near weight enumerator of a bent

function f , equal to WCf (X,Y )+2
n
2−1Xn, where WCf is the weight enumerator

(see page 30) of the code Cf = supp(f). A related Mac Williams-like identity

is shown between dual bent functions (see Definition 51, page 221), leading to

a notion of formally self-dual bent function and a Gleason-type theorem (see

Gleason’s theorem at page 31). As an application is proved in [634] the non-

existence of bent functions in 2n variables with lowest degree of nonconstant

terms in their ANF equal to n − k, for any nonnegative integer k and n ≥ N ,

where N is the smallest integer satisfying
(
N+k+1
k+1

)
< 2N−1 − 1.

6.1.6 Characterization of bentness by difference sets, relative difference sets and
structures of finite geometries

A subset D of a finite additive group G is called a (|G|, |D|, λ)-difference set

in G if every nonzero element in G can be written in exactly λ ways as the

difference between two elements of D (which implies λ(|G| − 1) = |D|(|D| − 1)).

Equivalently, the incidence matrix [D] defined by [D]u,v = 1 if u + v ∈ D and

[D]u,v = 0 otherwise satisfies [D]2 = (|D| − λ)I + λJ where I is the identity

matrix and J the all-1 matrix [440]. Then G\D is also a difference set. Moreover,

for any g ∈ G, g+D is a difference set, called translate of D (we shall see in the

next subsection that the set of all translates forms a symmetric block design).

It is observed in [441, 1005] that a Boolean function f : Fn2 7→ F2 is bent if

and only if its support supp(f) is a non-trivial difference set in the elementary

Abelian 2-group Fn2 . It is known from Mann [824] that the parameters of such

difference set must then be (|G|, |D|, λ) = (2n, 2n−1 ± 2
n
2−1, 2n−2 ± 2

n
2−1). Such

a difference set is called a Hadamard difference set .

Note that the EA equivalence of two bent functions does not necessarily imply

the equivalence of the related difference sets (see e.g. [695, page 265]).

A subset R of a finite additive group G is called a ( |G||N | , |N |, |R|, λ) relative

difference set in G relative to a subgroup N of G if every element in G \N can

be written in exactly λ ways as the difference between two elements of R and no

nonzero element of N can be written this way. An n-variable Boolean function is

bent if and only if its graph is a relative difference set relative to {0n}×F2. This
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property extends to vectorial functions. See more in [965] on the connections

between Boolean or vectorial functions and such structures.

In [428] are also characterized some bent functions by means of the notion of

dimensional doubly dual hyperoval, in finite geometry.

6.1.7 The dual of a bent Boolean function

As linear codes, bent functions go by pairs:

Definition 51 For every n even and every bent n-variable Boolean function f ,

the dual function f̃ of f , is defined by:

∀u ∈ Fn2 , Wf (u) = 2
n
2 (−1)f̃(u).

Proposition 69 [441, 1005] The dual of any bent function is also bent and its

own dual is f itself.

Indeed, the inverse Walsh transform property (2.43), page 78, gives, for every

a ∈ Fn2 :
∑
u∈Fn2

(−1)f̃(u)⊕a·u = 2
n
2 (−1)f(a).

Let f and g be two bent functions, then Relation (2.46), page 79, applied with

ϕ(x) = fχ(x) = (−1)f(x) and ψ = g
χ

shows that

F(f̃ ⊕ g̃) = F(f ⊕ g). (6.2)

Thus, f ⊕ g and f̃ ⊕ g̃ have the same Hamming weight and:

Proposition 70 [209, 212] The mapping f 7→ f̃ is an isometry of the class of

bent n-variable Boolean functions.

Remark. This isometry clearly cannot be extended into an isometry of the

whole space BFn. Indeed, there would exist then a permutation π of Fn2 and an

n-variable Boolean function g such that f̃ = f ◦ π⊕ g for every bent function f ,

and the examples of duals of bent functions we know (with Maiorana-McFarland

functions for instance) show that such π, g do not exist. 2

The mapping f 7→ f̃ also preserves EA equivalence, as originally observed

in [441] in different terms. Indeed, for every linear automorphism L, we have

according to Relation (2.58), page 82, that f̃ ◦ L = f̃ ◦L′, where L′ is the adjoint

operator of L−1, and, for every a, b ∈ Fn2 , we have according to Lemma 4, page

77, that ˜f ◦ tb ⊕ `a = f̃ ◦ ta ⊕ `b ⊕ a · b, where ta is the translation by a.

Denoting b ·x by `b(x), Relation (6.2), applied with g(x) = f(x+ b)⊕ a ·x, gives

F(Daf̃ ⊕ `b) = (−1)a·bF(Dbf ⊕ `a), (6.3)

and applied with g(x) = f(x)⊕ `a(x) and with f(x+ b) in the place of f(x), it

gives the following property, first observed in [219] (and rediscovered in [193]):

F(Daf̃ ⊕ `b) = F(Dbf ⊕ `a) (6.4)
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This implies in particular the following relation that we shall need in the sequel:∑
a,b∈Fn2

F(Daf̃ ⊕ `b) =
∑
a,b∈Fn2

F(Dbf ⊕ `a). (6.5)

Moreover, from Relations (6.3) and (6.4), we deduce;

Proposition 71 [236] Let f be any n-variable bent function. For every a, b ∈
Fn2 , let us denote `b(x) = b · x and `a(x) = a · x. Then Daf̃ and Dbf satisfy

Relation (6.4). Moreover, if a · b = 1, then F(Daf̃ ⊕ `b) = F(Dbf ⊕ `a) = 0.

In fact, Relation (6.4) is in a way characteristic of bent functions:

Proposition 72 [236] If a pair of n-variable Boolean functions f and f ′ satisfies

the relation F(Daf
′⊕`b) = F(Dbf⊕`a) for every a, b ∈ Fn2 , then these functions

are bent and are the dual of each other, up to the addition of a constant function.

Proof. Taking a = 0n in the equality F(Daf
′ ⊕ `b) = F(Dbf ⊕ `a) shows

that Dbf is balanced for every b 6= 0n and taking b = 0n shows that Daf
′

is balanced for every a 6= 0n. This proves the first assertion. Let us sum up

the relations F(Daf
′ ⊕ `b) = F(Dbf ⊕ `a) for b ranging over Fn2 . We obtain

the equalities
∑
x,b∈Fn2

(−1)f
′(x)⊕f ′(x+a)⊕b·x =

∑
x,b∈Fn2

(−1)f(x)⊕f(x+b)⊕a·x =∑
x,y∈Fn2

(−1)f(x)⊕f(y)⊕a·x = Wf (0n)×Wf (a), and this gives 2n(−1)f
′(0n)⊕f ′(a) =

2n(−1)f̃(0n)⊕f̃(a), that is, f ′(0n)⊕ f ′(a) = f̃(0n)⊕ f̃(a), for every a. 2

Notice that, for every a and b, we have Dbf = `a⊕ε if and only if Daf̃ = `b⊕ε.

Rothaus already observed that “many” bent functions are equal to their duals,

i.e. are self-dual bent functions. The characterization of self-dual bent functions

is an open problem, partially addressed in [265, 502, 626] (the latter reference

classifies self-dual bent quadratic functions under the action of the orthogonal

group, i.e. the group of n× n matrices M such that MM t = I). See also [806].

It is observed in [265] that a Boolean n-variable function is self-dual bent or

anti-self-dual bent (i.e. bent such that f̃ = f ⊕ 1) if and only if its so-called

Rayleigh quotient
∑
x,y∈Fn2

(−1)f(x)⊕f(y)⊕x·y =
∑
x∈Fn2

(−1)f(x)Wf (x) has maxi-

mal modulus (that is, has modulus 2
3n
2 ), which is easier to handle in the case

of quadratic functions: [626] uses that the associate symplectic matrix (see the

footnote at page 194) is then involutive.

Remark. Since Boolean functions can be expressed in different forms, the ques-

tion of moving from one form to another is important. For general functions,

we have addressed this question at page 65. Regarding the duals, we have the

easily proved following lemma (see e.g. [311]), in which an autodual basis is a

pair (u, v) such that trnn/2(u) = trnn/2(v) = 1 and trnn/2(uv) = 0. 2

Lemma 6 Let n be even and m = n
2 . Let (u, v) be an autodual basis of F2n over
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F2m . Let f be bent over F2n and g(x, y) = f(ux+ vy), x, y ∈ F2m .

Then:

Wf (au+ bv) = Wg(a, b),

where Wf is calculated with respect to the inner product X · Y = trn(XY ) and

Wg is calculated with respect to the inner product (x, y) ·(x′, y′) = trm(xx′+yy′).

Hence, if f is bent, then f̃(au+ bv) = g̃(a, b).

Numerical normal form of the dual
The numerical normal form of f̃ can be deduced from that of f . Indeed, using

equality f̃ = 1−(−1)f̃

2 , we have f̃ = 1
2 − 2−

n
2−1Wf = 1

2 − 2
n
2−1δ0 + 2−

n
2 f̂ .

Applying now to ϕ = f Relation (2.59), page 85, expressing the value of the

Fourier-Hadamard transform by means of the coefficients of the NNF, we deduce

that if
∑
I⊆{1,...,n} λIx

I is the NNF of f then:

f̃(x) =
1

2
− 2

n
2−1δ0(x) + (−1)wH(x)

∑
I⊆{1,...,n}; supp(x)⊆I

2
n
2−|I|λI .

Changing I into {1, . . . , n} \ I in this relation, and observing that supp(x) is

included in {1, . . . , n} \ I if and only if xi = 0,∀i ∈ I, we obtain the NNF of f̃

by expanding the following relation: f̃(x) =

1

2
− 2

n
2−1

n∏
i=1

(1− xi) + (−1)wH(x)
∑

I⊆{1,...,n}

2|I|−
n
2 λ{1,...,n}\I

∏
i∈I

(1− xi). (6.6)

We deduce again that, for every I 6= {1, . . . , n} such that |I| > n
2 , the coefficient

of xI in the NNF of f̃ (resp. of f) is divisible by 2|I|−
n
2 .

Reducing Relation (6.6) modulo 2 proves Rothaus’ bound (see Theorem 13 be-

low) and the following fact:

Proposition 73 [1005] Let n ≥ 4 be even and f be any n-variable bent Boolean

function. For every I ⊂ {1, . . . , n} such that |I| = n
2 , the coefficient of xI in the

ANF of f̃ equals the coefficient of x{1,...,n}\I in the ANF of f .

Using Relation (2.24), page 68, expressing the NNF by means of the ANF, Equal-

ity (6.6) can be related to the main result of [619] (but this result by Hou is stated

in a complex way).

The Poisson summation formula (2.39), page 77, applied to ϕ = fχ = (−1)f

gives (see [212]) that for every vector subspace E of Fn2 , and for every elements

a and b of Fn2 , we have:∑
x∈a+E

(−1)f̃(x)⊕b·x = 2−
n
2 |E| (−1)a·b

∑
x∈b+E⊥

(−1)f(x)⊕a·x. (6.7)

In particular, f(x)⊕a·x is constant on b+E⊥ if and only if
∑
x∈a+E (−1)f̃(x)⊕b·x =

±2
n
2 , and if E has dimension n

2 , this is equivalent to the fact that f̃(x)⊕ b · x is



224 Bent functions and plateaued functions

constant (with the same value on a + E as f(x) ⊕ a · x on b + E⊥ if a · b = 0).

Note that if f(0n) = 0 and b = 0n, this means that the constant value of f̃(x)

on a+ E is zero. This is particularly interesting when f is self-dual.

6.1.8 Bound on algebraic degree and related properties

The algebraic degree of any Boolean function f being equal to the maximum

size of the multi-index I such that xI has an odd coefficient in the NNF of f ,

Proposition 67, page 218, gives:

Theorem 13 [441, 1005] Let n ≥ 4 be an even integer. The algebraic degree of

any bent function on Fn2 is at most n
2 .

In the case that n = 2, the bent functions have degree 2, since they have odd

Hamming weight (in fact, they are the functions of odd weights).

The minimal possible Hamming distance between two bent n-variable functions

is 2
n
2 , since this is the minimum distance of RM(n2 , n) (see Theorem 7, page

176), and since such distance is achieved by bent functions.

The bound of Theorem 13 is called Rothaus’ bound . It shows, as observed by

Dillon and Rothaus, that n-variable bent functions of algebraic degree n/2 can

not be the direct sums (see page 258) of (necessarily bent) functions in less

variables. Theorem 13 can also be proved with the same method as for proving

Theorem 2, page 82, which also allows obtaining a bound, shown in [620], relating

the gaps between n
2 and the algebraic degrees of f and f̃ :

Proposition 74 The algebraic degrees of any n-variable bent function and of

its dual satisfy:

n

2
− dalg(f) ≥

n
2 − dalg(f̃)

dalg(f̃)− 1
. (6.8)

Proof of Proposition 74 and alternative proof of Theorem 13: Let us denote by d

(resp. by d̃) the algebraic degree of f (resp. of f̃) and consider a term xI of

degree d in the ANF of f . The Poisson summation formula (2.40), page 77,

applied to ϕ = fχ and to the vector space E = {u ∈ Fn2 ; ∀i ∈ I, ui = 0}
gives

∑
u∈E(−1)f̃(u) = 2

n
2−d

∑
x∈E⊥ fχ(x). The orthogonal E⊥ of E equals

{u ∈ Fn2 ; ∀i 6∈ I, ui = 0}. According to Relation (2.4), page 50, the restric-

tion of f to E⊥ has odd Hamming weight w, thus
∑
x∈E⊥ fχ(x) = 2d − 2w is

not divisible by 4. Hence,
∑
u∈E(−1)f̃(u) is not divisible by 2

n
2−d+2.

We deduce first Theorem 13: suppose that d > n
2 , then

∑
u∈E(−1)f̃(u) is not even,

a contradiction since E has an even size (indeed, we have I 6= {1, . . . , n}, because

f has algebraic degree smaller than n, since it has even Hamming weight).

We prove now Proposition 74: according to McEliece’s theorem (or Ax’s the-

orem), see page 179,
∑
u∈E(−1)f̃(u) is divisible by 2d

n−d
d̃
e. We deduce the in-

equality n
2−d+2 >

⌈
n−d
d̃

⌉
, that is, n2−d+1 ≥ n−d

d̃
, which is equivalent to (6.8).2
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Using Relation (2.22), page 66, instead of Relation (2.4) gives a more precise

result than Theorem 13, shown in [292], which will be given in Section 6.1.18.

Proposition 74 can also be deduced from Proposition 67 and from some di-

visibility properties, shown in [292], of the coefficients of the NNFs of Boolean

functions of algebraic degree d.

More on the algebraic degree of bent functions can be said for homogeneous

functions (see page 274).

Remark. The numerical degree of a bent function equals n since the Walsh

transform does not vanish. 2

6.1.9 Bent Boolean functions and designs

A balanced incomplete block design (BIBD), or 2-design, is a collection of sub-

sets (called blocks) of the same size in some finite set, such that each pair of

distinct elements is included in the same number λ of blocks (then, any element

is contained in the same number of blocks as well). A BIBD is symmetric if

the number of block equals the number of elements7. Symmetric designs are the

2-designs having the smallest number of blocks, given their number of elements.

As recalled in [313], at least two designs are associated with any bent function

f (cf. [441, 450, 656]):

1. the difference set design D(f), in which the blocks are the translates c + D,

c ∈ Fn2 , of the support D = supp(f) = f−1(1) (or of the co-support f−1(0n)).

Suppose for instance that f has Hamming weight 2n−1 + 2n/2−1 and that

D = f−1(0n); given a pair {x, y} of distinct elements, the number of c such

that {x, y} ⊂ c + D equals |{c ∈ Fn2 ; f(x + c) = f(y + c) = 0}|, that is,

wH(f⊕1)− wH(Dx+yf⊕1)
2 = 2n−2−2n/2−1 (since we have |(x+D)∩(y+D)| =

|D| − (x+D)∆(y+D)
2 ).

2. the code design C(f), in which the blocks are the supports D′c of the functions

f(x)⊕c ·x⊕ε, where ε is chosen such that wH(f(x)⊕c ·x⊕ε) = 2n−1−2n/2−1,

that is, ε = f̃(c); hence D′c = {x; f(x)⊕ c · x⊕ f̃(c) = 1}; this design has the

same parameters as the difference set design (designs with such parameters

are called Menon designs): denoting lx(c) = c · x, the number of those c

such that a pair {x, y} of distinct elements is included in D′c equals wH((f̃ ⊕
lx⊕ f(x))(f̃ ⊕ ly ⊕ f(y)) =

wH(f̃⊕lx⊕f(x))+wH(f̃⊕ly⊕f(y))−wH(lx+y⊕f(x)⊕f(y)
2 =

2n−1−2n/2−1+2n−1−2n/2−1−2n−1

2 = 2n−2 − 2n/2−1.

D(f) admits all translations as automorphisms, but C(f) has no obvious

automorphism.

Related notions of equivalence can then be studied: two bent functions f and g

could be called “difference set design equivalent” if D(f) and D(g) are isomorphic

designs, and “code design equivalent” if C(f) and C(g) are isomorphic designs.

7 when λ = 1, we have a projective plane; the blocks are the lines.
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Note that the designs D(f) and C(f) are equal if and only if f is quadratic.

Indeed, the quadratic bent functions have the property that for every linear

function l(x), the function f(x)⊕ l(x) equals f(x+ a)⊕ ε, for some a ∈ Fn2 and

some ε ∈ F2. The set {Daf, a ∈ Fn2} + F2 equals then the Reed-Muller code of

order 1; this allows proving that D(f) = C(f). Conversely, D(f) = C(f) for a

bent Boolean function implies that all derivatives have algebraic degree at most

1, which is equivalent to “f is quadratic”.

6.1.10 Bent Boolean functions and affine subspaces

The Poisson summation formula (2.39), page 77, applied on f or on fχ with

a = 0n, shows that the intersection between the support D of an n-variable bent

function and a k-dimensional affine subspace b+E of Fn2 , where k ≥ n/2, equals

2k−1 − 2k−n/2−1
∑
u∈E⊥(−1)f̃(u)⊕b·u and lies then between 2k−1 − 2n/2−1 and

2k−1 + 2n/2−1, as observed by Dillon. This implies that D can contain b+ E or

be disjoint from b + E only if k = n/2, and that if D contains b + E (resp. is

disjoint from b+E), then D has balanced intersection with any proper coset, and

D \ (b+E) (resp. D ∪ (b+E)) is also a difference set. Studying the intersection

of the supports of bent functions and affine spaces results in studying the sums

of bent functions and indicators of flats:

Theorem 14 [212] Let b+E be any flat in Fn2 (E being a linear subspace of Fn2 ).

Let f be any bent function on Fn2 (n even). The function f∗ = f ⊕ 1b+E is bent

if and only if one of the following equivalent conditions is satisfied:

1. For any a in Fn2 \ E, the function Daf is balanced on b+ E;

2. The restriction of the function f̃(x)⊕b·x to any coset of E⊥ is either constant

or balanced.

If f and f∗ are bent, then E has dimension larger than or equal to n
2 and the

algebraic degree of the restriction of f to b+ E is at most dim(E)− n
2 + 1.

If f is bent, E has dimension n
2 , and the restriction of f to b+ E has algebraic

degree at most dim(E)− n
2 + 1 = 1, i.e. is affine, then conversely f∗ is bent too.

Proof. The equivalence between Condition 1 and the bentness of f∗ is directly

deduced from the fact that F(Daf
∗) equals F(Daf) if a ∈ E, and equals

F(Daf) − 4
∑
x∈b+E(−1)Daf(x) otherwise (since when a 6∈ E, the cosets b + E

and b+ a+ E are disjoint and Daf takes the same values on both of them).

Condition 2 is also necessary and sufficient, since we have Wf (a) −Wf∗(a) =

2
∑
x∈b+E(−1)f(x)⊕a·x, and using Relation (6.7), page 223, applied with E⊥ in

the place of E, we have then, for every a ∈ Fn2 :∑
u∈a+E⊥

(−1)f̃(u)⊕b·u = 2dim(E⊥)−n2−1(−1)a·b (Wf (a)−Wf∗(a)) .

Then Wf (a) −W ∗f (a) takes value 0 or ±2
n
2 +1 for every a (which is necessary,

and is sufficient according to Lemma 5, page 214) if and only if Condition 2 is
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satisfied.

Let us now assume that f and f∗ are bent. Then 1b+E = f∗ ⊕ f has algebraic

degree at most n
2 , according to Rothaus’ bound, and thus dim(E) ≥ n

2 .

The values of the Walsh transform of the restriction of f to b + E being equal

to those of 1
2 (Wf −Wf∗), they are divisible by 2

n
2 and thus the restriction of f

to b+E has algebraic degree at most dim(E)− n
2 + 1, according to Theorem 2.

If f is bent, E has dimension n
2 , and the restriction of f to b+ E is affine, then

the relation Wf (a)−W ∗f (a) = 2
∑
x∈b+E(−1)f(x)⊕a·x shows that f∗ is bent too,

according to Lemma 5. 2

Remark. Relation (6.7) applied to E⊥ in the place of E, where E is some n
2 -

dimensional subspace, shows that, if f is a bent function on Fn2 , then f(x)⊕a ·x
is constant on b+E if and only if f̃(x)⊕ b · x is constant on a+E⊥. The same

relation shows that f(x) ⊕ a · x is then balanced on every other coset of E and

f̃(x) ⊕ b · x is balanced on every other coset of E⊥. Notice that Relation (6.7)

shows also that f(x) ⊕ a · x cannot be constant on a flat of dimension strictly

larger than n
2 (i.e. that f cannot be k-weakly-normal with k > n

2 ). 2

Remark. Let f be bent on Fn2 . Let a and a′ be two linearly independent elements

of Fn2 . Let us denote by E the orthogonal of the subspace spanned by a and a′.

According to Condition 2 in Theorem 14, the function f ⊕1E is bent if and only

if DaDa′ f̃ is null (indeed, a 2-variable function is constant or balanced if and

only if it has even Hamming weight, and f̃ has even weight on any coset of the

vector subspace spanned by a and a′ if and only if, for every vector x, we have

f(x) ⊕ f(x + a) ⊕ f(x + a′) ⊕ f(x + a + a′) = 0). This result, stated in [193]

and used in [198, Corollary 15] to design a new class of bent functions, is then a

direct consequence of Theorem 14. 2

6.1.11 Affine spaces of bent Boolean functions

It is observed in [210] that k-dimensional affine spaces of bent Boolean n-variable

functions with k even correspond to bent functions in n + k variables of a par-

ticular form. We shall denote these affine spaces in the form f+ < f1, . . . , fk >,

where < f1, . . . , fk > denotes the vector space over F2 spanned by F2-linearly

independent functions f1, . . . , fk.

Proposition 75 [210] For every positive even integers n, k, a k-dimensional

affine space of Boolean n-variable functions f+ < f1, . . . , fk > contains only

bent functions if and only if the Boolean function

h : (x, y) ∈ Fn2 × Fk2 7→
k
2⊕
i=1

(y2i−1 ⊕ f2i−1(x))(y2i ⊕ f2i(x))⊕ f(x)

is bent.
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The proof is a generalization of the calculations made in Section 5.3, page 204.

Proof. For every (a, b) ∈ Fn2 × Fk2 , we have Wh(a, b) =

∑
(x,y)∈Fn2×Fk2

(−1)
⊕ k

2
i=1(y2i−1⊕f2i−1(x)⊕b2i)(y2i⊕f2i(x)⊕b2i−1)⊕f(x)⊕a·x

·(−1)
⊕ k

2
i=1[b2ib2i−1⊕b2if2i(x)⊕b2i−1f2i−1(x)] =∑

(x,y)∈Fn2×Fk2

(−1)
⊕ k

2
i=1 y2i−1y2i⊕f(x)⊕a·x⊕

⊕ k
2
i=1[b2ib2i−1⊕b2if2i(x)⊕b2i−1f2i−1(x)] =

2
k
2

∑
x∈Fn2

(−1)
⊕ k

2
i=1[b2ib2i−1⊕b2if2i(x)⊕b2i−1f2i−1(x)]⊕f(x)⊕a·x =

±2
k
2W⊕k

j=1 bjfj(x)⊕f(x)(a)

(by making the changes of variables y2i−1 7→ y2i−1 ⊕ f2i−1(x) ⊕ b2i and y2i 7→

y2i ⊕ f2i(x) ⊕ b2i−1 and using that
∑
y∈Fk2

(−1)
⊕ k

2
i=1 y2i−1y2i = 2

k
2 ). Hence h is

bent if and only if each function
⊕k

j=1 bjfj(x)⊕ f(x) is bent. 2

Remark. The situation with k-dimensional affine spaces of bent functions is

quite different from what we have with k-dimensional vector spaces of Boolean

functions whose nonzero elements are all bent: these latter vector spaces are in

correspondence with bent (n, k)-functions: their nonzero elements are the com-

ponent functions of these bent vectorial functions (see Section 6.4, page 295) and

can then exist only if k ≤ n
2 (see Proposition 104, page 296). 2

An example of application of Proposition 75 is given in [210], providing a

large number of (m − 2)-variable bent functions of algebraic degree 4 from

any m-variable cubic bent function: let h be any such function, we have that

each derivative Duh(x) is quadratic and balanced for every u 6= 0m, since

h is bent. According to Proposition 55, page 194 (see also the few lines fol-

lowing the proposition), for each u 6= 0m, there exists v such that DvDuh

equals the constant function 1, that is, Duh(x + v) = Duh(x) ⊕ 1, that is,

h(x+ u+ v) = h(x)⊕ h(x+ u)⊕ h(x+ v)]⊕ 1, and hence:

∀x ∈ Fm2 ,∀y1, y2 ∈ F2, h(y1u+ y2v + x) = h(x)⊕ y1Duh(x)⊕ y2Dvh(x)⊕ y1y2

(this can be checked for each value of (y1, y2)). We can then see that Proposition

75 can be applied with n = m − 2, k = 2, by taking for f the restriction of

h(x) +Duh(x)Dvh(x) to an (m− 2)-dimensional vector space E not containing

u, v nor u+ v (identifying then this vector space with Fn2 ), for f1 the restriction

of Duh to E and for f2 the restriction of Dvh to E. We deduce that the 2-

dimensional affine space (h ⊕ DuhDvh)|E + < Duh|E , Dvh|E > contains only

bent functions. These bent functions have algebraic degree 4 in general.
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6.1.12 A graph related to bent functions

In [716] is studied the graph G whose vertices are the bent functions and whose

edges connect vertices at Hamming distance 2
n
2 of each other. It is shown that

the degree of any vertex is not more than 2
n
2

∏n/2
i=1(2i + 1) and that this bound

is achieved with equality by quadratic bent functions, and only by them.

The minimal codewords of Reed-Muller codes being indicators of affine spaces

(see Theorem 8, page 177), if two bent functions lie at distance 2n/2 from each

other, then according to Rothaus’ bound and to Theorem 14, page 226, they are

weakly normal and they differ by the indicator of the n
2 -dimensional space on

which they are affine. Hence, if a bent function is not weakly normal, there is

no bent function at Hamming distance 2
n
2 from it. According to the existence

of bent functions for n ≥ 14 which are not weakly normal, G is disconnected

if n ≥ 14 (it is connected if n ≤ 6; the question whether it is disconnected

for 8 ≤ n ≤ 12 seems open). Does it remain disconnected when we take off all

vertices corresponding to functions being not weakly normal ? See more in [716].

6.1.13 Bent Boolean functions of low algebraic degrees

Quadratic bent functions
All the quadratic bent functions are known. According to the properties recalled

in Section 5.2, any quadratic function

f(x) =
⊕

1≤i<j≤n

ai,j xi xj ⊕ h(x) (h affine, ai,j ∈ F2)

is bent if and only if one of the following equivalent properties is satisfied:

1. its Hamming weight is equal to 2n−1 ± 2
n
2−1;

2. its associated symplectic form: βf : (x, y) 7→ f(0n) ⊕ f(x) ⊕ f(y) ⊕ f(x + y)

is non-degenerate (i.e. has kernel {0n});
3. the matrix of this symplectic form, that is, the skew-symmetric matrix M =

(mi,j)i,j∈{1,...,n} over F2 , defined by: mi,j = ai,j if i < j, mi,j = 0 if i = j,

and mi,j = aj,i if i > j, is non-singular (i.e. has determinant 1);

4. f(x) is equivalent, up to an affine nonsingular transformation, to the function:

x1x2 ⊕ x3x4 ⊕ · · · ⊕ xn−1xn ⊕ ε (ε ∈ F2).

Hence, there is a unique EA equivalence class of bent functions, as Rothaus and

Dillon already observed in different terms.

Remark According to these characterizations, there exist (quadratic) bent func-

tions for every even positive n (we can take the simplest one x1x2⊕· · ·⊕xn−1xn).

Thus, the covering radius of the Reed-Muller code of order 1 equals 2n−1−2
n
2−1

when n is even. 2

Note that when f is bent in Proposition 57, page 198, that is, when Ef is

the trivial vector space, E⊥f equals the whole space Fn2 and the linear functions
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y 7→ βf (x, y) cover then all linear forms on Fn2 (once each) when x ranges over

Fn2 . Examples of quadratic bent functions over Fn2 are:

• the so-called Maiorana-McFarland (see below) quadratic bent functions f(x, y) =

x · π(y)⊕ h(y) where x, y ∈ Fn/22 and π is an affine permutation of Fn/22 ,

• the elementary quadratic symmetric Boolean function σ2(x) =
(
wH(x)

2

)
[mod

2] =
⊕

1≤i<j≤n xixj (which is, up to the addition of an affine symmetric

function, the only symmetric bent function, see Section 10.1); this func-

tion is bent because the kernel of it associated symplectic form ϕ(x, y) =⊕
1≤i 6=j≤n

xiyj , equal to {(x1, . . . , xn) ∈ Fn2 ; ∀i = 1, . . . , n,
⊕

j 6=i xj = 0} is

reduced to {0n}, since n is even.

Quadratic bent functions in trace representation
We have seen at page 199 how the Hamming weight and Walsh transform values

of quadratic Boolean functions in trace form can be calculated.

A generic quadratic function trn

(∑n
2−1

k=1 akx
2k+1

)
+ trn/2

(
an/2x

2n/2+1
)

+ `(x),

where a1, . . . , an2−1 ∈ F2n , an/2 ∈ F2n/2 and ` is affine, is bent if and only

if the equation
∑n

2−1

k=1

(
akx

2k + a2n−k

k x2n−k
)

+ an/2x
2n/2

= 0 has 0 for only

solution, that is, the linearized polynomial on the left-hand side is a permutation

polynomial.

In the case of Gold Boolean functions f(x) = trn(ax2i+1); a ∈ F∗2n , Carlitz’

result shows that, for i = 1, f is bent if and only if a is not a cube (see page

201). For general i, raising the equation ax2i + (ax)2n−i = 0 to the 2i-th power

gives a2ix22i

+ax = 0. Hence, x 6= 0 is a solution if and only if (ax2i+1)2i−1 = 1,

that is, ax2i+1 ∈ F2n ∩ F2i = F2gcd(i,n) and since 2i + 1 and 2i − 1 are co-prime

and x 7→ x2i+1 is then a permutation in F2gcd(i,n) , the existence of such x is

equivalent to that of x such that x2i+1 = 1
a ; function trn(ax2i+1) is then bent if

and only if a 6∈ {x2i+1, x ∈ F2n}. Such a exists if and only if function x2i+1 is

not a permutation on F2n , that is, gcd(2i + 1, 2n − 1) 6= 1, and since 22i − 1 =

(2i− 1)(2i + 1) and 2i− 1 and 2i + 1 are co-prime, we have gcd(2i + 1, 2n− 1) =
gcd(22i−1,2n−1)
gcd(2i−1,2n−1) = 2gcd(2i,n)−1

2gcd(i,n)−1
; the condition is then that n

gcd(i,n) is even. Being

quadratic, these functions belong to the completed Maiorana-McFarland class.

Another classical example of quadratic bent function is:

f(x) = trn

( n
2−1∑
i=1

x2i+1
)

+ trn
2

(
x2

n
2 +1

)
;

the equation
∑n

2−1
i=1 (x2i + x2n−i) + x2n/2 = 0, that is, x+ trn(x) = 0 has indeed

clearly 0 as the only solution, since trn(x) ∈ F2 and trn(1) = 0.

Quadratic bent functions are studied in [355, 629, 632, 699, 1144] (with the

viewpoint of linearized permutation polynomials in the latter reference) and

deduced in [768] from generalized bent functions.
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An example of bivariate bent function over F2n for every n is from [236]. Function:

f(x, y) = trn(x2i+1 + y2i+1 + xy); x, y ∈ F2n , gcd(n, 3) = gcd(n, i) = 1,

is bent. Its associated symplectic form equals βf : ((x, y), (x′, y′)) → f(0, 0) ⊕
f(x, y)⊕ f(x′, y′)⊕ f(x+ x′, y + y′) = trn(x2ix′ + xx′

2i
+ y2iy′ + yy′

2i
+ xy′ +

x′y). The kernel of βf equals

{
(x, y) ∈ F2

2n ;

{
x2i + x2n−i + y = 0

y2i + y2n−i + x = 0

}
, equal to

{(0, 0)} since denoting z = x + y we have z2i + z2n−i + z = 0 which implies

z22i

= z2i + z and therefore z23i

= z, that is z ∈ F23i , and therefore z ∈ F2 and

z = 1 being not a solution of the equation z2i + z2n−i + z = 0, we have x = y

and x2i + x2n−i + x = 0, that is, x = 0.

Remark Another representation of Boolean functions, in which, instead of iden-

tifying x = (x1, . . . , xn) with a field element (by the use of a basis of the vector

space F2n over F2), we identify (x1, . . . , xn−1) with a field element in F2n−1 , and

keep xn in F2, leads to the Kerdock code; see Section 6.1.22 where the bent

functions leading to this code are given. The so-called cyclic bent functions, such

that, for any a 6= b ∈ F2n−1 and any ε ∈ F2, f(ax1, x2) + f(bx1, x2 + ε) is bent

(as well as f itself), are proposed in [458], with applications in codes, codebooks,

designs, mutually unbiased bases and sequences. 2

The unique EA equivalence class of quadratic bent functions has simplest repre-

sentative trn(x2m+1) in univariate representation and trm(xy) in bivariate rep-

resentation.

Cubic bent functions
Any Boolean function f being bent if and only if every derivative of f in a nonzero

direction is balanced, and every quadratic Boolean function being balanced if and

only if one of its derivatives is the constant function 1, we have:

Proposition 76 Let n be any positive integer and f any cubic n-variable Boolean

function. Then f is bent if and only if, for every nonzero a ∈ Fn2 , there exists

b ∈ Fn2 such that the second-order derivative DaDbf equals constant function 1.

Up to an affine transformation, we may assume in Proposition 76 that a =

(1, 0, . . . , 0) and b = (0, 1, 0, . . . , 0) and any cubic bent function is then affinely

equivalent to a function of the form x1x2⊕x1f1(x3, . . . , xn)⊕x2f2(x3, . . . , xn)⊕
f3(x3, . . . , xn), but it seems difficult to go further in the determination of cubic

bent functions.

The characterization given by Corollary 12, page 217, simplifies itself in the case

of a cubic function: denoting the set {(a, b) ∈ Fn2 ; DaDbf = cst} by E(2)
f , we

have
∑

x,a,b∈Fn2

(−1)DaDbf(x) = 2n
∑

(a,b)∈E(2)
f

(−1)DaDbf(0n), since the second-order
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derivatives of f , which are affine, are constant or balanced. Then f is bent if

and only if
∑
a,b∈E(2)

f

(−1)DaDbf(0n) = 2n. Note that, for every a ∈ Fn2 , the

section {b ∈ Fn2 ; (a, b) ∈ E(2)
f } of E(2)

f at a equals EDaf and is then a lin-

ear subspace of Fn2 . Hence, E(2)
f is a bilinear space. Moreover, according to

the property observed for quadratic functions at page 194, and since Daf is

quadratic, function b 7→ DaDbf(0n) is linear over EDaf for every a, that is, func-

tion (a, b) 7→ DaDbf(0n) is bilinear over E(2)
f .

We deduce that
∑

a,b∈E(2)
f

(−1)DaDbf(0n) =
∑
a∈Fn2

∀b∈EDaf ,DaDbf(0n)=0

|EDaf | and that f is

bent if and only if
∑
a∈Fn2

∀b∈EDaf ,DaDbf(0n)=0

|EDaf | = 2n, and since for a = 0n we have

EDaf = Fn2 and ∀b ∈ EDaf , DaDbf(0n) = 0, this proves again Proposition 76.

But it is still an open problem to characterize the bent functions of algebraic

degree 3 (that is, classify them under the action of the general affine group).

This has been done for n ≤ 6 in [1005] (see also [968] where the number of bent

functions is computed for these values of n). For n = 8, it has been done in [618]

(and completed in [9]); all of these functions have at least one affine derivative

Daf , a 6= 0n (it has been proved in [193] that this happens for n ≤ 8 only).

6.1.14 Bent Boolean functions in few variables

Bent functions in 2 variables are the Boolean functions of odd Hamming weight,

i.e. of algebraic degree 2.

Bent functions in 4 variables are quadratic and therefore known.

Bent Boolean functions in 6 variables
The determination of all bent 6-variable functions has been done in [1005], where

a search for all cubic bent functions in 6 variables was made, i.e. of all 6-

variable bent functions of maximal algebraic degree. Rothaus determined, up

to affine equivalence, four possible degree 3 parts of cubic Boolean functions

in 6 variables. Determining all 6-variable bent functions was then possible by

visiting all 2(6
2) = 215 quadratic parts for each of these four cases. Bart Pre-

neel in his thesis [968] made this work again and found a fifth class of degree

3 parts, but this fifth class did not give any bent function. It was also proved

by R.E. Kibler (as mentioned by Dillon in [440]) and rediscovered thirty years

later in [124] (while classifying EA equivalence classes of 6-variable Boolean

functions according to some cryptographic properties) that every bent function

in 6 variables is affinely equivalent to a function of the Maiorana-McFarland

class (see below). It was later observed in [212] that any bent function of al-

gebraic degree 3 in 6 variables is affine equivalent to a function of the form

x1x2x3⊕x1h1(x4, x5, x6)⊕x2h2(x4, x5, x6)⊕x3h3(x4, x5, x6)⊕g(x4, x5, x6) where
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the mapping (x1, x2, x3) 7→ (h1(x4, x5, x6), h2(x4, x5, x6), h3(x4, x5, x6)) is a per-

mutation and where h1 ⊕ h2 ⊕ h3 is affine (for any function of this form, this

double condition is necessary and sufficient). This implies in particular that any

bent function in at most 6 variables is affinely equivalent to its dual.

Bent Boolean functions in 8 variables
The (impressive) determination of all bent 8-variable functions has been com-

pleted in [743], after that Langevin and Leander enumerated them in [741] (Hou

had previously classified cubic bent functions in [618]).

In [347] are constructed bent homogeneous functions (i.e. bent functions whose

ANFs are the sums of monomials of the same degree) on 12 (and less) variables

by using the invariant theory (which makes feasible the computer searchs).

6.1.15 Primary constructions of bent Boolean functions

Except for small values of n, there does not exist a classification of bent functions

under the action of the general affine group, and the structure of the set of bent

functions is not clear. In order to understand better this structure, and also to

have bent functions for applications, researchers have designed constructions. We

describe them below. It is not clear whether these constructions give some insight

on general bent functions or if on the contrary they draw our attention to peculiar

bent functions. Nevertheless, they represent some important knowledge and have

practical interest. Some of the known constructions are ex nihilo (from scratch).

We call them primary constructions and address them in the present subsection.

The others, which use as building blocks previously constructed bent functions

(often called initial functions), and sometimes lead to recursive constructions,

are called secondary constructions. We shall address them in the next subsection.

1. The Maiorana-McFarland original class M (see [441, 834]) is the set

of all the Boolean functions on Fn2 = {(x, y);x, y ∈ Fn/22 }, of the form:

f(x, y) = x · π(y)⊕ g(y) (6.9)

where “·” is an inner product in Fn/22 , π is any permutation on Fn/22 and g any

Boolean function on Fn/22 .

In bivariate representation, this gives (x, y) = trn/2(x π(y)) + g(y), where π is

any permutation polynomial over F2n/2 and g any Boolean function on F2n/2 .

Proposition 77 Any function of the form (6.9) is bent if and only if π is a

permutation. The dual of this bent function equals then f̃(a, b) = b · π−1(a) ⊕
g(π−1(a)), where π−1 is the inverse permutation of π.
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This is a direct consequence8 of Proposition 53, page 189, which writes here:

Wf (a, b) = 2
n
2

∑
y∈π−1(a)

(−1)g(y)⊕b·y, (6.10)

where π−1(a) denotes the pre-image of a by π−1. We see that the dual function

of f also belongs to Maiorana-McFarland class but with its two inputs swapped.

As we saw already in Section 5.1, the fundamental idea of Maiorana-McFar-

land’s construction consists in concatenating affine functions. If we order all the

binary words of length n in lexicographic order, with the bit of higher weight on

the right, then the truth-table of f is the concatenation of the restrictions of f

obtained by setting the value of y and letting x freely range over Fn/22 . These

restrictions are affine.

Of course, M is a particular case of the general Maiorana-McFarland con-

struction of Boolean functions seen in Subsection 5.1.1, which has been a gener-

alization of M first investigated in [181].

Note that function f above is such that, for every function h(y), function f(x, y)⊕
h(y) is bent. This property is characteristic of the functions of the form (6.9):

Proposition 78 A Boolean function f(x, y), x, y ∈ Fn/22 , belongs to class M if

and only if, for every function h(y), the function f(x, y)⊕ h(y) is bent.

Proof. The condition is necessary, according to Proposition 77. For proving that it

is also sufficient, let us take h = δa (the indicator of {a}). For every a, u, v ∈ F
n
2
2 ,

we have that
∑
x,y∈F

n
2
2

(−1)f(x,y)⊕u·x⊕v·y⊕δa(y) =
∑
x,y∈F

n
2
2

(−1)f(x,y)⊕u·x⊕v·y −

2
∑
x∈F

n
2
2

(−1)f(x,a)⊕u·x⊕v·a, and if f(x, y) and f(x, y) ⊕ δa(y) are both bent,

then we have ±2
n
2 = ±2

n
2 ± 2

∑
x∈F

n
2
2

(−1)f(x,a)⊕u·x. Hence for every a, u ∈ F
n
2
2 ,

we have
∑
x∈F

n
2
2

(−1)f(x,a)⊕u·x ∈ {0,±2
n
2 }. Clearly, having, for some a, that∑

x∈F
n
2
2

(−1)f(x,a)⊕u·x = 0 for every u is impossible because of Parseval’s relation.

Then, for every a ∈ F
n
2
2 , there exists u ∈ F

n
2
2 such that

∑
x∈F

n
2
2

(−1)f(x,a)⊕u·x =

±2
n
2 that is f(x, a) = u · x or f(x, a) = u · x⊕ 1. 2

When a new method of construction of bent functions is found, it is necessary

(for showing that it does not only provide functions which could be obtained with

already known methods) to prove that some constructed functions are affinely

inequivalent to Maiorana-McFarland functions9. We know thanks to Proposi-

tion 54, page 190, that an n-variable Boolean function with n even belongs to

the completed Maiorana-McFarland class (the smallest possible complete class

8 The input is here cut in two pieces x and y of the same length; cutting it in pieces of

different lengths is addressed in Proposition 79 below; bentness is then obviously not
characterized by the bijectivity of π.

9 This should ideally be checked for all known classes of bent functions; this represents much

(hard) work; checking this with class M is usually considered as mandatory because M is
simpler and provides the widest class of bent functions.
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including M) if and only if there exists an n
2 -dimensional linear subspace E

of Fn2 such that function DaDbf is identically null for every a, b ∈ E. Accord-

ing to Proposition 78, this is also equivalent to the fact that there exists an
n
2 -dimensional affine subspace A and an n

2 -dimensional linear subspace E of Fn2
such that every element of Fn2 can be expressed in a unique way in the form

x+y, where x ∈ E, y ∈ A, and such that f⊕h is bent for every function h(x+y)

depending only on y.

The completed class of M contains all bent functions in at most 6 variables

[440] and all quadratic bent functions (according to point 4 in the characteriza-

tion of quadratic bent functions of page 229, taking π = id and g constant in

(6.9)).

Derived classes C and D
Two classes of bent functions have been obtained in [212] by adding to functions

of Maiorana-McFarland’s class the indicators of vector subspaces:

- The class, denoted by D, whose elements are the functions of the form

f(x, y) = x · π(y) ⊕ 1E1(x)1E2(y), where π is any permutation on Fn/22 and

E1, E2 are two linear subspaces of F
n
2
2 such that π(E2) = E1

⊥ (1E1 and 1E2

denote their indicators). The dual of f belongs to the completed class of D.

A subclass D0 of D has for elements the functions of the form f(x, y) = x ·
π(y) ⊕ δ0(x) (recall that δ0 is the Dirac symbol). The dual of such f is the

function y · π−1(x) ⊕ δ0(y). It is proved in [212] that D0 is not included10 in

the completed versions of classes M and PS and that every bent function in 6

variables is affinely equivalent to a function of this class, up to the addition of

an affine function.

- The class C of all the functions of the form f(x, y) = x · π(y)⊕ 1L(x), where

L is any linear subspace of Fn/22 and π any permutation on Fn/22 such that, for

any element a of Fn/22 , the set π−1(a + L⊥) is a flat. It is a simple matter to

see, as shown in [198], that, under the same hypothesis on π, if g is a Boolean

function whose restriction to every flat π−1(a+ L⊥) is affine, then the function

x · π(y)⊕ 1L(x)⊕ g(y) is also bent.

The fact that any function in class D or class C is bent comes from Theorem

14, page 226. In [822], existence and nonexistence results of such π and L are

given for many of the known classes of permutations, inducing generic methods

of constructions. In [1154], sufficient conditions on π and L so that f is provably

outside the completed Maiorana-McFarland class are found. In particular, it is

shown that the C functions described in [822] do not belong to the completed

Maiorana-McFarland class. The more difficult question whether these functions

are also outside the completed PS class remains open.

10 We have seen in Proposition 54 that there is a rather simple way to show that a function f

does not belong to the completed class of M; it is more difficult to show that it does not
belong to the completed class of PS.
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Maiorana-McFarland construction as a secondary construction
The original Maiorana-McFarland’s construction is a particular case of a more

general construction of bent functions, which is a secondary construction for

r < n
2 and a primary one for r = n

2 :

Proposition 79 [223] Let n = r+s (r ≤ s) be even. Let φ be any mapping from

Fs2 to Fr2 such that, for every a ∈ Fr2, the set φ−1(a) is an (n− 2r)-dimensional

affine subspace of Fs2. Let g be any Boolean function on Fs2 whose restriction

to φ−1(a) (viewed as a Boolean function on Fn−2r
2 via an affine isomorphism

between φ−1(a) and this vector space) is bent for every a ∈ Fr2, if n > 2r (no

condition on g being imposed if n = 2r). Then the function fφ,g(x, y) = x ·φ(y)⊕
g(y) is bent on Fn2 .

Proof. This is a direct consequence of Proposition 53, page 189, which writes:

Wfφ,g (a, b) = 2r
∑

y∈φ−1(a)

(−1)g(y)⊕b·y. (6.11)

According to Relation (6.11), the function fφ,g is bent if and only if r ≤ n
2 and∑

y∈φ−1(a)(−1)g(y)⊕b·y = ±2
n
2−r for every a ∈ Fr2 and every b ∈ Fs2. The hypoth-

esis in Proposition 79 is a sufficient condition for that (but it is not a necessary

one). 2

This construction is pretty general: the choice of any partition of Fs2 in 2r flats

of dimension s − r = n − 2r and of an (n − 2r)-variable bent function on each

of these flats leads to an n-variable bent function. Note that φ, defined so that

the elements of this partition are the pre-images of the elements of Fr2 by φ, is

balanced (i.e. has output uniformly distributed over Fr2). In fact, it is observed

in [802] that, if a bent function has the form fφ,g, then φ is balanced. This is

a direct consequence of the characterization of balanced vectorial functions by

Proposition 35, page 134 and of the fact that, for every nonzero a ∈ Fr2, the

Boolean function a · φ is balanced, since it equals the derivative D(a,0s)fφ,g.

Obviously, every Boolean function can be represented (in several ways) in the

form fφ,g for some values of r ≥ 1 and s and for some mapping φ : Fs2 7→ Fr2 and

Boolean function g on Fs2.

Remark. There exist n
2 -dimensional vector spaces of n-variable Boolean func-

tions whose nonzero elements are all bent. This is equivalent to the existence

of bent (n, n2 )-functions. Maiorana-McFarland’s construction allows construct-

ing such functions as we shall see at page 297. Dimension n
2 is maximal, since

a result by K. Nyberg shows that bent (n,m)-functions cannot exist for m > n
2 .2

2. The partial spread class PS, introduced in [441] by J. Dillon, is the

set of all the sums (modulo 2) of the indicators of 2
n
2−1 or 2

n
2−1 + 1 pairwise

supplementary subspaces of dimension n
2 of Fn2 (i.e. such that the intersection of

any two of them equals {0n}, and given their dimension, whose sum is direct and

equals Fn2 ). A set of pairwise supplementary subspaces is called a partial spread ,
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and a (full) spread if it covers Fn2 . Some PS functions are built with partial

spreads which are parts of full spreads and some are built with partial spreads

which can not be extended into full spreads (we shall see a quadratic example

below).

Proposition 80 Any sum (modulo 2) of the indicators of 2
n
2−1 or 2

n
2−1 + 1

pairwise supplementary subspaces of dimension n
2 of Fn2 is a bent function. The

dual of such function has the same form, all the n
2 -dimensional spaces involved

in the definition being replaced by their orthogonals.

Definition 52 Class PS is the set of bent functions defined in Proposition 80.

The sums of 2
n
2−1 such indicators constitute subclass PS− (whose elements have

Hamming weight 2
n
2−1(2

n
2−1 − 1) = 2n−1 − 2

n
2−1) and the sums of 2

n
2−1 + 1 of

them constitute subclass PS+ (whose elements have Hamming weight (2
n
2−1 +

1) 2
n
2 − 2

n
2−1 = 2n−1 + 2

n
2−1).

We shall see that Proposition 80 is a particular case of a theorem (Theorem 17)

that we shall state at page 267. The bentness of the functions in PS can also

be alternatively shown: for each pair of supplementary subspaces Ei and Ej and

every a ∈ Fn2 , the set Ei ∩ (a + Ej) is a singleton; this allows proving that, for

every nonzero a, the product of any function f(x) in PS− (resp. in PS+) with

its shifted function fa(x) = f(x + a) has Hamming weight 2
n
2−1(2

n
2−1 − 1) =

2n−2 − 2
n
2−1 if f(a) = 0 and (2

n
2−1 − 1)(2

n
2−1 − 2) + 2

n
2 − 2 = 2n−2 − 2

n
2−1 if

f(a) = 1 (resp. (2
n
2−1 + 1)2

n
2−1 = 2n−2 + 2

n
2−1 if f(a) = 0 and 2

n
2−1(2

n
2−1 −

1)+2
n
2 = 2n−2 +2

n
2−1 if f(a) = 1), which implies in all cases that the derivative

Daf (whose Hamming weight equals 2(wH(f)−wH(ffa))) is balanced, and thus

that f is bent, according to Theorem 12, page 216.

The PS− functions built with a full spread are the complements of the elements

of PS+ built with the same full spread and vice versa, but the complement of a

general PS bent function is not necessarily in PS.

Remark The Boolean functions equal to the sums of some number of indicators

of pairwise supplementary n
2 -dimensional subspaces of Fn2 share with quadratic

functions the nice and convenient property of being bent if and only if they have

the Hamming weight of a bent function (which is 2n−1 ± 2
n
2−1). 2

All the elements of PS− have algebraic degree n
2 exactly (indeed, by applying

a linear isomorphism of Fn2 , we may assume that Fn/22 × {0n/2} is among the

2
n
2−1 pairwise supplementary spaces defining the function, and since the function

vanishes at 0n, Relation (2.4) page 50 shows that the monomial x1 . . . xn2 appears

in its ANF).

On the contrary, the elements of PS+ do not all have algebraic degree n
2 : Dillon

observed in [441] that, when n
2 is even, all quadratic bent functions are PS+

functions or their complements; indeed, by affine equivalence, we can restrict
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ourselves to the function (x, ε, y, η) ∈ F2n/2−1×F2×F2n/2−1×F2 → trn/2−1(xy)⊕
εη ⊕ 1, where trn/2−1 is the trace function from F2n/2−1 to F2; the support of

this function equals the union of the 2n/2−1 + 1 vector spaces of dimension n/2

(and very much related to the Kerdock code) S∅ = {0} × {0} × F2n/2−1 × F2

and Sa = {(x, ε, a2x+ atrn/2−1(ax) + aε, trn/2−1(ax)); (x, ε) ∈ F2n/2−1 × F2} for

a ∈ F2n/2−1 . Indeed, we have trn/2−1(xy) ⊕ εη = 0 if and only if x = ε = 0

or there exists a such that y = a2x + atrn/2−1(ax) + aε and η = trn/2−1(ax).

Note that since f has algebraic degree strictly less than n
2 for n ≥ 8, this partial

spread is not extendable to a full spread.

It is an open problem to characterize the algebraic normal forms of the ele-

ments of class PS or their trace representations. It is then necessary to identify

within the PS construction, classes of explicit bent functions11.

Class PSap in bivariate representation
J. Dillon exhibits in [441] a subclass of PS−, denoted by PSap (where “ap”

stands for “affine plane”), whose elements (that we shall call Dillon’s functions)

are defined in an explicit form, that we already addressed in Subsection 5.1.2

(more precisely at page 192).

The vector space Fn2 is identified with the affine plane F2n/2 × F2n/2 (an inner

product being (x, y) · (x′, y′) = trn
2

(xx′ + yy′); we know that the notion of bent

function is independent of the choice of the inner product). The affine plane

F2n/2 × F2n/2 is equal to the union of its 2n/2 + 1 lines through the origin E∅ =

{0} × F2n/2 and Ea = {(x, ax) ; x ∈ F2n/2}, a ∈ F2n/2 ; these lines are n/2-

dimensional F2-subspaces of Fn2 and constitute the so-called Desarguesian spread .

Choosing any 2n/2−1 of the lines, and taking them different from E0 and E∅ (of

equations x = 0 and y = 0), leads, by definition, to an element of PSap, of

the form f(x, y) = g
(
x y2n/2−2

)
, i.e. g

(
x
y

)
with x

y = 0 if y = 0, where g is a

balanced Boolean function on Fn/22 which vanishes at 0. In the sequel, we shall

always take this convention that 1
0 = 0 and write x

y instead of x y2n/2−2. The

bentness of the resulting function is a consequence of Relation (5.9), page 193,

with φ = f(0) = ε = a = 0.

The complements g
(
x
y

)
⊕ 1 of these functions are the functions h(xy ) where h is

balanced and does not vanish at 0; they belong to class PS+.

For every balanced function g, the dual of the bent function g(xy ) is g( yx ) (this

will be a direct consequence of Theorem 17, page 267).

Class PSap in univariate representation
We have already seen at pages 191-192, the notion of PSap Boolean function in

univariate representation (but without studying the condition under which such

function is bent). A univariate representation of the elements of Desarguesian

11 The situation with PS is then similar to the situation with general bent functions: we have

a nice and simple definition, but no systematic way of determining all the elements which
satisfy it.
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spread is {uF2n/2 , u ∈ U}, where U = {u ∈ Fn2 ; u2n/2+1 = 1} is the cyclic group

of (2n/2 + 1)-th roots of unity in Fn2 (i.e. the multiplicative subgroup of F∗2n of

order 2n/2 + 1). Each line through the origin of the plane F2n over F2n/2 , instead

of being identified by the constant value x
y of its nonzero elements (x, y) ∈ F2

2n/2

(which makes with the convention 1
0 = 0 that the two lines of equations x = 0 and

y = 0 provide necessarily the same output by the PSap function) is identified by

the unique element of U its contains. Then g is viewed as a Boolean function over

U such that g(α1) = g(α2) = 0 = f(0) where (α1, α2) is the basis chosen for the

plane F2n over F2n/2 , assuming without loss of generality that α1, α2 both belong

to U . Relation (5.5), page 192, with m = n
2 , and (−1)f(0) −

∑
µ∈U (−1)g(µ) = 0

(since g is taken balanced on U \ {αi}, i = 1, 2), and φ = 0 gives an alternative

proof of the bentness of the PSap functions defined by Dillon, since trnm(z) = 0

if and only if z ∈ F2m . Moreover, for every x ∈ F∗
2n/2 and every u ∈ U , we have

(ux)2n/2−1 = u−2 and u 7→ u−2 is a permutation of U , this leads to an expression

of PSap bent functions of the form h(z2n/2−1), z ∈ F2n , where h is a Boolean

function over F2n such that h(0) = 0 and whose restriction to U has Hamming

weight 2
n
2−1.

Dillon shows in [442] that all bent functions of the form trn(az2n/2−1), z ∈ F2n ,

are affinely inequivalent to the Maiorana-McFarland functions.

It is possible to deduce the univariate representation of PSap functions from their

bivariate representation. We have seen at page 65 that any bivariate function

f(x, y) over F2n/2 can be represented as a function of z ∈ F2n , that we shall also

denote by f(z) (by abuse of notation), by posing x = trnn/2(az) = az + (az)2n/2

and y = trnn/2(bz) = bz + (bz)2n/2 for some elements a, b ∈ F2n which need to be

Fn/22 -linearly independent (for instance, we can choose ω ∈ F2n \ F2n/2 and the

pair (1, ω) is then a basis of the F2n/2 -vector space F2n ; we then take for (a, b) a

basis orthonormal with (1, ω)). For f(x, y) = g
(
x
y

)
, we have then the following

expression valid for z 6= 0:

f(z) = g

((
a+ a2n/2z2n/2−1

) (
b+ b2

n/2

z2n/2−1
)2n/2−2

)
.

Given a primitive element α of F2n , we have for i = 0, . . . , 2n/2 and j =

0, . . . , 2n/2 − 2:

f
(
αi+j(2

n/2+1)
)

= g
(

(a+ a2n/2βi) (b+ b2
n/2

βi)2n/2−2
)
,

where β = α2n/2−1.

Dillon [442], observing that function trn(az2n/2−1), z ∈ F2n , a ∈ F∗2n , is bent

if and only if (see above) the restriction of trn(az) to U has Hamming weight

2n/2−1, conjectures that such a exists for every even n. He gives the translation

of this conjecture in terms of cyclic codes: let θ be a primitive element of U (i.e. a

primitive (2n/2 +1)-th root of unity in F2n), then the condition is that the cyclic

code C = {(trn(a), trn(aθ), trn(aθ2), trn(aθ3), . . . , trn(aθ2n/2); a ∈ F2n} contains
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codewords of Hamming weight 2n/2−1. Since multiplying a by an element of U

corresponds to a cyclic shift, he can restrict himself to a ∈ F2n/2 . Then trn(a θj) =

trn/2(a trnn/2(θj)) = trn/2(a (θj + θ−j)). We know (see page 253, see also Ap-

pendix, page 533 and foll.) that when j = 1, . . . , 2n/2, θj + θ−j (i.e. when z ∈
U \{1}, z+ z−1) takes twice each value in {x ∈ F∗

2n/2
; trn/2(x−1) = 1}. The con-

dition on a is then that
∑

x∈F∗
2n/2

; trn/2(x−1)=1

(−1)trn/2(ax) = 2n/2−1−2·2n/2−2 = 0,

which is equivalent to
∑

x∈F∗
2n/2

(
1− (−1)trn/2(x−1)

)
(−1)trn/2(ax) = 0. The conjec-

ture is then that a exists in F∗
2n/2 such that

∑
x∈F∗

2n/2

(−1)trn/2(x−1+ax) = −1. We

have already seen at page 211 that such sum added with 1 is called a Klooster-

man sum. Lachaud and Wolfmann proved this conjecture in [733]; they proved

that the values of such Kloosterman sums are all the numbers divisible by 4

in the range [−2n/4+1 + 1; 2n/4+1 + 1], by relating such sums to elliptic curves

(and this relation was exploited later in [781] for deriving an algorithm checking

bentness more efficiently in such context).

It has been later observed that all these results remain valid with exponents of

the form j · (2n2 − 1), where gcd(j, 2
n
2 + 1) = 1, with the same arguments (the

mapping x 7→ xj by which function x 7→ x2
n
2 −1 is composed being a permutation

of U). These exponents are now widely called Dillon exponents. Leander [750]

has found another proof which gives more insight; a small error in his proof has

been corrected in [350].

Dillon checked that one of the functions in PSap does not belong to the com-

pleted M (Maiorana-McFarland) class: function tr8(x15) over F28 , is affinely

inequivalent to M functions because (we omit the proof) there cannot exist an

n/2-dimensional subspace W of Fn2 such that DaDbf is null for every a and b

both in W .

It may be more difficult to prove that a given function is not affinely equivalent

to PS functions than to M functions; see an example in [212].

Extended PSap class
Class PSap is slightly extended into the subclass of PS− denoted by PS#

ap, of

those Boolean functions over F2n which can be obtained from those of PSap by

composition by the transformations x ∈ F2n 7→ δx, δ 6= 0, and by addition of

a constant12. The elements of PS#
ap are the Boolean functions f of Hamming

weight 2n−1 ± 2n/2−1 on F2n such that, denoting by α a primitive element of

this field, f(α2n/2+1x) = f(x) for every x ∈ F2n . We shall see in Subsection

6.1.20 that the functions in PS#
ap have a stronger property than bentness, called

hyper-bentness. It is proved in [278] (by extension of the results of [441]) that

they are the functions of Hamming weight 2n−1 ± 2n/2−1 which can be written

as
∑r
i=1 trn(aix

ji) for ai ∈ F2n and ji a multiple of 2n/2 − 1 with ji ≤ 2n − 1.

12 The functions of PSap are among them those satisfying f(0) = f(1) = 0.
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Other classes of PS functions in explicit form
The functions in PSap are not the only PS bent functions which can be given

with explicit trace representation (useful for applications, e.g. in telecommuni-

cations).

For instance, the PS bent functions related to André’s spreads13 have been

studied in [246]. These spreads introduced by J. André in the fifties and inde-

pendently by Bruck later are defined as follows: let k and m be positive integers

such that k divides m, say m = kl. Let Nm
k be the norm map from F2m to F2k :

Nm
k (x) = x

2m−1

2k−1 .

Let φ be any function from F2k to Z/lZ. Then, denoting φ ◦Nm
k by ϕ (it can be

any function from F2m to Z/lZ which is constant on any coset of the subgroup

U of order 2m−1
2k−1

of F∗2m), the F2-vector subspaces:

{(0, y), y ∈ F2m} and {(x, x2kϕ(z)

z), x ∈ F2m}, where z ∈ F2m

form together a spread of F2
2m . Indeed, these subspaces have trivial pairwise inter-

section: suppose that x2kϕ(y)

y = x2kϕ(z)

z for some nonzero elements x, y, z of F2m

(the other cases of trivial intersection are obvious), then we have Nm
k (x2kϕ(y)

y) =

Nm
k (x2kϕ(z)

z), that is, Nm
k (x2kϕ(y)

)Nm
k (y) = Nm

k (x2kϕ(z)

)Nm
k (z); equivalently,

since x 7→ x2kϕ(z)

is in the Galois group of F2
2m over F2k , Nm

k (x)Nm
k (y) =

Nm
k (x)Nm

k (z) and hence Nm
k (y) = Nm

k (z) and ϕ(y) = ϕ(z), which together

with x2kϕ(y)

y = x2kϕ(z)

z implies then y = z.

Those spreads provide asymptotically the largest part of the known examples,

due to the large number of choices for the map φ.

The trace representation of the PS bent functions associated to André’s spreads

is easily obtained. A pair (x, y) ∈ F∗2m × F2m belongs to {(x, x2kϕ(z)

z), x ∈ F2m}
if and only if

y = x2kϕ(z)

z = x2kφ(Nmk (z))

z = x2
kφ

(
Nmk (y)

Nm
k

(x)

)
z = x2kϕ(y/x)

z. (6.12)

Then a Boolean function in this class has the form:

f(x, y) = g

(
y

x2kϕ(y/x)

)
(6.13)

(with the usual convention y
0 = 0) where g is balanced on F2m and vanishes at

0. Such bent function is in PS and is potentially inequivalent to PSap functions

(this needs to be further studied, though).

Let us study now the dual of f . If S is the support of g, then since 0 6∈ S,

the support of f is equal to the union
⋃
z∈S{(x, x2kϕ(z)

z), x ∈ F2m}, less {0}.
The support of the dual of f is the union of the orthogonals of these sub-

spaces, less {0} as well (see Proposition 80). A pair (x′, y′) ∈ F2
2m belongs to

the orthogonal of {(x, x2kϕ(z)

z), x ∈ F2m} if and only if trm(xx′ + x2kϕ(z)

zy′) =

13 We thank W. Kantor for mentioning these spreads which lead to numerous bent functions.
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trm((x′+(zy′)2m−kϕ(z)

)x) equals 0 for all x ∈ F2m , that is, if x′+(zy′)2m−kϕ(z)

= 0,

that is, if x′ = y′ = 0 or z = x′2
kϕ(z)

y′ ; hence we have:

f̃(x, y) = g

(
x2kϕ(x/y)

y

)
. (6.14)

Of course, if g does not vanish at 0, the function defined by (6.13) is bent as

well. We can see this by changing g into its complement g ⊕ 1 (which changes f

and its dual into their complements as well).

Note that class PSap corresponds to the case where ϕ is the null function. It

also corresponds to the case k = m since we have then f(x, y) = g
(
y
x

)
, be-

cause x2m = x. Note finally that if k = 1 then Nm
k (x) = 1 for every x 6= 0

and the groups of the spread are {(0, y), y ∈ F2m}, {(x, 0), x ∈ F2m} and

{(x, x2jz), x ∈ F2m}, z ∈ F∗2m for some j and f(x, y) = g
(

y

x2j

)
; the functions

are in the PSap class up to linear equivalence.

Finite prequasifield spreads from finite geometry (see [963]) have also been in-

vestigated by Wu [1123] to give explicit forms of the related functions in PS
and of their duals, thanks to the determination of the compositional inverses of

certain parametric permutation polynomials. In particular, Wu has considered

the Dempwolff-Muller prequasifields and the Knuth presemifields to obtain the

expressions of the corresponding PS bent functions. The constructed functions

and their dual functions are in a similar shape as the PSap functions, but are

more complex. See more in [663].

Explicit constructions of bent functions derived from symplectic presemifields as-

sociated to pseudo-planar functions (see page 296)
∑
i<j ai,jx

2i+2j (whose multi-

plicative operation is x◦y = xy+
∑
i<j

a2m−j

i,j x2m+i−j
y2m−j +

∑
i<j

a2m−i

i,j x2j−iy2m−i)

have been obtained in [4]; see also [660].

Class PS has been generalized into the generalized Partial Spread class GPS,

see Definition 56, page 267.

3. Class H and Niho functions: We have already seen in Subsection 5.1.2, at

pages 191-192, the principle of Niho Boolean functions, among which we shall

characterize (in Corollary 14) those which are bent. It is proved in [311, Propo-

sition 5] that all bent functions affine on each coset of F∗
2n/2 are EA equivalent

to PSap or Niho functions possibly added with the indicator of one coset of

{0} ∪ F∗
2n/2

. As observed in [311], Niho bent functions happen to be the uni-

variate version of bivariate bent Boolean functions that we shall introduce with

class H below in Definition 53, and which are closely related to the functions

introduced by Dillon in [441] as the elements of a family that he denoted by H.

The functions of this family were defined as f(x, y) = trn/2(y + xG(yx2n/2−2));
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x, y ∈ F2n/2 , where G is a permutation14 of F2n/2 such that, for every b ∈ F∗
2n/2 ,

the function G(x) + bx is 2-to-1 (that is, the pre-image of any element of F2n/2

by this function contains 0 or 2 elements). We shall see below why these condi-

tions characterize bentness. New bent functions were found recently within this

framework. The linear term trn/2(y) being not useful in the function above, we

take it off and consider those functions of the form:

f(x, y) =

{
trn/2

(
xG

(
y
x

))
if x 6= 0

0 if x = 0,
(6.15)

where G is any function from F2n/2 to itself. As seen at page 193, we have:

Wf (a, b) =
∑

x∈F∗
2n/2

,y∈F
2n/2

(−1)trn/2(xG( yx )+ax+by) +
∑

y∈F
2n/2

(−1)trn/2(by)

=
∑

x∈F∗
2n/2

,z∈F
2n/2

(−1)trn/2(x(G(z)+a+bz)) + 2n/2δ0(b)

= 2n/2 (|{z ∈ F2n/2 ; G (z) + a+ bz = 0}|+ δ0(b)− 1) . (6.16)

Proposition 81 [441, 311] Any Boolean function of the form (6.15) is bent if

and only if G is a permutation of F2n/2 and:

for every b ∈ F∗2n/2 , the function z 7→ G(z) + bz is 2-to-1 on F2n/2 . (6.17)

The dual function of f in (6.15) is:

f̃(a, b) =

{
1 if the equation G(z) + bz = a has no solution in F2n/2

0 otherwise.

Note that an n-variable function (6.15), or a Niho function (see below), is then

bent if and only if
∑
u∈Fn2

W 3
f (u) = 22n, that is,

∑
x,y∈Fn2

(−1)f(x)⊕f(y)⊕f(x+y) =

2n (the same characterization is valid for quadratic functions vanishing at 0n,

but for general functions, we have only a necessary condition). Indeed, |{z ∈
F2n/2 ; G (z) + a + bz = 0}| + δ0(b) − 1 ≥ −1 implies (|{z ∈ F2n/2 ; G (z) +

a + bz = 0}| + δ0(b) − 1)3 ≥ |{z ∈ F2n/2 ; G (z) + a + bz = 0}| + δ0(b) − 1

and then
∑
u∈Fn2

W 3
f (u) ≥ 2n

∑
u∈Fn2

Wf (u) = 22n, with equality if and only

if Wf (u) ∈ {±2n/2, 0} for all u, and therefore Wf (u) ∈ {±2n/2} because of

Parseval’s relation.

Class H
The restrictions of f to the lines through the origin of the affine plane are

linear. More generally, any function whose restriction to each subspace in the

14 Dillon also assumed that G(x) + x does not vanish, but this condition is not necessary for
bentness.
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Desarguesian spread is linear has the form:

g(x, y) =

{
trn/2

(
xψ
(
y
x

))
if x 6= 0

trn/2 (µy) if x = 0,
(6.18)

where µ ∈ F2n/2 and ψ is a mapping from F2n/2 to itself; this is a particular case

of (5.8).

Definition 53 The set of those bent functions of the form (6.18) (i.e. which are

linear over each element of the Desarguesian spread) is denoted by H.

All the functions in class H being clearly EA equivalent to functions of the form

(6.15), Proposition 81 settles the case of all Niho bent functions ([311] also settled

the more general case where the restrictions are affine).

As seen in [311] (see Lemma 7 below for a proof), Condition (6.17) implies the

bijectivity of G and is then necessary and sufficient for f to be bent. The set

of those functions G which satisfy (6.17) is stable under some transformations,

among which G 7→ G−1, and [311] observed that the functions corresponding

to G and G−1 are in general EA inequivalent. Three other transformations,

leading to bent functions which are in general EA inequivalent as well, have

been investigated in [154].

H functions and o-polynomials
A connection between functions in class H and oval polynomials has been shown

in [311]; oval polynomials (also called o-polynomials) are a notion in finite ge-

ometry related to hyperovals in the projective plane PG(2, 2n/2). Recall that,

for a given power q of 2, PG(2, q) has for points all the 1-dimensional subspaces

in F3
q and for lines all the 2-dimensional subspaces of F3

q. In other words, the

points of this projective plane are the equivalence classes of F3
q \ {(0, 0, 0)} mod-

ulo the equivalence relation of proportionality15. Then two distinct lines always

intersect in one point. More precisely, the projective plane can be obtained from

the affine plane by adding points at infinity in the following way: each set of

parallel lines in the affine plane defines a point at infinity, and this gives one

point at infinity corresponding to the parallel lines x = a, and q others cor-

responding to the parallel lines y = bx + a. The lines of the projective plane

are the lines of the affine plane completed with their corresponding points at

infinity and the line at infinity (made of all points at infinity). A hyperoval of

the projective plane PG(2, q) is a set of q + 2 points no three of which are on a

same line; any hyperoval is equivalent to a hyperoval containing the following 4

points: (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1); it can then be represented as

{(1 : t : G(t)); t ∈ Fq} ∪ {(0 : 1 : 0), (0 : 0 : 1)} where G(0) = 0, G(1) = 1 and G

is equivalently an o-polynomial on Fq:
15 The coordinates (x : y : z) of a point in PG(2, q), which are defined up to multiplication by

a nonzero element of Fq , are called homogeneous coordinates; we can consider that

PG(2, q) contains one special affine plane whose points have the form (1 : x : y) while
points at infinity are of the form (0 : x : y), among which is the so-called nucleus (0 : 1 : 0).
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Definition 54 Let m be any positive integer. A permutation polynomial G over

F2m is called an o-polynomial (an oval polynomial) if, for every c ∈ F2m , the

function

z ∈ F2m 7→

{
G(z+c)+G(c)

z if z 6= 0

0 if z = 0

is a permutation of F2m .

As observed in [311]:

Lemma 7 Condition (6.17) is equivalent to the fact that G is an o-polynomial

on F2n/2 .

Proof. For every b, c ∈ F2m , m = n/2, the equation G(z) + bz = G(c) + bc

is satisfied by c. Thus, if Condition 6.17 is satisfied, then for every b ∈ F∗2m
and every c ∈ F2m , there exists exactly one z ∈ F∗2m such that G(z + c) +

b(z + c) = G(c) + bc, that is, G(z+c)+G(c)
z = b. Then, for every c ∈ F2m , the

function z ∈ F∗2m 7→
G(z+c)+G(c)

z ∈ F∗2m is bijective, that is, G and the func-

tion z ∈ F2m 7→

{
G(z+c)+G(c)

z if z 6= 0

0 if z = 0
are permutations. Hence, G is an o-

polynomial. Conversely, if G is an o-polynomial, then for every c ∈ F2m , we

have G(z+c)+G(c)
z 6= 0 for every z 6= 0 and for every b 6= 0 there exists exactly

one nonzero z such that G(z + c) + G(c) = bz. Then for every u ∈ F2m , ei-

ther the equation G(z) + bz = u has no solution, or it has at least a solution

u and then exactly one second solution z+u (z 6= 0). This completes the proof. 2

Remark. We have already observed with Lemma 5, page 214, that any Boolean

function is bent if and only if its Walsh transform takes values congruent with

2n/2 modulo 2n/2+1. This property and Relation (6.16) show that a permutation

polynomial is an o-polynomial if and only if any equation G(z) + bz = c with

b 6= 0 has an even number of solutions. 2

The known classes of inequivalent o-polynomials are16 (see [311, 168] and their

references):

1. G(z) = z2i where i is co-prime with m;

2. G(z) = z6 where m is odd;

3. G(z) = z3·2k+4, where m = 2k − 1;

4. G(z) = z2k+22k

, where m = 4k − 1;

5. G(z) = z22k+1+23k+1

, where m = 4k + 1;

6. G(z) = z2k + z2k+2 + z3·2k+4, where m = 2k − 1;

7. G(z) = z
1
6 +z

1
2 +z

5
6 where m is odd; note that G(z) = D5

(
z

1
6

)
, where D5 is

the Dickson polynomial of index 5 (see the definition of Dickson polynomials

at page 422);

16 Two more, given in [168], are equivalent to z2
i
; another in the list of [769] has a typo.
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8. G(z) = δ2(z4+z)+δ2(1+δ+δ2)(z3+z2)
z4+δ2z2+1 + z1/2, where trm(1/δ) = 1 and, if m ≡ 2

[mod 4], then δ 6∈ F4;

9. G(z) = 1
trnm(v)

[
trnm(vr)(z + 1) + trnm

[
(vz + v2m)r

] (
z + trnm(v)z1/2 + 1

)1−r]
+

z1/2, where m is even, r = ± 2m−1
3 , v ∈ F2m

2 , v2m+1 = 1 and v 6= 1.

The two last classes are related to Subiaco and Adelaide hyperovals, whose de-

scription has been simplified in [3] thanks to a new type of homogeneous coor-

dinates. The known o-polynomials provided a number of potentially new bent

functions detailed in [311], since each class of o-polynomials gives rise to several

EA inequivalent classes of bent functions, see more in [154, 942]. Continuing the

work of the author and Mesnager, [2] gives geometrical characterization of Niho

bent functions; it shows that they are in one-to-one correspondence with the

so-called line ovals in the affine plane (which are sets of q + 1 non-parallel lines

no three of which are concurrent, where q is the order of the base field) and that

their dual functions are the complements of the characteristic functions of these

line ovals; it extends this to arbitrary spreads.

Remark. A new notion of equivalence between bent functions in class H is

deduced from Lemma 7. Hyperovals being called equivalent if they are mapped to

each other by collineations (i.e. permutations mapping lines to lines), it provides

a notion of equivalence between o-polynomials, and between the related bent

functions, called projective equivalence. In particular, as recalled in [414], the

group PΓL(2, 2m) of all F2-linear automorphisms of F2m of the form L(x2j )

where L is an element of GL(2, 2m) (associated with a 2×2 matrix over F2m) acts

on PG(2, 2m), and then acts on o-polynomials, see more in [414]. EA equivalence

classes of Niho bent functions are in one-to-one correspondence with projective

equivalence classes of ovals in the projective plane PG(2, q) [942, 2]. Notions of

duality for bent functions and duality for projective planes are consistent for

Niho bent functions (a duality of PG(2, q) is a bijection from the set of points

of PG(2,q) to the set of lines which preserves incidence of points and lines). 2

Niho bent functions
In univariate representation, functions in class H are those functions whose re-

strictions to the multiplicative cosets µF2n/2 of F∗
2n/2 are linear, i.e. are Niho

functions (5.6). Niho bent functions have been investigated in [479] and [749, 752]

without that the authors notice their relationship with class H. Relation (5.5),

page 192 (in which we can take for U the multiplicative subgroup of F∗2n of order

2m + 1 since n = 2m) gives for g = 0 and f(0) = 0:

∀u ∈ F2n , Wf (u) = 2m (|{µ ∈ U ;φ(µ) + trnm(uµ) = 0}| − 1) .

We deduce, denoting by U the multiplicative subgroup of F∗2n of order 2m + 1:

Corollary 14 Let f be any Niho function (5.6) in n variables (n even). Then

f is bent if and only if, for every u ∈ F2n , we have |{µ ∈ U ;φ(µ) + trnn/2(uµ) =

0}| ∈ {0, 2}.
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A few examples of infinite classes of Niho bent functions are known up to affine

equivalence. The simplest one is quadratic and has been already encountered in

Section 5.2: trn/2

(
ax2n/2+1

)
, where a ∈ F∗

2n/2
, x ∈ F2n . The other examples,

from [479], are binomials of the form f(x) = trn(α1x
d1 + α2x

d2), x ∈ F2n ,

d1, d2 ∈ Z/(2n − 1)Z, where 2d1 = 2n/2 + 1 and α1, α2 ∈ F∗2n are such that

(α1 + α2n/2

1 )2 = α2n/2+1
2 . Equivalently, denoting a = (α1 + α2n/2

1 )2 and b = α2,

we have a = b2
n/2+1 ∈ F∗

2n/2
and f(x) = trn/2(ax2n/2+1)+ trn(bxd2) (note that if

b = 0 and a 6= 0 then f is also bent but it belongs then to the class of quadratic

Niho bent functions seen above). The values of d2 are (see [479] for the proofs):

1. d2 = (2n/2 − 1) 3 + 1 (originally in [479] was included the condition that, if

n ≡ 4 [mod 8], then b = α2 is the fifth power of an element in F2n , but as

observed in [596], the value of b can be taken arbitrary under the condition

that a = b2
n/2+1).

2. 4d2 = (2n/2 − 1) + 4 (with the condition that n/2 is odd), This example

has been extended by Leander and Kholosha [749, 752] into the functions:

trn
(
αx2n/2+1 +

∑2r−1−1
i=1 xsi

)
, r > 1 such that gcd(r, n/2) = 1, α ∈ F2n such

that α+α2n/2 = 1, si = (2n/2−1) i
2r +1 (mod 2n/2 +1), i ∈ {1, . . . , 2r−1−1}.

It is shown in [763] that the functions
∑2r−1
i=1 trn(αx(i2n/2−r+1)(2n/2−1)+1);

α ∈ F2n , α + α2n/2 6= 0, enter in this class up to EA equivalence while they

cover it for α+ α2n/2

= 1, with a nice original proof of their bentness.

3. 6d2 = (2n/2 − 1) + 6 (with the condition that n/2 is even).

As observed in [479] and in [155], these functions have respectively algebraic de-

gree n/2, 3 and n/2. In [475], the value distribution of the Walsh spectrum of the

monomial function corresponding to the first exponent d2 above was determined

for n
2 odd, in terms of Kloosterman sums.

After [311], several works investigated the properties of the known Niho bent

functions and their relation with o-polynomials (when transformed from univari-

ate form to bivariate form); we follow here the survey [313] on bent functions:

- the dual function of the second example above (with 4d2 = (2n/2 − 1) + 4) has

been calculated (in [311]) as well as that of the Niho bent function consisting of

2r exponents (see [296, 155]); it has been shown in [311, 155] that the dual bent

functions are not of the Niho type; this replied negatively to an open question

stated in [479];

- the quadratic monomial and (as shown in [311]) the second example above

belong to the completed M class, but (as proved in [155]), when m = n/2 > 2,

the two others and the generalization of the second example do not; this gives

a positive answer to an open question (since 1974) whether completed class H

differs from completed class M;

- it is shown in [296] that the o-polynomials associated with the Leander-Kholosha

bent functions are equivalent to Frobenius automorphisms; the relation between

the binomial Niho bent functions above with d2 = (2m − 1) 3 + 1 and 6d2 =

(2m − 1) + 6 and the Subiaco and Adelaide classes of hyperovals (related to
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the two last o-polynomials above) was found in [596]; this allowed when m ≡ 2

(mod 4) to expand the class of bent functions corresponding to Subiaco hy-

perovals. Later, in [168], the o-polynomials associated to all known Niho bent

functions have been identified and the class of Niho bent functions consisting of

2r terms has been extended by inserting coefficients of the power terms in the

original function; it can then give any Niho bent function. Several classes of ex-

plicit Niho bent functions have been deduced (as also detailed in [769, Section 3]).

Remark We have seen in Proposition 66, page 217, a characterization of bent

functions by power moments of even exponents of the Walsh transform. In the

case of Niho functions, we have a characterization with odd exponents as well:

Proposition 82 Let n = 2m be any even positive integer, w any odd integer

such that w ≥ 3 and f any Niho n-variable Boolean function. Then we have:∑
u∈F2n

Ww
f (u) ≥ 2(w+1)m, i.e.

∑
x1,...,xw−1∈F2n

(−1)
⊕w−1
i=1 f(xi)⊕f(

∑w−1
i=1 xi) ≥ 2(w−1)m

with equality if and only if f is bent.

Proof. We still denote by U the multiplicative subgroup of F∗2n of order 2m + 1,

where n = 2m. Let f(µx) = trm(xφ(µ)), µ ∈ U , x ∈ F2m , where φ is some

function from U to F2m . We have Wf (0) = F(0) =
∑
x∈F2m ,µ∈U (−1)trm(xφ(µ))−

2m = 2m(|φ−1(0)| − 1).

For every u ∈ F2n , the function f(z) + trn(uz) is Niho too since its value at

z = µx equals trm(xφu(µ)), where φu(µ) = φ(µ) + trnm(uµ). We have then

Wf (u) = 2m(|φ−1
u (0)| − 1) and

∑
u∈F2n

Ww
f (u) = 2wm

∑
u∈F2n

(|{µ ∈ U ;φ(µ) =

trnm(uµ)}| − 1)w.

For all u ∈ F2n , we have |{µ ∈ U ;φ(µ) = trnm(uµ)}| − 1 ≥ −1 and therefore

(|{µ ∈ U ;φ(µ) = trnm(uµ)}| − 1)w ≥ |{µ ∈ U ;φ(µ) = trnm(uµ)}| − 1. (6.19)

We deduce that
∑
u∈F2n

(|{µ ∈ U ;φ(µ) = trnm(uµ)}| − 1)w ≥
∑
u∈F2n

(|{µ ∈
U ;φ(µ) = trnm(uµ)}| − 1) =

∑
µ∈U |{u ∈ F2n ;φ(µ) = trnm(uµ)}| − 2n. For

each µ, since uµ ranges over F2n when u ranges over F2n , and since trnm(z)

ranges uniformly over F2m when z ranges over F2n , we have |{u ∈ F2n ;φ(µ) =

trnm(uµ)}| = 2m. Hence
∑
u∈F2n

Ww
f (u) ≥ 2wm((2m + 1)2m − 2n) = 2(w+1)m

with equality if and only if, for every u ∈ F2n , we have equality in (6.19), that is,

|{µ ∈ U ;φ(µ) = trnm(uµ)}| ∈ {0, 1, 2}, that is17, Wf (u) ∈ {−2m, 0, 2m}. More-

over, this last condition is equivalent to Wf (u) ∈ {−2m, 2m} for every u, that is,

f is bent, because of the Parseval identity
∑
u∈F2n

W 2
f (u) = 22n. And we have∑

u∈Fn2
Ww
f (u) = 2n

∑
x1,...,xw−1∈F2n

(−1)
⊕w−1
i=1 f(xi)⊕f(

∑w−1
i=1 xi). 2

Proposition 82 allows proving the bentness of classes of Niho functions: a set E

of Niho functions is made of bent functions if and only if
∑
f∈E

∑
a∈F2n

Ww
f (a) =

17 Recall that w is odd; for w ≥ 4 even there can not be equality, and we know it already

from Proposition 66.
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2(w+1)m|E|. And handling w = 3 is easier than w = 4. Corollary 13, page 218,

and the remark which follows it generalize to odd exponents.

Note that this characterization is not valid for all Boolean functions, even if

their algebraic degree is bounded above by n
2 (like bent functions). For instance,

it is easily seen that the function which is null when x1 = x2 = · · · = xn
2

= 0

and has value 1 everywhere else has a value of
∑
a∈F2n

W 3
f (a) negative and has

algebraic degree bounded above by n
2 (since the value of the function depends

in half its variables only).

However, it is interesting to see that this characterization is also valid for those

quadratic functions which are null at 0, since for any quadratic function f , we

have
∑
a∈F2n

W 3
f (a) = (−1)f(0)2n

∑
x,y∈F2n

(−1)βf (x,y) = (−1)f(0)22n|Ef | where

βf is the symplectic form βf (x, y) = f(x+ y)⊕ f(x)⊕ f(y)⊕ f(0) and Ef is its

kernel, and we know that f is bent if and only if Ef = {0}.
It has been shown in [861] that the only bent functions of the form (5.4) page

191, equivalently (5.8) are, up to translation, those corresponding to Niho-bent

and PS#
ap classes.

Niho-like and H-like bent functions
It is possible to extend to other spreads (than the Desarguesian spread) the

principle of H and Niho functions (i.e. considering Boolean functions whose re-

strictions to the elements of a spread are linear). This has been done with André’s

spreads in [246] and with three spreads from prequasifields and presemifields in

[335] and in [246], independently18. Probably many other spreads could be inves-

tigated, since many more exist, see [661, 425, 649]. But we wish to find explicit

examples of such bent functions (and the associated o-like-polynomials).

Let us first study the general framework into which these four examples of spreads

will fit. Consider a spread whose elements are the subspace {(0, y), y ∈ F2n/2}
and the 2n/2 subspaces of the form {(x, Lz(x)), x ∈ F2n/2}, where, for every

z ∈ F2n/2 , function Lz is linear. The property of being a spread corresponds to

the fact that, for every nonzero x ∈ F2n/2 , the mapping z 7→ Lz(x) is a permu-

tation of F2n/2 . Let us denote by Γx the compositional inverse of this bijection.

A Boolean function over F2
2n/2

is linear over each element of the spread if and

only if there exists a mapping G : F2n/2 7→ F2n/2 and an element ν of F2n/2 such

that, for every y ∈ F2n/2 , f(0, y) = trn/2(νy) and, for every x, z ∈ F2n/2 , x 6= 0:

f(x, Lz(x)) = trn/2(G(z)x). (6.20)

Note that, up to EA equivalence, we can assume that ν = 0. Indeed, we can

add the linear n-variable function (x, y) 7→ trn/2(νy) to f ; this changes ν into

18 Ref. [335] is a little more general: it deals with functions affine on each spread and also

addresses odd characteristic. It shows that bent functions from Fmp × Fmp to Fp which are
affine on the elements of a given spread of Fmp × Fmp either arise from partial spread bent

functions, or are a generalization in characteristic 2 of class H. Ref. [246] is slightly more

general as well since it also addresses spreads not related to prequasifields.
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0 and G(z) into G(z) + L∗z(ν), where L∗z is the adjoint operator of Lz, since

for y = Lz(x), we have trn/2(νy) = trn/2(xL∗z(ν)). We take ν = 0 and define

Γ0(y) = 0. By definition of Γx, Relation (6.20) is equivalent to:

∀x, y ∈ F2n/2 , f(x, y) = trn/2 (G (Γx(y))x) . (6.21)

The value of the Walsh transform Wf (a, b) =
∑
x,y∈F

2n/2
(−1)f(x,y)+trn/2(ax+by)

equals then, for every (a, b) ∈ F2
2n/2 :∑

(x,y)∈F2

2n/2

(−1)trn/2(G(Γx(y))x+ax+by) =

2n/2δ0(b) +
∑

x∈F∗
2n/2

,z∈F
2n/2

(−1)trn/2(G(z)x+ax+bLz(x)) =

2n/2(δ0(b)− 1) +
∑

z∈F
2n/2

∑
x∈F

2n/2

(−1)trn/2((G(z)+a+L∗z(b))x) =

2n/2 (δ0(b)− 1 + |{z ∈ F2n/2 ; G(z) + a+ L∗z(b) = 0}|) .

Hence f is bent if and only if G is a permutation and:

|{z ∈ F2n/2 ; G(z) + a+ L∗z(b) = 0}| ∈ {0, 2},∀a, b ∈ F2n/2 , b 6= 0. (6.22)

This condition on G(z) is similar to the definition of o-polynomials. In the

case of André’s spreads, it is a generalization of the notion of o-polynomial.

Remark As explained for instance in the nice survey by W. Kantor [661], ev-

ery spread has a dual in the space of linear forms. Viewing this in F2
2n/2

the

subspaces belonging to this spread are the orthogonals of those corresponding

to the original spread. In other words, the fact that for every x 6= 0 and every

b 6= 0, the function z 7→ trn/2(bLz(x)) = trn/2(xL∗z(b)) is balanced implies that

function z 7→ L∗z(b) is also a permutation and the elements of the dual spread are

the subspace {(x, 0), x ∈ F2n/2} and the 2n/2 subspaces {(L∗z(y), y), y ∈ F2n/2}. 2

It is shown in [246] that, as in the case of o-polynomials, the condition that G

is a permutation is implied by Relation (6.22).

The question which can lead to new bent functions when addressed positively

is: can we build efficiently permutations G of F2n/2 and linear mappings Lz :

F2n/2 7→ F2n/2 , with z ∈ F2n/2 , such that function z 7→ Lz(x) is bijective for

every x 6= 0 and that the equation G(z) + Lz(b) = a has 0 or 2 solutions for

every a ∈ F2n/2 and every b ∈ F∗
2n/2

? Equivalently, by denoting by Hx the per-

mutation z 7→ Lz(x), can we find a permutation G and a set of permutations

Hx, x ∈ F∗
2n/2 , such that, denoting H0 = 0, the set {Hx, x ∈ F2n/2} is a vector

space and every function G + Hx, x ∈ F∗
2n/2 , is 2-to-1? Note that finding nine

classes of o-polynomials has been a hard 40 year long mathematical work and

we can expect that finding such o-like-polynomials will be also difficult, except
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maybe for a few simple cases like with o-polynomials.

In the case of André’s spreads, we have Lz(x) = x2kϕ(z)

z. According to (6.12),

we have then Γx(y) = y

x2kϕ(y/x) and L∗z(b) = (bz)2m−kϕ(z)

, m = n/2. Relation

(6.21) becomes:

∀x, y ∈ F2n/2 , f(x, y) = trn/2

(
G

(
y

x2kϕ(y/x)

)
x

)
. (6.23)

The condition for such f to be bent is that, for every b ∈ F∗
2n/2

and every

a ∈ F2n/2 , there exist two values of z or none such that G(z) + (bz)2m−kϕ(z)

= a.

As shown for instance in [425, 649] (and recalled by Kantor in [662]) a spread

can be derived from any prequasifield, that is, any Abelian finite group having a

second law ∗ which is left-distributive with respect to the first law and is such that

the right and left multiplications by a nonzero element are bijective and that the

multiplications by 0 are absorbent. The elements of this spread are the F2-vector

subspaces {(0, y), y ∈ F2n/2} and {(x, z ∗ x), x ∈ F2n/2}, z ∈ F2n/2 . Wu [1123]

has studied three particular examples for designing PS functions (many others

could have been studied) and he determined explicitly the related functions Γx.

Let us see what we obtain with them in the framework of Niho-like functions.

The Dempwolff-Müller prequasifield is defined as follows. Let k andm be co-prime

odd integers. Let e = 2m−1 − 2k−1 − 1, L(x) =
∑k−1
i=0 x

2i , and define x ∗ y =

xeL(xy). Then (F2m ,+, ∗) is a prequasifield [431], leading to the spread of the F2-

vector subspaces {(0, y), y ∈ F2m} and {(x, z ∗x), x ∈ F2m} = {(x, zeL(xz)), x ∈
F2m}, z ∈ F2m .

Then Γx(y) = 1

xDd

(
y2

x2k+1

) , where Dd is the Dickson polynomial (see definition

at page 422) of index the inverse d of 2k − 1 modulo 2m − 1, and L∗z(b) =∑k−1
i=0 (bze)2−iz. Relation (6.21) becomes:

∀x, y ∈ F2m , f(x, y) = trm

G
 1

xDd

(
y2

x2k+1

)
x

 , (6.24)

and such f is bent if and only if the equation G(z) +
∑k−1
i=0 (bze)2−iz = a has 0

or 2 solutions for every b 6= 0 and every a.

The Knuth commutative presemifield is defined as follows. Let m be an odd inte-

ger and b ∈ F∗2m . Then x ∗ y = xy+x2trm(by) + y2trm(bx) defines a presemifield

(a prequasifield which remains one when a∗ b is replaced by b∗a), leading to the

spread of the F2-vector subspaces {(0, y), y ∈ F2m} and {(x, z ∗ x), x ∈ F2m} =

{(x, zx+ x2trm(bz) + z2trm(bx)), x ∈ F2m}, z ∈ F2m .

Then Γx(y) = (1+ trm(bx)) yx +xtrm
(
b yx
)

+xtrm(bx)C 1
bx

(
y
x2

)
, where Ca(x) =∑m−1

i=0 cix
2i , where c0 = 1

a2i
+ 1

a3·2i + · · ·+ 1

a(m−3)·2i , ci = 1 + 1

a2i
+ 1

a3·2i + · · ·+
1

a(i−2)·2i + 1

a(i+1)·2i + · · · + 1

a(m−1)·2i if i is odd and ci = 1 + 1

a2·2i + 1

a4·2i + · · · +
1

a(i−2)·2i + 1

a(i+1)·2i +· · ·+ 1

a(m−2)·2i if i is even. We have L∗z(b) = bz+b2
m−1

trm(bz)+
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btrm(b2
m−1

z). Relation (6.21) becomes:

trm

(
G
(

(1 + trm(bx))
y

x
+ xtrm

(
b
y

x

)
+ xtrm(bx)C 1

bx

( y
x2

))
x
)
, (6.25)

and such f is bent if and only if the equation G(z) + bz + b2
m−1

trm(bz) +

btrm(b2
m−1

z) = a has 0 or 2 solutions for every b 6= 0 and every a.

There are more examples of semifields due to Knuth [710], which could be stud-

ied.

A third example is the dual of the symplectic version of the Knuth commutative

presemifield. Assume m is an odd integer. Then x∗ y = x2y+ trm(xy) +xtrm(y)

defines a presemifield [659], leading to two spreads:

- the spread of the F2-vector subspaces {(0, y), y ∈ F2m} and {(x, z ∗ x), x ∈
F2m} = {(x, z2x+ trm(zx) + ztrm(x)), x ∈ F2m};
- the spread of the F2-vector subspaces {(0, y), y ∈ F2m} and {(x, x ∗ z), x ∈
F2m} = {(x, x2z + trm(xz) + xtrm(z)), x ∈ F2m}), where z ∈ F2m (two such

spreads are sometimes called opposite of each other).

In the first case, the corresponding function Γx has been determined in [1123]

and L∗z(b) = bz2 + ztrm(b) + trm(bz). Then f(x, y) equals:

trm

G
(xy)2m−1

+

m−1
2∑
i=0

(xy)22i−1 +

m−3
2∑
i=0

x22i

trm(xy)

 trm(x)

x

+x2m−1−1y2m−1

+ x2m−1−1trm(xy)
)
x
)
, (6.26)

and such f is bent if and only if the equation G(z) + bz2 +ztrm(b) + trm(bz) = a

has 0 or 2 solutions for every b 6= 0 and every a.

In the second case, the relation y = x2z + trm(xz) + xtrm(z) implies for x 6= 0

that


z = y

x2 + trm(xz)
x2 + trm(z)

x

trm(xz) = trm
(
y
x

)
+ trm(xz)trm

(
1
x

)
+ trm(z)

trm(z) = trm
(
y
x2

)
+ (trm(xz) + trm(z)) trm

(
1
x

) and is equivalent to

z =
y

x2
+ trm

(
1

x

)(
trm

(
y
x2

)
x2

+
trm

(
y
x

)
x

)

+

(
trm

(
1

x

)
+ 1

)(
trm

(
y
x2

)
+ trm

(
y
x

)
x2

+
trm

(
y
x2

)
x

)
,

which gives Γx(y). We have L∗z(b) = (bz)2m−1

+ ztrm(b) + btrm(z). Then f(x, y)

equals:

trm

(
G

(
y

x2
+ trm

(
1

x

)(
trm

(
y
x2

)
x2

+
trm

(
y
x

)
x

)
+

(
trm

(
1

x

)
+ 1

)
(
trm

(
y
x2

)
+ trm

(
y
x

)
x2

+
trm

(
y
x2

)
x

))
x

)
, (6.27)
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and such f is bent if and only if the equationG(z)+(bz)2m−1

+ztrm(b)+btrm(z) =

a has 0 or 2 solutions for every b 6= 0 and every a.

See in [5] more constructions of bent functions linear on elements of presemifield

spreads and a survey on this topic, with explicit descriptions of such functions for

known commutative presemifields and related (new types of) oval polynomials.

4. Class C+ has been introduced by Dillon [441]. Since PSap functions have for

supports the unions of multiplicative cosets of the subgroup F∗
2n/2 of F∗2n (i.e. the

subgroup of all (2n/2 + 1)-th powers), plus possibly the 0 element, he addressed

the other possible subgroup U of (2n/2 − 1)-th powers in F∗2n , and studied then

the functions of the form f(z) = g(z2n/2+1), where z ∈ F2n and g is balanced

over F2n/2 (note that z2n/2+1 ∈ F2n/2) and vanishes at 0 (if not, we can apply

the result to g⊕ 1). He showed that such function is bent if and only if the map-

ping a ∈ F2n/2 7→Wg(a
−1) =

∑
x∈F

2n/2
(−1)g(x)+trn/2(a−1x), with the convention

0−1 = 0, equals the Walsh transform of some Boolean function over F2n/2 .

Dillon refers to the Singer difference set in his proof. An elementary proof is

as follows: using polar representation ux (with x ∈ F∗
2n/2

, u ∈ U) in F∗2n ,

we have for every λ ∈ F2n that Wf (λ) =
∑
z∈F2n

(−1)g(z
2n/2+1)+trn(λz) = 1 +∑

u∈U

∑
x∈F∗

2n/2

(−1)g(x
2)+trn/2((λu+λ2n/2u2n/2

)x) = −2n/2+
∑
u∈U

Wg((λu+λ2n/2u2n/2

)2).

If λ = 0 then Wf (λ) = −2n/2 + (2n/2 + 1)Wg(0) = −2n/2. Otherwise, we

can assume without loss of generality that λ belongs to F∗
2n/2

(since Wf (λ)

is clearly invariant when multiplying λ by an element of U) and we have then

Wf (λ) = −2n/2 +
∑
u∈U Wg

(
λ2
(
u+ u2n/2

)2
)

. It is well-known that, when u

ranges over U\{1}, u+u2n/2

ranges twice over the set {z ∈ F∗
2n/2 , trn/2

(
z−1
)

= 1}
(indeed, we have u2n/2 = u−1 and the equation u+u−1 = z, i.e.

(
u
z

)2
+ u
z = z−2,

has solutions in U \{1} if and only if trn/2
(
z−1
)

= 1). Then, since g is balanced,

Wf (λ) equals

−2n/2+2
∑

z∈F∗
2n/2

trn/2(z−1)=1

Wg

(
(λz)2

)
= −2n/2+

∑
z∈F

2n/2

Wg

(
(λz)2

) (
1− (−1)trn/2(z

−2)
)

and Wf (λ) is equal to −2n/2+2n/2(−1)g(0)−
∑
z∈F

2n/2
Wg

(
λ2z
)

(−1)trn/2(z
−1) =

−
∑
z∈F

2n/2
Wg

(
z−1
)

(−1)trn/2(µz), where µ = λ2 6= 0.

Hence, f is bent if and only if
∑

z∈F
2n/2

Wg

(
z−1
)

(−1)trn/2(µz) ∈ {2n/2,−2n/2} for

every µ 6= 0, which is then equivalent to the condition stated by Dillon, according

to the inverse Fourier transform formula, since it is always verified for µ = 0.

Dillon mentions the example where g is the absolute trace function trn/2(x) over

F2n/2 ; the resulting function is quadratic and so belongs to class M completed,

and it also belongs to class H, up to EA equivalence. No example is known yet
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lying outside known completed classes.

5. Dobbertin’s Class introduced in [466] is a class of bent functions which con-

tains both PSap and M and is based on the so-called triple construction. The

elements of this class are the functions f defined by f(x, φ(y)) = g
(
x+ψ(y)

y

)
,

where g is a balanced Boolean function on F
2
n
2

and φ, ψ are two mappings from

F
2
n
2

to itself such that, if T denotes the affine subspace of F
2
n
2

spanned by the

support of function Wg, then, for any a in F
2
n
2

, the functions φ and ψ are affine

on aT = {ax, x ∈ T}. The mapping φ must additionally be one to one. Dobbertin

gives two explicit examples of bent functions constructed this way. In both, φ is

a power function.

6. The class of functions γ related to almost bent functions exists when

n ≡ 2 [mod 4]. Recall that a vectorial Boolean function F : F2n/2 → F2n/2 is

called almost bent (see Definition 31, page 141) if the Walsh transforms of all

component functions v · F , v 6= 0 in F2n/2 take values in {−2
n/2+1

2 , 0, 2
n/2+1

2 }.
The function γF (a, b), a, b ∈ F2n/2 , equal to 1 if the equation F (x)+F (x+a) = b

admits solutions, with a 6= 0 in F2n/2 , and equal to 0 otherwise is then bent (see

Proposition 158, page 407) and the dual of γF is the indicator of the Walsh

support of F , deprived of (0, 0). Several classes of AB functions are known (see

Section 11.4, page 427). The bent functions γF associated to known AB functions

have been investigated in [152]. We give them below:

- Gold: F (x) = x2i+1, gcd(i, n/2) = 1 , γF (a, b) = trn/2( b

a2i+1
) with 1

0 = 0;

- Inverse: F (x) = x2n−2, γF (a, b) = trn
(

1
ab

)
+ 1 + δ0(a) + δ0(b) + δ0(a)δ0(b) +

δ0(ab+ 1) where δ0(x) is the Dirac (or Kronecker) function.

- Kasami-Welch F (x) = x22i−2i+1, gcd(i, n/2) = 1, Welch F (x) = x2
n/2−1

2 +3,

Niho F (x) = x2
n/2−1

2 +2
n/2−1

4 −1 if n ≡ 1 [mod 4], F (x) = x2
n/2−1

2 +2
3
n/2−1

2
+1

2 −1

if n ≡ 3 [mod 4]:

we have F (x + 1) + F (x) = q(x2s + x), where gcd(s, n/2) = 1 and q is in each

case a permutation determined by Dobbertin (see [470]):

1. Kasami-Welch: s = i, q(x) = x2i+1∑i′
j=1 x

2ji+αtrn/2(x)
+ 1, where i′ ≡ 1/i [mod

n/2], α =

{
0 if i′ is odd

1 otherwise;

2. Welch: s = n/2−1
2 , q(x) = x2

n/2−1
2

+1+1 + x3 + x+ 1;

3. Niho: s = n/2−1
4 if n ≡ 1 [mod 4] and s =

3
n/2−1

2 +1

2 if n ≡ 3 [mod 4],

q(x) =

{
1

g(x2s−1)+1
+ 1 if x /∈ F2

1 otherwise
where

g(x) = x22s+1+2s+1+1 + x22s+1+2s+1−1 + x22s+1+1 + x22s+1−1 + x.
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and F (x+ 1) + F (x) = b has solutions if and only if trn/2(q−1(b)) = 0. Then:

γF (a, b) =

{
trn/2(q−1(b/ad)) + 1 if a 6= 0,

0 otherwise;

The functions γF associated to Kasami-Welch, Welch and Niho functions with

n/2 = 7, 9, are neither in completed M class, nor in completed PSap class.

The other known infinite classes of AB functions are quadratic; their associ-

ated γF belong to completed M class.

7. Classes of bent monomial Boolean univariate functions (which can

more simply be called monomial bent functions and are sometimes called power

bent functions), that is, functions of the form f(x) = trn(axd), where x ∈ F2n

and a belongs to some subset19 of F∗2n .

Obviously, trn(axd) can be bent only if the mapping x→ xd is not a permutation

(otherwise, the function would be balanced, a contradiction), that is, if d is not

co-prime with 2n − 1.

It has been proved in [750] that d must be co-prime either with 2
n
2 − 1 or

with 2
n
2 + 1. Indeed, since f(x) is invariant under multiplication of x by β =

α
2n−1

gcd(d,2n−1) where α is a primitive element of F2n , and is then invariant under

multiplication by any element of the multiplicative group of order gcd(d, 2n−1),

we have Wf (0) ≡ 1 [mod gcd(d, 2n − 1)]. Hence, gcd(d, 2n − 1), which equals

gcd(d, 2n/2 − 1) gcd(d, 2n/2 + 1), since 2
n
2 − 1 and 2

n
2 + 1 are co-prime, divides

Wf (0) − 1. If Wf (0) = 2
n
2 then gcd(d, 2

n
2 + 1) = 1 and if Wf (0) = −2

n
2 then

gcd(d, 2
n
2 − 1) = 1.

Apart from the particular case of quadratic bent function f(x) = trn
2

(x2n/2+1),

already encountered, the known values of d for which there exists at least one a

such that trn(axd) is bent (such values are called bent exponents) are the follow-

ing (up to conjugacy d→ 2jd [mod 2n − 1]):

- the Gold exponents (already seen at page 230) d = 2j + 1, where n
gcd(j,n) is

even and a 6∈ {xd, x ∈ F2n} = {xgcd(d,2n−1), x ∈ F2n}; being quadratic, function

trn(ax2j+1) belongs to the completed Maiorana-McFarland class; these functions

have been generalized in [669, 701, 808, 355, 699, 1144, 629] to functions of the

form trn(
∑n/2−1
i=1 aix

2i+1) + trn/2(an/2x
2n/2+1), ai ∈ F2. Being quadratic, these

functions all belong to completed class M.

A particular case of Gold exponents is when gcd(j, n) = 1, function trn(ax2j+1) is

then bent if and only if a is not the (2j+1)-th power of an element of F2n , that is

(since gcd(2j+1, 2n−1) = 3), a is not a cube in F2n . The same result exists with:

19 It is impossible that trn(axd) be bent for every a 6= 0 since this would mean that
(n, n)-function xd is bent and we shall see in Proposition 104, page 296, that this is

impossible.
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- the Kasami exponents: 22i− 2i + 1 with gcd(i, n) = 1: function trn(ax22i−2i+1)

is bent if and only if a is not a cube (this is proved in [448, Theorem 11] for n not

divisible by 3 and is true also for n divisible by 3 as seen by Leander [750]). Note

that since the functions in Maiorana-McFarland’s and PS+ classes are normal

and functions in PS− class have algebraic degree n
2 , the Kasami bent functions,

which have algebraic degree w2(4k − 2k + 1) = k + 1, do not belong, in general,

to these classes (see page 279).

- the Dillon exponents [440] (already seen at page 239): d = j · (2n2 − 1), where

gcd(j, 2
n
2 + 1) = 1; function trn(axd), with a ∈ F

2
n
2

without loss of generality, is

bent if and only if the Kloosterman sum
∑
x∈F

2
n
2

(−1)
trn

2
(x−1+ax)

is null, where

1/0 = 0 (it belongs then to the PSap class); see also [750];

- two exponents that we give without proof:

• the Leander exponent d = (2n/4 + 1)2 where n is divisible by 4 but not by 8,

see [750]; see also [352] where the set of all a’s such that the corresponding

function trn(axd) is bent is determined: a = a′bi, a′ ∈ wF2n/4 , w ∈ F4 \F2,

b ∈ F2n ; the function belongs to the Maiorana-McFarland class;

• the Canteaut-Charpin-Kyureghyan exponent [197] d = 2n/3 + 2n/6 + 1, where

n is divisible by 6 (the corresponding function trn(axd) is bent if and only

if a = a′bi, a′ ∈ F
2
n
2

such that tr
n/6
n
2

(a′) = a′+a′2
n/6

+a′2
2n/6

= 0, b ∈ F2n ;

it belongs to the Maiorana-McFarland class).

It has been checked by Canteaut that all bent functions trn(axi) are covered by

these classes for n ≤ 20 and shown in [352] that there is no other cubic exponent

giving infinite classes of bent functions in the Maiorana-McFarland class.

Remark. The bent sequences given in [1137] are particular cases of the construc-

tions given above (using also some of the secondary constructions given below).2

8. Classes of bent polynomial functions in univariate representation

We also give them without proof. See more in [227]:

• quadratic bent functions, see page 230;

• f(x) = trn

(
a[x2i+1 + (x2i + x+ 1)trn(x2i+1)]

)
, where n ≥ 6, n

2 does not

divide i, n
gcd(i,n) even, a ∈ F2n \ F2i , {a, a + 1} ∩ {x2i+1; x ∈ F2n} = ∅;

these functions found in [150] by applying CCZ equivalence to non-bent

vectorial functions belong to completed M when a ∈ F2n/2 ;

• f(x) = trn
(
a
[(
x+ trn3

(
x2(2i+1) + x4(2i+1)

)
+trn(x)trn3

(
x2i+1 + x22i(2i+1)

))2i+1])
,

where 6 |n, n2 does not divide i, n
gcd(i,n) even, b+d+d2 6∈ {x2i+1; x ∈ F2n}

for every d ∈ F23 ; these functions found in [150]) belong to completed M;

• the 4 known classes of Niho bent functions studied above;



6.1 Bent Boolean functions 257

• classes of bent functions via Dillon exponents and their generalizations [441,

448, 478, 749, 752, 1144, 479, 629, 350, 851, 852, 853, 871, 764] (we develop

some of them in other subsections of this book and do not have the room

for detailing each);

• the trace function of the multinomial APN functions that we shall describe

at page 439 [116];

• sums of some known bent functions and products of linear functions [1131].

9. Classes of bent polynomial functions in bivariate representation Ex-

cept for Maiorana-McFarland functions, PSap functions and functions in class

H in bivariate form, there is the isolated class seen at page 231 f(x, y) =

trm(x2i+1 + y2i+1 + xy), x, y ∈ F2m , where gcd(3, n) = gcd(i, n) = 1.

10. Bent functions obtained as restrictions and extensions In [734] is

studied if the restrictions to hyperplanes of Gold functions trn(x2i+1) (see page

230) on F2n , for n odd, gcd(i, n) = 1, could be bent. It is shown that this

happens with any linear hyperplane not containing element 1. It was already

known20 from [57] that, for any (n, n)-function F satisfying F (0) = 0 and such

that, for every a ∈ F∗2n , the set Ha = {DaF (x);x ∈ Fn2} is the complement of a

linear hyperplane21, the restriction of the Boolean function 1Ha ◦F to any linear

hyperplane not containing a is bent. Note that the restriction to its complement

a + Ha is bent too, since 1Ha ◦ F (x) + 1Ha ◦ F (x + a) equals constant function

1, because F (x) + F (x + a) ∈ Ha implies that F (x) ∈ Ha is equivalent to

F (x+ a) 6∈ Ha.

For F (x) = x2i+1, we have Ha = {a2i+1(x2i +x+1); x ∈ F2n} and 1Ha ◦F (x) =

trn

((
x
a

)2i+1
)

. In [548] is proved that the restriction of any Gold AB function

to any linear hyperplane is bent.

Dillon and McGuire studied in [449] the more difficult case of Kasami functions

trn(x4i−2i+1) (see page 256) on F2n , for n odd, gcd(i, n) = 1. They showed that

for n not divisible by 3, there is one Kasami exponent with n = 3k± 1 for which

the function is bent when restricted to one particular hyperplane (of equation

trn(x) = 0). This function is not bent when restricted to any other hyperplane.

They also presented a criterion for the restriction of a near-bent function (see

Subsection 6.2.4) to a hyperplane to be bent. More investigations between bent

restrictions and near-bent extensions were made in [754], see also some results

in [191]. In [755], Leander and McGuire have considered, in the other sense, the

problem of going from a near-bent n-variable function to a bent (n+ 1)-variable

function; using the construction of bent functions by the concatenation (f, g)

of two near-bent functions f, g whose Walsh spectra are complementary (this

condition is straightforwardly necessary and sufficient), that is, disjoint, and

consequently that function (f, f ⊕ trn) is bent if and only if the indicator h of

20 But [734] also determines the dual function.
21 Ref. [57] calls these functions crooked , but we shall use this term at page 306 for a slightly

more general notion.
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the support of Wf satisfies D1h = 1 where 1 ∈ F2n (which is also easily seen and

is equivalent to the bentness of the restrictions of f to {x ∈ F2n ; trn(x) = 0}
and its complement), they deduced from the Kasami near-bent functions, the

first examples of non-weakly-normal bent functions in dimensions 10 and 12.

6.1.16 Secondary constructions of bent Boolean functions

Since very few bent functions are known from primary constructions, it seems

useful to derive secondary constructions22. We have already seen in Proposition

79, page 236, a secondary construction based on the Maiorana-McFarland con-

struction. We describe now the others (which have been found so far).

1. The direct sum is the first secondary construction given by J. Dillon and

O. Rothaus in [441, 1005]: let f be a bent function on Fn2 (n even) and g a bent

function on Fm2 (m even) then the function h defined on Fn+m
2 by h(x, y) =

f(x)⊕ g(y) is bent. Indeed, a straightforward calculation gives

Wh(a, b) = Wf (a)×Wg(b). (6.28)

This construction provides decomposable functions only (a Boolean function is

called decomposable if it is equivalent to the sum of two functions that depend

on two disjoint subsets of coordinates). Such peculiarity is easy to detect and

can be used for designing divide-and-conquer attacks, as pointed out by J. Dil-

lon in [442]. However, in some cases (see an example in [839]), this construction

provides nice solutions to specific problems. Anyway, if the direct sum provides

weak functions in a given framework, the indirect sum (see below) is an alterna-

tive, since it has almost the same property with respect to the Walsh transform

and does not have the drawback of direct sum.

2. The Rothaus construction was introduced by the same authors: if g, h, k

and g⊕h⊕k are bent on Fn2 (n even), then the function defined at every element

(x, y1, y2) of Fn+2
2 (x ∈ Fn2 , y1, y2 ∈ F2) by f(x, y1, y2) =

g(x)h(x)⊕ g(x)k(x)⊕ h(x)k(x)⊕ [g(x)⊕ h(x)]y1 ⊕ [g(x)⊕ k(x)]y2 ⊕ y1y2

is bent. We do not give a proof since this construction will be a particular case

of Theorem 15 below (see also [876]). A method is proposed in [329] to construct

three bent functions which can be used as initial functions in the Rothaus con-

struction.

3. The indirect sum generalizes the direct sum. It has first been found as a

construction of resilient functions, which generalized and unified several previous

constructions, see Theorem 21, page 329. The same principle allows constructing

bent functions:

22 However, as Dobbertin and Leander write in [477], “most bent functions appear without
any roots to bent functions in lower dimensions which could explain their existence”.
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Proposition 83 [225] Let f1 and f2 be two n-variable bent functions (n even)

and let g1 and g2 be two m-variable bent functions (m even). Define23

h(x, y) = f1(x)⊕ g1(y)⊕ (f1 ⊕ f2)(x) (g1 ⊕ g2)(y); x ∈ Fn2 , y ∈ Fm2 .

Then h is bent and its dual is obtained from f̃1, f̃2, g̃1 and g̃2 by the same formula

as h is obtained from f1, f2, g1 and g2.

We do not give a proof of this result either, since we shall see that it is also a

particular case of Theorem 15 below.

Similarly to the direct sum and contrary to the Rothaus construction above and

to the bent concatenation construction below, the indirect sum requires no con-

dition on the bent functions f1, f2, g1 and g2 used.

An interest of this construction, compared to the direct sum, is that it allows

designing functions h which are more complex (in particular, which may have

larger algebraic degree and algebraic immunity) than the functions f1, f2, g1 and

g2 used.

The indirect sum has been modified and generalized in several ways. These

generalizations often require conditions on the functions used. In [329] are intro-

duced the constructions:

1. f(x, y) = f1(x)⊕ g1(y)⊕ (f1 ⊕ f2)(x)(g1 ⊕ g2)(y)⊕ (f2 ⊕ f3)(x)(g2 ⊕ g3)(y),

where f1, f2 and f3 are bent functions in n variables such that f1 ⊕ f2 ⊕ f3 is

bent and has f̃1⊕ f̃2⊕ f̃3 for dual, g1, g2 and g3 are bent functions in m variables

such that g1 ⊕ g2 ⊕ g3 is bent,

2. f(x, y) = f0(x)⊕ g0(y)⊕ (f0 ⊕ f1)(x)(g0 ⊕ g1)(y)⊕ (f1 ⊕ f2)(x)(g1 ⊕ g2)(y)⊕

(f2 ⊕ f3)(x)(g2 ⊕ g3)(y),

with a slightly more complex condition on functions f0, . . . , f3, g0, . . . , g3.

A modified indirect sum is also introduced in [1153], in which functions f1 and

f2 (resp. g1 and g2) are the restrictions of a bent function f (resp. g) to two

hyperplanes, complementary of each other.

It is also shown in [245] (where more details on secondary constructions can

be found) that if f, g are n-variable Boolean functions, g being bent, and if φ is a

mapping from Fn2 to itself, then the 2n-variable function f(x)⊕ g̃(y)⊕φ(x) · y is

bent if and only if f(x)⊕g(φ(x)+b) is bent for every b. Three cases of application

are exhibited; all three use two bent functions g and h, and we have:

• if g and h differ by a quadratic function then the 2n-variable function (g ⊕
h)(x)⊕ g̃(y)⊕ x · y is bent,

23 h can be seen as the concatenation of the four functions f1, f1 ⊕ 1, f2 and f2 ⊕ 1, in an
order controlled by g1(y) and g2(y).
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• if g is quadratic and φ is an affine permutation, then the 2n-variable function

g(φ(x))⊕ h(x)⊕ g̃(y)⊕ φ(x) · y is bent,

• if Im(φ) = {φ(x); x ∈ Fn2} is either included in or disjoint from any translate

of supp(g), then the 2n-variable function f(x)⊕ g̃(y)⊕ φ(x) · y is bent.

4. The semi-direct sum [336] f(x)⊕g(y+H(x)), where f and g are bent and

H is such that f ⊕ u ·H is bent for every u.

5. The bent concatenation construction generalizes the direct sum, the

Rothaus construction, the indirect sum and the semi-direct sum (but as this

latter, it needs to find initial bent functions satisfying additional conditions):

Theorem 15 [215] Let n and m be two even positive integers. Let f be a Boolean

function on Fn+m
2 = Fn2 × Fm2 such that, for any element y of Fm2 , the function

fy : x ∈ Fn2 7→ f(x, y) is bent. Then f is bent if and only if, for any element s

of Fn2 , the function

ϕs : y 7→ f̃y(s)

is bent on Fm2 . If this condition is satisfied, then the dual of f is the function

f̃(s, t) = ϕ̃s(t) (taking as inner product in Fn2 × Fm2 : (x, y) · (s, t) = x · s⊕ y · t).

This very general result is easy to prove, using that, for every s ∈ Fn2 ,∑
x∈Fn2

(−1)f(x,y)⊕x·s = 2
n
2 (−1)f̃y(s) = 2

n
2 (−1)ϕs(y),

and thus that Wf (s, t) = 2
n
2

∑
y∈Fm2

(−1)ϕs(y)⊕y·t.

A very particular case of this construction had been previously considered by

Adams and Tavares [7] under the name of bent-based functions, and later stud-

ied by J. Seberry and X.-M. Zhang in [1025]. The direct sum and Rothaus’ con-

structions are particular cases of Theorem 15 (the latter covers the case m = 2).

Several classes of bent functions have been deduced in [215], and later in [620]. It

is also deduced in [245], with corollaries, that if f, g are n-variable Boolean func-

tions, with g bent, and φ a mapping from Fn2 to itself, then f(y)⊕ g̃(x)⊕φ(y) ·x
is bent if and only if f(y)⊕ g(φ(y) + b) is bent for every b ∈ Fn2 .

The indirect sum is a particular case of the bent concatenation construction of

Theorem 15: let h be defined as in Proposition 83, then for every y, the function

hy(x) of Theorem 15 (with h instead of f) equals f1(x) plus the constant g1(y)

if g1(y) = g2(y) and f2(x) plus the constant g1(y) if g1(y) 6= g2(y); thus it is

bent and function ϕs(y) equals f̃1(s)⊕ g1(y) if g1(y) = g2(y) and f̃2(s)⊕ g1(y) if

g1(y) 6= g2(y), that is, equals f̃1(s)⊕g1(y)⊕(f̃1⊕ f̃2)(s) (g1⊕g2)(y); hence, ϕs(y)

is bent too since it equals f̃1(s) ⊕ g1(y) or f̃1(s) ⊕ g2(y) according to whether

(f̃1 ⊕ f̃2)(s) vanishes or not, and according to Theorem 15, h is then bent and

its dual equals:

h̃(s, t) = f̃1(s)⊕ g̃1(t)⊕ (f̃1 ⊕ f̃2)(s)(g̃1 ⊕ g̃2)(t).
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The semi-direct sum is also a direct consequence thanks to g̃ ◦ ta = g̃ ⊕ `a,

ta(y) = y + a, `a(s) = a · s.
Another simple application of Theorem 15, called extension of Maiorana-Mc-

Farland type is given in [270]: let m be even and π be a permutation of Fm/22

and g an m/2-variable Boolean function, and let fπ,g(z, y) = z · π(y) ⊕ g(y) be

the related Maiorana-McFarland bent function; let (hy)
y∈Fm/22

be a collection of

bent functions on Fn2 for some even integer n, then the function:

(x, y, z) ∈ Fn2 × Fm/22 × Fm/22 → hy(x)⊕ fπ,g(z, y) (6.29)

is bent. Indeed, Theorem 15 with (z, y) in the place of y applies with x 7→
hy(x)⊕fπ,g(z, y) in the place of fy, and with ϕs(z, y) = h̃y(s)⊕fπ,g(z, y), which

is a bent Maiorana-McFarland function.

This generalizes a construction due to Davis and Jedwab [415] which was slightly

posterior to [215] but anterior to [270]: let n and m be two positive even integers;

let hy(x) be a collection of bent functions on Fn2 for y ∈ Fm/22 , then the function

(x, y, z) ∈ Fn2 × Fm/22 × Fm/22 7→ hy(x)⊕ y · z is bent.

Note that in (6.29), no term involves both x and z, so the structure of the bent

function is peculiar (to a lesser extent than for a direct sum, though); instead can

be tried (x, y) ∈ Fn2 × Fn2 → hy(x) ⊕ fπ,g(x, y). The restriction of such function

when fixing y is bent since that of fπ,g(x, y) is affine. Then for the global function

to be bent, it is necessary and sufficient that ϕs(y) = h̃y(s+π(y))⊕g(y) be bent

for all s. Note that the semi-direct sum is a particular case of its dual.

Of course, if f(x, y) is an (n+ s)-variable function such that, for any y ∈ Fs2, the

n-variable function fy : x 7→ f(x, y) is s-plateaued (see the definition at page

285) and the supports of the Walsh transforms of these functions fy are pairwise

disjoint, then these supports constitute a partition of Fn2 and f is bent.

6. A permutation based construction due to X.-D. Hou and P. Langevin is

built on a very simple observation which leads to potentially new bent functions:

Proposition 84 [627] Let f be a Boolean function on Fn2 , n even. Let σ be

a permutation of Fn2 . We denote its coordinate functions by σ1, . . . , σn and we

assume that, for every a ∈ Fn2 , we have:

dH(f,

n⊕
i=1

ai σi) = 2n−1 ± 2
n
2−1.

Then f ◦ σ−1 is bent.

Indeed, the Hamming distance between f ◦ σ−1 and the linear function `a(x) =

a · x equals dH(f,
⊕n

i=1 ai σi).

Hou and Langevin proposed two frameworks for applying Proposition 84:

- if h is an affine function on Fn2 and f1, f2 and g are Boolean functions on Fn2
such that the following function is bent:

f(x1, x2, x) = x1 x2 h(x)⊕ x1 f1(x)⊕ x2 f2(x)⊕ g(x); x ∈ Fn2 , x1, x2 ∈ F2,
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then the function

f(x1, x2, x)⊕ (h(x)⊕ 1) f1(x)f2(x)⊕ f1(x)⊕ (x1 ⊕ h(x)⊕ 1) f2(x)⊕ x2 h(x)

is bent; in [932] are given cases of application by taking f as the indirect sum of

bent functions and using semi-bent 4-decomposition of bent functions;

- if f is a bent function on Fn2 whose algebraic degree is at most 3, and if σ is

a permutation of Fn2 such that, for every i = 1, . . . , n, there exists a subset Ui
of Fn2 and an affine function hi such that:

σi(x) =
⊕
u∈Ui

(f(x)⊕ f(x+ u))⊕ hi(x),

then f ◦ σ−1 is bent.

X.-D. Hou in [620] deduced that if f(x, y) (x, y ∈ Fn/22 ) is a Maiorana-McFarland’s

function of the particular form x · y ⊕ g(y) and if σ1, . . . , σn are all of the form⊕
1≤i<j≤n2

ai,jxi yj ⊕ b · x ⊕ c · y ⊕ h(y), then f ◦ σ−1 is bent. He gave several

examples of application of this result.

7. A construction without extension of the number of variables24 has

been introduced in [227] and is based on the following result:

Proposition 85 Let f1, f2 and f3 be three Boolean functions on Fn2 . Denote

by s1 the Boolean function equal to f1 ⊕ f2 ⊕ f3 and by s2 the Boolean function

equal to f1f2 ⊕ f1f3 ⊕ f2f3. Then we have f1 + f2 + f3 = s1 + 2s2. This implies

the following equality between the Fourier-Hadamard transforms: f̂1 + f̂2 + f̂3 =

ŝ1 + 2ŝ2 and the similar equality between the Walsh transforms:

Wf1 +Wf2 +Wf3 = Ws1 + 2Ws2 . (6.30)

Proof. The fact that f1 + f2 + f3 = s1 + 2s2 (the sums being computed in Z and

not modulo 2) can be checked easily. The R-linearity of the Fourier-Hadamard

transform implies then f̂1+f̂2+f̂3 = ŝ1+2ŝ2. The equality f1+f2+f3 = s1+2s2

also directly implies f1χ+f2χ+f3χ = s1χ+2s2χ , thanks to the equality fχ = 1−2f

valid for every Boolean function, which implies Relation (6.30). 2

Remark. It is observed in [8, Lemma 1] that, given four Boolean functions

f1, f2, f3, f4, the pseudo-Boolean function 1
2 (Wf1 +Wf2 +Wf3 +Wf4) is the Walsh

transform of a Boolean function, say g, if and only if f1⊕f2⊕f3⊕f4 equals con-

stant function 1 (this is easily deduced from the fact that, by the R-linearity of

the Fourier-Hadamard transform on pseudo-Boolean functions and its bijectivity,

we have equivalently (−1)g = 1
2 ((−1)f1 + (−1)f2 + (−1)f3 + (−1)f4). This means

that f4 = s1 ⊕ 1 and then according to (6.30), we have g = f1f2 ⊕ f1f3 ⊕ f2f3,

as also observed in [8]. 2

Proposition 85 leads then to a double construction of bent functions:

24 Note that Hou-Langevin’s permutation based construction above does not increase either
the number of variables, contrary to most other secondary constructions.



6.1 Bent Boolean functions 263

Corollary 15 [227] Let f1, f2 and f3 be three n-variable bent functions, n even.

Let s1 = f1 ⊕ f2 ⊕ f3 and s2 = f1f2 ⊕ f1f3 ⊕ f2f3. Then:

- if s1 is bent and if s̃1 = f̃1⊕ f̃2⊕ f̃3, then s2 is bent, and s̃2 = f̃1f̃2⊕ f̃1f̃3⊕ f̃2f̃3;

- if Ws2(a) is divisible by 2
n
2 for every a (e.g. if s2 is bent, or quadratic, or more

generally if it is plateaued; see the definition in Section 6.2), then s1 is bent.

Proof. - If s1 is bent and if s̃1 = f̃1 ⊕ f̃2 ⊕ f̃3, then, for every a, Relation (6.30)

implies:

Ws2(a) =
[
(−1)f̃1(a) + (−1)f̃2(a) + (−1)f̃3(a) − (−1)f̃1(a)⊕f̃2(a)⊕f̃3(a)

]
2
n−2

2

= (−1)f̃1(a)f̃2(a)⊕f̃1(a)f̃3(a)⊕f̃2(a)f̃3(a) 2
n
2 .

Indeed, as we already saw above with the relation f1χ + f2χ + f3χ = s1χ +

2s2χ , for every bits ε, η and τ , we have (−1)ε + (−1)η + (−1)τ − (−1)ε⊕η⊕τ =

2 (−1)εη⊕ετ⊕ητ .

- If Ws2(a) is divisible by 2
n
2 for every a, then the number Ws1(a), which is

equal to
[
(−1)f̃1(a) + (−1)f̃2(a) + (−1)f̃3(a)

]
2
n
2 − 2Ws2(a), according to Rela-

tion (6.30), is congruent with 2
n
2 modulo 2

n
2 +1 for every a. This is sufficient to

imply that s1 is bent, according to Lemma 5, page 214. 2

Corollaries are deduced in [227] which revisit results from [327] (this latter ref-

erence also includes constructions of plateaued functions).

This construction has been used in [860, 864] (where is observed that, con-

versely, if f1, f2, f3, s1 and s2 are bent, then s̃1 = f̃1 ⊕ f̃2 ⊕ f̃3) and is called

Carlet’s secondary construction in [386, 873]. It is used in [711, 873] with lin-

ear structures. In the continuation of [863], it it is shown in [386] that using

Corollary 15, three involutions whose sum is an involution give rise through the

Maiorana-McFarland construction to bent functions in bivariate representation.

The construction of Corollary 15 was extended to more than three functions:

Proposition 86 [227] Let f1, . . ., fm be Boolean functions on Fn2 . For every

positive integer l, let sl be the Boolean function defined by

sl =
⊕

1≤i1<...<il≤m

l∏
j=1

fij if l ≤ m and sl = 0 otherwise.

Then we have f1+. . .+fm =
∑
i≥0 2i s2i (sums in Z). This implies f̂1+. . .+f̂m =∑

i≥0 2i ŝ2i . Moreover, if m is primitive, say m = 2r − 1, then

Wf1
+ . . .+Wfm =

r−1∑
i=0

2iWs2i
. (6.31)

Proof. Let x ∈ Fn2 and jx =
∑m
k=1 fk(x). According to Lucas’ Theorem (see

page 528), the binary expansion of jx is
∑
i≥0

[
2i
((
jx
2i

)
[mod 2]

)]
. It is a simple

matter to check that
(
jx
2i

)
[mod 2] = s2i(x). Thus, f1 + . . . + fm =

∑
i≥0 2i s2i .

The linearity of the Walsh transform with respect to the addition in R implies
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then directly f̂1 + . . .+ f̂m =
∑
i≥0 2i ŝ2i .

If m = 2r−1 (recall that in coding theory, such number is called primitive), then

we have m =
∑r−1
i=0 2i. Thus, we deduce (−1)f1 + . . .+(−1)fm =

∑r−1
i=0 2i (−1)s2i

from f1 + . . . + fm =
∑r−1
i=0 2i s2i . The linearity of the Walsh transform implies

then Relation (6.31). 2

Corollary 16 [227] Let n be any positive even integer and f1, . . ., fm (m ≤ 7)

be bent functions on Fn2 .

• Assume that s1 is bent, and that, for every a ∈ Fn2 , the number Ws4(a) is

divisible by 2n/2. Then:

– if m = 5 and s̃1 = f̃1 ⊕ . . .⊕ f̃5 ⊕ 1 then s2 is bent;

– if m = 7 and s̃1 = f̃1 ⊕ . . .⊕ f̃7, then s2 is bent.

• Assume that m ∈ {5, 7} and, for every a ∈ Fn2 , the number Ws4(a) is divisible

by 2n/2−1 and the number Ws2(a) is divisible by 2n/2, then s1 is bent.

Proof. We have for i = 1, . . ., m and for every vector a 6= 0: Wfi(a) = −2f̂i(a) =

(−1)f̃i(a) 2n/2 and f̂1(a) + . . .+ f̂m(a) =
∑
i≥0 2i ŝ2i(a).

- If s1 is bent and, for every a ∈ Fn2 , the number Ws4(a) is divisible by 2n/2,

then Ws2(a) is congruent with
[
(−1)f̃1(a) + . . .+ (−1)f̃m(a) − (−1)s̃1(a)

]
2n/2−1

modulo 2n/2+1, for every a 6= 0n.

If m = 5 and s̃1 = f̃1 ⊕ . . . ⊕ f̃5 ⊕ 1 then, denoting by k the Hamming

weight of the word (f̃1(a), . . . , f̃5(a)), the number Ws2(a) is congruent with

[5− 2k + (−1)k] 2n/2−1 modulo 2n/2+1.

If m = 7 and s̃1 = f̃1 ⊕ . . . ⊕ f̃7 then, denoting by k the Hamming weight

of the word (f̃1(a), . . . , f̃7(a)), the number Ws2(a) is congruent with [7 − 2k −
(−1)k] 2n/2−1 modulo 2n/2+1. So, in both cases, we have Ws2(a) ≡ 2n/2 [mod

2n/2+1], and s2 is bent, according to Lemma 5, page 214.

- if, for every a ∈ Fn2 , the number Ws4(a) is divisible by 2n/2−1 and the number

Ws2(a) is divisible by 2n/2, then, for every a 6= 0n, the number Ws1(a) is con-

gruent with
[
(−1)f̃1(a) + . . .+ (−1)f̃m(a)

]
2n/2 mod 2n/2+1. Since m ∈ {5, 7}, it

is then congruent with 2n/2 mod 2n/2+1 and s1 is bent, according to Lemma 5

again.

8. A construction related to the notion of normal extension of bent

function can be found in Proposition 93, page 280.

9. A construction related to bent rectangles. In [8, 10] are represented n-

variable Boolean functions f by matrices called rectangles (among which squares,

when n is even). The rows of such matrices are the Walsh transforms of the re-

strictions of f obtained by fixing m coordinates at fixed positions (say, at the

first m positions), where 1 ≤ m ≤ n − 1: denoting by fu the restriction of f

obtained by fixing xi = ui for i = 1, . . . ,m, the term at row indexed by u ∈ Fm2
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and column indexed by v ∈ Fn−m equals25 Wfu(v) =
∑
y∈Fn−m2

(−1)f(u,y)⊕v·y

(i.e. the row equals the Walsh transform vector of fu). It is proved in [10] that

f is bent if and only if the columns, when multiplied by 2m−
n
2 , are also the

Walsh transforms of Boolean functions. This is, in a way, a generalization of

Theorem 15, page 260, since m does not need to be even and the restrictions

do not need to be bent. The condition is necessary since, for every a ∈ Fm2 and

v ∈ Fn−m2 , we have
∑
u∈Fm2

Wfu(v)(−1)u·a =
∑
u∈Fm2 ,y∈F

n−m
2

(−1)f(u,y)⊕v·y⊕u·a =

Wf (a, v) = 2
n
2 (−1)f̃(a,v), and denoting by f̃v the restriction of f̃ obtained by

fixing its n − m last input coordinates to the corresponding values of v, and

by applying the inverse Walsh transform formula to f̃v, we see that the column

indexed by v and multiplied by 2m−
n
2 equals the Walsh transform of f̃v, because∑

a∈Fm2
(−1)f̃v(a)⊕a·u = 2m−

n
2 Wfu(v). It is also easily seen that the condition is

sufficient. Constructions of bent squares are deduced in [10] by using so-called

biaffine transformations and partitions of Fn2 into affine planes of equal dimension

(but it is not checked whether such constructions can provide new bent functions

nor whether the constructions themselves fall within known ones or not).

10. A general construction in the framework of the so-called Z-bent

functions. Most constructions above build bent functions from bent functions.

The idea of Z-bent functions is to extend the corpus in order to embed bent

functions into a recursive context. This has been initiated by Dobbertin in 2005

and G. Leander has presented the results and given guidelines for further research

in a paper posthumously co-authored by Hans Dobbertin [477] (see also [476]).

Z-bent functions are integer-valued functions ϕ on Fn2 whose normalized Fourier

transform ϕ̂norm = 2−n/2ϕ̂, is also integer-valued. Bent Boolean functions (or

more precisely their sign functions) will be among Z-bent functions those which

are ±1-valued.

The following nested subsets of Z are defined: W0 = {±1} and for r 6= 0, Wr =

{w ∈ Z | −2r−1 ≤ w ≤ 2r−1}. They satisfy Wr ±Wr = Wr+1 for r > 0 and lead

to a hierarchy on Z-bent functions:

Definition 55 [477] A function ϕ : Fn2 →Wr is called a Z-bent function of size
n
2 and level r if ϕ̂norm is also valued in Wr.

In this hierarchy, the (sign functions of) usual bent functions are the zero level

Z-bent functions. Since the normalized Fourier transform is self-inverse, ϕ̂norm
is then also a Z-bent function of size n

2 and level r which is called the dual of ϕ.

Z-bent functions of level r on n variables can be used to construct all Z-bent

functions of level r − 1 on (n + 2) variables. This is referred to as “gluing”

technique. All bent functions in (n + 2r) variables (i.e. all Z-bent functions of

level 0 in (n+ 2r) variables) are eventually reached this way.

The construction of partial spread (PS) bent functions has been generalized to

25 There seems to be a slight confusion between rows and columns in the description given at

the bottom of page 5 in [10].
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partial spread Z-bent functions of arbitrary level in [526]. This led to a new

construction of bent Boolean functions. A bent function in 8 variables outside

the completedM and PSap classes was deduced; all bent functions in 6 variables

can be obtained, up to equivalence, by this construction.

Secondary construction of bent functions from near-bent functions have been

also proposed, for instance in [1122].

6.1.17 Decompositions of bent functions

The following theorem is a direct consequence of the second-order Poisson for-

mula (2.57), page 81, applied to f⊕` where ` is linear, and to a linear hyperplane

E of Fn2 , and of the well-known (easy to prove) fact that, for every even integer

n, the sum of the squares of two integers equals 2n (resp. 2n+1) if and only if

one of these squares is null and the other one equals 2n (resp. both squares equal

2n):

Theorem 16 [191] Let n ≥ 4 be an even integer and let f be an n-variable

Boolean function. Then the following properties are equivalent.

1. f is bent,

2. For every (or some) hyperplane E of Fn2 , the restrictions of f to E and Fn2 \E
(viewed as Boolean functions on Fn−1

2 ) are plateaued (see the definition at

page 285) with amplitude 2
n
2 (i.e. are near-bent), and their Walsh supports

partition the whole space Fn−1
2 ,

3. For every (or some) linear hyperplane E of Fn2 , every derivative Def , e ∈
E \ {0n} is balanced.

The fact that Property 3 is enough comes from Relation (2.56), page 81. Note

that we have also (see [191]) that, if a function in an odd number of variables is

such that, for some nonzero a ∈ Fn2 , every derivative Duf , u 6= 0n, u ∈ a⊥, is

balanced, then its restriction to the linear hyperplane a⊥ or to its complement

is bent.

It is also proved in [191] that the Walsh transforms of the four restrictions of a

bent function to an (n− 2)-dimensional vector subspace E of Fn2 and its cosets

have the same sets of absolute values. It is a simple matter to see that, denoting

by a and b two vectors such that E⊥ is the linear space spanned by a and b,

these four restrictions are bent if and only if DaDbf̃ takes on constant value 1,

and as observed in [193] that26 f ⊕ 1E is bent if and only if DaDbf̃ takes on

constant value 0 (see examples in [198, Corollary 15]). More on decomposing

bent functions can be found in [191, 193, 349].

26 We have seen in the second remark of page 227 that this is a direct consequence of Th. 14.
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6.1.18 Class GPS and a geometric characterization of bent Boolean functions

Class PS generalizes to a class introduced in [213] and called GPS (for general-

ized partial spreads), which led to a characterization of bent functions that we

call geometric characterization. This characterization, given below in Theorem

17, can be proved rather simply by using Proposition 67, page 218, which is

posterior to the introduction of GPS and to Theorem 17:

Theorem 17 [290] Let f be a Boolean function on Fn2 . Then f is bent if and

only if there exist n
2 -dimensional subspaces E1, . . . , Ek of Fn2 (with no constraint

on number k) and integers m1, . . . ,mk (positive or negative) such that, for any

element x of Fn2 :

f(x) ≡
k∑
i=1

mi1Ei(x)− 2
n
2−1δ0(x)

[
mod 2

n
2

]
. (6.32)

If we have f(x) =
∑k
i=1mi1Ei(x)− 2

n
2−1δ0(x) then the dual of f equals f̃(x) =∑k

i=1mi1E⊥i (x)− 2
n
2−1δ0(x).

Proof (sketch of). Relation (6.32) is a sufficient condition for f being bent, ac-

cording to Lemma 5 and to Relation (2.38), page 77. This same Relation (2.38)

also implies the last sentence of Theorem 17. Conversely, if f is bent, then Propo-

sition 67 allows to deduce Relation (6.32), by expressing all the monomials xI

by means of the indicators of subspaces of dimension at least n−|I| (indeed, the

NNF of the indicator of the subspace {x ∈ Fn2 ; xi = 0, ∀i ∈ I} being equal to∏
i∈I(1− xi) =

∑
J⊆I(−1)|J|xJ , the monomial xI can be expressed by means of

this indicator and of the monomials xJ , where J is strictly included in I) and

by using Lemma 8 below. 2

Lemma 8 Let F be any d-dimensional subspace of Fn2 . There exist n2 -dimensional

subspaces E1, . . . , Ek of Fn2 and integers m,m1, . . . ,mk such that, for any ele-

ment x of Fn2 :

2
n
2−d 1F (x) ≡ m+

k∑
i=1

mi1Ei(x)
[

mod 2
n
2

]
if d <

n

2
, and

1F (x) ≡
k∑
i=1

mi1Ei(x)
[

mod 2
n
2

]
if d >

n

2
.

This lemma completes the proof of Theorem 17 since d ≥ n−|I| implies |I|− n
2 ≥

n
2 − d.

Definition 56 The class of those functions f which satisfy the relation obtained

from (6.32) by withdrawing “[mod 2
n
2 ]” is called generalized partial spread class

and denoted by GPS.

Class GPS includes PS, see [213]. The dual f̃ of such function f of GPS equaling
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f̃(x) =
∑k
i=1mi1E⊥i (x)− 2

n
2−1δ0(x), it belongs to GPS too.

There is no uniqueness of the representation of a given bent function in the

form (6.32). There exists another characterization, shown in [291], in the form

f(x) =
∑k
i=1mi1Ei(x)±2

n
2−1δ0(x), where E1, . . . , Ek are vector subspaces of Fn2

of dimensions n
2 or n

2 +1 and where m1, . . . ,mk are integers (positive or negative).

There is not a unique way, either, to choose these spaces Ei. But it is possible

to define some subclass of n
2 -dimensional and (n2 + 1)-dimensional spaces such

that there is uniqueness, if the spaces Ei are chosen in this subclass.

P. Guillot has proved subsequently in [579] that, up to the composition by a

translation x 7→ x+ a, every bent function belongs to GPS. The proof is a little

too technical for being included here.

6.1.19 On the number of bent Boolean functions

Nonexistence of efficient lower bounds
The original Maiorana-McFarland’s class is one of the the widest classes. The

number of bent functions of the form (6.9), page 233, equals (2
n
2 )!× 22

n
2 , which

is asymptotically equivalent to
(

2
n
2

+1

e

)2
n
2 √

2
n
2 +1π (according to Stirling’s for-

mula) while the other important straightforward construction of bent functions,

PSap, leads only to
( 2

n
2

2
n
2
−1

)
≈ 22

n
2 + 1

2√
π2

n
2

functions27. However, the number of bent

Maiorana-McFarland’s functions seems negligible with respect to the total num-

ber of bent functions. The size of the completed Maiorana-McFarland’s class

is unknown; it is at most equal to the number of Maiorana-McFarland’s func-

tions times the number of affine automorphisms, which equals 2n(2n − 1)(2n −
2) . . . (2n − 2n−1). It seems also negligible with respect to the total number of

bent functions. In fact, the lower bounds which can be deduced from all known

constructions of bent functions seem very far from the actual number. For in-

stance, in 8 variables, there are approximately 2106 different bent functions28,

see below, and about 277 correspond to the known constructions. The problem of

determining an efficient lower bound on the number of n-variable bent functions

is then open.

There exists a related open question by N. Tokareva in [1087] (that she calls

the bent sum decomposition problem) whether all Boolean functions of algebraic

degree at most n
2 are equal to the sums of two n-variable bent functions (which

is equivalent to asking whether the set of such sums is stable under addition

[977]). The reply to this question seems probably negative, but there is no proof

that it is, and it is shown in [977] that the reply is positive when restricting

ourselves to a number of subclasses (Boolean functions in at most 6 variables,

27 Its extension with André’s spreads, see page 241, has nevertheless more elements.
28 Among which probably many could lead to new infinite classes; this shows how limited is

our knowledge.
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quadratic Boolean functions, Maiorana-McFarland bent functions, partial spread

functions). And the usual parameters and properties of Boolean functions (ANF,

NNF and numerical degree, generalized degree, divisibility of the Fourier trans-

form or of the coefficients of the NNF, other properties of the Fourier or Walsh

transform values) do not seem to allow discriminating sums of two bent functions

from other Boolean functions of degrees at most n/2. If the reply to Tokareva’s

question was finally positive, this would give a straightforward lower bound on

the number of bent functions which would be much better than what is known.

Upper bounds

Rothaus’ inequality recalled in Section 6.1.8 (Theorem 13, page 224) states that

any bent function has algebraic degree at most n
2 . Thus, the number of bent

functions is at most

21+n+...+( n
n/2) = 22n−1+ 1

2 ( n
n/2).

We shall call this upper bound the naive bound . For n = 6, the number of bent

functions is known and is approximately equal to 232.3 (see [968]), which is much

less than the naive bound gives: 242. For n = 8, the number is also known: it has

been first shown in [744] that it is inferior to 2129.2; it has been later calculated by

Langevin, Leander et al. [743] and equals approximately 2106.3 (the naive bound

gives 2163). Hence picking at random an 8-variable Boolean function of algebraic

degree bounded above by 4 does not allow obtaining bent functions (but more

clever methods exist, see [413, 278]). An upper bound improving upon the naive

bound has been found in [301]. It is exponentially better than the naive bound

since it divides it by approximately 22
n
2 −n2−1. But it seems to be still far from the

exact number of bent functions: for n = 6 it gives roughly 238 (to be compared

with 232.3) and for n = 8 it gives roughly 2152 (to be compared with 2106.3). But

the bound of [301] could not be improved since it was obtained.

Number of bent components of a vectorial function

It is shown in [962] that the number of bent components of any (n, n)-function is

at most 2n − 2
n
2 , with equality if and only if the set of those v such that v ·F is

not bent is an n
2 -dimensional vector space, and that this upper bound is achieved

with equality by the Niho power function x2
n
2 +1, and the function x2i(x+ x2

n
2 )

for all i = 0, . . . , n− 1 (these latter functions are pairwise EA/CCZ inequivalent

for i 6= 0, n/2). In [877] is shown that the set of those (n, n)-functions having

maximum number of bent components is preserved by CCZ equivalence and does

not contain any APN plateaued function.
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6.1.20 Hyper-bent, homogeneous, symmetric/rotation symmetric bent Boolean
functions

Hyper-bent Boolean functions
Hyper-bent functions were initially proposed by Golomb and Gong [554] in re-

lation with the security of symmetric cryptosystems, for the reason that when

gcd(i, 2n− 1) = 1, both functions trn(ax) and tr(axi) provide m-sequences. But

no explicit attack was proposed. In [202], Canteaut and Rotella showed that,

in the context of filtered LFSR, a relevant criterion is the minimum distance

between the function and the Boolean functions of the form trn(axi)⊕ ε, where

gcd(i, 2n − 1) = 1, a ∈ F2n and ε ∈ F2: they showed that if f(x) ⊕ trn(axi)

is biased, then a fast correlation attack can be performed to recover the initial

state. Even the case when i is not co-prime with 2n − 1 leads to an attack, and

this provides a new criterion to evaluate the security of filtered LFSR. Neverthe-

less, these new considerations confirm the interest of the definition introduced

by Golomb and Gong.

Definition 57 Let n be any even positive integer. An n-variable Boolean func-

tion f on the field F2n is a hyper-bent function if, for every positive integer i

co-prime with 2n − 1, function f(xi) is bent (or equivalently, since the composi-

tional inverse of a generic power permutation xi is a generic power permutation,

if for any such i, we have
∑
x∈F2n

(−1)f(x)+trn(a xi) = ±2n/2 for every a ∈ F2n).

Remark. In [214] have been determined those Boolean functions on Fn2 such

that, for a given even integer k (2 ≤ k ≤ n − 2), any of the Boolean functions

on Fn−k2 , obtained by keeping constant k coordinates among x1, . . . , xn, is bent

(i.e. those functions which satisfy the propagation criterion of degree n− k and

order k). These are the four bent symmetric Boolean functions (see Section 10.1).

They were called hyper-bent in [214] but we keep this term for the notion intro-

duced by Golomb and Gong. 2

Hyper-bent functions can be characterized in terms of the extended Walsh

transform [554]:

Wf (a, i) =
∑
x∈F2n

(−1)f(x)+trn(axi),∀a ∈ F2n , with gcd(i, 2n − 1) = 1,

as those functions whose extended Walsh transform takes only the values ±2
n
2 .

The condition seems difficult to satisfy. However, A. Youssef and G. Gong, who

introduced the term in [1143], showed that hyper-bent functions exist. Recall

that class PS#
ap, defined at page 240, is the set of those bent functions over F2n

which can be obtained from those of PSap by composition by the transformations

x ∈ F2n 7→ δx, δ 6= 0, and by addition of a constant. We have:

Proposition 87 [278] All the functions of class PS#
ap are hyper-bent.

Let us give here a direct proof of this fact.
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Proof. We can restrict ourselves without loss of generality to the functions of

class PSap. Let ω be any element in F2n \F2n/2 . The pair (1, ω) is a basis of the

F2n/2-vector space F2n . Hence, we have F2n = F2n/2 +ωF2n/2 and the elements of

class PSap are the functions f(y′+ω y) = g
(
y′

y

)
, with y′

y = 0 if y = 0, where g is

balanced on Fn/22 and vanishes at 0. Note that every element y of F2n/2 satisfies

y2n/2 = y and therefore trn(y) = y+y2 + · · ·+y2n/2−1

+y+y2 + · · ·+y2n/2−1

= 0.

Consider the inner product in F2n defined by: y·y′ = trn(y y′); the subspace F2n/2

is then its own orthogonal; hence, according to Relation (2.38), page 77, any sum

of the form
∑
y∈F

2n/2
(−1)trn(λy) is null if λ 6∈ F2n/2 and equals 2n/2 if λ ∈ F2n/2 .

For every a ∈ F2n , we have:∑
x∈F2n

(−1)f(x)+trn(a xi) =
∑

y,y′∈F
2n/2

(−1)
g
(
y′
y

)
+trn(a (y′+ωy)i)

.

Denoting y′

y by z, we see that:

∑
y∈F∗

2n/2
,y′∈F

2n/2

(−1)
g
(
y′
y

)
+trn(a (y′+ωy)i)

=
∑

z∈F
2n/2

,y∈F∗
2n/2

(−1)g(z)+trn(a yi(z+ω)i).

The remaining sum
∑

y′∈F
2n/2

(−1)g(0)+trn(a y′i) =
∑

y′∈F
2n/2

(−1)trn(a y′) equals 2n/2

if a ∈ F2n/2 and is null otherwise.

Thus,
∑
x∈F2n

(−1)f(x)+trn(a xi) equals:

∑
z∈F

2n/2

(
(−1)g(z)

∑
y∈F

2n/2

(−1)trn(a(z+ω)i y)
)
−

∑
z∈F

2n/2

(−1)g(z) + 2n/21F
2n/2

(a).

The sum
∑
z∈F

2n/2
(−1)g(z) is null since g is balanced.

The sum
∑
z∈F

2n/2

(
(−1)g(z)

∑
y∈F

2n/2
(−1)trn(a(z+ω)i y)

)
equals ±2n/2 if a 6∈

F2n/2 , since we prove in the next Lemma that there exists then exactly one

z ∈ F2n/2 such that a(z + ω)i ∈ F2n/2 ; and this sum is null if a ∈ F2n/2 (this

can be checked, if a = 0 thanks to the balancedness of g, and if a 6= 0 because y

ranges over F2n/2 and a(z + ω)i 6∈ F2n/2). This completes the proof. 2

Lemma 9 Let n be any positive integer. Let a and ω be two elements of the

set F2n \ F2n/2 and let i be co-prime with 2n − 1. There exists a unique element

z ∈ Fn/22 such that a(z + ω)i ∈ Fn/22 .

Proof. Let j be the inverse of i modulo 2n − 1. We have a(z + ω)i ∈ Fn/22 if and

only if z ∈ ω+a−j ×Fn/22 . The sets ω+a−j ×Fn/22 and Fn/22 are two flats whose

directions a−j × Fn/22 and Fn/22 are subspaces whose sum is direct and equals

F2n . Hence, they have a unique vector in their intersection. 2
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The duals of hyper-bent functions in PS#
ap are also in PS#

ap and then are

hyper-bent.

Relationships between the notion of hyper-bent function and cyclic codes are

studied in [278] and it is deduced that:

Proposition 88 [278] Every hyper-bent function f : F2n → F2 can be repre-

sented as: f(x) =
∑r
i=1 trn(aix

ti) + ε, where ai ∈ F2n , ε ∈ F2 and w2(ti) = n/2,

where w2 denotes the 2-weight (see page 62). Consequently, all hyper-bent func-

tions have algebraic degree n/2.

It is also shown in [278] that the elements in PS#
ap are the functions of Hamming

weight 2n−1 ± 2n/2−1 which can be written in the form
∑r
i=1 trn(aix

ji), where

ai ∈ F2n and ji is a multiple of 2n/2 − 1. Hence, PS#
ap coincides with the set of

bent functions whose trace form involves Dillon-like exponents r(2n/2 − 1) only.

In [350] is proved that, for every n even, λ ∈ F∗
2n/2 and r ∈]0; n2 [ such that

the cyclotomic cosets of 2 modulo 2n/2 + 1 containing respectively 2r − 1 and

2r + 1 have size n and such that the function trn
2

(
λx2r+1

)
is balanced on F2n/2 ,

the function trn

(
λ
(
x(2r−1)(2n/2−1) + x(2r+1)(2n/2−1)

))
is bent (i.e. hyper-bent)

if and only if the function trn
2

(
x−1 + λx2r+1

)
is also balanced on F2n/2 .

Computer experiments have been reported in [278]. For n = 4, there exist

hyper-bent functions which are not in PS#
ap. Hence, stricto-sensu, the set of

hyper-bent functions contains strictly PS#
ap, but no other example was found for

n > 4. See more in [725].

Constructions of hyper-bent functions in univariate trace form
and characterizations
The simplest examples of hyper-bent functions (belonging to PS#

ap) in trace

form are the (generalized) Dillon monomial functions trn(axr(2
n/2−1)), x ∈ F2n ,

a ∈ F∗2n , gcd(r, 2n/2 +1) = 1, where the restriction of trn(ax) to U has Hamming

weight 2n/2−1 (see page 240). The bentness (hyper-bentness) of such functions

has been studied by several authors: in the case r = 1 by Dillon [441], next by

Leander [750] and when r is co-prime with 2n/2 + 1, by Charpin and Gong [350]:

1. the bentness of trn(axr(2
n/2−1)) does not depend on the choice of r,

2. it is bent if and only if the Kloosterman sum
∑
x∈F

2n/2
(−1)trn/2(a2n/2+1x+ 1

x )

equals 0,

3. When bent, trn(axr(2
n/2−1)) is self-dual.

The other known examples are:

- Binomial hyper-bent functions mainly due to S. Mesnager [851, 853] who made

deep work on this subject; these functions are the sums of a Dillon monomial

function and of a function expressed by means of the trace function over the

subfield F4 of F2n :

• trn

(
axr(2

n/2−1)
)

+tr2

(
bx

2n−1
3

)
, where a ∈ F∗2n , b ∈ F4

∗, gcd(r, 2n/2 +1) = 1.
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When n/2 is odd larger than 3, such function is hyper-bent if and only if∑
x∈F

2n/2
(−1)trn/2(a2n/2+1x+ 1

x ) = 4 (and this implies trn/2(a
2n/2+1

3 ) = 0);

the function belongs then to class PS#
ap (it belongs to PSap if b ∈ F2). The

dual has the same form.

When n/2 is even, the characterization of the bentness of this function is

an open problem (but we know that
∑
x∈F

2n/2
(−1)trn/2(a2n/2+1x+ 1

x ) = 4 is

necessary) and it is not known whether the function, when bent, belongs

to the class PS− or not.

• trn

(
aζix3(2n/2−1)

)
+tr2

(
βjx

2n−1
3

)
, where a ∈ F∗

2n/2
, β is a primitive element

of F4, ζ a generator of the cyclic group of (2m + 1)-th of unity and with

n/2 odd and not congruent with 3 mod 6, is a hyper-bent function if and

only if we are in one of the following cases:

– trn/2(a1/3) = 0 and
∑
x∈F

2n/2
(−1)trn/2(ax+ 1

x ) = 4,

– trn/2(a1/3) = 1, i ∈ {1, 2}, and∑
x∈F

2n/2

(−1)trn/2(ax+ 1
x ) +

∑
x∈F

2n/2

(−1)trn/2(a(x+x3)) = 4.

When these functions are bent, they belong to class PS# (and to PSap if

b ∈ F2) and the dual function has the same form.

Note that n/2 being odd, 3(2n/2 − 1) is not a Dillon exponent because 3

divides 2n/2 + 1, contrary to when n/2 is even; hence this second class is

not included in the first class.

In [871] is studied the hyper-bentness of more general binomial functions and

obtain a long list of (potentially new) hyper-bent functions.

- Polynomial hyper-bent functions:

• in [350] in the form
∑
r∈R trn(βrx

r(2n/2−1)), βr ∈ F2n , where R is a set

of representatives of full size29 cyclotomic cosets modulo 2n/2 + 1, with a

characterization of hyper-bentness by means of Dickson polynomials (see

also [475, 782]). When r is co-prime with 2n/2 + 1, the functions are the

sums of several Dillon monomial functions.

• In [546] in the form:

–
∑2n/2−1−1
i=1 trn

(
βxi(2

n/2−1)
)

, where β ∈ F2n/2 \ F2,

–
∑2n/2−2−1
i=1 trn

(
βxi(2

n/2−1)
)

, where n/2 is odd, and β(2n/2−4)−1 ∈ {x ∈
F∗

2n/2
; trn/2(x) = 0}.

• in [852] (in [350] for b = 0) in the form
∑
r∈R trn(arx

r(2n/2−1)) + tr2(bx
2n−1

3 ),

x ∈ F2n , b ∈ F4;

29 It has been shown later in [871] that it is enough to assume that the size does not divide
n/2.
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hyper-bentness can be characterized by means of exponential sums involv-

ing Dickson polynomials (see also [511]);

when b is a primitive element of F4, the condition reduces to the evaluation

of the Hamming weight of some Boolean functions.

• in [871] in the form
∑
r∈R trn(arx

r(2n/2−1)) + trt(bx
s(2n/2−1)), where

– R is a set of representatives of the cyclotomic classes modulo 2n/2 + 1

(not necessarily of maximal size)

– the coefficients ar are in F2n/2 ,

– s divides 2n/2 + 1, i.e s(2n/2 − 1) is a Dillon-like exponent; we set τ =
2n/2+1

s ,

– t is the size of the cyclotomic coset of s modulo 2n/2 + 1,

– b ∈ F2t ,

but the characterization of hyper-bentness in terms of exponential sums is

so complex that no new hyper-bent function could be deduced except in

some particular cases.

• in [1062], more Dillon exponent hyper-bent functions (see also [764]), with

coefficients in F2n (with a general result unifying results from the references

above), and generalized exponents in [1063].

See also [512].

Homogeneous bent functions
Definition 58 [975] A Boolean function is called a homogeneous function if all

the monomials of its algebraic normal form have the same degree.

In [347], Charnes, Rötteler and Beth showed how to use invariant theory to

construct homogeneous bent functions. They showed connections between ho-

mogeneous cubic functions and 1-designs and certain graphs and proved that

there exist cubic homogeneous bent functions in each even number of variables

n ≥ 6. They studied the equivalence between the constructed bent functions and

the properties of the associated elementary Abelian difference sets. It is proved

in [1126] that no homogeneous bent function of degree n
2 exists in n variables

for n > 6, and in [848] that, for any non-negative integer k, if n is large enough,

there exists no homogeneous bent function in n variables having degree n
2 − k

at least. Partial results towards a conjectured nonexistence of homogeneous ro-

tation symmetric bent functions (see below) having algebraic degree larger than

2 have been obtained in [847].

Rotation symmetric bent functions and idempotent bent
functions
Symmetry, that is, invariance under any permutation of input variables, simplifies

the study of Boolean functions, but all symmetric Boolean bent functions (see

Section 10.1, page 383) are quadratic and belong then to one EA equivalence

class of Boolean functions. The super-class of rotation symmetric (RS) Boolean

functions has then been introduced by Pieprzyk and Qu in [954].
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Definition 59 Let n be any positive integer. A Boolean function over Fn2 is

called rotation symmetric (RS) if it is invariant under any cyclic shift of input

coordinates, which is equivalent to saying that it is invariant under a primitive

cyclic shift, for instance: (x0, x1, . . . , xn−1)→ (xn−1, x0, x1, . . . , xn−2).

RS functions are in fact linked to a notion which had been anteriorly introduced

by Filiol and Fontaine in [503, 515] as observed by them:

Definition 60 Let n be any positive integer. A Boolean function f on F2n is

called an idempotent function (or briefly an idempotent) if it satisfies f(x) =

f(x2), for all x ∈ F2n .

Note that a Boolean function given in univariate form f(x) =
∑2n−1
j=0 δj x

j (or in

subfield trace representation, see page 61) is an idempotent if and only if every

coefficient δj belongs to F2. The link between RS functions and idempotents is

through normal bases. Recall that for every n, there exists a primitive element α

in F2n such that (α, α2, α22

, . . . , α2n/2−1

) is a basis of the vector space F2n (see

[775, 890]). Such basis is called a normal basis.

Proposition 89 For any Boolean function f(x) over F2n , and every normal

basis (α, α2, . . . , α2n−1

) of F2n , the function

(x0, . . . , xn−1) ∈ Fn2 7→ f

(
n−1∑
i=0

xiα
2i

)
is RS if and only if f is an idempotent.

This is easily proved. Hence the two notions are theoretically equivalent (but

knowing infinite classes for each notion is not equivalent). Proposition 89 leads

to a notion of circulant equivalence of RS functions, see e.g. [245].

The bivariate representation and more general k-variate representation of RS

functions and of idempotent functions is studied in [281], where the link between

these notions is studied further, see Section 10.2, page 392.

Quadratic RS functions and idempotents:
The purely quadratic part of any quadratic RS Boolean function has the form:

n/2−1⊕
i=1

ci

n−1⊕
j=0

xjxi+j

⊕ cn/2
n/2−1⊕

j=0

xjxn/2+j

 , (6.33)

where c1, . . . , cn/2 ∈ F2 and where the indices of x are modulo n. We have:

Proposition 90 [531] Let n be any even integer. Any RS quadratic function

(6.33) is bent if and only if the polynomial P (X) =
∑n/2−1
i=1 ci(X

i + Xn−i) +

cn/2X
n/2 is co-prime with Xn + 1, that is, the linearized polynomial L(X) =∑n/2−1

i=1 ci(X
2i +X2n−i) + cn/2X

2n/2 is a permutation polynomial.
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Indeed, according to the characterization of quadratic bent functions recalled at

page 229, the function is bent if and only if the matrix of its associated symplectic

form is non-singular, that is, the cyclic code generated by the rows of this matrix

equals Fn2 , and the generator polynomial of this code equals gcd(
∑n/2−1
i=1 ci(X

i+

Xn−i) + cn/2X
n/2, Xn + 1).

Infinite classes of bent quadratic RS functions have been deduced:

•
⊕n/2−1

j=0 xjxn/2+j (and we can add h(x0 ⊕ xn/2, . . . , xn/2−1 ⊕ xn−1) to this

Maiorana-McFarland function, where h is any RS function, as observed in

[1065]),

•
⊕n/2−1

i=1 (
⊕n−1

j=0 xjxi+j)⊕ (
⊕n/2−1

j=0 xjxn/2+j).

These two examples correspond to cn/2 = 1 and ci = 0 for i 6= n/2 in the

former case and ci = 1 for i = 1, . . . , n/2 − 1 in the latter case. Note that

L(X) equals X2n/2 is the former case and X + trn(X) in the latter case, and

these are permutation polynomials since n is even; equivalently P (X) equals

Xn/2 in the former case and
∑n−1
i=1 X

i in the latter case, and these are co-prime

with Xn + 1. More examples can be found as observed in [245]. For instance,

let k be such that 2k − 2 divides n (and 2k − 1 is co-prime with n). Then(
X2k−1+1
X+1

) n

2k−2

+Xn+1 has the form
∑n/2−1
i=1 ci(X

i+Xn−i)+cn/2X
n/2 (indeed,(

X2k−1+1
X+1

) n

2k−2

is self-reciprocal, has degree n and is normalized) and is co-prime

with Xn + 1 (indeed, the zeros of
(
X2k−1+1
X+1

) n

2k−2

in the algebraic closure of F2

are the elements of F2k \ F2 and for any ξ ∈ F2k \ F2 we have ξn + 1 6= 0,

since ξ 7→ ξn is a permutation of F∗2k). Taking for example k = 2 we have(
X2 +X + 1

)n/2
+ Xn + 1 =

∑
0≤u,v,w≤n/2

u+v+w=n/2,2u+v 6∈{0,n}

(n/2)!

u!v!w!
X2u+v, and for n not

divisible by 3, the following function is RS bent:

⊕
0≤u,v,w≤n/2

u+v+w=n/2,2u+v∈{1,...,n/2−1}

(n/2)!

u!v!w!
(

n−1⊕
j=0

xjx2u+v+j)⊕ (

n/2−1⊕
j=0

xjxn/2+j),

where the coefficients are taken modulo 2.

Another example is as follows. If n is a power of 2, then according to [1043,

Proposition 3.1], the function
⊕n/2−1

i=1 ci(
⊕n−1

j=0 xjxi+j)⊕cn/2(
⊕n/2−1

j=0 xjxn/2+j)

is bent if and only if
⊕n−1

i=0 ci = 1 (with cn−i = ci), that is, cn/2 = 1. See more

in [245].

Quadratic bent idempotents have been also characterized: as shown in [808], for

c1, . . . , cn/2 ∈ F2, the function equal to
∑n/2−1
i=1 citrn(x2i+1)+cn/2trn/2(x2n/2+1)

is bent if and only if gcd(
∑n/2−1
i=1 ci(X

i + Xn−i) + cn/2X
n/2, Xn + 1) = 1 (and

necessarily, cn/2 = 1). This condition is the same as that obtained for quadratic
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RS bent functions above. The infinite classes of RS bent functions seen above

provide the following bent idempotents:

• the bent quadratic monomial idempotent f ′(x) = trn/2(x2n/2+1),

• functions f ′(x) =
∑n/2−1
i=1 trn(x2i+1) + trn/2(x2n/2+1),

• for n a power of 2, all nonzero quadratic idempotents,

• for n not divisible by 3, functions:

trn/2(z2n/2+1) +
∑

0≤u,v,w≤n/2
u+v+w=n/2,2u+v∈{1,...,n/2−1}

(n/2)!

u!v!w!
trn(z22u+v+1),

where the coefficients are taken modulo 2 [245]. Of course, what is written

above for RS functions when n is a power of 2 is valid here.

• More results can be found in [1144].

The similarities between the quadratic RS bent functions and the quadratic

bent idempotents seen above leads to considering below a transformation of RS

functions into idempotents. Before that, let us recall what is known for non-

quadratic functions.

Non-quadratic RS functions and idempotents:
Two infinite classes of cubic RS bent functions (belonging to the completed

Maiorana-McFarland class) are:

•
n−1⊕
i=0

(xixt+ixn/2+i⊕xixt+i)⊕
n/2−1⊕
i=0

xixn/2+i, where n/2
gcd(n/2,t) is odd [531] (and

here also we can of course add h(x0⊕xn/2, . . . , xn/2−1⊕xn−1) to this MM

function, where h is any RS function, [1065]);

•
n−1⊕
i=0

xixi+rxi+2r ⊕
2r−1⊕
i=0

xixi+2rxi+4r ⊕
n/2−1⊕
i=0

xixi+n/2, where n/2 = 3r [282].

The Dillon and Kasami power functions with coefficient 1, and the Niho bent

functions trn/2(z2n/2+1) + trn(zd2) (see page 246) are bent idempotents. The

extension of the second class of Niho bent functions by Leander and Kholosha

gives also a bent idempotent.

For n = 6r, r ≥ 1, trn(z1+2r+22r

) + tr2r(z
1+22r+24r

) + tr3r(z
1+2t) = trr((z +

z23r

)1+2r+22r

) + tr3r(z
1+2t) is a bent idempotent [282].

More bent idempotents of any algebraic degrees between 2 and n/2 are given in

[1066] in the form g(x)⊕ h(trn(αx), trn(α2x), . . . , trn(α2n/2−1

x)), where g is an

n-variable bent function satisfying a strong condition and h is an n/2-variable

rotation symmetric function.

Remark. The generalized Dillon and Mesnager functions could be viewed as

bent idempotent candidates, but the conditions happen not to be satisfiable: it

is known that
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• for every m = n/2 such that Km(1) is null, g1(x) = trn(xr(2
m−1)) is bent

when gcd(r, 2m + 1) = 1,

• for every m = n/2 odd such that Km(1) = 4, g2(x) = trn(xr(2
m−1)) +

tr2(x
2n−1

3 ) is bent when gcd(r, 2m + 1) = 1;

but the condition Km(1) = 0 never happens as shown in [783, Theorem 2.2] and

it can be checked by computer that the condition Km(1) = 4 never happens as

well for 5 ≤ m ≤ 20. 2

Other non-quadratic functions:
A secondary construction of rotation symmetric functions (and equivalently of

idempotent bent functions) from near-bent RS functions (the definition of near-

bent functions is given in Subsection 6.2.4, page 289) based on the indirect

sum (see page 259) is given in [281] (see also [245]): let f1 and f2 be two m-

variable RS near-bent functions (m odd); if the Walsh supports of f1 and f2 are

complementary, then function

h(x0, y1, x2, y3, . . . , xn−2, yn−1) = f1(x0, x1, . . . , xm−1)⊕ f1(y0, y1, . . . , ym−1)⊕
(f1 ⊕ f2)(x0, x1, . . . , xm−1)(f1 ⊕ f2)(y0, y1, . . . , ym−1)

is bent RS. This provides constructions of RS functions and idempotent bent

functions of algebraic degree 4, for m odd: given the two RS functions f1(x) =⊕m−1
i=0 (xi ⊕ xix(m−1)/2+i) and f2(x) =

⊕m−1
i=0 xix1+i, where the subscripts are

taken modulo m, function h(x0, y1, x2, y3, . . . , xn−2, yn−1) = f1(x0, . . . , xm−1)⊕
f1(y0, . . . , ym−1)⊕ (f1 ⊕ f2)(x0, . . . , xm−1)(f1 ⊕ f2)(y0, . . . , ym−1) is an RS bent

function. Similarly, given the m-variable idempotent functions f1(x) = trm(x) +

trm(x2(m−1)/2+1) and f2(x) = trm(x3), function h(x, y) = f1(x) ⊕ f1(y) ⊕ (f1 ⊕
f2)(x) (f1 ⊕ f2)(y) is a bent idempotent.

Su and Tang [1054] have proposed, for any even n, constructions of rotation

symmetric bent functions with any possible algebraic degree ranging from 2 to

n/2, obtained by the modification of quadratic symmetric bent functions, and of

bent idempotent functions of algebraic degree n/2, obtained by the modification

of the bent quadratic monomial idempotent (see page 277).

A transformation:
As observed with quadratic RS functions and idempotents, there is a natural

way of transforming a RS function into an idempotent: let f(x0, · · · , xn−1) =∑
u∈Fn2

au
∏n−1
i=0 x

ui
i , au ∈ F2, be any Boolean RS function over Fn2 , then f ′(x) =

f(x, x2, · · · , x2n−1

) =
∑
u∈Fn2

aux
∑n−1
i=0 ui2

i

is a Boolean idempotent, and any

idempotent Boolean function can be obtained this way. We have seen that if f is

a quadratic RS function, then f is bent if and only if f ′ is bent30. But for non-

quadratic functions, it is shown in [281, 282] that all cases can happen: examples

30 Note that if n ≡ 2 [mod 4], then there exists a self-dual normal basis of F2n and that f ′

expressed over Fn2 by means of such basis is then the same function as f ; this is also the

case if n is odd.
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are given of an infinite class of cubic bent RS functions f such that f ′ is not

bent, of an infinite class of cubic bent idempotents f ′ such that f is not bent,

and of infinite classes of bent RS functions f such that f ′ is bent.

6.1.21 Normal and non-normal bent Boolean functions

We have seen the definition of normal functions in Definition 28, page 126.

As observed in [212] (see Theorem 14, page 226), if a bent function f is normal

(resp. weakly-normal), that is, constant (resp. affine) on an n
2 -dimensional flat

b + E, where E is a subspace of Fn2 , then its dual f̃ is such that f̃(u) ⊕ b · u is

constant on E⊥ (resp. on a + E⊥, where a is a vector such that f(x) ⊕ a · x is

constant on E). Thus, f̃ is weakly-normal. Moreover, we have already seen that

f (resp. f(x)⊕ a · x) is balanced on each of the other cosets of the flat.

H. Dobbertin used normal bent functions to construct balanced functions with

high nonlinearities: take a bent function f in n variables which is constant on

an n/2-dimensional flat A of Fn2 ; replace the values of f on A by the values of

a highly nonlinear balanced function on A (identified to a function g on Fn/22 );

note that this process is recursive since such n/2-variable Boolean function g

can be obtained by the same process (as long as n/2 is even) with n replaced

by n/2; when n becomes odd (say n = 2k + 1), replace the constant value by

a balanced function of best known nonlinearity nl2k+1 (larger than or equal to

22k − 2k); this provides a balanced function (as we shall see in Proposition 121,

page 325) whose nonlinearity equals 2n−1−2n/2−1−· · ·−22k + (nl2k+1−22k) ≥
2n−1 − 2n/2−1 − · · · − 22k − 2k.

The existence of non-normal (and even non-weakly-normal) bent functions, i.e.

bent functions which are non-constant (resp. non-affine) on every n
2 -dimensional

flat, has been shown, contradicting a conjecture made by several authors that

such bent function did not exist. It is proved in [448] that the so-called Kasami

function defined over F2n by f(x) = trn

(
ax22k−2k+1

)
, with gcd(k, n) = 1, is

bent if n is not divisible by 3 and if a ∈ F2n is not a cube. As shown in [198]

(thanks to [412]), if a ∈ F4 \ F2 and k = 3, then for n = 10, the function

f(x) ⊕ trn(bx) is non-normal for some b, and for n = 14, the function f(x) is

not weakly normal (while the Kasami function is normal for n divisible by 4 or

k = 1). A non-normal bent function in 12 variables is given in [278]. Cubic bent

functions on 8 variables are all normal, as shown in [349].

The direct sum (see definition in Subsection 6.1.16) of two normal functions is

obviously a normal function, while the direct sum of two non-normal functions

can be normal. What about the sum of a normal bent function and of a non-

normal bent function? This question has been studied in [270]. To this aim, a

notion more general than normality has been introduced as follows:

Definition 61 Let U ⊆ V be two vector spaces over F2. Let β : U → F2 and

f : V → F2 be bent functions. Then we say that f is a normal extension of β,
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in symbols β � f , if there is a direct decomposition V = U ⊕W1 ⊕W2 such that

(i) β(u) = f(u+ w1) for all u ∈ U, w1 ∈W1, and (ii) dimW1 = dimW2.

Obviously, we get a normal extension of any β by taking any normal bent function

g and making its direct sum with β. The relation � is transitive and if β � f

then the same relation exists between the duals: β̃ � f̃ .

A bent function is normal if and only if ε � f , where ε ∈ F2 is viewed as a

Boolean function over the vector space F0
2 = {0}.

Examples of normal extensions are given in [270] (some by the construction

of Theorem 15, page 260, and its particular cases, the indirect sum and the

extension of Maiorana-McFarland type).

The clarification about the sum of a normal bent function and of a non-normal

bent function comes from the two following propositions (see the proofs in [270]):

Proposition 91 Let fi : Vi → F2, i = 1, 2, be bent functions. The direct sum

f1 ⊕ f2 is normal if and only if bent functions β1 and β2 exist such that fi is

a normal extension of βi (i = 1, 2) and either β1 and β2 or β1 and β2 ⊕ 1 are

linearly equivalent.

Proposition 92 Suppose that β � f for bent functions β and f . If f is normal,

then also β is normal.

Hence, since the direct sum of a bent function β and of a normal bent function

g is a normal extension of β, the direct sum of a normal and a non-normal bent

function is always non-normal.

Normal extension leads to a secondary construction of bent functions:

Proposition 93 Let β be a bent function on U and f a bent function on V =

U ×W ×W . Assume that β � f . Let

β′ : U → F2

be any bent function. Modify f by setting for all x ∈ U , y ∈W

f ′(x, y, 0) = β′(x),

while f ′(x, y, z) = f(x, y, z) for all x ∈ U , y, z ∈ W , z 6= 0. Then f ′ is bent and

we have β′ � f ′.

Hence, we can replace β by any other bent function on U and get again a normal

extension.

6.1.22 Kerdock codes

For every even n, the Kerdock code Kn [689] is a supercode of RM(1, n) (i.e.

contains RM(1, n) as a subset) and is a subcode of RM(2, n). More precisely

Kn is a union of cosets fu ⊕ RM(1, n) of RM(1, n), where the functions fu are

quadratic (one of them is null and all the others have algebraic degree 2). The
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difference fu ⊕ fv between two distinct functions fu and fv being bent, Kn has

minimum distance 2n−1 − 2
n
2−1 (n even), which is the best possible minimum

distance for a code equal to a union of cosets of RM(1, n), according to the

covering radius bound. The size of Kn equals 22n. This is the best possible

size for such length and minimum distance (see [422, 177]). The Kerdock code

of length 16 is called the Nordstrom-Robinson code. We describe now how the

construction of Kerdock codes can be simply presented.

Construction of the Kerdock code
We revisit Kerdock’s construction, which was presented by means of idempotents,

that we shall not need here. The function already seen at page 230:

f(x) = σ2(x) =

(
wH(x)

2

)
[mod 2] =

⊕
1≤i<j≤n

xixj (6.34)

is bent. Thus, the linear code RM(1, n)∪ (f ⊕RM(1, n)) has minimum distance

2n−1 − 2
n
2−1.

We have recalled at page 59 and foll. and at page 275 some properties of the

field F2m (where m is any positive integer). In particular, we have seen that

F2m admits normal bases (α, α2, . . . , α2m−1

). If m is odd, there exists a self-dual

normal basis, that is, a normal basis such that trm(α2i+2j ) = 1 if i = j (that is,

trm(α) = 1) and trm(α2i+2j ) = 0 otherwise (see [775, 890]). As a consequence,

for all x = x1α+ · · ·+ xmα
2m−1

in F2m , we have

trm(x) =

m⊕
i=1

xi trm(x2j+1) =

m⊕
i=1

xixi+j ,

(where i+ j is taken mod m).

The function f of Relation (6.34), viewed as a function f(x, xn) on F2m × F2,

where m = n− 1 is odd – say m = 2t+ 1 – can now be written as:

f(x, xn) = trm

( t∑
j=1

x2j+1
)

+ xntrm (x) ,

and this expression can be taken as the definition of f . Notice that the associ-

ated symplectic form βf ((x, xn), (y, yn)) associated to f equals trm(x)trm(y) +

trm(xy) + xntrm(y) + yntrm(x).

Let us denote f(ux, xn) by fu(x, xn) (u ∈ F2m), then Kn is defined as the union,

when u ranges over F2m , of the cosets fu +RM(1, n).

Kn contains all 2n+1 affine functions (since for u = 0, we have fu = 0) and

22n − 2n+1 quadratic bent functions. Its minimum distance equals 2n−1 − 2
n
2−1

since the sum of two distinct functions fu and fv is bent. Indeed, the kernel of

the associated symplectic form equals the set of all ordered pairs (x, xn) such

that trm(ux)trm(uy)+ trm(u2xy)+xntrm(uy)+yntrm(ux) = trm(vx)trm(vy)+

trm(v2xy) +xntrm(vy) +yntrm(vx) for every (y, yn) ∈ F2m ×F2, which is equiv-

alent to utrm(ux) + u2x+ xnu = vtrm(vx) + v2x+ xnv and trm(ux) = trm(vx);
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it is a simple matter to show that it equals {(0, 0)}.
A more general approach to the construction of Kerdock codes is developed in

[327].

Open problem: Other examples of codes having the same parameters exist, see

[657] (see also [658] and observations in [72, 208, 217]). All are equal to subcodes

of the Reed-Muller code of order 2, up to affine equivalence. We do not know

how to obtain the same parameters with non-quadratic functions (up to code

equivalence). This would be useful for cryptographic purposes and for the design

of sequences for code division multiple access (CDMA) in telecommunications.

Remark.

The Kerdock codes are not linear. However, they share some nice properties

with linear codes: the distance distribution between any codeword and all the

other codewords does not depend on the choice of the codeword (we say that

the Kerdock codes are distance-invariant ; this results in the fact that their dis-

tance enumerators are equal to their weight enumerators); and, as proved by

Semakov and Zinoviev [1029], the weight enumerators of the Kerdock codes sat-

isfy a MacWilliams-like relation, similar to Relation (1.1), page 30, in which C

is replaced by Kn and C⊥ is replaced by the so-called Preparata code [43] of

the same length (we say that the Kerdock codes and the Preparata codes are

formally dual). An explanation of this astonishing property has been given in

[586]: the Kerdock code is stable under an addition inherited of the addition in

Z4 = Z/4Z (we say it is Z4-linear) and the Mac Williams identity still holds in

this different framework. Such an explanation had been an open problem for two

decades. 2

6.2 Partially-bent and plateaued Boolean functions

We have seen that bent Boolean functions can never be balanced, which makes

them improper for a direct cryptographic use. This has led to a research on super-

classes of the class of bent functions, whose elements can have high nonlinearities,

but can also be balanced31 (and possibly, be resilient).

6.2.1 Partially-bent functions

A first super-class of possibly balanced functions with high nonlinearity has been

obtained as the set of those functions which achieve a bound conjectured by B.

Preneel in [969] and expressing some trade-off between the number of unbalanced

derivatives (i.e. of nonzero autocorrelation coefficients) of a Boolean function and

the number of nonzero values of its Walsh transform.

31 The functions found will however still have bounded algebraic degree, which is

cryptographically crippling in many situations.
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Proposition 94 [211] Let n be any positive integer. Let f be any Boolean func-

tion on Fn2 . Let us denote the cardinalities of the sets {b ∈ Fn2 | F(Dbf) 6= 0} and

{a ∈ Fn2 |Wf (a) 6= 0} by N∆f
and NWf

, respectively. Then:

N∆f
×NWf

≥ 2n. (6.35)

Moreover, N∆f
×NWf

= 2n if and only if, for every b ∈ Fn2 , the derivative Dbf is

either balanced or constant. This property is also equivalent to the fact that there

exist two linear subspaces E (of even dimension) and E′ of Fn2 , whose direct sum

equals Fn2 , and Boolean functions g, bent on E, and h, affine on E′, such that:

∀x ∈ E, ∀y ∈ E′, f(x+ y) = g(x)⊕ h(y). (6.36)

Inequality (6.35) comes directly from the Wiener-Khintchine Relation (2.53),

page 80: since the value of the autocorrelation coefficient F(Dbf) lies between

−2n and 2n for every b ∈ Fn2 , the arithmetic mean of (−1)u·bF(Dbf) when b

ranges over the set {b ∈ Fn2 | F(Dbf) 6= 0} is at most 2n, for every u ∈ Fn2 , and

we have then N∆f
≥ 2−n

∑
b∈Fn2

(−1)u·bF(Dbf) = 2−nW 2
f (u) and thus N∆f

≥

2−n maxu∈Fn2 W
2
f (u). Moreover, we have NWf

≥
∑
u∈Fn2

W 2
f (u)

maxu∈Fn2
W 2
f (u)

= 22n

maxu∈Fn2
W 2
f (u)

.

This proves Inequality (6.35).

This inequality is an equality if and only if both inequalities above are equali-

ties, that is, for every b ∈ Fn2 , the autocorrelation coefficient F(Dbf) equals 0 or

2n(−1)u0·b, where maxu∈Fn2 W
2
f (u) = W 2

f (u0) (and this implies that, for every

b ∈ Fn2 , Dbf is either balanced or constant) and f is plateaued (see page 285).

The single condition that Dbf is either balanced or constant for every b implies

that f has the form (6.36). Indeed, let E be any supplementary space of the lin-

ear kernel Ef , then E having trivial intersection with Ef , the restriction of f to

E has balanced derivatives (their balancedness over E being equivalent to their

balancedness over Fn2 ) and is then bent and f has the form (6.36) with E′ = Ef .

Then it is easily seen that (6.35) is an equality. This completes the proof. 2

See some more properties in [338].

A generalization of Relation (6.35) to pseudo-Boolean functions has been ob-

tained in [986].

Definition 62 The n-variable Boolean functions such that (6.35) is an equality,

that is, whose derivatives are all either balanced or constant, that is, the functions

of the form (6.36), are called partially-bent functions.

Bounds similar to Relation (6.35) but different are obtained in [1178] and lead

to other characterizations of partially-bent functions.

Every quadratic function is partially-bent. Partially-bent functions share with

quadratic functions almost all of their nice properties (Walsh spectrum easier

to calculate, potential good nonlinearity and good resiliency order), see [211]

where the cryptographic properties of partially-bent functions are characterized.

In particular, the values of the Walsh transform equal 0 or ±2dim(E′)+dim(E)/2.
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The support of such plateaued function is a coset (i.e. a translate) of E. Note

that, viewing a function of the form (6.36) as a bivariate function, its Walsh

transform equals Wf (u, v) = Wg(u)Wh(v).

Instead of using Relation (2.53), we can use Relations (3.7), page 118 and

(3.10), page 119. We have then N∆f
≥ 2−2n

∑
b∈Fn2

F2(Dbf) = 2−2nV(f) and

NWf
≤

∑
u∈Fn2

W 4
f (u)

min{W 4
f (u);u∈Fn2 ,Wf (u)6=0} = 2n V(f)

min{W 4
f (u);u∈Fn2 ,Wf (u)6=0} , and therefore:

Proposition 95 Let n be any positive integer. Let f be any Boolean function

on Fn2 . With the same notation as in Proposition 94, we have:

N∆f

NWf

≥ 2−3n min{W 4
f (u); u ∈ Fn2 , Wf (u) 6= 0},

with equality if and only if f is partially-bent.

We can also use Relations (3.9) and (3.10). Denoting by N
∆

(2)
f

the size of the set{
(a, b) ∈ (Fn2 )2 | F(DaDbf) 6= 0

}
, we have then N

∆
(2)
f

≥ 2−n
∑
a,b∈Fn2

F(DaDbf) =

2−nV(f) and NWf
≤ 2n V(f)

min{W 4
f (u);u∈Fn2 ,Wf (u)6=0} , and therefore:

N
∆

(2)
f

NWf

≥ 2−2n min{W 4
f (u); u ∈ Fn2 , Wf (u) 6= 0}, (6.37)

with equality if and only if both inequalities are equalities, which is equivalent to

the fact that all second-order derivatives of f are either balanced or equal to the

constant function 0 and that f is plateaued. We leave open the determination of

such functions.

The functions achieving (6.37) with equality seem somewhat related to the so-

called second-order bent functions introduced in [275], which are by definition

those Boolean functions such that, for every F2-linearly independent elements

a, b ∈ Fn2 (i.e. a 6= 0n, b 6= 0n, a 6= b), DaDbf is balanced (which is a more

demanding condition on the second-order derivatives but does not require that

f be plateaued). In fact, there is no intersection between the two sets of functions,

because no second-order bent function can be plateaued. Indeed, it is shown in

[275] that f is second-order bent if and only if, for all b, c ∈ Fn2 , we have:

∑
u∈Fn2

Wf (u+b+c)Wf (u+b)Wf (u+c)Wf (u) =


−22n+1 if b 6= 0n, c 6= 0n, b 6= c,

3 · 23n − 22n+1 if b = c = 0n,

23n − 22n+1 otherwise .

Then taking b = c = 0n, we see that if f is plateaued, its amplitude (see Defini-

tion 63) must divide 2b
2n+1

4 c and therefore must divide 2
n−1

2 (since n is odd, see

below) and the size of the support of the Walsh transform of f is then a multiple

of 3 · 2n+2 − 23 which is impossible since it cannot be larger than 2n.

The only known second-order bent functions are the 3-variable functions equal



6.2 Partially-bent and plateaued Boolean functions 285

to x1x2x3 plus a quadratic function. It is shown in [275] that second-order bent

n-variable functions can exist only if n ≡ 3 [mod 4] and the existence of such

functions in more than 3 variables is an open question.

Remark. Partially-bent functions must not be mistaken for partial bent func-

tions, studied by P. Guillot in [578]. By definition, the Fourier-Hadamard trans-

forms of partial bent functions take exactly two values32 λ and λ+2
n
2 on Fn2 \{0n}

(n even). Rothaus’ bound on the degree generalizes to partial bent functions. The

dual f̃ of f , defined by f̃(u) = 0 if f̂(u) = λ and f̃(u) = 1 if f̂(u) = λ + 2
n
2 ,

is also partial bent; and its dual is f . Two kinds of partial bent functions

f exist: those such that f̂(0n) − f(0n) = −λ(2
n
2 − 1) and those such that

f̂(0n) − f(0n) = (2
n
2 − λ)(2

n
2 + 1). This can be deduced from Parseval’s Re-

lation (2.47). The sum of two partial bent functions of the same kind, whose

supports share at most the zero vector, is partial bent. An interest of partial bent

functions is in the possibility of using them as building blocks for constructing

bent functions. 2

6.2.2 Plateaued Boolean functions

In spite of their good properties, partially-bent functions, when they are not

bent, have by definition nonzero linear structures and so do not give full satisfac-

tion. The class of plateaued functions, already encountered above in Section 3.1,

(and sometimes called three-valued functions) is a natural extension of that of

partially-bent functions. They have been first studied by Zheng and Zhang in

[1173, 1174, 1176] and more recently in [317, 1178, 858, 247].

Definition 63 A function is called plateaued if its Walsh transform takes at

most one nonzero absolute value λ, that is, takes at most three values 0 and ±λ
(where λ is some positive integer, that we call the amplitude of the plateaued

function).

Because of Parseval’s relation (2.47), the amplitude λ of any plateaued function

must be of the form 2j where j ≥ n
2 (since NWf

≤ 2n). Then some authors call

f a (2j − n)-plateaued function (i.e. call r-plateaued the plateaued functions

of amplitude 2
n+r

2 ), and bent functions are 0-plateaued, near-bent functions are

1-plateaued and semi-bent functions in even dimension are 2-plateaued. Accord-

ing to Parseval’s relation, a plateaued function is bent if and only if its Walsh

transform never takes the value 0. The Walsh spectrum of a plateaued function

of amplitude λ is (thanks to Parseval’s and inverse Walsh transform formulae):

Walsh Transform Value Frequency

0 2n − 22n−2j

2j 22n−2j−1 + (−1)f(0n) 2n−j−1

−2j 22n−2j−1 − (−1)f(0n) 2n−j−1

32 Partial bent functions are the indicators of partial difference sets.
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and we have
∑
a∈F2n

W 3
f (a) = (−1)f(0n) 2n+2j and

∑
a∈F2n

W 4
f (a) = 22n+2j .

The characterization of bent functions by difference sets has been extended in

[918] to a characterization of plateaued functions by so-called one-and-half dif-

ference sets.

Of course, an n-variable Boolean function f is plateaued with amplitude λ if and

only if its Walsh transform satisfies W 2
f = λ2 1supp(Wf ), where supp(Wf ) is the

Walsh support of f and 1supp(Wf ) is its indicator. Since the autocorrelation func-

tion ∆f has W 2
f for Fourier transform, partially-bent functions are then those

plateaued functions whose Walsh support is an affine subspace of Fn2 . Indeed,

this condition is necessary and it is also sufficient since Relation (6.35) is then

an equality because N∆f
equals then the size of the dual of the vector space

equal to the direction of supp(Wf ), and it equals then 2n

NWf
.

Note that, according to Parseval’s relation, for every n-variable Boolean func-

tion f , we have NWf
×maxa∈Fn2 W

2
f (a) ≥ 22n and therefore, according to Rela-

tion (3.1), page 99: nl(f) ≤ 2n−1

(
1− 1√

NWf

)
. Equality is achieved if and only

if f is plateaued .

According to Theorem 2, page 82, we have:

Proposition 96 The algebraic degree of any n-variable plateaued function is

bounded above by n − j + 1 where λ = 2j is the amplitude of f , and therefore

by n
2 + 1 if n is even (and by n

2 in the particular case of bent functions), and by
n+1

2 if n is odd.

Note that the second part of the remark at page 86 gives additional information

on the ANF of plateaued functions.

Proposition 96 makes all plateaued functions weak against fast algebraic and

Rønjom-Helleseth attacks on stream ciphers. The class of plateaued functions

contains those functions which achieve the best possible trade-offs between re-

siliency, nonlinearity and algebraic degree: the order of resiliency and the nonlin-

earity of any Boolean function are bounded by Sarkar et al.’s bound (see Chap-

ter 7 below) and the best compromise between those two criteria is achieved by

plateaued functions only; the third criterion – the algebraic degree – is then also

optimal. Other properties of plateaued functions can be found in [191, 692].

6.2.3 Characterizations of plateaued Boolean functions

A few characterizations of plateaued functions are given in [1173] for Boolean

functions, which are direct consequences of the definition. Plateaued functions

have been more recently characterized by their derivatives, their autocorrelation

functions, and power moments of their Walsh transforms.
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Characterization by means of the derivatives
Proposition 97 [317] A Boolean function f on Fn2 is plateaued if and only if

there exists λ ∈ N such that, for every x ∈ Fn2 :∑
a,b∈Fn2

(−1)
DaDbf(x)

= λ2. (6.38)

λ is then the amplitude of the plateaued function.

The proof is very similar to that of Proposition 6.1, page 216. A function

f is plateaued with amplitude λ if and only if, for every u ∈ Fn2 , we have

Wf (u)
(
W 2
f (u)− λ2

)
= 0, that is, W 3

f (u) = λ2Wf (u). Applying the Fourier-

Hadamard transform to both terms of this equality and using Relations (2.42),

page 78, and (2.44) iterated (with three functions), page 79, we see that this is

equivalent to the fact that, for every a ∈ Fn2 , we have:∑
x,y∈Fn2

(−1)f(x)⊕f(y)⊕f(x+y+a) = λ2(−1)f(a),

and this completes the proof (after moving (−1)f(a) to the other hand side and

changing x, y, a into x+ a, x+ b, x).

The fact that quadratic functions are plateaued is a direct consequence of

Proposition 97, since their second-order derivatives are constant; and Propo-

sition 97 gives more insight on the relationship between the nonlinearity of a

quadratic function and the number of its nonzero second-order derivatives.

Characterization by means of the autocorrelation function
A Boolean function f being plateaued of amplitude λ if and only if the functions

W 2
f ×W 2

f and λ2W 2
f are equal, applying the Fourier transform to both functions,

and using the formula ϕ̂× ψ = 2−n ϕ̂ ⊗ ψ̂ with ϕ = ψ = W 2
f , where ⊗ denotes

the convolutional product, gives:

Proposition 98 [247] Let n be any positive integer and f any Boolean function.

Let ∆f (a) =
∑
x∈Fn2

(−1)f(x)⊕f(x+a) be the autocorrelation function of f . Then

f is plateaued of amplitude λ if and only, for every x ∈ Fn2 :∑
a∈Fn2

∆f (a)∆f (a+ x) = λ2∆f (x).

Characterization by means of power moments of the Walsh
transform
The sum

∑
a,b∈Fn2

(−1)DaDbf(x) in Proposition 97, equals

2−n
∑

a,b,c,w∈Fn2

(−1)f(x)⊕f(a)⊕f(b)⊕f(c)⊕w·(x+a+b+c).

Let us apply the Fourier transform to this real-valued function of x and use

that any function of x is constant if and only if its Fourier transform is null at
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every nonzero vector α. We deduce that f is plateaued if and only if, for every

nonzero α ∈ Fn2 , the sum
∑
x,a,b,c,w∈Fn2

(−1)f(x)⊕f(a)⊕f(b)⊕f(c)⊕w·(x+a+b+c)⊕α·x

is null. This latter sum equals:∑
w∈Fn2

∑
x∈Fn2

(−1)f(x)⊕(w+α)·x
∑
a∈Fn2

(−1)f(a)⊕w·a
∑
b∈Fn2

(−1)f(b)⊕w·b
∑
c∈Fn2

(−1)f(c)⊕w·c.

We deduce:

Proposition 99 [247] Any n-variable Boolean function f is plateaued if and

only if, for every nonzero α ∈ Fn2 , we have∑
w∈Fn2

Wf (w + α)W 3
f (w) = 0.

Another characterization of plateaued functions by means of the Walsh transform

exists. For a plateaued Boolean function of amplitude λ, we have, using Parse-

val’s relation, that
∑
a∈Fn2

W 4
f (a) = 22nλ2. We also have, for every b ∈ Fn2 , that∑

a∈Fn2
(−1)a·bW 3

f (a) = λ2
∑
a∈Fn2

(−1)a·bWf (a) = λ2 2n(−1)f(b). A necessary

condition for f to be plateaued is then that, for every b ∈ Fn2 ,
∑
a∈Fn2

W 4
f (a) =

2n(−1)f(b)
∑
a∈Fn2

(−1)a·bW 3
f (a). Conversely, if this property is satisfied by f ,

then the function b ∈ Fn2 7→ (−1)f(b)
∑
a∈Fn2

(−1)a·bW 3
f (a) is constant. Then the

Fourier transform of this function, that is, the function which maps every α ∈ Fn2
to the sum

∑
b∈Fn2

∑
a∈Fn2

(−1)(a+α)·b⊕f(b)W 3
f (a) =

∑
a∈Fn2

Wf (a + α)W 3
f (a) is

null at every nonzero α, and f is plateaued, according to Proposition 99:

Corollary 17 [247] Any n-variable Boolean function f is plateaued if and only

if, for every b ∈ Fn2 :∑
a∈Fn2

W 4
f (a) = 2n(−1)f(b)

∑
a∈Fn2

(−1)a·bW 3
f (a).

More characterizations exist. An obvious one is that, for every positive integer k,

an n-variable Boolean function f is plateaued if and only if there exists ν ∈ Z such

that we have
∑
a∈Fn2

W 2k
f (a)

(
W 2
f (a)− ν

)2

= 0 (ν equals then the square of the

amplitude of the plateaued function). This non-negative expression of degree 2 in

ν writes
∑
a∈Fn2

W 2k+4
f (a)− 2ν

∑
a∈Fn2

W 2k+2
f (a) + ν2

∑
a∈Fn2

W 2k
f (a); hence, the

reduced discriminant
(∑

a∈Fn2
W 2k+2
f (a)

)2−(∑a∈Fn2
W 2k+4
f (a)

)(∑
a∈Fn2

W 2k
f (a)

)
is non-positive and is null if and only if f is plateaued. We deduce (see more in

[247]):

Proposition 100 [858, 247] For every n-variable Boolean function f and every

k ∈ N∗, we have:∑
a∈Fn2

W 2k+2
f (a)

2

≤

∑
a∈Fn2

W 2k
f (a)

∑
a∈Fn2

W 2k+4
f (a)

 ,

with equality if and only if f is plateaued.
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Characterization by means of codes
Any plateaued Boolean function f , viewed as a (vectorial) (n, 1)-function, can

be related to the code C ′f seen at page 183, which has then weight distribution

given by Table 6.2. See in [874] examples of such codes.

Hamming weight w Multiplicity Aw

0 1

2n−1 2n+1 − 22n

λ2 − 1

2n−1 − λ
2

22n−1

λ2 + (−1)f(0n) 2n−1

λ

2n−1 + λ
2

22n−1

λ2 − (−1)f(0n) 2n−1

λ

Table 6.2 Weight distribution of C′f for f plateaued of amplitude λ.

Langevin proved in [738] that, if f is a plateaued function, then the coset

f ⊕RM(1, n) of the Reed-Muller code of order 1, is an orphan of RM(1, n). The

notion of orphan has been introduced in [599] (with the term “urcoset” instead of

orphan) and studied in [137]. A coset of RM(1, n) is an orphan if it is maximum

with respect to the following partial order relation: g ⊕ RM(1, n) is smaller

than f ⊕ RM(1, n) if there exists in g ⊕ RM(1, n) an element g1 of Hamming

weight nl(g) (that is, of minimum Hamming weight in g ⊕ RM(1, n)), and in

f ⊕ RM(1, n) an element f1 of Hamming weight nl(f), such that supp(g1) ⊆
supp(f1). Clearly, if f is a function of maximum nonlinearity, then f ⊕RM(1, n)

is an orphan of RM(1, n) (the converse is false, since plateaued functions with

non-optimal nonlinearity exist). The notion of orphan can be used in algorithms

searching for functions with high nonlinearities.

6.2.4 The subclasses of semi-bent and near-bent functions

- Recall that for n odd, near-bent functions (also called semi-bent functions) are

those plateaued functions of amplitude 2
n+1

2 . In [191] is observed that the class of

so-called three-valued almost optimal functions, such that the coset f⊕RM(1, n)

takes exactly three weights and whose nonlinearity is at least 2n−1 − 2
n−1

2 , co-

incides with that of near-bent functions (such functions are plateaued because

there are three weights and because the coset is stable under complementation,

and the amplitude of such plateaued functions is minimal). Parseval’s identity

shows that the support of their Walsh transform has cardinality 2n−1. Other

properties have been shown in [1121] in connection with the theory of cyclic

codes and in [427] in connection with that of designs.

According to the properties seen in Section 5.2, page 193, quadratic Boolean

functions are near-bent if and only if their linear kernel has dimension 1, that is,

their rank equals n− 1.

Several constructions of quadratic near-bent functions exist, see a survey in [859].

All the component functions of almost bent (n, n)-functions (see Subsection 11.3,

page 403) are near-bent, by definition, and the restriction of any bent Boolean
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Hamming weight Multiplicity

0 1

wH (f)−2(n−1)/2

2
wH(f)[1− 2−nwH(f)− 2−(n+1)/2]

wH (f)
2

2n − 1− wH(f)(2n − wH(f))2−(n−1)

wH (f)+2(n−1)/2

2
wH(f)[1− 2−nwH(f) + 2−(n+1)/2]

Table 6.3 Weight distribution of the code Csupp(f) for f near-bent such that f(0n) = 0

function to an affine hyperplane is near-bent (the restrictions to an affine hyper-

plane and to its complement have complementary Walsh supports and conversely

such pair of near-bent functions arises from a bent function).

In [453] is extended Proposition 68, page 219, to near-bent functions: any n-

variable Boolean function f such that f(0n) = 0 is near-bent if and only if

the linear code Csupp(f) whose generator matrix has for columns the vectors

of supp(f) has dimension n, and has weight distribution given by Table 6.3.

This provides codes with three weights.

- For n even, as also seen at page 201, semi-bent functions are those plateaued

functions of amplitude 2
n+2

2 . The term of semi-bent has been introduced in [357],

but as for n odd, these functions had been anteriorly studied under the name of

three-valued almost optimal Boolean functions in [191], where is observed that

the class of such functions whose nonlinearity is at least 2n−1 − 2
n
2 coincides

with that of semi-bent functions. In [312] is shown that the sum of a Boolean

function g equal to the linear combination of the indicators of the elements of

a spread and of a Boolean function h whose restrictions to these elements are

linear, is semi-bent if and only if g and h are both bent; related infinite classes

are specified and a version with partial spreads is also given. Other recent works

on semi-bent functions are [206, 282, 711, 855, 856, 857, 868, 876, 1131]. Up to

recently, the known semi-bent functions were often quadratic or the component

functions of power functions (see e.g. [355]). More constructions have been pro-

posed in [376] to derive semi-bent functions from bent functions. See a survey in

[859].

6.2.5 Primary constructions of plateaued Boolean functions

All quadratic Boolean functions and all bent and semi-bent Boolean functions

are plateaued. We recall from [247] the other primary constructions. Most of

them have been already presented above for constructing bent functions; they

are extended here to more general plateaued functions.

Maiorana-McFarland (MM) functions
Any function fφ,h (x, y) = x · φ (y)⊕ h (y) ; x ∈ Fr2, y ∈ Fs2, is plateaued if and

only if |
∑
y∈φ−1(a) (−1)

b·y⊕h(y) | can take two values, one of which is 0, when

(a, b) ∈ Fr2×Fs2, since Wfφ,h(a, b) = 2r
∑

y∈φ−1(a)

(−1)
b·y⊕h(y)

. If φ is injective (resp.
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takes exactly 2 times each value of Im (φ)), then fφ,h is plateaued of amplitude

2r (resp. 2r+1). Note that the address function (see page 87) is plateaued as

observed in [692] and easily checked.

Zheng-Zhang’s functions
In [1173], Zheng and Zhang introduce a class of plateaued functions and prove

that some of them are not partially-bent. These functions are defined as follows:

let t and k be two integers such that k < 2t < 2k and let E ⊆ Fk2 be a subset

of 2t elements such that any linear non null function on Fk2 is not constant

on E. For every element ei of E, let ξi denote the truth table of the linear

function x 7→ x · ei on Fk2 . Then, the Boolean function f on Fk+t
2 having for

truth table the concatenation ξ0ξ1 · · · ξ2t−1 of these truth tables is plateaued on

Fk+t
2 and its amplitude equals 2k. Such function is the concatenation of distinct

linear functions. Then, as already observed in [317], it belongs to the Maiorana-

McFarland class and satisfies the first hypothesis above.

Generalizations of Maiorana-McFarland functions
Concatenations of quadratic functions in Dickson form
Let n and r be positive integers such that r ≤ n. As proved in [223] and recalled

at page 203, the function:

fψ,φ,g(x, y) =

t⊕
i=1

x2i−1x2iψi(y)⊕ x · φ(y)⊕ g(y) =

t⊕
i=1

x2i−1x2iψi(y)⊕
r⊕
j=1

xi φi(y)⊕ g(y); x ∈ Fr2, y ∈ Fs2,

where t =
⌊
r
2

⌋
, satisfies Wfψ,φ,g (a, b) =∑

y∈Ea

2r−w(ψ(y))(−1)
⊕t
i=1(φ2i−1(y)⊕a2i−1)(φ2i(y)⊕a2i)⊕g(y)⊕y·b,

where w(ψ(y)) denotes the Hamming weight and Ea is the superset of φ−1(a)

equal if r is even to{
y ∈ Fs2; ∀i ≤ t, ψi(y) = 0⇒

(φ2i−1(y) = a2i−1 and φ2i(y) = a2i)

}
,

and if r is odd toy ∈ Fs2;


∀i ≤ t, ψi(y) = 0⇒

(φ2i−1(y) = a2i−1 and φ2i(y) = a2i)

φr(y) = ar

 .

As observed in [317], if Ea has size 0 or 1 (respectively 0 or 2) for every a and if

ψ has constant weight, then fψ,φ,g is plateaued.
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Concatenations of quadratic functions of rank 2
As seen at page 203, assuming that φ2(y) 6= 0r for every y ∈ Fs2 and denot-

ing by E the set of y ∈ Fs2 such that φ1(y) and φ2(y) are linearly indepen-

dent, function fφ1,φ2,φ3,g(x, y) = (x · φ1(y)) (x · φ2(y))⊕ x · φ3(y)⊕ g(y) satisfies

Wfφ1,φ2,φ3,g
(a, b) =

2r−1
∑
y∈E;

φ3(y)+a∈{0r,φ1(y),φ2(y)}

(−1)g(y)⊕b·y − 2r−1
∑
y∈E;

φ3(y)+a=φ1(y)+φ2(y)

(−1)g(y)⊕b·y +

2r
∑

y∈Fs2\E;

φ3(y)+a=φ1(y)

(−1)g(y)⊕b·y,

for every a ∈ Fr2 and b ∈ Fs2. As shown in [317], if E = Fs2 and the 2-dimensional

flats φ3(y) + 〈φ1(y), φ2(y)〉; y ∈ Fs2, are pairwise disjoint, then fφ1,φ2,φ3,g is

plateaued of amplitude 2r−1. And assuming that φ2(y) is nonzero for every

y ∈ Fs2 and denoting by F ′a (resp. F ′′a ) the set of all y ∈ Fs2 such that φ1(y)

and φ2(y) are linearly independent (resp. dependent) and such that a belongs

to the flat φ3(y) + 〈φ1(y), φ2(y)〉 (resp. a = φ3(y) + φ1(y)), we have that if, for

every a ∈ Fr2, the number |F ′a|+ 2|F ′′a | equals 0 or 2, then fφ1,φ2,φ3,g is plateaued

of amplitude 2r. See a little more in [1058].

6.2.6 Secondary constructions of plateaued Boolean functions

The direct sum preserves plateauedness since h(x, y) = f(x)⊕ g(y), x ∈ Fr2, y ∈
Fs2 satisfies Wh(a, b) = Wf (a)Wg(b) (and we have then nl(h) = 2snl(f) +

2rnl(g)− 2nl(f)nl(g)). The indirect sum does too, under some conditions:

Proposition 101 [247] Let h(x, y) = f1(x)⊕ g1(y)⊕ (f1 ⊕ f2)(x) (g1 ⊕ g2)(y),

then if f1 and f2 are plateaued with the same amplitude, g1 and g2 are plateaued

with the same amplitude, and

• f1 and f2 have the same Walsh support (i.e. the same extended Walsh spec-

trum),

• or g1 and g2 have the same Walsh support (idem)

• or f1 and f2 have disjoint Walsh supports and g1 and g2 have disjoint Walsh

supports,

then h is plateaued.

Proof. We have seen already that:

Wh(a, b) =
1

2
Wf1

(a) [Wg1
(b) +Wg2

(b)] +
1

2
Wf2

(a) [Wg1
(b)−Wg2

(b)] . (6.39)

Moreover, if f1 and f2 have both amplitude λ, and if g1 and g2 have both

amplitude µ, then according to Relation (6.39), we have that:

• if g1 and g2 have the same Walsh support, then Wh(a, b) ∈ {0,±λµ} (indeed,

at most one of the two values Wg1
(b) +Wg2

(b) and Wg1
(b)−Wg2

(b) is then

nonzero, and this value equals ±2µ),
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• if f1 and f2 have the same Walsh support, then Wh(a, b) ∈ {0,±λµ} (same

argument, after exchanging the roles of the fi’s and the gi’s in (6.39)),

• if f1 and f2 have disjoint Walsh supports and g1 and g2 have disjoint Walsh

supports, then Wh(a, b) ∈ {0,±λµ2 }.

Hence, h is plateaued. 2

In [1152] is given a secondary construction of plateaued functions (with dis-

joint supports) from 3 bent functions and 3 plateaued functions, under some

conditions.

The construction without extension of the number of variables viewed at page

262 can be easily adapted to plateaued functions:

Proposition 102 [247] Let f1, f2 and f3 be three n-variable Boolean functions.

Denote by s1 the Boolean function f1 + f2 + f3 and by s2 the Boolean function

f1f2 + f1f3 + f2f3. We have:

Wf1
+Wf2

+Wf3
= Ws1 + 2Ws2 .

Moreover,

• if f1, f2, f3 and s1 are plateaued with the same amplitude λ and with disjoint

Walsh supports, then s2 is plateaued with amplitude λ
2 .

• if f1, f2, f3 and s1 are plateaued with the same amplitude λ and with Walsh

supports whose multi-set equals twice some subset of Fn2 , then s2 is plateaued

with amplitude λ.

• if f1, f2, f3 are plateaued with the same amplitude λ and with disjoint Walsh

supports, and s2 is plateaued with amplitude λ
2 and Walsh support disjoint

from those of f1, f2, f3, then s1 is plateaued with amplitude λ.

• if f1, f2, f3 are plateaued with the same amplitude λ, s2 is plateaued with

amplitude λ
2 and the Walsh supports of f1, f2, f3 and s2 make a multi-set

equal to twice some subset of Fn2 , then s1 is plateaued with amplitude 2λ.

6.3 Bent4 and partially-bent4 functions

There exist several generalizations of the notion of bent function, see e.g. [313].

We shall not address them here since we focus on Boolean functions. But bent4

functions [993, 927, 529, 17, 18] are Boolean functions (whose definition is a

modification of that of bent function); we need then to give the main definitions

and results on them, even if their use in cryptography and coding is not so

clear33. In even dimension, bent4 functions are defined as bent functions, but

with respect to a transformation called unitary transformation that we recall

33 The motivation given in [993] comes from the quantum domain; another motivation comes

from the relation to the notion of modified planar functions, see [18], where is proved that

bent4 functions describe the components of modified planar functions.
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below, and which generalizes the Walsh transform. They can also be defined

by the balancedness of so-called modified derivatives. In odd dimension there

is a one-to-one correspondence between the set of bent4 functions and the set

of semi-bent functions satisfying additional properties that we shall describe as

well.

Definition 64 [993, 18] Let n be any positive integer and f a Boolean function

over F2n . For any element c ∈ F2n , the unitary transformation Vc,f : F2n → C is

defined as

Vcf (u) =
∑
x∈F2n

(−1)f(x)+σc(x)itrn(cx)(−1)trn(ux),

where σc(x) is the Boolean function whose univariate representation equals:

σc(x) =
∑

0≤i<j≤n−1

(cx)2i(cx)2j .

For c = 0, the transformation Vcf is simply the well-known Walsh transform. For

c = 1, Vcf is the nega-Hadamard transform (see. [927]).

In even dimension, the class of bent4 functions can be defined as follows in

terms of the unitary transformation,

Definition 65 Let n be an even integer. A Boolean function f is called a c-bent4
function, for some c ∈ F2n , if the unitary transformation Vcf satisfies |Vcf (u)| =
2n/2 for all u ∈ F2n . A function is bent4 if it is c-bent4 for some c ∈ F2n .

In other words, a Boolean function is c-bent4 if it has a flat spectrum with respect

to at least one of the transforms Vcf . Note that when c = 0, a c-bent4 function is

a classical bent and when c = 1, a c-bent is so-called nega-bent .

Proposition 103 [18] Let n be an even integer. A Boolean function f : F2n →
F2 is c-bent4 if and only if f ⊕ σc is bent.

Proof. We will employ (again) Jacobi’s two-square theorem stating that for an

even integer n, the integer solutions of the Diophantine equation R2 + I2 = 2n

are (R, I) = (0,±2n/2) or (±2n/2, 0). One has:

Vcf (u) =
∑
x∈F2n

(−1)f(x)+σc(x)itrn(cx)(−1)trn(ux)

=
∑
x∈F2n

(−1)f(x)+σc(x)+trn(ux)
(1 + (−1)trn(cx)

2
+ i

1− (−1)trn(cx)

2

)
=
Wf⊕σc(u) +Wf⊕σc(u+ c)

2
+ i

Wf⊕σc(u)−Wf⊕σc(u+ c)

2

If f is c-bent4 then |V(c)
f (u)| = 2n/2, that is,(

Wf⊕σc(u) +Wf⊕σc(u+ c)
)2

+
(
Wf⊕σc(u)−Wf⊕σc(u+ c)

)2

= 2n+2. (6.40)
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Now, by Jacobi’s two-square theorem , one has |Wf⊕σc(u)| = |Wf⊕σc(u+ c)| =
2n/2, which proves that f ⊕ σc is bent. The converse of the statement comes

immediately from Equation (6.40). 2

Some authors call such f a shifted bent function (i.e. f is the shifted version of

the bent function f ⊕ σc).

Remark.
Wf⊕σc (u)+Wf⊕σc (u+c)

2 (resp.
Wf⊕σc (u)−Wf⊕σc (u+c)

2 ) ranges (twice, when

u ranges over F2n) over the Walsh spectrum of the restriction of f ⊕ σc to the

linear hyperplane of equation trn(cx) = 0 (resp. its complement) and we know

from Theorem 16, page 266, that f ⊕ σc is bent if and only if these two restric-

tions are semi-bent (i.e. near-bent) with complementary Walsh supports. 2

An alternative definition of a c-bent4 function f can be given in relation to

the so-called modified derivative of f . More specifically, it has been proved in [18]

that f is c-bent4 if and only if the modified derivative f(x+a)⊕f(x)⊕trn(c2ax)

is balanced for all nonzero a ∈ F2n . This corresponds to the characterization of

bent functions via derivatives when c = 0.

Bent4 functions exist also in odd dimension. More precisely, let n be an odd

integer. Then a function f : F2n → F2 is c-bent4 if and only if f ⊕ σc(x) is a

semi-bent function and |Wf⊕σc(u)| 6= |Wf⊕σc(u+ c)| for all u ∈ F2n .

In [17], the authors have introduced the notion of partially-bent4 functions

which are functions whose modified derivative is either constant or balanced

for every element of the input set. It is known that every quadratic function is

partially c-bent4.

6.4 Bent vectorial functions

Definition 66 An (n,m) function is called bent if all its component functions

v · F , v ∈ Fm2 \ {0m} (where “·” is an inner product in Fm2 ), are bent Boolean

functions, that is, if W 2
F (u, v) = 2n for every v ∈ Fm2 \ {0m} and every u ∈ Fn2 .

Equivalently, all the derivatives DaF , a ∈ Fn2 \ {0n}, are balanced.

The equivalence between these two characteristic properties, called respectively

bentness and perfect nonlinearity34, is a direct consequence of Theorem 12, page

216, which implies that F is bent if and only if, for every v ∈ Fm2 \ {0m} and

every a ∈ Fn2 \ {0n}, the function v · DaF is balanced, and of Proposition 35,

page 134 applied to DaF .

Up to linear equivalence (precisely, up to the composition on the left by a linear

automorphism), the knowledge of a bent (n,m)-function is equivalent to that

of an m-dimensional F2-vector space of Boolean functions, all being bent ex-

cept the zero one (the vector space is made of all component functions and of

34 There are then (over Fn2 ) two different terminologies for the same class of functions.
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the zero function); from such an m-dimensional space E, we can build a bent

(n,m)-function by choosing its coordinate functions as m linearly independent

functions in E.

Bent vectorial functions are never balanced since their component functions are

not balanced. More precisely, we saw at page 135 that their imbalance NbF =∑
b∈Fm2

(∣∣F−1(b)
∣∣− 2n−m

)2
satisfies NbF =

∑
a∈Fn2

∣∣(DaF )−1(0m)
∣∣ − 22n−m =

2n− 2n−m (and that NbF+L = 2n− 2n−m for every linear function L). We have

also seen that NBF =
∑
a∈Fn2 \{0n}

NbDaF equals 0 if and only if F is bent.

The algebraic degree of any bent (n,m)-function is at most n
2 , since this bound

is true for any component function.

Remark. We have seen with Proposition 37, page 142, that it is possible, as

for Boolean functions, to characterize the bentness of (n,m)-functions F by a

property of the functions F + L where L is a linear (n,m)-function expressing

that F + L is not far from a balanced function. 2.

Bent vectorial functions have been initially considered by Nyberg who proved:

Proposition 104 [906] Bent (n,m)-functions exist if and only if n is even and

m ≤ n
2 .

Proof. It is easily seen that the condition is sufficient, thanks to the construc-

tions of bent functions that we shall see in Subsection 6.4.1, page 297. Let us

prove that it is necessary. We have seen in Relation (3.17), page 134, that,

for every (n,m)-function F and any element b ∈ Fm2 , the size of F−1(b) is

equal to 2−m
∑
x∈Fn2 ;v∈Fm2

(−1)v·(F (x)+b). Assuming that F is bent and denot-

ing, for every v ∈ Fn2 \ {0n}, by ṽ · F the dual of the bent Boolean function

x 7→ v · F (x), we have, by definition:
∑
x∈Fn2

(−1)v·F (x) = 2
n
2 (−1)ṽ·F (0n). The

size of F−1(b) equals then 2n−m + 2
n
2−m

∑
v∈Fn2 \{0n}

(−1)ṽ·F (0n)⊕v·b. Since the

sum
∑
v∈Fn2 \{0n}

(−1)ṽ·F (0n)⊕v·b has an odd value (Fn2 \{0n} having an odd size),

we deduce that, if m ≤ n then 2
n
2−m must be an integer. And it is also easily

shown that m > n is impossible. 2

Remark. The situation with PN functions is different for odd characteristic,

in which PN (n, n)-functions (defined similarly) do exist for every n (they are

also called planar). A notion of planar function in characteristic 2 (stating that

x ∈ F2n 7→ DaF (x) + ax is bijective for every a 6= 0) sometimes called pseudo-

planar or modified planar has been proposed in [1023] (see also [963]). Such

functions share many of the properties of planar functions in odd characteristic,

in relation with relative difference sets and finite geometries. 2

A survey on bent vectorial functions can be found in [310].

In [337] are called dual-bent vectorial functions the bent (n,m)-functions hav-
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ing the property that the duals of their component functions form, together with

the zero function, a vector space of dimension m, and are then the component

functions of some vectorial bent function, called a vectorial dual of F ; classical

classes are then studied from this viewpoint.

CCZ equivalence and EA equivalence coincide for bent functions [148, 150]: let

F be a bent (n,m)-function (n even, m ≤ n
2 ) and let (without loss of generality)

L1 and L2 be two linear functions from Fn2 × Fm2 to (respectively) Fn2 and Fm2 ,

such that (L1, L2) is a permutation of Fn2 × Fm2 and F1(x) = L1(x, F (x)) is a

permutation of Fn2 . For every vector v in Fn2 , the function v · F1 is necessarily

non-bent since, if v = 0m then it is null and if v 6= 0m then it is balanced. Let us

denote L1(x, y) = L′(x) + L′′(y). We have then F1(x) = L′(x) + L′′ ◦ F (x). The

adjoint operator L′′′ of L′′ (satisfying by definition v ·L′′(y) = L′′′(v) · y) is then

the null function, since if L′′′(v) 6= 0m then v · F1(x) = v · L′(x)⊕ L′′′(v) · F (x)

is bent. This means that L′′ is null and L1 depends then only on x, which

corresponds to EA equivalence.

We have seen in Proposition 104 that bent (n,m)-functions exist if and only if

n is even and m ≤ n/2. Better bounds than the covering radius bound are open

problems for:

- n odd and m < n (for m ≥ n, the Sidelnikov-Chabaud-Vaudenay bound, and

other bounds if m is large enough, are better);

- n even and n
2 < m < n.

In [459], the authors have provided a coding-theoretic characterization of bent

vectorial functions and used them for the construction of a two-parameter family

of binary linear codes that do not satisfy the conditions of the Assmus-Mattson

theorem [36], but nevertheless hold 2-designs.

6.4.1 Primary constructions of bent vectorial functions

Recall that bent (n,m)-functions can exist only for n even and m ≤ n/2, that we

shall assume satisfied. The main classes of bent Boolean functions lead to classes

of bent (n,m)-functions (this was first observed in [906] by Nyberg, who proposed

constructions within the Maiorana-McFarland and PSap constructions).

Constructions in bivariate representation
The three first primary constructions below are by increasing order of generality.

We follow [310, 313] for the description. When necessary (i.e. when we need to

make multiplications or divisions), we endow F
n
2
2 with the structure of the field

F
2
n
2

and we identify Fn2 with F
2
n
2
× F

2
n
2

.

• Bent (n,m)-functions in the strict class of Maiorana-McFarland are defined

as: F (x, y) = L(xπ(y)) + G(y), x, y ∈ F2n/2 , where π is a permutation

of F2n/2 , L : F2n/2 7→ Fm2 is linear surjective and G is any (n/2,m)-

function. An example is given in [1018] (which achieves optimal algebraic
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degree n/2): the i-th coordinate of this function is defined as fi(x, y) =

trn
2

(xφi(y)) ⊕ gi(y), x, y ∈ F
2
n
2

, where gi is any Boolean function on

F
2
n
2

and where φi(y) =

{
0 if y = 0

αdec(y)+i−1 otherwise
, where α is a primitive

element of F
2
n
2

and dec(y) = 2
n
2−1y1 + 2

n
2−2y2 + · · · + yn

2
. This func-

tion belongs to the strict Maiorana-McFarland class because the mapping

y →
{

0 if y = 0

αdec(y) otherwise
is a permutation from F

n
2
2 to F

2
n
2

, and the func-

tion L : x ∈ F
2
n
2
→ (trn

2
(x), trn

2
(αx), . . . , trn

2
(α

n
2−1x)) ∈ F

n
2
2 is an isomor-

phism.

• Bent (n,m)-functions in the extended class of Maiorana-McFarland are de-

fined as: F (x, y) = ψ(x, y) +G(y), where G is any (n/2,m)-function and ψ

is such that, for all y ∈ F2n/2 , the function x 7→ ψ(x, y) is linear and for all

x ∈ F2n/2 \{0}, the function y 7→ ψ(x, y) is balanced. Such function is bent

since, for every nonzero v ∈ Fm2 and every y ∈ Fn/22 , there exists a unique

vector vy such that v ·ψ(x, y) = x · vy and the function y 7→ vy is bijective.

• Bent (n,m)-functions in the general class of Maiorana-McFarland are defined

such that, for all v ∈ F∗2m , function v · F belongs, up to affine equivalence,

to the Maiorana-McFarland class of Boolean bent functions. Some bent

quadratic functions, elements of the general class, may not belong to the

strict class.

• Modifications of the Maiorana-McFarland bent functions have been proposed

in [909], using the classes C and D of bent Boolean functions.

• Bent (n,m)-functions in the PSap class of vectorial functions are defined

as: F (x, y) = G(xy2n−2) = G
(
x
y

)
, with the convention 1

0 = 0, where

G is a balanced (n/2,m)-function. These functions are hyper-bent in the

sense that their component functions are hyper-bent. In [804] is given their

expression in the polar representation that we saw at page 191.

• Bent (n+ n′,m)-functions (where n′ is also even) can be defined in the form:

F (x, y) = K(xy ,
z
t ) where K is a (n+n′

2 ,m)-function such that, for all x ∈
F2n/2 , the function y ∈ F2n′/2 7→ K(x, y) is balanced and for all y ∈ F2n′/2 ,

the function x ∈ F2n/2 7→ K(x, y) is balanced.

• Bent (n, n/2)-functions from class H of bent Boolean functions (see page 244)

are defined as: F (x, y) = xG(yx2n/2−2), where G is an o-polynomial on

F2n/2 , see [862]. A version in univariate form can be found in [479], see also

[310].

• Bent (n,m)-functions are built from m-dimensional vector spaces of func-

tions whose nonzero elements are all bent. Examples are (n, 2)-functions

derived from the Kerdock codes, see [310]. Another example (found by

the author in common with G. Leander) takes n ≡ 2 [mod 4]; then F
2
n
2

consists of cubes only (since gcd(3, 2
n
2 − 1) = 1). If w ∈ F2n is not

a cube, then all the nonzero elements of the vector space E = w F
2
n
2
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are non-cubes. Then if F (z) = zd where d = 2i + 1 (Gold exponent)

or 22i − 2i + 1 (Kasami exponent) and gcd(n, i) = 1, all the functions

trn(vF (z)), where v ∈ E∗, are bent. This leads to the bent (n, n2 )-functions

z ∈ F2n → (trn(β1wz
d), . . . , trn(βn

2
wzd) ∈ F

n
2
2 , where (β1, . . . , βn2 ) is a

basis of F
2
n
2

over F2. To make such function valued in F
2
n
2

, we choose a

basis (α1, . . . , αn
2

) of F
2
n
2

orthogonal to (β1, . . . , βn2 ), that is, such that

trn
2

(αiβj) = δi,j (the Kronecker symbol). For every y ∈ F
2
n
2

, we have then

y =
∑n

2
j=1 αjtrn2 (βjy). The image of every z ∈ F2n by the function equals∑n

2
j=1 αjtrn(βjwz

d) =
∑n

2
j=1 αjtrn2 (βj(wz

d + (wzd)2
n
2 )) = wzd + (wzd)2

n
2 .

In the case of the Gold exponent, it can be made a function from F
2
n
2
× F

2
n
2

to F
2
n
2

: we express z in the form x+wy where x, y ∈ F
2
n
2

and if n is not a

multiple of 3, we can take w primitive in F4 (otherwise, all elements of F4

are cubes and we have then to take w outside F4), for which we have then

w2 = w + 1, w2i = w2 (since i is necessarily odd) and w2i+1 = w3 = 1.

We have then zd = x2i+1 +wx2iy +w2xy2i + y2i+1 and wzd + (wzd)2
n
2 =

(w+w2)x2i+1 + (w2 +w)x2iy+ (w3 +w3)xy2i + (w+w2)y2i+1 = x2i+1 +

x2iy + y2i+1. We can extend the construction to gcd(i, n) 6= 1; the exact

condition is that n
gcd(i,n) is even and v 6∈ {xd, x ∈ F2n}.

Constructions of bent vectorial functions in univariate
representation
The bent (n,m)-functions built from m-dimensional vector spaces of functions

above provide first examples, like trnn/2(wxd), where w is not a cube and d = 2i+1

or 4i−2i+1, gcd(i, n) = 1. The other functions above, which are defined in bivari-

ate representation (over F
2
n
2
× F

2
n
2

and valued in F
2
n
2

), can be seen in univariate

representation, from F2n to itself. If n
2 is odd, this is quite easy: we have then

F
2
n
2
∩ F4 = F2 and we can choose the basis (1, w) of the 2-dimensional vector

space F2n over F
2
n
2

, where w is a primitive element of F4. Then w2 = w+ 1 and

w2
n
2 = w2 since n

2 is odd. A general element of F2n has the form z = x + wy

where x, y ∈ F
2
n
2

and we have z2
n
2 = x+w2y = z+y and therefore y = z+z2

n
2 ,

and x = z2
n
2 + w2y = w2z + wz2

n
2 . For instance, the univariate representation

of the simplest Maiorana-McFarland function, that is the function (x, y) → xy,

is (z + z2
n
2 )(w2z + wz2

n
2 ), that is, up to linear terms: z1+2

n
2 .

We describe now the constructions which are given directly in univariate form.

In [935] is observed that if trn(axd) is a bent Boolean function and xd permutes

F2m for some divisor m of n ≥ 4, then trnm(axd) is bent (the double condi-

tion is necessary if m = n/2, see [1133]); more is obtained in [892] for multiple

trace term functions with Dillon-like exponents. In [483, 935, 1064] are studied

(further) bent vectorial functions of the form trnn/2(axd). All functions trnm(axd)

where m divides n are addressed in the recent paper [1133], where is proved that

if m | n and gcd
(
2m− 1, 2n−1

2m−1

)
= 1, and if the (n,m)-function trnm(axd) is bent,

then gcd
(
d, 2n−1

2m−1

)
6= 1. Characterizations are given when d is a Gold 2i+1 (with
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any i), a Kasami 22i−2i+ 1 (idem), a Leander (2n/4 + 1)2, a Canteaut-Charpin-

Khyureghyan 2n/3 + 2n/6 + 1 and a Dillon j · (2n2 − 1) exponent (with precisions

and corrections of errors from previous papers) as well as functions with multi-

ple terms with Niho and Dillon exponents. The authors of [483] also propose a

method to construct bent vectorial functions based on PS− and PS+ bent func-

tions. In [892] are derived three necessary and sufficient conditions for a function

of the form F (x) = trnn/2(
∑r
i=1 aix

ri(2
n/2−1)) to be bent. The first characteri-

zation is a direct consequence of a result in [854]. The second characterization

provides an interesting link between the bentness of F and its evaluation on the

cyclic group U . The third characterization is stated in terms of the evaluation

of certain elementary symmetric polynomials, and can be transformed into some

explicit conditions regarding the choice of some coefficients. In [961] are studied

the quadratic vectorial functions of the form F (x) = trnn/2(ax2i(x2j +(x2j )2n/2)),

where n ≥ 4 is even and a 6∈ F2n/2 , which are all bent.

The existence, and the constructions in case of existence, of bent vectorial

functions of the form trnn/2(P (x)) where P (x) ∈ F2n [x] has been studied on the

basis of known Boolean bent functions of the form trn(P (x)). For instance, the

nonexistence of some bent vectorial functions with binomial trace representation

in PS− has been proved in [930, 931]: for n ≡ 0 (mod 4), there is no bent

vectorial function of the form F (x) = trnn/2(x2n/2−1 + axr(2
n/2−1)) where 1 ≤

r ≤ 2n/2 and a ∈ F2n .

We have seen at pages 47 and 297 that CCZ equivalence on bent functions

coincides with EA equivalence and then does not provide new (bent) functions.

However, applied to non-bent functions, it can give functions having some bent

components and lead to bent vectorial functions with less output bits (but possi-

bly larger algebraic degree). Examples like F (x) = x2i+1+(x2i+x+1)trn(x2i+1),

for n ≥ 6 even and F (x) =
(
x + trn3 (x2(2i+1) + x4(2i+1)) + trn(x)trn3 (x2i+1 +

x22i(2i+1))
)2i+1

, where 6 |n and in both cases n
gcd(i,n) even, are given in [150]

(deduced from functions in [163]). Ideas for deriving bent vectorial functions

from AB functions are given in [248, Subsection 4.3].

In [1143], Youssef and Gong have extended the notion of hyper-bent function to

vectorial functions: such F is called hyper-bent if all its component functions are

hyper-bent. Muratović-Ribić, Pasalic, and Bajrić [893] have characterized a class

of vectorial hyper-bent functions of the form F (x) = trnn/2(
∑2n/2

i=0 aix
i(2n/2−1))

from the class PSap, and determined the number of such hyper-bent functions.

6.4.2 Secondary constructions of bent vectorial functions

Given any bent (n,m)-function F , any chopped function obtained by deleting

some coordinates of F (or more generally by composing it on the left with any

surjective affine mapping) is obviously still bent. But there exist other more use-

ful secondary constructions (that is, constructions of new bent functions from



6.4 Bent vectorial functions 301

known ones). The secondary construction of Boolean bent functions of Proposi-

tion 79, page 236, generalizes directly to vectorial functions [234]:

Proposition 105 Let r and s be two positive integers with the same parity and

such that r ≤ s
3 . Let ψ be any (balanced) mapping from Fs2 to F2r such that, for

every a ∈ F2r , the set ψ−1(a) is an (s − r)-dimensional affine subspace of Fs2.

Let H be any (s, r)-function whose restriction to ψ−1(a) (viewed as an (s− r, r)-
function via an affine isomorphism between ψ−1(a) and Fs−r2 ) is bent for every

a ∈ F2r . Then the function Fψ,H(x, y) = xψ(y) + H(y), x ∈ F2r , y ∈ Fs2, is a

bent function from Fr+s2 to F2r .

Indeed, taking x·y = trr(xy) for inner product in F2r , for every v ∈ F∗2r , the func-

tion trr(v Fψ,H(x, y)) is bent, according to Proposition 79, with φ(y) = v ψ(y)

and g(y) = trr(v H(y)) (the more restrictive condition r ≤ s
3 is meant so that

r ≤ s−r
2 , which is necessary, according to Proposition 104, for allowing the re-

strictions of H to be bent). The condition on ψ being easily satisfied35, it is then

a simple matter to choose H. Hence, this construction is quite effective (but only

for designing bent (n,m)-functions such that m ≤ n/4, since r ≤ s
3 is equivalent

to r ≤ r+s
4 ).

The construction of Theorem 15, page 260, can also be adapted to vectorial

functions as follows [234]:

Proposition 106 Let r and s be two positive even integers and m a positive

integer such that m ≤ r/2. Let H be a function from Fn2 = Fr2 × Fs2 to Fm2 .

Assume that, for every y ∈ Fs2, the function Hy : x ∈ Fr2 → H(x, y) is a bent

(r,m)-function. For every nonzero v ∈ Fm2 and every a ∈ Fr2 and y ∈ Fs2, let us

denote by fa,v(y) the value at a of the dual of the Boolean function v ·Hy, defined

by
∑
x∈Fr2

(−1)v·H(x,y)⊕a·x = 2r/2(−1)fa,v(y). Then H is bent if and only if, for

every nonzero v ∈ Fm2 and every a ∈ Fr2, the Boolean function fa,v is bent.

Indeed, we have, for every nonzero v ∈ Fm2 and every a ∈ Fr2 and b ∈ Fs2:∑
x∈Fr2
y∈Fs2

(−1)v·H(x,y)⊕a·x⊕b·y = 2r/2
∑
y∈Fs2

(−1)fa,v(y)⊕b·y.

An example of application of Proposition 106 is when we choose every Hy in

the Maiorana-McFarland’s class: Hy(x, x′) = xπy(x′) + Gy(x′), x, x′ ∈ F2r/2 ,

where πy is bijective for every y ∈ Fs2. According to the results on the duals of

Maiorana-McFarland’s functions, for every v ∈ F∗
2r/2

and every a, a′ ∈ F2r/2 , we

have then f(a,a′),v(y) = tr r
2

(
a′ π−1

y

(
a
v

)
+ v Gy

(
π−1
y

(
a
v

)))
, where tr r

2
is the trace

function from F2r/2 to F2. Then H is bent if and only if, for every v ∈ F∗
2r/2

and

every a, a′ ∈ F2r/2 , the function y → tr r
2

(
a′ π−1

y (a) + v Gy(π−1
y (a))

)
is bent on

Fs2. A simple possibility for achieving this is for s = r/2 to choose π−1
y such that,

for every a, the mapping y → π−1
y (a) is an affine automorphism of F2r/2 (e.g.

35 Note that it does not make ψ necessarily affine.
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π−1
y (a) = πy(a) = a + y) and to choose Gy such that, for every a, the function

y → Gy(a) is bent.

An obvious corollary of Proposition 106 is that the so-called direct sum of

bent functions gives bent functions: we define H(x, y) = F (x) + G(y), where F

is any bent (r,m)-function and G any bent (s,m)-function, and we have then

fa,v(y) = ṽ · F (a) ⊕ v · G(y), which is a bent Boolean function for every a and

every v 6= 0m. Hence, H is bent.

Remark. Identifying Fm2 with F2m and defining H(x, y) = F1(x) + G1(y) +

(F1(x)+F2(x)) (G1(y)+G2(y)), a component function v ·Hy(x) = trm(v F1(x))+

trm(v G1(y)) + trm (v (F1(x) + F2(x)) (G1(y) +G2(y))) does not enter, in gen-

eral, in the framework of Proposition 83 nor of Proposition 106. Note that the

function fa,v exists under the sufficient condition that, for every nonzero ordered

pair (v, w) ∈ F2m×F2m , the function trm(v F1(x))+ trm(wF2(x)) is bent (which

is equivalent to saying that the (r, 2m)-function (F1, F2) is bent).

There are particular cases where the construction works, as shown in [310]: let

F1 and F2 be two bent (n, r)-functions and G = (g1, . . . , gr+1) an (m, r + 1)-

function such that for every nonzero v in Fr+1
2 different from (1, 0, . . . , 0), the

component function v ·G is bent, then the function H(x, y) = F1(x) +G1(y) +

g1(y)(F1(x) + F2(x)), where G1 is the (m, r)-function (g2, . . . , gr+1), is a bent

(n+m, r)-function. This indirect sum has been generalized in [310]. 2

Remark. In [18], bent4 functions have been extended to vectorial bent4 func-

tions (over finite fields), which correspond to relative difference sets in certain

groups. The authors have provided conditions under which Maiorana-McFarland

functions are bent4. 2

6.5 Plateaued vectorial functions

There exist three notions of plateauedness for vectorial functions:

Definition 67 An (n,m)-function is called strongly plateaued if all its compo-

nent functions v · F ; v ∈ Fm2 , v 6= 0m, where “·” is an inner product in Fm2 , are

partially-bent (see Definition 62, page 283).

An (n,m)-function is called plateaued with single amplitude if all its component

functions are plateaued with the same amplitude (see Definition 63, page 285).

An (n,m)-function is called plateaued if all its component functions are plateaued,

with possibly different amplitudes.

The reason why the first notion is called strongly plateaued will be made clear

with Corollary 18 below. The two first notions are independent in the sense that

none is a particular case of the other (there exist indeed strongly plateaued vec-

torial functions with different amplitudes and plateaued functions with single
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amplitude which are not strongly plateaued). Both are a particular case of the

third. Quadratic functions (which are all strongly plateaued) can have compo-

nents with different amplitudes (this is the case for instance of the Gold functions

x2i+1, gcd(i, n) = 1, for n even). They can also have single amplitude (this is

the case of Gold functions for n odd). Of course, the two definitions of plateaued

functions and of plateaued with single amplitude functions coincide for Boolean

functions.

Note that, since the Walsh transform values of plateaued (n,m)-functions are

divisible by 2d
n
2 e and the Walsh transform of F equals the Fourier transform

of the indicator 1GF of its graph GF , the algebraic degree of 1GF is at most

n + m − dn2 e = bn2 c + m, according to Theorem 2, page 82. Applying Relation

(2.7), page 57, we have then that, for every subset J of {1, . . . ,m}, we have

dalg
(∏

j∈{1,...,m}\J(fj ⊕ 1)
)
≤ bn2 c+m− |J |, where the fj ’s are the coordinate

functions of F . And if F is plateaued with single amplitude 2r, then we have

dalg
(∏

j∈{1,...,m}\J(fj⊕1)
)
≤ n+m−r−|J |. This gives much more information

than the single inequality dalg(F ) ≤ bn2 c + 1 (resp. ≤ n − r + 1) provided by

Proposition 96, page 286.

It has been proved in [174] that, when n is a power of 2, no power plateaued

(n, n)-permutation exists36 and in [835] that, when n is divisible by 4, no such

function exists with Walsh spectrum {0,±2
n
2 +1}.

The set of plateaued vectorial functions with single amplitude is CCZ invari-

ant : if the graphs {(x, F (x)); x ∈ Fn2} and {(x,G(x)); x ∈ Fn2} of two (n,m)-

functions F,G correspond to each other by an affine permutation of Fn2 × Fm2 ,

then one is plateaued with single amplitude if and only if the other is. The larger

set of plateaued vectorial functions is (only) EA invariant : it is indeed invariant

under composition on the right by affine automorphisms and under addition of

an affine function, and it is also invariant under composition on the left by a lin-

ear automorphism L since WL◦F (u, v) = WF (L∗(v), u), where L∗ is the adjoint

operator of L.

6.5.1 Characterizations of plateaued vectorial functions

The characterization of plateaued Boolean functions by Proposition 97, page 287,

has been generalized to vectorial functions for each notion, by means of the value

distributions of their derivatives. This allowed to derive several characterizations

of APN functions in this framework. Characterizations of plateaued vectorial

functions have been also obtained by means of their autocorrelation functions

and of the power moments of their Walsh transforms. We survey below all these

results from [247].

36 A conjecture by T. Helleseth states that there is no power permutation having 3 Walsh

transform values when n is a power of 2.
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Characterization by means of the derivatives
Applying Proposition 97, page 287, an (n,m)-function F is plateaued if and only

if, for every v ∈ Fm2 , the expression
∑
a,b∈Fn2

(−1)v·DaDbF (x) does not depend on

x ∈ Fn2 and F is plateaued with single amplitude if and only if this sum does not

depend on x nor on v 6= 0m.

Theorem 18 [247] Let F be an (n,m)-function. Then:

• F is plateaued if and only if, for every w ∈ Fm2 , the size of the set

{(a, b) ∈ (Fn2 )2 ; DaDbF (x) = w} (6.41)

does not depend on x ∈ Fn2 (in other words, the value distribution of

DaDbF (x) when (a, b) ranges over (Fn2 )2 is independent of x ∈ Fn2 ).

• F is plateaued with single amplitude if and only if the size of the set in (6.41)

does not depend on x ∈ Fn2 , nor on w ∈ Fm2 when w 6= 0m.

Moreover:

• for every (n,m)-function F , the value distribution of DaDbF (x) when (a, b)

ranges over (Fn2 )2 equals the value distribution of DaF (b) +DaF (x),

• if two plateaued functions F,G have the same such distribution, then for every

v, their component functions v · F and v ·G have the same amplitude.

Proof. Recall that any two integer-valued functions over Fm2 are equal if and only

if their Fourier transforms are equal, and that any integer-valued function is con-

stant except at 0m if and only if its Fourier transform is constant except at 0m as

well. Applying this to the functions v 7→
∑
a,b∈Fn2

(−1)v·DaDbF (x) for different val-

ues of x, we deduce that F is plateaued if and only if, for every w ∈ Fm2 , the sum∑
v∈Fm2

∑
a,b∈Fn2

(−1)v·DaDbF (x)⊕v·w, which is equal to
∑
a,b∈Fn2

∑
v∈Fm2

(−1)v·(DaDbF (x)+w) =

2m|{(a, b) ∈ (Fn2 )2 ; DaDbF (x) = w}| does not depend on x ∈ Fn2 , and F is

plateaued with single amplitude if and only if this size does not depend on x nor

on w 6= 0m. This proves the first part.

By the change of variable b 7→ b+x, we have that |{(a, b) ∈ (Fn2 )2 ; DaDbF (x) =

w}| equals |{(a, b) ∈ (Fn2 )2 ; DaDb+xF (x) = w}|, that is, |{(a, b) ∈ (Fn2 )2 ; F (x)+

F (x+ a) + F (b) + F (b+ a) = w}|. This proves the first item of the second part.

The last item is a direct consequence of the fact that, for a plateaued function

F , the sum
∑
a,b∈Fn2

(−1)v·DaDbF (x) equals the square of the amplitude of v ·F . 2

It is observed in [194, 196] that |{(a, b, x) ∈ (Fn2 )3 ; DaDbF (x) = 0n, a 6= 0n, b 6=
0n, a 6= b}| ≤ (2n−1)(maxu,v∈Fn2 ,v 6=0nWF (u, v)2−2n+1), for every (n, n)-function

F , with equality if and only if F is plateaued with single amplitude (this is a

straightforward consequence of the calculations made in the proof of the SCV

bound, see Theorem 6, page 140).

Note that the algebraic degree d = 2 (for which the first item of Theorem 18 is
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straightforwardly satisfied since the second-order derivatives are then constant)

is the only one for which all functions of algebraic degree at most d are plateaued,

since we know that cubic Boolean functions can have values of the Walsh trans-

form at 0n different from 0 and from powers of 2, see Section 5.3, page 204, and

therefore be non-plateaued.

Examples. 1. Almost bent (AB) functions, see Definition 31, page 141, are an

example of plateaued functions with single amplitude. The distribution of values

of the second-order derivatives in Relation (6.41) is as follows: the equation

DaDbF (x) = w has 3 · 2n − 2 solutions (a, b) for any x if w = 0n and 2n − 2

solutions if w 6= 0n (see Corollary 27, page 409). Conversely, any function having

this property is AB.

2. Let n now be even and F (x) = x2i+1 be a Gold APN function, (i, n) = 1. We

have DaDbF (x) = a2ib+ ab2
i

. The number of solutions (a, b) of DaDbF (x) = 0

equals again 3 · 2n − 2 (as for any APN function), and for w 6= 0 the number of

solutions (a, b) of DaDbF (x) = w is constant when w ranges over a coset of the

multiplicative group of all cubes in F∗2n , since for every λ ∈ F∗2n , (λa)2i(λb) +

(λa)(λb)2i = λ2i+1(a2ib + ab2
i

) and λ 7→ λ2i+1 is 3-to-1 over F∗2n and has the

group of cubes for range. This allows taking w = 1 without loss of generality when

w is a cube, and a2ib+ab2
i

= 1 is equivalent when b 6= 0 to
(
a
b

)2i
+ a
b = 1

b2i+1
and

has two solutions a for every b such that 1

b2i+1
has null trace (and none otherwise).

The number of such nonzero b equals 2n−1± 2
n
2 − 1 since f(x) = trn(x2i+1) has

the same Hamming weight as trn(x3), which is 2n−1 ± 2
n
2 according to Carlitz’

result recalled at page 201. When w is not a cube, a2ib+ ab2
i

= w is equivalent

when b 6= 0 to
(
a
b

)2i
+ a

b = w

b2i+1
and has two solutions a for every b such that

w

b2i+1
has null trace. The number of such nonzero b equals 2n−1 ± 2

n
2−1 − 1

since trn(wb2
i+1) is bent (see page 230). Hence the number of solutions (a, b) of

DaDbF (x) = w equals:
3 · 2n − 2 for w = 0,

2n ± 2
n
2 +1 − 2 for w a nonzero cube ( 2n−1

3 cases)

2n ± 2
n
2 − 2 for w a non-cube (2 · 2n−1

3 cases),

where, among the two “±” above, one is a “+” and one is a “−”. We shall see

below that the Kasami APN functions (see page 433) have the same distribution.

3. The case of functions F (x, y) = (xπ(y) + φ(y), x(π(y))2i + ψ(y)) (which are

plateaued (n, n)-functions when π is a permutation, as we shall see in Proposi-

tion 115, page 311) is studied in [247]. 2

A particular case where the condition of Theorem 18 is satisfied is when, for

each fixed value of a, the value distribution of the function b 7→ DaDbF (x) is

independent of x. It is easily seen, as in the proof of Theorem 18, that an (n,m)-

function F has this property if and only if all of its component functions have

it, and that, for every Boolean function f , the size, for every a ∈ Fn2 , w ∈ F2, of
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the set {b ∈ Fn2 ; Daf(b) = Daf(x) +w} does not depend on x if and only if the

derivatives of f are either constant or balanced, that is, f is partially-bent. The

condition is indeed sufficient, and it is necessary because if Daf is not constant

then it means that {b ∈ Fn2 ; Daf(b) = 0}| = {b ∈ Fn2 ; Daf(b) = 1}. Hence:

Corollary 18 [247] A vectorial function F is strongly plateaued if and only if,

for every a in Fn2 and every w, the size of the set {b ∈ Fn2 ; DaDbF (x) = w} does

not depend on x ∈ Fn2 , or equivalently the size of the set {b ∈ Fn2 ; DaF (b) =

DaF (x) + w} does not depend on x ∈ Fn2 .

Proposition 107 [247] For every strongly plateaued (n,m)-function F , the

image set Im(DaF ) = (DaF )(Fn2 ) of any derivative DaF is an affine space.

Proof. By hypothesis, every derivative DaF of F matches the same number of

times any two values DaF (x) + w and DaF (y) + w. Hence, it matches at least

once DaF (x)+w (i.e., we have w ∈ DaF (x)+Im(DaF )) if and only if it matches

at least once DaF (y)+w (i.e., we have w ∈ DaF (y)+Im(DaF )). Hence, the set

Im(DaF ) is invariant under translation by any element of Im(DaF )+Im(DaF )

and is then an affine space. 2

Crooked functions
According to Proposition 107, if F is a strongly plateaued APN (n, n)-function,

then it is a so-called crooked function, in the sense37 of [727, 80, 729]:

Definition 68 An (n, n)-function F is called crooked if, for every nonzero a,

the set {DaF (x);x ∈ Fn2} is an affine hyperplane (i.e. a linear hyperplane or its

complement).

Conversely, crooked functions are strongly plateaued (and APN), i.e. their com-

ponent functions are partially-bent [730, 247, 252], because the affine hyperplane

{DaF (x), x ∈ Fn2 } is matched twice and the function y → v · y restricted to

an affine hyperplane is either constant or balanced for every v. This allows to

show more directly some results which were first obtained in [729, 730]): crooked

functions are plateaued, and for n odd, they are then AB (since we know that

“plateaued APN” implies AB for n odd; see Proposition 163, page 414). Their

component functions being partially-bent, they all satisfy N∆v·F ×NWv·F = 2n

(see page 283); therefore, in the case of n odd, we have N∆v·F = 2 for ev-

ery v 6= 0n, that is, there exists a unique a 6= 0n such that ∆v·F (a) 6= 0,

i.e. {DaF (x), x ∈ Fn2} = {0n, v}⊥ or {DaF (x), x ∈ Fn2} = Fn2 \ {0n, v}⊥.

And for every n, a function F is crooked if and only if, for every a 6= 0n,

there exists a unique v 6= 0n such that WDaF (0n, v) = ∆v·F (a) 6= 0 and

37 This is nowadays the most used definition of crooked functions, but originally in [57], they

were defined such that, for every nonzero a, the set {DaF (x);x ∈ Fn2 } is the complement
of a linear hyperplane; this restricted definition required that crooked functions be

bijective; they were also AB; some authors call “generalized crooked” the functions we call
crooked here.
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then ∆v·F (a) = 2n and {DaF (x), x ∈ Fn2} = {0n, v}⊥ or ∆v·F (a) = −2n and

{DaF (x), x ∈ Fn2} = Fn2 \ {0n, v}⊥ (there is then a function mapping any a 6= 0

to v 6= 0 such that ∆v·F (a) 6= 0; for n odd, this mapping is bijective). Indeed, a

set E is an affine hyperplane if and only if (1) there exists a unique v 6= 0n such

that
∑
y∈E(−1)v·y equals ±|E| and (2) such sum is null for any other v. This

characterization can be expressed by means of the Walsh transform of F since

WDaF (0n, v) = ∆v·F (a) = 2−n
∑
u∈Fn2

W 2
F (u, v)(−1)u·a.

Of course, all quadratic APN functions are crooked; the question of knowing

whether non-quadratic crooked functions exist is open. It is proved in [728, 729]

that the reply is no for power functions (monomials) and in [80] that it is no for

binomials.

Assuming that F (0n) = 0n, it is proved in [57] that the set Ha = {DaF (x);x ∈
Fn2} is the complement of a linear hyperplane for every nonzero a (i.e. F is

crooked in the original restricted sense of [57]) if and only if F is APN and for

every nonzero a, we have DaF (x) + DaF (y) + DaF (z) 6= 0n for every x, y, z;

n is then necessarily odd. Then, F is bijective (take x = y = z) and AB, and

we have seen that all the sets Ha, for a 6= 0n, are distinct (and therefore every

complement of a linear hyperplane equals Ha for some unique a 6= 0n). More

characterizations are given in [539], in relation with nonlinear codes. Note that

crookedness may represent a weakness, see [200].

The case of power functions
It is often simpler to consider power functions than general functions. In the case

of plateaued functions, we have:

Corollary 19 [247] Let F (x) = xd be any power function. Then, for every w ∈
F2n , every x ∈ F2n , and every λ ∈ F∗2n , |{(a, b) ∈ F2

2n ; DaF (b) +DaF (x) = w}|
equals |{(a, b) ∈ F2

2n ; DaF (b)+DaF (x/λ) = w/λd}| and |{(a, b) ∈ F2
2n ; DaF (b)+

DaF (0) = w}| is invariant when w is multiplied by any d-th power in F∗2n . Then:

• F is plateaued if and only if, for every w ∈ F2n :

|{(a, b) ∈ F2
2n ; DaF (b)+DaF (1) = w}| = |{(a, b) ∈ F2

2n ; DaF (b)+DaF (0) = w}|;

• F is plateaued with single amplitude if and only if additionally this common

size does not depend on w 6= 0.

If d is co-prime with 2n − 1, then F is plateaued if and only if it is plateaued

with single amplitude.

This is a more or less direct consequence of the fact that, for every λ 6= 0, we

have DλaF (λx) = λdDaF (x).

The case of unbalanced components
In the particular case where all the component functions of a function are unbal-

anced (we shall see that this is for instance the case of all APN power functions

xd when n is even, since they satisfy, as proved by Dobbertin, see Proposition
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165, page 417, that gcd(d, 2n − 1) = 3), plateauedness is simpler to study be-

cause, for each v, the value of |WF (0n, v)| being nonzero, equals the amplitude

of the component function v · F . Hence, according to Proposition 97, page 287,

if F is plateaued with unbalanced components then, for every v, x, the sum∑
a,b∈Fn2

(−1)v·DaDbF (x) equals W 2
F (0n, v) =

∑
a,b∈Fn2

(−1)v·(F (a)+F (b)). The con-

verse is straightforward too since, when constant,
∑
a,b∈Fn2

(−1)v·DaDbF (x) is equal

to the squared amplitude and cannot then be null, and this gives by the same

method as in the proof of Theorem 18:

Theorem 19 [247] Let F be any (n,m)-function. Then F is plateaued with

component functions all unbalanced if and only if, for every w, x ∈ Fn2 , we have:∣∣{(a, b) ∈ (Fn2 )2 ; DaDbF (x) = w}
∣∣ =

∣∣{(a, b) ∈ (Fn2 )2 ; F (a) + F (b) = w}
∣∣ .

Moreover, F is then plateaued with single amplitude if and only if, additionally,

this common value does not depend on w for w 6= 0n.

This theorem will have interesting consequences in Subsection 11.3, page 403.

Characterization by means of the autocorrelation functions
and related value distributions
We have seen in Proposition 98, page 287, that a Boolean function f is plateaued

of amplitude λ if and only if
∑
a∈Fn2

∆f (a)∆f (a + x) = λ2∆f (x). To be able to

deduce a characterization of plateaued vectorial functions, we need to eliminate

λ2 from this relation. The value of λ can be obtained from this same relation, with

x = 0n:
∑
a∈Fn2

∆2
f (a) = λ2∆f (0n) = λ22n. Hence, if f is plateaued then 2n∆f ⊗

∆f = [
∑
a∈Fn2

∆2
f (a)] ∆f . Conversely, if 2n∆f ⊗ ∆f = (

∑
a∈Fn2

∆2
f (a)) ∆f then

∆f ⊗∆f = λ2∆f where
∑
a∈Fn2

∆2
f (a) = λ2 2n and f is plateaued of amplitude

λ. We deduce:

Proposition 108 Any (n,m)-function F is plateaued if and only if, for every

x ∈ Fn2 and every v ∈ Fm2 , we have

2n
∑
a∈Fn2

∆v·F (a)∆v·F (a+ x) = [
∑
a∈Fn2

∆2
v·F (a)] ∆v·F (x).

It is plateaued with single amplitude λ if and only if, for every x ∈ Fn2 and every

v ∈ Fm2 , we have ∑
a∈Fn2

∆v·F (a)∆v·F (a+ x) = λ2∆v·F (x).

Characterization by means of power moments of the Walsh
transform
We have seen in Proposition 99, page 288, that any n-variable Boolean function

f is plateaued if and only if, for every nonzero α ∈ Fn2 , we have
∑
u∈Fn2

Wf (u+

α)W 3
f (u) = 0. We deduce:
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Proposition 109 [247] Any (n,m)-function F is plateaued if and only if:

∀v ∈ Fm2 ,∀α ∈ Fn2 , α 6= 0n,
∑
u∈Fn2

WF (u+ α, v)W 3
F (u, v) = 0.

F is plateaued with single amplitude if and only if, additionally,
∑
u∈Fn2

W 4
F (u, v)

does not depend on v for v 6= 0m.

We deduce also from Corollary 17, page 288:

Corollary 20 [247] Any (n,m)-function F is plateaued if and only if, for every

b ∈ Fn2 and every v ∈ Fm2 :∑
a∈Fn2

W 4
F (a, v) = 2n(−1)v·F (b)

∑
a∈Fn2

(−1)a·bW 3
F (a, v).

And F is plateaued with single amplitude if and only if, additionally, these sums

do not depend on v, for v 6= 0m.

We have seen that plateaued functions can be characterized by the constance

of the ratio of two consecutive Walsh power moments of even orders [858].

We deduce from Proposition 100, page 288:

Proposition 110 [858, 247] For every (n,m)-function F , and every k ∈ N∗,
we have:

∑
v∈Fm2

∑
a∈Fn2

W 2k+2
F (a, v)

2

≤
∑
v∈Fm2

∑
a∈Fn2

W 2k
F (a, v)

∑
a∈Fn2

W 2k+4
F (a, v)

 ,

with equality if and only if F is plateaued.

See more in [858, 247].

6.5.2 CCZ and EA equivalence of plateaued functions

In [247] is deduced from Theorem 18, page 304, the following:

Corollary 21 Let n be any even integer, n ≥ 4. Let F be an (n, n)-function

CCZ equivalent to a Gold APN function G(x) = x2i+1 or to a Kasami APN

function G(x) = x4i−2i+1, (i, n) = 1. Then F is plateaued if and only if it is EA

equivalent to G(x).

This result has been later generalized in [1141] by S. Yoshiara:

Proposition 111 Let F and G be plateaued APN functions on F2n with n even.

Assume that F is a power function, then it is CCZ equivalent to G if and only

if F is EA equivalent to G.

This same author had proved in [1139]:

Proposition 112 Two quadratic APN functions are CCZ equivalent if and only

if they are EA equivalent.
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and in [1140]:

Proposition 113 For any n ≥ 3, two power APN functions xd and xe over F2n

are CCZ equivalent if and only if there is an integer a such that 0 ≤ a ≤ n − 1

and either e = 2ad [mod 2n − 1] or de = 2a [mod 2n − 1], where the latter case

occurs only when n is odd.

Proposition 114 Any quadratic APN function is CCZ equivalent to a power

APN function if and only if it is EA equivalent to one of the Gold APN functions.

From Proposition 113 are deduced all cases of CCZ equivalence/inequivalence

between the known APN functions, see Proposition 177.

6.5.3 Constructions of plateaued vectorial functions

Primary constructions
All quadratic functions are plateaued. The Maiorana-McFarland construction

F (x, y) = xπ(y) + φ(y); x, y ∈ F2m , allows constructing non-quadratic ones; it

gives a plateaued (2m,m)-function when π is a permutation (F is then bent) and

when π is 2-to-1, φ being any (m,m)-function in both cases. Erasing some coor-

dinates from their output provides plateaued (n,m)-functions with m ≤ n/2.

We recall from [247] an example of primary construction of plateaued (n, n)-

functions also based on the Maiorana-McFarland construction. Let π be a per-

mutation of F2m and φ, ψ two functions from F2m to F2m . Let i be an in-

teger co-prime with m. We define the (2m, 2m)-function F (x, y) = (xπ(y) +

φ(y), x(π(y))2i + ψ(y)) ∈ F2m × F2m . For every element (a, b) ∈ F2m × F2m , the

Walsh transform at (a, b) of (u, v) · F (x, y) equals∑
x,y∈F2m

(−1)trm(uxπ(y)+vx(π(y))2i+uφ(y)+vψ(y)+ax+by) =

∑
y∈F2m

(−1)trm(uφ(y)+vψ(y)+by)

 ∑
x∈F2m

(−1)trm((uπ(y)+v(π(y))2i+a)x)

 =

2m
∑
y∈F2m

uπ(y)+v(π(y))2
i
=a

(−1)trm(uφ(y)+vψ(y)+by).

The number of solutions of the equation uπ(y)+v(π(y))2i = a equals the number

of solutions of the linear equation uy + vy2i = a. If u = 0 and v 6= 0, or if u 6= 0

and v = 0, the number of solutions of this equation equals 1; hence, (u, v) · F
is plateaued of amplitude 2m (i.e. is bent). If u 6= 0 and v 6= 0, this number

either equals 0 or equals the number of solutions of the associated homogeneous

equation uy + vy2i = 0, that is 2 (indeed, uy + vy2i = 0 is equivalent to y = 0

or y2i−1 = u
v 6= 0 and i being co-prime with m, 2i − 1 is co-prime with 2m − 1);

hence, (u, v) · F (x, y) is plateaued of amplitude 2m+1 (i.e. is semi-bent). Then:
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Proposition 115 [247] Let m be a positive integer, π a permutation of F2m and

φ, ψ two functions from F2m to F2m . Let i be an integer co-prime with m. Then,

function F (x, y) = (xπ(y) + φ(y), x(π(y))2i + ψ(y)) is plateaued (but does not

have single amplitude).

Of course, this observation more generally applies when (π(y))2i is replaced by

any other permutation π′(y) such that, for every u 6= 0, v 6= 0, the equation

uπ(y) + vπ′(y) = a has 0 or a fixed number (depending on u and v only) of

solutions.

There exist other examples of non-quadratic plateaued (n, n)-functions: AB func-

tions, see page 428, Kasami APN functions in even dimension, see page 433;

erasing some coordinates gives plateaued (n,m)-functions with n/2 < m ≤ n.

Secondary constructions
Let r, s, t, p be positive integers. Let F be a plateaued (r, t)-function and G a

plateaued (s, p)-function, then function: H(x, y) = (F (x), G(y)); x ∈ Fr2, y ∈ Fs2
is a plateaued (r+ s, t+ p)-function. Indeed, for every (a, b) ∈ Fr2×Fs2 and every

(u, v) ∈ Ft2 × Fp2, we have: WH((a, b), (u, v)) = WF (a, u)WG(b, v). Note that this

works even if u or v is null, but such function is never with single amplitude,

except when F and G are affine.



7 Correlation immune and resilient
functions

The notion of correlation immune Boolean function is due to Siegenthaler [1041]

as a criterion for resistance to his correlation attack on the combiner model

of stream cipher, as we saw at page 105. Balanced correlation immune func-

tions have soon been called resilient after [370] which dealt with another cryp-

tographic issue: the bit extraction problem. It has been later observed in [181]

that the notion of correlation immune Boolean function already existed in com-

binatorics (in a wider framework) under another name, since the support of a

correlation immune function is an orthogonal array (see Definition 22, page 106).

Resilient functions have been extensively studied in the nineties in relation with

nonlinearity. But in 2003 were invented the fast algebraic attack [388] and the

Rønjom-Helleseth attack [1003], which are very efficient against stream ciphers

using nonlinear functions whose algebraic degrees are not large. Since correlation

immune and resilient functions have algebraic degree bounded from above, this

made them weak. But, as we already recalled at page 171, correlation immune

and resilient Boolean functions can be employed for secret sharing, as shown in

[461]. Recently, the interest of correlation immune functions has been also re-

newed in the framework of side channel attacks (see [286] and Section 12.1). The

functions need then to have low Hamming weight (and this excludes resilient

functions).

7.1 Correlation immune and resilient Boolean functions

For the convenience of the reader, we recall in the next definition what we have

seen in Section 3.1, page 105, on correlation immune and resilient functions.

Definition 69 Let n be a positive integer and t ≤ n a non-negative integer. An

n-variable Boolean function f is called a t-th order correlation immune (t-CI)

function if its output distribution probability (i.e. the density of the support) is

unaltered when at most t (or, equivalently, exactly t) of its input bits are kept

constant, that is, if the code equal to its support has dual distance (see Definition

4, page 32) at least t + 1. It is called a t-resilient function if it is balanced and

t-th order correlation immune. Equivalently, f is t-th order correlation immune

if Wf (u) = 0, i.e. f̂(u) = 0, for all u ∈ Fn2 such that 1 ≤ wH(u) ≤ t, and it is

t-resilient if Wf (u) = 0 for all u ∈ Fn2 such that wH(u) ≤ t.
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This generalizes to other alphabets [178]. Note that thanks to the R-linearity

of the Fourier-Hadamard transform, the sum of t-th order correlation immune

functions with disjoint supports is a t-th order correlation immune function.

The combining functions in stream ciphers must be t-resilient with large t. As

any cryptographic functions, they must also have high algebraic degree (which is

partially contradictory with correlation immunity, but trade-offs can be found)

and high nonlinearity (idem), and we know since 2003 that they must have high

resistance to algebraic attacks and fast algebraic attacks (which is problematic).

Notation: by an (n, t, d,N )- function, we mean an n-variable, t-resilient function

having algebraic degree at least d and nonlinearity at least N .

7.1.1 Bound on the correlation immunity order

The correlation immunity order of n-variable functions (i.e. the maximum t such

that they are t-CI) is unbounded (that is, it can be as high as n, since constant

functions are n-th order correlation immune), and their resiliency order is only

bounded above by n− 1, since the Boolean function
⊕n

i=1 xi is (n− 1)-resilient.

In the case of unbalanced and non-constant correlation immune functions, the

situation is different:

Proposition 116 [514] Let f be an unbalanced non-constant t-th order corre-

lation immune Boolean function. Then t ≤ 2n
3 − 1.

Proof. Let f be an unbalanced non-constant t-CI Boolean function. Since f

is unbalanced, we have Wf (0n) 6= 0 and since f is non-constant, there exists

a ∈ Fn2 nonzero such that Wf (a) 6= 0. The Golomb-Xiao-Massey characterization

(Theorem 5, page 107) gives that wH(a) ≥ t+ 1.

Suppose that t > 2n
3 − 1. By the Titsworth relation (2.51), page 80, we have:∑

u∈Fn2

Wf (u)Wf (u+ a) = 0 . (7.1)

For u = 0n, the summand in the left part of (7.1) equals 22n, according to

Parseval’s identity. If 1 ≤ wH(u) ≤ 2
3n < t+ 1, then Wf (u) = 0. If wH(u) > 2

3n,

then the vectors u and a have more than n
3 common 1’s, therefore wH(u +

a) < 2
3n. Thus the left hand side of Eqn. (7.1) has exactly two equal non-zero

summands (for u = 0n and u = a), therefore the equality in Eqn. (7.1) cannot

be achieved. 2

7.1.2 Bounds on algebraic degree

The Siegenthaler bound states:

Proposition 117 [1041] Let n be any positive integer and let 0 ≤ t ≤ n. Any

t-th order correlation immune n-variable Boolean function has Hamming weight

divisible by 2t and algebraic degree smaller than or equal to n− t. Any t-resilient
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function has algebraic degree smaller than or equal to n− t− 1 if t ≤ n− 2 and

to 1 (i.e. is affine) if t = n − 1. Moreover, if a t-th order correlation immune

function has Hamming weight divisible by 2t+1, then it satisfies the same bound

as t-resilient functions.

Siegenthaler’s bound gives an example of the trade-offs which must be accepted

in the design of combiner generators1.

The first assertion in Proposition 117 comes directly from the fact that all the

restrictions obtained by fixing t coordinates of the input have the same Hamming

weight. The other results can be proved directly by using Relation (2.4), page

50, since the bit
⊕

x∈Fn2 ; supp(x)⊆I f(x) equals the parity of the Hamming weight

of the restriction of f obtained by setting to 0 the coordinates of x which lie

outside I. It is then null if |I| > n− t. In the case that the restriction by fixing t

input coordinates has even Hamming weight, that is, when wH(f) is divisible by

2t+1, this bit is null if |I| ≥ n− t. Note that we can also use the Golomb-Xiao-

Massey characterization (Theorem 5, page 107, resulting in Definition 69, page

312) together with the Poisson summation formula (2.40), page 77, applied to

ϕ = f and with E⊥ = {x ∈ Fn2 ; supp(x) ⊆ I}, where I has size strictly larger

than n− t− 1. But this gives a less simple proof.

7.1.3 Characterization by the NNF

Siegenthaler’s bound is also a direct consequence of a characterization of correla-

tion immune and of resilient functions through their NNFs and of the facts that

the ANF equals the NNF mod 2 and that the Hamming weight of a t-th order

correlation immune function with t ≥ 1 is even (the Walsh transform at 0n is

then divisible by 4).

Proposition 118 [293, 220] Let n be any positive integer and t < n a non-

negative integer. A Boolean function f on Fn2 is t-th order correlation immune if

and only if the numerical normal form
∑
I⊆{1,...,n} λI x

I of the function g(x) =

f(x)⊕x1⊕· · ·⊕xn satisfies that, for every I of size larger than or equal to n− t,
(−2)n−|I|λI is independent of the choice of I. And f is t-resilient if and only if

the numerical normal form
∑
I⊆{1,...,n} λI x

I of g has degree at most n− t− 1.

Proof. For each vector a ∈ Fn2 , we denote by a the componentwise complement

of a equal to a+ 1n. We have Wf (a) = Wg(a). Thus, f is t-th order correlation

immune (resp. t-resilient) if and only if, for every vector u 6= 1n of Hamming

weight larger than or equal to n− t (resp. for every vector u of Hamming weight

larger than or equal to n− t), the number Wg(u) is null. According to Relations

(2.61), (2.62), page 86, and (2.32), page 74, applied to g, we have for nonzero u:

Wg(u) = (−1)wH(u)+1
∑

I⊆{1,...,n}; supp(u)⊆I

2n−|I|+1λI ,

1 One approach to avoid such trade-off is to allow memory in the nonlinear combination
generator, that is, to replace the combining function by a finite state machine, see [845].
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and for nonempty I:

λI = 2−n(−2)|I|−1
∑

u∈Fn2 ; I⊆supp(u)

Wg(u).

This completes the proof. 2

Proposition 118 proves, by applying Relation (2.64), page 86, to g(x) = f(x) ⊕
x1⊕· · ·⊕xn, that if t is the resiliency order of an n-variable function f of algebraic

degree at least 2, and each variable xi is effective in g(x), then n − t − 1 ≥
n 2−dalg(f)+1, that is:

dalg(f) ≥ log2

(
2n

n− t− 1

)
.

Remark. According to Proposition 118, a non-affine balanced n-variable Boolean

function g has its algebraic degree and numerical degree equal to each other if

and only if, given Boolean function f(x) = g(x)⊕x1⊕· · ·⊕xn and its resiliency

order, Siegenthaler’s bound is an equality. 2

Proposition 118 has been used by X.-D. Hou in [621] for constructing resilient

functions.

7.1.4 Bounds on the nonlinearity

Sarkar and Maitra showed that:

Proposition 119 [1012] The values of the Walsh transform of an n-variable,

t-resilient (resp. t-th order correlation immune) function are divisible by 2t+2

(resp. 2t+1) if 0 ≤ t ≤ n− 3 (resp. 1 ≤ t ≤ n− 2).

A more precise result being given in Proposition 120 below, we skip the proof

of Proposition 119. A little more is proved in [220, 322]; in particular: if the

Hamming weight of a t-th order correlation immune function is divisible by 2t+1,

then the values of its Walsh transform are divisible by 2t+2. This Sarkar-Maitra’s

divisibility bound and its extension have provided nontrivial upper bounds on the

nonlinearity of resilient functions, independently obtained by Tarannikov [1080]

and by Zheng and Zhang [1177]:

Theorem 20 [1012, 1080, 1177] For every n and t ≤ n− 2, the nonlinearity of

any t-th order correlation immune (resp. t-resilient) function is bounded above

by 2n−1 − 2t (resp. 2n−1 − 2t+1).

Of course, this brings information only if 2n−1−2t (resp. 2n−1−2t+1) is smaller

than 2n−1 − 2
n
2−1. Zheng and Zhang [1177] showed that correlation immune

functions of high orders satisfy the same upper bound on the nonlinearity as

resilient functions of the same orders. In [1083] (where is also obtained a bound

on ∆f for f resilient and studied the resiliency order of all quadratic functions),
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Tarannikov-Korolev-Botev showed for each i ∈ {1, 2} that if t is larger than some

rather complex expression of i and n, then for every unbalanced nonconstant t-CI

function, we have nl(f) ≤ 2n−1 − 2t+i. The maximal higher-order nonlinearity

of resilient functions has also been studied in [719, 101] and determined for low

order (≤ 2) or low number of variables (≤ 7).

The bound of Theorem 20 for resilient functions is tight when t ≥ 0.6 n,

see [1080, 1081]. We shall call it Sarkar et al.’s bound . Notice that, if a t-resilient

function f achieves nonlinearity 2n−1−2t+1, then f is plateaued. Indeed, the dis-

tances between f and affine functions lie then between 2n−1−2t+1 and 2n−1+2t+1

and must be therefore equal to 2n−1 − 2t+1, 2n−1 and 2n−1 + 2t+1 because of

the divisibility result of Sarkar and Maitra. Thus, the Walsh transform of f

takes three values 0 and ±2t+2. Moreover, it is proved in [1080] (and is a di-

rect consequence of Proposition 120 below) that such function f also achieves

Siegenthaler’s bound (and as proved in [814], achieves minimum sum-of-squares

indicator).

If 2n−1 − 2t+1 is larger than the best possible nonlinearity of all balanced

functions (and in particular if it is larger than the covering radius bound) then,

obviously, a better bound than in Theorem 20 exists. In the case of n even, the

best possible nonlinearity of all balanced functions being strictly smaller than

2n−1 − 2
n
2−1, Sarkar and Maitra deduce that nl(f) ≤ 2n−1 − 2

n
2−1 − 2t+1 for

every t-resilient function f with t ≤ n
2 − 2. In the case of n odd, they state

that nl(f) is smaller than or equal to the highest multiple of 2t+1, which is less

than or equal to the best possible nonlinearity of all Boolean functions. But a

potentially better upper bound can be given, whatever is the parity of n. Indeed,

Sarkar-Maitra’s divisibility bound shows that Wf (a) = ω(a) × 2t+2 where ω(a)

is integer-valued. Parseval’s Relation (2.48), page 79, and the fact that Wf (a) is

null for every vector a of Hamming weight ≤ t imply∑
a∈Fn2 ; wH(a)>t

ω2(a) = 22n−2t−4

and, thus,

max
a∈Fn2

|ω(a)| ≥
√

22n−2t−4

2n −
∑t
i=0

(
n
i

) =
2n−t−2√

2n −
∑t
i=0

(
n
i

) .
Hence, we have maxa∈Fn2 |ω(a)| ≥

⌈
2n−t−2√

2n−
∑t
i=0 (ni)

⌉
, and this implies:

nl(f) ≤ 2n−1 − 2t+1

 2n−t−2√
2n −

∑t
i=0

(
n
i

)
 . (7.2)

When n is even and t ≤ n
2−2, this number is always less than or equal to the num-

ber 2n−1 − 2
n
2−1 − 2t+1 (given by Sarkar and Maitra), because 2n−t−2√

2n−
∑t
i=0 (ni)

is
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strictly larger than 2
n
2−t−2 and 2

n
2−t−2 is an integer, and, thus,

⌈
2n−t−2√

2n−
∑t
i=0 (ni)

⌉
is at least 2

n
2−t−2+1. And when n increases, the right-hand side of Relation (7.2)

is strictly smaller than 2n−1 − 2
n
2−1 − 2t+1 for an increasing number of values

of t ≤ n
2 −2 (but this improvement does not appear when we compare the values

we obtain with this bound to the values indicated in the table given by Sarkar

and Maitra in [1012], because the values of n they consider in this table are

small).

When n is odd, it is difficult to say if Inequality (7.2) is better than the bound

given by Sarkar and Maitra, because their bound involves a value which is un-

known for n ≥ 9 (the best possible nonlinearity of all balanced Boolean func-

tions). In any case, this makes (7.2) better usable.

We know (see [809, page 310]) that
∑t
i=0

(
n
i

)
≥ 2nH2(t/n)√

8t(1−t/n)
, where H2(x) =

−x log2(x) − (1 − x) log2(1 − x), the so-called binary entropy function, satisfies

H2( 1
2 − x) = 1− 2x2 log2 e+ o(x2). Thus, we have

nl(f) ≤ 2n−1 − 2t+1


2n−t−2√

2n − 2nH2(t/n)√
8t(1−t/n)

 . (7.3)

Remark. If a Boolean function f is t-th order correlation immune (resp. t-

resilient), then for every 1 ≤ e ≤ t and every set {i1, . . . , ie} of size e, its restric-

tion obtained by fixing coordinates xi1 , . . . , xie is a (t − e)-th order correlation

immune (resp. (t−e)-resilient) (n−e)-variable function. But the n-variable func-

tion equal to the product of f with the monomial function m(x) =
∏e
j=1 xij of

degree e is not (t− e)-th order correlation immune, although the support of fm

equals the intersection of the support of f with the set {i1, . . . , ie}: fixing (t− e)
coordinates of x preserves the output distribution probability only if these co-

ordinates are outside {i1, . . . , ie}. Nevertheless, it is possible to prove that such

fm has same Walsh divisibility property as a (t−e)-th order correlation immune

(resp. (t− e)-resilient) function. 2

Proposition 119 has been improved:

Proposition 120 [220, 322] Let n be any positive integer and let t ≤ n−2 be a

non-negative integer. Let f be any n-variable t-th order correlation immune func-

tion (resp. any t-resilient function or any t-th order correlation immune function

whose Hamming weight is divisible by 2t+1+bn−t−2
d c) and let d be its algebraic

degree. The values of the Walsh transform of f are divisible by 2t+1+bn−t−1
d c

(resp. by 2t+2+bn−t−2
d c). Hence the nonlinearity of f is divisible by 2t+b

n−t−1
d c

(resp. by 2t+1+bn−t−2
d c).

A little more can be said in the former case, see [322].

The approach for proving this tight bound was first to use the numerical normal
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form (we refer the reader to [220] for this proof, for the tightness, and for an

improvement when the number of terms of highest degree in the ANF is small

enough). Later, a second proof using only the properties of the Fourier-Hadamard

transform was given in [322]:

Proof. The Poisson summation formula (2.40), page 77, applied to ϕ = fχ and to

the vector space E = {u ∈ Fn2 ; ∀i ∈ {1, . . . , n}, ui ≤ vi} where v is some vector

of Fn2 , whose orthogonal equals E⊥ = {u ∈ Fn2 ; ∀i ∈ {1, . . . , n}, ui ≤ vi ⊕ 1},
gives

∑
u∈EWf (u) = 2wH(v)

∑
x∈E⊥ fχ(x). It is then a simple matter to prove

the result by induction on the Hamming weight of v, starting with the vectors

of weight t (resp. t+ 1), and using McEliece’s divisibility property (see Subsec-

tion 4.1.5, page 179). 2

Proposition 120 gives directly more precise upper bounds on the nonlinearity

of any t-resilient function of degree d: for instance, this nonlinearity is bounded

above by 2n−1 − 2t+1+bn−t−2
d c. This gives a simpler proof that it can be equal

to 2n−1 − 2t+1 only if d = n − t − 1, i.e. if Siegenthaler’s bound is achieved

with equality. Moreover, the proof above also shows that the nonlinearity of any

t-resilient n-variable Boolean function is bounded above by 2n−1−2t+1+bn−t−2
d c

where d is the minimum algebraic degree of the restrictions of f to the subspaces

{u ∈ Fn2 ; ∀i ∈ {1, . . . , n}, ui ≤ vi ⊕ 1} such that v has Hamming weight t + 1

and Wf (v) 6= 0. See more in [322].

7.1.5 Bound on the maximum correlation with index subsets

An upper bound on the maximum correlation of t-resilient functions with respect

to subsets I of {1, . . . , n} can be directly deduced from Relation (3.14), page 123,

and from Sarkar et al.’s bound. Note that we get an improvement by using that

the support of Wf , restricted to the set of vectors u ∈ Fn2 such that ui = 0, ∀i 6∈ I,

contains at most
∑|I|
i=t+1

(|I|
i

)
vectors. In particular, if |I| = t+ 1, the maximum

correlation of f with respect to I equals 2−n |Wf (u)|, where u is the vector of

support I, see [187, 203, 1155]. The optimal number of LFSRs which should be

considered together in a correlation attack on a cryptosystem using a t-resilient

combining function is t+ 1, see [187].

7.1.6 Relationship with other criteria

The relationships between resiliency and other criteria have been studied in [354,

814, 1083, 1175]. For instance, t-resilient PC(l) functions can exist only if t+ l ≤
n − 1. This is a direct consequence of Relation (2.56), page 81, applied with

a = b = 0n, E = {x ∈ Fn2 ; xi = 0, ∀i ∈ I} and E⊥ = {x ∈ Fn2 ; xi = 0, ∀i 6∈ I},
where I has size n−t: if l ≥ n−t then the right-hand side term of Relation (2.56)

is nonzero while the left-hand side term is null. Equality t+ l = n− 1 is possible

only if l = n − 1, n is odd and t = 0 [1175, 354]. The known upper bounds on
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the nonlinearity can then be improved for such functions.

The definition of resiliency has been weakened in [126, 294, 720, 721] in order to

relax some of the trade-offs recalled above, without weakening the cryptosystem

against the correlation attack.

Resiliency is related to the notion of corrector (useful for the generation of

random sequences having good statistical properties) introduced by Lacharme

in [732].

7.1.7 Relationship with covering sequences

According to Proposition 60, page 206, knowing a covering sequence λ = (λa)a∈Fn2
(trivial or not) of a function f allows knowing that supp(Wf ) ⊆ λ̂−1

(
λ̂(0n)−2ρ

)
,

where ρ is the level of the sequence. Hence, as observed in [326], f is t-th or-

der correlation immune where t+ 1 is the minimum Hamming weight of nonzero

b ∈ Fn2 such that λ̂(b) = λ̂(0n)−2ρ, and if ρ 6= 0, it is then t-resilient. Conversely,

if f is t-th order correlation immune (resp. t-resilient) and if it is not (t+ 1)-th

order correlation immune (resp. (t + 1)-resilient), then there exists at least one

(non-trivial) covering sequence λ = (λa)a∈Fn2 with level ρ such that t + 1 is the

minimum Hamming weight of b ∈ Fn2 satisfying λ̂(b) = λ̂(0n)− 2ρ.

A particularly simple covering sequence is the indicator of the set of vectors

of Hamming weight one. The functions which admit this covering sequence are

called regular; they are (ρ − 1)-resilient, where ρ is the level. More generally,

any function admitting as covering sequence the indicator of a set of vectors of

weight 1 has this same property (this generalizes to any vectors with disjoint

supports). We speak then of a simple covering sequence, see [326], where the

algebraic degree and the nonlinearity of regular functions are studied, and where

constructions are given as well as bounds on the number of variables.

7.1.8 Primary constructions of correlation immune and resilient functions

In the 90’s, high-order resilient functions with the best possible algebraic de-

gree and nonlinearity were needed for applications in stream ciphers using the

combiner model. But fast algebraic attacks (FAA) have changed the situation.

The combiner model is now considered as problematic, because of Siegenthaler’s

bound and the fact that combiner or filter functions need to have very high

algebraic degree for resisting FAA. For the sake of completeness and also be-

cause building correlation immune functions means building orthogonal arrays

(see Definition 22, page 106) which are of interest in combinatorics and statis-

tics, and because a new way of using low weight correlation immune functions

exists (see Section 12.1), and new ways of using resilient functions may be found

in the future, we report the state of the art for constructing highly nonlinear

correlation immune and resilient functions. As we shall see, most constructions

build in fact resilient functions and these constructions unfortunately do not
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allow to construct low weight correlation immune functions. More work is then

needed to build such functions. Such work, that we shall report at the end of

this subsection, has been initiated in [258] and continued in [1103].

The primary constructions (which allow designing resilient functions without

using known ones) are supposed to lead potentially to wider classes of func-

tions than secondary constructions (recall that the number of Boolean functions

on n − 1 variables is only equal to the square root of the number of n-variable

Boolean functions). But the known primary constructions of resilient Boolean

functions do not lead to very large classes of functions. In fact, only one reason-

ably large class of Boolean functions is known, whose elements can be analyzed

with respect to the cryptographic criteria recalled in Section 3.1. So we observe

some imbalance in the knowledge on cryptographic functions for stream ciphers:

much is known on the properties of resilient functions, but little is known on how

constructing them. Examples of t-resilient functions achieving the best possible

nonlinearity 2n−1−2t+1 (and thus the best algebraic degree) have been obtained

for n ≤ 10 in [934, 1011, 1012] and for every t ≥ 0.6 n [1080, 1081] (n being then

not limited). But n ≤ 10 is too small for applications and t ≥ 0.6 n is too large

(because of Siegenthaler’s bound)2. Moreover, these examples give very limited

numbers of functions (they are often defined recursively or obtained after a com-

puter search) and many of these functions have cryptographic weaknesses such

as linear structures (see [354, 814]). Balanced Boolean functions with high non-

linearities have been obtained by Fontaine in [515] and by Filiol and Fontaine

in [503], who made a computer investigation - but for n = 7, 9 which is too

small - on the corpus of idempotent functions (see definition at page 275). These

functions, whose ANF s are invariant under the cyclic shifts of the coordinates

xi, have been called later rotation symmetric (see Section 10.2, page 392). Other

ad hoc constructions can be found in [819, 1011].

A construction derived from the characterization of correlation
immunity by the dual distance
It has been observed in [417] that the characterization of Corollary 6, page 108,

can be straightforwardly applied to build correlation immune functions from

linear codes. In fact, this was already known from [58].

Corollary 22 Let C be any (linear) [n, k, d]-code and G a generator matrix of

C. Then for every k-variable function g, the n-variable function f(x) = g(x×Gt)
is (d−1)-th order correlation immune (and it is (d−1)-resilient if g is balanced).

Proof. If g is the indicator δ0 of the singleton {0k}, the result is a direct conse-

quence of Corollary 6, page 108, since we have f(x) = 0 if and only if x×Gt = 0k,

that is, x ∈ C⊥. It is easily seen that if g = δa, we have then that f(x) = 0 if and

only if x belongs either to the empty set or to a coset of C⊥. Then f is (d−1)-th

2 And almost nothing is known on the immunity of these functions to algebraic attacks;
anyway, their resistance to FAA is bad.
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order correlation immune according to Corollary 6, since the dual distance is in-

variant by translation. And if g is any sum of such atomic functions, that is, any

Boolean function, we have the same result since the sum of t-th order correla-

tion immune functions with disjoint supports is a t-th order correlation immune

function. Finally, G being a generator matrix, function x ∈ Fn2 7→ x×Gt ∈ Fk2 is

balanced and then f is balanced if and only if g is balanced. 2

Such correlation immune function can have at most algebraic degree dalg(g) ≤ k
(and ≤ k − 1 if it is resilient).

Remark. Given k < n, a k-variable function g, a surjective linear mapping

L : Fn2 → Fk2 and an element u of Fn2 , the function f(x) = g ◦ L(x) ⊕ u · x is

(d−1)-resilient, where d is the Hamming distance between u and the linear code

C whose generator matrix equals the matrix of L. Indeed, for any vector a ∈ Fn2
of Hamming weight at most d− 1, the vector u+ a does not belong to C. This

implies that the Boolean function f(x)⊕a·x is linearly equivalent to the function

g(x1, . . . , xk) ⊕ xk+1, since we may assume without loss of generality that L is

systematic (i.e. has the form [Idk|N ]). Boolean function f(x)⊕ a · x is therefore

balanced. This construction is similar to that of Corollary 22 but different (note

that g does not need to be balanced for f to be balanced).

In both constructions, f has nonzero linear structures since it is EA equivalent

to g(x1, . . . , xk); then it does not give full satisfaction. 2

Maiorana-McFarland’s construction
An extension of the class of bent functions that we called above the Maiorana-

McFarland original class has been given in [181] (where are also characterized

the quadratic n-variable correlation immune functions of order n− 3), based on

the same principle of concatenating affine functions3 (we have already met in

Section 5.1 this generalization): let r be a positive integer smaller than n; we

denote n− r by s; let g be any Boolean function on Fs2 and let φ be a mapping

from Fs2 to Fr2. Then, we define the function:

fφ,g(x, y) = x · φ(y)⊕ g(y) =

r⊕
i=1

xiφi(y)⊕ g(y), x ∈ Fr2, y ∈ Fs2 (7.4)

where φi(y) is the i-th coordinate function of φ(y).

For every a ∈ Fr2 and every b ∈ Fs2, we have seen in Section 6.1.15 that

Wfφ,g (a, b) = 2r
∑

y∈φ−1(a)

(−1)g(y)⊕b·y. (7.5)

This can be used to design resilient functions: if every element in φ(Fs2) has

Hamming weight strictly larger than t, then fφ,g is t-resilient (in particular,

3 These functions have also been studied under the name of linear-based functions

in [7, 1137].
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if φ(Fs2) does not contain the null vector, then fφ,g is balanced). Indeed, if

wH(a) ≤ t then φ−1(a) is empty in Relation (7.5); hence, if wH(a) + wH(b) ≤ t

then Wfφ,g (a, b) is null. The t-resiliency of fφ,g under this hypothesis can also

be deduced from the facts that any affine function x ∈ Fr2 7→ c · x ⊕ ε (c ∈ Fr2
nonzero, ε ∈ F2) is (wH(c)− 1)-resilient, and that any Boolean function equal to

the concatenation of t-resilient functions is a t-resilient function (see secondary

construction 3 below).

It is possible (see [398, 221, 223]) to obtain a t-resilient function with (7.4) when

every element in φ(Fs2) has Hamming weight larger than or equal to t (instead of

strictly larger): we know that such function is (t−1)-resilient by the observation

above, and it is moreover t-resilient if, for every a ∈ Fr2 of Hamming weight t,

we have
∑
y∈φ−1(a)(−1)g(y) = 0. We just need then that, for every a ∈ Fr2 of

Hamming weight t, if φ−1(a) 6= ∅, then φ−1(a) has even size and the restriction

of g to φ−1(a) is balanced.

It is more difficult to construct unbalanced correlation immune functions with

this method: in practice, we need that every nonzero element in φ(Fs2) has

Hamming weight strictly larger than t and that, for every b ∈ Fs2 such that

1 ≤ wH(b) ≤ t, we have
∑
y∈φ−1(0r)(−1)g(y)⊕b·y = 0. If φ−1(0r) is an affine

space, then this results in a condition on the restriction of g to φ−1(0r) which

is similar to t-th order correlation immunity (this gives a construction which is

more secondary than primary) and if φ−1(0r) has no such structure, then g needs

to be built from scratch (very little work has been done on that).

Degree: The algebraic degree of fφ,g is at most s + 1 = n − r + 1. It equals

s+ 1 if and only if φ has algebraic degree s (i.e. if at least one of its coordinate

functions has algebraic degree s, that is, has odd Hamming weight, which is

equivalent to
∑
y∈Fs2

φ(y) 6= 0r). If we assume that every element in φ(Fs2) has

Hamming weight strictly larger than t, then φ can have algebraic degree s only if

t ≤ r− 2, since if t = r− 1 then φ is constant. Thus, the algebraic degree of fφ,g
reaches Siegenthaler’s bound n− t− 1 if and only if either t = r − 2 and φ has

algebraic degree s = n−t−2 or t = r−1 and g has algebraic degree s = n−t−1.

Nonlinearity: Relations (3.1), page 99, relating the nonlinearity to the Walsh

transform, and (7.5) above lead straightforwardly to a general lower bound on

the nonlinearity of Maiorana-McFarland’s functions (first observed in [1026]):

nl(fφ,g) ≥ 2n−1 − 2r−1 max
a∈Fr2
|φ−1(a)| (7.6)

(where |φ−1(a)| denotes the size of φ−1(a)). An upper bound obtained in [221]

strengthens a bound previously obtained in [358, 359] which stated nl(fφ,g) ≤
2n−1 − 2r−1:

nl(fφ,g) ≤ 2n−1 − 2r−1

⌈√
max
a∈Fr2
|φ−1(a)|

⌉
. (7.7)
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Proof of (7.7): The sum

∑
b∈Fs2

 ∑
y∈φ−1(a)

(−1)g(y)⊕b·y

2

=
∑

y,z∈φ−1(a); b∈Fs2

(−1)g(y)⊕g(z)⊕b·(y+z)

equals 2s|φ−1(a)| (since the sum
∑
b∈Fs2

(−1)b·(y+z) is null if y 6= z). The maxi-

mum of a set of values being always larger than or equal to its arithmetic mean,

we deduce:

max
b∈Fs2

∣∣∣∣∣∣
∑

y∈φ−1(a)

(−1)g(y)⊕b·y

∣∣∣∣∣∣ ≥√|φ−1(a)|

and thus, according to Relation (7.5):

max
a∈Fr2;b∈Fs2

|Wfφ,g (a, b)| ≥ 2r

⌈√
max
a∈Fr2
|φ−1(a)|

⌉
.

Relation (3.1) completes the proof. 2

This bound allowed characterizing the Maiorana-McFarland’s functions fφ,g
such that wH(φ(y)) > k for every y and achieving nonlinearity 2n−1 − 2k+1:

Relation (7.7) implies
√

maxa∈F r2 |φ−1(a)| ≤ 2k−r+2 and thus k + 1 ≤ r ≤ k + 2

since maxa∈F r2 |φ
−1(a)| ≥ 1 and it also implies the inequality nl(fφ,g) ≤ 2n−1 −

2r+
s
2
−1√∑r

i=k+1 (ri)
.

If r = k + 1, then φ is the constant 1s and maxa∈F r2 |φ
−1(a)| = 2s, thus s ≤

2(k − r + 2) = 2 and n ≤ k + 3. Either s = 1 and g(y) is then any function

in one variable, or s = 2 and g (which is then bent) is any function of the

form y1y2 ⊕ `(y) where ` is affine.

If r = k + 2, then φ is injective, therefore 2s ≤
(
r
r−1

)
+
(
r
r

)
= r + 1 and thus

n ≤ k+ 2 + log2(k+ 3), g is any function on n− k− 2 variables and dalg(fφ,g) ≤
1 + log2(k + 3). See more in [221] on how optimizing the nonlinearity.

A simple example of k-resilient Maiorana-McFarland’s functions such that

nl(fφ,g) = 2n−1 − 2k+1 (and thus achieving Sarkar et al.’s bound) can be given

for any r ≥ 2s−1 and for k = r−2 (see [221]). And, for every even n ≤ 10, Sarkar

et al.’s bound with t = n
2−2 can be achieved by Maiorana-McFarland’s functions.

Also, functions with high nonlinearities but not achieving Sarkar et al.’s bound

with equality exist in Maiorana-McFarland’s class (for every n ≡ 1 [ mod 4],

there exist such n−1
4 -resilient functions on Fn2 with nonlinearity 2n−1 − 2

n−1
2 ).

Generalizations of Maiorana-McFarland’s construction
Such generalizations, whose general frameworks have been seen in the present

book in Subsections 5.2.2 and 5.4.1, have been introduced in [221] and [317]; the
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latter generalization has been further generalized into a class introduced in [226].

A motivation for introducing such generalizations is that Maiorana-McFarland’s

functions have the weakness that x 7→ fφ,g(x, y) is affine for every y ∈ Fs2 and

have high divisibilities of their Fourier-Hadamard spectra (indeed, if we want

to ensure that f is t-resilient with a large value of t, then we need to choose r

large; then the Walsh spectrum of f is divisible by 2r according to Relation (7.5);

there is a risk that this property can be used in attacks, as it is used in [204] to

attack block ciphers). The functions constructed in [221, 317] are concatenations

of quadratic functions and those of [226] concatenations of indicators of flats.

We have seen already in Subsections 5.2.2 and 5.4.1 the two classes:

1. fψ,φ,g(x, y) =

k⊕
i=1

x2i−1x2i ψi(y)⊕ x · φ(y)⊕ g(y),

with x ∈ Fr2, y ∈ Fs2, where n = r + s, k =
⌊
r
2

⌋
, and where ψ : Fs2 → Fk2 ,

φ : Fs2 → Fr2 and g : Fs2 → F2 can be chosen arbitrarily;

2. ∀(x, y) ∈ Fr2 × Fs2, f(x, y) =

ϕ(y)∏
i=1

(x · φi(y)⊕ gi(y)⊕ 1)⊕ x · φ(y)⊕ g(y),

where ϕ is a function from Fs2 into {0, 1, . . . , r}, φ1, . . . , φr and φ are functions

from Fs2 into Fr2 such that, for every y ∈ Fs2, the vectors φ1(y), . . . , φϕ(y)(y) are

linearly independent, and g1, . . . , gr and g are Boolean functions on Fs2.

We have seen at pages 203 and 205 the formulae for the Walsh transforms of the

functions of these classes, which result in sufficient conditions for their resiliency

and in bounds on their nonlinearities, see [221, 226] where is also studied how

optimizing these parameters.

More complex ways of adapting the Maiorana-McFarland construction and

other constructions can be found in [817, 934, 928, 1013, 1161, 1164], where

some better parameters can be found but trade-offs are less clear.

Other constructions
A construction derived from PSap construction is introduced in [216] to obtain

resilient functions: let k and r be positive integers and n ≥ r; we denote n − r
by s; the vector space Fr2 is identified to the Galois field F2r . Let g be any Boolean

function on F2r and φ an F2-linear mapping from Fs2 to F2r ; set a ∈ F2r and

b ∈ Fs2 such that, for every y in Fs2 and every z in F2r , a + φ(y) is nonzero

and φ∗(z) + b has Hamming weight larger than k, where φ∗ is the adjoint of φ

(satisfying u · φ(x) = φ∗(u) · x for every x and u). Then, the function

f(x, y) = g

(
x

a+ φ(y)

)
⊕ b · y, where x ∈ F2r , y ∈ Fs2, (7.8)

is t-resilient with t ≥ k. There exist bounds on the nonlinearities of these func-

tions (see [223]), similar to those existing for Maiorana-McFarland’s functions.
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But this class has much fewer elements than Maiorana-McFarland’s class, be-

cause φ is linear.

Dobbertin’s construction: We have seen at page 279 this method for modifying

bent functions into balanced functions with high nonlinearities. Up to affine

equivalence, we can assume that the bent function with which starts the method,

say f(x, y), x ∈ Fn/22 , y ∈ Fn/22 , is such that f(x, 0n/2) = ε (ε ∈ F2) for every

x ∈ Fn/22 and that ε = 0 (otherwise, consider f ⊕ 1).

Proposition 121 Let f(x, y), x ∈ Fn/22 , y ∈ Fn/22 be any bent function such

that f(x, 0n/2) = 0 for every x ∈ Fn/22 and let g be any balanced function on Fn/22 .

Then the Walsh transform of the function h(x, y) = f(x, y) ⊕ δ0(y)g(x), where

δ0 is the Dirac (or Kronecker) symbol, satisfies:

Wh(u, v) = 0 if u = 0n/2 and Wh(u, v) = Wf (u, v) +Wg(u) otherwise. (7.9)

Proof. We have Wh(u, v) = Wf (u, v)−
∑
x∈Fn/22

(−1)u·x+
∑
x∈Fn/2

2
(−1)g(x)⊕u·x =

Wf (u, v)− 2
n
2 δ0(u) +Wg(u). Function g being balanced, we have Wg(0n/2) = 0.

AndWf (0n/2, v) equals 2
n
2 for every v, since f is null on Fn/22 ×{0n/2} and accord-

ing to Relation (6.7), page 223, applied to E = {0n/2} × Fn/22 and a = b = 0n/2
(or see the remark after Theorem 14, page 227). 2

We deduce that:

max
u,v∈Fn/22

|Wh(u, v)| ≤ max
u,v∈Fn/2

2

|Wf (u, v)|+ max
u∈Fn/22

|Wg(u)|,

i.e. that 2n − 2nl(h) ≤ 2n − 2nl(f) + 2
n
2 − 2nl(g), that is:

nl(h) ≥ nl(f) + nl(g)− 2
n
2−1 = 2n−1 − 2

n
2 + nl(g).

Applying recursively this principle (if n2 is even, g can be constructed in the same

way), we see that if n = 2k n′ (n′ odd), Dobbertin’s method allows reaching the

nonlinearity 2n−1 − 2
n
2−1 − 2

n
4−1 − · · · − 2n

′−1 − 2
n′−1

2 since we know that, for

every odd n′, the nonlinearity of functions on Fn′2 can be as high as 2n
′−1−2

n′−1
2 ,

and that balanced (quadratic) functions can achieve this value. If n′ ≤ 7 then

this value is the best possible and 2n−1 − 2
n
2−1 − 2

n
4−1 − · · · − 2n

′−1 − 2
n′−1

2

is therefore the best known nonlinearity of balanced functions in general. For

n′ > 7, the best nonlinearity of balanced n′-variable functions is larger than

2n
′−1 − 2

n′−1
2 (see the paragraph devoted to nonlinearity in Section 3.1) and

2n−1 − 2
n
2−1 − 2

n
4−1 − · · · − 22n′−1 − 2n

′
+ nl(g), where g is an n′-variable

balanced function, can therefore reach higher values.

Dobbertin’s conjecture on balanced functions is that his construction allows

reaching the best nonlinearities of balanced functions in even numbers of vari-

ables. This question is still open and it is, in particular, an open problem to find

an 8-variable balanced Boolean function with nonlinearity 118.
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Unfortunately, according to Relation (7.9), Dobbertin’s construction cannot pro-

duce t-resilient functions with t > 0 since, g being a function defined on Fn/22 ,

there cannot exist more than one vector a such that Wg(a) equals ±2
n
2 . Modi-

fying bent functions into resilient functions has been studied in [821].

7.1.9 Secondary constructions of correlation immune and resilient functions

There exist several simple secondary constructions, which can be combined to

obtain resilient functions achieving the bounds of Sarkar et al. and Siegenthaler.

We list them below in chronological order.

I The direct sum of functions

A. Adding a variable

Let f be an r-variable t-resilient function. The Boolean function on Fr+1
2 :

h(x1, . . . , xr, xr+1) = f(x1, . . . , xr)⊕ xr+1

is (t+ 1)-resilient [1041], since, for a ∈ Fr2 and ar+1 ∈ F2, we have Wh(a, ar+1) =

2Wf (a) δ1(ar+1). If f is an (r, t, r − t − 1, 2r−1 − 2t+1) function4, then h is an

(r + 1, t+ 1, r − t− 1, 2r − 2t+2) function, and thus achieves Siegenthaler’s and

Sarkar et al.’s bounds. But h has the linear structure (0, . . . , 0, 1).

B. Generalization

If f is an r-variable t-resilient function (t ≥ 0) and if g is an s-variable m-resilient

function (m ≥ 0), then the function:

h(x1, . . . , xr, xr+1, . . . , xr+s) = f(x1, . . . , xr)⊕ g(xr+1, . . . , xr+s)

is (t+m+ 1)-resilient, since:

Wh(a, b) = Wf (a)×Wg(b), a ∈ Fr2, b ∈ Fs2. (7.10)

We have also dalg(h) = max(dalg(f), dalg(g)) and, thanks to Relation (3.1), page

99, relating the nonlinearity to the Walsh transform, nl(h) = 2r+s−1 − 1
2 (2r −

2nl(f))(2s − 2nl(g)) = 2rnl(g) + 2snl(f) − 2nl(f)nl(g). Such function, called

decomposable, does not give full satisfaction since such particular structure may

be used in attacks. Moreover, h has a low algebraic degree, in general. And if

nl(f) = 2r−1 − 2t+1 (t ≤ r − 2) and nl(g) = 2s−1 − 2m+1 (m ≤ s − 2, which is

not the case when adding one variable), i.e. if nl(f) and nl(g) have maximum

possible values, then nl(h) = 2r+s−1 − 2t+m+3 and h does not achieve Sarkar’s

and Maitra’s bound. Function h has no nonzero linear structure if and only if f

and g both have no nonzero linear structure (we see then that having no linear

structure is not a sufficient criterion).

Note that the result does not work with unbalanced functions.

4 Recall that, by an (n,m, d,N )- function, we mean an n-variable, t-resilient function having
algebraic degree at least d and nonlinearity at least N .
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II. Siegenthaler’s construction

Let f and g be two Boolean functions on Fr2. Let us consider the function

h(x1, . . . , xr, xr+1) = (xr+1 ⊕ 1)f(x1, . . . , xr)⊕ xr+1g(x1, . . . , xr)

on Fr+1
2 . Note that the truth-table of h can be obtained by concatenating the

truth-tables of f and g. Then:

Wh(a1, . . . , ar, ar+1) = Wf (a1, . . . , ar) + (−1)ar+1 Wg(a1, . . . , ar). (7.11)

Thus:

1. If f and g are t-resilient, then h is t-resilient [1041]; moreover, if for every

a ∈ Fr2 of Hamming weight t+ 1, we have Wf (a) +Wg(a) = 0, then h is (t+ 1)-

resilient. Note that the construction recalled in I.A corresponds to g = f ⊕ 1

and satisfies this condition. Another possible choice of a function g satisfying this

condition (first pointed out in [181]) is g(x) = f(x1 ⊕ 1, . . . , xr ⊕ 1) ⊕ ε, where

ε = t [ mod 2], since Wg(a) =
∑
x∈Fr2

(−1)f(x)⊕ε⊕(x⊕1r)·a = (−1)ε+wH(a)Wf (a).

It leads to a function h having also a nonzero linear structure;

2. The value max
a1,...,ar+1∈F2

|Wh(a1, . . . , ar, ar+1)| is bounded above by the num-

ber max
a1,...,ar∈F2

|Wf (a1, . . . , ar)| + max
a1,...,ar∈F2

|Wg(a1, . . . , ar)|; this implies 2r+1 −

2nl(h) ≤ 2r+1 − 2nl(f)− 2nl(g), that is nl(h) ≥ nl(f) + nl(g);

a. if f and g achieve maximum possible nonlinearity 2r−1 − 2t+1 and if h is

(t+ 1)-resilient, then the nonlinearity 2r − 2t+2 of h is the best possible;

b. if f and g are such that, for every vector a, at least one of the numbers

Wf (a), Wg(a) is null (in other words, if the supports of the Walsh transforms

of f and g are disjoint), then we have maxa1,...,ar+1∈F2
|Wh(a1, . . . , ar, ar+1)| =

max (maxa1,...,ar∈F2 |Wf (a1, . . . , ar)|; maxa1,...,ar∈F2 |Wg(a1, . . . , ar)|). Hence we

have 2r+1 − 2nl(h) = 2r − 2 min(nl(f), nl(g)) and nl(h) equals therefore 2r−1 +

min(nl(f), nl(g)); thus, if f and g achieve best possible nonlinearity 2r−1−2t+1,

then h achieves best possible nonlinearity 2r − 2t+1;

3. If the monomials of highest degree in the algebraic normal forms of f and

g are not all the same, then dalg(h) = 1 + max(dalg(f), dalg(g)). Note that this

condition is not satisfied in the two cases indicated above in 1, for which h is

(t+ 1)-resilient.

4. For every a = (a1, . . . , ar) ∈ Fr2 and every ar+1 ∈ F2, we have, denoting

(x1, . . . , xr) by x: D(a,ar+1)h(x, xr+1) = Daf(x)⊕ ar+1(f ⊕ g)(x)⊕ xr+1Da(f ⊕
g)(x)⊕ ar+1Da(f ⊕ g)(x). If dalg(f ⊕ g) ≥ dalg(f), then D(a,1)h is non-constant,

for every a. And if, additionally, there does not exist a 6= 0r such that Daf

and Dag are constant and equal to each other, then h admits no nonzero linear

structure.

This construction allows obtaining from any two t-resilient functions f and g

having disjoint Walsh spectra, achieving nonlinearity 2r−1 − 2t+1 and such that

dalg(f ⊕ g) = r− t− 1, a t-resilient function h having algebraic degree r− t and

having nonlinearity 2r−2t+1, that is, achieving Siegenthaler’s and Sarkar et al.’s

bounds; note that this construction increases (by 1) the algebraic degrees of f
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and g. And since, from any t-resilient function f having algebraic degree r− t−1

and nonlinearity 2r−1− 2t+1, we can deduce a function h having resiliency order

t+ 1 and nonlinearity 2r − 2t+2, that is, achieving Siegenthaler’s and Sarkar et

al.’s bounds and having same algebraic degree as f (but having nonzero linear

structures), we can by combining these two methods, keep best trade-offs be-

tween resiliency order, algebraic degree and nonlinearity, and increase by 1 the

degree and the resiliency order.

Generalization: let (fy)y∈Fs2 be a family of r-variable t-resilient functions; then

the function on Fr+s2 defined by f(x, y) = fy(x) (x ∈ Fr2, y ∈ Fs2) is t-resilient.

Indeed, we have Wf (a, b) =
∑
y∈Fs2

(−1)b·y Wfy (a). Function f corresponds to

the concatenation of the functions fy; hence, this secondary construction can be

viewed as a generalization of Maiorana-McFarland’s construction (in which the

functions fy are t-resilient affine functions).

More on the resilient functions achieving high nonlinearities and constructed

by using, among others, the secondary constructions above (as well as algorith-

mic methods) can be found in [696].

III. Tarannikov’s elementary construction

Let g be any Boolean function on Fr2. We define the Boolean function h on Fr+1
2

by h(x1, . . . , xr, xr+1) = xr+1 ⊕ g(x1, . . . , xr−1, xr ⊕ xr+1). By the change of

variable xr ← xr ⊕ xr+1, we see that the Walsh transform Wh(a1, . . . , ar+1) is

equal to
∑

x1,...,xr+1∈F2

(−1)a·x⊕g(x1,...,xr)⊕(ar⊕ar+1⊕1)xr+1 , where a = (a1, . . . , ar)

and x = (x1, . . . , xr); if ar⊕ar+1 = 0 then this value is null and if ar⊕ar+1 = 1

then it equals 2 Wg(a1, . . . , ar−1, ar). Thus:

1. nl(h) = 2 nl(g);

2. If g is t-resilient, then h is t-resilient, since wH(a1, . . . , ar) ≤ wH(a1, . . . , ar+1).

And h is (t + 1)-resilient if and only if, for every vector (a1, . . . , ar+1) of Ham-

ming weight t + 1 such that ar ⊕ ar+1 = 1, we have Wg(a1, . . . , ar) = 0 and

the only case not implied by the t-resiliency of g is when ar = 1 and ar+1 = 0;

hence, h is (t + 1)-resilient if and only if Wg(a1, . . . , ar−1, 1) is null for every

vector (a1, . . . , ar−1) of Hamming weight t; note that, in such case, if g has non-

linearity 2r−1 − 2t+1 then the nonlinearity of h, which equals 2r − 2t+2 achieves

then Sarkar et al.’s bound too. The condition that Wg(a1, . . . , ar−1, 1) is null for

every vector (a1, . . . , ar−1) of Hamming weight at most t is achieved if g does

not actually depend on its last input bit; but the construction is then a partic-

ular case of the construction recalled in I.A. The condition is also achieved if

g is obtained from two t-resilient functions, by using Siegenthaler’s construction

(recalled in II), according to Relation (7.11).

3. dalg(h) = dalg(g) if dalg(g) ≥ 1.

4. h has the nonzero linear structure (0, . . . , 0, 1, 1).

Tarannikov combined in [1080] this construction with the direct sum and Siegen-
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thaler constructions recalled in I and II, to build a more complex secondary con-

struction, which allows increasing at the same time the resiliency order and the

algebraic degree of the functions and which leads to an infinite sequence of func-

tions achieving Siegenthaler’s and Sarkar et al.’s bounds. Increasing then, by us-

ing the construction recalled in I.A, the set of ordered pairs (r,m) for which such

functions can be constructed, he deduced the existence of r-variable t-resilient

functions achieving Siegenthaler’s and Sarkar et al.’s bounds for any number of

variables r and any resiliency order t such that t ≥ 2r−7
3 and t > r

2 − 2 (but

these functions have nonzero linear structures). In [934], Pasalic et al. slightly

modified this more complex Tarannikov’s construction into a construction that

we shall call Tarannikov et al.’s construction, which allowed, when iterating it

together with the construction recalled in I.A, to relax slightly the condition

on t into t ≥ 2r−10
3 and t > r

2 − 2.

IV. Indirect sum of functions

Tarannikov et al.’s construction has been in its turn generalized into a construc-

tion which has been named indirect sum a few years after it was introduced, and

that we already encountered at page 259 as a construction of bent functions.

Indirect sum builds a function h from 4 functions, while the previous construc-

tions used at most 2 functions. All the secondary constructions listed above are

particular cases of it: they correspond to fixing 2 or 3 of the 4 functions.

Theorem 21 [225] Let r and s be positive integers and let t and m be non-

negative integers such that t < r and m < s. Let f1 and f2 be two r-variable

functions. Let g1 and g2 be two s-variable functions. We define the (r+s)-variable

function:

h(x, y) = f1(x)⊕ g1(y)⊕ (f1 ⊕ f2)(x) (g1 ⊕ g2)(y); x ∈ Fr2, y ∈ Fs2.

If f1 and f2 are distinct and if g1 and g2 are distinct, then the algebraic degree

of h equals max(dalg(f1), dalg(g1), dalg(f1 ⊕ f2) + dalg(g1 ⊕ g2)); otherwise, it

equals max(dalg(f1), dalg(g1)). The Walsh transform of h takes value at (a, b),

where a ∈ Fr2, b ∈ Fs2:

Wh(a, b) =
1

2
Wf1

(a) [Wg1
(b) +Wg2

(b)] +
1

2
Wf2

(a) [Wg1
(b)−Wg2

(b)] . (7.12)

If f1 and f2 are t-resilient and g1 and g2 are m-resilient then h is (t+m+ 1)-

resilient.

If the Walsh transforms of f1 and f2 have disjoint supports and if the Walsh

transforms of g1 and g2 have disjoint supports, then

nl(h) = min
i,j∈{1,2}

(
2r+s−2 + 2r−1nl(gj) + 2s−1nl(fi)− nl(fi)nl(gj)

)
. (7.13)

In particular, if f1 and f2 are two (r, t,−, 2r−1 − 2t+1) functions with disjoint

Walsh supports, if g1 and g2 are two (s,m,−, 2s−1−2m+1) functions with disjoint
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Walsh supports, and if f1 ⊕ f2 has degree r − t − 1 and g1 ⊕ g2 has algebraic

degree s−m− 1, then h is a (r+ s, t+m+ 1, r+ s− t−m− 2, 2r+s−1− 2t+m+2)

function, and thus achieves Siegenthaler’s and Sarkar et al.’s bounds.

Proof. For every a ∈ Fr2, b ∈ Fs2, we have:

Wh(a, b) =
∑

y∈Fs2; g1⊕g2(y)=0

∑
x∈Fr2

(−1)f1(x)⊕a·x

 (−1)g1(y)⊕b·y

+
∑

y∈Fs2; g1⊕g2(y)=1

∑
x∈Fr2

(−1)f2(x)⊕a·x

 (−1)g1(y)⊕b·y

= Wf1(a)
∑
y∈Fs2;

g1⊕g2(y)=0

(−1)g1(y)⊕b·y +Wf2(a)
∑
y∈Fs2;

g1⊕g2(y)=1

(−1)g1(y)⊕b·y

= Wf1(a)
∑
y∈Fs2

(−1)g1(y)⊕b·y
(

1 + (−1)(g1⊕g2)(y)

2

)

+ Wf2(a)
∑
y∈Fs2

(−1)g1(y)⊕b·y
(

1− (−1)(g1⊕g2)(y)

2

)
.

We deduce Relation (7.12). If (a, b) has Hamming weight at most t+m+ 1 then

a has Hamming weight at most t or b has Hamming weight at most t; hence we

have Wh(a, b) = 0. Thus, h is t+m+ 1-resilient.

If f1 ⊕ f2 and g1 ⊕ g2 are non-constant, then the algebraic degree of h equals

max(dalg(f1), dalg(g1), dalg(f1⊕ f2) +dalg(g1⊕ g2)) because the terms of highest

degrees in (g1⊕g2)(y) (f1⊕f2)(x), in f1(x) and in g1(y) cannot cancel each others.

We deduce from Relation (7.12) that if the supports of the Walsh transforms of

f1 and f2 are disjoint, as well as those of g1 and g2, then:

max
(a,b)∈Fr2×Fs2

|Wh(a, b)| = 1

2
max

i,j∈{1,2}

(
max
a∈Fr2
|Wfi(a)|max

b∈Fs2
|Wgj (b)|

)
and according to Relation (3.1) relating the nonlinearity to the Walsh transform,

this implies:

2r+s − 2nl(h) =
1

2
max

i,j∈{1,2}
((2r − 2nl(fi))(2

s − 2nl(gj))) ,

which is equivalent to Relation (7.13). 2

Note that function h, defined this way, is the concatenation of the four functions

f1, f1 ⊕ 1, f2 and f2 ⊕ 1, in an order controlled by g1(y) and g2(y).

This construction is nicely general and does not need the initial functions f1, f2

and g1, g2 to satisfy complex conditions, contrary to other constructions which

have been derived later for building bent functions (see pages 259 and foll.) and

could be adapted for designing resilient functions.

Examples of pairs (f1, f2) (or (g1, g2)) satisfying the hypotheses of Theorem 21

can be found in [225]. The interest of the indirect sum compared to the direct
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sum is that it allows designing functions h which are more complex (have larger

algebraic degree and possibly larger algebraic immunity and fast algebraic im-

munity).

Remark. The indirect sum (as well as all its particular cases viewed above) is less

well adapted to constructing correlation immune functions: Relation (7.12) shows

that if Wf1
(a) = Wf2

(a) = Wg1
(b) = Wg2

(b) = 0 then Wh(a, b) = 0 but when for

instance a = 0r and b 6= 0s, we have Wh(a, b) = 1
2Wf1(0r) [Wg1(b) +Wg2(b)] +

1
2Wf2

(0r) [Wg1
(b)−Wg2

(b)] and there are additional conditions on the values of

Wf1(0r),Wf2(0r),Wg1(b) and Wg2(b) when wH(b) ≥ m + 1 (and on the values

of Wg1
(0s),Wg2

(0s),Wf1
(a),Wf2

(a) when wH(a) ≥ t + 1) for allowing h to be

more than (min(t,m))-th order correlation immune. 2

V. Constructions without extension of the number of variables

Proposition 85, page 262, leads to the following construction:

Proposition 122 [227] Let n be any positive integer and t any non-negative

integer such that t ≤ n. Let f1, f2 and f3 be three t-th order correlation immune

(resp. t-resilient) functions. Then the function s1 = f1 ⊕ f2 ⊕ f3 is t-th order

correlation immune (resp. t-resilient) if and only if the function s2 = f1f2 ⊕
f1f3 ⊕ f2f3 is t-th order correlation immune (resp. t-resilient). Moreover:

nl(s2) ≥ 1

2

(
nl(s1) +

3∑
i=1

nl(fi)

)
− 2n−1 (7.14)

and if the Walsh supports of f1, f2 and f3 are pairwise disjoint (that is, if at

most one value Wfi(s), i = 1, 2, 3 is nonzero, for every vector s), then

nl(s2) ≥ 1

2

(
nl(s1) + min

1≤i≤3
nl(fi)

)
. (7.15)

Proof. Relation (6.30), page 262, and the fact that, for every nonzero vector (resp.

any vector) a of Hamming weight at most t, we have Wfi(a) = 0 for i = 1, 2,

3 imply that Ws1(a) = 0 if and only if Ws2(a) = 0. Relations (7.14) and (7.15)

are also direct consequences of Relation (6.30) and of Relation (3.1), page 99,

relating the nonlinearity to the Walsh transform. 2

Note that this secondary construction is proper to allow achieving high algebraic

immunity with s2, given functions with lower algebraic immunities f1, f2, f3 and

s1, since the support of s2 can be made more complex than those of these func-

tions. This is done without changing the number of variables and keeping similar

resiliency order and nonlinearity.

Remark. Let g and h be two Boolean functions on Fn2 with disjoint sup-

ports and let f be equal to g ⊕ h = g + h. Then, f is balanced if and only

if wH(g) + wH(h) = 2n−1. By linearity of the Fourier-Hadamard transform,
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we have: f̂ = ĝ + ĥ. Thus, if g and h are t-th order correlation immune,

then f is t-resilient. For every nonzero a ∈ Fn2 , we have |Wf (a)| = 2 |f̂(a)| ≤
2 |ĝ(a)| + 2 |ĥ(a)| = |Wg(a)| + |Wh(a)|. Thus, assuming that f is balanced, we

have nl(f) ≥ nl(g) + nl(h)− 2n−1. The algebraic degree of f is bounded above

by (and can be equal to) the maximum of the algebraic degrees of g and h. 2

The most part of the secondary constructions of bent functions described in

Subsection 6.1.16 can be altered into constructions of correlation immune and

resilient functions, see [216].

The generalization of Proposition 85 given by Proposition 86, page 263, leads to:

Proposition 123 [227] Let n be any positive integer and k any non-negative

integer such that k ≤ n. Let f1, . . ., f7 be k-th order correlation immune (resp.

k-resilient) functions. If two among the functions s1 = f1 ⊕ . . . ⊕ f7, s2 =

f1f2 ⊕ f1f3 ⊕ . . .⊕ f6f7 and s4 =
⊕

1≤i1<...<i4≤7

l∏
j=1

fij is k-th order correlation

immune (resp. k-resilient) then the third one is k-th order correlation immune

(resp. k-resilient).

Low Hamming weight correlation immune functions
Except for the secondary construction without extension of the number of vari-

ables, the primary and secondary constructions of resilient functions recalled

above do not work well for building unbalanced correlation immune functions,

as we observed for the indirect sum in the remark at the head of page 331. We

shall see in Section 12.1, page 460, that low Hamming weight correlation immune

functions are useful for countermeasures to side channel attacks. More construc-

tions are then needed.

We denote by CIn,t the set of n-variable t-th order correlation immune Boolean

functions and by ωn,t the minimal Hamming weight of nonzero functions in CIn,t.

According to Proposition 120, page 317, the Hamming weight of a t-th order cor-

relation immune function is divisible by 2
t+
⌊
n−t−1
dalg(f)

⌋
.

The only n-variable n-th order correlation immune Boolean functions are the two

constant functions. The only (n− 1)-th order correlation immune non-constant

Boolean functions are the (n − 1)-resilient functions
⊕n

i=1 xi and
⊕n

i=1 xi ⊕ 1.

Then ωn,n = 2n and ωn,n−1 = 2n−1.

We have of course ωn,t ≤ ωn,t+1 and more precisely:

Lemma 10 Let 1 ≤ t ≤ n be integers. Then

ωn+1,t ≤ 2ωn,t ≤ ωn+1,t+1.

Proof. For every f ∈ CIn,t, the (n + 1)-variable function g(x, xn+1) = f(x)

belongs to CIn+1,t, since, for every a, we have ĝ(a, 0) = 2f̂(a) and ĝ(a, 1) = 0.
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Table 7.1 Lower bound on ωn,t from Delsarte’s Linear Programming bound [74]

n
t

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2
2 2 4
3 2 4 8
4 2 6 8 16
5 2 8 12 16 32
6 2 8 16 32 32 64
7 2 8 16 48 64 64 128
8 2 10 16 64 88 112 128 256
9 2 12 20 96 128 192 224 256 512
10 2 12 24 96 192 320 384 512 512 1024
11 2 12 24 96 192 512 640 1024 1024 1024 2048
12 2 14 24 112 176 768 1024 1536 1792 2048 2048 4096
13 2 16 28 128 224 1024 1536 2560 3072 3584 4096 4096 8192

Moreover, g has Hamming weight 2wH(f). This proves the left-hand side inequal-

ity. For every f ∈ CIn+1,t+1, the restriction of f to the hyperplane of equation

xn+1 = 0 is a t-th order correlation immune Boolean function with half weight.

This proves the right-hand side inequality. 2

As observed in [591], the largest dimension kmax(n, t + 1) of a binary linear

code [n, k, t + 1] provides the upper bound ωn,t ≤ 2n−kmax(n,t+1), according to

Corollary 6, page 108 and to the fact that the dual of a linear code of dimension

k has dimension n−k. Since a binary MDS code of parameters [n, n−1, 2] exists,

we have then ωn,1 = 2 for every n.

As also observed in [591], ωn,t being equal to the minimal number of rows in

a simple binary orthogonal array of strength t, Delsarte’s linear programming

bound [422] provides a lower bound on ωn,t that we give in Table 7.1.

The Satisfiability Modulo Theory (SMT) tool has been used to search for

correlation immune Boolean functions in [74] together with the upper bound

deduced from known constructions of binary codes, the lower bound of Table 7.1

and the divisibility of ωn,t by 2t.

Table 7.2 displaying the known values of ωn,t for n ≤ 13 is taken from [74, 287,

258, 1103]. The entries in light gray follow from ωn,1 = 2 and ωn,n = 2n. The

entries in dark gray follow from ωn,n−1 = 2n−1 and from Lemma 10 above, which

imply ωn,t ≤ ωn,n−1 = 2n−1, and from Theorem 116, page 313, which implies

that ωn,t = 2n−1 for d 2n−2
3 e ≤ t ≤ n− 1. The entry n = 11, t = 4 is obtained in

[74, 1103] and the entries n = 11, t = 5; n = 12, t = 5 and n = 12, t = 7 follow

from Proposition 124 below. The entries in bold have been obtained by SMT

tool. A triple question mark in this table indicates that the value is unknown.

Note however that upper bounds are known for these entries: in [946] is made a

detailed exploration of several evolutionary algorithms for finding Boolean func-

tions that have various orders of correlation immunity and minimal Hamming

weight. These investigations show that ω11,4 ≤ 128, ω11,5 ≤ 256, ω12,5 ≤ 256,

ω12,6 ≤ 1024, ω13,7 ≤ 2048.
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Table 7.2 Minimum weight of t-th order correlation immune nonzero n-variable functions

n
t

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2
2 2 4
3 2 4 8
4 2 8 8 16
5 2 8 16 16 32
6 2 8 16 32 32 64
7 2 8 16 64 64 64 128
8 2 12 16 64 128 128 128 256
9 2 12 24 128 128 256 256 256 512
10 2 12 24 128 256 512 512 512 512 1024
11 2 12 24 128 256 512 1024 1024 1024 1024 2048
12 2 16 24 ??? 256 512 1024 2048 2048 2048 2048 4096
13 2 16 32 ??? ??? ??? 1024 4096 4096 4096 4096 4096 8192

It is an open question to determine whether the columns in this table (and more

generally for every value of n and t) are non-decreasing, that is, ωn,t ≤ ωn+1,t

for every n and t. If the reply to this question is positive, then these values are

optimal. It is also shown in [946] that ω12,4 ≤ 256, ω13,4 ≤ 256, ω13,5 ≤ 512,

ω13,6 ≤ 1024. See also [112] where non-existence results are proved.

Remark. The indicator 1Kn of the Kerdock code Kn, seen at page 281, provides

for every even n ≥ 4, a 5-CI Boolean function in 2n variables and of Hamming

weight 22n, since we know that Kn has dual distance 6. Let us determine its ANF.

Denoting by X = (Xx,xn) x∈F
2n−1

xn∈F2

the elements of F2n

2 , the dual of RM(1, n) be-

ing equal to RM(n− 2, n), the ANF of the indicator of RM(1, n) has the form∏
I⊂{1,...,n}
|I|≤n−2

(
1 +

∑
x∈F

2n−1
xn∈F2

Xx,xn

∏
i∈I `i(x, xn)

)
, where (`1, . . . , `n−1) are (any)

linearly independent F2-linear forms over F2n−1 , viewed as functions over F2n−1×
F2, and `n(x, xn) = xn. The ANF of the indicator of any coset f +RM(1, n) has

then the form
∏

I⊂{1,...,n}
|I|≤n−2

(
1 +

∑
x∈F

2n−1
xn∈F2

(
Xx,xn + f(x, xn)

)∏
i∈I `i(x, xn)

)
. Ac-

cording to the definition of the Kerdock code, the ANF of 1Kn equals then the

sum, when u ranges over F2n−1 , of:

∏
I⊂{1,...,n}
|I|≤n−2

1 +
∑

x∈F
2n−1

xn∈F2

Xx,xn + trm

( t∑
j=1

(ux)2j+1
)

+ xntrm(ux)

∏
i∈I

`i(x, xn)

 ,

where m = n − 1, t = n
2 − 1. We can then see that 1Kn has algebraic degree at

most 2n− 1−n and does not achieve Siegenthaler’s bound with equality, except

maybe for n = 4. 2

It is shown in [1103] that ωn,2 ≥ 4
⌈
n+1

4

⌉
for n ≥ 2 (and the proof can be

slightly simplified): the Golomb-Xiao-Massey characterization of correlation im-

mune functions (Theorem 5, page 107) directly gives that a Boolean function f
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is in CIn,2 if and only if the matrix H = ((−1)ei·x) x∈supp(f)
i=0,1,...,n

, where e0 = 0n and

(e1, . . . , en) is the canonical basis of Fn2 over F2, satisfies Ht ×H = wH(f) In+1

where In+1 is the identity matrix (i.e. H is a Hadamard matrix); this shows that

ωn,2 ≥ 4
⌈
n+1

4

⌉
since we know that 4 divides ωn,2 and that matrix In+1 has rank

n+ 1, while matrix H has rank at most wH(f) and Ht×H has necessarily rank

smaller than or equal to that of H.

It is deduced in [1103] that for each known Hadamard 4k × 4k matrix, a func-

tion in CI4k−1,2 of (minimum) Hamming weight 4k (and functions in CI4k+i,2 of

Hamming weight 4k for every i = 0, 1, 2) can be deduced. It has been conjectured

by J. Hadamard that there exists a 4k × 4k Hadamard matrix for every k. Ac-

cording to the observations above, this conjecture is equivalent to conjecturing

that ωn,2 = 4
⌈
n+1

4

⌉
for every n.

Proposition 124 [258] Let t be any even integer such that 2 ≤ t ≤ n. Then:

ωn+1,t+1 = 2ωn,t.

Proof. For every f ∈ CIn,t , the (n+ 1)-variable function:

g(x, xn+1) =

{
f(x), when xn+1 = 0

f(x+ 1n), when xn+1 = 1,

has Hamming weight 2wH(f) and is a (t + 1)-th order correlation immune

Boolean function. Indeed, for any u ∈ Fn2 and any un+1 ∈ F2, we have:

ĝ(u, un+1) =
∑

(x,xn+1)∈Fn+1
2

g(x, xn+1)(−1)(u,un+1)·(x,xn+1)

=
∑
x∈Fn2

f(x)(−1)u·x +
∑
x∈Fn2

f(x+ 1n)(−1)(u,un+1)·(x,1)

= f̂(u) +
∑
x∈Fn2

f(x)(−1)(u,un+1)·(x+1n,1)

= (1 + (−1)wH(u,un+1)) f̂(u).

If wH(u, un+1) = t+1, then since t is an even integer, we have 1+(−1)wH(u,un+1) =

1 + (−1)t+1 = 0, thus ĝ(u, un+1) = 0.

If u = 0n and un+1 = 1, then 1 + (−1)wH(u,un+1) = 0, and ĝ(u, un+1) = 0.

If 1 ≤ wH(u, un+1) ≤ t and u 6= 0n, we have that 1 ≤ wH(u) ≤ t, and since

f(x) ∈ CIn,t, we have f̂(u) = 0, then ĝ(u, un+1) = 0.

Hence, if 1 ≤ wH(u, un+1) ≤ t + 1, then ĝ(u, un+1) = 0 and g(x, xn+1) is a

(t + 1)-th order correlation immune Boolean function. Thus, ωn+1,t+1 ≤ 2ωn,t
when t is even, and since 2ωn,t ≤ ωn+1,t+1 for any 1 ≤ t ≤ n according to Lemma

10, this completes the proof. 2

This leads to the bound ωn,3 ≥ 8
⌈
n
4

⌉
for n ≥ 3. It is conjectured in [258] that

for n ≥ 3, we have ωn,3 = 8
⌈
n
4

⌉
. Using the characterization of functions in
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CIn,2 given above Proposition 124 by means of Hadamard matrices and the

known existence of infinitely many 4k × 4k Hadamard matrices, Wang deduced

in [1103] that infinitely many values n ≡ i [mod 4] satisfy the conjecture for each

i = −1, 0, 1, 2. He observed that the conjecture (which is still open) is equivalent

to that of Hadamard, which is more than one hundred years old.

A construction of functions of weight 2m in CIn,t has been given in [1103], which

defines their support as made of the 2m vectors of the form (v · u1, . . . , v · un),

where v ranges over Fm2 and the uj ’s are such that none of them depends linearly

on at most t−1 others. This construction is nothing more than Corollary 6, page

108, with a linear code whose generator matrix is made of the uj ’s by columns

(recall that the dual distance of such code is the minimum number of linearly

dependent columns), or Corollary 22 page 320. The construction however allowed

completing some entries in the table which was given in [74, 287] (Table 7.2 is

the completed table).

Using the Fourier-Hadamard transform instead of the Walsh
transform to construct correlation immune functions
We have seen that correlation immune functions are characterized by both the

Fourier-Hadamard transform and the Walsh transform. We have also seen that

most known constructions of correlation immune functions were based on the

properties of the Walsh transform and that they built in fact resilient functions,

mostly. The Fourier-Hadamard transform and the Walsh transform are closely

related through Relation (2.32), page 74. However, they behave differently with

respect to the operations in BFn: while the Walsh transform behaves well with

respect to the addition of Boolean functions (for instance, the Walsh transform

of a direct sum equals the product of the Walsh transforms, see Relation (7.10),

page 326), the Fourier-Hadamard transform behaves well with respect to the

multiplication of functions; in particular, the Fourier-Hadamard transform of a

direct product equals the product of the Fourier-Hadamard transforms, since:

∑
x∈Fn2 ,y∈Fm2

f(x)g(y)(−1)a·x⊕b·y =

∑
x∈Fn2

f(x)(−1)a·x

∑
y∈Fm2

g(y)(−1)b·y

 .

Multiplying Boolean functions produces unbalanced functions, and if the func-

tions have low Hamming weights, the product has low Hamming weight as well.

A related general construction of correlation immune functions by multiplication

is deduced in [258] that we report now. In the next proposition, given a matrix

M ∈ Fns×ns2 and given i, j = 1, . . . , s, we denote by M (i,j) the n × n matrix

(called a block of M) obtained from M by selecting its rows of indices between

n(i− 1) + 1 and ni and its columns of indices between n(j − 1) + 1 and nj. As-

suming that M is non-singular, denoting the inverse matrix of M by M−1 and

the transposed matrix of M−1 by M ′, we denote by M−1(i,j)
and M ′(i,j) the

matrices obtained similarly from M−1 and M ′. Since M ′(j,i) is the transposed
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matrix of M−1(i,j)
, we have, for any x, y ∈ Fn2 :

x · (y ×M−1(i,j)
) = y · (x×M ′(j,i)), (7.16)

where “·” is the usual inner product .

Proposition 125 [258] Let s be a positive integer and M be an ns × ns non-

singular matrix over F2. Let fj ∈ CIn,tj for some non-negative integers tj,

1 ≤ j ≤ s. Define the following ns-variable function h, whose input is writ-

ten in the form (x(1), x(2), . . . , x(s)), where x(1), x(2), . . . , x(s) ∈ Fn2 :

h(x(1), x(2), . . . , x(s)) =

s∏
j=1

fj

( s∑
i=1

x(i) ×M (i,j)

)
.

Assume that if 1 ≤ wH(u(1), u(2), . . . , u(s)) ≤ t, then 1 ≤ j ≤ s, exists such that:

1 ≤ wH
( s∑
i=1

u(i) ×M ′(i,j)
)
≤ tj .

Then h belongs to CIns,t and has Hamming weight
s∏
j=1

wH(fj).

Proof. For any (u(1), u(2), . . . , u(s)) ∈ (Fn2 )s, we have: ĥ(u(1), u(2), . . . , u(s))

=
∑

x(1),...,x(s)∈Fn2

(
s∏
j=1

fj

( s∑
i=1

x(i) ×M (i,j)

))
(−1)

⊕s
j=1 u

(j)· x(j)

.

Replace
s∑
i=1

x(i) × M (i,j) by y(j) for 1 ≤ j ≤ s, then (y(1), y(2), . . . , y(s)) =

(x(1), x(2), . . . , x(s))×M , according to the well-known method of multiplication

of matrices by blocks. Thus:

(x(1), x(2), . . . , x(s)) = (y(1), y(2), . . . , y(s))×M−1,
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which means x(j) =
s∑
i=1

y(i) ×M−1(i,j)
for 1 ≤ j ≤ s. Using (7.16), we have:

ĥ(u(1), u(2), . . . , u(s))

=
∑

y(1),...,y(s)∈Fn2

 s∏
j=1

fj(y
(j))

 (−1)

⊕s
j=1 u

(j)·
( s∑
i=1

y(i)×M−1(i,j)
)

=
∑

y(1),...,y(s)∈Fn2

 s∏
j=1

fj(y
(j))

 (−1)

⊕s
i=1 y

(i)·
( s∑
j=1

u(j)×M ′(j,i)
)

=
∑

y(1),...,y(s)∈Fn2

 s∏
j=1

fj(y
(j))

 (−1)

⊕s
j=1 y

(j)·
( s∑
i=1

u(i)×M ′(i,j)
)

=

s∏
j=1

 ∑
y(j)∈Fn2

fj(y
(j))(−1)

y(j)·
( s∑
i=1

u(i)×M ′(i,j)
)

=

s∏
j=1

f̂j

( s∑
i=1

u(i) ×M ′(i,j)
)
.

According to the hypothesis, for any (u(1), u(2), . . . , u(s)) ∈ (Fn2 )s satisfying 1 ≤
wH(u(1), u(2), . . . , u(s)) ≤ t, there exists 1 ≤ j ≤ s such that

1 ≤ wH
( s∑
i=1

u(i) ×M ′(i,j)
)
≤ tj .

Since fj is a tj-th order correlation immune Boolean function for any 1 ≤ j ≤
s, h is a t-th order correlation immune Boolean function. And h being affine

equivalent to the direct product of fj , we have wH(h) =
s∏
j=1

wH(fj). 2

Corollary 23 [258] Let n, t, s be positive integers satisfying t ≤ n and s ≥ 2.

Assume that f1 ∈ CIn,t and fj ∈ CIn,b t2c for any 2 ≤ j ≤ s. Define

h(x(1), x(2), . . . , x(s)) = f1(x(1))

s∏
j=2

fj(x
(1) + x(j)),

where x(1), x(2), . . . , x(s) ∈ Fn2 . Then h belongs to CIns,t and has Hamming weight
s∏
j=1

wH(fj).

Proof. Let M be the ns× ns nonsingular matrix whose representation by n× n
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blocks equals:

M =


I I I · · · I

0 I 0 · · · 0

0 0 I · · · 0
...

...
... · · ·

...

0 0 0 · · · I

 ,

where I is the identity n× n matrix and 0 is the all-0 n× n matrix. Then:

M ′ =


I 0 0 · · · 0

I I 0 · · · 0

I 0 I · · · 0
...

...
... · · ·

...

I 0 0 · · · I

 .

We have:

h(x(1), x(2), . . . , x(s)) =

s∏
j=1

fj

( s∑
i=1

x(i) ×M (i,j)

)
.

For any (u(1), u(2), . . . , u(s)) ∈ (Fn2 )s satisfying 1 ≤ wH(u(1), u(2), . . . , u(s)) ≤ t,

we have either

1 ≤ wH
( s∑
i=1

u(i) ×M ′(i,1)

)
= wH

( s∑
i=1

u(i)

)
≤ t,

or
s∑
i=1

u(i) = 0n, in which case there exists 2 ≤ j ≤ s such that u(j) 6= 0n and

wH(u(j)) = wH

(
s∑

i=1,i6=j
u(i)

)
=

wH(u(j))+wH

(
s∑

i=1,i 6=j
u(i)

)
2 ≤

s∑
i=1

wH(u(i))

2 ≤ t
2 .

Proposition 125 completes the proof. 2

Corollary 24 [258] Let n, s, t be positive integers satisfying t ≤ n and s ≥ 2.

We have:

ωns,t ≤
(
ωn,b t2c

)s−1

ωn,t.

A construction of low-weight t-th order correlation immune
Boolean functions through Kronecker sum
The Kronecker sum of two vectors:

(x(1), x(2)) = ((x
(1)
1 , . . . , x(1)

n2
), (x

(2)
1 , . . . , x(2)

n1
)) ∈ Fn2

2 × Fn1
2 →

x(1) � x(2) = (x
(1)
i2
⊕ x(2)

i1
) 1≤i1≤n1

1≤i2≤n2

∈ Fn1n2
2
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generalizes to s variables as follows: let n1, . . . , ns be positive integers and I =

{1, . . . , n1} × · · · × {1, . . . , ns}, then for every I = (i1, . . . , is) ∈ I and every

1 ≤ r ≤ s, we denote by I(r) the vector (i1, · · · , ir−1, ir+1, · · · , is). Writing

x(r) = (x
(r)
i1,··· ,ir−1,ir+1,··· ,is) i1 ∈ {1, . . . , n1}

· · ·
is ∈ {1, . . . , ns}

∈ Fn1···nr−1nr+1···ns
2 ,

the s-th order Kronecker sum is defined as:

(x(1), x(2), . . . , x(s))→ x(1) � · · ·� x(s) =

(
s⊕
r=1

x
(r)

I(r)

)
I∈I

∈ Fn1···ns
2 .

Proposition 126 [258] Let s, t be positive integers such that 2s > t. Let f1(x(1))

be an (n2 · · ·ns)-variable t-th order correlation immune Boolean function and

f2(x(2)) an (n1n3 · · ·ns)-variable 2b t2c-th order correlation immune Boolean func-

tion. For every r = 3, 4, . . . , s, let fr(x
(r)) be an (n1 · · ·nr−1nr+1 · · ·ns)-variable

Boolean function such that, for every w ∈ Fnr2 satisfying 1 ≤ wH(w) ≤ t with

wH(w) even, we have f̂r(w) = 0. We define the
(
(n1 + 1)n2n3 · · ·ns

)
-variable

function h by its support as follows: Supp(h) ={(
x(1)�· · ·�x(s), x(1)

)
; x(1) ∈ Supp(f1), x(2) ∈ Supp(f2), . . . , x(s) ∈ Supp(fs)

}
,

then h is t-th order correlation immune of Hamming weight
s∏
r=1

wH(fr).

In particular, if f1 is a t-th order correlation immune Boolean function and if

each function fr is 2b t2c-th order correlation immune for r = 2, . . . , s, then h is a

t-th order correlation immune Boolean function of Hamming weight
s∏
r=1

wH(fr).

Proof. Let us calculate the Fourier-Hadamard transform of h. Its input is any

pair (u, v) where u is a binary vector of the same length as x(1) � · · ·� x(s) and

v is a binary vector of the same length as x(1), that is, u = (uI)I∈I ∈ Fn1n2···ns
2

and v = (vJ)J∈J ∈ Fn2···ns
2 , J = {1, . . . , n2} × · · · × {1, . . . , ns}. We have:

ĥ(u, v) =
∑

x(1)∈Supp(f1),

...,x(s)∈Supp(fs)

(−1)
⊕
I∈I uI

(⊕s
r=1 x

(r)

I(r)

)
⊕v·x(1)

.

Let us write u0,i2,...,is = vi2,...,is ;
−→u1 =

(⊕n1

i1=0 ui1,1,...,1, · · · ,
⊕n1

i1=0 ui1,n2,...,ns

)
and −→ur =

(⊕nr
ir=1 u1,...,1,ir,1,...,1, · · · ,

⊕nr
ir=1 un1,...,nr−1,ir,nr+1,...,ns

)
, for every

r = 2, . . . s. We have then:

ĥ(u, v) =

 ∑
x(1)∈Supp(f1)

(−1)
⊕
I∈I uIx

(1)

I(1)
⊕v·x(1)

×
s∏
r=2

 ∑
x(r)∈Supp(fr)

(−1)
⊕
I∈I uIx

(r)

I(r)

 = f̂1(−→u1)×
s∏
r=2

f̂r(
−→ur).



7.1 Correlation immune and resilient Boolean functions 341

For 1 ≤ wH(u, v) ≤ t, we have wH(−→u1) ≤ wH(u, v) ≤ t.
- If wH(−→u1) 6= 0, then since f1 is t-th order correlation immune, we have ĥ(u, v) =

0.

- If wH(−→u1) = 0, then wH(u, v) is even since wH(u, v) (mod 2) = wH(−→u1)

(mod 2), and then wH(u, v) ≤ 2b t2c. We have then that:

– If wH(−→u2) 6= 0, then we have 1 ≤ wH(−→u2) ≤ wH(u) ≤ wH(u, v) ≤ 2b t2c, and

since f2 is 2b t2c-th order correlation immune, we deduce ĥ(u, v) = 0.

– If wH(−→u2) = . . . = wH(−−→uj−1) = 0 and wH(−→uj) 6= 0, where 3 ≤ j ≤ s, then

wH(u) and wH(−→uj) are even since wH(u) (mod 2) = wH(−→u2) (mod 2) = wH(−→uj)
(mod 2) and we have 2 ≤ wH(−→uj) ≤ 2b t2c, and the hypothesis on fj implies

ĥ(u, v) = 0.

– If wH(−→u2) = . . . = wH(−→us) = 0, then since wH(u, v) 6= 0 and wH(−→u1) = 0,

there exist 0 ≤ i′′1 < i′1 ≤ n1, 1 ≤ i2 ≤ n2, . . . , 1 ≤ is ≤ ns such that

ui′1,i2,...,is = ui′′1 ,i2,...,is = 1. Since wH(−→us) = 0, there exist in fact 2 values of

is such that ui′1,i2,...,is = 1. Since wH(−−→us−1) = 0, there exist then 4 values of

(is−1, is) such that ui′1,i2,...,is = 1. By induction, we have then wH(u, v) ≥ 2s.

But we have 1 ≤ wH(u, v) ≤ t < 2s by hypothesis, a contradiction. Hence,

wH(−→u1) = wH(−→u2) = . . . = wH(−→us) = 0 cannot happen. This completes the

proof. 2

A corollary can be found in [258], as well as variants of the construction of

Proposition 126, one of which needs weaker hypotheses but does not include the

term in x(1) in the support of h (and provides then functions in less variables)

and the other deals with 3-rd order correlation immune functions.

7.1.10 On the number of correlation immune and resilient functions

It is important to ensure that the selected criteria for the Boolean functions,

supposed to be used in some cryptosystems, do not restrict the choice of the

functions too severely. Hence, the set of functions should be enumerated. But

this enumeration is unknown for most criteria, and the cases of correlation im-

mune and resilient functions make no exception. We recall below what is known.

More than for bent functions, the class of resilient functions produced by Maio-

rana-McFarland’s construction5 is by far the widest class, compared to the

classes obtained from the other usual constructions, and the number of prov-

ably resilient Maiorana-McFarland’s functions seems negligible with respect to

the total number of functions with the same properties. For balanced (i.e. 0-

resilient) functions, this can be checked: for every positive r, the number of bal-

anced Maiorana-McFarland’s functions (7.4) obtained by choosing φ such that

φ(y) 6= 0r, for every y, equals (2r−1)2s 22s , and is smaller than or equal to 22n−1

(since r ≥ 1, s = n−r). It is negligible with respect to the number
(

2n

2n−1

)
≈ 22n+ 1

2√
π2n

of all balanced functions on Fn2 . The number of t-resilient Maiorana-McFarland’s

5 We have seen that this construction hardly allows building unbalanced correlation immune

functions.
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functions obtained by choosing φ such that wH(φ(y)) > t for every y equals[
2
∑r
i=t+1

(
r
i

)]2n−r
, and is probably also very small compared to the number of

all t-resilient functions. But this number is unknown.

The exact number of t-resilient functions is known for t ≥ n−3 (see [181], where

(n− 3)-resilient functions are characterized) and (n− 4)-resilient functions have

been characterized [256, 125].

As for bent function, upper bounds on the numbers of correlation immune and

resilient functions come directly from the Siegenthaler bound on the algebraic

degree: the number of t-th order correlation immune (resp. t-resilient) n-variable

functions is bounded above by 2
∑n−m
i=0 (ni) (resp. 2

∑n−m−1
i=0 (ni)). These bounds are

the so-called naive bounds. In 1990, Yang and Guo published an upper bound

on the number of first-order correlation immune functions. At the same time,

Denisov obtained a rather strong result (see below) but his result being pub-

lished in Russian, it was not known internationally. His paper was translated

into English two years later [433] but was not widely known either. This ex-

plains why several papers appeared, some of which with weaker results, that

we describe first. Park, Lee, Sung and Kim [926] improved upon Yang-Guo’s

bound. Schneider [1024] proved that the number of t-resilient n-variable Boolean

functions is less than:
n−m∏
i=1

(
2i

2i−1

)(n−i−1
m−1 )

.

but this result was known, see [520]. A general upper bound on the number

of Boolean functions whose distances to affine functions are all divisible by 2t

has been obtained in [301]. It implies an upper bound on the number of t-

resilient functions which improves upon previous bounds for about half the values

of (n,m) (it is better for t large). This bound divides the naive bound by approx-

imately 2
∑n−m−1
i=0 (m−1

i )−1 if m ≥ n
2 and by approximately 222m+1−1 if m < n

2 .

An upper bound on t-resilient functions (m ≥ n
2 − 1) partially improving upon

this latter bound thanks to a refinement of its method was obtained for n
2 − 1 ≤

m < n− 2 in [285]: the number of n-variable t-resilient functions is lower than:

2
∑n−m−2
i=0 (ni) +

(
n

n−m−1

)
2( m+1
n−m−1)+1

n−m∏
i=1

(
2i

2i−1

)(n−i−1
m−1 )

.

The expressions of these bounds seem difficult to compare mathematically. Ta-

bles have been computed in [285].

The problem of counting resilient functions is related to counting integer solu-

tions of a system of linear equations, see [850].

The main result given by Denisov in [433] is an asymptotic formula for the num-

ber of t-th order correlation immune functions, where t is negligible compared

to n. This formula was later believed incorrect by the author and a correction

was given by him in [434], but it has been shown later in [182] that the correct

expression was the original one, at least under the condition 1 ≤ t ≤ ( ln 2
6 −ε)

n
lnn
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where ε > 0: this number is then equivalent to

22n−t+
∑t
j=0 j(

n
j)(2n−1π)−

∑t
j=1 (nj)

2 ,

and the number of t-resilient functions is equivalent to

22n+
∑t
j=0 j(

n
j)(2n−1π)−

∑t
j=0 (nj)

2 .

For large resiliency orders, Tarannikov and Kirienko showed in [1082] that, for

every positive integer t, there exists a number p(m) such that for n > p(m), any

(n −m)-resilient function f(x1, . . . , xn) is equivalent, up to permutation of its

input coordinates, to a function of the form g(x1, . . . , xp(m))⊕xp(m)+1⊕· · ·⊕xn. It

is then a simple matter to deduce that the number of (n−m)-resilient functions

equals
∑p(m)
i=0 A(m, i)

(
n
i

)
, where A(m, i) is the number of i-variable (i − m)-

resilient functions that depend on all inputs x1, x2, . . . , xi nonlinearly. Hence,

it is equivalent to A(m,p(m))
p(m)! np(m) for t constant when n tends to infinity, and it

is at most Am np(m), where Am depends on t only. It is proved in [1083] that

3 · 2t−2 ≤ p(m) ≤ (m − 1)2t−2 and in [1082] that p(4) = 10; hence the number

of (n− 4)-resilient functions equals (1/2)n10 +O(n9). It is also shown in [1082]

that for n ≥ 10, there does not exist an unbalanced nonconstant (n−4)-th order

correlation immune function and that for n ≥ 11, there does not exist an (n−4)-

resilient function depending nonlinearly on all its variables.

The classification of first-order correlation immune functions and of 1-resilient

functions has been studied in [758], with an exact enumeration for n = 7 and a

precise estimation for n = 8.

7.2 Resilient vectorial Boolean functions

For the convenience of the reader, we recall what we have seen in Section 3.3.1,

page 151: an (n,m)-function F (x) is t-th order correlation immune if its output

distribution does not change when at most t coordinates xi of x are kept constant.

S-boxes being better balanced, F is called t-resilient if it is balanced and t-

th order correlation immune. If such an (n,m, t)-function F exists, then we

have the bounds t ≤
⌊

2m−1n
2m−1

⌋
, t ≤ 2

⌊
2m−2(n+1)

2m−1

⌋
− 1, m ≤ n − t in general,

m ≤ n− log2

[∑t/2
i=0

(
n
i

)]
if t is even and m ≤ n− log2

[(
n−1

(t−1)/2

)
+
∑(t−1)/2
i=0

(
n
i

)]
if t is odd, and more complex bounds based on linear programming [78, 520].

Composing a t-resilient (n,m)-function by a permutation of Fm2 does not change

its resiliency order. Function F is t-resilient if and only if one of the following

conditions is satisfied (see Proposition 41, page 152):

(i)
∑
x∈Fn2

(−1)v·F (x)⊕u·x = 0, for every u ∈ Fn2 such that wH(u) ≤ t and every

v ∈ Fm2 \ {0m},
(ii)

∑
x∈Fn2

(−1)g(F (x))⊕u·x = 0, for every u ∈ Fn2 such that wH(u) ≤ t and every

balanced t-variable Boolean function g.
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Finally, F is t-resilient if and only if:

(iii) for every vector b ∈ Fm2 , the Boolean function ϕb = δ{b} ◦ F is t-th order

correlation immune and has Hamming weight 2n−m.

7.2.1 Constructions of resilient vectorial Boolean functions

Linear or affine resilient functions
The construction of t-resilient linear functions is easy: Bennett et al. [58] and

Chor et al. [370] give the connection between linear resilient functions and linear

codes (correlation immune functions being related to orthogonal arrays, see [181,

180], this relationship is in fact due to Delsarte [422]). There exists a linear

(n,m, t)-function if and only if there exists a binary linear [n,m, t+ 1] code.

Proposition 127 [58] Let G be a generating matrix for an [n,m, d] binary linear

code. We define L : Fn2 7→ Fm2 by the rule L(x) = x × GT , where GT is the

transpose of G. Then L is an (n,m, d− 1)-function.

This is a direct consequence of Corollary 22, page 320, and of Proposition 41. It

can also be seen directly: for every nonzero v ∈ Fm2 , the vector v·L(x) = v·(x×Gt)
has the form u ·x where u = v×G is a nonzero codeword. Hence, u has Hamming

weight at least d and the linear function v · L is (d− 1)-resilient, since it has at

least d independent terms of degree 1 in its ANF.

The converse of Proposition 127 is clearly also true.

Proposition 127 is still straightforwardly true if L is affine instead of linear, that

is L(x) = x×Gt + a, where a is a vector of Fk2 .

Stinson [1049] considered the equivalence between resilient functions and what

he called large sets of orthogonal arrays. According to Proposition 41, an (n,m)-

function is t-resilient if and only if there exists a set of 2m disjoint binary arrays

of dimensions 2n−m × n, such that, in any t columns of each array, each of the

2t elements of Ft2 occurs in exactly 2n−m−t rows and no two rows are identical.

The construction of (n,m, t)-functions by Proposition 127 can be generalized by

considering nonlinear codes of length n (that is subsets of Fn2 ) and of size 2n−m

whose dual distance (see Definition 4, page 32) is at least t + 1 (see [1050]).

In the case of Proposition 127, C is the dual of the code of generating matrix

G. The nonlinear code needs also to be systematic (that is, there must exist a

subset I of {1, . . . , n} called an information set of C, necessarily of size n −m
since the code has size 2n−m, such that every possible tuple occurs in exactly

one codeword within the specified coordinates xi; i ∈ I; we have seen this notion

at page 185) to allow the construction of an (n,m, d⊥ − 1)-function: the image

of a vector x ∈ Fn2 is the unique vector y of Fn2 such that yi = 0 for every i ∈ I
and such that x ∈ y + C (in other words, to calculate y, we first determine the

unique codeword c of C which matches with x on the information set and we have

y = x+ c). It is deduced in [1050] that, for every r ≥ 3, a (2r+1, 2r+1−2r−2, 5)-

resilient function exists (the construction is based on the Kerdock code), and

that no affine resilient function with such good parameters exists.
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Maiorana-McFarland resilient functions
The idea of designing resilient vectorial functions by generalizing the Maiorana-

MacFarland construction is natural. One can find a first reference of such con-

struction in a paper by Nyberg [906], but for generating perfect nonlinear func-

tions. This technique has been used by Kurosawa et al. [723], Johansson and

Pasalic [648], Pasalic and Maitra [933] and Gupta and Sarkar [580] to produce

functions having high resiliency and high nonlinearity6.

Definition 70 The class of Maiorana-McFarland (n,m)-functions is the set of

those functions F which can be written in the form:

F (x, y) = x×

 ϕ11(y) . . . ϕ1m(y)
...

. . .
...

ϕr1(y) . . . ϕrm(y)

+H(y), (x, y) ∈ Fr2 × Fs2 (7.17)

where r and s are two integers satisfying r + s = n, H is any (s,m)-function

and, for every i ≤ r and every j ≤ m, ϕij is a Boolean function on Fs2.

The concatenation of t-resilient functions being still t-resilient, if the transpose

matrix of the matrix involved in Equation (7.17) is the generator matrix of a

linear [r,m, d]-code for every vector y ranging over Fs2, then the (n,m)-function

F is (d− 1)-resilient.

After denoting, for every i ≤ m, by φi the (s, r)-function which admits for

coordinate functions the Boolean functions ϕ1i, ..., ϕri (in i-th column of the

matrix above), we can rewrite Relation (7.17) as:

F (x, y) = (x · φ1(y)⊕ h1(y), . . . , x · φm(y)⊕ hm(y)) . (7.18)

Resiliency
Equivalently to what is written above in terms of codes, we have:

Proposition 128 Let n, m, r and s be integers such that n = r + s. Let F be

a Maiorana-McFarland (n,m)-function defined as in (7.18) and such that, for

every y ∈ Fs2, the family (φi(y))i≤m is a basis of an m-dimensional subspace of

Fr2 having t+ 1 for minimum Hamming weight, then F is at least t-resilient.

Nonlinearity
According to Proposition 53, page 189, the nonlinearity nl(F ) of any Maiorana-

McFarland’s (n,m)-function defined as in Relation (7.18) satisfies:

nl(F ) = 2n−1 − 2r−1 max
(u,u′)∈Fr2×Fs2,v∈Fm2 \{0m}

∣∣∣∣∣∣
∑

y∈Eu,v

(−1)v·H(y)⊕u′·y

∣∣∣∣∣∣ , (7.19)

6 But, as seen in Subsection 3.3.2, this notion of nonlinearity is not relevant to S-boxes for

stream ciphers. The generalized nonlinearity, which is the correct notion, needs to be
further studied for resilient functions and for Maiorana-McFarland (MM) functions.
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where Eu,v denotes the set {y ∈ Fs2;
∑m
i=1 viφi(y) = u}.

The bounds given by Relations (7.6) and (7.7), page 322, imply:

2n−1−2r−1 max
u∈Fr2,v∈Fm2 \{0m}

|Eu,v| ≤ nl(F ) ≤ 2n−1−2r−1

⌈√
max

u∈Fr2,v∈Fm2 \{0m}
|Eu,v|

⌉
.

If, for every element y, the vector space spanned by the vectors φ1(y), . . . , φm(y)

admits m for dimension and has a minimum Hamming weight strictly larger

than k (so that F is t-resilient with t ≥ k), then we have

nl(F ) ≤ 2n−1 − 2r−1

 2s/2√∑r
i=k+1

(
r
i

)
 . (7.20)

The nonlinearity can be exactly calculated in two situations (at least): if, for

every vector v ∈ Fm2 \ {0m}, the (s, r)-function y 7→
∑
i≤m viφi(y) is injective

(resp. takes exactly two times each value of its range), then F admits 2n−1−2r−1

(resp. 2n−1 − 2r) for nonlinearity.

Johansson and Pasalic described in [648] a way to specify the vectorial func-

tions φ1, ..., φm so that this kind of condition is satisfied. Their result can be

generalized in the following form:

Lemma 11 Let C be a binary linear [r,m, t+ 1] code. Let β1, . . . , βm be a basis

of the F2-vector space F2m , and L0 a linear isomorphism between F2m and C.

Then the functions Li(z) = L0(βiz), i = 1, . . . ,m, are such that, for every

v ∈ Fm2 \ {0m}, the function z ∈ F2m 7→
∑m
i=1 viLi(z) is a bijection from F2m

into C.

Proof. For every vector v in Fm2 and every element z of F2m , we have
∑m
i=1 viLi(z) =

L0 ((
∑m
i=1 viβi)z). If the vector v is nonzero, then the element

∑m
i=1 viβi is

nonzero. Hence, the function z ∈ F2m 7→
∑m
i=1 viLi(z) is a bijection. 2

Since the functions L1, L2, . . . , Lm vanish at zero input, they do not satisfy the

hypothesis of Proposition 128. A solution to derive a family of vectorial functions

also satisfying the hypothesis of Proposition 128 is then to right-compose the

functions Li with a same injective (or 2-to-1) function π from Fs2 into F∗2m . Then,

for every nonzero vector v ∈ Fm2 \ {0m}, the function y ∈ Fs2 7→
∑m
i=1 viLi[π(y)]

is injective (or 2-to-1) from Fs2 into C∗. This gives the following construction7:

Given integers m < r, let C be an [r,m, t + 1]-code such that t is as large as

possible (Grassl gives in [570] a precise overview of the best known parameters of

codes). Then, define m linear functions L1, ..., Lm from F2m into C as in Lemma

11. Choose an integer s strictly lower than m (resp. lower than or equal to m)

and define an injective (resp. 2-to-1) function π from Fs2 into F∗2m . Choose any

7 Another construction based on Lemma 11 involves a family of nonintersecting codes (i.e.
of codes with trivial pairwise intersection) having the same length, dimension and

minimum distance; however, this construction is often worse for large resiliency orders, as

shown in [319].
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(s,m)-function H = (h1, . . . , hm) and denote r+s by n. Then the (n,m)-function

F whose coordinate functions are defined by fi(x, y) = x · [Li ◦ π] (y) ⊕ hi(y) is

t-resilient and admits 2n−1 − 2r−1 (resp. 2n−1 − 2r) for nonlinearity.

All the primary constructions presented in [648, 723, 933, 907] are based on

this principle. The construction of (n,m, t)-functions defined in [580] is also a

particular application of this construction, as shown in [319].

Other constructions
Constructions of highly nonlinear resilient vectorial functions, based on elliptic

curves theory and on the trace of some power functions x 7→ xd on finite fields,

have been designed respectively by Cheon [367] and by Khoo and Gong [696].

However, it is still an open problem to design highly nonlinear functions with

high algebraic degrees and high resiliency orders with Cheon’s method. Besides,

the number of functions which can be designed by these methods is very small.

In [1159, 1163, 1157] are designed resilient functions whose nonlinearity exceeds

the bent concatenation bound.

Zhang and Zheng proposed in [1168, 1170] a secondary construction consisting in

the composition F = G ◦L of a linear resilient (n,m, t)-function L with a highly

nonlinear (m, k)-function. The resulting function F is obviously t-resilient, ad-

mits 2n−mnl(G) for nonlinearity where nl(G) denotes the nonlinearity of G and

its degree is the same as that of G. Taking for function G the inverse function

x 7→ x−1 on the finite field F2m , Zhang and Zheng obtained t-resilient functions

having a nonlinearity larger than or equal to 2n−1 − 2n−m/2 and having m − 1

for algebraic degree. But the linear (n,m)-functions involved in the construction

of Zhang and Zheng introduce a weakness: their unrestricted nonlinearity (see

Definition 38, page 153) being null, this kind of functions cannot be used as a

multi-output combination function in stream ciphers. Nevertheless, this draw-

back can be avoided by concatenating such functions (recall that the concate-

nation of t-resilient functions gives t-resilient functions, and a good nonlinearity

can be obtained by concatenating functions with disjoint Walsh supports). We

obtain this way a modified Maiorana-McFarland’s construction, which could be

investigated further.

More secondary constructions of resilient vectorial functions can be derived from

the secondary constructions of resilient Boolean functions (see e.g. [180, 225]).



8 Functions satisfying SAC, PC,
EPC, or having good GAC

The research on Boolean functions achieving the propagation criterion PC(l) of

order 1 ≤ l < n was active in the 90’s. The class of PC(l) functions is a super-

class of that of bent functions (bent functions achieve PC(n)). For l ≤ n − 3

when n is even and for l ≤ n−1 when n is odd, its elements can be balanced and

highly nonlinear. Strict avalanche property (corresponding to l = 1) and prop-

agation properties give more features to Boolean functions in the framework of

stream ciphers (see an example with [60]), even if it is more related to block

ciphers (and to the differential attack). In the framework of stream ciphers, the

invention of algebraic attacks and the difficulty of designing then Boolean func-

tions satisfying all the mandatory criteria have more or less refocused research on

Boolean functions meeting mandatory criteria only (including algebraic immu-

nity and fast algebraic immunity). In the framework of block ciphers, studying

individually the coordinate or component functions of S-boxes is not the most

relevant approach. Nevertheless, to be complete1, we devote a short chapter to

such avalanche criteria.

8.1 PC(l) criterion

For the convenience of the reader, we summarize Definition 24, page 118:

Definition 71 For 1 ≤ l ≤ n, an n-variable Boolean function f satisfies the

propagation criterion of order l (in brief, PC(l)) if F(Def) = 0 for every e ∈ Fn2
such that 1 ≤ wH(e) ≤ l. Strict avalanche criterion (SAC) corresponds to PC(1)

[516, 581].

It is shown in [605, 218, 219] that, if n is even, then PC(n−2) implies PC(n); so

for n even we can find balanced n-variable PC(l) functions only if l ≤ n− 3. For

odd n ≥ 3, it is also known that the functions which satisfy PC(n− 1) are those

functions of the form g(x1 ⊕ xn, . . . , xn−1 ⊕ xn)⊕ `(x), where g is bent and ` is

affine, and that the PC(n − 2) functions are those functions of a similar form,

but where, for at most one index i, the term xi ⊕ xn may be replaced by xi or

by xn (other equivalent characterizations exist [219]).

The algebraic degree of PC(l) functions is bounded above by n−1. A lower bound

1 Note that the avalanche and propagation criteria play also a role with hash functions.
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on their nonlinearity is easily shown [1169]: if there exists an l-dimensional sub-

space F such that, for every nonzero e ∈ F , the derivative Def is balanced, then

nl(f) ≥ 2n−1 − 2n−
l
2−1. Indeed, Relation (2.56), page 81, applied with b = 0n

and E = F⊥, shows that every value W 2
f (u) is then bounded above by 22n−l;

this implies, taking F = {e ∈ Fn2 ; e � u} for wH(u) = l, that PC(l) functions

have nonlinearities bounded below by 2n−1 − 2n−
l
2−1. Equality can occur only

if l = n− 1 (n odd) and l = n (n even).

The maximum correlation of Boolean functions satisfying PC(l) (and in partic-

ular, of bent functions) with respect to subsets of indices can be deduced from

Relations (3.14), page 123, and (2.56), see [187].

There exist characterizations of the propagation criterion. A first obvious one

is that, according to Relation (2.54), page 80, f satisfies PC(l) if and only if∑
u∈Fn2

(−1)a·u W 2
f (u) = 0 for every nonzero vector a of Hamming weight at

most l. A second one (direct consequence of Relation (2.56), page 81) is:

Proposition 129 [219] Any n-variable Boolean function f satisfies PC(l) if

and only if, for every vector u of Hamming weight at least n − l, and every

vector v:
∑
w�uW

2
f (w + v) = 2n+wH(u).

Maiorana-McFarland’s construction can be used to produce functions satisfy-

ing the propagation criterion: the derivative D(a,b)(x, y) of a function of the form

(5.1), page 188, being equal to x ·Db φ(y) ⊕ a · φ(y + b) ⊕Dbg(y), the function

satisfies PC(l) under the sufficient condition that:

1. for every nonzero b ∈ Fs2 of Hamming weight smaller than or equal to l,

and every vector y ∈ Fs2, the vector Db φ(y) is nonzero (or equivalently every

set φ−1(u), u ∈ Fr2, either is empty or is a singleton or has minimum distance

strictly larger than l);

2. every linear combination of at least one and at most l coordinate functions

of φ is balanced (this condition corresponds to the case b = 0s).

Constructions of such functions have been given in [218, 219, 722].

According to Proposition 129 above, Dobbertin’s construction cannot produce

functions satisfying PC(l) with l ≥ n
2 . Indeed, if u is for instance the vector with

n
2 first coordinates equal to 0, and with n

2 last coordinates equal to 1, we have,

according to Relation (7.9), page 325: W 2
h (w) = 0 for every w � u.

8.2 PC(l) of order k and EPC(l) of order k criteria

Definition 72 An n-variable Boolean function satisfies the propagation crite-

rion PC(l) of order k (resp. the extended propagation criterion EPC(l) of order

k) if it satisfies PC(l) when k coordinates of the input x are kept constant (resp.

if every derivative Def , with e 6= 0n of weight at most l, is k-resilient).

According to the characterization of resilient functions and its proof, we have:
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Proposition 130 [968] A function f satisfies EPC(l) (resp. PC(l)) of order k

if and only if, for any vector e of Hamming weight smaller than or equal to l and

any vector c of Hamming weight smaller than or equal to k, if (e, c) 6= (0n, 0n)

(resp. if (e, c) 6= (0n, 0n) and if e and c have disjoint supports) then:

WDef (c) =
∑
x∈Fn2

(−1)f(x)⊕f(x+e)⊕c·x = 0.

A characterization by the Walsh transform of f has been deduced in [987].

It has been shown in [970] that SAC(k) (i.e. PC(1) of order k) functions have

algebraic degrees at most n− k− 1. In [797], the criterion SAC(n− 3) was char-

acterized through the ANF of the function, and its properties were further stud-

ied. A construction of PC(l) of order k functions based on Maiorana-McFarland’s

method is given in [722] (the mapping φ being linear and constructed from linear

codes) and generalized in [218, 219] (the mapping φ being not linear and con-

structed from nonlinear codes). A construction of n-variable balanced functions

satisfying SAC(k) and having algebraic degree n− k − 1 is given, for n− k − 1

odd, in [722] and, for n− k − 1 even, in [1011] (where balancedness and nonlin-

earity are also considered).

It is shown in [219] that, for every positive even l ≤ n−4 (with n ≥ 6) and every

odd l such that 5 ≤ l ≤ n− 5 (with n ≥ 10), the functions which satisfy PC(l)

of order n− l− 2 are the functions of the form:
⊕

1≤i<j≤n xi xj ⊕ h(x1, . . . , xn),

where h is affine.

8.3 Absolute indicator

In [1166] is stated the conjecture that any balanced function on an odd number n

of variables satisfies ∆f ≥ 2(n+1)/2. In [820, 527], for n ∈ {15, 21}, are given bal-

anced functions with ∆f < 2(n+1)/2 (an error on the 21-variable functions, found

by computer, has been corrected in [681]). In [684], the first construction giving

∆f < 2n/2 for even n (a balanced 10-variable function with ∆f = 24) is found. In

[1075] is given a construction of n-variable balanced functions with ∆f < 2n/2,

where n > 44 and n ≡ 2 [mod 4], with specific examples for n = 18, 22, 26. In

[683], results for n = 12, 14, . . . , 26 are obtained (the journal version to appear

also provides n-variable balanced functions with ∆f < 2n/2, where n > 50 and

n ≡ 0 [mod 4]).

Bounds between the absolute indicator and the nonlinearity are given in [1178].

Remark. The block sensitivity bs(f) of an n-variable Boolean function f equals

the maximum number of vectors a(1), . . . , a(k) ∈ Fn2 with disjoint supports and

such that Da(i)f(x) = 1,∀i = 1, . . . , k. Its (basic) sensitivity s(f) is defined

similarly with all vectors a(i) of Hamming weight 1. The 30 year old sensitivity

conjecture states that there exists a constant C independent of n such that

bs(f) ≤ (s(f))C for every f [905]. This conjecture has been proved in [631]. 2
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The invention of algebraic attacks and of fast algebraic attacks has deeply modi-

fied the research on Boolean functions for stream ciphers. Before 2003, functions

had about ten variables (to be fastly computable) and were mainly supposed

to be balanced, have large algebraic degree and nonlinearity and in the case of

the combiner generator, ensure good trade-off between algebraic degree, nonlin-

earity and resiliency order. Since 2003, the designer needs also to ensure resis-

tance to the algebraic attack (which needs in practice optimal or almost optimal

algebraic immunity) and good resistance to fast algebraic attacks and to the

Rønjom-Helleseth attack and its improvements. This implies a larger number

of variables (say, between 16 and 20; it can be more if the function is particu-

larly fastly computable) and an algebraic degree close to n (this is a necessary

but not sufficient condition for the resistance against fast algebraic attacks). For

this reason, the combiner generator seems less adapted nowadays; it needs to

be made more complex, for instance with memory. Even the filter generator has

posed problem: during five years, no function usable in it could be found (the

known functions with optimal algebraic immunity had bad nonlinearity and bad

resistance to fast algebraic attacks, see [27]). In 2008 an infinite class of functions

possessing all mandatory features was found in [273]. The functions in this class

are rather fastly computable, but since stream ciphers need to be faster than

block ciphers (which can be used as pseudorandom generators), there is still a

need of functions satisfying all mandatory criteria and being very fast to com-

pute, like the hidden weight bit function (HWBF), which has been more recently

investigated, see below. To be complete in this introduction, we need to mention

that a new way of using Boolean functions came recently with the so-called filter

permutator, like in the FLIP cryptosystem [839], which posed new problems on

Boolean functions (see [306]); see more in Section 12.2.

9.1 Algebraic immune Boolean functions

For the convenience of the reader, we summarize the definitions seen in Sec-

tion 3.1 on algebraic immune functions.

Definition 73 Let f be any n-variable Boolean function. The minimum alge-

braic degree of nonzero annihilators of f or of f ⊕1 (i.e. of nonzero multiples of
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f ⊕ 1 or of f), is called the algebraic immunity of f and is denoted by AI(f).

The fast algebraic immunity of f is the integer:

FAI(f) = min (2AI(f),min {dalg(g) + dalg(fg); 1 ≤ dalg(g) < AI(f)}) .

The fast algebraic complexity of f is the integer:

FAC(f) := min{max [dalg(g) + dalg(fg), 3dalg(g)] ; 1 ≤ dalg(g) < AI(f)}.

All three parameters are stable under complementation f 7→ f ⊕ 1; see more in

[324]. We have AI(f) ≤ min(dalg(f), dn2 e) and FAI(f) ≤ FAC(f) ≤ n for any

n-variable function f .

A standard algebraic attack on a stream cipher using some Boolean function f

in the combiner model or the filter model is all the more efficient as AI(f) is

smaller and many linearly independent lowest degree annihilators of f or f ⊕ 1

exist. Parameter FAC(f) and its simplified version FAI(f) play a similar role

with respect to fast algebraic attacks. In [793] are called perfect algebraic im-

mune (PAI) the n-variable Boolean functions f such that, for any pair of strictly

positive1 integers (e, d) such that e + d < n and e < n
2 , there is no non-zero

function g of algebraic degree at most e such that fg has algebraic degree at

most d (while we have seen at page 114 that for every n-variable function f

and every (e, d) such that e + d ≥ n, such function g exists). Such functions

have perfect immunity against the standard and fast algebraic attacks (indeed,

as shown in [793, 789], a PAI function and an almost PAI function with even

number of variables have optimal algebraic immunity, where almost PAI is de-

fined similarly with e+d < n−1 and e < n−1
2 instead of e+d < n and e < n

2 ). It

is shown in [485, 793] that perfect algebraic immune functions, when balanced,

can exist only if n equals 1 plus a power of 2, and when unbalanced, can exist

only if n is a power of 2. Indeed, it is easily seen that, for any perfect algebraic

immune function f , we have dalg(f) ≥ n − 1 and it is proved in [793] that if

dalg(f) = n− 1 (resp. dalg(f) = n), then for e < n
2 such that

(
n−1
e

)
≡ 1 [mod 2]

(resp.
(
n−1
e

)
≡ 0 [mod 2]), there exists a nonzero function g such that dalg(g) ≤ e

and dalg(fg) ≤ n−e−1, and such e exists unless n = 2s+1 (resp. 2s). It is shown

in [791] that no symmetric Boolean function can be perfect algebraic immune

for n ≥ 5.

In [929] is introduced a slightly different notion of optimal resistance to FAA:

an n-variable Boolean function f is said to satisfy the high degree product prop-

erty (HDP) of order n if, for every n-variable Boolean function g of algebraic

degree e such that 1 ≤ e < dn2 e and which is not an annihilator of f , we have

dalg(fg) ≥ n − e. Then [929] proves that f ⊕ 1 has the same property and

AI(f) = dn2 e; such function is then called algebraic attack resistant (AAR).

As we already saw at page 112, since a Boolean function g is an annihila-

tor of f if and only if g(x) = 0 for every element x in the support of f , to

1 Assuming that e can be null would oblige f to have algebraic degree n and it could then

not be balanced.
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determine whether f (resp. f ⊕ 1) admits nonzero annihilators of algebraic

degree at most d, we consider a general Boolean function g(x) by its ANF

g(x) =
⊕

I⊆{1,...,n}
|I|≤d

aI

(∏
i∈I

xi

)
and consider the system (see page 112) of the

wH(f) (resp. 2n − wH(f)) equations in the
∑d
i=0

(
n
i

)
unknowns aI ∈ F2 ex-

pressing that g(x) = 0 for x ∈ supp(f) (resp. x 6∈ supp(f)). The matrix Mf,d

(resp. Mf⊕1,d) of this system has term
∏
i∈I xi at row indexed by x and column

indexed by I, where x ∈ supp(f) (resp. x 6∈ supp(f)). Calculating the algebraic

immunity of a function f by applying the definition consists then in determining

the minimum value of d such that the ranks rk(Mf,d) and rk(Mf⊕1,d) of the

matrices of these two systems do not both equal
∑d
i=0

(
n
i

)
, and the dimension

dim(And(f)) of the vector space of annihilators of algebraic degree at most d of

f equals
∑d
i=0

(
n
i

)
− rk(Mf,d).

The dimension of And(f) has been determined for all d in [228] for some classes

of functions: minimum weight elements f of the Reed-Muller codes (i.e. indica-

tors of affine subspaces of Fn2 ), their complements f ⊕ 1, their sums with affine

functions when these are balanced, and complements of threshold functions (see

more on these latter functions in Subsection 10.1.7).

Remark. Given an n-variable Boolean function f , denoting by LDAn(f) the F2-

vector space made of the annihilators of f of algebraic degree AI(f) (assuming

that some exist; otherwise we change f into f ⊕ 1) and the zero function, we

have, as observed in [261]:

1. dimLDAn(f) ≤
(

n
AI(f)

)
, since two distinct annihilators of algebraic degree

AI(f) cannot have the same degree AI(f) part in their algebraic normal

forms (otherwise, their sum would be a nonzero annihilator of algebraic degree

strictly smaller than AI(f));

2. If f is balanced and AI(f) = n
2 , n even, then dimLDAn(f) ≥ 1

2

(
n
n
2

)
, since

matrix Mf,n2
has 2n−1 rows and

∑n
2
i=0

(
n
i

)
= 2n−1 + 1

2

(
n
n
2

)
columns;

3. If f is such that AI(f) = n+1
2 , n odd, then dimLDAn(f) =

(
n
n+1

2

)
, since we

know that wH(f) = 2n−1, and Mf,n−1
2

is then a 2n−1 × 2n−1 square matrix

whose rank equals 2n−1; matrix Mf,n+1
2

has then rank 2n−1. 2

9.1.1 General properties of the algebraic immunity and its relationship with some
other criteria

We have seen that the algebraic immunity of any n-variable Boolean function is

an affine invariant and is bounded above by dn2 e. The functions used in stream

ciphers must have an algebraic immunity close to this maximum. In the next

paragraphs, we give properties and characterizations, some of which are new.
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Algebraic immunity of monomial functions
It has been shown in [899, 900] that if the number r(d) of runs of 1’s in the

binary expansion of the exponent d of a power function trn(axd) (that is, the

number of full subsequences of consecutive 1’s) is smaller than
√
n/2, then the

algebraic immunity is bounded above by

r(d)b
√
nc+

⌈
n

b
√
nc

⌉
− 1. (9.1)

This comes from the fact that there exists g of algebraic degree
⌈

n
b
√
nc

⌉
such that

fg has algebraic degree at most (9.1). This property also allows to prove that

FAI(f) ≤ r(d)b
√
nc+ 2

⌈
n
b
√
nc

⌉
− 1, as observed in [870].

Note that (9.1) is better than the general bound dn2 e for only a negligible part

of power mappings, but it addresses all those whose exponents have a constant

2-weight or a constant number of runs - the power functions studied as potential

S-boxes in block ciphers enter in this framework. Moreover, the bound is further

improved when n is odd and the function is almost bent: the algebraic immunity

of such functions is bad since bounded above by 2 b
√
nc. The exact value of the

algebraic immunity of the multiplicative inverse function trn(ax2n−2), a 6= 0,

has been given in [498]; it equals d2
√
ne − 2, which is not good either.

Algebraic immunity of a restriction
If the restriction of a function f to an affine space, for instance obtained by fixing

xi to ai for any i ∈ I ⊆ {1, . . . , n}, has a nonzero annihilator g of some algebraic

degree d, then f has for nonzero annihilator the function g(x)1A(x), equal to

g(x)
(
1⊕

∏
i∈I(xi ⊕ ai ⊕ 1)

)
in the latter example, in which case the algebraic

degree equals d + n − dim(A) = d + |I|. By applying this to f and to f ⊕ 1,

whose restrictions cannot be both null, the algebraic immunity of the restriction

is at least AI(f)−n+dim(A) = AI(f)−|I|, as observed in [407]. Moreover, the

annihilators of the restriction of f are the restrictions of the annihilators of f .

To have a chance of having large algebraic immunity, a function needs then not

only to have large enough algebraic degree but also that each restriction to an

affine space of large dimension, for instance the restriction obtained by fixing

a few input coordinates, has large enough algebraic degree. This implies that

Maiorana-McFarland functions defined by Relation (5.1), page 188, with r large

have bad algebraic immunity. It is observed in [279] that a Maiorana-McFarland

function x · φ(y) ⊕ g(y), where x ∈ Fr2, y ∈ Fn−r2 , can have algebraic immunity

n− r+ 1 (which is its maximal possible algebraic degree) only if, for every affine

subspace A of Fn−r2 , we have
∑
y∈A φ(y) 6= 0. Indeed, the products of f and f⊕1

by the indicator function of Fr2 × A are annihilators of f ⊕ 1 and f and are not

both null; they equal the products of the restrictions of f and f ⊕ 1 to Fr2 × A
(which have algebraic degree 1 + dimA if this non-nullity condition is satisfied

and at most dimA otherwise) and of the function of y equal to the indicator

function of A (which has algebraic degree n− r − dimA).
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Characterization of annihilators by the Walsh transform

For every x ∈ Fn2 , we have (fg)(x) = ( 1
2 −

(−1)f(x)

2 )( 1
2 −

(−1)g(x)

2 ) = 1
4 (1 −

(−1)f(x)− (−1)g(x) +(−1)f(x)⊕g(x)). Recall that the Fourier transform is its own

inverse up to a multiplicative factor and that this implies that any integer-valued

function ϕ over Fn2 is:

1. equal to the zero function if and only if its Fourier transform ϕ̂ is null,

2. constant if and only if ϕ̂(a) is null at any input a 6= 0n.

We deduce a characterization first observed in [128], that we slightly complete:

Proposition 131 Let n be any positive integer and f, g any n-variable Boolean

functions. Then

g ∈ An(f)⇐⇒ ∀a ∈ Fn2 , Wf⊕g(a) + 2nδ0(a) = Wf (a) +Wg(a),

where δ0 is the Dirac (or Kronecker) symbol. Moreover, if f is different from the

constant function 1, we have:

g ∈ An(f)⇐⇒ ∀a 6= 0, Wf⊕g(a) = Wf (a) +Wg(a).

Indeed, the first equivalence is a consequence of observation 1 above applied

to the two members of the equality above or to ϕ = f + g − f ⊕ g = 2fg,

using the linearity of the Fourier transform and Relation (2.32), page 74. The

second equivalence is then a straightforward consequence of observation 2, since

fg constant means fg = 0 because fg = 1 is impossible, f being not constant

function 1.

Note that the bound AI(f) ≤ dn2 e shows then that, for every non-constant n-

variable Boolean function f , there exists a nonzero n-variable Boolean function

g of algebraic degree at most dn2 e, such that either Wf⊕g(a) = Wf (a) + Wg(a)

for all a 6= 0n (g being an annihilator of f 6= 1) or Wf⊕g(a) = Wf (a) −Wg(a)

for all a 6= 0n (g being an annihilator of f ⊕ 1 6= 1).

Moreover, since (−1)(f⊕g)(x) = (−1)f(x)(−1)g(x), we have by applying Relation

(2.45), page 79:

2nWf⊕g = Wf ⊗Wg,

where Wf ⊗Wg(a) =
∑
u∈Fn2

Wf (a+ u)Wg(u). We deduce:

Corollary 25 Let n be any positive integer and f any n-variable Boolean func-

tion. We have g ∈ An(f) if and only if:

∀a ∈ Fn2 , Wf ⊗Wg(a)− 2nWg(a) = 2nWf (a)− 22nδ0(a) (9.2)

and if f is not constant function 1, this condition with a 6= 0n suffices.

The Walsh transforms of the annihilators of f are then the solutions of the sys-

tem of the 2n linear equations (9.2) indexed by a, in the 2n unknowns Wg(a),

a ∈ Fn2 , whose matrix equals M − 2nI, where I is the identity matrix and M

is the matrix whose coefficient at row indexed by a and column indexed by u
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equals Wf (a+u). Note that we have M×M t = M×M = 22nI, where M t is the

transpose of M , since, for every a, b ∈ Fn2 , we have
∑
u∈Fn2

Wf (a+u)Wf (b+u) =∑
u∈Fn2

Wf (u)Wf (a + b + u) = 22nδ0(a + b), according to the Parseval and

Titsworth relations (2.48) and (2.51), page 80.

It is interesting to see that the annihilators of any Boolean function f combine

two linear algebraic properties over different fields:

- the set of annihilators of f is an F2-vector space;

- the set of their Walsh transforms is the intersection between an R-vector space

(the set of solutions of the system given above) and the set of integer-valued

functions W : Fn2 7→ Z satisfying the equation
∑
u∈Fn2

W (a+ u)W (u) = 22nδ0(a)

for every a ∈ Fn2 (we know indeed that these 2n quadratic equations are charac-

teristic of the Walsh transforms of Boolean functions).

Characterization of annihilators by the NNF
The determination of annihilators can be handled in a simple way (with two

equations over Z, one quadratic and one linear, instead of wH(f) linear ones over

F2 as we saw with the ANF) through the NNF representation (see Subsection

2.2.4, page 65): let
∑
I⊆{1,...,n} λI x

I , λI ∈ Z, be the NNF of a Boolean function

f(x); we know from (2.28), page 69, that an integer-valued function g(x) =∑
I⊆{1,...,n} µI x

I , µI ∈ Z, is Boolean if and only if the single quadratic equation:∑
I⊆{1,...,n}

2n−|I|
∑

J,J ′⊆{1,...,n}; I=J∪J′
µJ µJ′ =

∑
I⊆{1,...,n}

2n−|I|µI (9.3)

is satisfied. We have that g is an annihilator of f if and only if2
∑
x∈Fn2

f(x)g(x) =

0. Hence, since
∑
x∈Fn2

xI = |{x ∈ Fn2 ; I ⊆ supp(x)}| = 2n−|I| :

Proposition 132 Let f be any n-variable Boolean function and let its NNF

equal
∑
I⊆{1,...,n} λI x

I , λI ∈ Z. Then the annihilators of f are the functions

g(x) =
∑
I⊆{1,...,n} µI x

I , µI ∈ Z, which satisfy (9.3) and:∑
I⊆{1,...,n}

2n−|I|
∑

J,J ′⊆{1,...,n}; I=J∪J′
λJ µJ′ = 0.

Algebraic immunity and codes
It is observed in [600, Theorem 1 and Corollary 1] that the problem of estimating

the algebraic immunity of Boolean functions over F2n is connected to cyclic codes.

We modify the statement of this result (and give a slightly different proof) so

as to complete [600] by taking into account the facts that if f(0) = 1 then the

annihilators g of f must satisfy g(0) = 0 and that annihilators of algebraic degree

n may exist.

Proposition 133 Let f(x) be an n-variable Boolean function in univariate form.

Then the annihilators of f(x) in univariate representation are those multiples

2 Recall that
∑

denotes sums in Z.
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g(x) of gcd(f(x) + 1, x2n + x) in F2n [x]/(x2n + x) which satisfy (g(x))2 = g(x).

If f(0) = 0, then the annihilators of algebraic degree at most n− 1 are the code-

words of the cyclic code of length 2n − 1 over F2n and of generator polynomial

gcd(f(x) + 1, x2n−1 + 1) which satisfy (g(x))2 = g(x).

Proof. We know that the annihilators of f ∈ BFn are those Boolean functions

which are multiples of f ⊕ 1 in BFn. These annihilators in univariate repre-

sentation are then the multiples of f(x) + 1 in F2n [x]/(x2n + x) which satisfy

(g(x))2 = g(x), and since being such multiple is equivalent to being a multiple of

gcd(f(x)+1, x2n+x) [mod x2n+x], this proves the first part. The rest is straight-

forward since, if f(0) = 0, then gcd(f(x)+1, x2n +x) = gcd(f(x)+1, x2n−1 +1),

and since reducing mod x2n + x or mod x2n−1 + 1 a polynomial of algebraic

degree at most n− 1, that is, of degree at most 2n − 2, is the same. 2

Corollary 26 Let f(x) be an n-variable Boolean function in univariate form.

Then AI(f) equals the minimum, among all those nonzero elements g(x) of

F2n [x]/(x2n+x) which satisfy (g(x))2 = g(x) and are multiples either of gcd(f(x)+

1, x2n + x) or of gcd(f(x), x2n + x), of the maximum 2-weight of the exponents

in the terms of these polynomials.

It is also shown in [600] that the spectral immunity (defined at page 116) of a

Boolean function f(x) (in univariate form) is equal to the minimal weight of

the nonzero codewords of the cyclic codes over F2n of generator polynomials

gcd(f(x) + 1, x2n−1 + 1) and gcd(f(x), x2n−1 + 1).

In [869] is shown that, given an n-variable Boolean function f , if the mini-

mum distance of the linear code {(a0, . . . , a2n−1) ∈ F2n

2n ;
∑2n−1
i=0 aix

i = 0,∀x ∈
supp(f)} (i.e. the vector space of univariate representations of F2n -valued anni-

hilators of f), that we shall denote by Cf , is strictly larger than
∑d
i=0

(
n
i

)
for

a given d, then the minimum algebraic degree of nonzero annihilators of f is

strictly larger than d. Indeed, if a nonzero annihilator of f has algebraic degree

at most d, then its Hamming weight as a codeword of Cf is at most
∑d
i=0

(
n
i

)
,

a contradiction.

There is however an issue with this result when f(0) = 0, since Cf has then mini-

mum distance 2, because it includes the codeword (1, 0, . . . , 0, 1); the result gives

then no information in that case. This difficulty can be easily addressed since the

codeword (1, 0, . . . , 0, 1) corresponds to an annihilator of algebraic degree n (the

indicator of {0}, i.e. function δ0) and presents then no interest from the view

point of algebraic immunity. We can slightly modify the result of [869] by con-

sidering, instead of Cf , the code C ′f = {(a0, . . . , a2n−2) ∈ F2n−1
2n ;

∑2n−2
i=0 aix

i =

0,∀x ∈ supp(f)} (i.e. the vector space of univariate representations of F2n -valued

annihilators of f of algebraic degree at most n − 1); the result also works for

C ′f , unless all nonzero annihilators of f have algebraic degree n, that is, unless

f = 1⊕ δa for some a ∈ F2n .

We consider now the cyclic code (also introduced in [869]) Cf = {(a1, . . . , a2n−1) ∈
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F2n−1
2n ;

∑2n−1
i=1 aix

i = 0,∀x ∈ supp(f)} (i.e. the subcode of Cf whose elements

are the univariate representations of F2n-valued annihilators of f null at po-

sition 0), punctured at 0. The minimum distance (i.e. nonzero weight) of C ′f
equals at least the minimum distance of Cf . Indeed, if f(0) = 1, then the min-

imum distances of Cf and Cf are equal to each other, and if f(0) = 0, then

Cf = {(0, 0, . . . , 0, 0), (1, 0, . . . , 0, 1)} + {0} × Cf and the minimum distance of

C ′f is then larger than or equal to that of Cf .

The interest of this observation is that Cf is cyclic and we can apply the BCH

bound to this cyclic code. This gives a direct lower bound on the minimum

algebraic degree of nonzero annihilators of f .

Relationship between normality and algebraic immunity
Normality of order larger than n

2 represents a weakness with respect to algebraic

immunity:

Proposition 134 For any positive n and k ≤ n, if an n-variable function f is

k-normal then its algebraic immunity is at most n− k.

Indeed, the fact that f(x) = ε ∈ F2 for every x ∈ A, where A is a k-dimensional

flat, implies that the indicator of A is an annihilator of f + ε. This bound is tight

since, being a symmetric Boolean function, the majority function (see page 366)

is bn2 c-normal for every n and has algebraic immunity dn2 e. Obviously, AI(f) ≤ `
does not imply conversely that f is (n−`)-normal, since when n tends to infinity,

for every a > 1, n-variable Boolean functions are almost surely non-(a log2 n)-

normal [222, 224] and the algebraic immunity is always bounded above by n
2 .

Functions in odd numbers of variables with optimal algebraic
immunity
In [188], A. Canteaut has observed the following property:

Proposition 135 If an n-variable balanced function f , with n odd, admits no

nonzero annihilator of algebraic degree at most n−1
2 , then it has optimal algebraic

immunity n+1
2 .

This result is a direct consequence of Proposition 136 below, which has been

proved later. It means that we do not need to check also that f ⊕ 1 has no

nonzero annihilator of algebraic degree at most n−1
2 for showing that f has

optimal algebraic immunity3.

The original proof (simplified in the end) of Proposition 135 is as follows: consider

the Reed-Muller code of length 2n and of order n−1
2 . This code is self-dual (i.e. is

its own dual), according to Theorem 9, page 177. Let G be a generator matrix of

this code. Each column of G is labeled by the vector of Fn2 obtained by keeping

its coordinates of indices 2, . . . , n + 1 (assuming that the first row of G is the

all-1 vector, corresponding to constant function 1, and that the next n rows

3 The same has been shown for n even but for (less interesting) unbalanced functions.
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correspond to the coordinate functions). Saying that f has no nonzero annihilator

of algebraic degree at most n−1
2 is equivalent to saying that the matrix obtained

by selecting those columns of G corresponding to the elements of the support of

f has full rank
∑n−1

2
i=0

(
n
i

)
= 2n−1. By hypothesis, f has Hamming weight 2n−1.

In terms of coding theory, the support of the function is an information set .

Then the complement of the support of f being an information set of the dual

(recall that if G = [Ik : M ] is a systematic generator matrix of a linear code, then

[−M t : In−k] is a parity check matrix of the code) and the code being self-dual,

this complement is also an information set of the code (i.e. the code is CIS, see

page 468).

More relationship between the existence of low degree
annihilators of f and of f ⊕ 1
We have, from [800] (we slightly modify the proof):

Proposition 136 If, for some k < dn2 e, we have rk(Mf,k) = wH(f) (i.e. all

the rows of Mf,k are F2-linearly independent), then rk(Mf⊕1,k) =
∑k
i=0

(
n
i

)
(i.e.

f ⊕ 1 has no nonzero annihilator of algebraic degree at most k).

Proof. Suppose there exists a nonzero annihilator g of algebraic degree at most

k of f ⊕ 1. We have then supp(g) ⊆ supp(f). Since all the rows of Mf,k are

F2-linearly independent, all those of Mg,k are F2-linearly independent, and for

every choice of (bx)x∈supp(g) ∈ FwH(g)
2 , the system of linear equations whose

matrix is Mg,k and whose constants are these bx has a solution. In particular,

for every x ∈ supp(g), there exists g′ of algebraic degree at most k such that

gg′ = δx (the Dirac symbol at x, i.e. the indicator function of the singleton {x}),
a contradiction with dalg(gg

′) ≤ dalg(g) + dalg(g
′) < n. 2

Minimum Hamming distance to functions of large algebraic
immunity bounded below by means of the dimensions of vector
spaces of functions
Lobanov has made in two papers [800, 801] the following observations (that we

gather in a single proposition):

Proposition 137 For any n-variable Boolean functions f, h and any integers

0 ≤ k, l ≤ n, we have:

dH(f, h) ≥ dim(Ank(h))− dim(Ank(f)) + dim(Anl(h⊕ 1))− dim(Anl(f ⊕ 1)).

Moreover, if d ≤ AI(f), then we have:

dH(f, h) ≥ dim(And−1(h)) + dim(And−1(h⊕ 1)). (9.4)

Proof. Among the rk(Mf,k) linearly F2-independent rows of Mf,k which can be

selected, there exist at least rk(Mf,k)−rk(Mh,k) = dim(Ank(h))−dim(Ank(f))

ones which are not rows of Mh,k, and there are then at least the same num-

ber of distinct elements of Fn2 in the support of f which are not in the support
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of h. We can apply this to f ⊕ 1 and h ⊕ 1 as well, with l in the place of k.

This gives the first inequality. Moreover, if d ≤ AI(f), then dim(And−1(f)) =

dim(And−1(f ⊕ 1)) = 0. This completes the proof. 2

Lobanov notes that, if k ≥ l, then the mapping (g1, g2) 7→ g1⊕g2 is an F2-linear

isomorphism between the vector spaces Ank(h)×Anl(h⊕ 1) and

Bk,l(h) = {g ∈ BFn; dalg(g) ≤ k and dalg(hg) ≤ l}.

Indeed, the image set of this mapping is included in Bk,l(h), since we have

(g1⊕g2)h = g2, and composing it with the mapping g ∈ Bk,l(h) 7→ (g⊕hg, hg) ∈
Ank(h)×Anl(h⊕ 1) gives identity. Hence, we have:

• dim(Ank(h)) + dim(Anl(h⊕ 1)) = dimBk,l(h),

• dim(Ank(f)) + dim(Anl(f ⊕ 1)) = dimBk,l(f),

• dim(And−1(h)) + dim(And−1(h⊕ 1)) = dimBd−1,d−1(h).

In [800] is shown4 that, for every d ≤ dn2 e and every function h such that

dim(And−1(h))+dim(And−1(h⊕1)) > 0, there exists f for which Bound (9.4) is

an equality and such that AI(f) ≥ d. Let us give a proof of this astonishingly gen-

eral result. Let C1 (resp. C0) be a maximal subset of supp(h) (resp. supp(h⊕1))

such that the corresponding rows of Mh,d−1 (resp. Mh⊕1,d−1) are F2-linearly in-

dependent. We have |C1| =
∑d−1
i=0

(
n
i

)
− dim(And−1(h)) and |C0| =

∑d−1
i=0

(
n
i

)
−

dim(And−1(h⊕ 1)). According to Proposition 136 applied to the indicator func-

tion 1C1
(resp. 1C0

) and with k = d−1, the ranks of M1C1
⊕1,d−1 and M1C0

⊕1,d−1

both equal
∑d−1
i=0

(
n
i

)
. Since C0 ⊆ supp(1C1

⊕1) (resp. C1 ⊆ supp(1C0
⊕1)), there

exists outside C1 ∪C0, a subset C ′0 of size
∑d−1
i=0

(
n
i

)
−|C0| = dim(And−1(h⊕ 1))

(resp. C ′1 of size
∑d−1
i=0

(
n
i

)
− |C1| = dim(And−1(h))) such that the rows of

M1C1
⊕1,d−1 (resp. M1C0

⊕1,d−1) corresponding to the elements of C0 ∪ C ′0 (resp.

C1 ∪ C ′1) are F2-linearly independent. Since C0 and C1 were taken maximal, we

have C ′1 ⊆ supp(h⊕1) and C ′0 ⊆ supp(h). The function f = h⊕1C′0⊕1C′1 satisfies

dH(f, h) = dim(And−1(h)) + dim(And−1(h⊕ 1)). And we have AI(f) ≥ d, since

rk(Mf,d−1) ≥ |C1|+ |C ′1| =
∑d−1
i=0

(
n
i

)
and therefore rk(Mf,d−1) =

∑d−1
i=0

(
n
i

)
and

similarly rk(Mf⊕1,d−1) =
∑d−1
i=0

(
n
i

)
.

Relationship between algebraic immunity, Hamming weight,
algebraic degree, nonlinearity and higher-order nonlinearity
We have seen that nonlinearity and algebraic degree are rather uncorrelated:

there are Boolean functions with high nonlinearity and low algebraic degree

(since there exist quadratic bent functions), with low nonlinearity and low al-

gebraic degree, with high nonlinearity and high algebraic degree5, and with low

nonlinearity and high algebraic degree. Interestingly, if we replace the algebraic

4 Originally was assumed the condition that the algebraic degree of h is at most dn
2
e, but

after clarifying the proof with M. Lobanov, we could see that this is not necessary.
5 But not with maximal nonlinearity and high algebraic degree because of the Rothaus

bound.
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degree by the algebraic immunity, the latter case can not happen. We need pre-

liminary results which have their own interest.

Proposition 138 [261] For every n-variable Boolean function, we have:

AI(f)−1∑
i=0

(
n

i

)
≤ wH(f) ≤

n−AI(f)∑
i=0

(
n

i

)
. (9.5)

Indeed, if the left-hand side inequality is not satisfied, then Mf,AI(f)−1 has rank

at most wH(f) <
∑AI(f)−1
i=0

(
n
i

)
, a contradiction. The right-hand side inequality

is obtained from the other one by replacing f by f ⊕ 1.

This implies again that AI(f) ≤ dn2 e (since applied with AI(f) ≥ dn2 e + 1, it

leads to a contradiction, because the lower bound is then strictly larger than the

upper bound) and it also implies that a function f such that AI(f) = n+1
2 (n

odd) must be balanced.

In [261, Lemma 1] has been stated:

Proposition 139 For any two n-variable Boolean functions f and h, we have:

AI(f)− dalg(h) ≤ AI(f ⊕ h) ≤ AI(f) + dalg(h). (9.6)

The proof was incomplete: let g 6= 0 be such that fg = 0 (resp. (f ⊕ 1)g = 0)

and have algebraic degree AI(f), then we have (f ⊕ h)((h ⊕ 1)g) = 0 (resp.

(f ⊕ 1⊕ h)((h⊕ 1)g) = 0); it was written that this proves the inequality on the

right since dalg((h⊕1)g) ≤ AI(f) +dalg(h), but this conclusion is correct only if

(h⊕1)g 6= 0. Let us address the case (h⊕1)g = 0: we have then (f ⊕h⊕1)g = 0

(resp. (f ⊕h)g = 0) and g being a nonzero annihilator of f ⊕h⊕ 1 (resp. f ⊕h),

we have AI(f ⊕ h) ≤ AI(f) ≤ AI(f) + dalg(h). This completes the proof of the

inequality on the right. Applying it to f⊕h instead of f gives then the inequality

on the left.

Note that these relations are valid if f and h are defined on different (maybe

intersecting) sets of variables and n is the global number of variables (indeed, al-

gebraic immunity does not change if we consider a function with more variables,

the additional variables being fictitious). Moreover, if these sets of variables are

disjoint, then we have AI(f) ≤ AI(f ⊕ h) ≤ AI(f) + dalg(h), since it is then

possible to obtain a nonzero annihilator of algebraic degree AI(f ⊕ h) of f or of

f ⊕ 1 as the restriction of a nonzero annihilator of f ⊕ h or of f ⊕ h⊕ 1.

It is deduced in [261] that low nonlinearity implies low algebraic immunity

(but high algebraic immunity does not imply high nonlinearity, as well as high

nonlinearity does not imply high algebraic immunity): Relation (9.5) applied to

f ⊕ h with h affine and Relation (9.6) show that:

nl(f) ≥
AI(f)−2∑
i=0

(
n

i

)
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and more generally (by applying Relation (9.5) to f ⊕ h with dalg(h) ≤ r):

nlr(f) ≥
AI(f)−r−1∑

i=0

(
n

i

)
. (9.7)

These lower bounds, which play a role with respect to probabilistic algebraic

attacks, see [792, 793], have been improved in all cases for the first order nonlin-

earity into

nl(f) ≥ 2

AI(f)−2∑
i=0

(
n− 1

i

)
by Lobanov [798, 799] and in most cases for the r-th order nonlinearity into

nlr(f) ≥ 2

AI(f)−r−1∑
i=0

(
n− r
i

)
(9.8)

in [228] (in fact, the improvement was slightly stronger than this, but more

complex). Another improvement:

nlr(f) ≥
AI(f)−r−1∑

i=0

(
n

i

)
+

AI(f)−r−1∑
i=AI(f)−2r

(
n− r
i

)
(9.9)

(which always improves upon (9.7) and improves upon (9.8) for low values of

r) has been subsequently obtained by Mesnager in [849] and slightly later by

Lobanov in [800], who gives a general proof for all these bounds, that we recall

below. Precisions on the bounds, involving the maximum between the minimal

algebraic degree of the nonzero annihilators of f and the minimal algebraic degree

of the nonzero annihilators of f ⊕ 1, have been also given in [998].

Here is Lobanov’s general proof: Bound (9.4), page 359, and the observations

which follow it imply that, for every n-variable Boolean function f and every

positive integer r ≤ n, we have6:

nlr(f) ≥ min
h∈BFn,dalg(h)≤r

dim(BAI(f)−1,AI(f)−1(h)). (9.10)

Then, if dalg(h) = r:

• dim(Bk,k(h)) ≥
∑k−r
i=0

(
n
i

)
, because all n-variable functions of algebraic degree

at most k − r belong to Bk,k(h); then (9.10) implies (9.7),

• dim(Bk,k(h)) ≥ 2
∑k−r
i=0

(
n−r
i

)
, because, if

∏
i∈I xi is a monomial of degree

r in the ANF of h, then all n-variable functions of the form hg1 ⊕ (h ⊕
1)g2 where g1, g2 have algebraic degree at most k − r and depend only

on variables xi, i 6∈ I, belong to Bk,k(h) and are distinct since the linear

mapping (g1, g2) 7→ hg1 ⊕ (h⊕ 1)g2 has trivial kernel, because hg1 ⊕ (h⊕
1)g2 = 0 if and only if hg1 = (h⊕ 1)g2 = 0; then, (9.10) implies (9.8),

6 A slightly more complex bound is deduced in [801] from the first bound in Proposition

137, which allows to improve upon lower bounds (9.8) and (9.9) in some sub-cases.
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• dim(Bk,k(h)) ≥
∑k−r
i=0

(
n
i

)
+
∑k−r
i=k−2r+1

(
n−r
i

)
, because, if

∏
i∈I xi is a mono-

mial of degree r in the ANF of h, then all n-variable functions of the form

g1 ⊕ hg2 where g1, g2 have algebraic degree at most k − r and g2 depends

only on variables xi, i 6∈ I, and has only monomials of degree at least

k − 2r + 1, belong to Bk,k(h) and are distinct since the linear mapping

(g1, g2) 7→ g1 ⊕ hg2 has trivial kernel; then (9.10) implies (9.9).

An obvious upper bound on the higher-order nonlinearity exists which also

involves the algebraic immunity, as observed in [227]: if AI(f) ≤ r and if f is

balanced, then we have nlr(f) ≤ 2n−1 − 2n−r, since by hypothesis, there exists

a nonzero function g of algebraic degree at most r such that g � f or g � f ⊕ 1,

and g being nonzero and belonging to the Reed-Muller code of order r, it has

Hamming weight at least the minimum distance of this code, that is 2n−r. If

g � f for instance, then dH(f, g) = wH(f ⊕ g) = wH(f)−wH(g) ≤ 2n−1 − 2n−r

and nlr(f) ≤ 2n−1 − 2n−r.

A bound between nlr(f) and FAI(f) has been also given in [1106]: nlr(f) ≥∑bFAI(f)−r
2 c

i=0

(
n
i

)
, but the proof has several shortcomings and the result seems

false. For instance, with the help of a computer, we can check that the unbalanced

function in [1068] with n = 6 has FAI 6 and the result above would imply

that there exists a function with second-order nonlinearity at least 22, but it is

known that the covering radius of RM(2,6) is 18. In fact, FAI(f)− r should be

FAI(f)−r−1 in this bound, but even if such correction is made, the proof does

not address all issues. Such a result is important to show that some functions

cannot have good behavior against fast algebraic attacks, like functions obtained

by modifying bent functions (e.g. those of [1091]). We give in the next theorem a

corrected result (the first bound in Theorem 22 is more or less the only interesting

one; we include also the second to give a correct alternative to a bound given in

Ref. [1106] and to show what were the difficulties missed by its proof).

Theorem 22 For any positive integer n and any non-negative integer r ≤ n, let

f be any n-variable function and k = min {dalg(g) + dalg(fg); g 6= 0}. We have

then:

nlr(f) ≥
b k−r−1

2 c∑
i=0

(
n

i

)
.

Moreover, if nlr(f) 6= 0 and if AI(f) > AI(f ⊕ h) for at least one function h of

algebraic degree at most r such that dH(f, h) = nlr(f), then:

nlr(f) ≥
bFAI(f)−r−1

2 c∑
i=0

(
n

i

)
.

Proof. Suppose first that nlr(f) <
∑b k−r−1

2 c
i=0

(
n
i

)
. Let h be a Boolean function of

algebraic degree at most r whose Hamming distance wH(f⊕h) to f equals nlr(f).

Since f ⊕h has Hamming weight strictly smaller than
∑b k−r−1

2 c
i=0

(
n
i

)
, the rank of
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matrix Mf⊕h,b k−r−1
2 c is also strictly smaller and there exists a nonzero annihila-

tor g of f ⊕h whose algebraic degree is at most
⌊
k−r−1

2

⌋
. We have then fg = hg

with g 6= 0 and dalg(g) + dalg(fg) = dalg(g) + dalg(hg) ≤ 2
⌊
k−r−1

2

⌋
+ r < k, a

contradiction.

We address now the second bound. Suppose that nlr(f) <
∑bFAI(f)−r−1

2 c
i=0

(
n
i

)
and let us fix h of algebraic degree at most r such that AI(f) > AI(f ⊕ h).

For such h, similarly to above, there exist annihilators g 6= 0 of f ⊕ h such that

dalg(g) ≤
⌊
FAI(f)−r−1

2

⌋
and one of these annihilators at least has algebraic de-

gree AI(f ⊕ h) < AI(f). Then:

- if one of these annihilators equals constant function 1, then f = h and therefore

nlr(f) = 0, a contradiction;

- in the other case, we arrive to a contradiction as above. 2

For instance, if k is near from n and r = n/2, we have nln/2(f) ≥
∑λn
i=0

(
n
i

)
≥

2nH2(λ)√
8nλ(1−λ)

, where λ ≈ 1
4 (cf. [809, page 310]), and where H2(x) = −x log2(x)−

(1 − x) log2(1 − x) is the entropy function, whose value at 1
4 equals 1

2 + 3
4 (2 −

log2(3)) = 2− 3
4 log2(3) ≈ 0.8. Note that 2

n
2−1 is then negligible with respect to

2nH2(λ)√
8nλ(1−λ)

(this will play a role at page 370).

Remark. If nlr(f) 6= 0, the condition g 6= 0 in the definition of k can be replaced

by dalg(g) ≥ 1. Indeed, if there is no other nonzero annihilator of f⊕h of algebraic

degree at most
⌊
k−r−1

2

⌋
than g = 1, this means that k ≤ r + 1. If k ≤ r then⌊

k−r−1
2

⌋
< 0 and the result holds, and if k = r+ 1, then the only case where the

bound would not hold is if nlr(f) = 0, which is excluded. 2

9.1.2 The problem of finding functions achieving high algebraic immunity and
high nonlinearity

Recall that, in the framework of stream ciphers, we do not have security proofs

but we need functions allowing resistance to all known attacks and having enough

randomness for hoping they will not be too weak against new attacks. These func-

tions must be as fastly computable as possible.

No known primary construction viewed in Chapters 5, 6 and 7 allows obtaining

classes of functions satisfying all important criteria and no secondary construc-

tion is known for designing new functions satisfying all the criteria from already

defined functions satisfying them. We know however that functions achieving

optimal or suboptimal algebraic immunity and at the same time high algebraic

degree and high nonlinearity must exist thanks to the results of [437, 1000]. But

knowing that almost all functions have high algebraic immunity does not mean

that constructing such functions is easy.

Lobanov’s bound seen at page 362 does not ensure high enough nonlinearity:

• For n even and AI(f) = n
2 , it gives nl(f) ≥ 2n−1 − 2

(
n−1
n
2−1

)
= 2n−1 −

(
n
n
2

)
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which is much smaller than the best possible nonlinearity 2n−1 − 2
n
2−1 and,

more problematically, much smaller than the asymptotic almost sure nonlinear-

ity of Boolean functions, which is, when n tends to ∞, located in the neigh-

borhood of 2n−1 − 2
n
2−1
√

2n ln 2 as we saw. Until 2008, the best nonlinearity

reached by the known functions with optimal AI was that of the majority func-

tion and of the iterative construction (see more details below on these functions):

2n−1 −
(
n−1
n
2

)
= 2n−1 − 1

2

(
n
n
2

)
[409]. This was a little better than what gives

Lobanov’s bound, but insufficient.

• For n odd and AI(f) = n+1
2 , Lobanov’s bound gives nl(f) ≥ 2n−1−

(
n−1

(n−1)/2

)
'

2n−1 − 1
2

(
n

(n−1)/2

)
which is a little better than in the n even case, but still far

from the average nonlinearity of Boolean functions. Until 2008, the best known

nonlinearity was that of the majority function and matched this bound.

Efficient algorithms have been given in [27, 438, 439] for computing the algebraic

immunity, with respective complexities O
(

2n
(

n
AI(f)

))
and O

(
n2n

(
n

AI(f)

))
(the

latter being slightly worse but on the other hand the amount of memory needed

being smaller). Algorithms for evaluating the immunity to fast algebraic attacks

are also given in these references with complexity O
(
e
(
d+1
e

)(
n
e

)√(
n
d

)
+
(
n
e

)3)
,

where e is significantly smaller than AI(f) and d is comparable to AI(f), and

O
(
n2n

(
n
k

))
where k is the degree of the algebraic system to be solved in the last

step of the attacks. They showed the poor resistance of the majority function

to FAA. In [997, 999] were introduced three matrices to evaluate the behavior

of Boolean functions against fast algebraic attacks using univariate polynomial

representation. Later was shown in [794] that one matrix is enough.

9.1.3 The functions with high algebraic immunity found so far and their
parameters

Sporadic functions
In [407] are exhibited 7-variable rotation symmetric (RS) functions with nonlin-

earity 56, resiliency order 2 and algebraic immunity 4, and a large number of

8-variable RS functions with nonlinearity 116, resiliency order 1 and algebraic

immunity 4. These authors claimed there exist such functions having good resis-

tance against fast algebraic attacsks, but Siegenthaler’s bound shows that this

resistance is limited and 8 variables is small; rotation symmetry presents also a

risk that the attacker can use such strong structure in specific attacks.

Balanced highly nonlinear functions in up to 20 variables (derived from power

functions) with high algebraic immunities have been exhibited in [279] and [27].

Some other interesting ideas of constructions have been proposed, either using

simulated annealing [836] (but the number of variables is limited, the gain in

terms of nonlinearity is not large, and of course, this cannot produce infinite

classes) or by using genetic hill climbing algorithm, starting from the function

of Theorem 23 that we shall see at page 368 and applying a few swaps on its

truth table [694] (this can increase a little its nonlinearity but it could not lead
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to infinite classes either).

In [1031] are calculated the algebraic immunity and nonlinearity of the 20-

variable function used as nonlinear filter in the lightweight stream cipher Hitag2.

The algebraic immunity is no more than 6.

Note that the construction of Proposition 85, page 262, allows increasing the

complexity of Boolean functions while keeping their high nonlinearities and may

allow increasing their algebraic immunity as well.

Primary constructions of infinite classes of functions, with
insufficient nonlinearity
- The majority function, considered by Key, McDonough and Mavron [691] in the

context (equivalent to that of algebraic immune functions) of the erasure channel,

and rediscovered in the context of algebraic immunity [409, 127]), defined as

f(x) = 1 if wH(x) ≥ n
2 and f(x) = 0 otherwise7, has optimal algebraic immunity.

Note that, for n odd, Proposition 135 materializes, in the case of this function,

in a rather simple way, since (f ⊕ 1)(x) = f(x + 1n) and f and f ⊕ 1 are

then affine equivalent. The proof of its optimal algebraic immunity is easy. We

give it for n odd (the case n even is slightly more technical): an annihilator

of f ⊕ 1 being equal to 0 at every input of Hamming weight at most n−1
2 ,

Relation (2.4), page 50, makes that its ANF has no term of degree at most
n−1

2 ; a nonzero annihilator must then have algebraic degree at least n+1
2 . The

majority function is balanced when n is odd. It is a symmetric Boolean function

(which can represent a weakness but also allows using it with more variables

while ensuring the same or even a better speed), and when n is odd it is the only

one with optimal AI, up to the addition of function 1, see more at page 389. It has

two main weaknesses: its nonlinearity is weak8 since, according to [409], it equals

2n−1 −
(
n−1
bn/2c

)
, which for n odd matches Lobanov’s bound 2

∑dn/2e−2
i=0

(
n−1
i

)
=

2n−1 −
(

n−1
(n−1)/2

)
, and for n even is slightly larger than Lobanov’s bound, equal

then to 2n−1 − 2
(
n−1
n/2−1

)
, but is not large enough, and its resistance to fast

algebraic attacks is bad too (as shown in [27], there exist Boolean functions g 6= 0

and h such that fg = h, where dalg(h) = bn/2c + 1 and dalg(g) = dalg(h) − 2j ,

where j is maximum so that this number is strictly positive). The nonlinearity

has been determined in [409]; the proof using Krawtchouk polynomials is very

technical and cannot be included here. A simpler proof has been given by Cusick

(and not published). There is a way of showing that the nonlinearity of the

majority function (which is adaptable to many other functions similar to it)

cannot be good: let us take for instance n odd and apply the second-order Poisson

formula (2.57), page 81, with E = {x ∈ Fn2 ; x � b} where b is a vector of

7 Changing wH(x) ≥ n
2

into wH(x) > n
2

or wH(x) ≤ n
2

or wH(x) < n
2

changes the function
into an affinely equivalent one, up to addition of the constant 1, and therefore does not
change the AI.

8 This crippling drawback is shared by all the classes of rotation symmetric functions (see

definition in Section 10.2, page 392) with optimal AI presented in numerous papers, which
are then not mentioned in this book.



9.1 Algebraic immune Boolean functions 367

Hamming weight n−1
2 , and E′ = E⊥ = {x ∈ Fn2 ; x � b+ 1n}. For every a ∈ E′,

when x ranges over E, the Hamming weight of a+x equals wH(a)+wH(x) (since

the two vectors have disjoint supports) and is larger than or equal to n+1
2 if and

only if wH(x) ≥ n+1
2 − wH(a). Hence, we have F(ha) =

∑n−1
2 −wH(a)

i=0

(n−1
2
i

)
−∑n−1

2

i=n+1
2 −wH(a)

(n−1
2
i

)
=
∑n−1

2 −wH(a)
i=0

(n−1
2
i

)
−
∑wH(a)−1
i=0

(n−1
2
i

)
=


∑n−1

2 −wH(a)

i=wH(a)

(n−1
2
i

)
if wH(a) ≤ n−1

4

−
∑wH(a)−1

i=n+1
2 −wH(a)

(n−1
2
i

)
if wH(a) ≥ n+3

4

.

The absolute value of F(ha) is then larger than or equal to
( n−1

2

bn−1
4 c

)
, unless it

is null, that is, unless n−1
2 − wH(a) = wH(a) − 1, which happens only if n ≡ 3

[mod 4] and wH(a) = n+1
4 . Since b+ 1n has Hamming weight n+1

2 , the size of E′

equals 2
n+1

2 . According to (2.57), the arithmetic mean of W 2
f (u) when u ∈ E⊥

is then at least (2
n+1

2 − 1)
(( n−1

2

bn−1
4 c

))2

≈ 2
3n−1

2 (recall that the Stirling formula

implies that
(
n
n/2

)
∼ 2n

√
2
πn ) and therefore nl(f) is smaller than or equal to

approximately 2n−1 − 2
3n−3

4 . The algebraic degree of the majority function is

determined in [409] and equals 2blog2(n)c.

Some variants of the majority function have also optimal algebraic immunity

and are balanced for n even, but they have more or less the same drawbacks.

It is proved in [127] that, for n even, changing the value at 1n of the majority

function preserves its optimal algebraic immunity, as well as, for n ≥ 8, changing

its values at the inputs of Hamming weights n
2 ±4 and, for n ≥ 10, making these

two changes simultaneously. All such functions happen to be weak against FAA

as shown in [27].

- An iterative construction of an infinite class of functions with optimal alge-

braic immunity has been given in [408] and further studied in [261]; however,

the functions it produces are neither balanced (which can be fixed) nor highly

nonlinear (which cannot, unless many variables are added) and it is weak against

fast algebraic attacks, as also shown in [27].

- More numerous functions with optimal algebraic immunity were given in [230].

Among them are functions with better nonlinearities, but the method did not

allow to reach high nonlinearities (see [328]) and some functions constructed

in [766, 767] seem still worse from this viewpoint. In [929] was introduced an

iterative concatenation method for constructing maximum AI functions with

suboptimal FAI, but the nonlinearity of the resulting functions was insufficient.

Hence, the question of designing infinite classes of functions achieving all the

necessary criteria remained open after these papers.
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A first primary construction of an infinite class of functions
satisfying all criteria
A function with optimal algebraic immunity, good immunity to fast algebraic

attacks, provably much better nonlinearity than the functions mentioned above,

and in fact, according to computer investigations, quite sufficient nonlinearity,

has been exhibited in 2008 (five years after the invention of algebraic attacks)

in [273]. This primary construction is defined over the field F2n . It has been origi-

nally defined as the Boolean function whose support equals {0, 1, α, . . . , α2n−1−2},
where α is any primitive element of F2n . This original function is the Boolean

(single-output) case of a class of vectorial functions studied in Ref. [500], where

the optimal algebraic immunity was proved. The contribution of [273] (which

made that the authors of the subsequent papers gave to these functions the name

of Carlet-Feng functions) was to observe that all the cryptographic parameters

of this function were good (not only the algebraic immunity) and to provide a

simpler proof of the optimal algebraic immunity, which gave a better view on

why it happens. The proof has been later slightly simplified further in [242].

The authors of the papers which soon after 2008 have modified this function in

order to find more functions [1091, 1148] preferred using the function of support

{αs, · · · , α2n−1+s−1} where s is some integer. The two definitions coinciding for

s = 2n−1 − 1 up to addition of constant function 1, and two different values of s

giving linearly equivalent functions, the two definitions deal with essentially the

same function. In the next theorem, we take the modified definition9.

Theorem 23 [500, 273] For every positive integer n, every integer s and every

primitive element α of F2n , the balanced Boolean function over F2n whose support

is {αs, · · · , α2n−1+s−1} has optimal algebraic degree n−1 and optimal algebraic

immunity dn2 e.

Proof. It is shown in [273] that the univariate representation of the original

function equals: 1 +

2n−2∑
i=1

αi

(1 + αi)1/2
xi, where u1/2 = u2n−1

, which shows that

the algebraic degree of f equals n − 1 (optimal for a balanced function). This

proves the first property. Up to linear equivalence, s can be taken equal to 0. Let

g be any Boolean function of algebraic degree strictly less than n and g(x) =∑2n−2
i=0 gix

i, gi ∈ F2n , its univariate representation in the field F2n (since g has

algebraic degree less than n, we have g2n−1 = 0). Then:
g(1)

g(α)

g(α2)
...

g(α2n−2)

 =


1 1 1 · · · 1

1 α α2 · · · α2n−2

1 α2 α4 · · · α2(2n−2)

...
...

... · · ·
...

1 α2n−2 α2(2n−2) · · · α(2n−2)(2n−2)

×


g0

g1

g2

...

g2n−2

 .

9 This same function has been later re-discovered with another presentation by Q. Wang, J.
Peng, H. Kan and X. Xue in IEEE Transactions on Inf. Th., as shown in [238] (and in

another paper published later by H. Chen, T. Tian and W. Qi in DCC).
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If g is an annihilator of f , then g(1) = g(α) = · · · = g(α2n−1−1) = 0 and the

coefficients g0, . . . , g2n−2 satisfy then:
1 1 1 · · · 1

1 α α2 · · · α2n−2

1 α2 α4 · · · α2(2n−2)

...
...

... · · ·
...

1 α2n−1−1 α2(2n−1−1) · · · α(2n−1−1)(2n−2)

×


g0

g1

g2

...

g2n−2

 =


0

0

0
...

0

 .

If at most 2n−1 of the gi’s are nonzero, then erasing 2n−1 − 1 null coefficients

(and the corresponding matrix columns) from the system above leads to a ho-

mogeneous system of linear equations whose matrix is a 2n−1 × 2n−1 Vander-

monde matrix and is then nonsingular. We have then proved that the vector

(g0, · · · , g2n−2) is either null or has Hamming weight at least 2n−1 + 1 (in the

framework of coding theory, this result is called the BCH bound). This implies

that any nonzero annihilator of f has algebraic degree at least dn2 e (since oth-

erwise, the number of its nonzero coefficients would be at most 2n−1, because∑dn/2e−1
i=0

(
n
i

)
≤ 2n−1).

If g is an annihilator of f⊕1, then we have g(αi) = 0 for every i = 2n−1, . . . , 2n−2,

and for the same reasons as above, the vector (g0, . . . , g2n−2) has Hamming

weight at least 2n−1. Moreover, suppose that function g has algebraic degree at

most n−1
2 and that the vector (g0, . . . , g2n−2) has Hamming weight 2n−1 exactly.

Then n is odd and all the coefficients gi; 0 ≤ i ≤ 2n − 2, w2(i) ≤ (n − 1)/2, are

nonzero10, but g0 6= 0 contradicts then g(0) = 0. This completes the proof. 2

The nonlinearity of the function is also good, at least for values of n for which

the function can be used in stream ciphers. In fact, this nonlinearity had been

previously studied in [129] (but the algebraic immunity was not considered there)

and a lower bound on the nonlinearity was shown, similar to the one later given

in [273]:

nl(f) ≥ 2n−1 − n · ln 2 · 2n2 − 1. (9.11)

Bound (9.11) is not sufficient for showing that f has good nonlinearity. It has

been improved several times, but the improvements are marginal and insufficient

for asserting that the function allows resisting the fast correlation attack. The

actual values of the nonlinearity have been computed up to n = 26 and happen

to be very good and quite sufficient for such a resistance. Note that the nonlinear-

ity depends on the choice of the primitive element α and the bounds mentioned

above are in fact bounds on the minimum Hamming distance between f and

all functions of the form tr(axj + b) where j is co-prime with 2n − 1, that we

can call the hyper-nonlinearity (in relation to the notion of hyper-bent function

seen in Definition 57, page 270). It is an open question to determine whether a

10 There is a small inaccuracy in what is written in the proofs provided in [236, 242, 273]

since the gi’s are not necessarily in F2.
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significantly better lower bound on the hyper-nonlinearity of f can be proved

(some ideas are given in [248, Subsection 4.2]) or if the gap between the bound

and the actual hyper-nonlinearity reduces when n takes values larger than 26.

The good resistance to fast algebraic attacks has first been checked by com-

puter for n ≤ 12, using an algorithm from [27], and later shown mathematically

in [793] for all n:

Proposition 140 Let e be a positive integer less than n
2 and f be the function

of Theorem 23. Then, if
(
n−1
e

)
is even, there exists no non-zero function g with

algebraic degree at most e such that fg has algebraic degree at most n − e − 1,

and if
(
n−1
e

)
is odd, there exists no non-zero function g with degree at most e

such that fg has degree at most n− e− 2.

In particular, f is PAI (see page 352) when n is a power of 2, plus 1 (this was

known before only for n = 3, 5, 9).

The computation of the function of Theorem 23 is reasonably fast, at least

for some values of n ≤ 20. This may seem surprising, because the complexity of

its computation is clearly the same as that of the discrete logarithm, which is

known to be asymptotically high (this has led to a whole branch of public key

cryptography), but for small values of n (like n ≤ 20), the function is fast to be

computed, all the more if 2n−1 is the product of small factors (this is the case of

18 and 20 for instance), because this allows using the Pohlig-Hellman algorithm;

in the case of these two values of n, computing one output bit per cycle is possible

with 40,000 transistors, as observed in [238]. This allows avoiding needing using

a look-up table (of about one mega-bits, which is too heavy for some devices)

for computing the output of the function.

Hence, the functions of this class gather all the properties needed for allowing

the stream ciphers using them as filtering functions to resist all the main attacks

(the Berlekamp-Massey (BM) algorithm, fast correlation attacks, standard and

fast algebraic attacks, and Rønjom-Helleseth attacks).

Modifications of the functions of Theorem 23
- Classes of functions have been proposed, obtained by replacing a part of

the support of the function by another part of the same size. In [997] is pro-

posed a matrix approach (instead of the BCH bound) for proving optimal AI,

and the (balanced) function of support {1, α, . . . , α
∑dn

2
e−1

i=1 (ni)} ∪ U , where U ⊂
{α
∑dn

2
e−1

i=0 (ni), . . . , α1+
∑dn

2
e

i=0 (ni)} has size 2n−1 −
∑dn2 e−1
i=0

(
n
i

)
, is proved to have

optimal AI. In [1148] are proposed three classes based on the same method; for

some values of n, better nonlinearity than with the function of Theorem 23 could

be reached and for other values of n, the nonlinearity is worse. The good resis-

tance to FAA has been checked by computer for small values of n.

- Another kind of modification of this same function has been proposed in [1091].

It is based on the PSap construction. The so-called Tu-Deng function is the 2n-
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variable function defined over F2
2n mapping (x, y) to f(xy2n−2), where f is the

function of Theorem 23. Note that xy2n−2 equals x
y when y 6= 0 and is null

when y = 0. Since f is balanced, the Tu-Deng function is bent (and therefore

has optimal nonlinearity 22n−1 − 2n−1) as we saw at page 238. Moreover, its AI

has optimal value n, up to a combinatorial conjecture which was still an open

problem (studied in [513] and other papers but not solved yet) when this book

was written, but which has been checked up to n = 29; this is quite enough

in cryptographic context, since n = 29 makes 58 variables. We know that bent

functions are not balanced, but it is shown in [1091] that modifying 2n−1 output

values of the Tu-Deng function can give a balanced function with optimal AI

and very large nonlinearity.

Unfortunately, the resulting balanced function lies then at Hamming distance

at most 2n−1 from the Reed-Muller code of order n and length 22n (the set of

Boolean functions in 2n variables of algebraic degree at most n), since because

of Theorem 13, page 224, any 2n-variable bent function has algebraic degree

at most n. According to Theorem 22, page 363, and to the observation which

follows it, applied with 2n instead of n and with r = n, the balanced function

is weak against fast algebraic attacks (see more precise calculations in [1106,

Lemmas 1-2]), as are the 1-resilient functions obtained from it in some papers

by modifying a few terms.

The Tu-Deng construction has been generalized to vectorial functions in [501].

- The Tu-Deng function has been modified in [1068] into a class of 2n-variable

functions having the same nice properties as the function of Theorem 23. As

recalled in the survey [242]:

Proposition 141 Let n = 2rm ≥ 2, where r ≥ 0 and m > 0 is odd, and let f

be the function of Theorem 23. We consider the functions:

f1(x, y) = f(xy);x, y ∈ F2n , (9.12)

f2(x, y) =

{
f1(x, y), x 6= 0

u(y), x = 0
(9.13)

where u is a balanced Boolean function on F2n satisfying u(0) = 0, deg(u) = n−1,

and maxa∈F2n
|Wu(a)| ≤ 2

m+1
2 if r = 0 and maxa∈F2n

|Wu(a)| ≤
r∑
i=1

2
n

2i + 2
m+1

2

if r ≥ 1. Then f2 is balanced, f1 and f2 have optimal AI (equal to n), f1 has

algebraic degree 2n− 2, f2 has algebraic degree 2n− 1, nl(f1) > 22n−1−
(

ln 2
π n+

0.42
)
2n − 1.

There is a little more complex lower bound on nl(f2), first given in [1068] and

later improved in [1108]; it is slightly smaller than for nl(f1). Function u does

exist, see [1076, 1149].

The proof of optimal AI is obtained up to a conjecture similar to that of Tu-

Deng, but slightly different, which has been finally proved in [374]. The same gap

between the bound on the nonlinearity of f2 and its actual values is observed
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when computing them up to n = 19, see [1068]. The nonlinearities of f2 and f

are similar when they are taken with the same numbers of variables; in some

cases nl(f) is better and in some cases nl(f2) is better. The good behavior of f2

with respect to FAA has been shown mathematically in [794].

In [789, 790] is introduced a larger class of functions achieving optimal algebraic

immunity and almost perfect immunity to fast algebraic attacks. The exact non-

linearity of some functions of this larger class is good (slightly smaller than that

of Carlet-Feng function), and some functions of this family have a slightly larger

nonlinearity than those of [1068] with the same numbers of variables. The class

of [789, 790] also contains a class presented in [644] whose resistance to fast al-

gebraic attacks is also studied in [794, 789, 790] without that a positive answer

be clearly obtained. The class of [1068] is modified in [1069] to ensure first-order

resiliency.

Other constructions
Constructions, that we shall not detail, are given in [761, 777, 997] and other

papers, as well as constructions in [587, 1172, 1124, 796] based on the decompo-

sition of the multiplicative group of F∗2n corresponding to what we called polar

representation at page 191 or more general multiplicative decompositions.

In [776] is proposed a new method, based on deriving new properties of minimal

codewords of the punctured Reed-Muller code RM∗(bn−1
2 c, n). Recall that we say

that a vector (a0, . . . , aN−1) ∈ FN2 is covered by a vector (c0, . . . , cN−1) ∈ FN2 if

for every i = 0, . . . , N − 1, we have ci = 0⇒ ai = 0, and that the codewords of

cyclic codes are represented by polynomials (see page 27).

Proposition 142 [776] Let n be an integer, α ∈ F2n be a primitive element,

and let f be the n-variable Boolean function with supp(f) = {αm0 , . . . , αms},
where m0 = 0 and m0 < · · · < ms < 2n − 1. Then f ⊕ 1 has no annihilator

with algebraic degree less than
⌈
n
2

⌉
if and only if there is no nonzero even weight

codeword of the cyclic code RM∗(bn−1
2 c, n) covered by c(x) = 1+xm1 +· · ·+xms .

This result allows generalizing the function of Theorem 23 for any n, and leads

for n odd, thanks to Proposition 135, to large classes of new functions with

optimal algebraic immunity and good behavior against fast algebraic attacks,

and high nonlinearity.

9.1.4 Secondary constructions of algebraic immune functions

Algebraic immunity and direct sum
For any positive integers n,m, any n-variable function f and anym-variable func-

tion g depending on disjoint sets of variables, denoting r = max (dalg(f), dalg(g)),

we have:

max(AI(f), AI(g)) ≤ AI(f ⊕ g) ≤ min (AI(f) +AI(g), r). (9.14)
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Indeed, for some ε, η ∈ F2, let h be a nonzero annihilator of algebraic degree

AI(f) of f ⊕ ε and k a nonzero annihilator of algebraic degree AI(g) of g ⊕ η,

then the product of h and k is a nonzero11 annihilator of algebraic degree at most

AI(f) +AI(g) of f ⊕ g⊕ ε⊕ η, and we know also that AI(f ⊕ g) ≤ dalg(f ⊕ g).

This proves the right-hand side inequality. And if h is a nonzero annihilator of

the (n+m)-variable function f ⊕ g, then at least one of its restrictions obtained

by fixing x (resp. y) in f(x) ⊕ g(y) is nonzero; this proves the left-hand side

inequality.

Remark When the sum is not direct, the inequality AI(f ⊕ g) ≤ AI(f) +AI(g)

can be false [227]: let h be an n-variable Boolean function and let l be an n-

variable nonzero linear function, then the functions f = hl and g = h(l⊕1) have

algebraic immunities at most 1, since f(l⊕ 1) = gl = 0, and their sum equals h.

If AI(h) > 2, we obtain a counter-example. 2

Of course, the double inequality of (9.14) generalizes to the direct sum of more

than two functions. We have also FAI(f ⊕ g) ≥ max(FAI(f), FAI(g)) and

FAC(f ⊕ g) ≥ max(FAC(f), FAC(g)). These inequalities are not valid if the

sum of f and g is not direct.

The algebraic immunity of direct sums of monomials is studied in Section 10.3,

see Relation (10.6) at page 395. The upper bound in (9.14) is tight. It is shown

in [305] that the upper bound is achieved with equality when the function with

the lower algebraic immunity (in a broad sense) is non-constant and the other

function f and its complement f⊕1 have different nonzero annihilator minimum

degrees (this is applied in particular to determine the algebraic immunity of the

direct sum of a threshold function, see page 390, and affine functions). Another

example where the upper bound is achieved with equality is with the direct sum

g of an n-variable function f and of a monomial m of degree AI(f)+1; as shown

in [279], this gives indeed a function of algebraic immunity AI(f)+1 because the

restriction h1 to Fn2×{0AI(f)+1} of a nonzero degree at most AI(f) annihilator h

of g is an annihilator of f , which then either has algebraic degree AI(f) or is null,

and in the former case, gh = 0 is impossible because mh1 has degree 2AI(f) + 1

while m(h1⊕h) has degree at most 2AI(f) (since each monomial of h+h1 has at

least one coordinate in common with m), and in the latter case, fh cannot con-

tain multiples of m and then cannot equal mh since dalg(h) ≤ AI(f) < dalg(m).

We shall see at page 395 with triangular functions an example of application.

Note that the upper bound in (9.14) shows that the direct sum of two functions

can have optimal algebraic immunity only if each has optimal algebraic immu-

nity, except when both are in odd dimension (an example of a direct sum with

maximal algebraic immunity of two functions not both having optimal algebraic

immunity is function x1⊕x2x3⊕x4x5x6, of algebraic immunity 3 in 6 variables,

which is the direct sum of x1⊕x2x3, of algebraic immunity 2 in 3 variables, and

11 Thanks to the fact that h and k depend on disjoint sets of variables.
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of x4x5x6, of algebraic immunity 1 in 3 variables).

The lower bound of (9.14) is also tight. An example where the lower bound

is an equality is with two functions f(x) and g(y) whose algebraic immuni-

ties equal their algebraic degrees, since we have then max(dalg(f), dalg(g)) =

max(AI(f), AI(g)) ≤ AI(f ⊕ g) ≤ dalg(f ⊕ g) = max(dalg(f), dalg(g)). In [305]

is observed that if dalg(g) > 0 and if (say) max (AI(f), AI(g)) = AI(f) and if

f⊕1 has no nonzero annihilator of algebraic degree AI(f), then the lower bound

cannot be an equality.

Algebraic immunity and Siegenthaler’s construction
Proposition 143 [261] Let f, g be two n-variable Boolean functions with AI(f) =

d1 and AI(g) = d2. Let h = (1⊕ xn+1)f ⊕ xn+1g ∈ BFn+1. Then:

1. If d1 6= d2 then AI(h) = min{d1, d2}+ 1.

2. If d1 = d2 = d, then d ≤ AI(h) ≤ d + 1, and AI(h) = d if and only if there

exists f1, g1 ∈ BFn of algebraic degree d such that {ff1 = 0, gg1 = 0} or

{(1⊕ f)f1 = 0, (1⊕ g)g1 = 0} and dalg(f1 ⊕ g1) ≤ d− 1.

Proof. 1. If f has an algebraic degree d1 nonzero annihilator f1, and g has an

algebraic degree d2 nonzero annihilator g1, then we have (1 ⊕ xn+1)f1h = 0

and xn+1g1h = 0, which proves, after addressing similarly the cases where f1

is an annihilator of f ⊕ 1 and/or g1 is an annihilator of g ⊕ 1, that AI(h) ≤
min{AI(f), AI(g)}+ 1.

Let p = (1⊕ xn+1)p1 ⊕ xn+1p2 be a lowest algebraic degree nonzero annihilator

of h. We have hp = (1 ⊕ xn+1)fp1 ⊕ xn+1gp2 = 0. So fp1 = 0 and gp2 = 0.

Similarly, if p is an annihilator of h ⊕ 1, then (1 ⊕ f)p1 = 0 and (1 ⊕ g)p2 = 0.

Now there can be three cases in both scenarios:

(i) p1 is zero and p2 is non zero, then dalg(p2) ≥ d2 which gives dalg(p) ≥ d2 + 1.

(ii) p2 is zero and p1 is non zero, then dalg(p1) ≥ d1 which gives dalg(p) ≥ d1 +1.

(iii) both p1, p2 are non zero, then dalg(p1) ≥ d1 and dalg(p2) ≥ d2, which gives

dalg(p) ≥ max{d1, d2}+ 1, when d1 6= d2 and dalg(p) ≥ d, when d1 = d2 = d.

So for d1 6= d2 we get AI(h) ≥ min{d1, d2}+ 1.

2. According to the observations above, we have d ≤ AI(h) ≤ d+ 1. And AI(h)

equals d if and only if we are in case (iii) and the degree d terms of p1 and p2

are the same. 2

Corollaries are given in [261] and more complex constructions are studied in

[407].

9.1.5 Another direction of research of Boolean functions suitable for stream
ciphers

All the functions described in Subsection 9.1.3 are of optimal algebraic immunity

and the best ones have good other parameters, given their number of variables.

They should be taken with a number of variables large enough for ensuring

sufficient resistance to all attacks but also small enough for ensuring good speed.
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An alternative method is to find functions with good but not optimal parameters,

which would be fastly enough computable for being used with larger numbers

of variables, so as to ensure same (and possibly better) resistance to attacks

and also same and possibly better speed. The main example of this kind is with

the Boolean function (mentioned by Knuth in Vol. 4 of “The Art of Computer

Programming”) called hidden weight bit function (HWBF ). The principle of this

function is as follows: we compute from the input x = (x1, . . . , xn) ∈ Fn2 a value,

say φ(x) belonging to {1, . . . , n}, and the output of the function is the value of

the coordinate of index φ(x):

f(x1, . . . , xn) = xφ(x), where φ : Fn2 7→ {1, . . . , n}.

If the computation of φ(x) is fast then that of the Boolean function is fast. In

the case of HWBF, φ(x) equals wH(x) if x 6= 0n and φ(0n) equals any integer

between 1 and n (the value of f(0n) being 0 for any choice). It is proved in [1105]

that the function is then balanced and has algebraic degree n− 1 (optimal) for

n ≥ 3 and that its algebraic immunity is at least bn3 c + 1, which is quite good

since the function can be taken in many more variables than the function of The-

orem 23 for instance. But the nonlinearity equals 2n−1 − 2
( n−2
dn−2

2 e
)

(which is the

same as that of the majority function for n odd and worse for n even); this gives

a too large bias of the nonlinearity with respect to 2n−1, that is, ε = 2n−1−nl(f)
2n ;

the complexity of the fast correlation attack is then too small, see page 98. The

too large value of ε is here not compensated by the number of variables, but

as shown in [1105], it can be reduced by making a direct sum with a function

with large nonlinearity (however, the direct sum represents some risk of attacks).

Nevertheless, more functions of this kind need to be investigated. Some attempts

have been made but with no significant gain.

9.1.6 An additional condition modifying the study of Boolean functions for
stream ciphers

As recalled in [324], a stronger condition than balancedness is necessary in the

filter model, if we wish to avoid additionally those attacks which are able, for

some choice of the tapping sequence (i.e. of the positions inside the LFSR where

are taken the inputs to the filter function), to distinguish the keystream (si)i∈N
output by the pseudorandom generator from a random sequence, by the observa-

tion of the distribution of a vectorial sequence of the form (si+j1 , · · · , si+jn), see

page 109. We have seen that, for avoiding such attacks, the filter function must

have one of the two equivalent forms x1⊕f(x2, · · · , xn) and f(x1, · · · , xn−1)⊕xn
[189, 545, 1044]. Studying if a function of the desired form f(x1, · · · , xn−1)⊕xn
(say) satisfies the criteria listed above is not equivalent to the same study for

f (taking a function in n − 1 variables providing the best trade-off between all

criteria and adding the extra variable xn in order to obtain the desired form

gives an algebraic immunity which can be either equal to that of the original
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function or larger by 1, and it results in functions which no longer ensure the

best possible algebraic degree). The constructions in Subsection 9.1.3 have been

modified in [324], in order to achieve inside this desired form the best possible

values.

Constructions of 1-resilient algebraic immune functions have also been found,

but only in even dimension12, see e.g. [261, 1055, 1071, 1076, 1092, 1110, 1115],

but many have not good nonlinearity and/or bad resistance to FAA (some be-

cause their n
2 -th order nonlinearity is low) and the behavior of the others may

not be optimal.

9.2 Algebraic immune vectorial functions

We have seen at page 148 that algebraic attacks concern also vectorial functions

used in stream ciphers and in block ciphers. As far as we know, only standard

algebraic attacks have been considered in the literature for stream ciphers using

vectorial functions (whose PRG output several bits at each clock-cycle) and fast

algebraic attacks do not have reality for block ciphers. Different related notions

of algebraic immunity exist for vectorial Boolean functions, according to whether

these functions are used as multi-output filters in stream ciphers or as S-boxes in

block ciphers. They have been studied in [29, 32, 235]. We first give the definition

of the algebraic immunity of a set:

Definition 74 We call annihilator of a subset E of Fn2 any n-variable Boolean

function vanishing on E. We call algebraic immunity of E, and we denote by

AI(E), the minimum algebraic degree of all non-zero annihilators of E.

The algebraic immunity of an n-variable Boolean function f is then equal to

min(AI(f−1(0)), AI(f−1(1))), according to Definition 23, page 111.

The first generalization of algebraic immunity to S-boxes, introduced in [29], is

its direct extension:

Definition 75 The basic algebraic immunity AI(F ) of any (n,m)-function F

is the minimum algebraic immunity of all the pre-images F−1(z) of the elements

z of Fm2 by F .

The basic algebraic immunity is invariant under affine equivalence. Note that

AI(F ) also equals the minimum algebraic immunity of the indicators of these

pre-images F−1(z) since, the algebraic immunity being a non-decreasing function

over sets, we have for every z ∈ Fm2 :

AI(Fn2 \ F−1(z)) ≥ AI(F−1(z′)), ∀z 6= z′.

AI(F ) quantifies the resistance to standard algebraic attacks of the stream ci-

phers using F as a combiner or as a filter function. Indeed, the attacker can

12 One class of functions in odd dimension has first-order correlation immunity: the

concatenation of the majority function f in n even variables and of f(x+ 1n).
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combine the output bits of the generator in any way; in other words, he can try

a standard algebraic attacks on any stream cipher using Boolean function h ◦ F
as filter or combiner, where h is any non-constant m-variable Boolean function,

and such attack is the most efficient when h has Hamming weight 1 (again be-

cause the algebraic immunity is a non-decreasing function over sets).

A second notion of algebraic immunity of vectorial functions [392, 368, 29, 235],

more relevant for S-boxes in block ciphers, has been called the graph algebraic

immunity.

Definition 76 The graph algebraic immunity AIgr(F ) of any (n,m)-function F

is the algebraic immunity of the graph {(x, F (x)); x ∈ Fn2} of the S-box.

By definition, the graph algebraic immunity is invariant under CCZ equivalence.

A third notion, introduced in [235] and called the component algebraic immu-

nity, seems also natural:

Definition 77 The component algebraic immunity AIcomp(F ) of any (n,m)-

function F is the minimal algebraic immunity of the component functions v · F
(v 6= 0m in Fm2 ) of the S-box.

The interest of AIcomp is that it has a sense for both cases of stream ciphers and

block ciphers, and it helps studying the two other notions.

9.2.1 Known bounds on algebraic immunities

Note that we have AI(F ) ≤ AIcomp(F ), since AIcomp(F ) equals AI(F−1(H)) for

some affine hyperplane H of Fm2 , and since AI is non-decreasing; we also have

AIgr(F ) ≤ AIcomp(F ) + 1, since if g is a nonzero annihilator of v · F , v 6= 0m,

then the product h(x, y) = g(x) (v · y) is a nonzero annihilator of the graph of F

and if g is a nonzero annihilator of v ·F ⊕ 1 then h(x, y) = g(x) (v · y)⊕ g(x) is a

nonzero annihilator of the graph of F . A few observations are deduced in [235].

It has been observed in [29] that, for any (n,m)-function F , we have:

AI(F ) ≤ AIgr(F ) ≤ AI(F ) +m.

Indeed, given any minimum degree nonzero annihilator g(x, y) of the graph of

F , there exists y such that the function x 7→ g(x, y) is not the zero function,

and this function is a nonzero annihilator of F−1(y), which proves the left-hand

side inequality. And given a minimum degree nonzero annihilator g of F−1(z)

where z is such that AI(F−1(z)) = AI(F ), the function g(x)
∏m
j=1(yj ⊕ zj ⊕ 1)

is an annihilator of algebraic degree AI(F ) + m of the graph of F ; this proves

the right-hand side inequality.

Denoting by dn,m the smallest integer such that
∑dn,m
i=0

(
n
i

)
> 2n−m, we have

AI(F ) ≤ dn,m ≤ dn,m−1 ≤ · · · ≤ dn,1 =
⌈n

2

⌉
.
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Indeed, there is at least one z such that |F−1(z)| ≤ 2n−m and according to

Relation (9.5), page 361, with f = 1|F−1(z)|, we have
∑AI(f)−1
i=0

(
n
i

)
≤ 2n−m and

therefore AI(f)−1 < dn,m. Since AI(F ) ≤ AI(f), this proves the first inequality,

originally observed in [29], and proved tight in [500] thanks to the function that

we shall introduce at page 381; the other inequalities are straightforward.

We give in Table 9.1 below taken from [235] the values of dn,m, for n ranging

from 5 to 20 and for m ranging from 1 to 17.

n \m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

5 3 2 1 1 1 0

6 3 2 2 1 1 1 0

7 4 3 2 2 1 1 1 0

8 4 3 2 2 1 1 1 1 0

9 5 3 3 2 2 1 1 1 1 0

10 5 4 3 3 2 2 1 1 1 1 0

11 6 4 4 3 2 2 2 1 1 1 1 0

12 6 5 4 3 3 2 2 2 1 1 1 1 0

13 7 5 4 4 3 3 2 2 2 1 1 1 1 0

14 7 6 5 4 4 3 3 2 2 2 1 1 1 1 0

15 8 6 5 5 4 3 3 3 2 2 2 1 1 1 1 0

16 8 7 6 5 4 4 3 3 2 2 2 1 1 1 1 1 0

17 9 7 6 5 5 4 4 3 3 2 2 2 1 1 1 1 1

18 9 8 7 6 5 5 4 4 3 3 2 2 2 1 1 1 1

19 10 8 7 6 5 5 4 4 3 3 3 2 2 2 1 1 1

20 10 8 7 7 6 5 5 4 4 3 3 3 2 2 2 1 1

Table 9.1 The values of dn,m

Similarly, as also proved in [29], denoting by Dn,m the smallest integer such

that
∑Dn,m
i=0

(
n+m
i

)
> 2n, we have

AIgr(F ) ≤ Dn,m ≤ Dn,m−1 ≤ · · · ≤ Dn,1 =

⌈
n+ 1

2

⌉
.

Note that we have Dn,m = dn+m,m. In [235] is given the table of the values of

Dn,m, for n ranging from 5 to 20 and for m ranging from 1 to 17.

9.2.2 Bounds on the numbers dn,m and Dn,m

We have dn,m ≤ n−m and Dn,m ≤ n, since
∑n−m
i=0

(
n
i

)
>
∑n−m
i=0

(
n−m
i

)
= 2n−m.

The bound dn,m ≤
⌈
n
2

⌉
is stronger than dn,m ≤ n −m if and only if m < n−1

2 ,

and the bound Dn,m ≤
⌈
n+1

2

⌉
is stronger than Dn,m ≤ n if and only if n ≥ 3.

The inequality Dn,m ≤
⌈
n+1

2

⌉
gives dn+m,m ≤

⌈
n+1

2

⌉
and therefore, for n > m:

dn,m ≤
⌈
n−m+1

2

⌉
, which is stronger than dn,m ≤

⌈
n
2

⌉
and than dn,m ≤ n −m.

We know from [809, page 310] that, for any positive number λ ≤ 1/2 and every

positive integer n, we have:
∑dλne
i=0

(
n
i

)
≥ 2nH2(λ)√

8λn(1−λ)
. This bound implies, for
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every m:

dn,m ≤ min

{
dλne / nH2(λ)− 1

2
(3 + log2 n+ log2 λ+ log2(1− λ)) > n−m

}
(note that the term in 1

2 (3 + log2 n+ log2 λ+ log2(1− λ)) is asymptotically neg-

ligeable with respect to n). Hence:

Proposition 144 [235] Let λ ≤ 1/2 be a positive real number. For every positive

integers n and m such that:

m > n (1−H2(λ)) +
1

2
(3 + log2 n+ log2 λ+ log2(1− λ)) ,

where H2(x) = −x log2(x)− (1− x) log2(1− x), we have: dn,m ≤ dλne.
For any two positive integers n and m such that:

mH2(λ) > n (1−H2(λ)) +
1

2
(3 + log2(n+m) + log2 λ+ log2(1− λ)) ,

we have Dn,m ≤ dλ(n+m)e.

We give in Table 9.2 the values of 1−H2(λ) for λ ranging in {.1, .2, .3, .4}.

λ .1 .2 .3 .4

1−H2(λ) .53 .28 .19 .03

Table 9.2 The values of 1−H2(λ)

These general bounds can be improved for specific values of m.

9.2.3 Consequences on the number of output bits and on the tightness of the
bounds

AI(F ) can be larger than a number k, only if m ≤ n (1 − H2(k/n)) + 1
2 (3 +

log2(k(1−k/n))), according to Proposition 144. Hence, vectorial (n,m)-functions

can be used as combiners or filters only if m is small enough compared to n.

The bound AI(F ) ≤ AIgr(F ) is tight. Indeed:

Proposition 145 [235] Let F be an (n,m)-function such that, for every b ∈ Fm2 ,

there exists a ∈ Fn2 such that the ordered pair (a, b) is a linear structure of F

(i.e. DaF equals constant function b). Then AI(F ) = AIgr(F ).

Proof. Let (e1, . . . , em) be the canonical basis of Fm2 and for every i ≤ m, let

(αi, ei) be a linear structure of F . Let z be such that AI(F ) = AI(F−1(z)).

We can assume, without loss of generality up to translation, that z = 0m. Let

g(x) be a nonzero annihilator of algebraic degree AI(F ) of F−1(0m). Then, let:

h(x, y) =
∑
b∈Fm2

(
∏m
i=1(yi ⊕ bi ⊕ 1)) g (x+

∑m
i=1 biαi). Note that

∏m
i=1(yi ⊕

bi ⊕ 1) equals 1 if and only if y = b; hence, for every x ∈ Fn2 , denoting by I
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the support of the vector F (x), we have h(x, F (x)) = g(x +
∑
i∈I αi). Since

F (x +
∑
i∈I αi) = F (x) +

∑
i∈I ei = 0m, we have x +

∑
i∈I αi ∈ F−1(0m) and

therefore h(x, F (x)) = 0 and h is an annihilator of the graph of F .

Moreover, expanding h(x, y) in the form
∑
J⊆{1,··· ,m}

(∏
i∈J yi

)
φJ(x), for ev-

ery vector b ∈ Fm2 , denoting by I the support of b, we have:

m∏
i=1

(yi ⊕ bi ⊕ 1) =

∑
J⊆{1,··· ,m} /

I⊆J

(∏
i∈J

yi

)
, and then, φJ(x) =

∑
b∈Fm2 / supp(b)⊆J

g(x+

m∑
i=1

biαi) is a deriva-

tive of g of order |J | and has an algebraic degree which is at most d◦g−|J |. Hence,

we have d◦h ≤ d◦g (and in fact d◦h = d◦g, since the part φ∅ independent of y

in h(x, y) equals g(x)). This implies AIgr(F ) ≤ AI(F ), and since we know that

AI(F ) ≤ AIgr(F ), then AI(F ) = AIgr(F ). 2

As seen above, we have two upper bounds on the graph algebraic immunity:

AIgr(F ) ≤ AI(F ) +m and AIgr(F ) ≤ Dn,m. It is shown in [235] that the latter

implies that the former cannot be tight when AI(F ) > 0, m ≥ n/2 and n ≥ 3,

nor when AI(F ) > 0, m ≥ n/3 and n ≥ 25, and it is deduced that for n ≥ 2

and m ≥ n/3 we have dn,m ≤ m and for n ≥ 20 and m ≥ n/4, we have also

dn,m ≤ m.

The vectorial functions studied in [500, 273] achieve the bound AI(F ) ≤ dn,m
with equality, which shows that this bound is tight for every n,m such that

1 ≤ m < n. It is not known whether the bound AIgr(F ) ≤ Dn,m is tight too. It

is shown in [29] that it is tight for n ≤ 14.

9.2.4 Nonlinearity and higher-order nonlinearity

Lower bounds on the nonlinearity
As proved in [233], the lower bound nl(f) ≥ 2

∑AI(f)−2
i=0

(
n−1
i

)
due to Lobanov on

the nonlinearity of Boolean functions generalizes to (n,m)-functions as follows:

nl(F ) ≥ 2m
AI(F )−2∑
i=0

(
n− 1

i

)
,

where AI(F ) is the basic algebraic immunity of F . But we have seen that for

large m, AI(F ) − 2 is negative. So a bound involving AIgr(F ) is also needed.

Applying Lobanov’s bound to the component functions of F , we obtain

nl(F ) ≥ 2

AIcomp(F )−2∑
i=0

(
n− 1

i

)
.

The inequality AIcomp(F ) ≥ AIgr(F )− 1 implies then

nl(F ) ≥ 2

AIgr(F )−3∑
i=0

(
n− 1

i

)
.
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Lower bounds on the higher-order nonlinearities
For every positive integer r, the r-th order nonlinearity of a vectorial function F

is the minimum r-th order nonlinearity of its component functions (recall that

the r-th order nonlinearity of a Boolean function equals its minimum Hamming

distance to functions of algebraic degree at most r). As proved in [233], the

bounds known for Boolean functions generalize to (n,m)-functions as follows:

nlr(F ) ≥ 2m
AI(F )−r−1∑

i=0

(
n− r
i

)
and

nlr(F ) ≥ 2m−1

AI(F )−r−1∑
i=0

(
n

i

)
+ 2m−1

AI(F )−r−1∑
i=AI(F )−2r

(
n− r
i

)
(the first of these two bounds can be slightly improved as for Boolean functions).

Applying the bounds valid for Boolean functions to the component functions

of F , we have also:

nlr(F ) ≥ 2

AIcomp(F )−r−1∑
i=0

(
n− r
i

)
and

nlr(F ) ≥
AIcomp(F )−r−1∑

i=0

(
n

i

)
+

AIcomp(F )−r−1∑
i=AIcomp(F )−2r

(
n− r
i

)
.

The inequality AIcomp(F ) ≥ AIgr(F )− 1 implies then

nlr(F ) ≥ 2

AIgr(F )−r−2∑
i=0

(
n− r
i

)
and

nlr(F ) ≥
AIgr(F )−r−2∑

i=0

(
n

i

)
+

AIgr(F )−r−2∑
i=AIgr(F )−2r−1

(
n− r
i

)
.

9.2.5 Constructions of algebraic immune vectorial functions

Feng et al.’s class
In [274] is studied further the class introduced in [500]. We assume that n≥2

and 16m6n. For any fixed integer s, 06s62n− 2, F2n is a disjoint union of the

following 2m subsets:

S0 = {αl | s6l6s+ 2n−m − 2} ∪ {0}
Sj = {αl | s+ 2n−mj − 16l6s+ 2n−m(j + 1)− 2}; 16j62m − 1

(9.15)
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where α is a primitive element. Each integer j, 06j62m − 1, has a 2-adic ex-

pansion

j = j0 + j12 + · · ·+ jm−12m−1 (j0, · · · , jm−1 ∈ {0, 1})

and corresponds to the vector j = (j0, · · · , jm−1) ∈ Fm2 . For each integer i, 06i6m−
1, we define the Boolean function fi : F2n → F2 by

fi(x) =


1, if x ∈

⋃
06j62m−1

ji=1

Sj

0, otherwise.

(9.16)

Then for the (n,m)-function

F = (f0, · · · , fm−1) : F2n → Fm2 ,

we have, for each j = (j0, · · · , jm−1) ∈ Fm2 and j =
m−1∑
i=0

ji2
i,

x ∈ F−1(j) ⇔ fi(x) = ji (06i6m− 1)

⇔ x ∈
⋂
{Sk | 06k62m − 1, ki = ji} (06i6m− 1)

⇔ x ∈ Sj .

Therefore the (n,m)-function F can be characterized by

F−1(j) = Sj (for each j, 06j62m − 1) (9.17)

It is proved in [274] by observation and calculation of the coefficients of x2n−1

and x2n−2 in the univariate representations of the coordinate functions that:

Proposition 146 (1) For every 1 ≤ m ≤ n, function F is balanced.

(2) We have dalg(F ) = n− 1.

(3)We have dmin(F ) = n − 1 if and only if α
1+α , (

α
1+α )2, . . . , ( α

1+α )2m−1

are

linearly independent over F2.

It is also proved in this same paper that the basic algebraic immunity of F is

optimal:

Proposition 147 For every n,m such that 1 ≤ m ≤ n, we have AI(F ) = dn,m.

The proof is very similar to the Boolean case, by application of the BCH bound.

A lower bound on the (hyper-)nonlinearity of F is also proved in [274] by

the use of Gauss sums which allow transforming the expression of the Walsh

transform and by bounding from above some trigonometric sums with integrals:

Proposition 148 nl(F )≥2n−1 − 2
n
2

+m

π ln( 4(2n−1)
π )− 1 ∼ 2n−1 − ln 2

π 2
n
2 +m · n.

A class obtained through group decomposition
In [804] is constructed a class of balanced (n,m)-functions over F2n (n even), with

m ≤ n/2, and with high basic algebraic immunity and optimal algebraic degree,

based on the decomposition of the multiplicative group of F∗2n corresponding to

what we called polar representation at page 191.



10 Particular classes of Boolean
functions

10.1 Symmetric functions

A function is called a symmetric Boolean function if it is invariant under the

action of the symmetric group (i.e. if its output is invariant under permutation

of its input bits). Its output depends then only on the Hamming weight of the

input (and can be implemented with a number of gates linear in the number of

input variables [1117], with a reduced amount of memory required for storing

the function). So a Boolean function f is symmetric if and only if there exists a

function f from {0, 1, . . . , n} to F2 such that:

f(x) = f(wH(x)).

The vector (f(0), . . . , f(n)) is sometimes called the simplified value vector of f .

Such functions are of some interest for cryptography, as they allow to implement

in an efficient way nonlinear functions on large numbers of variables. Let us

consider for example an LFSR filtered by a 63-variable symmetric function f ,

whose input is the content of an interval of 63 consecutive flip-flops of the LFSR.

This device may be implemented with a cost similar to that of a 6-variable

Boolean function, thanks to a 6 bit counter calculating the Hamming weight

of the input to f (this counter is incremented if a 1 is shifted in the interval

and decremented if a 1 is shifted out). However, the pseudorandom sequence

obtained this way has a correlation with transitions (sums of consecutive bits),

and a symmetric function should not take all its inputs in a full interval. In

fact, it is not yet completely clarified whether the advantage of allowing many

more variables and the cryptographic weaknesses these symmetric functions may

introduce result in an advantage for the designer or for the attacker.

10.1.1 Representation

Let r = 0, . . . , n and let 1En,r be the Boolean function whose support is the

set En,r of all vectors of Hamming weight r in Fn2 . Then, according to Re-

lation (2.23), page 67, relating the values of the coefficients of the NNF to

the values of the function, the coefficient of xI in the NNF of 1En,r equals
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(−1)|I|
∑

x∈Fn2 ; wH (x)=r

supp(x)⊆I

(−1)wH(x) = (−1)|I|−r
(
|I|
r

)
, and we have then:

1En,r (x) =
∑

I⊆{1,...,n}

(−1)|I|−r
(
|I|
r

)
xI . (10.1)

Any symmetric function f being equal to

n⊕
r=0

f(r) 1En,r , it equals

n∑
r=0

f(r) 1En,r ,

since the functions 1En,r have disjoint supports. The coefficient of xI in its NNF

equals then

n∑
r=0

f(r)(−1)|I|−r
(
|I|
r

)
and depends only on the size of I. Denoting

Si(x) =
∑

I⊆{1,...,n}
|I|=i

xI =

(
wH(x)

i

)
=

{
wH(x) (wH(x)−1)...(wH(x)−i+1)

i! if wH(x) ≥ i
0 otherwise,

the NNF of f equals then

f(x) =

n∑
i=0

ci Si(x), where ci =

n∑
r=0

f(r)(−1)i−r
(

i

r

)
. (10.2)

According to Relation (10.2), we see by definition of f that this function coincides

on {0, . . . , n} with the polynomial:

f(z) =

n∑
i=0

ci

(
z

i

)
=

n∑
i=0

ci
z (z − 1) . . . (z − i+ 1)

i!
,

of degree max{i; ci 6= 0} (which is also the degree of the NNF of f). Note that

since this degree is at most n, and the values taken by this polynomial at n+ 1

points are determined by the values of f , this polynomial representation is unique

and can be obtained by the Lagrange interpolation formula.

Function σi(x) = Si(x) [mod 2] is the i-th elementary symmetric function:

σi(x) =
⊕

1≤j1<···<ji≤n

i∏
k=1

xjk .

According to Lucas’ theorem (see page 528 or [809, page 404]), σi(x) equals 1 if

and only if the binary expansion
∑blog2 nc
l=1 il 2

l−1 of i is covered by that of wH(x)

(i.e. writing wH(x) =
∑blog2 nc
l=1 jl 2

l−1, we have il ≤ jl, ∀l = 1, . . . , blog2 nc; we

write i � wH(x)). Note that this implies that σi =
∏

l∈{1,...,blog2 nc}
il=1

σ2l . Reducing

Relation (10.2) modulo 2, we deduce from Lucas’ theorem again that the ANF

of f equals:

[ANF ] f(x) =

n⊕
i=0

εi σi(x), where εi = ci [mod 2] =
∑
r�i

f(r) [mod 2]. (10.3)
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The algebraic degree of f equals max{i; εi = 1} (in particular, in the case of

f = 1En,r , we have that εi equals 1 if and only if r � i and the algebraic degree

equals max{i ∈ {r, . . . , n}; r � i}).
Using that the binary Möbius transform is involutive, or using that σi(x) = 1

if and only if
(
wH(x)
i

)
is odd and Lucas’ theorem again, we deduce from (10.3)

that f(j) =
⊕

i�j εi. The vector (ε0, . . . , εn) is sometimes called the simplified

ANF vector , Relation (10.3) gives the expression of the simplified ANF vector by

means of the simplified value vector and this relation gives the reverse expression.

According to the observations above, nonzero symmetric Boolean functions

are, up to the addition of constant function 1, the component functions of the

(n, n)-function Σ(x) whose i-th coordinate function is the elementary symmetric

function σi(x). Note that, for every x, y ∈ Fn2 , we have wH(x) = wH(y) if and

only if Σ(x) = Σ(y), since the σi’s generate by linear combinations all those

symmetric Boolean functions null at input 0n, and two vectors x, y have the

same nonzero Hamming weight if and only if every symmetric Boolean function

null at 0n takes the same value at inputs x and y. This translation of an equality

between the Hamming weights of two vectors x and y into the equality between

the images of x and y by a vectorial function is nicely simple. We have then

wH(x) = k for some non-negative k if and only if, for every i = 1, . . . , n, we have

σi(x) ≡
(
k
i

)
[mod 2]. We have also wH(x) ≤ k if and only if σi(x) = 0 for all

i > k (this necessary condition is sufficient because σwH(x)(x) = 1).

Note that a symmetric Boolean function f has algebraic degree 1 if and only if

it equals
⊕n

i=1 xi or
⊕n

i=1 xi⊕1, that is, if the binary function f(r) equals r [mod

2] or r+1 [mod 2], and that it is quadratic if and only if it equals
⊕

1≤i<j≤n xixj
plus a symmetric function of algebraic degree at most 1, that is, if the function

f(r) equals
(
r
2

)
[mod 2] or

(
r
2

)
+ r [mod 2] or

(
r
2

)
+ 1 [mod 2] or

(
r
2

)
+ r+ 1 [mod

2]. Hence, f has algebraic degree 1 if and only if f satisfies f(r + 1) = f(r) ⊕ 1

and it has degree 2 if and only if f satisfies f(r + 2) = f(r)⊕ 1.

As observed in [205], the algebraic degree of a symmetric function f is at most

2t − 1, for some positive integer t such that 2t < n, if and only if the sequence

(f(r))r≥0 is periodic with period 2t (sufficiency is a direct consequence of (10.3)

and necessity of the reverse relation). Here again, it is not clear whether this

is more an advantage for the designer of a cryptosystem using such symmetric

function f (since, to compute the image of a vector x by f , it is enough to

compute the number of nonzero coordinates x1, . . . , xt) or for the attacker.

10.1.2 Hamming weight

In [173] is given a closed formula for the correlation between any two symmetric

Boolean functions (and in particular the weight of a symmetric function). In

[532], von zur Gathen and Roche determined all balanced symmetric Boolean

functions up to 128 variables. More recently has been proved in [530] that bal-

anced symmetric Boolean functions of fixed algebraic degree d > 1 and suffi-

ciently large number of variables are trivial. This term means that n is odd and
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the simplified value vector f is anti-symmetric with respect to the middle of

[0, . . . , n], that is, f(n− i) = f(i)⊕ 1,∀i. This same paper also shows (proving a

conjecture by Cusick) the nonexistence of trivial balanced elementary symmetric

Boolean functions except for n = 2t+1l − 1 and d = 2t, where t and l are any

nonnegative integers.

10.1.3 Fourier-Hadamard and Walsh transforms

For every a ∈ Fn2 and r ∈ {0, . . . , n}, denoting by ` the Hamming weight of a,

we have 1̂En,r (a) =
∑

x∈Fn2 ; wH(x)=r

(−1)a·x =

n∑
j=0

(−1)j
(
`

j

)(
n− `
r − j

)
, denoting by j

the size of supp(a)∩supp(x). The polynomials Kn,r(X) =
∑n
j=0(−1)j

(
X
j

)(
n−X
r−j

)
are called Krawtchouk polynomials. They are characterized by their generating

series:
n∑
r=0

Kn,r(`)z
r = (1− z)`(1 + z)n−`

and have nice resulting properties (see e.g. [809, 328]). By R-linearity, we deduce

that the value at a of the Fourier-Hadamard transform of any symmetric func-

tion

n∑
r=0

f(r) 1En,r equals

n∑
r=0

f(r)Kn,r(wH(a)).

From the Fourier-Hadamard transform, we can deduce the Walsh transform

thanks to Relation (2.32), page 74.

In [334] are studied further the exponential sums of symmetric Boolean functions

and their asymptotic behavior.

10.1.4 Nonlinearity

If n is even, then the restriction of every symmetric function f on Fn2 to the
n
2 -dimensional flat A = {(x1, . . . , xn) ∈ Fn2 ; xi+n

2
= xi ⊕ 1,∀i ≤ n

2 } is constant,

since all the elements of A have the same Hamming weight n
2 . Thus, f is n

2 -

normal (see Definition 28, page 126). But Relation (3.15), page 128 does not

improve upon the covering radius bound (3.2), page 99. The symmetric functions

which achieve this bound, i.e. which are bent, have been first characterized by

Savicky in [1019]: the bent symmetric functions are the four symmetric functions

of algebraic degree 2 already described above: f1(x) =
⊕

1≤i<j≤n xixj , f2(x) =

f1(x)⊕ 1, f3(x) = f1(x)⊕ x1⊕ · · · ⊕ xn and f4(x) = f3(x)⊕ 1. A stronger result

can be proved in a very simple way:

Proposition 149 [566] For every positive even n, the PC(2) n-variable sym-

metric functions are the functions f1, f2, f3 and f4 above.

Proof. Let f be any PC(2) n-variable symmetric function and let 1 ≤ i < j ≤ n.

Let us denote by x′ the vector: x′ = (x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn).
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Since f(x) is symmetric, it has the form xi xjg(x′)⊕ (xi ⊕ xj)h(x′)⊕ k(x′). Let

us denote by ei,j the vector of Hamming weight 2 whose nonzero coordinates

stand at positions i and j. The derivative Dei,jf equals (xi ⊕ xj ⊕ 1)g(x′) and

is balanced, by hypothesis. Then g must be equal to the constant function 1

(indeed if g(x′) = 1 for some x′, then (xi ⊕ xj ⊕ 1)g(x′) equals 1 for half of the

inputs (xi, xj) and otherwise it equals 1 for none). Hence, the degree at least 2

part of the ANF of f equals
⊕

1≤i<j≤n xixj . 2

Results on the propagation criterion for symmetric functions are in [205].

If n is odd, then the restriction of any symmetric function f to the n+1
2 -

dimensional flat A = {(x1, . . . , xn) ∈ Fn2 ; xi+n−1
2

= xi ⊕ 1,∀i ≤ n
2 } is affine,

since the Hamming weight function wH is constant on the hyperplane of A of

equation xn = 0 and on its complement. Thus, f is n+1
2 -weakly-normal. Ac-

cording to Relation (3.15), page 128, this implies that its nonlinearity is upper

bounded by 2n−1 − 2
n−1

2 . It also allows showing that the only symmetric func-

tions achieving this bound with equality are the same as the 4 functions f1, f2, f3

and f4 above, but with n odd (this has been first proved by Maitra and Sarkar

[818], in a more complex way). Indeed:

Proposition 150 [224] Let n be any positive integer and let f be any symmetric

function on Fn2 . Let l be any integer satisfying 0 < l ≤ n
2 . Denote by hl the

symmetric Boolean function on n − 2l variables defined by hl(y1, . . . , yn−2l) =

f(x1, . . . , xl, x1 ⊕ 1, . . . , xl ⊕ 1, y1, . . . , yn−2l), where the values of x1, . . . , xl are

arbitrary (equivalently, hl can be defined by hl(r) = f(r + l), for every 0 ≤ r ≤
n− 2l). Then nl(f) ≤ 2n−1 − 2n−l−1 + 2lnl(hl).

Proof: Let A = {(x1, . . . , xn) ∈ Fn2 | xi+l = xi ⊕ 1,∀i ≤ l}. For every ele-

ment x of A, we have f(x) = hl(x2l+1, . . . , xn). Let us consider the restric-

tion g of f to A as a Boolean function on Fn−l2 , say g(x1, . . . , xl, x2l+1, . . . , xn).

Then, since g(x1, . . . , xl, x2l+1, . . . , xn) = hl(x2l+1, . . . , xn), g has nonlinearity

2l nl(hl). According to Relation (3.15) applied with ha = g and k = n − l, we

have nl(f) ≤ 2n−1 − 2n−l−1 + 2lnl(hl). 2

The characterizations recalled above of those symmetric functions achieving

best possible nonlinearity can be straightforwardly deduced. Moreover, if for

some 0 ≤ l <
⌊
n−1

2

⌋
, the nonlinearity of an n-variable symmetric function f

is strictly larger than 2n−1 − 2n−l−1 + 2l
(

2n−2l−1 − 2b
n−2l−1

2 c − 1
)

= 2n−1 −

2b
n−1

2 c − 2l, then, thanks to these characterizations and to Proposition 150,

the function hl must be quadratic, and f satisfies f(r + 2) = f(r) ⊕ 1, for all

l ≤ r ≤ n − 2 − l (this property has been observed in [205, Theorem 6] a little

after that [224] was published, and proved slightly differently).

Further properties of the nonlinearities of symmetric functions can be found

in [205, 224].
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10.1.5 Correlation immunity and resiliency

The correlation immunity of symmetric functions has been studied in [138, 887,

1135] and their resiliency in [370, 557].

There exists a conjecture on symmetric Boolean functions and, equivalently,

on functions defined over {0, 1, . . . , n} and valued in F2: if f is a non-constant

symmetric Boolean function, then the numerical degree of f (hence, the degree of

the univariate polynomial representation of f) is larger than or equal to number

n−3. It is easily shown that this numerical degree is more than n
2 (otherwise, the

polynomial f2− f would have degree at most n, and being null at n+ 1 points, it

would equal the null polynomial, a contradiction with the fact that f is assumed

not to be constant). But the gap between bn2 c+ 1 and n− 3 is open. According

to Proposition 118, page 314, the conjecture is equivalent to saying that there

does not exist any non-affine symmetric 3-resilient function. And proving this

conjecture is also a problem on binomial coefficients since the numerical degree

of f is bounded above by d if and only if, for every k such that d < k ≤ n:

k∑
r=0

(−1)r
(
k

r

)
f(r) = 0. (10.4)

The conjecture is equivalent to saying that this Relation (10.4), with d = n− 4,

has no binary solution f(0), . . . , f(n). Von zur Gathen and Roche [532] have ob-

served that all symmetric n-variable Boolean functions have numerical degrees

larger than or equal to n− 3, for any n ≤ 128 (they exhibited Boolean functions

with numerical degree n− 3; see also [557]).

The same authors also observed that, if the number m = n+ 1 is a prime, then

all non-constant n-variable symmetric Boolean functions have numerical degree

n (and therefore, considering the function g(x) = f(x)⊕x1⊕· · ·⊕xn and apply-

ing Proposition 118, all non-affine n-variable symmetric Boolean functions are

unbalanced): indeed, m being a prime, the binomial coefficient
(
n
r

)
is congruent

with (−1)(−2)...(−r)
1·2...r = (−1)r, modulo m, and the sum

∑n
r=0(−1)r

(
n
r

)
f(r) is then

congruent with
∑n
r=0 f(r), modulo m, and Relation (10.4) with k = n implies

then that f must be constant (since it takes its values in {0, 1} and the sum of

them is divisible by n+ 1).

Notice that, applying Relation (10.4) with k = p−1, where p is the largest prime

less than or equal to n + 1, shows that the numerical degree of any symmetric

non-constant Boolean function is larger than or equal to p − 1 (or equivalently

that no symmetric non-affine Boolean function is (n − p + 1)-resilient): other-

wise, reducing (10.4) modulo p, we would have that the string f(0), . . . , f(k) is

constant, and f having univariate degree less than or equal to k, the function f,

and thus f itself, would be constant.

More results on the balancedness and resiliency/correlation immunity of sym-

metric functions can be found in [78, 205, 887, 1135, 1014]. The resiliency order

of a symmetric function of algebraic degree d cannot exceed 2blog2 dc+1− 2 [205].
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10.1.6 Algebraic immunity and fast algebraic immunity

We have seen in Section 3.1 that, for every n-variable Boolean function f , there

exist g 6= 0 and h, both of algebraic degree at most dn2 e and such that f g = h

(equivalently, there exist nonzero annihilators of f or of f ⊕1 of algebraic degree

at most dn2 e). The same property can be proven when dealing with symmetric

functions only: the elementary symmetric functions of degrees at most dn2 e and

their products with f give a family of 2 (dn2 e+ 1) > n+ 1 symmetric functions,

which must be linearly dependent since they live in a vector space of dimension

n+ 1. There exist then g 6= 0 and h of degree at most dn2 e such that f g = h and

the conclusion follows (using also the proof of Proposition 25 page 111). How-

ever, given an n-variable symmetric function f , there do not necessarily exist

symmetric functions g 6= 0 and h of algebraic degree as small as AI(f) such that

f g = h.

We have seen that the majority function, which is symmetric, has optimal alge-

braic immunity. In the case n is odd, it is the only symmetric function having

such property, up to the addition of a constant (see [979] which completed a

partial result of [765]). In the case n is even, other symmetric functions ex-

ist (up to the addition of a constant and to the transformation x → x =

(x1 ⊕ 1, . . . , xn ⊕ 1)) with this property and all are known; more precisions and

more results on the algebraic immunity of symmetric functions can be found

in [127, 364, 774, 785, 941, 978, 979, 976, 1102] and the references therein. In

particular, all symmetric functions of optimal algebraic immunity in numbers

of variables which are powers of 2 are determined in [785] and it is shown in

[127] that for n = 2j , 2j −1 and 2j −2, the elementary symmetric function σ2j−1

has optimal algebraic immunity, and that these are the only cases where an ele-

mentary symmetric function can have optimal AI. In [941] is shown thanks to a

result of [786] that the corpus of potential annihilators of f or f ⊕1 which needs

to be investigated to prove the optimal algebraic immunity of a given function

can be reduced in the case it is symmetric (and some necessary conditions on

the simplified value vector for symmetric functions to achieve high AI are given),

and this allows a description of optimal AI symmetric functions (and also of the

sub-optimal ones), whose other parameters are also studied (none is balanced

and the nonlinearity is bad).

We have seen at page 352 that, as shown in [791], no symmetric Boolean func-

tion can be perfect algebraic immune. Large classes of symmetric functions are

very vulnerable to fast algebraic attacks despite their proven resistance against

standard algebraic attacks: for 2m ≤ n ≤ 2m + 2m−1− 1, for every symmetric n-

variable function f of algebraic immunity at least 2m−1, there exists g such that

1 ≤ dalg(f) ≤ n−2m+1 and dalg(fg) ≤ n−2m−1 +1. Even the other cases pose

often a problem, since if dalg(f) > 2k where 2k does not divide dalg(f), then there

exists g such that dalg(g) ≤ e = dalg(f) [mod 2k] and dalg(fg) ≤ dalg(f)− e− 1,

and the FAI of a symmetric function f whose algebraic degree dalg(f) is not a

power of 2 is smaller than dalg(f).
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10.1.7 The subclass of threshold functions

For every d ≤ n, we call1 threshold function2 of index d and we denote by tn,d the

n-variable Boolean function whose support equals the set of vectors of Hamming

weights at least d. The majority functions are examples. The reservations we

made about symmetric functions are of course valid for threshold functions.

Moreover, we shall see that threshold functions (as many symmetric functions

and as all monotone functions, see page 395) have bad nonlinearity. They may

then be improper for use in most cryptographic frameworks. But their output is

very fast to compute. They can then be used in many more variables than more

complex functions (this is the case for all symmetric functions, but still more for

threshold functions). They deserve then some attention since they may present

interest in some settings like the FLIP cryptosystem (see page 491).

The class of threshold functions has the interest of being preserved by the action

of fixing the values of some variables (fixing one variable to 0 in tn,d gives the

function tn−1,d, and fixing one variable to 1 gives tn−1,d−1). The results on them

allow then not only to study their contributions to the resistance against classical

attacks, but also against guess and determine attacks (see page 117). This is also

true more generally with symmetric functions but less is known on this wider

class.

Note that, for each value of d, functions tn,d and tn,n−d+1 are EA equivalent :

∀x ∈ Fn2 , tn,n−d+1(x) = 1⊕ tn,d(x+ 1n).

The majority function for n odd is balanced but all other threshold functions

are unbalanced.

We have tn,d(x) =
∑
I⊆{1,...,n} λI x

I , where, for d > 0, λ∅ = tn,d(0) = 0 and

according to Relation (2.23), page 67, for I 6= ∅:

λI = (−1)|I|
∑

x∈Fn2 ; supp(x)⊆I

(−1)wH(x)tn,d(x) = (−1)|I|
∑

x∈Fn2 ; supp(x)⊆I
wH (x)≥d

(−1)wH(x)

= (−1)|I|
|I|∑
k=d

(−1)k
(
|I|
k

)
= (−1)|I|−1

d−1∑
k=0

(−1)k
(
|I|
k

)
= (−1)|I|−d

(
|I| − 1

d− 1

)
(using

∑|I|
k=0(−1)k

(|I|
k

)
= 0, and the last equality being easily checked by induc-

tion on d). According to Lucas’ theorem (see page 528 or [809, page 404]), the

coefficient of xI in the ANF of tn,d equals 1 (i.e. λI is odd) if and only if the

binary expansion of d − 1 is covered by (i.e. has support included in) that of

|I| − 1, and the algebraic degree of tn,d equals then k + 1 where k is the largest

number smaller than n whose binary expansion covers that of d−1, that is, where

k − d + 1 is the largest number smaller than n − d + 1 whose binary expansion

1 Our use of the term of threshold function is a little more restrictive than in [914]; more
investigation is then needed.

2 Not to be confused with the threshold implementation of vectorial functions, that we shall

address in Subsection 12.1.4, page 472.
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is disjoint from that of d− 1.

Moreover, according to Relation (2.61), page 85, if u 6= 0n, then Wtn,d(u) equals

2(−1)wH(u)+1
∑

I⊆{1,...,n}
supp(u)⊆I

2n−|I|λI , that is:

Wtn,d(u) = 2(−1)wH(u)+1
∑

I⊆{1,...,n}
supp(u)⊆I

2n−|I|(−1)|I|−d
(
|I| − 1

d− 1

)
.

Recall from Relation (10.1), page 384, that the NNF of the indicator of the

set En,r of vectors of Hamming weight r has (−1)|I|−r
(|I|
r

)
for coefficient of

xI . We deduce that W1En,r
(u) = 2(−1)wH(u)+1

∑
I⊆{1,...,n}
supp(u)⊆I

2n−|I|(−1)|I|−r
(
|I|
r

)
.

Therefore, for every u, the Walsh transform of function 1En,d at u ∈ Fn2 equals

the opposite of the Walsh transform of function tn+1,d+1 at (u, 1) (where “,”

symbolizes concatenation). And since these two functions are symmetric, this

implies that the maximum absolute value of the Walsh transform of 1En,d equals

the maximum absolute value of the Walsh transform of tn+1,d+1 at nonzero

inputs. But the nonlinearities of the two functions are different because the

nonlinearity of 1En,r equals its Hamming weight (since this weight is small), and

hence, |W1En,r
| takes its maximum at the zero entry. It is easily deduced that

nl(tn,d) =



2n−1 −
(

n−1
(n−1)/2

)
if d = n+1

2 ,
n∑
k=d

(
n

k

)
= wH(tn,d) if d > n+1

2 ,

d−1∑
k=0

(
n

k

)
= 2n − wH(tn,d) if d < n+1

2 ,

since this is known from [409] in the case d = n+1
2 , and for d > n+1

2 , we have:

|W1En−1,d−1
(u)| = 2 |

∑
x∈En−1,d−1

(−1)u·x| ≤ 2wH(1En−1,d−1
) = 2

(
n− 1

d− 1

)
,

for every u 6= 0n, and since [|Wtn,d(0n)| = 2n − 2
∑n
i=d

(
n
i

)
=
∑d−1
i=n−d+1

(
n
i

)
,

and using Pascal’s identity
(
n
i

)
=
(
n−1
i

)
+
(
n−1
i−1

)
, we deduce that |Wtn,d | takes its

maximum at the 0n input, and this completes the proof in this case, and also in

the last case according to the identity tn,n−d+1(x) = 1⊕ tn,d(x+ 1n).

It is also known from [305] that AI(tn,d) = min(d, n− d + 1), and the vector

space of minimum algebraic degree annihilators can be determined. Indeed, ap-

plying the transformation x 7→ x + 1n changes tn,d into the indicator of the set

of vectors of Hamming weight at most n− d; the linear combinations over F2 of

the monomials of degrees at least n − d + 1 vanish over the words of Hamming

weight at most n− d and are then annihilators of this indicator; the dimension∑n
i=n−d+1

(
n
i

)
of this vector space of annihilators being equal to the dimension of
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the vector space of all annihilators, that is, 2n−wH(tn,d), these linear combina-

tions are all the annihilators of the indicator; the annihilators of tn,d are obtained

from these linear combinations by the transformation x 7→ x+1n. They can have

every algebraic degree at least n − d + 1. And the annihilators of 1 ⊕ tn,d are

the linear combinations over F2 of the monomials of degrees at least d. They can

have every algebraic degree at least d. Hence AI(tn,d) = min(d, n− d+ 1).

10.2 Rotation symmetric, idempotent and other similar functions

We have already encountered rotation symmetric (RS) and idempotent func-

tions in Chapters 6 and 7 (see Definitions 59 and 60, page 275). We have seen

how, through the choice of a normal basis, the latter are related to the former

(see Proposition 89, page 275). RS functions constitute a super-class of sym-

metric functions, which has been investigated from the viewpoints of bentness

and correlation immunity (see e.g. [503, 1048]). These functions, which represent

an interesting (reasonably small) corpus for computer investigation, have also

played a role in the study of nonlinearity. It could be shown in [684, 686], thanks

to such computer investigation, that the best nonlinearity of Boolean functions

in odd number n of variables is strictly larger than the quadratic bound if and

only if n > 7. Indeed, a 9-variable function of nonlinearity 241 could be found

(while the quadratic bound gives 240, and the covering radius bound 244), and

using direct sum with quadratic functions, it gave then 11-variable functions of

nonlinearity 994 (while the quadratic bound gives 992 and the covering radius

bound 1000), and 13-variable functions of nonlinearity 4036 (while the quadratic

bound gives 4032 and the covering radius bound 4050). Later was checked that

241 is the best nonlinearity of 9-variable rotation symmetric functions, but that

9-variable functions whose truth-tables (or equivalently ANFs) are invariant un-

der cyclic shifts by 3 steps and under inversion of the order of the input bits

can reach nonlinearity 242, which led to 11-variables functions of nonlinearity

996 and 13-variable functions of nonlinearity 4040. Balanced functions in 13 vari-

ables beating the quadratic bound could also be found. The construction with RS

functions does not beat the nonlinearity of the Patterson-Wiedemann functions

for 15 variables.

Hence rotation symmetry is an interesting notion for investigating the param-

eters of Boolean functions. Cryptographically speaking, the strong structure it

provides may represent a risk with respect to attacks, while rotation symmetric

functions are more difficult to use with large numbers of variables than symmetric

functions (because they are slower to compute in general).

For n = 2m even, we can consider the bivariate representation alongside the

univariate representation of idempotent functions. We can see how obtaining the

univariate (resp. multivariate) form from the bivariate form and vice-versa, and

exploit this correspondence to construct more functions; this has been done in
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[281] and we follow below this reference. Form odd, the situation is simplified and

we place then ourselves in such case: choosing w ∈ F4 \ F2, we have w2 = w+ 1,

w4 = w, and since w2

w 6∈ F2m , we can take (w,w2) for a basis of F2n over F2m .

Any element of F2n is then written in the form xw + yw2, where x, y ∈ F2m .

Given a normal basis (α, α2, . . . , α2m−1

) of F2m , a natural normal basis of F2n is(
αw,α2w2, α4w, . . . , α2m−2

w2, α2m−1

w,αw2, . . . , α2m−2

w,α2m−1

w2
)
. (10.5)

Since (xw+yw2)2 = y2w+x2w2, the mapping z ∈ F2n 7→ z2 ∈ F2n corresponds to

the mapping (x, y) ∈ F2
2m 7→ (y2, x2) ∈ F2

2m . Given a function f(x, y) in bivariate

form, the related Boolean function over Fn2 obtained by decomposing the input

xw+yw2 over the normal basis (10.5) is then RS if and only if f(x, y) = f(y2, x2).

Note that applying this identity m times gives f(x, y) = f(y, x) and applying it

m + 1 times gives f(x, y) = f(x2, y2); the double condition “f(x, y) = f(y, x)

and f(x, y) = f(x2, y2)” is necessary and sufficient for f being idempotent.

Definition 78 A polynomial f(z) over F2n , n = 2m ≡ 2 (mod 4), is called

a weak idempotent if its associate bivariate expression f(x, y) = f(xw + yw2),

w ∈ F4 \ F2, x, y ∈ F2m , satisfies f(x, y) = f(x2, y2).

Proposition 151 For n ≡ 2 (mod 4), idempotents are those polynomials f(z)

over F2n whose associate bivariate expression f(x, y) = f(xw+yw2), w ∈ F4\F2,

satisfies f(x, y) = f(y2, x2). Their set is included in that of weak idempotents.

An idempotent is a weak idempotent invariant under the swap x↔ y.

See more in [245, Subsection 5.3]. The corresponding definition at the bit level

is obtained by decomposing the univariate representation over the basis (10.5)

and the bivariate representation over the basis (α, α2, . . . , α2m−1

):

Definition 79 Let n = 2m ≡ 2 (mod 4). A Boolean function

f(x0, y1, x2, y3, . . . , xn−2, yn−1)

(where each index is reduced modulo m) over Fn2 is weak RS if it is invariant

under the transformation (xj , yj) 7→ (xj+1, yj+1).

Note the particular disposition of the indices in f(x0, y1, x2, y3, . . . , xn−2, yn−1):

the index 0 for y does not come at the second position (where we have y1) but at

the m-th position. Since m is odd, the invariance of f under the transformation

(xj , yj) 7→ (xj+1, yj+1) over (x, y) is equivalent to its invariance under (xj , yj) 7→
(xj+2, yj+2). Hence:

Proposition 152 The Boolean function f(x0, y1, x2, y3, . . . , xn−2, yn−1) is weak

RS if and only if it is invariant under the square of the shift ρn.

Such weak RS function (that some authors call 2-RS function, see e.g. [685]) is

RS if and only if it is invariant under the swap of x and y. A simple example

of a weak RS function is the direct sum f(x) ⊕ g(y) which is RS when f = g,

where f and g are RS functions with m variables. More generally, the indirect
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sum is studied in [281] (see also [245]), with explicit examples of resulting bent

idempotents. There exist also examples of bent and semi-bent weak idempotents

[311, 312, 699, 871].

The secondary constructions recalled above have led to the construction of RS

functions and idempotent bent functions from near-bent RS functions seen at

page 278.

The k-variate representation can be studied similarly to the bivariate represen-

tation, see [245].

The weights of rotation symmetric functions are studied in [399]. RS functions

with optimal algebraic immunity have been constructed (see e.g. [1015]), but

these functions never reached good nonlinearity.

In [748] is introduced the class of Matriochka symmetric functions, which are

the sums of symmetric functions whose sets of variables are different and nested.

The notion of rotation symmetry has been generalized to vectorial functions in

[994]. An (n, n)-function is RS if it commutes with the cyclic shift: F ◦ s = s ◦F .

This is equivalent to saying that each coordinate function equals (cyclically) the

previous one composed by the cyclic shift. Identifying Fn2 with F2n thanks to

a normal basis, this is equivalent to (F (x))2 = F (x2) and therefore to the fact

that the univariate representation of F has all its coefficients in F2 (using the

uniqueness of such representation). Kavut [680] enumerated all bijective rotation

symmetric (6, 6)-functions with maximum nonlinearity 24, showing that, up to

affine equivalence, there are only 4 functions with differential uniformity 4 and

algebraic degree 5.

10.3 Direct sums of monomials

Functions f(x) =
⊕

I⊆{1,...,n} aI x
I where (aI = aJ = 1 and I 6= J)⇒ (I ∩ J =

∅) are well adapted to situations where Boolean functions must be particularly

simple, for instance when they are used with large numbers of variables and

when addition and/or multiplication are costly, like in the FLIP cryptosystem

(see page 491). As for threshold functions, the class of direct sums of monomials

is preserved by the action of fixing the values of some variables and their study

addresses then also their behavior against guess and determine attacks resulting

in fixing some input values to the functions.

It is convenient to identify a direct sum of monomials whose value at 0n is 0 by

its direct sum vector [m1,m2, . . . ,mk], of length k = dalg(f), in which each mi

is the number of monomials of degree i (this allows to determine uniquely the

function up to permutation of variables). We shall assume that all variables are

effective, i.e. that the number of variables equals
∑k
i=1 imi. The property seen

in Relation (6.28), page 258, that the Walsh transform of a direct sum equals

the product of the Walsh transforms of the ingredient functions, the Golomb-

Xiao-Massey characterization of resiliency by the Walsh transform (Theorem

5, page 107), and Relation (3.1), page 99, imply that the resiliency order of f
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equals m1 − 1 (with the convention that an unbalanced function has resiliency

order −1) and that its nonlinearity equals 2n−1 − 2m1−1
∏k
i=2

(
2i − 2

)mi
. The

algebraic immunity is more complex to determine but it is shown in [306] that

if f(x1, x2, x3, . . . , xn) is a Boolean function in n variables such that:

∀x ∈ Fn−2
2 f(x, 0, 0) = f(x, 0, 1) = f(x, 1, 0),

then the Boolean function f ′(x1, . . . , xn−1) defined by:

∀x ∈ Fn−2
2 f ′(x, 1) = f(x, 1, 1) and f ′(x, 0) = f(x, 0, 0)

satisfies that AI(f ′) ≤ AI(f). Using this property and the algebraic immunity of

triangular functions (see below), the algebraic immunity of sums of monomials

has been determined in [305]:

AI(f) = min
0≤d≤k

(
d+

k∑
i=d+1

mi

)
. (10.6)

It is also shown in this same reference that, in some cases, the fast algebraic

immunity of such functions can be close to their algebraic immunity.

10.3.1 Triangular functions

Direct sums of monomials are called triangular functions when their direct sum

vector is the all-1 vector (that is, when they have one monomial of each degree).

We assume here also that all variables are effective. The k-th triangular function

equals
⊕k

i=1

∏i
j=1 xj+i(i−1)/2. Its nonlinearity equals 2n−1 −

∏k
i=2

(
2i − 2

)
, ac-

cording to what we have seen with direct sums of monomials, and its algebraic

immunity equals k, as first observed in [279] (and used in [839]). This property

is easily shown by induction on k since we have seen at page 373 that making

the direct sum of a function f and of a monomial of degree AI(f) + 1 gives a

function of algebraic immunity AI(f) + 1.

10.4 Monotone functions

An n-variable Boolean function f is (increasing) monotone if, for every x, y ∈ Fn2
such that x � y (i.e. such that supp(x) ⊆ supp(y), see page 49), we have f(x) ≤
f(y). Any monomial Boolean (multivariate) function

∏
i∈I xi is monotone. Other

examples are threshold functions, see above.

As mentioned in [298, 249], monotone Boolean functions play a role in vot-

ing theory (a voting scheme should be monotone), reliability theory (a system

currently working should not fail when we replace a defective component by an

operative one), hypergraphs (the stability function of a hypergraph, which takes

value 1 at x when supp(x) contains at least one edge, is monotone Boolean),
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learning (monotone Boolean functions are easier to learn). The question ad-

dressed here is: can they play also a role with stream ciphers (as filter functions)

and our conclusion at the end of this section will be essentially negative.

The balancedness and the algebraic immunity of monotone Boolean functions

are addressed in [298], which also recalls what is their ANF and how they can be

constructed. This reference studies their Walsh spectrum and their nonlinearity,

showing that no monotone bent n-variable function exists for n ≥ 4, and that

every monotone n-variable function f has nonlinearity at most 2n−1 − 2
n−1

2 for

n ≥ 5 odd. Let us show how these results are obtained. For every y ∈ Fn2 such that

f(y) = 0, we have, according to the Poisson summation formula (2.41), page 78,

applied with a = b = 0n and E⊥ = {x ∈ Fn2 ; x � y}, E = {u ∈ Fn2 ; u � y + 1n}:∑
u∈Fn2 ;u�y+1n

Wf (u) = 2n,

and this implies that maxu∈Fn2 ;u�y+1n |Wf (u)| ≥ 2wH(y), since the maximum of

a sequence cannot be smaller than its arithmetic mean. And when f(y) = 1:∑
u∈Fn2 ;u�y

(−1)1n·uWf (u) = −2n,

and this implies that maxu∈Fn2 ;u�y |Wf (u)| ≥ 2n−wH(y). Then:

Proposition 153 [298] For every odd n ≥ 5 and every monotone n-variable

function f , we have nl(f) ≤ 2n−1 − 2(n−1)/2.

Indeed, the observations above and Relation (3.1), page 99, imply this bound

when there exists y of Hamming weight at least n+1
2 such that f(y) = 0, or of

Hamming weight at most n−1
2 such that f(y) = 1, and the only case left is when

f is the majority function, which has nonlinearity 2n−1 −
(

n−1
(n−1)/2

)
.

But no general upper bound for n even could be shown. Indeed, only the

case where f(x) differs from the majority function for at least one input x of

Hamming weight different from n/2 can be easily handled similarly. The case

where f(x) coincides with the majority function for every input x of Hamming

weight different from n/2 must be handled by other means. Then [298] only

conjectured the upper bound nl(f) ≤ 2n−1 − 2
n
2 for n even large enough.

This conjecture was proved in [249]. We give its proof (and this will also prove

the nonexistence of monotone bent functions). According to the observations

above, we can restrict ourselves to the case where n is even and f equals the

majority function at every input x of Hamming weight different from n/2. We

can assume f different from the strict and large majority functions, since the

nonlinearity of these two functions, equal to 2n−1−
(
n−1
n/2

)
, is larger than 2n−1−

2n/2 for n large enough. What makes the proof work is the second-order Poisson

summation formula (see Relation (2.57), page 81):

∑
u∈E⊥

W 2
f (u) = |E⊥|

∑
a∈E′

(∑
x∈E

(−1)f(a+x)

)2

, (10.7)
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valid for any Boolean function f and supplementary subspaces E and E′ of Fn2 .

For a given y of Hamming weight n/2 and such that f(y) = 0, let us take

E = {x ∈ Fn2 ; x � y}. Then E⊥ = {u ∈ Fn2 ; u � y + 1n} is supplementary

of E and we can then take E′ = E⊥; we obtain, f being null on E since it is

monotone:

∑
u∈Fn2 ;u�y+1n

W 2
f (u) = 2n/2

∑
a∈Fn2 ;a�y+1n

 ∑
x∈Fn2 ; x�y

(−1)f(a+x)

2

= 23n/2 + 2n/2
∑

a∈Fn2 ;a�y+1n;a 6=0n

 ∑
x∈Fn2 ; x�y

(−1)f(a+x)

2

.

Using again that the maximum is bounded below by the mean, we deduce the in-

equality maxu∈Fn2 ;u�y+1nW
2
f (u) ≥ 2n+

∑
a�y+1n;a6=0n

(∑
x∈Fn2 ; x�y(−1)f(a+x)

)2

.

For a � y + 1n, denoting wH(a) by j, if x � y has Hamming weight strictly less

than n/2− j then a+x has Hamming weight strictly less than n/2 and f(a+x)

equals 0, and if x � y has Hamming weight strictly larger than n/2−j then a+x

has Hamming weight strictly larger than n/2 and f(a+x) equals 1. If x � y has

Hamming weight n/2−j, then a+x has weight n/2 and the value of f(a+x) is un-

known. The value of
∑
x∈Fn2 ; x�y(−1)f(a+x) lies then between

∑n/2−1−j
i=0

(
n/2
i

)
−∑n/2

i=n/2+1−j
(
n/2
i

)
−
(
n/2
n/2−j

)
and

∑n/2−1−j
i=0

(
n/2
i

)
−
∑n/2
i=n/2+1−j

(
n/2
i

)
+
(
n/2
n/2−j

)
.

Replacing
(
n/2
i

)
by
(
n/2
n/2−i

)
in the sum

∑n/2
i=n/2+1−j

(
n/2
i

)
, we obtain

∑j−1
i=0

(
n/2
i

)
.

Then for j < n/4, we have n/2 − 1 − j ≥ j and
(∑

x∈Fn2 ; x�y(−1)f(a+x)
)2

≥(∑n/2−1−j
i=j

(
n/2
i

)
−
(
n/2
n/2−j

))2

=
(∑n/2−1−j

i=j+1

(
n/2
i

))2

, and for j > n/4, we have

j−1 ≥ n/2−j and
(∑

x∈Fn2 ; x�y(−1)f(a+x)
)2

≥
(∑j−1

i=n/2−j
(
n/2
i

)
−
(
n/2
n/2−j

))2

=(∑j−1
i=n/2−j+1

(
n/2
i

))2

. We then deduce that: maxu∈Fn2 ;u�y+1nW
2
f (u) ≥ 2n+

∑
1≤j<n/4

(
n/2

j

)n/2−1−j∑
i=j+1

(
n/2

i

)2

+
∑

n/4<j≤n/2

(
n/2

j

) j−1∑
i=n/2−j+1

(
n/2

i

)2

=

2n + 2
∑

1≤j<n/4

(
n/2

j

)n/2−1−j∑
i=j+1

(
n/2

i

)2

+

n/2−1∑
i=1

(
n/2

i

)2

=

2n + 2
∑

1≤j<n/4

(
n/2

j

)(
2n/2 − 2

j∑
i=0

(
n/2

i

))2

+
(

2n/2 − 2
)2

.

And we have 2
∑

1≤j<n/4
(
n/2
j

) (
2n/2 − 2

∑j
i=0

(
n/2
i

))2

+
(
2n/2 − 2

)2 ≥ 3 · 2n for
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every n ≥ 10, since the expression of n equal to

2−n

2
∑

1≤j<n/4

(
n/2

j

)(
2n/2 − 2

j∑
i=0

(
n/2

i

))2

+
(

2n/2 − 2
)2


is non-decreasing and is larger than 3 for n = 10. We deduce then:

Proposition 154 [249] For every even n ≥ 10 and every monotone n-variable

function f , we have nl(f) ≤ 2n−1 − 2n/2.

Since 2n−1 − 2(n−1)/2 (n odd) and 2n−1 − 2n/2 (n even) are good nonlinear-

ities for Boolean functions in n variables, the bounds above do not tell us if

monotone Boolean functions can have good nonlinearity. But a stronger bound,

valid for every n, can be proved as also shown in [249]. Indeed, the inequalities

max
u∈Fn2

|Wf (u)| ≥ 2wH(y) for f(y) = 0 and max
u∈Fn2

|Wf (u)| ≥ 2n−wH(y) for f(y) = 1

can be refined by using the second-order Poisson summation formula (10.7) again.

- If there exist vectors of Hamming weight strictly larger than n/2 whose image

by f is 0, let then y have maximal Hamming weight (say, w) among all vectors

satisfying f(y) = 0. We have with the same arguments as above:

max
u∈Fn2 ;u�y+1n

W 2
f (u) ≥ 22w +

∑
a∈Fn2 ; a�y+1n;a6=0n

 ∑
x∈Fn2 ; x�y

(−1)f(a+x)

2

. (10.8)

For every a � y+1n (of Hamming weight j ≤ n−w), we have f(a+x) = 1 for ev-

ery x � y such that a+x has Hamming weight at least w+1 (that is, for every x �
y of Hamming weight at least w−j+1), and we deduce

∑
x∈Fn2 ; x�y(−1)f(a+x) ≤

2w−2
∑w
i=w−j+1

(
w
i

)
. Note that we have 2w−2

∑w
i=w−j+1

(
w
i

)
≤ 0 if and only if

w−j+1 ≤ w
2 , that is, j ≥ w

2 +1. We have:
∑

a∈Fn2 ;a6=0n
a�y+1n

(∑
x∈Fn2 ; x�y(−1)f(a+x)

)2

≥∑n−w
j=dw2 e+1

(
n−w
j

) (
2
∑w
i=w−j+1

(
w
i

)
− 2w

)2

. We deduce then from (10.8) that:

max
u∈Fn2 ;u�y+1n

W 2
f (u) ≥ 22w +

n−w∑
j=dw2 e+1

(
n− w
j

)(
2w − 2

w−j∑
i=0

(
w

i

))2

.

Denoting 2w = n+ k (where k > 0 has the same partity as n), we have then:

max
u∈Fn2 ;u�y+1n

W 2
f (u) ≥ 2n+k +

n−k
2∑

j=dn+k
4 e+1

(n−k
2

j

)2
n+k

2 − 2

n+k
2 −j∑
i=0

(n+k
2

i

)2

.

Hence, we have:

nl(f) ≤ 2n−1 − 1

2

√√√√√√2n+k +

n−k
2∑

j=dn+k
4 e+1

(n−k
2

j

)2
n+k

2 − 2

n+k
2 −j∑
i=0

(n+k
2

i

)2

.
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- If there exist vectors of Hamming weight smaller than n/2 and whose image by

f equals 1, let y have minimal Hamming weight w such that f(y) = 1 (w < n/2).

Applying the upper bound above to the monotone function f(x+ 1n)⊕1, whose

nonlinearity equals that of f , and denoting w′ = n − w = n+k′

2 , where k′ > 0

has the same partity as n, we have:

nl(f) ≤ 2n−1 − 1

2

√√√√√√2n+k′ +

n−k′
2∑

j=
⌈
n+k′

4

⌉
+1

(n−k′
2

j

)2
n+k′

2 − 2

n+k′
2 −j∑
i=0

(n+k′

2

i

)2

.

- If none of the two cases above happens, then f coincides with the majority

function at every input x of Hamming weight different from n/2 and either (i)

f is a majority function and nl(f) equals then 2n−1 −
(
n−1
n/2

)
if n is even and

2n−1 −
(

n−1
(n−1)/2

)
if n is odd, or (ii) n is even and nl(f) ≤ 2n−1 − 1

2

√
A where A

equals 2n+ 2
∑

1≤j<n/4

(
n/2

j

)(
2n/2 − 2

j∑
i=0

(
n/2

i

))2

+
(

2n/2 − 2
)2

. We deduce:

Theorem 24 [249] For every n and every monotone n-variable function f , we

have nl(f) ≤ 2n−1 − 1
2

√
M , where M = min(A,B,C) if n is even and M =

min(B,C) if n is odd, with

A = 2n + 2
∑

1≤j<n/4

(
n/2

j

)(
2n/2 − 2

j∑
i=0

(
n/2

i

))2

+
(

2n/2 − 2
)2

,

B = min
1≤k≤n/2
n+k even

2n+k +

n−k
2∑

j=dn+k
4 e+1

(n−k
2

j

)2
n+k

2 − 2

n+k
2 −j∑
i=0

(n+k
2

i

)2
 ,

and C =
[
2
(
n−1
bn2 c
)]2

.

The behavior of A, B and C when n tends to infinity is studied in [249] and

shows that min(A,B,C) is asymptotically equivalent to an expression of n at

least equal to 2
3nλn

2 for some λn tending to 1. Tables are given, indicating for

each value of n between 4 and 31 the value given by the upper bound of Theorem

24. These tables confirm that the nonlinearity of monotone Boolean functions is

bad (much worse than what was suggested by the upper bounds obtained, resp.

conjectured, in [298]). This shows that the rather large class of monotone Boolean

functions contains no element which could be used as a nonlinear function in a

cryptosystem.
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with low differential uniformity

A large nonlinearity is one of the most important criteria for vectorial functions,

valid for all uses in stream and block ciphers. Nonlinearity is not the only pa-

rameter quantifying the difference in behavior between a vectorial function and

affine functions, but it is the most important. According to Dib’s results [436],

the average nonlinearity of vectorial functions is not bad.

Differential uniformity has the same importance as nonlinearity but is specific

to S-boxes in block ciphers. According to Voloch’s results [1098], the average dif-

ferential uniformity of (n, n)-functions is bad, and this is probably also the case

for (n,m)-functions. The relationship between nonlinearity and differential uni-

formity is not completely clarified. For instance, as seen at page 159, there exist

vectorial functions with good nonlinearity and bad differential uniformity and

vice versa, but most known functions with optimal differential uniformity have

good nonlinearity. Further work is needed to understand better this relationship.

But the work done in general on the study of S-boxes (see a survey in [94]) is

significant and has had important practical applications. The design of the AES

has taken advantage of the studies (in particular by K. Nyberg) on the notions

of nonlinearity and differential uniformity. This has made possible in the AES

to use S-boxes working on bytes (at the time, it would not have been possible to

find a good 8-bit-to-8-bit S-box by a computer search as this had been done for

the 6-bit-to-4-bit S-boxes of the DES). We recommend the book [141].

We briefly recall the main informations given in Subsection 3.2.3, page 137. The

nonlinearity nl(F ) of an (n,m)-function F is the minimum Hamming distance

between all component functions of F and all affine functions in n variables:

nl(F ) = 2n−1 − 1

2
max

v∈Fm2 \{0m}; u∈Fn2
|WF (u, v)| .

Nonlinearity quantifies the contribution of functions to the resistance against lin-

ear attacks, when they are used as S-boxes in block ciphers, and partly against

fast correlation attacks, when they are used as filters or combiners in stream

ciphers.

We have seen that the nonlinearity is a CCZ invariant. In particular, if n = m

and if F is a permutation, then F and its inverse F−1 have the same nonlinearity.

We have also seen at page 183 the relationship between the maximal possible

nonlinearity of (n,m)-functions and the possible parameters of the linear super-
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codes of the Reed-Muller code of order 1. Existence and non-existence results1

on highly nonlinear vectorial functions are deduced in [1099] and upper bounds

on the nonlinearity of (n,m)-functions are derived in [341, 267].

11.1 The covering radius bound; bent/perfect nonlinear functions

As seen at page 139, the covering radius bound is valid for every (n,m)-function:

nl(F ) ≤ 2n−1 − 2
n
2−1, (11.1)

and an (n,m) function is called bent if it achieves the covering radius bound

(11.1) with equality.

The notion of bent vectorial function is invariant under CCZ equivalence2 (since

the nonlinearity is) but we have seen at Subsection 6.4, page 297, that CCZ

equivalence coincides with EA equivalence for bent vectorial functions. We have

also seen that an (n,m)-function is bent if and only if all the component functions

v · F , v 6= 0m of F are bent and that bent (n,m)-functions exist if and only if

n is even and m ≤ n
2 . Recall also that an (n,m)-function is bent if and only if

all its derivatives DaF (x) = F (x) + F (x+ a), a ∈ Fn2 \ {0n}, are balanced, that

is, “bent” and “perfect nonlinear (PN)” are equivalent. Bent vectorial functions

contribute then also to an optimal resistance to the differential attack of those

cryptosystems in which they are involved (but they are not balanced). They can

be used to design authentication schemes (or codes), see [346].

Thanks to the observations made in Subsection 2.3.7 (where we saw that the

evaluation of the multidimensional Walsh transform corresponds in fact to the

evaluation of the Walsh transform), it is a simple matter to characterize bent

functions as those functions whose squared expression of the multidimensional

Walsh transform at L is the same for every L.

Note that if a bent (n,m)-function F is normal in the sense that it is null on

(say) an n
2 -dimensional vector space E, then F is balanced on any translate of

E. Indeed, for every v 6= 0m in Fm2 and every u ∈ Fn2 \ E, the function v · F is

balanced on u+ E.

We have recalled at Subsections 6.1.15 and 6.1.16 what are the known primary

and secondary constructions of bent functions.

11.2 The Sidelnikov-Chabaud-Vaudenay bound

We have seen with Theorem 6, page 140, that a better upper bound than the

covering radius bound exists for (n, n)-functions:

nl(F ) ≤ 2n−1 − 2
n−1

2 ,

1 Using the linear programming bound due to Delsarte.
2 But the number of bent components of general (n,m)-functions is not.
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and that the functions which achieve it with equality (for n necessarily odd) are

called almost bent (AB). There exists a bound on the algebraic degree of AB

functions, similar to the bound for bent functions:

Proposition 155 [257] Let F be any (n, n)-function (n ≥ 3, odd). If F is AB,

then the algebraic degree of F is less than or equal to (n+ 1)/2.

This is a direct consequence of the fact that the Walsh transform of any function

v · F is divisible by 2
n+1

2 and of Theorem 2, page 82. The bound is tight; it is

achieved with equality for instance by the inverse of x3.

Note that the divisibility plays also a role with respect to the algebraic degree

of the composition of two vectorial functions: in [204] has been proved (as we

recalled in a remark at page 82) that, if the Walsh transform values of a vecto-

rial function F : Fn2 → Fn2 are divisible by 2k then, for every vectorial function

G : Fn2 → Fn2 , the algebraic degree of composite function G ◦ F is at most equal

to the algebraic degree of G plus n − k. This means that using AB functions

as S-boxes in block ciphers may not be a good idea (suboptimal functions as

the multiplicative inverse function, see Chapter 11, may be better, as often in

cryptography).

Remark. There is a big gap between the best possible nonlinearity 2n−1− 2
n−1

2

of (n, n)-functions for n odd, achieved by AB functions (see examples below),

and the best known nonlinearity 2n−1−2n/2 of (n, n)-functions for n even, which

is achieved (see below) by the Gold APN functions, the Kasami APN functions,

and the multiplicative inverse function x2n−2 (n odd). The gap could seem not so

important, but it is, since what matters for the complexity of attacks by linear

approximation is not the value of nl(F ) but the value of 2n−1−nl(F )
2n−1 . Finding

functions with better nonlinearity (and still more relevantly to cryptography,

with better nonlinearity and good differential uniformity) or proving that such

function does not exist is an open question. 2

We recall now the definition of the differential uniformity of an (n,m)-function

F (see Definition 40, page 157):

δF = max
a∈Fn2 ,b∈F

m
2

a 6=0n

|{x ∈ Fn2 ; DaF (x) = b}|

is the maximum number of ordered pairs of distinct elements of the graph GF =

{(x, y) ∈ Fn2 × Fm2 ; y = F (x)} of F whose sum equals some value (a, b) ∈
(Fn2 \{0n})×Fm2 . The smaller δF , the better the contribution of F to the resistance

to differential cryptanalysis. For every (n,m)-function F , we have δF ≥ 2n−m (as

observed by Nyberg) with equality if and only if F is perfect nonlinear (which

can exist if and only if n is even and m ≤ n/2), and when m ≥ n, the smallest

possible value of δF is 2, since δF is always even.

We have seen that the differential uniformity is a CCZ invariant (and here
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also, if n = m and if F is a permutation, then F and its inverse F−1 have the

same differential uniformity).

11.3 Almost perfect nonlinear and almost bent functions

We have seen in Definition 41, page 159, that differentially 2-uniform (n, n)-

functions are called almost perfect nonlinear (in brief, APN ) and contribute to

a maximal resistance to differential cryptanalysis.

AB functions contribute to a maximal resistance to both linear and differential

cryptanalyses; indeed, according to the proof of the SCV bound and as observed

by Chabaud and Vaudenay:

Proposition 156 For every n odd, AB (n, n)-functions are APN.

The converse of Proposition 156 is false in general; it is true for quadratic func-

tions in odd dimension [257] and in more general cases that we shall see at page

414. The implication of Proposition 156 can be more precisely changed into a

characterization of AB functions:

Proposition 157 Any vectorial function F : Fn2 → Fn2 is AB if and only if F

is APN and plateaued with single amplitude (see Definition 67, page 302).

This comes directly from Relations (3.22) and (3.25), page 141. We shall see in

Proposition 163, page 414, that if n is odd, the condition “with the same ampli-

tude” is in fact not necessary.

AB functions exist for every odd n ≥ 3. APN functions exist for every n ≥ 2.

Function F (x) = x3, x ∈ F2n , is an example; others will be given below.

According to Relations (3.24) and (3.25), and to the two lines following them,

APN (n, n)-functions F are characterized3 by the fact that the power sum of

degree 4 of the values of their Walsh transform is minimal:∑
v∈Fn2 ,u∈Fn2

W 4
F (u, v) = 3 · 24n − 2 · 23n (11.2)

or equivalently, replacing
∑
u∈Fn2

W 4
F (u, 0n) by its value 24n:

Theorem 25 [341] Any (n, n)-function F is APN if and only if∑
v∈Fn2 \{0n},u∈Fn2

W 4
F (u, v) = 23n+1(2n − 1), (11.3)

which is the minimal possible value of this sum for all (n, n)-functions.

3 This characterization is equivalent to a characterization due to Helleseth [592] in the

framework of sequences.
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We have seen at page 132 that this implies that the Walsh support of APN

(n, n)-functions has size at least 1 + (2n − 1) 2n−1.

Using Relation (3.10), page 119, F is then APN if and only if
∑
v∈Fn2 \{0n}

V(v ·
F ) = 22n+1(2n−1). In fact, as observed in [910], F is APN if and only if, for every

a ∈ Fn2 \ {0n},
∑
v∈Fn2

F2(Da(v · F )) = 2n|{(x, y) ∈ (Fn2 )2; DaF (x) = DaF (y)}|
equals 22n+1 (i.e. is minimal), and Theorem 25 can also be referred to [910].

Using Parseval’s relation (3.23) and Relation (11.3), any (n, n)-function F is

APN if and only if: ∑
v∈Fn2 \{0n}

u∈Fn2

W 2
F (u, v)

(
W 2
F (u, v)− 2n+1

)
= 0. (11.4)

This characterization will have nice consequences in the sequel.

It is easily shown as in the proof of the SCV bound, that for every (n, n)-function,

the power sum of degree 3:
∑
v∈Fn2 ,u∈Fn2

(∑
x∈Fn2

(−1)v·F (x)⊕u·x
)3

equals

22n
∣∣{(x, y) ∈ F2n

2 ; F (x) + F (y) + F (x+ y) = 0n
}∣∣ .

Applying (with z = 0n) the property that, for every APN function F , the relation

F (x) + F (y) + F (z) + F (x + y + z) = 0n can be achieved only when x = y or

x = z or y = z, we have then, for every APN function such that F (0n) = 0n:∑
v∈Fn2 ,u∈Fn2

W 3
F (u, v) = 3 · 23n − 2 · 22n. (11.5)

But this property is not characteristic (except for plateaued functions, see below)

of APN functions among those (n, n)-functions such that F (0n) = 0n, since it

is only characteristic of the fact that
∑
x∈E F (x) 6= 0n for every 2-dimensional

vector subspace E of Fn2 (which is more restrictive than for every 2-dimensional

flat).

As already seen at page 132, the spectral complexity of an APN function satisfies

|{(u, v) ∈ Fn2 × Fm2 ; WF (u, v) 6= 0}| ≥ 24n

3·22n−2n+1 ≈ 22n

3 .

Note that for every APN function F , we have∣∣{(a, b) ∈ (Fn2 )2 , a 6= b ; F (a) = F (b)}
∣∣ ≤ 2 · (2n − 1)

since F (a) = F (b) is equivalent to Da+bF (a) = 0n.

Hence, we have
∣∣{(a, b) ∈ (Fn2 )2 ; F (a) = F (b)}

∣∣ =
∑
z∈Fn2

|F−1(z)|2 ≤ 3 · 2n − 2

and therefore |F−1(z)| ≤
⌊√

3 · 2n − 2
⌋
≤ 2n/2+1, for every z ∈ Fn2 .

We have seen at page 160 the different ways of expressing that a function is

APN. It is observed in [71, Theorem 3] (recalled in [94] and slightly modified in

[353]) that, given any linear hyperplane H in Fn2 and any (n, n)-function F , the

necessary property (for F to be APN) that DaF is 2-to-1 when a is nonzero and

belongs to H is also sufficient. Let us give a simple proof: suppose that F is not

APN, then there exists an affine plane P in Fn2 , say P = u + E where E is a
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linear plane, on which F is affine (see page 160). The direction E of P contains

at least one nonzero element a of H, because dimE + dimH > n; then DaF is

not 2-to-1, a contradiction.

We have seen at page 306 that a subclass of APN functions (and superclass

of AB quadratic permutations), called crooked functions, has been considered in

[57], further studied in [172, 410, 726] and generalized in [727, 729, 80]. There

are only two known cases of crooked functions corresponding to the original

definition: Gold power AB functions and the class of quadratic AB binomials

constructed in [151, 158]. All known crooked functions in the larger sense are

quadratic APN and we have several constructions of them. Among the known

487 quadratic AB functions over F27 only Gold functions are CCZ equivalent

to permutations (among AB functions, permutations are rare). It can be proved

[728] that every power crooked function is a Gold function (see definition below).

The maximal algebraic degree of APN functions is unknown: for n odd, it is

probably n − 1 (achieved by x2n−2), but it is unproven that it is not n, and

for n even, it is still more undetermined. All known APN functions (see pages

428 and 434) have algebraic degree at most n − 1. It has been proved in [156],

thanks to characterizations by means of derivatives and power moments of the

Walsh transform, that APN functions of algebraic degree n do not exist for n ≥ 3

within the classes of power functions modified at input 0 (and the nonexistence

for power functions modified in one point was checked by computer for n ≤ 13)

and of plateaued functions modified in one point. See more in [153, 654], and in

[167] where the notion of APNness is weakened (differently from [24]).

A lower bound given in [297], involving the differential uniformity and the size

of the image set of vectorial functions, is equivalent to a bound on the size of the

image set of differentially uniform functions (see page 447). In the case of APN

functions, this latter bound writes |Im(F )| ≥
⌈

22n

3·2n−2

⌉
.

11.3.1 Other Characterizations of AB and APN functions

We have seen above the main characterizations but others exist:

Other characterizations by the Walsh transform
We shall see when characterizing general differentially uniform functions in Sec-

tion 11.6 that other characterizations of APN functions exist by the Walsh trans-

form, as shown in [250].

Characterization by the degrees of univariate polynomials
An (n, n)-function F , given in univariate form, is APN if and only if, for every

a ∈ F∗2n and every b ∈ F2n , the polynomial gcd(x2n +x, F (x) +F (x+a) + b) has

degree at most 2 (that is, has degree 0 or 2). Indeed, x2n + x splits completely
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over F2n and its roots, all simple, are all the elements of F2n . The polynomial

P (x) = F (x) + F (x+ a) + b has then a number of zeros in F2n equal to the de-

gree of Q(x) = gcd(P (x), x2n +x). The degree of Q(x) is 2, that is, the equation

F (x) +F (x+a) = b has solutions, if and only if γF (a, b) = 1, where γF has been

defined at page 254 and will be studied more in detail in Proposition 158 below.

Remark. If F is a quadratic (n, n)-function, the equation F (x) + F (x+ a) = b

is a linear equation. It admits then at most 2 solutions for every nonzero a and

every b if and only if the related homogeneous equation F (x) + F (x + a) +

F (0n) + F (a) = 0n admits at most 2 solutions for every nonzero a. We shall

see that this generalizes to plateaued functions. In the case of a quadratic func-

tion, F is APN if and only if the associated bilinear symmetric (2n, n)-function

βF (x, y) = F (0n) +F (x) +F (y) +F (x+ y) never vanishes when x and y are F2-

linearly independent vectors of Fn2 . For functions of higher degrees, the fact that

βF (x, y) (which is no longer bilinear) never vanishes when x and y are linearly

independent is only necessary for APNness (sufficient for plateaued functions). 2

Characterization by the ANF
By definition, an (n, n)-function is APN if and only if, for every nonzero a ∈ Fn2 ,

δ0

(
F (x) + F (x+ a) + F (y) + F (y + a)

)
⊕ δ0

(
x+ y

)
⊕ δ0

(
x+ y + a

)
≡ 0

(where ≡ 0 means “equals the zero function”), where δ0(z) =
∏n
i=1(zi⊕1) is the

Dirac (or Kronecker) symbol. Indeed, this equation expresses that F (x) +F (x+

a) = F (y) +F (y+a) if and only if x = y or x = y+a. Equivalently, denoting by

Ha any linear hyperplane excluding a, function DaF is injective on Ha, that is:

1Ha(x) 1Ha(y) [δ0(F (x) + F (x+ a) + F (y) + F (y + a))⊕ δ0(x+ y)] ≡ 0.

These identities, when considered as multivariate polynomial equalities, need to

be viewed in F2[x, y]/(x2
i + xi, y

2
i + yi; i = 1, . . . , n).

They can also be considered as univariate identities over F2n , where δ0(z) =

1+z2n−1, and they need then to be reduced modulo x2n +x and modulo y2n +y

before being checked as identically zero.

Characterization by the ANFs of affine equivalent functions
A necessary condition dealing with quadratic terms in the ANF of any APN func-

tion has been observed in [71]. Given any APN function F (quadratic or not),

every quadratic term xixj (1 ≤ i < j ≤ n) must appear with a non-null coeffi-

cient in the algebraic normal form of F . Indeed, we know that the coefficient of

any monomial
∏
i∈I x

i in the ANF of F equals aI =
∑
x∈Fn2 ; supp(x)⊆I F (x) (this

sum being calculated in Fn2 ). Applied for instance to I = {n − 1, n}, this gives

aI = F (0, . . . , 0, 0, 0) + F (0, . . . , 0, 0, 1) + F (0, . . . , 0, 1, 0) + F (0, . . . , 0, 1, 1), and

F being APN, this vector cannot be null. Note that, since the notion of almost
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perfect nonlinearity is affine invariant (see below), this condition must be satis-

fied by all of the functions L′ ◦ F ◦ L, where L′ and L are affine automorphisms

of Fn2 . Extended this way (i.e. writing that all degree 2 terms have non-null coef-

ficients in the ANF of every affinely equivalent function), the condition becomes

necessary and sufficient (indeed, for every distinct x, y, z in Fn2 , there exists an

affine automorphism L of Fn2 such that L(0, . . . , 0, 0, 0) = x, L(0, . . . , 0, 1, 0) = y

and L(0, . . . , 0, 0, 1) = z; so the condition tells that
∑
x∈P F (x) is nonzero for

every 2-dimensional affine space P ).

Characterizations by the Hamming weight and the bentness of
associated Boolean functions
The properties of APNness and ABness can be translated in terms of Boolean

functions, as observed in [257] and already encountered at page 254:

Proposition 158 Let F be any (n, n)-function. For every a, b ∈ Fn2 , let γF (a, b)

equal 1 if the equation F (x) + F (x + a) = b admits solutions, with a 6= 0n.

Otherwise, let γF (a, b) be null. Then:

1) F is APN if and only if γF has Hamming weight 22n−1 − 2n−1, and we have

then, for every u, v ∈ Fn2 : WγF (u, v) =

{
2n if (u, v) = (0n, 0n)

2n −W 2
F (u, v) otherwise;

2) F is AB if and only if γF is bent. The dual of γF is then the indicator of the

Walsh support of F , deprived of (0n, 0n).

Proof.

1) If F is APN, then for every a 6= 0n, the mapping x 7→ F (x) + F (x + a) is

2-to-1 (that is, the size of the pre-image of any vector equals 0 or 2). Hence, γF
has Hamming weight 22n−1 − 2n−1. The converse is also straightforward.

We assume now that F is APN. We have WγF (0n, 0n) = 22n − 2wH(γF ) = 2n.

For (u, v) 6= (0n, 0n), we have:

WγF (u, v) = −2 γ̂F (u, v) = −
∑

a6=0n,x∈Fn2

(−1)u·a⊕ v·(F (x)+F (x+a))

= 2n −
∑

a,x∈Fn2

(−1)u·a⊕ v·(F (x)+F (x+a))

= 2n −
∑

x,y∈Fn2

(−1)u·(x+y)⊕ v·(F (x)+F (y)) = 2n −W 2
F (u, v).

2) We deduce that F is AB if and only if WγF (u, v) = ±2n for every (u, v) ∈
Fn2 × Fn2 , i.e., γF is bent. Then for every (u, v) 6= (0n, 0n), we have γ̃F (u, v) = 0,

that is, WγF (u, v) = 2n if and only if WF (u, v) = 0. Hence, the dual of γF is the

indicator of the Walsh support of F , deprived of (0n, 0n). 2

Denoting by L = (L1, L2) an affine automorphism mapping the graph of F to

the graph of G, we have γF = γG ◦ L, where L is the linear automorphism such
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that L = L+cst. Indeed, we have G = F2 ◦F−1
1 , where F1(x) = L1(x, F (x)) and

F2(x) = L2(x, F (x)); the value γG(a, b) equals 1 if and only if a 6= 0n and there

exists (x, y) in Fn2×Fn2 such that F1(x)+F1(y) = a and F2(x)+F2(y) = b, that is,

L(x, F (x))+L(y, F (y)) = L(x+y, F (x)+F (y)) = (a, b). Hence, γG ◦L(a, b) = 1

if and only if γF (a, b) = 1. Note that different functions may have the same γF ;

see in [561] a study when the function γF is the one associated to Gold func-

tions. The linear equivalence between functions γF could potentially lead to an

equivalence notion strictly more general than CCZ equivalence; this needs to be

studied. It is observed in this same reference that if two functions F, F ′ are such

that γF = γF ′ , then for any function G taken EA equivalent to F , there exists

G′ which is EA equivalent to F ′ and such that γG = γG′ . In [109] is observed

that if two functions F, F ′ have the same difference distribution table (DDT, see

page 158), then for any function G taken CCZ equivalent to F , there exists G′

which is CCZ equivalent to F ′ and such that G and G′ have the same DDT (and

the same is true with EA instead of CCZ); it is also shown that, for any APN

permutation F and any pair {a, a′} of distinct nonzero elements, the functions

γF (a, x) and γF (a′, x) are different. It is conjectured in this same reference that

two permutations F and G having such property and such that γF = γG (i.e.

with the same DDT) are such that G(x) = F (x+ a) + b. A guess-and-determine

algorithm for reconstructing an S-box from its DDT is given, which is outper-

formed by an algorithm from [489].

The γF functions associated to some AB functions are addressed at page 254

and those associated to some of the known APN functions are determined in

[152, 257] (for some other cases it is an open problem).

Remark. Let F be APN. According to Relation (3.3), page 102, we have nl(F ) =

minv∈Fn2 ,v 6=0n nl(v · F ) ≥ 2n−2 − 1
4 maxv∈Fn2 ,v 6=0n mine∈Fn2 ,e 6=0n |F(v · DeF )| =

2n−2 − 1
2 maxv 6=0n mine 6=0n |

∑
b∈Fn2

γF (e, b)(−1)v·b|. We obtain then nl(F ) ≥
2n−2 − 1

2 maxv 6=0n mine 6=0n |γ̂F,e(v)| ≥ 2n−2 − 1
2 mine 6=0n maxv 6=0n |γ̂F,e(v)| =

maxe 6=0n nl(γF,e) − 2n−2, where γF,e(b) = γF (e, b). These lower bounds are not

efficient for highly nonlinear functions like AB functions, since they are below

2n−2 which is much smaller than 2n−1 − 2
n−1

2 , but since little is known on the

nonlinearity of APN non-AB functions, they are worth mentioning. 2

Characterizations by the numbers of solutions of systems of
equations

There exists a characterization of AB functions by van Dam and Fon-Der-Flaass

in [410] similar to the characterization of APN functions by the fact that, for

every (a, b) 6= (0n, 0n), the system

{
x+ y = a

F (x) + F (y) = b
admits 0 or 2 solu-

tions:
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Proposition 159 Any (n, n)-function F is AB if and only if the system:{
x+ y + z = a

F (x) + F (y) + F (z) = b
(11.6)

admits 3 · 2n − 2 solutions if b = F (a) and 2n − 2 solutions otherwise.

Indeed, F is AB if and only if, for every v ∈ Fn2 \{0n} and every u ∈ Fn2 , we have(∑
x∈Fn2

(−1)v·F (x)⊕u·x
)3

= 2n+1
∑
x∈Fn2

(−1)v·F (x)⊕u·x, and we know that two

pseudo-Boolean functions are equal to each other if and only if their Fourier-

Hadamard transforms are equal. The value at (a, b) of the Fourier-Hadamard

transform of the function of (u, v) equal to
(∑

x∈Fn2
(−1)v·F (x)⊕u·x

)3

if v 6= 0n,

and to 0 otherwise equals

∑
u∈Fn2
v∈Fn2

∑
x∈Fn2

(−1)v·F (x)⊕u·x

3

(−1)a·u⊕b·v − 23n =

22n

∣∣∣∣{(x, y, z) ∈ F3n
2 ;

{
x+ y + z = a

F (x) + F (y) + F (z) = b

}∣∣∣∣− 23n,

and the value of the Fourier-Hadamard transform of the function which is equal

to 2n+1
∑
x∈Fn2

(−1)v·F (x)⊕u·x if v 6= 0n, and to 0 otherwise equals

23n+1

∣∣∣∣{x ∈ Fn2 ;

{
x = a

F (x) = b

}∣∣∣∣− 22n+1.

This proves the result. Note that 3·2n−2 is the number of triples (x, x, a), (x, a, x)

and (a, x, x) where x ranges over Fn2 . Hence the condition when F (a) = b means

that these particular triples are the only solutions of the system (11.6). This is

equivalent to saying that F is APN and we can replace the first condition of van

Dam and Fon-Der-Flaass by “F is APN”. Denoting c = F (a) + b, we have then:

Corollary 27 Let n be any positive integer and F any APN (n, n)-function.

Then F is AB if and only if, for every c 6= 0n and every a in Fn2 , the equation

F (x) + F (y) + F (a) + F (x+ y + a) = c has 2n − 2 solutions.

Let us denote by A2 the set of 2-dimensional flats of Fn2 and by ΦF the mapping

A ∈ A2 →
∑
x∈A F (x) ∈ Fn2 . Corollary 27 is equivalent to saying that an APN

function is AB if and only if, for every a ∈ Fn2 , the restriction of ΦF to those flats

which contain a is a 2n−1−1
3 -to-1 function (indeed, there are 6 different ways of

ordering the three elements other than a in such flat). Note that the number of

2-dimensional flats of Fn2 containing a equals (2n−1)(2n−2)
(22−1)(22−2) = (2n− 1) 2n−1−1

3 and

the size of Fn2 \ {0n} equals 2n − 1. We have then:

Corollary 28 Any (n, n)-function F is APN if and only if ΦF is valued in

Fn2 \ {0n}, and F is AB if and only if, additionally, for every a ∈ Fn2 , the
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restriction of ΦF : A2 → Fn2 \ {0n} to those flats which contain a is balanced

(that is, has uniform output).

Note that, for every APN function F and any two distinct vectors a and a′,

the restriction of ΦF to those flats which contain a and a′ is injective, since for

two such distinct flats A = {a, a′, x, x+ a+ a′} and A′ = {a, a′, x′, x′ + a+ a′},
we have ΦF (A) + ΦF (A′) = F (x) + F (x + a + a′) + F (x′) + F (x′ + a + a′) =

ΦF ({x, x + a + a′, x′, x′ + a + a′}) 6= 0n. But this restriction of ΦF cannot be

surjective since the number of flats containing a and a′ equals 2n−1 − 1, which

is less than 2n − 1.

Remark. Other characterizations can be derived with the same method as in

Proposition 159’s proof. For instance, F is AB if and only if, for every v ∈ Fn2 \

{0n}, u ∈ Fn2 , we have

∑
x∈Fn2

(−1)v·F (x)⊕u·x

4

= 2n+1

∑
x∈Fn2

(−1)v·F (x)⊕u·x

2

.

By applying again the Fourier-Hadamard transform and dividing by 22n, we

deduce that F is AB if and only if, for every (a, b) in (Fn2 )2, we have:∣∣∣∣{(x, y, z, t) ∈ F4n
2 ;

{
x+ y + z + t = a

F (x) + F (y) + F (z) + F (t) = b

}∣∣∣∣− 22n =

2n+1

∣∣∣∣{(x, y) ∈ F2n
2 ;

{
x+ y = a

F (x) + F (y) = b

}∣∣∣∣− 2n+1.

Hence, F is AB if and only if the system

{
x+ y + z + t = a

F (x) + F (y) + F (z) + F (t) = b

admits 3 · 22n − 2n+1 solutions if a = b = 0n (this is equivalent to saying that F

is APN), 22n−2n+1 solutions if a = 0n and b 6= 0n (note that this condition cor-

responds to adding all the conditions of Corollary 27 with c fixed to b and with

a ranging over Fn2 ), and 22n + 2n+2γF (a, b) − 2n+1 solutions if a 6= 0n (indeed,

F is APN; note that this gives a new property of AB functions). 2

Characterization of APN functions by the minimum distance
of related codes, and of AB functions by the weight
distribution of these codes
A relationship has been observed in [641] (not exactly in terms of APNness

since this notion was not known by the authors) and developed further in [257])

(see also [642, 1099]) between the properties, for an (n, n)-function, of being

APN or AB and properties of related codes. This makes that APN functions are

generalizations of the cube (n, n)-function x3, whose related code is the 2-error

correcting BCH code (see page 25):

Proposition 160 [257] Let F be any function from F2n to F2n such that F (0) =
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0. Let H be the matrix

[
1 α α2 . . . α2n−2

F (1) F (α) F (α2) . . . F (α2n−2)

]
, where α is a

primitive element of F2n , where each symbol stands for the column of its coordi-

nates with respect to a basis of the F2-vector space F2n , and where only linearly

independent rows are kept. Let CF be the linear code admitting H for parity check

matrix. Then, F is APN if and only if CF has minimum distance 5, and F is

AB if and only if C⊥F (admitting H for generator matrix) has Hamming weights

0, 2n−1−2
n−1

2 , 2n−1 and 2n−1+2
n−1

2 (equivalently, has nonzero Hamming weights

between 2n−1 − 2
n−1

2 and 2n−1 + 2
n−1

2 ).

Proof. Since H contains no zero column, CF has no codeword of Hamming

weight 1 and since all columns of H are distinct vectors, CF has no codeword

of Hamming weight 2. Hence4, CF has minimum distance at least 3. This min-

imum distance is also at most 5, since otherwise, a [2n − 2, k, d ≥ 5] code with

k ≥ 2n − 1− 2n would exist by puncturing, and we know from [482] that this is

impossible. The fact that CF has no codeword of weight 3 or 4 is by definition

equivalent to the APNness of F , since a vector (c0, c1, . . . , c2n−2) ∈ F2n−1
2 is a

codeword if and only if

{ ∑2n−2
i=0 ciα

i = 0∑2n−2
i=0 ciF (αi) = 0

. The nonexistence of codewords

of Hamming weight 3 is then equivalent to the fact that
∑
x∈E F (x) 6= 0 for ev-

ery 2-dimensional vector subspace E of F2n and the nonexistence of codewords

of Hamming weight 4 is equivalent to the fact that
∑
x∈A F (x) 6= 0 for every

2-dimensional flat A not containing 0. The characterization of ABness through

the weights of C⊥F comes directly from the characterization of AB functions by

their Walsh transform values, respectively by their nonlinearity, and from the

fact that the Hamming weight of the Boolean function v · F (x) ⊕ u · x equals

2n−1 − 1
2WF (u, v). 2

Remark.

1. If F is APN and n > 2, then CF has dimension 2n−1−2n exactly (i.e. all the

rows in the matrix H =

[
1 α α2 . . . α2n−2

F (1) F (α) F (α2) . . . F (α2n−2)

]
are linearly

independent), since according to [482] again, [2n − 1, 2n − 2n, 5] codes do not

exist. A direct proof of the fact that C⊥F has indeed dimension 2n is given by

Dillon in [447]. This property of C⊥F is equivalent to the fact that F has nonzero

nonlinearity. Dillon uses Relation (11.2), page 403, and observes that if v0 · F is

affine for some v0 6= 0 then
∑

u,v∈F2n
v 6∈{0,v0}

W 4
F (u, v) = (2n − 2) · 23n, which means that

all component functions of F except v0 ·F are bent. This allows building a bent

(n, n− 1)-function, a contradiction with Nyberg’s result (Proposition 104, page

296). A slightly different proof (also using Nyberg’s result) was known earlier,

see Proposition 161 below.

2. Any subcode of dimension 2n − 1 − 2n of the [2n − 1, n, 3] Hamming code is

4 We can also say that CF is a subcode of the Hamming code (see page 23).
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a code CF for some function F .

3. Proposition 160 assumes that F (0) = 0. If we want to express the APN-

ness of any (n, n)-function, another matrix can be considered as in [135]: the

(2n + 1) × (2n − 1) matrix

 1 1 1 1 . . . 1

0 1 α α2 . . . α2n−2

F (0) F (1) F (α) F (α2) . . . F (α2n−2)

.

Then F is APN if and only if the code C̃F admitting this parity check matrix

has parameters [2n, 2n − 1− 2n, 6]. To prove this, note first that this code does

not change if we add a constant to F (contrary to CF ). Hence, by adding the

constant F (0), we can assume that F (0) = 0. Then, the code C̃F is the extended

code of CF (obtained by adding to each codeword of CF a first coordinate equal

to the sum modulo 2 of its coordinates). Since F (0) = 0, we can apply Proposi-

tion 160 and it is clear that CF is a [2n − 1, 2n − 1 − 2n, 5] code if and only if

C̃F is a [2n, 2n − 1− 2n, 6] code, since we know from [482] that CF cannot have

minimum distance larger than 5.

Note that Proposition 156, page 403, means that if C̃F
⊥

has the highest possible

minimum distance 2n−1 − 2
n−1

2 , then C̃F has minimum distance at least 6.

4. As observed in [135], given two (n, n)-functions F and G such that F (0) =

G(0) = 0, there exists a linear automorphism5 which maps GF to GG if and only

if the codes CF and CG are equivalent (that is, are equal up to some permuta-

tion of the coordinates of their codewords). Indeed, the graph GF of F equals

the (unordered) set of columns in the parity check matrix of the code CF , plus

an additional point equal to the all-zero vector. Hence, the existence of a linear

automorphism which maps GF onto GG is equivalent to the fact that the parity

check matrices6 of the codes CF and CG are equal up to multiplication (on the

left) by an invertible matrix and to permutation of the columns. Since two codes

with given parity check matrices are equal if and only if these matrices are equal

up to multiplication on the left by an invertible matrix, this completes the proof.

Similarly, two functions F and G taking any values at 0 are CCZ equivalent if

and only if the codes C̃F and C̃G are equivalent.

5. For every (n, n)-function F such that F (0) = 0, the two first power moments

of WF are known: we have
∑

u,v∈F2n

WF (u, v) = 2n
∑
v∈F2n

(−1)v·F (0) = 22n, and∑
u,v∈F2n

W 2
F (u, v) = 23n (the former equality is given by the inverse Walsh trans-

form formula (2.43), page 78, and the latter is given by the Parseval relation

(2.48), page 79). If F is APN then we have also the two next power moments:

Relations (11.2) and (11.5), page 404. In the case F is AB, this makes possible to

determine the value distribution of WF and therefore the weight distribution of

C⊥F uniquely7. Indeed, there are only 3 nonzero weights, which are known, and

5 Note that this is a sub-case of CCZ equivalence - in fact, a strict sub-case as shown in [135].
6 This is true also for the generator matrices of the codes.
7 The determination of such weight distribution is not known so often (when the code does

not contain the all-one vector) since determining the Walsh value distribution of the
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we need then only to determine the 3 numbers of codewords of each weight; the

four equations obtained, which are linear in these numbers, make this possible.

There are 1 codeword of null Hamming weight, (2n−1)(2n−2 +2
n−3

2 ) codewords

of Hamming weight 2n−1− 2
n−1

2 , (2n− 1)(2n−2− 2
n−3

2 ) codewords of Hamming

weight 2n−1 +2
n−1

2 , and (2n−1)(2n−1 +1) codewords of Hamming weight 2n−1.

See more details in [257] (the calculations are made there equivalently with the

Pless power moment equalities of [958]). We shall see that function x3 over F2n

is an AB function (for n odd). The code C⊥F corresponding to this function is

an important code: the dual of the 2-error-correcting BCH code of length 2n−1. 2

We have seen that if F is APN on F2n , n > 2, and F (0) = 0, the code

C⊥F has dimension 2n. Equivalently, the code whose generator matrix equals[
F (1) F (α) F (α2) . . . F (α2n−2)

]
, and which can therefore be seen as

the code {trn(vF (x); v ∈ F2n}, has dimension n and intersects the simplex code

{trn(ux); u ∈ F2n} of generator matrix
[

1 α α2 . . . α2n−2
]

only in the

null vector. This can be proved directly:

Proposition 161 [237] Let F be APN over Fn2 with n > 2. Then nl(F ) cannot

be null and, assuming that F (0n) = 0n, the code C⊥F has dimension 2n.

Proof. Suppose there exists v 6= 0n such that v ·F is affine. Without loss of gen-

erality (by composing F with an appropriate linear automorphism and adding

an affine function to F ), we can assume that v = (0, . . . , 0, 1) and that v · F is

null. Then, every derivative of F is 2-to-1 and has null last coordinate. Hence,

for every a 6= 0n and every b, the equation DaF (x) = b has no solution if bn = 1

and it has 2 solutions if bn = 0. The (n, n − 1) function obtained by erasing

the last coordinate of F (x) has therefore balanced derivatives; hence it is a bent

(n, n− 1)-function, a contradiction with Nyberg’s result (Proposition 104, page

296), since n− 1 > n
2 . The last sentence in the statement is straightforward. 2

For n = 2, the nonlinearity can be null; example: function (x1, x2)→ (x1x2, 0).

Remark. As observed at page 159, the nonlinearity and the differential uni-

formity of general functions do not seem correlated. However, Proposition 161

shows that, for APN functions, a null nonlinearity is impossible. Moreover,

all known APN functions have a rather good nonlinearity (probably at least

2n−1− 2
3n
5 −1− 2

2n
5 −1, but this has to be confirmed since the nonlinearity of the

Dobbertin function is unknown except for small values of n). The question of

knowing whether it is because we know too few APN functions or because there

is some correlation in the case of such optimal functions seems wide open. 2

J. Dillon (private communication) observed that the property of Proposition 161

implies that, for every nonzero c ∈ F2n , the equation F (x) + F (y) + F (z) +

F (x + y + z) = c must have a solution (that is, the function ΦF introduced

function is much more difficult in general than determining the absolute value distribution,

which for an AB function is easily deduced from the single Parseval’s relation.
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after Corollary 27 is onto Fn2 \ {0n}; we have seen this for AB functions since

we saw that this function is balanced, but it is new for APN functions). Indeed,

otherwise, for every Boolean function g(x), the function F (x) + c g(x) would be

APN. But this is contradictory with Proposition 161 if we take g(x) = v0 · F (x)

(that is, g(x) = trn(v0F (x)) if we have identified Fn2 with the field F2n) with

v0 6∈ c⊥, since we have then v0 · [F (x) + c g(x)] = v0 · F (x)⊕ g(x) (v0 · c) = 0.

Characterization of AB functions by uniformly packed codes
Proposition 162 [257] Let F be any (n, n)-function, n odd. Then F is AB if

and only if CF is a uniformly packed code (see Definition 2, page 25) of length

N = 2n − 1 with minimum distance 5 and covering radius 3.

It is deduced in [257, Corollary 3] that an APN function is AB if and only if

{WF (u, v); u, v ∈ Fn2 , v 6= 0n} has three values.

Characterization of AB functions, among APN functions, by
the divisibility of their Walsh transform values (n odd);
consequence for plateaued functions
We have seen that all AB functions are APN. The converse is false, in general.

But if n is odd and if F is APN, then, as shown in [195, 186], there exists a

nice necessary and sufficient condition, for F being AB: the weights of C⊥F are

all divisible by 2
n−1

2 (see also [196], where the divisibilities for several types of

such codes are calculated, where tables of exact divisibilities are computed and

where proofs are given that a great deal of power functions are not AB). In other

words and slightly more generally:

Proposition 163 Let F be an APN (n, n)-function. Then F is AB if and only

if all the values WF (u, v) of the Walsh spectrum of F are divisible by 2d
n+1

2 e.

Proof. The condition is clearly necessary (with n necessarily odd). Conversely,

assume that F is APN and that all the values WF (u, v) =
∑
x∈Fn2

(−1)v·F (x)⊕u·x

are divisible by 2d
n+1

2 e. Writing W 2
F (u, v) = 2n+1λu,v, where all λu,v’s are inte-

gers, Relation (11.4), page 404, implies then:∑
v∈Fn2 ∗,u∈Fn2

(λ2
u,v − λu,v) = 0, (11.7)

and since all the integers λ2
u,v − λu,v are non-negative (λu,v being an integer),

we deduce that λ2
u,v = λu,v for every v ∈ Fn2

∗, u ∈ Fn2 , i.e. λu,v ∈ {0, 1}. 2

Proposition 163 shows that if n is odd and an APN (n, n)-function F is plateaued,

or more generally if F = F1 ◦F−1
2 where F2 is a permutation and the linear com-

binations of the coordinate functions of F1 and F2 are plateaued, then F is AB,

since
∑
x∈Fn2

(−1)v·F (x)⊕u·x =
∑
x∈Fn2

(−1)v·F1(x)⊕u·F2(x) is divisible by 2
n+1

2 .

This makes it possible to deduce easily the AB property of Gold and Kasami

functions (see their definitions below) from their APN property, since the Gold
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AB functions are quadratic and the Kasami AB functions are equal, when n is

odd, to F1 ◦ F−1
2 where F1(x) = x23i+1 and F2(x) = x2i+1 are quadratic8.

Proposition 163 also allows to characterize AB functions among APN power

functions, thanks to Proposition 21, page 92. Sufficient conditions for power

functions not to be AB are given in [194].

Complementary observation on APN functions for n even
If F is APN, then there must exist v ∈ Fn2 \ {0n}, u ∈ Fn2 such that WF (u, v) is

not divisible by 2
n
2 +1. Indeed, suppose that all the Walsh values of F have such

divisibility, then writing again W 2
F (u, v) = 2n+1λu,v, we have Relation (11.7), in

which each nonzero λu,v being now even satisfies λ2
u,v − λu,v > 0. All the values

λ2
u,v − λu,v are then non-negative integers and (for each v 6= 0n) at least one

value is strictly positive, a contradiction.

If all the Walsh values of F are divisible by 2
n
2 (e.g. if F is plateaued), then we

deduce that there must exist v ∈ Fn2 \{0n}, u ∈ Fn2 such that WF (u, v) ≡ 2
n
2 [mod

2
n
2 +1]. It is also shown in [24] that for every APN, or more generally weakly APN ,

permutation F (whose derivatives at nonzero directions take strictly more than

2n−2 distinct values), at most 2n−1
3 component functions of F can be partially-

bent (and, in particular, F cannot then be strongly plateaued); indeed, each

partially-bent component function of a permutation has a linear kernel of di-

mension at least 2 (bent functions being not balanced), and has then at least 3

constant derivatives at nonzero directions, and if there was t > 2n−1
3 partially-

bent component functions of F , since 3t > |Fn2 \ {0n}|, there would exist a 6= 0n
and two distinct nonzero elements v1, v2 of Fn2 such that v1 ·DaF and v2 ·DaF

are constant, a contradiction since {DaF (x);x ∈ Fn2} would then have at most

2n−2 elements.

More can be said in the case of APN plateaued functions, see page 424.

APN functions and finite geometry
We refer the reader to [430] and the references therein for the relations between

APN functions and dimensional dual hyperovals or bilinear dimensional dual

hyperovals. Other relations with finite geometry are shown in [895].

11.3.2 The particular case of power functions

Identifying Fn2 with the field F2n (in which we can take x · y = trn(xy) for inner

product), allows considering those (n, n)-functions of the form F (x) = xd, d ∈
Z/(2n − 1)Z, called power (n, n)-functions (and sometimes, monomial vectorial

functions). If such F is APN, then d is called an APN exponent over F2n .

Note that if d is an APN exponent over F2n and r divides n, then d [mod (2r−1)]

8 The component functions of Kasami APN functions are plateaued for every n even too.

This has been proved in [448, Theorem 11] when n is not divisible by 6 and for every n

even in [1142].
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is an APN exponent over F2r (in particular, it cannot be a power of 2 if r ≥ 2);

more generally, if r divides n and F (x) is an APN polynomial function over F2n

with coefficients in F2r , then F is APN over F2r ).

Relation between AB power functions and sequences
There is a close relationship between the nonlinearity of power functions and

sequences used for radars and for spread-spectrum communications. Recall that

a binary sequence which can be generated by an LFSR, or equivalently which

satisfies a linear recurrence relation si = a1si−1 ⊕ · · · ⊕ ansi−n, is called an

m-sequence or a maximum length sequence if its period equals 2n − 1, which

is a maximum. Such a sequence has the form trn(λαi), where λ ∈ F2n and

α is some primitive element of F2n . Consequently, its autocorrelation values∑2n−2
i=0 (−1)si⊕si+t (1 ≤ t ≤ 2n − 2) are all equal to −1, that is, are opti-

mal. This is useful for radars and for code division multiple access (CDMA)

in telecommunications, since it allows sending a signal easily distinguished from

any time-shifted version of itself. Finding a highly nonlinear power function (in

particular, an AB power function) xd on the field F2n makes possible to have

a d-decimation9 s′i = trn(λαdi) of the sequence, whose cross-correlation values∑2n−2
i=0 (−1)si⊕s

′
i+t =

∑
x∈F∗

2n
(−1)trn(λ(xd+α−tx)) (0 ≤ t ≤ 2n − 2) with the se-

quence si have small (minimum) overall magnitude10 [551, 552, 598]. In the case

of an AB function, we speak of a preferred cross-correlation, see e.g. [174, 598].

The exponents of AB power functions have then been investigated as the deci-

mations with preferred cross-correlation by the researchers on sequences (those

whose names have been given to special classes of sequences and will be used

for naming the corresponding classes of AB functions, and also S. Golomb [550]

who has been one of the main initiators of the theory of sequences, see [555]).

They proved the preferred cross-correlation in some cases and made conjectures

for others. Hence, when the notion of AB function was invented by Chabaud

and Vaudenay, some work had been already done for searching such functions.

A survey on cross-correlation distributions is given in [593]. See also [1127].

Simplification of the checking of APNness
When F is a power function, it is enough to check the APN property for a = 1 ∈
F2n , since for a 6= 0, changing x into ax in the equation F (x)+F (x+a) = b gives

F (x)+F (x+1) = b
F (a) . Hence, according to what we saw on the characterization

by the ANF at page 406, F (x) = xd is APN if and only if

δ0

(
xd+(x+1)d+yd+(y+1)d

)
+δ0

(
x+y

)
+δ0

(
x+y+1

) [
mod x2n+x, y2n+y

]
equals the zero function, where δ0(z) = 1 + z2n−1, or equivalently

1H(x)1H(y)
((
xd + (x+ 1)d + yd + (y + 1)d

)2n−1
+
(
x+ y

)2n−1
)
,

9 Another m-sequence if d is co-prime with 2n − 1.
10 This makes possible, in code division multiple access, to give different signals to different

users.
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similarly reduced, equals the zero function, where H is a linear hyperplane

excluding 1. Moreover, checking the AB property
∑
x∈F2n

(−1)trn(vF (x)+ux) ∈
{0,±2

n+1
2 }, for every u, v ∈ F2n , v 6= 0, is enough for u = 0 and u = 1

(and every v 6= 0), since changing x into x
u (if u 6= 0) in this sum gives∑

x∈F2n
(−1)trn(v′F (x)+x), for some v′ 6= 0. If F is a permutation, then check-

ing the AB property is also enough for v = 1 and every u, since changing x into

x
F−1(v) in this sum gives

∑
x∈F2n

(−1)
trn
(
F (x)+ u

F−1(v)
x
)
. And in the characteriza-

tion of Proposition 159, page 408, if a 6= 0, then it can be reduced similarly to

a = 1, and if a = 0, we can assume that z 6= 0 and replace x by xz and y by

yz, we get (xd + yd + 1)zd = b which has the same number of solutions for every

nonzero b since F is a permutation; the characterization of ABness reduces then

to: the equation xd + yd + (x+ y + 1)d = b has 2n − 2 solutions for every b 6= 1.

Then a power permutation F in odd dimension is AB if and only if the function

(x, y)→ xd+yd+(x+y+1)d is (2n−2)−to−1 from {(x, y) ∈ (F2n \{1})2;x 6= y}
to F2n \ {1} (the fact that this never takes value 1 is equivalent to F APN).

Additional information on bijectivity
It was proved in [257] that, when n is even, no APN function exists in a class of

permutations including power permutations, that we describe now. Let k = 2n−1
3

(which is an integer, since n is even) and let α be a primitive element of the field

F2n . Then β = αk is a primitive element of F4. Hence, β2 +β+1 = 0. For every j,

the element (β+1)j+βj = β2j+βj equals 1 if j is co-prime with 3 (since βj is then

also a primitive element of F4), and is null otherwise. Let F (x) =
∑2n−1
j=0 δjx

j ,

(δj ∈ F2n) be an (n, n)-function. According to the observations above, β and

β + 1 are the solutions of the equation F (x) + F (x + 1) =
∑

gcd(j,3)=1 δj . Also,

the equation F (x) + F (x+ 1) =
∑2n−1
j=1 δj admits 0 and 1 for solutions. Thus:

Proposition 164 Let n be even and let F (x) =
∑2n−1
j=0 δjx

j be any APN (n, n)-

function, then
∑ 2n−1

3
j=1 δ3j 6= 0. If F is a power function, F (x) = xd, then 3 divides

d and F cannot be a permutation.

H. Dobbertin gives in [469] a result valid only for power functions but slightly

more precise, and he completes it in the case that n is odd:

Proposition 165 If a power function F (x) = xd over F2n is APN, then for

every x ∈ F2n , we have xd = 1 if and only if x3 = 1, that is, F−1(1) = F4 ∩F∗2n .

If n is odd, then gcd(d, 2n − 1) equals 1 and, if n is even, then gcd(d, 2n − 1)

equals 3. Consequently, APN power functions are permutations if n is odd, and

are three-to-one over F∗2n if n is even.

Proof. Let x 6= 1 be such that xd = 1. There is a (unique) y in F2n , y 6= 0, 1,

such that x = (y + 1)/y. The equality xd = 1 implies (y + 1)d + yd = 0 =

(y2 + 1)d+ (y2)d. By the APN property and since y2 6= y because x 6= 1, we con-

clude y2 + y+ 1 = 0. Thus, y, and therefore x, are in F4 and x3 = 1. Conversely,
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if x ∈ F2n \ F2 is such that x3 = 1, then 3 divides 2n − 1 and n must be even;

moreover, d must also be divisible by 3 (indeed, otherwise, the restriction of xd

to F4 which coincides with the function xgcd(d,3) would be linear, a contradic-

tion) and then xd = 1. We have then proved that F−1(1) = F4 ∩ F∗2n . The rest

is straightforward. 2.

In [62] is similarly observed that, if all the coefficients in the univariate rep-

resentation of an APN function F (x) belong to a subfield F2r of F2n , then the

equality DaF (x) = b for some a, b ∈ F2r and x ∈ F2n \ F2r implies x2r = x+ a.

In [406] is shown that, for any n, if an (n, n)-function F fixes 0n and is such

that, for every nonzero u ∈ Fn2 , the pre-image F−1(u) either is empty or equals

a set of three distinct nonzero elements of the form {a, b, a + b} (i.e. is a 2-

dimensional F2-linear space less 0n)11, then F is APN if and only if:{
F (x) 6= F (y)

F (z) 6∈ {F (x), F (y), F (x+ y)} =⇒ F (x) +F (y) +F (z) +F (x+ y+ z) 6= 0n.

Indeed, this condition is necessary since

{
F (x) 6= F (y)

F (z) 6∈ {F (x), F (y), F (x+ y)} im-

plies that {x, y, z, x + y + z} is a 2-dimensional flat and the restriction of an

APN function to any 2-dimensional flat must not sum up to 0n; this condition

is also sufficient since, if four distinct elements of Fn2 have null sum as well as

their images, then the condition being assumed satisfied, either these four ele-

ments come by pairs with the same image in each pair, and this is impossible

since if for instance, F (x) = F (y) and F (z) = F (x + y + z), then because of

the assumption on the pre-images, we have F (z) = F (x + y) = F (x) = F (y) =

F (x + y + z) which is impossible since F−1(F (z)) has only three elements, or

they are such that F (z) = F (x + y) and the same happens since we have then

F (z) = F (x+ y) = F (x+ y+ z) = F (x) = F (y). Note that a sufficient condition

for F to be APN is that F (Fn2 ) is a Sidon set (see Definition 80, page 420), but

it is shown in [406] that such sets of size 2n−1
3 + 1 do not exist for n ≥ 6 even.

Nonlinearity
An upper bound valid not only for APN functions but restricted to power func-

tions is proved in [189]:

Proposition 166 For every n even, if a power function F (x) = xd on F2n is not

a permutation (i.e. if gcd(d, 2n − 1) > 1), then the nonlinearity of F is bounded

above by 2n−1 − 2
n
2 . Equality can be achieved only for gcd(d, 2n − 1) = 3.

Proof. Let d0 = gcd(d, 2n − 1); for every v ∈ F2n , the sum
∑
x∈F2n

(−1)trn(vxd)

equals
∑
x∈F2n

(−1)trn(vxd0 ); hence,
∑
v∈F2n

(∑
x∈F2n

(−1)trn(vxd)
)2

is equal to

2n |{(x, y), x, y ∈ F2n , x
d0 = yd0}|. The number of elements in the image of F∗2n

11 This needs that n be even, and it happens then with any APN power function, and also

with other functions like x3 + trn(x9).
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by the mapping x→ xd0 is (2n−1)/d0 and every element of this image has d0 pre-

images. Hence,
∑
v∈F∗

2n

(∑
x∈F2n

(−1)trn(vxd)
)2

equals 2n[(2n−1)d0 +1]−22n =

2n(2n−1)(d0−1) and max
v∈F∗

2n

 ∑
x∈F2n

(−1)trn(vxd)

2

≥ 2n(d0−1). The proof is com-

pleted by using that the values of
∑
x∈F2n

(−1)trn(vx3) and
∑
x∈F2n

(−1)trn(vx5)

are known. 2

The possible values of the sum
∑
x∈F2n

(−1)trn(vxd) are determined in [62] for

APN power functions for n even.

It happens that all known APN power functions have rather good nonlinearity.

To clarify the situation for general power APN functions, we need to show lower

bounds on their nonlinearity and/or to find such functions with lower nonlinear-

ity. The next bound is shown in [250] (the proof below is from this reference):

Proposition 167 Let F be any APN power function. Then, if n is odd, we have

nl(F ) ≥ 2n−1 − 2
3n−3

4 and if n is even, we have nl(F ) ≥ 2n−1 − 2
3n−2

4 .

Proof. If n is odd then, for every v 6= 0, the sum
∑
u∈F2n

W 4
F (u, v) is indepen-

dent12 of the choice of v and, according to the characterization of APN functions

by the fourth moment of Walsh transform, equals then 23n+1. Hence, we have

W 4
F (u, v) ≤ 23n+1 for every u and the result follows from (3.21), page 139. If n is

even, then, since according to Proposition 165, the value of
∑
u∈F2n

W 4
F (u, v)

does not change when v is multiplied by a nonzero cube, it takes, when v

ranges over F∗2n , 2n−1
3 times the value

∑
u∈F2n

W 4
F (u, 1), 2n−1

3 times the value∑
u∈F2n

W 4
F (u, α) and 2n−1

3 times the value
∑
u∈F2n

W 4
F (u, α2) (α primitive in

F2n). Hence we have
∑
u∈F2n

W 4
F (u, 1)+

∑
u∈F2n

W 4
F (u, α)+

∑
u∈F2n

W 4
F (u, α2) =

3 · 23n+1. We have, by the Cauchy-Schwarz inequality, that
∑
u∈Fn2

W 4
F (u, v) ≥(∑

u∈Fn2
W 2
F (u,v)

)2

2n = 23n for v 6= 0. Hence, we have by complementation that

each of the sums
∑
u∈F2n

W 4
F (u, 1),

∑
u∈F2n

W 4
F (u, α) and

∑
u∈F2n

W 4
F (u, α2) is

bounded above by 3 · 23n+1 − 2 · 23n = 23n+2. We have then W 4
F (u, v) ≤ 23n+2

for every u, v such that v 6= 0 and Relation (3.21) completes the proof. 2

The bound of Proposition 167 (which for n odd tells again what we saw at page

423) has been extended in [356] to differentially uniform power functions but only

for permutations. For explaining the good nonlinearity of known APN functions,

there remains to tackle that of quadratic functions for n even (for n odd, APN

quadratic functions are AB). Less is known for them; see observations in [250].

Relation with cyclic codes
If F is a power function, then the linear codes CF and C⊥F viewed in Proposition

160, page 410 are cyclic codes (see [257] where several results are given in this

12 Such property will be called CAPNness at page 423 and implies the former inequality.



420 Highly nonlinear vectorial functions with low differential uniformity

framework). Indeed, (c0, . . . , c2n−2) belongs to CF if and only if c0 + c1α +

· · · + c2n−2α
2n−2 = 0 and c0 + c1α

d + · · · + c2n−2α
(2n−2)d = 0; this implies

(by multiplying these equations by α and αd, respectively) c2n−2 + c0α + · · · +
c2n−3α

2n−2 = 0 and c2n−2 + c0α
d + · · · + c2n−3α

(2n−2)d = 0. The BCH bound

(see page 28) shows in the case F (x) = x3 that CF has minimum distance (at

least) 5 (i.e. that F is APN) and (in an original but rather complex way) that

the function x2
n−1

2 +1, n odd, is AB: by definition, the defining set I of CF (see

page 27) equals the union of the cyclotomic classes of 1 and 2
n−1

2 + 1, that

is, I = {1, 2, . . . , 2n−1}∪{2n−1
2 + 1, 2

n+1
2 + 2, . . . , 2n−1 + 2

n−1
2 , 2

n+1
2 + 1, 2

n+3
2 +

2, . . . , 2n−1 +2
n−3

2 }. Since there is no element equal to 2n−1 +2
n−1

2 +1, . . . , 2n−1

in I, the defining set Z/(2n− 1)Z \ {−i; i 6∈ I} of C⊥F contains a string of length

2n−1−2
n−1

2 −1. Hence the nonzero codewords of this code have Hamming weights

larger than or equal to 2n−1 − 2
n−1

2 . This is not sufficient for concluding that

the function is AB, but we can apply the previous reasoning to the cyclic code

C⊥F ∪ (12n−1 +C⊥F ): the defining set of the dual of this code being equal to that

of CF , plus 0, the defining set of the code equals that of C⊥F less 0, which gives a

string of length 2n−1−2
n−1

2 −2 instead of 2n−1−2
n−1

2 −1. Hence the complements

of the codewords of C⊥F have Hamming weights at least 2n−1− 2
n−1

2 − 1 and the

codewords of C⊥F have then Hamming weights at most 2n−1 + 2
n−1

2 .

The powerful McEliece Theorem (see e.g. [809]) that we recalled at Section 4.1

(page 174) gives the exact divisibility of the codewords of cyclic codes. Translated

in terms of vectorial functions, it says that if d is relatively prime to 2n − 1,

the exponent ed of the greatest power of 2 dividing all the Walsh coefficients

of the power function xd is given by ed = min{w2(t0) + w2(t1), 1 ≤ t0, t1 <

2n−1; t0 +t1d ≡ 0 [mod 2n−1]}. It can be used in relationship with Proposition

163. This has led in [195] to the proof, by Canteaut, Charpin and Dobbertin, of

a several decade old conjecture due to Welch.

Note finally that, if F is a power function, then Boolean function γF seen in

Proposition 158 is within the framework of Dobbertin’s triple construction [466].

Relation with the notions of Sidon sets and sum-free sets
In [316] is observed that APN exponents have a property involving two well-

known notions in additive combinatorics. We refer the reader to this paper and

to the references therein for complements.

Definition 80 A subset of Fn2 is a Sidon set if it does not contain four distinct

elements whose sum is null.

This notion due to Sidon is preserved by affine equivalence and by decreasing

inclusion. Denoting by PS the set of pairs in S, it is equivalent to saying that

{x, y} ∈ PS 7→ x+ y is one-to-one. The size |S| is then such that
(|S|

2

)
≤ 2n − 1.

Note that an (n, n)-function F is APN if and only if its graph GF = {(x, F (x));x ∈
Fn2} is a Sidon set in ((Fn2 )2,+), since saying that, given four distinct elements

x, y, z, t of Fn2 , if x+y+z+t = 0n then F (x)+F (y)+F (z)+F (t) 6= 0n, is equiva-
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lent to saying that, given four distinct elements x, y, z, t, we have x+y+z+t 6= 0n
or F (x) + F (y) + F (z) + F (t) 6= 0n.

Definition 81 A subset S of Fn2 is called a sum-free set if it does not contain

elements x, y, z such that x+ y = z (i.e., if S ∩ (S + S) = ∅).

This notion due to Erdös is preserved by linear equivalence and by decreasing

inclusion. The size |S| is then smaller than or equal to 2n−1, because |S+S| ≥ |S|
and if |S| > 2n−1 then the two sets S + S and S have intersection. Note that S

cannot contain 0n. A basic example of a sum-free set (with minimum size) is the

complement of a linear hyperplane. The size |S| of a sum-free Sidon set satisfies
|S| (|S|+1)

2 ≤ 2n − 1, since S ∪ {0n} is then a Sidon set.

Proposition 168 [316] For every positive integers n and d and for every j ∈
Z/nZ, let ej = gcd(d−2j , 2n−1) ∈ Z/(2n−1)Z, and let Gej be the multiplicative

subgroup {x ∈ F∗2n ;xd−2j = 1} = {x ∈ F∗2n ;xej = 1} of order ej. If d is an APN

exponent over F2n , then, for every j ∈ Z/nZ, Gej is a Sidon sum-free set in F2n .

Proof. For every x ∈ Gej \{1}, let s = x
x+1 . Then x = s

s+1 , and xd−2j = 1 implies

sd−2j + (s+ 1)d−2j = 0, which implies after multiplication by s2j + 1 = (s+ 1)2j

that sd + (s+ 1)d = sd−2j = 1

(x+1)d−2j
. Note that if s = x

x+1 and s′ = x′

x′+1 , with

x 6= 1 and x′ 6= 1, then we have s = s′ if and only if x = x′ and s = s′ + 1 if and

only if x′ = x−1.

Suppose that Gej is not a Sidon set, then let x, y, z, t be distinct elements of Gej
such that x+ y = z + t. Making the changes of variables x→ xt, y → yt, z → zt

and dividing the equality by t, we obtain distinct elements x, y, z of Gej \ {1}
such that x+ y + z = 1. Making now the change of variable y → zy, we obtain

elements x, y, z in Gej \ {1} such that x+ 1 = z(y + 1), x 6= y and x 6= y−1. We

have then 1

(x+1)d−2j
= 1

(y+1)d−2j
and x

x+1 6=
y
y+1 , x

x+1 6=
y
y+1 + 1, a contradiction

with the APNness of F .

Suppose that Gej is not sum-free, then Gej∩(Gej+1) 6= ∅. Let x ∈ Gej∩(Gej+1)

and s = x
x+1 , we have then 1

(x+1)d−2j
= 1 and sd + (s + 1)d = 1 and the equa-

tion zd+(z+1)d = 1 has four solutions 0, 1, s, and s+1 in F2n , a contradiction.2

Remark. Denoting e = gcd(d, 2n−1), we have that Ge itself is a Sidon set since,

as recalled above, we have e = 1 if n is odd and e = 3 if n is even, and G1 = {1},
G3 = F∗4 are Sidon sets (since they do not contain 4 distinct elements). But Ge
is a sum-free set only for n odd, since F∗4 is not sum-free. 2

A geometric characterization of the fact that some integer d co-prime with 2n−1

is an APN exponent over F2n for n odd by means of the Singer set Sd = {x ∈
F2n ; trn(xd) = 1} is also given in [252].
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Alternative characterization of APN exponents, relation with
the Dickson polynomials
When x ranges over F2n \ {1}, s = x

x+1 ranges over F2n \ {1} and sd + (s+ 1)d =
xd+1

(x+1)d
. Then, considering separately the equation sd + (s + 1)d = 1 and the

equations sd + (s+ 1)d = b 6= 1, we have directly:

Proposition 169 [316] Let n be any positive integer then a power function

F (x) = xd over F2n is APN if and only if the function x 7→ xd+1
(x+1)d

is 2-to-1

from F2n \ F2 to F2n \ {1}.

By definition, we have xd + (x + 1)d = φd(x
2 + x) where φd is the reversed

Dickson polynomial , that is, φd(X) = Dd(1, X), where Dd is classically de-

fined by Dd(X + Y,XY ) = Xd + Y d, see [628] and [890, page 227]. Then

F (x) = xd is APN if and only if function φd is injective over the hyperplane

H = {x2 +x;x ∈ F2n} = {y ∈ F2n ; trn(y) = 0}. Moreover, if xd is APN over F2n

for n even, then φd is a permutation polynomial of F2n/2 , which in turn implies

that xd is APN over F2n/2 , see [890, Theorem 8.1.97, page 227].

We also have xd+1
(x+1)d

= ψd(x+ x−1), where (ψd(X))2 = Dd(X,1)
Xd

, where Dd(X, 1)

is the Dickson polynomial [890] since
(
xd+1

(x+1)d

)2

= xd+x−d

(x+x−1)d
. According to Propo-

sition 169, function F is then APN if and only if ψd is injective from {x+x−1;x ∈
F2n \ F2} = {y ∈ F∗2n ; trn(y−1) = 0} to F2n \ {1}. Note that Dd(y−1,1)

(y−1)d
=

ydDd(y
−1, 1) is the value at y of the reciprocal polynomial of Dd(X, 1). Hence:

Proposition 170 [316] For every positive integers n and d, function F (x) = xd

is APN if and only if the reciprocal polynomial ˜Dd(X, 1) = XdDd(X
−1, 1) of

the Dickson polynomial Dd(X, 1) is injective and does not take value 1 over

H∗ = {y ∈ F∗2n ; trn(y) = 0}.

And it has been proved in [316] that for every positive integer d, the reversed

Dickson polynomial of index 2d and the reciprocal of Dickson polynomial of

index d are equal. In fact, as observed with X.-D. Hou, for any characteristic, we

have XdDd(
1
X − 2, 1) = D2d(1, X).

Search for APN exponents
Dobbertin and Canteaut have independently determined all APN exponents for

n ≤ 26, and Leander-Langevin did the same up to n = 33 for AB exponents

in [753]; all belong to the classical classes of APN exponents that we shall list

in Subsection 11.4, page 427. Edel checked all APN exponents for n ≤ 34 and

n = 36, 38, 40, 42. The main idea for his computer investigation was to consider

all the elements in Z/(2n − 1)Z, discard all those which are not co-prime with

2n − 1 for n odd and do not have gcd equal to 3 with 2n − 1 for n even, and all

the remaining exponents whose reduction mod 2r−1 is not an APN exponent in

F2r for some divisor r of n. Then, checking APNness was made for one member

of each remaining cyclotomic class of 2 modulo 2n − 1 only since xd and x2d are
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linearly equivalent. No unclassified APN exponent could be found. A new search

has been made in [316], in which were also discarded all those exponents d which

were known not satisfying Proposition 168, thanks to a work on the Sidon and

sum-free multiplicative subgroups of F∗2n made in [315], which shows in particular

that Ge = {x ∈ F∗2n | xe = 1} is a Sidon set (resp. a sum-free set) if and only

if, for every u ∈ F∗2n (resp. for u = 1), the polynomial gcd(Xe + 1, (X + 1)e + u)

has at most two zeros in F2n (resp. has no zero13). The condition for sum-free

case is equivalent to saying that gcd(Xe + 1, (X + 1)e + 1, X2n + X), that is,

gcd(Xe + 1, (X + 1)e + 1) since Xe + 1 divides X2n−1 + 1, equals 1 and this can

be handled without computing in the field F2n (which needs huge computational

power for large values of n) since all the coefficients playing a role in the Euclidean

algorithm belong to F2. Unfortunately, this did not discard enough additional

APN candidates for allowing to find new APN exponents.

11.3.3 Componentwise APNness (CAPNness)

Chabaud-Vaudenay’s characterization of APN functions by the fourth moment

of the Walsh transform (see Relation (11.2), page 403) leads to a notion called

componentwise APNness (CAPNness) in [251], stronger than APNness, in which

the value on the left hand side of (11.2) is the same for every component function:

Definition 82 Let n be any positive integer and F any (n, n)-function. We call

F componentwise APN ( CAPN) if, given any nonzero v in Fn2 , its Walsh trans-

form satisfies the equality: ∑
u∈Fn2

W 4
F (u, v) = 23n+1. (11.8)

Using Relation 3.10, page 119, F is CAPN if and only if V(v · F ) = 22n+1 for

every v 6= 0n. This EA invariant notion had been first studied by Berger et al.

in [62] without that a specific name be introduced by these authors. They had

observed that AB functions and power APN permutations have this property

(for straightforward reasons); in particular, all known APN functions in odd

dimension are CAPN. They had stated an open question on the existence or

nonexistence of such functions for n even. The nonexistence has been proved

in [251], by showing that F is CAPN if and only if, for every w 6= 0n, the set

{(x, y, z) ∈ Fn2 ; F (x) +F (y) +F (z) +F (x+ y+ z) = w} has size 22n− 2n+1 and

observing that this size is always divisible by 3, which implies that n is odd.

Relation (11.8) implies 2
2n+1

4 ≤ maxu,v∈Fn2 ;v 6=0n |WF (u, v)| ≤ 2
3n+1

4 and there-

fore 2n−1 − 2
3(n−1)

4 ≤ nl(F ) ≤ 2n−1 − 2
2n−3

4 .

13 This condition can be compared to the condition that Xd + (X + 1)d + 1 has no zero in

F2n \ F2, which expresses (as it can be easily checked) that the cyclic code CF (see
Proposition 160, page 410, and see page 419) has no codeword of Hamming weight 3.
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11.3.4 Plateaued APN functions

In the case n odd, we have seen in Proposition 163, page 414, that plateaued

APN n-variable functions are almost bent.

In the case n even, we have seen at page 415 that for any plateaued APN

n-variable function F , there must exist v ∈ Fn2
∗ such that the Boolean function

v ·F is bent. Note that this implies that F cannot be a permutation, according to

Proposition 35, page 134, and since a bent Boolean function is never balanced.

This was first observed in [62].

When F is plateaued and APN, the numbers λu,v involved in Relation (11.7),

page 414, can be divided into two categories (since we know that the amplitude of

a plateaued Boolean function equals 2j with j ≥ n
2 ): those such that the function

v · F is bent (for each such v, we have λu,v = 1/2 for every u and therefore∑
u∈Fn2

(λ2
u,v−λu,v) = −2n−2); and those such that v ·F is not bent (then λu,v ∈

{0, 2i} for some i ≥ 1 depending on v, and therefore λ2
u,v = 2iλu,v and we have,

thanks to Parseval’s relation applied to the Boolean function v ·F :
∑
u∈Fn2

(λ2
u,v−

λu,v) = (2i − 1)
∑
u∈Fn2

λu,v = (2i − 1) 22n

2n+1 = (2i − 1)2n−1 ≥ 2n−1). Equation

(11.7) implies then that the number B of those v such that v ·F is bent satisfies

−B 2n−2 +(2n−1−B) 2n−1 ≤ 0, which implies that the number of bent functions

among the functions v · F is at least 2
3 (2n − 1) (this has been first observed in

[910] for APN functions with partially-bent components, Nyberg generalizing a

result given without a complete proof in [1028] for quadratic functions, and in

[62] for plateaued APN functions).

This bound is achieved with equality by the Gold APN functions F (x) = x2i+1,

gcd(i, n) = 1 (see page 432). Indeed, we saw at page 230 that the function

trn(vF (x)) is bent if and only if v is not the third power of an element of F2n .

Note that, given an APN plateaued function F , saying that the number of bent

functions among the functions trn(vF (x)) equals 2
3 (2n−1) is equivalent to saying,

according to the observations above, that there is no v such that λu,v = ±2i with

i > 1, that is, F has nonlinearity 2n−1 − 2
n
2 and it is also equivalent to saying

that F has the same extended Walsh spectrum as the Gold functions.

The fact that an APN function F has same extended Walsh spectrum as the Gold

functions can be characterized by using a similar method as for proving Corollary

27, page 409: this situation happens if and only if, for every v ∈ Fn2 \ {0n}
and every u ∈ Fn2 , we have WF (u, v) ∈ {0,±2

n
2 ,±2

n+2
2 } (where WF (u, v) =∑

x∈Fn2
(−1)v·F (x)⊕u·x), that is

WF (u, v)
(
W 2
F (u, v)− 2n+2

) (
W 2
F (u, v)− 2n

)
= 0,

or equivalently W 5
F (u, v) − 5 · 2nW 3

F (u, v) + 22n+2WF (u, v) = 0. Applying the

Fourier-Hadamard transform and dividing by 22n, this is equivalent to the fact

that ∣∣∣∣∣
{

(x1, . . . , x5) ∈ F5n
2 ;

{ ∑5
i=0 xi = a∑5
i=0 F (xi) = b

}∣∣∣∣∣− 23n−
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5 · 2n
(∣∣∣∣∣
{

(x1, . . . , x3) ∈ F3n
2 ;

{ ∑3
i=0 xi = a∑3
i=0 F (xi) = b

}∣∣∣∣∣− 2n

)
+

22n+2

(∣∣∣∣{x ∈ Fn2 ;

{
x = a

F (x) = b

}∣∣∣∣− 2−n
)

= 0

for every a, b ∈ Fn2 . A necessary condition is (taking b = F (a) and using that F

is APN) that, for every a, b ∈ Fn2 , we have∣∣∣∣∣
{

(x1, . . . , x5) ∈ F5n
2 ;

{ ∑5
i=0 xi = a∑5
i=0 F (xi) = b

}∣∣∣∣∣ =

23n + 5 · 2n(3 · 2n − 2− 2n)− 22n+2(1− 2−n) = 23n + 3 · 22n+1 − 3 · 2n+1.

There exist APN quadratic functions whose Walsh spectra are different from

the Gold functions. K. Browning et al. [135] exhibit such function in 6 vari-

ables: F (x) = x3 + α11x5 + α13x9 + x17 + α11x33 + x48 (α primitive), for

which 46 functions tr6(vF (x)) are bent, 16 are plateaued with amplitude 16

and one is plateaued with amplitude 32. For n = 8, among the 8179 quadratic

APN functions identified in [1146], there are 487 functions with the spectrum

{∗ − 646,−322240,−1620880, 015600, 1623664, 322880, 6410∗} and 12 functions with

the spectrum {∗ − 6412,−322100,−1621360, 014880, 1624208, 322700, 6420∗} and the

rest have Gold-like Walsh spectrum [655]. 2

For all n, characterizations of APN functions among plateaued
vectorial functions
Thanks to the characterizations of plateaued functions recalled in Subsection

6.5, page 302, we shall see that all the main results known for quadratic APN

functions generalize to plateaued APN functions, simplifying the study of the

APNness of (n, n)-functions when they are known to be plateaued14.

In particular, it is much used in papers on APN functions that, if a function F

is quadratic, then given a 6= 0n, the property that all equations F (x) + F (x +

a) = v (which are then linear equations) have at most 2 solutions is equivalent

(as we saw already) to the fact that the single homogeneous equation F (x) +

F (x + a) = F (0n) + F (a) has exactly 2 solutions. Proving APNness results

then in proving that, for every a 6= 0n, this equation has 0n and a for only

solutions. This is probably the main reason why many results on APN functions

[80, 147, 151, 158, 157, 160, 239, 283, 1118, 1146] were found for quadratic

functions. The property above generalizes to all plateaued functions:

Proposition 171 [247] Any plateaued (n, n)-function F is APN if and only if,

for every a 6= 0n in Fn2 , the equation F (x) + F (x+ a) = F (0n) + F (a) has the 2

solutions 0n and a only.

14 In [247] are also given characterizations of plateaued functions among APN functions.
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Indeed, for every v ∈ Fn2 , the size |{(a, b) ∈ (Fn2 )2 ; F (x) + F (x + a) + F (x +

b) + F (x + a + b) = v}| does not depend on x ∈ Fn2 , according to Theorem 18,

page 304, and we can reduce ourselves in this characterization to a and b linearly

independent. Function F is APN if and only if, for such a, b, this size is null for

v = 0n. This completes the proof by taking x = 0n, and fixing a 6= 0n.

Another particularity of plateaued functions, extending that of quadratic func-

tions, is the sufficiency for APNness of the necessary condition (11.5), page 404:

Proposition 172 [247] Let F be any plateaued (n, n)-function. Assume that

F (0n) = 0n. Then F is APN if and only if the set {(x, a) ∈ (Fn2 )2 |F (x) +F (x+

a) + F (a) = 0n} has size 3 · 2n − 2. Equivalently:∑
u,v∈Fn2 ,v 6=0n

W 3
F (u, v) = 22n+1(2n − 1).

Indeed, each equation F (x) + F (x + a) = F (a), a 6= 0n has at least a and

0n for solutions; Proposition 171 shows then the first assertion; and we have∑
(u,v)∈(Fn2 )2 W 3

F (u, v) = 22n
∣∣{(x, a) ∈ (Fn2 )2 |F (x) + F (x+ a) + F (a) = 0n}

∣∣.
See in [247] several inequalities by means of power moments of the Walsh trans-

form, valid for all vectorial functions, and achieved with equality by APN func-

tions only.

The case of unbalanced component functions: Theorem 19, page 308, implies:

Proposition 173 [247] Let F be any plateaued (n, n)-function having all its

component functions unbalanced, then∣∣{(a, b) ∈ (Fn2 )2 , a 6= b ; F (a) = F (b)}
∣∣ ≥ 2 · (2n − 1), (11.9)

with equality if and only if F is APN.

Hence, the APNness of plateaued (n, n)-functions with unbalanced component

functions depends only on their value distribution. For instance, any plateaued

(n, n)-function, n even, having similar value distribution as APN power func-

tions (that is, mapping 0 to 0 and being 3-to-1 for the rest of the inputs), is

APN and, since
∑
a,b∈Fn2

(−1)v·DaDbF (x) = W 2
F (0n, v), has the same extended

Walsh spectrum as the APN Gold functions (particular cases of this result are

given in [283]). The case of power functions simplifies further [247].

We have
∣∣{(a, b) ∈ (Fn2 )2 , a 6= b ; F (a) = F (b)}

∣∣ =
∑
a∈Fn2 ;a6=0n

∣∣(DaF )−1(0n)
∣∣ and

this is the parameter NbF of page 135. Each set (DaF )−1(0n) has then size

exactly 2. Any function F having this latter property is called zero-difference

2-balanced15, see [451, 462]. The zero-difference 2-balancedness of some classes

of quadratic APN functions seen in [283] is a corollary of Proposition 173 since

the functions in these classes have unbalanced components. Note, as observed

in [283], that for every δ, all quadratic zero-difference δ-balanced functions are

differentially δ-uniform.

15 Such ZDB functions have however more applications when they are over cyclic groups.
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11.4 The known infinite classes of AB functions

We begin with AB functions, because when dealing subsequently with APN

functions, we shall just complete the list, and also for historical reasons, since AB

functions were considered first (under different names in the domain of sequences,

as seen at page 416). All the functions in this subsection and the next one are

viewed within the structure of the finite field F2n , n odd; that of semifield has

been used in [77, 896]; we refer the reader to these papers for more details.

11.4.1 Power AB functions

The first known examples of AB functions have been power functions x 7→ xd

on the field F2n (n odd) for reasons also explained at page 416. The exponents

d of these power functions are (1) those given below (and summarized in Table

11.1), whose largest classes are the two first and (2) the inverses modulo 2n − 1

of these values. These inverses have been studied in [908, 731].

• d = 2i+1 with gcd(i, n) = 1 and 1 ≤ i ≤ n−1
2 (proved by Gold, see [540, 908]).

The condition 1 ≤ i ≤ n−1
2 (here and below) is not necessary but we mention it

because the other values of i give EA equivalent functions. These power functions

are called Gold AB functions.

• d = 22i − 2i + 1 = 23i+1
2i+1 with gcd(i, n) = 1 and 2 ≤ i ≤ n−1

2 (we exclude

i = 1 since then the function is the cube function, that is a Gold function).

The AB property of these functions is equivalent to a result historically due

to Welch, but never published by him, and is a particular case of a result of

Kasami [669]; see other proofs in [470] and [443]. These power functions are

called Kasami AB functions (some authors call them Kasami-Welch functions).

Note that, denoting by Gi(x) the Gold AB function x2i+1 over F2n , and by L(x)

the linear function x22i

+ x, Kasami function Ki(x) not only equals G3i ◦ G−1
i

but also equals Gi ◦L◦G−1
i (x)+x22i

+x2i +x (and is therefore EA equivalent to

Gi ◦L ◦G−1
i , that is 2-to-1 while Ki is 1-to-1); more generally, for every nonzero

µ ∈ F2n , denoting Lµ(x) = x22i

+µx, function µKi(x) equals Gi ◦Lµ ◦G−1
i (x)+

x22i

+ µ2ix2i + µ2i+1x; indeed, Gi ◦ Lµ ◦ G−1
i (x) =

(
x

22i

2i+1 + µx
1

2i+1

)2i+1

=

x22i

+ µx
23i+1

2i+1 + µ2ix
22i+2i

2i+1 + µ2i+1x = x22i

+ µKi(x) + µ2ix2i + µ2i+1x. More

is observed in [144].

• d = 2(n−1)/2 + 3 (conjectured by Welch and proved by Canteaut, Charpin and

Dobbertin, see [471, 195, 196]). These functions are called Welch functions.

• d = 2(n−1)/2 + 2(n−1)/4 − 1 if n ≡ 1 (mod 4), d = 2(n−1)/2 + 2(3n−1)/4 − 1

if n ≡ 3 (mod 4) (conjectured by Niho, proved by Hollmann and Xiang, after

the work by Dobbertin, see [472, 608]). These functions are called Niho functions.

The almost bentness can be proved in two steps: (1) prove the almost per-

fect nonlinearity; the non-easy cases (Kasami, Welch and Niho) can be treated
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Table 11.1 Known AB exponents on F2n (n odd) up to equivalence and to inversion.

Functions Exponents d Conditions

Gold 2i + 1 gcd(i, n) = 1

Kasami 22i − 2i + 1 gcd(i, n) = 1

Welch 2t + 3 n = 2t+ 1

Niho 2t + 2
t
2 − 1, t even n = 2t+ 1

2t + 2
3t+1

2 − 1, t odd

by Dobbertin’s general method introduced in [472] and further developed in

[474], called the multivariate method (see the end of Appendix for an example

of this method); (2) prove then ABness by using Proposition 163, page 414, and

McEliece’s Theorem, see page 179, in the cases of the Welch and Niho functions.

The global proofs of ABness are not easy except in the case of Gold functions,

and too long for being included here.

The direct proof that the Gold function above is AB is easy by using the

properties of quadratic functions. Since it is a power permutation, we can re-

strict the study of the Walsh transform to the component function trn(x2i+1).

The linear kernel of this component function {x ∈ F2n ; trn(x2iy + xy2i) =

trn((x2i + x2n−i) y) = 0,∀y ∈ F2n} has equation x22i

+ x = 0, and equals then

F2, since gcd(22i − 1, 2n − 1) = 1. Function trn(x2i+1 + ax) is constant on F2 if

and only if trn(a) = 1. The value at a of the Walsh transform equals then ±2
n+1

2

if trn(a) = 1 and is null otherwise. This proves ABness. The support of WF (u, v)

has equation trn

(
u

v
1

2i+1

)
= 1. The Walsh transform sign is studied in [734].

The inverse of x2i+1 is xd, where d =
∑n−1

2

k=0 22ik, and xd has therefore the alge-

braic degree n+1
2 [908] (hence, the bound of Proposition 155, page 402, is tight).

It has been proved in [443, Theorem 7] and [448, Theorem 15] that, if 3i is con-

gruent with 1 mod n, then the Walsh support of the Kasami Boolean function

trn(x22i−2i+1) equals16 the support of the Gold Boolean function trn(x2i+1) (i.e.

the set {x ∈ F2n ; trn(x2i+1) = 1}). The Walsh support of the Kasami functions

is also determined in [742] when 5i ≡ 1 [mod n] (it is more complex). The knowl-

edge of the Walsh support gives the absolute value (but not the sign) of the Walsh

transform of the Kasami function, this function being a permutation. It has been

shown in [734, 548] that, for every AB power function xd over F2n whose restric-

tion to any subfield of F2n is also AB, the value
∑
x∈F2n

(−1)trn(xd+x) equals

2
n+1

2 if n ≡ ±1 [mod 8] and −2
n+1

2 if n ≡ ±3 [mod 8].

Note that the knowledge of the support of the Walsh transform gives also an

information on autocorrelation: according to the Wiener-Khintchine formula,

the Fourier-Hadamard transform of function a → F(Daf) =
∑
x∈Fn2

(−1)Daf(x)

equals the square of the Walsh transform of f . In the case that 3i is congruent

16 For n even, it equals the set {x ∈ F2n ; trn2 (x2
i+1) = 0}, where trn2 is the trace function

from F2n to the field F22 : trn2 (x) = x+ x4 + x4
2

+ · · ·+ x4
n
2
−1

.
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with 1 mod n for instance, since the value at b of the square of the Walsh trans-

form of f equals 2n+1trn(x2i+1), then by applying the inverse Fourier-Hadamard

transform (that is, by applying the Fourier-Hadamard transform again and di-

viding by 2n), F(Daf) equals twice the Fourier-Hadamard transform of the

function trn(x2i+1). We deduce that, except at the zero vector, F(Daf) equals

the opposite of the Walsh transform of the function trn(x2i+1).

It is proved in [429] (see also [159, 1140]) that power functions are CCZ equiv-

alent if and only if their exponents or their inverses are in the same cyclotomic

coset. The algebraic degrees of functions in Table 11.1 show their pairwise CCZ

inequivalence in general.

It was conjectured by Hans Dobbertin that the list of power AB functions is

complete. No counter-example to this conjecture has been found (see page 422).

11.4.2 Non-power AB functions

It had been conjectured in [257] that all AB functions are equivalent to power

functions (and then to permutations). This conjecture has been disproved, in

a first step by exhibiting in [163] AB functions which are EA inequivalent to

any power function and to any permutation, but which are by construction CCZ

equivalent to the Gold function x → x3, and in a second step by finding AB

functions which are CCZ inequivalent to power functions (at least for some values

of n) [158]. Note that an easy case where a function is provably EA inequivalent

to power functions is when a component function trn(vF ) has algebraic degree

larger than 1 and different from the algebraic degree of F [163].

AB functions CCZ equivalent to power functions
To construct APN (n, n)-functions, and AB functions from known ones by using

CCZ equivalence, is needed, given such a function F , to find an affine permu-

tation L of Fn2 × Fn2 such that, denoting L(x, y) = (L1(x, y), L2(x, y)), where

L1(x, y), L2(x, y) ∈ Fn2 , the function F1(x) = L1(x, F (x)) is a permutation. This

is a necessary and sufficient condition for the image of the graph of F by L to

be the graph of a function. Two cases of such L were found in [162, 163] for the

function F (x) = x2i+1 where (i, n) = 1, giving new classes of AB functions:

• The function F (x) = x2i+1 + (x2i + x) trn(x2i+1 + x), where n > 3 is odd

and gcd(n, i) = 1, is AB. It is provably EA inequivalent to any power function

[162, 163] and it is EA inequivalent to any permutation [163, 771], which dis-

proved the conjecture above.

• For n odd, m |n, m 6= n and gcd(n, i) = 1, the (n, n)-function:

x2i+1 + trnm(x2i+1) + x2itrnm(x) + x trnm(x)2i +

[trnm(x)2i+1 + trnm(x2i+1) + trnm(x)]
1

2i+1 (x2i + trnm(x)2i + 1) +

[trnm(x)2i+1 + trnm(x2i+1) + trnm(x)]
2i

2i+1 (x+ trnm(x))
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where trnm denotes the trace function trnm(x) =
∑n/m−1
i=0 x2mi from F2n to F2m ,

is an AB function of algebraic degree m + 2 which is provably EA inequivalent

to any power function; the question of knowing whether it is EA inequivalent to

any permutation is open.

It would be good to find similarly classes of AB functions by using CCZ equiva-

lence with Kasami (resp. Welch, Niho) functions. For n odd, the Kasami x4k−2k+1

function equals F2 ◦ F−1
1 (x), where F1(x) and F2(x) are respectively the Gold

functions x2k+1 and x23k+1. Hence, the first step would be to investigate permu-

tations of the form L1(x2k+1)+L2(x23k+1), that is, to find L1
1 and L2

1 linear such

that for every u 6= 0 and every x, we have L1
1(x2ku+xu2k +u2k+1) +L2

1(x23k

u+

xu23k

+ u23k+1) 6= 0. However, it is conjectured in [145] that for a non-Gold

power APN (or AB) function, CCZ equivalence coincides with EA equivalence

together with inverse transformation, and it is proven (with the help of a check

by computer) that this conjecture is true for n ≤ 8.

• The AB functions constructed in [162, 163] cannot be obtained from power

functions by applying EA equivalence and inverse transformation, but Budaghyan

shows in [140] that some AB functions EA inequivalent to power functions can

be constructed by only applying EA equivalence and inverse transformation to

power AB functions, for instance the function
(
x

1

2i+1 + trn3 (x+ x22i

)
)−1

.

AB functions CCZ inequivalent to power functions
The problems of (in)existence of AB functions CCZ inequivalent to power func-

tions and of quadratic APN functions EA inequivalent to Gold functions re-

mained open after finding the two classes above. A paper by Edel, Kyureghyan

and Pott [493] introduced two quadratic APN functions from F210 (resp. F212) to

itself. The first one, x3 +αx36, was proved CCZ inequivalent to power functions.

These two (quadratic) APN functions were sporadic and this left open the ques-

tion of knowing whether a whole infinite class of APN functions being not CCZ

equivalent to power functions could be exhibited. Moreover, the question of ex-

istence of such AB functions was still open.

• The new following class of binomial AB functions for n divisible by 3 was found

in [151, 158] by Budaghyan, the author, Felke and Leander:

Proposition 174 Let s and k be positive integers with gcd(s, 3k) = 1 and t ∈
{1, 2}, i = 3 − t. Let d = 2ik + 2tk+s − (2s + 1), g1 = gcd(23k − 1, d/(2k − 1))

and g2 = gcd(2k − 1, d/(2k − 1)). If g1 6= g2 then the function

F : F23k → F23k

x 7→ x2s+1 + α2k−1x2ik+2tk+s

where α is primitive in F23k is AB when k is odd and APN when k is even.

It could be proved (mathematically) in [151, 158] that some of these functions

are EA inequivalent to power functions and CCZ inequivalent to some AB power
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functions, deducing that they are CCZ inequivalent to all power functions for

some values of n:

Proposition 175 Let s and k ≥ 4 be positive integers such that s ≤ 3k − 1,

gcd(k, 3) = gcd(s, 3k) = 1, and i = sk [mod 3], t = 2i [mod 3], n = 3k. If

a ∈ F2n has the order 22k + 2k + 1 then the function F (x) = x2s+1 + ax2ik+2tk+s

is an AB permutation on F2n when n is odd and is APN when n is even. It is

EA inequivalent to power functions and CCZ inequivalent to Gold and Kasami

mappings as shown by a computer-free proof.

This class was the first infinite family of APN and AB functions CCZ inequiva-

lent to power functions, disproving a conjecture from [257] on the nonexistence

of quadratic AB functions inequivalent to Gold functions. This class has been

generalized in [116, 118] (see page 439), with Walsh spectra determined in [117].

• It has been shown by Budaghyan, the author and Leander in [160] that:

Proposition 176 For every odd positive integer, the function x3 + trn(x9) is

AB on F2n (and that it is APN for n even).

This function is one of the only examples17 with x3 of a function AB for any

n odd. It is CCZ inequivalent to any Gold, inverse and Dobbertin functions on

F2n if n ≥ 7 and EA inequivalent to power functions [160]. It has been extended

in the same reference into the AB function x3 + a−1trn(a3x9) (which is CCZ

inequivalent to all power functions according to [1140], since it has been proved

that it is not equivalent to Gold), and in [161] for n divisible by 3 and odd into

x3 + a−1tr3
n(a3x9 + a6x18) and x3 + a−1tr3

n(a6x18 + a12x36). Coefficient a for

all three functions can be reduced to a = 1 up to equivalence18. The principle

of adding a Boolean function to an APN function has been generalized into the

so-called switching method (see page 440).

• The eighth entry of Table 11.4, page 444 (displaying the known classes of

quadratic APN polynomials CCZ inequivalent to power functions) is potentially

an infinite class, and has been found in [142] by applying to the cube function x3

the so-called isotopic shift F 7→ FL(x) = F (x+ L(x))− F (x)− F (L(x)) (where

L is linear), adapted from an equivalence notion originally defined by Albert in

the study of presemifields in odd characteristic19.

An open question is to find infinite classes of AB functions CCZ inequivalent

to power functions and to quadratic functions. Actually the very existence of

such functions is an open problem too. A former question on the existence of AB

17 If we do not take into account that n is present in the definition of trn.
18 The situation is different for n even, with two different functions for a = 1 and a primitive.
19 All quadratic APN (6,6)-functions can be obtained from x3 by isotopic shift; an extension

in [143], where instead of xL(x)2
i

+ x2
i
L(x), given by the isotopic shift of x2

i+1, is taken

xL1(x)2
i

+ x2
i
L2(x), with L1 and L2 linear, leads to 15 new APN (9,9)-functions.
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functions CCZ inequivalent to permutations has been solved: for n = 7, all 484

quadratic AB functions found in [1146] are CCZ inequivalent to permutations

(Yuyin Yu, private communication, 2018). At the moment, the only known AB

functions CCZ equivalent to permutations are the power AB functions and the

binomials of Proposition 174.

11.5 The known infinite classes of APN functions

We list below the known infinite classes of APN functions (those which are not

already seen as AB functions).

11.5.1 Sporadic APN (and AB) functions

In 4 and 5 variables, all APN functions are known (they are classified under

EA and CCZ equivalences by Brinkmann and Leander in [134]; for n = 4, there

are two EA equivalence classes one of which is not EA equivalent to a power

function and there is one CCZ equivalence class; for n = 5, there are seven EA

equivalence classes two of which are not EA equivalent to any power function,

and all APN functions are CCZ equivalent to one of three power functions). In

6-8 variables, known APN functions lying outside the known infinite classes are

listed by Browning, Dillon, Kibler and McQuistan and by Yu, Wang and Li in

[135, 1146] (see a few more, some of which in more variables, in [493, 494, 1118]).

We refer the reader to these papers for the tables they contain, which are useful

when trying to state conjectures on APN functions and for having a precise

knowledge of all known APN functions. For n = 6, the classification of quadratic

APN functions is complete: 13 quadratic APN functions are given in [135] and,

as proven in [492], up to CCZ equivalence, these are the only quadratic APN

functions. Only one non-quadratic APN function is known outside the infinite

classes up to CCZ equivalence (it is, for n = 6, the Brinkmann-Leander-Edel-

Pott function [494], see page 440). In [1146], by establishing a correspondence

between quadratic APN functions and those n× n matrices over F2n which are

symmetric with only zeros on the main diagonal and such that every nonzero

linear combination of the rows has rank n− 1, it is shown that there are at least

490 CCZ inequivalent APN (7, 7)-functions (487 of which are quadratic) and at

least 8180 for n = 8 (8179 quadratic). For n odd, all power APN functions and

the known APN binomials (see Proposition 174) are permutations. For n even,

the only known APN permutation is constructed in [136] for n = 6. The existence

of APN permutations for even n ≥ 8 is an open problem.

11.5.2 Power APN functions

As in the case of AB functions, the first known APN functions have been power

functions x 7→ xd over F2n ; the exponents d of these power functions are those
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given below (and summarized in Table 11.2) and their inverses (when n is odd);

we do not repeat below the exponents of AB functions, but we do in Table 11.2:

• d = 2i + 1 with gcd(i, n) = 1, n even and 1 ≤ i ≤ n−2
2 (Gold APN functions,

see [540, 908]). The proof that these functions are APN (whatever is the parity

of n) is easy: the equality F (x) + F (x + 1) = F (y) + F (y + 1) is equivalent to

(x + y)2i = (x + y), and thus implies that x + y = 0 or x + y = 1, since i and

n are co-prime. Hence, any equation F (x) + F (x + 1) = b admits at most two

solutions. Gold functions being quadratic are plateaued.

• d = 22i − 2i + 1 with gcd(i, n) = 1, n even and 2 ≤ i ≤ n−2
2 (Kasami APN

functions, see [641], see also [468]). The proof that such function is APN is diffi-

cult. It comes down to showing that the restriction to the hyperplane of equation

trn(x) = 0 of a function φ such that F (x) + F (x+ 1) = φ(x2 + x) (which exists

since F (x) + F (x + 1) is invariant by translation by 1) is injective; Dobbertin

shows a close connection between φ and the polynomial P (x) = (tri(x))2i+1

x2i
, called

Müller-Cohen-Matthews polynomial (MCM polynomial) [380] and proves that φ

is a bijection in [468, 474]. Kasami APN functions are plateaued as proved when

3 does not divide n in [448] and for every even n in [1142].

• d = 2n − 2, n odd. The corresponding so-called multiplicative inverse permu-

tation (or simply inverse function) x 7→ F (x) = x2n−2 (which equals 1
x if x 6= 0,

and 0 otherwise) is APN [71, 908]. Indeed, the equation x2n−2 + (x+ 1)2n−2 = b

(that we can take with b 6= 0, since the inverse function is a permutation) admits

0 and 1 for solutions if and only if b = 1; and it (also) admits (two) solutions

different from 0 and 1 if and only if there exists x 6= 0, 1 such that 1
x + 1

x+1 = b,

that is, x2 + x = 1
b . It is well-known that such existence is equivalent to the fact

that trn
(

1
b

)
= 0 (since 0 and 1 do not satisfy this latter equation). Hence, F is

APN if and only if trn(1) = 1, that is, if n is odd.

Consequently, the functions x 7→ x2n−2i−1, which are linearly equivalent to F

(through the linear isomorphism x 7→ x2i) are also APN, if n is odd.

If n is even, then the equation x2n−2 +(x+1)2n−2 = b admits at most 2 solutions

if b 6= 1 and admits 4 solutions (the elements of F4) if b = 1, which means that

F opposes a good (but not optimal) resistance against differential cryptanalysis.

The inverse function is not plateaued, since we have seen that the set of values

of its Walsh spectrum equals the set of all integers s ≡ 0 [mod 4] in the range

[−2
n
2 +1 +1; 2

n
2 +1 +1]. The values of V(v ·F ) are calculated in [351]. A connection

between the differential properties of function x3 and of the multiplicative in-

verse function (and more generally between functions x2t−1 and x2n−t+1−1, using

that x2t−1 + (x+ 1)2t−1 + 1 = (x2t−1
+x)2

x2+x ) is shown in [93], with a focus on t = 3.

In [757] is proved that any function F (x) = x−1+G(x), where G is any non-affine

polynomial, is APN on at most a finite number of fields F2n .
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Table 11.2 Known APN exponents up to equivalence (any n) and up to inversion (n
odd).

Functions Exponents d Conditions

Gold 2i + 1 gcd(i, n) = 1

Kasami 22i − 2i + 1 gcd(i, n) = 1

Welch 2t + 3 n = 2t+ 1

Niho 2t + 2
t
2 − 1, t even n = 2t+ 1

2t + 2
3t+1

2 − 1, t odd

Inverse 22t − 1 n = 2t+ 1

Dobbertin 24t + 23t + 22t + 2t − 1 n = 5t

• d = 2
4n
5 + 2

3n
5 + 2

2n
5 + 2

n
5 − 1, with n divisible by 5 (Dobbertin function, see

[473]). It has been shown by Canteaut, Charpin and Dobbertin [196] that this

function cannot be AB: they showed that C⊥F contains words whose Hamming

weights are not divisible by 2
n−1

2 (the Walsh spectrum values of F are divisible

by 2
n
5 but not all by 2

2n
5 +1). The proof that the Dobbertin function is APN is

also difficult and comes down as well to showing that some mapping is a per-

mutation. Neither the nonlinearity nor the Walsh spectrum of the Dobbertin

function are known. The Dobbertin function is not plateaued as seen in [473].

Nonlinearity
For n even, the Gold, Kasami and inverse functions have the best known nonlin-

earity 2n−1 − 2
n
2 [540, 669] (knowing whether there exist (n, n)-functions with

nonlinearity strictly larger than this value when n is even is an open question).

This is easily shown in the former case by using the properties of quadratic func-

tions; it has been proved by Kasami in the second case, and it was first shown

in [333] in the latter case. Dobbertin functions have worse nonlinearity.

The inverse function x 7→ x2n−2 = x−1 has been chosen for the S-boxes of the

AES with n = 8 because of its bijectivity, good nonlinearity, good differential

uniformity (which is suboptimal20, equal to 4), highest possible algebraic degree

n − 1, non-plateauedness, simplicity... The computation of its output can be

adapted to the device on which it is done thanks to the fact that 8 is a power of

2 and x−1 can then be computed by decomposition over subfields. An example

of such decomposition is as follows: we can write x−1 = x2n/2

(x2n/2+1)−1; we

have then a product between x2n/2 which is a linear function over F2n and the

inverse of x2n/2+1 which lives in the subfield F2n/2 . This method can be iterated;

note that over F22 , the inverse function equals x2 and is then linear. This allows

minimizing the number of nonlinear multiplications needed for computing x−1

which plays a role with respect to countermeasures against side channel attacks

(see page 469).

For n odd, Gold and Kasami functions are AB. The nonlinearity of inverse func-

20 We speak here of the sub-S-boxes; the global AES S-box is the concatenation of 16
differentially 4-uniform functions and has then differential uniformity 4 · 215·8 = 2122.
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tion equals the highest even number bounded above by 2n−1−2
n
2 , as also shown

in [333] (this result has drawn K. Nyberg to focus on the inverse function in [908],

which contributed to the invention of AES). Lachaud and Wolfmann proved (as

we already mentioned at page 240) in [733] that the set of values of its Walsh spec-

trum equals the set of all integers s ≡ 0 [mod 4] in the range [−2
n
2 +1+1; 2

n
2 +1+1],

whatever is the parity of n; see more in [601]. See [196] for a list of all known

permutations with best known nonlinearity. See also [467].

Inequivalence between functions
It is shown in [159] that distinct Gold functions are CCZ inequivalent. We have

seen at page 309 that two power functions are CCZ equivalent if and only if they

are EA equivalent or one of them is EA equivalent to the inverse of the other.

Hence, given the algebraic degrees of Kasami functions, any two distinct func-

tions taken among Gold and Kasami functions21 are CCZ inequivalent (which

was already shown in [159] when one function is Gold and the other is Kasami).

And in [1140] is shown the CCZ inequivalence between any n-variable Gold func-

tion and any Niho function for n ≥ 9. It is also shown in [247] that any plateaued

function in even dimension which is CCZ equivalent to a Gold or Kasami APN

function is necessarily EA equivalent to it. This result is revisited in [1141, Corol-

lary 1] after a study of the more general framework of plateaued APN functions.

Inverse and Dobbertin functions are CCZ inequivalent to all other known APN

functions and between them because of their peculiar Walsh spectra, as also first

observed in [159]. The situation is summarized in:

Proposition 177 [1140, Proposition 2]

(i) The Gold functions x2s+1 and x2t+1 on F2n ; s, t < n/2, are CCZ- equivalent

if and only if s = t.

(ii) The Gold function x2s+1 and the Kasami function x4r−2r+1 on F2n ; s, r <

n/2, are CCZ- equivalent if and only if either s = r = 1 or (n, s, r) = (5, 1, 2).

(iii) On F2n with n odd and n ≥ 9, the Gold function x2s+1 and the Welch

function are always CCZ inequivalent.

(iv) On F2n with n odd and n ≥ 9, the Gold function x2s+1 and the Niho function

are always CCZ inequivalent.

(v) The Kasami functions x4r−2r+1 and x4s−2s+1 on F2n ; r, s < n/2, are CCZ

equivalent if and only if r = s.

(vi) On F2n with n odd and n ≥ 9, the Kasami function x4r−2r+1 and the Welch

function are always CCZ inequivalent.

(vii) On F2n with n odd and n ≥ 9, the Kasami function x4r−2r+1 and the Niho

function are always CCZ inequivalent.

(viii) On F2n with n odd and n ≥ 11, the Welch function and the Niho function

are always CCZ inequivalent.

It is proven in [134] that there exists no APN function CCZ inequivalent to

21 A Gold function with i = 1 and a Kasami function with i = 1 as well are not distinct.
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power mappings on F2n for n ≤ 5. See also [494, Table 3] where the so-called

switching classes related to the switching construction described at page 440 are

investigated for n = 5; there are three classes with representatives x3, x5 and

x−1; in general, a switching class containing an APN function F is not included

in the CCZ equivalence class containing F , but in the case of F25 , they are the

same. This fact is given as a comment in the second paragraph after Remark 2

in this same paper [494], where is also indicated that, in the case n = 8, the EA

switching class of the Gold function x3 contains 17 CCZ inequivalent functions.

Remark. Proving the CCZ inequivalence between two functions is mathemati-

cally (and also computationally) difficult, unless some CCZ invariant parameters

can be proved different for the two functions. Examples of direct proofs of CCZ

inequivalence using only the definition can be found in [158, 159, 160]. 2

Examples22 of CCZ invariant parameters are the following (see [135] and [494]

where they are introduced and used, as well as group algebra interpretations):

• The extended Walsh spectrum.

• The equivalence class of the code C̃F defined at page 411 (under the relation of

equivalence of codes), and all the invariants related to this code (the weight

enumerator of C̃F , the weight enumerator of its dual - but it corresponds

to the extended Walsh spectrum of the function - the automorphism group

etc..., which coincide with some of the invariants below).

• The Γ-rank: let G = F2[Fn2 × Fn2 ] be the group algebra of Fn2 × Fn2 over F2,

consisting of the formal sums
∑
g∈Fn2×Fn2

ag g where ag ∈ F2. If S is a subset

of Fn2 × Fn2 , then it can be identified with the element
∑
s∈S s of G. The

dimension of the ideal of G generated by the graph GF = {(x, F (x)); x ∈
Fn2} of F is called the Γ-rank of F . The Γ-rank equals (see [494]) the

rank of the matrix MGF whose term indexed by (x, y) ∈ Fn2 × Fn2 and by

(a, b) ∈ Fn2 × Fn2 equals 1 if (x, y) ∈ (a, b) + GF and equals 0 otherwise.

• The ∆-rank, that is, the dimension of the ideal of G generated by the set

DF = {(a, F (x) + F (x + a)); a, x ∈ Fn2 ; a 6= 0} (according to Proposition

158, this set has size 22n−1 − 2n−1 and is a difference set when F is AB).

The ∆-rank equals the rank of the matrix MDF whose term indexed by

(x, y) and by (a, b) equals 1 if (x, y) ∈ (a, b) +DF and equals 0 otherwise.

• The order of the automorphism group of the design dev(GF ), whose points

are the elements of Fn2 × Fn2 and whose blocks are the sets (a, b) + GF (and

whose incidence matrix is MGF ); this is the group of all those permutations

on Fn2 × Fn2 which map every such block to a block.

• The order of the automorphism group of the design dev(DF ), whose points

are the elements of Fn2 ×Fn2 and whose blocks are the sets (a, b) +DF (and

whose incidence matrix is MDF ).

22 There are other CCZ invariants known; we describe all those efficient for APN functions.
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• The order of the automorphism group M(GF ) of the so-called multipliers of

GF , that is, the permutations π of Fn2 × Fn2 such that π(GF ) is a translate

(a, b)+GF of GF . This order is easier to compute and it makes it possible in

some cases to prove CCZ inequivalence easily. As observed in [135],M(GF )

is the automorphism group of the code C̃F .

• The order of the automorphism group M(DF ).

• A CCZ invariant lower bound on the minimum distance to other APN func-

tions [153].

CCZ equivalence does not preserve crookedness nor the algebraic degree.

Exceptional exponents
The exponents d such that the function xd is APN on infinitely many extensions

F2n of F2 are called exceptional (see [642, 444, 135]). We have seen above that a

power function xd is APN if and only if the function xd + (x+ 1)d + 1 (we write

“+1” so that 0 is a root, which simplifies presentation) is 2-to-1 and that, for

every (n, n)-function F over F2n , there exists a polynomial P such that F (x) +

F (x + 1) + F (1) = P (x + x2). In each case of the Gold and Kasami functions,

one of these polynomials P is an exceptional polynomial (i.e. is a permutation

over infinitely many fields F2n); from there comes the term. In the case of the

Gold function x2i+1, we have P (x) = x+ x2 + x22

+ · · ·+ x2i−1

which is a linear

function over the algebraic closure of F2 having kernel {x ∈ F2i ; tri(x) = 0} and

is therefore a permutation over F2n for every n co-prime with i. In the case of

Kasami exponents, the polynomial is related to the MCM polynomials, see page

433. It had been conjectured in [642] that Gold and Kasami exponents are the

only exceptional exponents. This conjecture has been shown in [603]. It has been

shown in [40] that if the degree of a function given in univariate representation is

not divisible by 4, and if this degree is not a Gold or a Kasami exponent, and if

the polynomial contains a term of odd degree, then the function can not be APN

over infinitely many extensions of F2. See more on exceptional APN functions in

[419, 418] and the references therein.

11.5.3 Non-power APN functions

As for AB functions, it had been wrongly conjectured that all APN functions

were EA equivalent to power functions.

APN functions CCZ equivalent to power functions
Using also the notion of CCZ equivalence, two more infinite classes of APN

functions have been introduced by Budaghyan, the author and Pott in [162, 163]

which disprove the conjecture above:

• The function F (x) = x2i+1 + (x2i + x+ 1) trn(x2i+1), where n ≥ 4 is even and
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Table 11.3 Some APN functions CCZ equivalent to Gold functions and EA inequivalent
to power functions on F2n (constructed in [162, 163]).

Functions Conditions dalg

n ≥ 4

x2i+1 + (x2i + x+ trn(1) + 1)trn(x2i+1 + x trn(1)) gcd(i, n) = 1 3

6|n
[x+ trn/3(x2(2i+1) + x4(2i+1)) + trn(x)trn/3(x2i+1 + x22i(2i+1))]2

i+1 gcd(i, n) = 1 4

m 6= n

x2i+1 + trnm(x2i+1) + x2i trnm(x) + x trnm(x)2i n odd

+[trnm(x)2i+1 + trnm(x2i+1) + trnm(x)]
1

2i+1 (x2i + trnm(x)2i + 1) m|n m+ 2

+[trnm(x)2i+1 + trnm(x2i+1) + trnm(x)]
2i

2i+1 (x+ trnm(x)) gcd(i, n) = 1

gcd(n, i) = 1, which is EA inequivalent to any power function.

• For n even and divisible by 3, the function F (x) equal to

[x+ trn/3(x2(2i+1) + x4(2i+1)) + trn(x) trn/3(x2i+1 + x22i(2i+1))]2
i+1,

where gcd(n, i) = 1, is APN and is EA inequivalent to any known APN function.

We display in Table 11.3 the APN functions found this way. Finding classes of

APN functions by using CCZ equivalence with Kasami (resp. Welch, Niho, Dob-

bertin, inverse) functions is an open problem.

In [1167] are made some observations about the fact that, starting from a

quadratic APN function, it is possible to obtain a CCZ equivalent function which

is EA inequivalent to any quadratic function.

APN functions CCZ inequivalent to power functions
• As recalled at page 430, two quadratic APN functions from F210 (resp. F212) to

itself have been introduced in [493]. The first one: F (x) = x3 + ux36, where u ∈
F4 \F2, was proved to be CCZ inequivalent to any power function by computing

its ∆-rank. Proposition 174, page 430, which gives binomial AB functions when

n is odd, gives binomial APN functions when n is even, which generalize the

second function: F (x) = x3 + α15x528, where α is a primitive element of F212 .

Some of them can be proven CCZ inequivalent to Gold and Kasami mappings,

as seen in Proposition 175, and therefore, they are CCZ inequivalent to all power

mappings due to a result of [1140] (that if a quadratic function is CCZ equivalent

to a power function, then it is EA equivalent to a Gold map). A similar class

but with n divisible by 4 was later given in [157]. A common framework exists

for the class of Proposition 175 and this new class:

Proposition 178 Let n = tk be a positive integer, with t ∈ {3, 4}, and s be such

that t, s, k are pairwise co-prime and such that t is a divisor of k+ s. Let α be a

primitive element of F2n and w = αe, where e is a multiple of 2k − 1, co-prime

with 2t − 1. Then the following function is APN:

F (x) = x2s+1 + wx2k+s+2k(t−1)

.
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For n ≥ 12, these functions are EA inequivalent to power functions and CCZ

inequivalent to Gold and Kasami mappings as shown by a computer-free proof

[158]. This implies that they are CCZ inequivalent to all power mappings [1140].

• Proposition 175, page 431, has been generalized23 in [118] for n divisible by 3

by Bracken, Byrne, Markin and McGuire into quadrinomial APN functions:

F (x) = u2kx22k+2k+s

+ ux2s+1 + vx22k+1 + wu2k+1x2k+s+2s (11.10)

is APN on F23k , when 3 | k + s, (s, 3k) = (3, k) = 1 and u is primitive in F23k ,

v 6= w−1 ∈ F2k . It contains the trinomials introduced in [116]. The Walsh spec-

trum has been determined in [123]. The general class of Proposition 178 is not

generalized for the n divisible by 4 case.

• The same paper [118] obtained multinomial APN functions for n ≡ 2 [mod 4]:

F (x) = bx2s+1 + b2
k

x2k+s+2k + cx2k+1 +

k−1∑
i=1

rix
2i+k+2i (11.11)

where k, s are odd and co-prime, b ∈ F22k is not a cube, c ∈ F22k \ F2k , ri ∈ F2k ,

is APN on F22k . Recently, in [146], has been proved that these functions (11.11)

are EA equivalent to the functions of Proposition 181 below, which is itself gen-

eralized by the class in [239], see below.

• The construction of AB functions of Proposition 176, page 431, works for APN

functions: for any positive integer n, function x3 + trn(x9) is APN on F2n . It is

shown in [160] that, if F is an APN quadratic (n, n)-function and f is quadratic

Boolean such that, for every a ∈ F∗2n , there exists a linear Boolean function `a
satisfying βf (x, a) = f(x+a)+f(x)+f(a)+f(0) = `a(βF (x, a)), then F (x)+f(x)

is APN provided that, if βF (x, a) = 1 for some x ∈ F2n , then `a(1) = 0.

Function x3 + trn(x9) is CCZ inequivalent to any Gold function on F2n if n ≥ 7,

as proved in [160], and therefore it is CCZ inequivalent to any power function

[1140]. The extended Walsh spectrum of this function is the same as for the Gold

functions as shown in [114].

The approach which has led to function x3 + trn(x9) has been generalized (as for

AB functions) and new functions have been deduced: x3 +a−1trn(a3x9) in [160],

and for n divisible by 3, x3+a−1tr3
n(a3x9+a6x18) and x3+a−1tr3

n(a6x18+a12x36)

in [161] (for n even, each such function defines two CCZ inequivalent functions,

one for a = 1 and one for any a 6= 1). Their APNness is proved in this latter

reference by showing for n even that if L is linear and F (x) = x + L(x3) is a

permutation24 over F2n , then F (x3) is APN, and by showing a more complex

result for n odd. The Walsh spectra of the functions above are determined in

[114, 166] (they are Gold like Walsh spectra). When F is a Gold function, all

possible APN mappings F (x) + f(x), where f is a Boolean function have been

computed until dimension 15. The only possibilities different from x3 + trn(x9),

23 Note that Proposition 174 covers a larger class of APN functions than Proposition 175.
24 Sufficient conditions are given in [161] for that.
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are for n = 5 the function x5 + trn(x3) (CCZ equivalent to Gold functions)

and for n = 8 the function x9 + trn(x3) (CCZ inequivalent to power functions),

see more in [1096]. In Table 11.4 are displayed all the known classes of APN

functions CCZ inequivalent to power functions. It is shown in [161] that:

Proposition 179 Let n be any positive integer and K some field extension of

F2n . Let L be an F2-linear mapping from F2n to F2n extended to an F2-linear

mapping from K to K. Let E be a coset in K of a vector space containing L(F2n).

Assume that F (x) = x+L(x3) is injective on E and that the set {x2 +x+ 1;x ∈
E} contains the set of elements y of F2n such that trn(y) = 0. Then F (x3) is

APN over F2n .

Note that if the output of x3 + trn(x9) is decomposed over an F2-basis of F2n

which contains element 1, function x3 + trn(x9) differs from x3 for only one

coordinate function. This is an example of the idea originally due to Dillon

(after [160]) and developed in [494] of the switching construction: starting with

a known APN function F , one of the coordinate functions is changed to give G,

or equivalently if we view F and G valued in F2n : G(x) = F (x) + f(x)u where

u ∈ F∗2n and f is a Boolean function; this gives a function which is differentially

4-uniform and in some rare cases, APN. In general, each change of a coordinate

function in an S-box can at most multiply its differential uniformity δ by 2.

Indeed, changing for instance the last coordinate function and denoting by F ′

the function obtained from F by erasing the last coordinate, the equation F ′(x)+

F ′(x+a) = b′ corresponds to F (x)+F (x+a) = (b′, 0) or F (x)+F (x+a) = (b′, 1),

and the differential uniformity of any function obtained by changing the last

coordinate function is then at most 2δ (but this change can lower down the

nonlinearity to 0). It is observed in [494] that if F is APN and G(x) = F (x) +

f(x)u as above, then G is APN if and only if we have f(x)+f(x+a)+f(y)+f(y+

a) = 0 for every x, y, a ∈ F2n such that F (x) + F (x+ a) + F (y) + F (y + a) = u;

the proof is straightforward. This has led in [494] to an APN (6,6)-function CCZ

inequivalent to power functions and to quadratic functions (the only known,

currently), which had been already found in [134] but missed as a non-quadratic

function; we shall call it the Brinkmann-Leander-Edel-Pott function; it seems

that in the function given in [494], a coefficient was missing; a correct version is:

x3 + α17(x17 + x18 + x20 + x24) + α14[α18x9 + α36x18 + α9x36 + x21 + x42] +

α14 Tr6
1(α52x3 + α6x5 + α19x7 + α28x11 + α2x13),

where α is primitive.

On the basis of a generalized switching construction, Göloglŭ has proposed in

[547] the function x2k+1 + (trnm(x))2k+1, where gcd(k, n) = 1 and n = 2m, m

even, but this function was proved affine equivalent to the Gold function in [166].

• An idea of J. Dillon [445] was that (n, n)-functions (over F2n) of the form:

F (x) = x(Ax2 +Bxq + Cx2q) + x2(Dxq + Ex2q) +Gx3q,

where q = 2
n
2 , n even, have good chances to be differentially 4-uniform. Such
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F is quadratic. For a ∈ F∗2n , we consider then the equation G1 := F (x + a) +

F (x)+F (a) = a1x+a2x
2 +a3x

q+a4x
2q = 0, where a1, . . . , a4 ∈ F2n . We deduce

G2 := aq2G1 + a4G
q
1 = b1x + b2x

2 + b3x
q = 0, G3 := b23G1 + a3b3G2 + a4G

2
2 =

c1x + c2x
2 + c3x

4 = 0. If either c1, c2 or c3 is nonzero, then F is differentially

4-uniform and possibly APN. This idea was applied to more general functions by

Budaghyan and the author in [147]; this resulted in trinomial APN functions:

Proposition 180 Let n be even and let gcd(i, n2 ) = 1. Set q = 2
n
2 and let

c, b ∈ F2n be such that cq+1 = 1, c 6∈ {λ(2i+1)(q−1), λ ∈ F2n}, cbq + b 6= 0. Then:

F (x) = x22i+2i + bxq+1 + cxq(2
2i+2i)

is APN on F2n . Such vectors b, c do exist if and only if gcd(2i + 1, q + 1) 6= 1.

For n
2 odd, this is equivalent to saying that i is odd.

The extended Walsh spectrum of these functions is the same as that of the Gold

functions [1181]. But it has been recently proved in [146] that these functions

are EA equivalent to the functions of the next proposition.

• The method also resulted in a class of hexanomial APN functions:

Proposition 181 [147] Let n be even and i be co-prime with n
2 . Set q = 2

n
2 and

let c ∈ F2n and a ∈ F2n \ Fq. If the polynomial X2i+1 + cX2i + cqX + 1 has no

zero x ∈ F2n such that xq+1 = 1 (in particular if it is irreducible over F2n), then

the following function is APN on F2n :

F (x) = x(x2i + xq + cx2iq) + x2i(cqxq + ax2iq) + x(2i+1)q.

The condition was shown achievable by computer investigation, then mathemat-

ically in [122] and [97]; finally in [547], all the polynomials satisfying it have been

characterized, constructed and counted. This class was generalized (up to CCZ

equivalence) in [239], see below (the question whether this generalizing bivariate

construction gives new functions up to CCZ equivalence is open). It was checked

with a computer that some of the APN functions provided by Proposition 181

are CCZ inequivalent to power functions for n = 6, 8, 10. It remains open to

prove the same property for every even n ≥ 12.

Cases where the hypothesis of Proposition 181 is satisfied were exhibited in

[97, 122, 980]. The polynomials X2i+1 + cX2i + cqX + 1 are directly related to

the polynomials X2i+1 +X+a. In [122] are characterized the coefficients a ∈ F∗2n
such that this latter polynomial has no zero in F2n when gcd(i, n) = 1 and n

is even. In particular for i = 1, the polynomial X3 + X + a has no zero (i.e. is

irreducible) if and only if a = u + u−1 where u is not a cube in F2n . Note that

X3 +X is the Dickson polynomial D3 (seen at page 422).

As shown in [146], this hexanomial construction is more general than those of

Proposition 180 and those of (11.11) (strictly more general, because it is also

defined for n even divisible by 4 while these are not).

• A method has been introduced by the author in [239] for constructing APN
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functions from bent functions. Let B be a bent (n, n2 )-function and let G be a

function from Fn2 to F
n
2
2 . Let F : x ∈ Fn2 → (B(x), G(x)) ∈ F

n
2
2 × F

n
2
2 . Then

F is APN if and only if, for every nonzero a ∈ Fn2 , and for every c, d ∈ F
n
2
2 ,

the system of equations

{
B(x) +B(x+ a) = c

G(x) +G(x+ a) = d
has 0 or 2 solutions. Since

B is bent, the number of solutions of the first equation always equals 2
n
2 and

such regularity can help. Functions EA equivalent to the Brinkmann-Leander-

Edel-Pott function can be obtained in the form (B(x, y), G(x, y)) with B(x, y) =

sx3 + ty3 + ux2y + vx y2.

Taking B equal to the Maiorana-McFarland function B(x, y) = xy on F
2
n
2
×F

2
n
2

,

where xy is the product of x and y in the field F
2
n
2

, and writing then (a, b)

with a, b ∈ F
2
n
2

instead of a ∈ Fn2 , the system of equations above becomes, after

changing c into c+ab:

{
bx+ ay = c

G(x, y) +G(x+ a, y + b) = d
. Then, by considering

separately the cases a = 0, b 6= 0 and a 6= 0, F is APN if and only if:

1. for every c ∈ F
2
n
2

, the function y ∈ F
2
n
2
→ G(c, y) is APN;

2. for every b, c ∈ F
2
n
2

, the function x ∈ F
2
n
2
→ G(x, bx + c) is APN (this is

easily seen by replacing b and c respectively by ab and ac in the latter system).

This leads to the following bivariate APN functions:

Proposition 182 [239] Let n be any even integer; let i, j be integers such that

gcd(n/2, i − j) = 1, and let s 6= 0, t 6= 0, u and v be elements of F2n/2 . Set

G(x, y) = sx2i+2j + ux2iy2j + vx2jy2i + ty2i+2j . Then the function

F : (x, y) ∈ F2n/2 × F2n/2 → (x y,G(x, y)) ∈ F2n/2 × F2n/2

is APN if and only if G(x, 1) = sx2i+2j + ux2i + vx2j + t has no zero in F2n/2 .

For j = 0 and s = 1 (as in Proposition 181), such polynomials are called

“projective” by some authors. In [239] are investigated examples where the

condition of Proposition 182 is satisfied and is shown that Propositions 180

and 181 and the APN functions of Bracken, Byrne, Markin and McGuire re-

called above are cases of application of Proposition 182 (note that the bivari-

ate function (x, y) ∈ F2
2n/2

7→ xy is EA equivalent to the univariate function

x ∈ F2n 7→ x2n/2+1), see more in [243] where the univariate representation

of these functions is investigated and generalized in several ways. Note that

it was mentioned (but unpublished) by Göloglŭ, Krasnayova and Lisoněk at

the conference Fq13, in 2017, that any APN function of the particular form

x3 +ax3·2
n
2 + bx2·2

n
2 +1 + cx2+2

n
2 , a, b, c ∈ F

2
n
2

, is equivalent to x3 or to x2
n
2
−1+1

or when n = 6 to the so-called Kim function (see the definition of this function

at page 443).

The construction of function (x, y) 7→ (xy, x2i+1 + ay2j(2i+1), where a 6= 0 is

assumed impossible to be written in the form b2
i+1(c + c2

i

)1−2j , has been pro-
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posed by Zhou and Pott in [1182]. It is similar to the one of Proposition 182 but

different. It has been generalized in [243]:

Proposition 183 Let n be any even integer; let i be any integer co-prime with

m = n/2, and let P,Q,R and S be linear homomorphisms of F2m . Set G(x, y) =

P (x2i+1) +Q(x2iy) +R(xy2i) + S(y2i+1). Then the function

F : (x, y) ∈ F2m × F2m → (x y,G(x, y)) ∈ F2m × F2m

is APN if and only if, for every a and b in F2m such that (a, b) 6= (0, 0), the

linear function Ta,b(y) := P (a2i+1y) +Q(a2iby) +R(ab2
i

y) +S(b2
i+1y) satisfies:

- if m is odd then Ta,b : F2m 7→ F2m is bijective;

- if m is even, then (kerTa,b) ∩ {u2i+1(t2
i

+ t); u ∈ F∗2m , t ∈ F2m} = {0}.

• A new class has been found by Zhou and Pott in [1182], see Table 11.4.

• Very recently has been found in [1077] the penultimate entry in Table 11.4,

which enters in the framework of the proposition above.

• Still more recently has been found in [165] the last entry in the table.

Note that each class of functions can be described in many different ways

due to equivalences. The reader must then not be surprised if there are small

differences between the representations given in Table 11.4 and in the body of

the section. The descriptions in the table are in some cases for subclasses, for

which inequivalences between the different entries could be shown. This table

as well as other tables with data on APN functions is periodically renewed at

https://boolean.h.uib.no/mediawiki/index.php/Tables.

Note that we know then a little more than 20 infinite polynomial families

of APN functions, while, as we saw, more than 8000 CCZ inequivalent APN

functions are known already over F28 ; hence, even taking into account that some

families contain several functions for each n (but some are not defined for n = 8),

the currently known families cover only a tiny fraction of all APN functions.

An APN permutation and the big open APN problem
The APN functions listed above for n even are not permutations. This is prob-

lematic since for implementation reasons (see e.g. page 434), n even is preferred.

Block ciphers using bijective APN (7, 7)-functions and (9, 9)-functions as S-boxes

exist, such as the MISTY block cipher [830] and its variant KASUMI [687], but

have drawbacks. Most block ciphers use then differentially 4-uniform permu-

tations in even dimension. The question (called the big open APN problem by

Dillon) of knowing whether there exist APN permutations when n is even (which

would allow simplifying the structure) was wide open (as first mentioned in [910]

and answered negatively for n = 4 in [624] thanks to a computer investigation

and in [176] mathematically) until Browning, Dillon, McQuistan and Wolfe ex-

hibit in [136] an APN permutation (of algebraic degree n − 2 and nonlinearity

2n−1 − 2
n
2 ) in n = 6 variables (used later in the cryptosystem Fides [84] which

has been subsequently broken due to its weaknesses in the linear component).

This permutation is CCZ equivalent to the so-called Kim function x3+x10+αx24
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Table 11.4 Known classes of quadratic APN polynomials CCZ inequivalent to power
functions on F2n .

Functions Conditions Proven

n = pk, gcd(k, p)=gcd((s, pk))=1, Prop.

x2
s+1 + α2k−1x2

ik+2tk+s

p ∈ {3, 4}, i = sk mod p, t = p− i, 174, 175
n ≥ 12, α primitive in F∗2n 178; [158]

q = 2m, n = 2m, gcd(i,m)=1,

ax2
i(q+1) + x2

i+1 + xq(2
i+1) c ∈ F2n , a ∈ F2n \ Fq, Prop. 181

+xq+1 + cx2
iq+1 + cqx2

i+q X2i+1 + cX2i + cqX + 1 [147]
has no zero in F2n s.t. xq+1 = 1

x3 + a−1trn(a3x9) a 6= 0 [160]

x3 + a−1trn3 (a3x9 + a6x18) 3|n, a 6= 0 [161]

x3 + a−1trn3 (a6x18 + a12x36) 3|n, a 6= 0 [161]

n = 3k, gcd(k, 3)=gcd(s, 3k)=1, see page

αx2
s+1 + α2kx2

2k+2k+s

+ v, w ∈ F2k , vw 6= 1, 439

vx2
2k+1 + wα2k+1x2

s+2k+s

3|(k + s) α primitive in F∗2n [116]

(x+ x2
m

)2
k+1+ n = 2m, m ≥ 2 even,

β(αx+ α2mx2
m

)(2
k+1)2i+ gcd(k,m) = 1 and i ≥ 2 even [1182]

α(x+ x2
m

)(αx+ α2mx2
m

) α primitive in F∗2n , β ∈ F2m not cube

n = 3m, m odd; U subgroup of

a2x2
2m+1+1 + b2x2

m+1+1+ F∗2n of order 22m + 2m + 1, L(x) = [142]

ax2
2m+2 + bx2

m+2+ ax2
2m

+ bx2
m

+ cx ∈ F2n [x], s.t.
(c2 + c)x3 ∀v, t ∈ U , L(v) /∈ {0, v} and v2L(t)

+tL(v)2 6= 0⇒ t2L(v)+vL(t)2

v2L(t)+tL(v)2
6∈ F2m

α(αqx+ αxq)(xq + x)+ q = 2m, n = 2m, gcd(i,m) = 1 [1077]

(αqx+ αxq)2
2i+23i

+ X2i+1 + aX + b

a(αqx+ αxq)2
2i

(xq + x)2
i

+ has no zero in F2m

b(xq + x)2
i+1

x3 + β(x2
i+1)2

k

+ β2x3·2
m

+ n = 2m; m odd; 3 6 |m [165]

(x2
i+m+2m)2

k

i = m− 2 or i = (m− 2)−1 [mod n]
β primitive in F4

(given in [135]), whose associated code CF (see Proposition 160) is therefore a

double simplex code (see page 25). It is EA equivalent to an involution and is

studied further in [944, 199] where the butterfly construction is introduced. This

construction works with concatenations of bivariate functions R(x, y) over F2n/2

(n/2 odd) which are viewed as Ry(x) and are such that Ry is bijective for ev-

ery y. The resulting butterflies have two CCZ equivalent representations, one of

which, called closed butterfly, can be taken quadratic (and may not be bijective)

and has the form (Ry(x), Rx(y)), while the other, called open butterfly, is the

involution of the form (RR−1
y (x)(y), R−1

y (x)). The graph of the closed butterfly

writes:

GF = {(x, y,Ry(x), Rx(y));x, y ∈ Fn2},
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and operating on this graph the linear permutation (x, y, z, t) 7→ (z, y, t, x) gives:

G′F = {(Ry(x), y, Rx(y), x);x, y ∈ Fn2}.

This set is invariant when swapping x and y, which corresponds to swapping

(Ry(x), y) and (Rx(y), x). By the change of variable x = R−1
y (x′), which trans-

forms Ry(x) into x′, we have:

G′F = {(x′, y, RR−1
y (x′)(y), R−1

y (x′));x′, y ∈ Fn2},

that is the graph of the open butterfly, which is an involution, according to the

invariance mentioned above. This construction includes the APN permutation of

[136], but unfortunately it is shown in [199, 943] that it does not allow obtaining

APN permutations in more than 6 variables. The butterfly construction gives

differentially 4-uniform involutions, see page 456.

The question of existence of APN permutations in even dimension n remains

open for n ≥ 8. There exist nonexistence results within the following classes:

• plateaued functions (when APN, they have bent components, see page 424),

• a class of functions including power functions (see page 415),

• functions whose univariate representation coefficients lie in F
2
n
2

, or in F24 for

n divisible by 4 [624],

• functions whose univariate representation coefficients satisfy
∑ 2n−1

3
i=0 a3i = 0

[184],

• functions having at least one partially-bent component; it is indeed proved in

[176] (starting from the same idea as in [24], see page 415) that no compo-

nent function of an APN permutation can be partially-bent (this improves

upon several previous results on the components of APN permutations):

n being even, the linear kernel of such balanced partially-bent component

function v · F would have dimension at least 2, and since for every a, b, we

have Da(v · F )(x) ⊕Db(v · F )(x) = Da+b(v · F )(x + a), there would exist

a 6= 0 such that Da(v · F ) = 0, and since Im(DaF ) has 2n−1 elements

because F is APN, Im(DaF ) would include 0, a contradiction with the

bijectivity of F .

Finding infinite classes of APN functions CCZ inequivalent to power functions

and to quadratic functions is an open problem too.

11.5.4 The extended Walsh spectra of known APN functions

For n odd, the known APN functions have three possible spectra (all satisfying

V(v ·F ) = 22n+1 for every v 6= 0, since they are power permutations and since we

have already seen that F is APN if and only if
∑
v∈Fn2 \{0n}

V(v ·F ) = 22n+1(2n−
1)), see e.g. [62]:

• the spectrum of the AB functions which gives a nonlinearity of 2n−1 − 2
n−1

2 ,
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• the spectrum of the inverse function, which takes any value divisible by 4 in

[−2
n
2 +1 + 1; 2

n
2 +1 + 1] and gives a nonlinearity close to 2n−1 − 2

n
2 ,

• the spectrum of the Dobbertin function which is more complex (it is divisible

by 2n/5 and not divisible by 22n/5+1 [196]); its nonlinearity seems to be

bounded below by approximately 2n−1 − 23n/5−1 − 22n/5−1 - maybe equal

- but this has to be proven (or disproven).

For n even, the spectra may be more diverse:

• the Gold functions (and all known infinite classes of quadratic APN functions

[117, 123, 1061]) whose component functions are bent for a third of them

and have nonlinearity 2n−1−2
n
2 for the rest of them; the Kasami functions

which have the same extended spectra,

• the Dobbertin function (same observation as above),

• As soon as n ≥ 6, we find (quadratic) APN functions with different spectra

(e.g. x3 + α11x5 + α13x9 + x17 + α11x33 + x48, for n = 6, with a 7-valued

Walsh spectrum found by Dillon).

The nonlinearities seem also bounded below by approximately 2n−1− 23n/5−1−
22n/5−1 (but this has to be proven ... or disproven too). Note that the question of

classifying APN functions is open even when restricting ourselves to quadratic

APN functions in more than 6 variables (even classifying their Walsh spectra

is open for even numbers of variables). There is only one known example of

quadratic APN function (with n = 6) having non-Gold-like nonlinearity, see

[445].

11.5.5 Conclusion on known APN functions

As we can see, very few functions usable as S-boxes have emerged so far. The

only known APN permutations are in odd dimension or in dimension 6, which is

not convenient for implementation. Besides, Gold functions, all the other found

quadratic functions and the Welch functions have too low algebraic degrees for

being widely chosen for the design of new S-boxes. The Kasami functions them-

selves seem too closely related to quadratic functions. The inverse function has

many very nice properties: large Walsh spectrum and good nonlinearity, dif-

ferential uniformity of order at most 4, fast implementation. But differential

uniformity 2 in a dimension equal to a power of 2 would be better and the in-

verse function has a potential weakness against algebraic attacks, which did not

lead yet to efficient attacks, but may in the future. So further studies on APN

permutations seem essential for the future designs of SP networks.
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11.6 Differentially uniform functions

In [297] is shown, for every (n,m)-function F , the following lower bound involving

the differential uniformity of F and the size of its image set:

δF ≥


22n

|Im(F )| − 2n

2n − 1

 .
This is equivalent to the lower bound:

|Im(F )| ≥
⌈

22n

(2n − 1) δF + 2n

⌉
.

11.6.1 Characterizations by the Walsh transform

We have seen that APN functions are nicely characterized by their Walsh trans-

form through Relation (11.2), page 403. It is shown in [250] that other char-

acterizations by the Walsh transform exist for APN functions and that more

generally, for each value of δ, several (in fact, an infinity of) characterizations by

the Walsh transform of differentially δ-uniform functions exist. We follow here the

presentation of [252]. Denoting for every a, b ∈ Fn2 and every (n,m)-function F by

NF (b, a) the size of the set {x ∈ Fn2 ;DaF (x) = DaF (b)}, we have that F is differ-

entially δ-uniform if and only if, for every a 6= 0n in Fn2 and every b ∈ Fn2 , we have

NF (b, a) ∈ {2, 4, . . . , δ}. For every polynomial φδ(X) =
∑
j≥0AjX

j ∈ R[X] such

that φδ(u) = 0 for u = 2, 4, . . . , δ and φδ(u) > 0 for every even u ∈ {δ+2, . . . , 2n},
we have then for every (n,m)-function F that:∑

j≥0

Aj
∑
a,b∈Fn2
a 6=0n

(NF (b, a))j =
∑
a,b∈Fn2
a 6=0n

∑
j≥0

Aj (NF (b, a))j ≥ 0,

and that F is differentially δ-uniform if and only if this inequality is an equality.

The sum
∑
a,b∈Fn2

(NF (b, a))j is easily expressed by means of the Walsh transform

of F :

Lemma 12 Let F be any (n,m)-function. We have, for j ≥ 1:∑
a,b∈Fn2

(NF (b, a))j =
∑

a,b∈Fn2 ,a 6=0n

(NF (b, a))j + 2n(j+1) =

2−j(m+n)
∑

u1,...,uj∈Fn2
v1,...,vj∈Fm2

W 2
F

(
j∑
i=1

ui,

j∑
i=1

vi

)
j∏
i=1

W 2
F (ui, vi). (11.12)

This technical lemma is proved in [250] by raising at the j-th power the equal-

ity NF (b, a) = 2−m
∑
x∈Fn2 ,v∈Fm2

(−1)v·(DaF (x)+DaF (b)), obtaining (NF (b, a))j =

2−jm
∑

xi∈Fn2 ,vi∈F
m
2

i=1,...,j

(−1)
⊕j
i=1 vi·(F (xi)+F (xi+a)+F (b)+F (b+a)) and using that yi =
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xi + a if and only if
∑
ui∈Fn2

(−1)ui·(xi+yi+a) = 2n (idem for c = b + a). We

deduce from Lemma 12:

Theorem 26 [250] Let n, m and δ be positive integers, with δ even, and let F

be any (n,m)-function. Let

φδ(X) =
∑
j≥0

AjX
j ∈ R[X]

be any polynomial such that φδ(u) = 0 for u = 2, 4, . . . , δ and φδ(u) > 0 for every

even u ∈ {δ + 2, . . . , 2n}. Then we have:

2n(2n − 1)A0 +
∑
j≥1

2−j(n+m)Aj

(
(W 2

F )⊗(j+1)(0n, 0m)− 2(2j+1)n+jm
)
≥ 0,

(11.13)

where (W 2
F )⊗(j+1) is the (j + 1)-th order convolutional product of WF :

(W 2
F )⊗(j+1)(0n, 0m) =

∑
u1,...,uj∈Fn2
v1,...,vj∈Fm2

W 2
F

(
j∑
i=1

ui,

j∑
i=1

vi

)
j∏
i=1

W 2
F (ui, vi).

Moreover, this inequality is an equality if and only if F is differentially δ-uniform.

Relation (11.2), page 403, can then be deduced from Theorem 26 by choosing

φ2(X) = X − 2. Theorem 26 gives other interesting characterizations. We shall

give one for each case δ = 2 and δ = 4, but more can be found in [250]. Taking

φ2(X) = (X − 2)(X − 4), we obtain:

Corollary 29 [250] Every (n, n)-function F is APN if and only if:∑
u1,u2∈Fn2 ;v1,v2∈Fn2
v1 6=0n,v2 6=0n,v1 6=v2

W 2
F (u1, v1)W 2

F (u2, v2)W 2
F (u1 + u2, v1 + v2) =

25n(2n − 1)(2n − 2). (11.14)

Moreover, every (n, n)-function satisfies a version of (11.14) with “≥” in the

place of “=”, but to show this, Theorem 26 must be applied with φ4(X) =

(X − 2)(X − 4) and also with φ2(X) = X − 2 (see [250]).

Applying Theorem 26 with φ4(X) = (X − 2)(X − 4) when m = n− 1 gives:

Corollary 30 [250] Every (n, n − 1)-function F is differentially 4-uniform if

and only if: ∑
u1,u2∈Fn2 ;v1,v2∈F

n−1
2

v1 6=0n−1,v2 6=0n−1,v1 6=v2

W 2
F (u1, v1)W 2

F (u2, v2)W 2
F (u1 + u2, v1 + v2) =

25n(2n−1 − 1)(2n−1 − 2). (11.15)

And every (n, n−1)-functions satisfies a version of (11.15) with “≥” in the place

of “=”.

Note the similarity between these two corollaries, which shows that the two



11.6 Differentially uniform functions 449

optimal notions of APN (n, n)-function and differentially 4-uniform (n, n − 1)-

function are close.

In [252], Theorem 26 is generalized into a characterization of all the criteria on

vectorial functions dealing with the numbers of solutions of equations of the form∑
i∈I F (x+ui,a) +La(x) +ua = 0m, with La linear. In particular injective func-

tions are characterized this way. A characterization of o-polynomials originally

given in [314] can also be obtained by this generalization. And a generalization

to differentially δ-uniform functions of a characterization by Nyberg of APN

functions by means of the Walsh transforms of their derivatives is also derived.

11.6.2 Componentwise Walsh uniformity (CWU)

We have seen at page 423 that the characterization of APNness by Relation

(11.2) leads to a stronger notion called CAPNness, in which the relation is satis-

fied by each component function. The characterizations of APN (n, n)-functions

and differentially 4-uniform (n, n−1)-functions by Relations (11.14) and (11.15)

in Corollaries 29 and 30 lead similarly to the following EA invariant notion in-

troduced in [251]: we call componentwise Walsh uniform (CWU ) those functions

F : Fn2 7→ Fm2 , with m ∈ {n − 1, n}, which satisfy (11.14), respectively (11.15),

for each pair of component functions.

Definition 83 [251] An (n,m)-function F with m ∈ {n− 1, n} is called CWU

if, for all distinct nonzero v1, v2 ∈ Fm2 , we have:∑
u1,u2∈Fn2

W 2
F (u1, v1)W 2

F (u2, v2)W 2
F (u1 + u2, v1 + v2) = 25n.

If m = n, then CWUness implies APNness. The converse is not true in general,

but we have the following result (we refer the reader to [251] for the proof):

Proposition 184 Any crooked function (in particular, any quadratic APN (n, n)-

function) is CWU.

An investigation of CWU functions among all known non-quadratic APN power

functions was made in [251] for n ≤ 11. Two potential infinite classes of non-

quadratic CWU power functions arised:

• all Kasami APN functions (n odd or even)

• the inverse of the Gold APN permutation x2
n−1

2 +1 (n odd).

None of the other known classes of non-quadratic APN power functions is made

of CWU functions only. We have:

Proposition 185 [251] The compositional inverse of the Gold APN permuta-

tion x2
n−1

2 +1 is CWU for every odd n.

The proof is rather long, so we refer to [251] for it. Finding a proof (after confir-

mation of the investigation results) of the same property for Kasami functions

is an open problem (see some observations in [251] and more in [252]).
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11.6.3 Cyclic difference sets, cyclic-additive difference sets and the CWU property

We have seen the notion of additive difference set in Fn2 when dealing with bent

functions at page 220: every nonzero element can be written in the same number

of ways as the difference x− y (that is, x+ y) between two elements of the set.

This notion exists for every group structure. When this group structure is that

of F∗2n , we speak of cyclic difference set, since F∗2n is cyclic (and x− y has to be

replaced by x
y ). A particular case which plays a role with APN functions (see

[448]) is the following:

Definition 84 A subset ∆ of size 2n−1 of the multiplicative group F∗2n is called

a cyclic difference set with Singer parameters if, for all distinct v1, v2 in F∗2n , we

have |{(x, y) ∈ ∆2; v1x+ v2y = 0}| = 2n−2.

Equivalently, the symmetric difference between ∆ and a∆ equals 2n−1 for ev-

ery a ∈ F∗2n \ {1}, that is,
∑
x∈F∗

2n
(−1)1∆(x)⊕1∆(ax) = −1 (i.e. the sequence

si = 1∆(αi), where α is primitive, has ideal autocorrelation). Any Singer set

(already seen at page 421) Sd = {x ∈ F2n ; trn(xd) = 1}, gcd(d, 2n − 1) = 1, has

such property since x 7→ xd is a (multiplicative) group automorphism and the

intersection between two distinct affine hyperplanes has dimension n−2. Maschi-

etti [825] (see also [443]) proves that, for every d co-prime with 2n − 1 and such

that the mapping x 7→ x + xd is 2-to-1 over F2n , the complement of the image

of this mapping is a cyclic difference set with Singer parameters. It is proved

in [443, 448] that, for every APN Kasami function F (x) = x4k−2k+1 over F2n ,

n = 3k±1, the set {F (x)+F (x+1);x ∈ F2n} (or its complement if it contains 0)

is a cyclic difference set with Singer parameters (note that x 7→ F (x) +F (x+ 1)

is also 2-to-1) and in [448] that the complement of its translation by 1, that is, of

∆F = {F (x)+F (x+1)+1;x ∈ F2n} is a cyclic difference set with Singer param-

eters (the proof is deduced from an elegant calculation of the Fourier transform

of the indicator of the set DF = {x
1

2i+1 ;x ∈ ∆F }), under the weaker condition

that gcd(k, n) = 125. Known facts are summarized with their proofs and a few

new observations are made in [252].

A relationship is shown in [251] between CWU power permutations and a new

notion similar to the cyclic difference set property.

Definition 85 A set ∆ ⊆ F2n is called a cyclic-additive difference set if, for

every distinct nonzero v1, v2 in F2n , we have:

|{(x, y, z) ∈ ∆3; v1x+ v2y + (v1 + v2)z = 0}| = 22n−3.

Every power function F is APN if and only if the set {F (x)+F (x+1)+1;x ∈ F2n}
has size 2n−1.

Proposition 186 Let F be any power APN permutation. Then, F is CWU if

and only if the set {F (x)+F (x+1)+1;x ∈ F2n} (or equivalently its complement)

is a cyclic-additive difference set.

25 For Gold APN functions, we have the same, but the set is the classical Singer set S1.
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There are differences between cyclic and cyclic-additive difference sets:

• the notion of cyclic difference set is invariant under raising the elements to

a power co-prime with 2n − 1, and if two sets ∆ and ∆′ are such that

W1∆(a) = W1∆′ (a
k) where k is co-prime with 2n − 1, then ∆ is a cylic

difference set if and only if ∆′ is one, while these properties are not true

for cyclic-additive difference sets,

• the notion of cyclic-additive difference set is invariant under translation x 7→
x+ a while that of cyclic difference set is not (see [448]).

It seems impossible to deduce the cyclic-additive property of ∆F in the case of

Kasami APN permutations from the fact proved by Dillon and Dobbertin in [448]

that the Fourier transform of the indicator of the set DF = {x
1

2i+1 ;x ∈ ∆F }
takes at any input a ∈ F2n the same value as the Walsh transform of the Boolean

function trn(x3) at a
2i+1

3 .

11.6.4 The known differentially 4-uniform (n, n)-permutations, n even

For computational reasons (explained at page 434 for the inverse function but

valid in a more general context), (n, n)-functions are better used as S-boxes when

n is even, the best being when n is a power of 2. In practice, we have most often

n = 4 (for lightweight cryptosystems, to be implemented for instance on cheaper

smart cards) and n = 8 (for cryptosystems implemented on more powerful de-

vices), since n = 16 seems still too large for current computational means. We

have seen that only one APN permutation, in 6 variables, is known. It is then

important to find as many differentially 4-uniform permutations as possible in

even dimension.

Note that if these permutations are involutions, this allows reducing further the

complexity of the algorithm, since the same implemented function can then be

used for encryption and decryption. Several block ciphers like AES, Khazad,

Anubis or PRINCE use involutive functions (up to affine equivalence) in their

S-boxes. Note that, as already mentioned at page 444 and shown in [136], the

6-variable permutation exhibited in this reference is EA equivalent to an involu-

tion.

The smallest differential uniformity and largest nonlinearity achievable by a

(4, 4)-permutation are respectively 4 and 4 [756, 183]. Up to affine equivalence,

there are 16 classes of such permutations. All have algebraic degree 3 and are also

optimal against algebraic attacks. Half have a component function of algebraic

degree 2, which should be avoided and half have all their component functions

cubic. There are 6 CCZ equivalence classes.

The smallest differential uniformity and largest nonlinearity achievable by an

(8, 8)-permutation are respectively 4 and 112 (achieved by Gold, Kasami and

inverse functions).

We describe now the known infinite classes of differentially 4-uniform (n, n)-
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functions. We begin with the functions obtained by primary constructions, start-

ing with power functions:

• The inverse function x2n−2 (the only known involutive differentially 4-uniform

power (n, n)-permutation, see [521]) for n even first proposed in [908] is

used (composed by an affine permutation) for the S-box of the AES26 with

n = 8. This class of functions has best known nonlinearity 2n−1 − 2n/2

and has maximum algebraic degree n − 1. It is the worst possible against

algebraic attacks (which are not efficient on the AES, but some risk exists

that they will be improved as they were for stream ciphers) since if we

denote y = x−1 then we have the bilinear relation x2y = x.

• The Gold functions x2i+1 where gcd(i, n) = 2 are differentially 4-uniform

and they are bijective (i.e. gcd(2i + 1, 2n − 1) = 1) if and only if n ≡ 2

[mod 4] since, 2i − 1 and 2i + 1 being co-prime, we have gcd(2i + 1, 2n −
1) = gcd(22i−1,2n−1)

gcd(2i−1,2n−1) = 2gcd(2i,n)−1
2gcd(i,n)−1

(but n is then not a power of 2 and

these functions are quadratic). They have best known nonlinearity. Gold

functions are never involutive.

• The Kasami functions x22i−2i+1 such that n ≡ 2 [mod 4] and gcd(i, n) = 2

are differentially 4-uniform as proved in [669] (see also [604]) and bijective

as well, since gcd(2i + 1, 2n − 1) = 1 and since 22i − 2i + 1 = 23i+1
2i+1 im-

plies gcd(22i − 2i + 1, 2n − 1) = gcd(23i + 1, 2n − 1) = gcd(26i−1,2n−1)
gcd(23i−1,2n−1) =

2gcd(6i,n)−1
2gcd(3i,n)−1

= 1 since 23i−1 and 23i+1 are co-prime. They are not quadratic

but they have the same Walsh spectrum as the Gold functions (thus,

with best known nonlinearity). They are in fact rather closely related to

quadratic functions, since they have the form F = R1 ◦R−1
2 where R1 and

R2 are quadratic permutations, which has some similarity with a function

CCZ equivalent to a quadratic function. There is a threat that this could

be used in a modified version of the higher-order differential attack (but

adapting the attack to such kind of function is an open problem). This

class of functions never reaches the maximum algebraic degree n− 1 (but

this is not really a problem). Kasami functions are never involutive.

Remark. While all APN permutations have, by definition of APNness,

the same differential spectrum, this is different for differentially 4-uniform

permutations. For instance, the inverse function and the Gold and Kasami

functions have different differential spectra (the inverse function has a bet-

ter differential spectrum, in which value 4 is obtained less often). More on

power functions can be found in [92]. 2

• The function x2n/2+n/4+1

introduced by Dobbertin [467] and shown by Bracken

26 Often represented by a double-entry look-up table with 16 rows and 16 columns, whose

indices belong to F4
2 (and can be written in hexadecimal from 0 to f), which provides the

162 = 256 entries (which, when represented in hexadecimal, belong to {00, . . . , ff}).



11.6 Differentially uniform functions 453

and Leander to be differentially 4-uniform [120] has best known nonlinearity

2n−1 − 2n/2 as well. It is bijective (but not involutive) if n is divisible by 4

but not by 8; in this case, n is not a power of 2; the function has algebraic

degree 3 which is rather low.

• The APN binomials of Proposition 175 share many properties of Gold power

functions. In particular, relaxing conditions on involved parameters leads

to differentially 2t-uniform permutations [121]. Let n = 3k and t be a

divisor of k where 3 - k and k
t is odd. Let s be an integer such that

gcd(3k, s) = t and 3|(k + s). Then the functions αx2s+1 + α2kx2−k+2k+s

,

where α is a primitive element of F2n , are differentially 2t-uniform and

bijective. This class of functions has nonlinearity 2n−1− 2(n+t−2)/2 if n+ t

is even and 2n−1 − 2(n+t−3)/2 if n + t is odd. A conjecture of [121] that

quadratic quadrinomial APN functions (11.10) allow similar generalization

to differentially 2t-uniform permutations is disproved in [983].

It is shown in [356], among other results, that for n even, any quadratic

differentially 4-uniform permutation has all its δF (a, b) values in {0, 4} for

a 6= 0, has nonlinearity 2n−1−2n/2, and is plateaued with single amplitude.

• The author proposed in [241], for constructing differentially 4-uniform per-

mutations, to use the structure of the field F2n+1 instead of that of F2n (of

course, F2n+r could be also tried with r ≥ 2). The idea consists in find-

ing an (N,N)-function, where N = n + 1, whose restriction to an affine

hyperplane of F2N has for image set an affine hyperplane. This restriction

provides then an (n, n)-permutation since any affine hyperplane of F2N is

affinely equivalent to Fn2 . Let the affine hyperplane be A = u+E where E

is a linear hyperplane, the restriction to A is differentially 4-uniform if the

restriction to A of any derivative in a nonzero direction belonging to E is

2-to-1. An example given in [241] is with the Dickson polynomials Dk, seen

at page 422. Recall that every element of F∗2N can be expressed uniquely

in the form h + 1
h where h ∈ F∗22N - more precisely, h ∈ F∗2N ∪ U , where

U = {x2N−1;x ∈ F∗22N } is the multiplicative subgroup of F∗22N of order

2N + 1. Then Dk(h+ 1
h , 1) = hk + 1

hk
by definition. Moreover, the image of

F2N by this function equals { 1
x ;x ∈ F2N , trN (x) = 0} (with the usual con-

vention 1
0 = 0) and the image of U \ {1} equals { 1

x ;x ∈ F2N , trN (x) = 1}.
If k is co-prime with 2N + 1, then the mapping h 7→ hk is a permutation

of U \ {1} and induces then a permutation of { 1
x ;x ∈ F2N , trN (x) = 1}

whose expression coincides with Dk(x, 1) on this set. The function 1
Dk( 1

x ,1)

is then a permutation of the hyperplane H of F2N of equation trN (x) = 1.

For k = 3, N must be even, and we have D3(x, 1) = x3 + x and 1
1
x3 + 1

x

=

x3

x2+1 = x + 1
x+1 + 1

x2+1 , which is EA equivalent to 1
x + 1

x2 and is differ-

entially 4-uniform over H. But the argument given in [241] for this last

property is not correct: it is written that the function x → x + x2 is 2-

to-1 which is true, and that the inverse function is APN which is false

since N is even. The correct argument is that H excluding 0, the equation
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x2n−2 + (x+ a)2n−2 = b (where a 6= 0 and therefore b 6= 0 since the inverse

function is a permutation) is equivalent to 1
x+ 1

x+a = b, that is, x2 +ax = a
b

and has then at most 2 solutions.

This differentially 4-uniform permutation is in odd dimension. We complete

here the study by addressing the case n even: if k is co-prime with 2N − 1,

then the mapping h 7→ hk is a permutation of F2N and induces then a

permutation of { 1
x ;x ∈ F2N , trN (x) = 0} whose expression coincides with

Dk(x, 1) on this set. The function 1
1
x3 + 1

x

= x+ 1
x+1 + 1

x2+1 restricted now

to the hyperplane of equation trN (x) = 0 is bijective. It is differentially

4-uniform since N being odd, the inverse function is APN. And it is shown

in [241] that the nonlinearity is at least 2n−1−2
n
2 +1 (not optimal) and the

algebraic degree equals n−1. A similar proposal in even dimension is given

in [1107].

In [772], Li and Wang have used again the idea of working with functions

F over F2N with N = n + 1, and of taking their restrictions to hyper-

planes. They need F to be a quadratic APN permutation over F2N and

they take N odd so that n is even (then this permutation is AB but this

is not used). They consider for every nonzero u ∈ F2N the linear func-

tion Lu(x) = F (x + u) + F (x) + F (u) + F (0), whose range Hu is a lin-

ear hyperplane (since F is APN) such that F (u) + F (0) 6∈ Hu (since F

is bijective). Then the restriction of Lu ◦ F−1 to Hu is injective because

Lu ◦ F−1(x1) = Lu ◦ F−1(x2) and x1 6= x2 imply F−1(x1) + F−1(x2) =

u, since F is APN, and therefore, Lu ◦ F−1(x2) = F (F−1(x2) + u) +

F (F−1(x2)) + F (u) + F (0) = x1 + x2 + F (u) + F (0), and the relation

x1 + x2 = F (u) + F (0) + Lu(F−1(x2)) ∈ (F (u) + F (0) + Hu) ∩ Hu = ∅
is impossible. This permutation is differentially 4-uniform by construction

since Lu is 2-to-1 and F−1 is APN; it is then a differentially 4-uniform

permutation of Hu. They obtained with F equal to Gold functions three

classes of differentially 4-uniform bijections in even dimension with best

known nonlinearity 2n−1 − 2n/2 and algebraic degree n
2 + 1.

It seems difficult to prove that any of the functions presented in this para-

graph is CCZ inequivalent to power functions and to quadratic functions

(but we see no reason why such equivalence could happen since the field

structures of F2n and F2N are independent of each other).

We continue now with permutations obtained by modifications of known differ-

entially 4-uniform bijections.

• Qu, Tan, Tan and Li [982] proposed two classes of differentially 4-uniform

bijections in even dimension. These functions were obtained through the

switching construction, by adding Boolean functions to the inverse func-

tion. The first class has the form x2n−2 + trn(x2(x+1)2n−2). It has optimal

algebraic degree n− 1 and nonlinearity larger than 2n−1− 2n/2+1− 2. The

second class has the form x2n−2 + trn
(
x(2n−2)d + (x2n−2 + 1)d

)
, where
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d = 3(2t + 1), 2 ≤ t ≤ n/2 − 1. It has algebraic degree n − 1 as well and

nonlinearity at least 2n−2−2n/2−1−1. The authors did not study whether

their functions are CCZ inequivalent to the inverse function, but this can

be checked for even n = 6, . . . , 12 with a computer. A generalized method

for constructing differentially 4-uniform permutations in even dimension is

presented in the same reference (by determining conditions for their differ-

ential uniformity) which includes the former two classes of functions, and

produces many CCZ inequivalent differentially 4-uniform bijections in even

dimension (the authors could show that the number of CCZ inequivalent

differentially 4-uniform permutations over F22k grows exponentially when

k increases). Zha, Hu, Sun and Shan in [1151], Qu, Tan, Li and Gong in

[981] (who made more systematic the approach of [982] and obtained more

functions), Peng and Tan in [938], and Chen, Deng, Zhu and Qu in [362]

proposed more functions of the form x2n−2+g(x), where g is a Boolean func-

tion (thanks to more precise conditions in the latter reference). In [1145]

are also built differentially 4-uniform permutations by swapping two val-

ues of the inverse function (it is observed that a function I(u,v) over F22m ,

obtained from the inverse power function by swapping its values at two

different points u 6= 0 and v 6= 0, is a differentially 4-uniform permutation

if and only if tr2m(uv−1)tr(u−1v) = 1).

• The author, Tang, Tang and Liao proposed in [325] the following construction,

for n ≥ 6 even, of differentially 4-uniform (n, n)-permutations of algebraic

degree n− 1:

(x1, · · · , xn−1, xn) 7→
{

(1/x′, f(x′)), if xn = 0

(c/x′, f(x′/c) + 1), if xn = 1,

where c ∈ F2n−1 \ F2 is such that trn−1(c) = trn−1(1/c) = 1, x′ ∈ F2n−1

is identified with (x1, · · · , xn−1) ∈ Fn−1
2 and f is an arbitrary Boolean

function defined on F2n−1 .

It is shown in [363] that the particular functions corresponding to f(x′) =

trn−1

(
1

x′+1

)
have high nonlinearity and are CCZ inequivalent to all known

differentially 4-uniform power permutations and to quadratic functions. It

is also shown that the functions in the general class are CCZ inequivalent

to the inverse function, and for n = 2k, k = 4, . . . , 7, to the sums of the

inverse function and of Boolean functions.

• Zha, Hu and Sun [1150] presented two classes of differentially 4-uniform bi-

jections by applying affine transformations to the inverse function on some

subfields. Their functions have maximum algebraic degree n−1. The lower

bounds on the nonlinearity of these functions would need to be worked fur-

ther. In [1130] is provided another infinite family of differentially 4-uniform

permutations with the same “piecewise” method but starting from Gold

functions. Inequivalence to known functions needs to be checked.

Peng and Tan in [939], Peng, Tan and Wang in [940] and Xu and Qu in

[1132] presented similar transformations.
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Tang, the author and Tang [1070], for any even n ≥ 6, introduced a class

of subsets U of F2n such that the function equal to (x + 1)2n−2 if x ∈ U
and to x2n−2 otherwise gives a differentially 4-uniform permutation. For

every even n, at least 22n−3−2n/2−2

different such sets U are designed.

For every even n ≥ 12, it is proved that if the size of U is such that

0 < |U | < (2n−1 − 2n/2)/3− 2 then the functions are CCZ inequivalent to

known differentially 4-uniform power functions and to quadratic functions.

A table of comparison with these other functions is given.

• Li, Wang and Yu in [773] modified the inverse function by cyclically shifting

the images of the function over some subset {α0, α1, . . . , αm} of F2n . Fu

and Feng [521] proposed new families with such cycles of length 3.

• Perrin, Udovenko and Biryukov have introduced in [944] the interesting but-

terfly construction, already seen at page 444, generalized by Canteaut,

Duval, and Perrin in [199]. It is shown in [944, 523] and [199] that the

resulting function is differentially 4-uniform with (best known) nonlinear-

ity 2n−1 − 2
n
2 when, respectively: Ry(x) = (x + ay)3 + y3, with a ∈ F∗

2
n
2

,

Ry(x) = (x + ay)2i+1 + y2i+1, with a ∈ F∗
2
n
2

, gcd(i, n) = 1, and Ry(x) =

(x+ay)3 + by3, with a, b ∈ F∗
2
n
2

, b 6= (1 +a)3. More differentially 4-uniform

permutations with nonlinearity 2n−1 − 2
n
2 are obtained with the butterfly

construction in [523].

Fu and Feng studied in [521] if some functions among those recalled in the

present subsection could be involutions. They obtained the following involutive

differentially 4-uniform permutations:

• functions of the form x2n−2 + 1U (x) or (x + 1)2n−2 if x ∈ U and to x2n−2

otherwise, where U = F4 and in the case n ≡ 2 [mod 4], U = F2 or

U = F4 \ F2;

• the Peng and Tan function [939]: F (x) =

{
b (x+ 1)2n−2 + a if x ∈ F2t ,

x2n−2 otherwise,
where t divides n and a = b = 1, or a = 0, b = 1, t even, or a = 0, b = 1, t =

1, 3, n2 odd, or a = b ∈ F4 \ F2, t = 2, n2 odd, or a = 1, trn(b−1) = 1 and n
t

odd;

• the Peng, Tan and Wang function [940]: F (x) =

{
(c x)2n−2 if x ∈ U,
x2n−2 otherwise,

where

U =
⋃
g∈G g Γ, where Γ is the cyclic multiplicative group generated by γ

and {g−1, g ∈ G} = G and trn(γ) = trn(γ−1) and trn

(
γ

g
g′ γ

l+ g′
g γ
−l

)
= 1

for every g, g′ ∈ G and every l (with l not divisible by |Γ| if g = g′);

• the particular case given by Fu and Feng [521] of the Li, Wang and Yu func-

tion [773], modifying the inverse function by cyclically shifting a triple

{α0, α1, α2} of F∗2n , where (α0, α1, α2) = (0, γ, γ−1) with γ ∈ F2n \ F2,

trn(γ) = trn( 1
γ+1 ) = 1 or (α0, α1, α2) = (1, γ, γ−1) with γ ∈ F2n \ F2,

trn(γ) = trn( 1
γ ) = trn( 1

γ+1 ) = 1, trn( 1
(γ+1)3 ) = 0;



11.6 Differentially uniform functions 457

• the functions F (x1, · · · , xn−1, xn) =

{
(1/x′, f(x′)), if xn = 0

(c/x′, f(x′/c) + 1) if xn = 1
from

[325] where supp(f) = ∅ or = {0}.

It is observed in [967] that the indicators of the graphs of all the known differ-

entially 4-uniform (n, n)-permutations (n even) have algebraic immunity 2. In

[1039] is studied the differential uniformity of the composition of two functions

and are constructed new differentially 4-uniform permutations from known ones.

11.6.5 Other differentially 4-uniform (n, n)-functions

There are differentially 4-uniform functions in odd dimension, that we do not

list here since they are less interesting, practically. There are also differentially

4-uniform functions in even dimension which are not permutations. These can

be obtained from APN functions by adding a Boolean function, or composing

them (on the right or on the left) by 2-to-1 affine functions. Differentially 4-

uniform functions which are faster and less costly to compute can be obtained

by concatenating the outputs of a bent function and of another function [239]:

1. The function (x, y)→ (xy, (x3 +w)(y3 +w′)), where w, w′ and w
w′ belong to

F2n/2 \ {x3, x ∈ F2n/2}, with n/2 even.

2. The function (x, y)→ (xy, x3(y2 + y + 1) + y3), with n/2 odd.

3. The function F : X ∈ F2n → (X2n/2+1, (X2n/2+1)3 + wX3 + (wX3)2n/2

).

Such functions are not bijective but, because of their low implementation com-

plexity, have an advantage when we wish to protect the cryptosystem against side

channel attacks (see Section 12.1, page 460). For instance, Function 1 above has

been used in the cryptosystem PICARO [957]. See more in [239]. Other examples

of differentially 4-uniform functions are the function ax22s+1 + bx2s+1 + cx22s+2s

such that gcd(s, n) = 1 as shown in [115], the function x2n−1−1 + ax5 (n odd,

a ∈ F2n) as shown in [120], and several classes given in [243].

Some constructions of differentially 4-uniform functions have been given in [896],

in connection with the structure of commutative semifield already seen in the

chapter on bent functions. A semifield is a finite algebraic structure (E,+, ◦)
such that (1) (E,+) is an Abelian group, (2) the operation ◦ is distributive on

the left and on the right with respect to +, (3) there is no nonzero divisor of 0

in E and (4) E contains an identity element with respect to ◦. This structure

has been very useful for constructing planar functions in odd characteristic. In

characteristic 2, it may lead to new APN functions and differentially 4-uniform

permutations by considering for instance the function (x ◦ x) ◦ x in a classi-

cal semifield (there are two classes of them, whose underlying Abelian group is

the additive group of F2n : the Albert semifields, in which the multiplication is

x ◦ y = xy + β(xy)σ, where x → xσ is an automorphism of the field F2n which

is not a generator and β 6∈ {xσ+1; x ∈ F2n}, and the Knuth semifield where the

multiplication is x ◦ y = xy + (xtr(y) + ytr(x))2, where tr is a trace function

from F2n to a suitable subfield).
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11.6.6 Other differentially uniform (n, n)-functions

Some results have been found on differential uniformities 6 and 8 for (n, n)-

functions, see [93, 95, 1129] and the references therein. In [1160] are proposed

two methods for constructing balanced (n,m)-functions (with m < n unfortu-

nately) with nonlinearity strictly larger than 2n−1− 2n/2 and with “good” other

parameters27.

11.6.7 On the best differential uniformity of (n,m)-functions

When m < n, (n,m)-functions cannot be used in substitution-permutation net-

works but they can be used in Feistel ciphers, like in the DES cipher which has

8 S-boxes each mapping 6 bits to 4 bits. When n is even and m ≤ n
2 , these

functions can be bent (i.e. PN), which allows them to oppose optimal resistance

against differential and linear attacks, but they are then not balanced and the

number of their output bits is small. When n
2 < m < n, little theoretical work

has been done on differentially uniform (n,m)-functions. We know that the dif-

ferential uniformity of such functions is bounded below by 2n−m+2. We call this

bound Nyberg’s bound . Characterizing the pairs (n,m) for which this bound is

tight is an open question.

• In the case m = n−1, Nyberg’s bound is tight. There is indeed a simple way of

designing differentially 4-uniform (n, n − 1)-functions: any function of the

form L ◦ F , where F is an APN (n, n)-function and L is a surjective affine

(n, n− 1)-function is indeed differentially 4-uniform. Using such S-box in a

Feistel cipher can be seen as using the APN function itself.

In [255] is studied an alternate way to construct differentially 4-uniform

(n, n−1)-functions by defining their lookup table (LUT) as the concatena-

tion of the LUT of two APN (n−1, n−1)-functions; the corresponding func-

tion S(x, xn) = xnF (x)+(1+xn)G(x) is a differentially 4-uniform (n, n−1)-

function if and only if, for every a ∈ F2n−1 , the function F (x) + G(x + a)

is at most 2-to-1 (i.e. each value in the image set has at most two corre-

sponding pre-images).

The particular case where the two APN functions differ by an affine func-

tion provides, when one of these functions is a Gold function, the family of

quadratic differentially 4-uniform (n, n−1)-functions (x, xn) 7→ x2i+1+xnx

where x ∈ F2n−1 and xn ∈ F2 with gcd(i, n − 1) = 1, whose Walsh trans-

form and nonlinearity are studied, as well as the CCZ inequivalence to all

functions of the form L ◦ F above.

• In [259], (n,m)-functions achieving Nyberg’s bound with equality are studied

in the (Maiorana-McFarland) form F (x, z) = I(x)φ(z), where I(x) is the

27 An inappropriate comparison is made in this paper with a permutation - the one used as

S-box in the AES - and with the S-box used in PICARO (designed to resist side channel

attacks, and therefore a little weaker with respect to the other features).
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(m,m)-inverse function28 and φ(z) is an (n −m,m)-function. An infinite

family of differentially (2m−1+2)-uniform (2m−1,m)-functions with m ≥ 3

is designed (which also have high nonlinearity and not too low algebraic

degree). Hence, Nyberg’s bound is tight for m = n+1
2 , n ≥ 5 odd.

Differentially 4-uniform (m+ 1,m)-functions in this form are also designed

and a method is proposed to construct infinite families of (m + k,m)-

functions with low differential uniformity, leading to an infinite family of

(2m− 2,m)-functions with δ ≤ 2m−1 − 2m−6 + 2 for any m ≥ 8. But this

does not provide functions achieving Nyberg’s bound with equality and the

existence of such (n,m)-functions for n
2 + 1 ≤ m ≤ n− 2 is open.

In fact, it is even an open problem to determine whether there exist differ-

entially δ-uniform (n, n − k) functions with k ≥ 2, k significantly smaller

than n
2 , δ < 2k+1, and n > 5 (δ = 2k+1 is easily reached with functions

L ◦ F where F is an APN (n, n)-function and L is an affine surjective

(n, n− k)-function). In particular, the existence of differentially 6-uniform

(n, n− 2)-functions for n > 5 is an open question (differentially 6-uniform

(5, 3)-functions are known [255]). In [15] are built more differentially 4-

uniform (n, n−1)-functions and differentially 8-uniform (n, n−2)-functions.

In [949], several evolutionary algorithms and problem sizes have been ex-

plored in order to find such functions. The results of this investigation show

that the problem, which is easy in dimensions 4 and 5, is very difficult for

larger n.

28 The only function which returned positive results when we made a computer investigation.



12 Recent uses of Boolean and
vectorial functions and related
problems

Many mathematical problems in computer science result in questions on Boolean

functions (or on vectorial functions). Cryptography has been no exception since

the 50’s and new roles of Boolean functions still emerge nowadays. In this chapter,

we give several examples of recent problematics in cryptography which result in

new questions on Boolean functions, vectorial functions and related codes, or

which renew the interest of some known notions.

12.1 Physical attacks and related problems on functions and codes

Until the 90’s, cryptographers implicitly considered the black box attacker model

only, in which the cryptanalyst has access to ciphertexts (in the ciphertext-only

attacker model) or to plaintext-ciphertext pairs (in the known-plaintext and the

chosen-plaintext models), but has no information beyond input/output. This

was realistic when the ciphers were run only on computers, all the more if these

were protected (by a Faraday cage for instance). But nowadays, cryptographic

algorithms are run often on mobile devices, on smart cards (which include a part

of hardware and work with software implementations), or on light hardware de-

vices (e.g. field-programmable gate arrays FPGA, application-specific integrated

circuits ASIC). Side-channel information (through the running-time, power con-

sumption, electromagnetic emanations, etc.) is then accessible.

The side channel attacks (SCA), see [712, 713, 984], on the implementations of

block ciphers1 in such embedded systems, see [823], take advantage of this ad-

ditional information obtained through the physical environment. They are able

to treat this information for extracting the secret parameters of the algorithm

and are in practice extremely powerful. They assume an attacker model different

from classical attacks: the grey box attacker model , in which the adversary has

also access to leakage. This additional information is all the more usable on block

ciphers, which are iterative: each round involves diffusion layers and substitution

layers; both kinds are necessary for the security, and the diffusion needs several

rounds before being effective; the SCA can then be very efficient by attacking the

first round (while in the black box model, only the global cipher is attackable)

1 SCA also exist on asymmetric ciphers, but this is out of the scope of this book, and they
have not been as developed for stream ciphers as they were for block ciphers.
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or the last round (the first round of the reverse cipher), see the survey [320].

The exploited leakage is a measurable quantity (in the case of a so-called mono-

variate attack or univariate attack on a single leakage2) depending on the data

manipulated by the algorithm (the key is mixed with the data, and any leakage

that depends on this data can be used as an oracle). The important data for

SCA are the values of the so-called sensitive variables of the algorithm. These

are variables whose values are in general stored in registers and which depend on

the (varying) input to the algorithm (assumed known by the attacker), and on

the (constant) secret key (or better for the attacker, on a part of the secret key,

since this allows for a divide-and-conquer approach, where the key is recovered

byte by byte, a customary case in block ciphers being when the cipher computes

the sum of a public binary vector and of a sub-sequence of the round-key). The

length n of such variable is a number depending on the cipher (4 if the cipher

works on nibbles, 8 if it works on bytes, 16 if it works on words, ...).

The attacker records, for instance, the emanations emitted by the register on

which the values of the sensitive variable are stored, which can be approximated

as a real-valued function L of the sensitive variable (the register is a micrometric

object, whose contents cannot, in general, be measured directly). For instance, in

the so-called Hamming weight leakage model , L(Z) equals the Hamming weight

of Z; in the Hamming distance leakage model , L(Z) is the Hamming distance

between two consecutive values of the register where Z is stored; in more general

linear leakage models, L(Z) equals a linear combination with real coefficients of

the bits of Z (we speak then of a static linear leakage model, needed to ensure

that the leakages corresponding to different shares are independent), or of the

differences between the bits at two consecutive states of the register. In what

the attacker records, L is added with inevitable noise N , generally viewed as a

white Gaussian variable, due to the activity in the device around the register (an

attacker can only measure an aggregated function of each computing element’s

leakage, such as the total current drawn by the circuit) and depending on the

choice of the leakage model (a good choice minimizes the noise). The part in-

dependent of the noise in the leak is called the deterministic leak . The attacker

tests exhaustively all the possible values of the key bits involved in the sensitive

variable, computing for each choice the corresponding modeled leakage value, the

correct key values being those which maximize statistically (for a series of runs

with the same key and different plaintexts) the dependency between the modeled

leakage (which depends on the tested key value and the plaintext, and also on

the leakage model chosen for the attack) and the measured leakage. This de-

pendency can be evaluated by different statistical methods, leading to different

SCA. For instance, in differential power analysis (DPA) [713] or more general

differential analyses, the statistical distinguisher is the difference of means be-

tween the two cases (among all plaintexts used) where the leak is larger, resp.

smaller, than some fixed value. If the guessed key is correct, then the modeled

2 Multivariate attacks are more difficult to perform in practice.
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difference should be close to a nonzero constant, while if it is wrong, it should be

close to zero (the two means measuring then a same random variable). In corre-

lation power analysis (CPA) or more general correlation analyses, the statistical

distinguisher is Pearson’s (linear) correlation coefficient (which is more complex

to evaluate but more efficient), equal to the co-variance between the two values,

divided by the product of their standard deviations.

The attacker starts with a first order attack, in which the leakage is handled as

is. It can be proved that this first order attack is successful if the conditional

expectation E(L|Z = z) depends on z. If it does not, then the attacker can try

successively a second order attack, which mixes the observations of two leakages

(and if these two leakages are the same, the attacker takes then the square of

a single leakage3 in a so-called zero-offset CPA [1100]; we shall consider only

this case in the sequel, to simplify the presentation), a third order attack, . . . ,

increasing the order of the attack until it is successful. The complexity of such

higher-order side channel attack (HO-SCA) [879, 920, 1047, 803, 381] depends

then on the smallest value of the order j such that the conditional expectation

E(Lj |Z = z) depends on z, see [264]. It is shown in this latter reference that

the complexity of the attack (in time and in the number of measuring events –

called traces, see below – which is needed) is exponential in the order, essentially

because the noise associated to Lj is exponential in j. Relatively to the noise, the

leaked information decreases exponentially with the order j; it is proportional

to V −j where V is the variance of the noise N . This is where the choice of the

leakage model plays a role: a bad choice will increase the variance of the noise.

SCA are mainly statistical attacks, and the measures are made several times,

each time providing a so-called leakage trace. Usually, traces are assumed inde-

pendent and identically distributed4. The measure quantifies as we saw above

the running-time, the power consumption, the electromagnetic radiations of the

cryptographic computation or even the photonic emission. Depending on the

execution platform, the part of the leakage due to one bit can be modeled ac-

cording to its activity (the leakage is observed when the bit changes values; this

is the case of complementary metal-oxide-semiconductor [CMOS] technology),

or its value (the leakage differs according to the bit’s state; this can be viewed

as a particular case of the former case). If every bit of a sensitive variable leaks

an identical amount, irrespective of its neighbors, we are in the so-called Ham-

ming distance (resp. weight) leakage model (see more in [262]). The measure is

inevitably imprecise and noisy as we saw above with HO-SCA, but if the cryp-

tosystem is not protected against SCA, the resulting attack can be devastating

(an unprotected AES can be attacked in a few seconds with a few traces while its

3 This case is more frequent in hardware; two distinct leakages are more exploitable in

software because it is easier to determine the exact distinct timings of two leakages than to
distinguish them when they happen in parallel; note however that the improved

capabilities of modern microprocessors more and more allow parallel software computing.
4 Adaptative adversarial strategies are seldom conferring a significant advantage, compared

to non-adaptative strategies.
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security against classical attacks is still nowadays of 128 bits, which corresponds

to a huge amount of computation time, even for thousands of computers in par-

allel). In particular, continuous side-channel attacks in which the adversary gets

information at each invocation of the cryptosystem are especially threatening

[713].

SCA are not the only threats on block ciphers, since fault injection attacks (FIA)

can also be performed, which aim at extracting the secret key when the algo-

rithm is running over some device, by injecting some fault in the computation, so

as to obtain exploitable differences at the output. For instance, differential fault

analysis (DFA) attacks, first proposed by Biham and Shamir [83], use informa-

tion obtained from an incorrectly functioning implementation of an algorithm to

derive the secret information. The AES can be attacked this way (see e.g. [91])

as well as stream ciphers [606]. These attacks can be non-invasive and perturb

internal data (for example with electromagnetic impulses), without damaging

the system, and leaving then no evidence that they have been perpetrated.

Masking. The implementations of cryptosystems need to include countermea-

sures to physical attacks (SCA and FIA). A sound approach against SCA is to

use a secret sharing scheme (see page 168), often called masking in the context of

side-channel attacks5. This method, which aims at amplifying the impact of the

noise in the adversary’s observations and at randomizing the secret-dependent

internal values of the algorithm from one execution to another, is efficient both

for implementations in smart cards and FPGA or ASIC (in the former case, the

shares are usually manipulated in serial, while in the latter, they are manipulated

in parallel). This approach consists, for a given masking order d, in splitting each

sensitive variable6 Z of the implementation into d + 1 shares M0, . . . ,Md such

that Z can be recovered from these shares but no information can be recovered

from less than d+ 1 shares, i.e., Z is a deterministic function of all the Mi, but

is independent of (Mi)i∈I if |I| 6 d. The simplest way (called Boolean masking)

of achieving this is to draw M1, . . . ,Md at random from the space in which lives

Z (the Mi’s are then called masks and are redrawn fresh at every encryption)

and to take M0 such that M0 + · · ·+Md equals Z, where + is a relevant group

operation (in practice, the bitwise XOR). The masks change at every compu-

tation. This countermeasure allows resisting the SCA of order d. For instance,

for d = 1 and if the leakage is the Hamming weight wH , then instead of having

traces corresponding to wH(Z), the attacker will have traces corresponding to

wH(Z+M,M) = wH(Z+M) +wH(M) (note that the individual leak from any

of the two shares is useless since it does not give information, being individually

random); we assume here that the attacker cannot separate the two leaks (which

is more difficult with hardware than with smart cards, as we explained above); if

he can, the designer needs to take d larger. It can be checked that the first order

5 Other methods exist: threshold implementations and multiparty computation, see below.
6 We denote random variables by capital letters.



464 Recent uses of Boolean and vectorial functions and related problems

attack is then no longer successful. It has been also proposed (see [974, 562]) to

use Shamir’s (`, d+ 1) secret sharing scheme (see page 168) rather than Boolean

masking (for which the information on the shared data is relatively easy to re-

build from the observed shares, and this simplifies the task of the attacker). The

advantages of such masking method are studied in [340], where is shown that

it may be more advantageous for the attacker (in terms of attack complexity)

to observe strictly more than d+ 1 shares (while it could seem natural that ob-

serving strictly more than d+ 1 shares is inappropriate for the attacker since it

provides more noise), thanks to the existence of so-called linear exact repairing

codes (which allow reconstruction from less information than Lagrange’s inter-

polation, thanks to polynomial interpolation formulae that optimize the amount

of information which needs to be extracted), and that the choice of the public

points (the αi’s at page 169) has an impact on the countermeasure strength.

Security. We see with HO-SCA that, since the complexity of mounting a

successful side-channel attack increases exponentially with the order of the at-

tack, then when applied against a masked implementation, it grows exponentially

with the masking order. Hence, it is always possible, theoretically, to protect a

cryptosystem against SCA by masking, but this needs practically to change in

the algorithm every function x 7→ F (x) (that we shall assume to be an (n, n)-

function to simplify; the general case is similar) into a function7 (m0, . . . ,md) 7→
(m′0, . . . ,m

′
d) such that, if m0, . . . ,md are shares of x then m′0, . . . ,m

′
d are shares

of F (x) (we shall say that such function (m0, . . . ,md) 7→ (m′0, . . . ,m
′
d) is the

masked version of function F ), and such that the d-th order security property is

satisfied. The latter property, which is equivalent to the probing security model

introduced in [637], states that every tuple of d or less intermediate variables

is independent of the secret parameters of the algorithm8. When satisfied, it

guarantees that no attacker able to learn at most d intermediate results (called

probes) of a computation can succeed in an attack of order lower than or equal

to d. This model, which is a simplified version of the behavior of a device in

the real-world (in which physical leakages reveal some information on the whole

computation), allows thanks to its simplicity to build efficient compilers trans-

forming (at a cost which is quadratic in d) any circuit into a secure one in the

probing model (see a survey in the introduction of [49]). A more realistic and

more complex model was proposed in [880], and improved in [973] into the noisy

leakage model , which was studied further and improved in [487], where the so-

called statistical distance was introduced, allowing to show that constructions

proven secure in the probing security model are also secure in the noisy leakage

model, provided that the probing order is a large enough function of the noisy

leakage order. A last improvement can be found in [564].

7 We denote set or space elements by lower case letters.
8 Note that when the algorithm handles vectors, in Fn2 , there are different ways of

interpreting the definition, according to whether it refers to intermediate variables as
vectors or as individual bits; we shall then specify bit-probing security when needed.
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An a priori weaker notion of d-th order resistance has been introduced in [897]

to characterize the security of parallel implementations, for which higher-order

probing security can never be achieved because all shares are treated within one

single cycle. It is called the bounded moment security model and has been stud-

ied in several papers (see e.g. [49]). A masking scheme is secure at order d in

this model if no moment of degree d in the intermediate variables depends on

the secret. It is more appropriate for hardware. Indeed, the appropriate model

and, hence, the kind of masking scheme to be applied, depends on the capabil-

ities of the execution platform: embedded software devices like smartcards can

execute operations sequentially, but need to rely on smaller memories (which

are constrained resources); therefore, functions like S-boxes are preferentially re-

computed [972, Sec. 2.1], while FPGAs are able to execute several operations in

parallel, and can leverage on large memory blocks (called BRAM–Block Random

Access Memory); in such context, masked functions can be simply tabulated, i.e.,

computed in one clock cycle (such strategy is also referred to as Global Look-Up

Table [972, Sec. 3.2]). Therefore, masked computations in smartcards require

end-to-end security, whereas masked computations in FPGAs can resort to large

tabulated functions where only data representation (i.e., tables input & output)

shall be secured. Note however that if the need in memory appears too impor-

tant, we can change the algorithm so that, instead of working on F2n , it works

in F2n/k for some k which provides a time-memory trade-off.

Reductions between the leakage security models seen above are studied in [49] (it

is proved in particular that probing security for a serial implementation implies

bounded moment security for its parallel counterpart, and that simple refreshing

algorithms with linear complexity that are not secure in the continuous probing

model are secure in the continuous bounded moment model). When probing and

bounded moment security models are considered at the bit level, then they are

equivalent [577]. Note that there also exists a parameter quantifying the resis-

tance of S-boxes to DPA, called the (modified) transparency order [343]; we shall

not address it here.

Until recently, no method was known for securely composing masked (elemen-

tary) functions ensuring d-probing security with a (tight) number d+1 of shares.

This problem has been solved in [48] thanks to the introduction of the security

notions of t-(strong) non interference (S)NI (any set of at most t intermediate

variables can be perfectly simulated with at most t shares of each input, and in

the case of strong NI, at most t− tout shares, where tout is the number of output

variables among the t ones), and optimized in [55] (where is shown that some

masked S-boxes may be composed without refreshing).

Security at order one against SCA is nowadays considered insufficient in both

models for most practical operational environments. Detecting a single fault is

also insufficient. Second-order resistance to both side-channel analysis and fault

injection resistance (in a “mask then encode” procedure, which is more efficient

than “encode then mask” in terms of variable size growth, but care must be
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taken on the way the redundancy is applied) may be sufficient9 (but without a

security margin taking into account future improvements of SCA).

Masking functions. If a function F is linear (like diffusion layers - Mix-

Columns and ShiftRows in AES), then we can take m′i = F (mi) for designing

its masked version. A little more generally, if a function is affine (like the round

key addition - AddRoundKey in AES), it can be masked at no extra cost.

If a function F is not affine (which is the case of a substitution layer - SubBytes

in AES), then we can design its masked version as follows: assuming that the

input to F lives in F2n (which is always possible since we assume it lives in a

vector space over F2, and F2n is an n-dimensional vector space over F2), it is a

univariate polynomial function (see page 58) and its computation can be decom-

posed into a sequence of additions and multiplications in the field. The operations

of addition, scalar multiplication and squaring being linear functions, they can

be masked at no extra cost (see above). For masking multiplication, there is a

method called the ISW algorithm (Ishai-Sahai-Wagner), which is introduced in

[637] for the case of F2 and generalized to F2n in [996]:

Algorithm 3: Higher-Order Masking Scheme ISW for the Multiplication
Input : sharings (a0, a1, · · · , ad) and (b0, b1, · · · , bd) of a and b in F2n

Output: a sharing (c0, c1, · · · , cd) of c = a× b

1 Randomly generate d(d+ 1)/2 elements rij ∈ F2n indexed such that 0 6 i < j 6 d
2 for i = 0 to d do
3 for j = i+ 1 to d do
4 rj,i ← (ri,j + ai × bj) + aj × bi
5 end

6 end
7 for i = 0 to d do
8 ci ← ai × bi
9 for j = 0 to d, j 6= i do

10 ci ← ci + ri,j
11 end

12 end
13 return (c0, c1, . . . , cd)

The time complexity and the amount of random data which needs to be gen-

erated for the ISW algorithm are both quadratic in d (see more in [320]).

Other methods10 exist like in [974] (they are surveyed in [54], see also [563]),

that we do not detail since they do not pose, so far, new questions on Boolean

and vectorial functions.

We see that the designer of the block cipher implementation has some advantage

over the attacker, because increasing d raises exponentially the complexity of the

attack and only quadratically the complexity of the countermeasure. However,

countermeasures are costly in terms of running time and program executable file

9 Some palliative countermeasures may then be needed, consisting for instance in
desynchronization, random interrupts or dummy operations; such palliative
countermeasures are not sufficient on their own.

10 One (the threshold implementation) will be seen in Subsection 12.1.4, page 472; its

complexity is higher while it addresses a more difficult situation than ISW algorithm.
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size (in software applications) or of implementation area (in hardware applica-

tions). For example, in software with 8-bit AVR architecture, an AES without

masking runs in few hundreds of cycles or few thousands, while with masking

it needs already about 40000 cycles for first order; moreover, the program ex-

ecutable file size is also increased because of the need of masking S-boxes (see

https://github.com/ANSSI-FR/secAES-ATmega8515/). In hardware, the imple-

mentation area is roughly tripled. The cost overhead may be too high for real-

world products, all the more when the order of probing security is larger than 1.

But the implementation (including masking) must be efficient today while the

SCA can be performed in the future.

We need then to minimize the implementation and memory complexities of the

countermeasures. This is where Boolean and vectorial functions can play a role.

12.1.1 A new role of correlation immunity and of the dual distance of codes related
to side channel attack countermeasures

Correlation immune Boolean functions (see Definition 21, page 105), allow re-

ducing in two possible ways the cost overhead due to masking, while keeping

the same resistance to d-th order SCA in the bounded moment security model

(and possibly the same order of probing security, but this depends on the imple-

mentation), when the leak is a linear combination over the reals of the bits of

the sensitive variable, added with a Gaussian noise (this assumption on the leak

is rather realistic and the assumption on the noise is almost always the case in

literature):

• by applying a method called leakage squeezing , which allows achieving with

one single mask the same protection of registers against higher-order SCA

as with d ones, where d is an integer strictly larger than 1 that we shall

define. This method, which allows making optimal the representation of the

shares and maximizes the resistance order against high-order side-channel

attacks, has been introduced in [811] and further studied in [810, 263]

(an extremely close counter-measure has been introduced independently in

[132]). It uses a bijective vectorial function F which is applied to modify

the mask (this is a reason why the method is better adapted to hardware

since we need to apply F−1 at some point, and in hardware this can be

made more easily as we explained, but millions of smart cards built by

industry nowadays include leakage squeezing as well). The pair (M0,M1)

such that M0 + M1 = Z is not processed as is in the device, but in the

form of (M0, F (M1)). The condition for achieving resistance to d-th order

SCA in the bounded moment security model is proved in [811, 810, 263]:

assuming that the leakage model is a pseudo-Boolean function of numer-

ical degree (see Definition 13, page 66) at most d (which is the case of

the d-th power of a degree 1 leakage), it is that the graph indicator of F ,

that is, the 2n-variable Boolean function whose support equals the graph
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{(x, y); y = F (x)} of F , is d-th order correlation immune. Such graph is a

complementary information set code (CIS code for short), in the sense that

it admits (at least) two information sets (see page 344) which are comple-

mentary of each other, see [280]. The condition that the indicator of this

CIS code is d-th order correlation immune is equivalent to saying that the

dual distance of this code is at least d+ 1 (according to Corollary 6, page

108), which is coherent with what was observed by Massey [827] already

in 1993. For instance, a rate 1
2 [16, 8, 5] linear code can be used. But it is

shown in [810] that there exists a non-linear code which achieves better: it

is the Nordstrom-Robinson code of parameters (16, 256, 6). A comprehen-

sive study of CIS codes has been made in [280] and it is shown in [264] that

the mutual information between the sensitive data and the leakage vanishes

exponentially with the noise variance, at a rate which is proportional to

the dual distance.

The method of leakage squeezing has been later generalized in [262] to sev-

eral masks. Compared to first-order leakage squeezing, second-order leakage

squeezing is more efficient, since it increments by one unit at least the re-

sistance against high-order attacks, with an appropriate (a priori different)

code. In fact, it improves it more, since better improvements have been re-

alized by relevant choices of squeezing bijections. But the optimal solutions

are more difficult to find than in the case with one mask. When the masking

is applied on bytes (as in AES), optimal leakage squeezing with one mask

resists HO-SCA of orders up to 5 (with the Nordstrom-Robinson code),

and with two masks, resistance against HO-SCA of order 7 is provided.

The study of the corresponding higher-order CIS codes has been made in

[277]. A rate 1
3 [24,8,8] linear code (maximal minimal distance) with three

disjoint information sets fulfills the conditions.

• an alternative way of resisting higher-order SCA with one single mask consists

in avoiding processing the mask at all: for every sensitive variable Z which

is the input to some box S in the block cipher, Z is replaced by Z + M

where M is drawn at random, and Z +M is the input to a “masked” box

SM whose output is a masked version of S(Z) (and the process of masking

continues similarly during the whole implementation, only the very last

step being eventually unmasked to give the result). This method is called

rotating S-box masking (RSM) [898]. It needs, for each box S in the cipher,

to implement a look-up table for each masked box SM . This is particu-

larly well adapted to hardware: all S-boxes are then addressed in parallel,

for a better throughput; the attacker is not able to know which S-box is

addressed for a given value of M ; he/she is only able to identify that the

S-boxes have been looked up, but the order in which they are queried is

indistinguishable from his/her standpoint; he/she is limited to collecting

an aggregated function of all S-boxes. This being said, many smart cards

implement RSM nowadays as well, still more than leakage squeezing.

To reduce the cost, M is not drawn at random in the whole set of binary
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vectors of the same length as Z, but in a smaller set of such vectors, say E.

The condition for achieving resistance to d-th order SCA in the bounded

moment security model is that the indicator function 1E is a d-th order

correlation immune function, i.e. that E viewed as a code has dual dis-

tance at least d + 1 [74, 286]. This is because, for any j ≤ d, the mean of

wjH(Z+M) when Z has some fixed value z equals 1
|E|
∑
m∈E wjH(z+m) =

1
|E|
∑
m∈Fn2

1E(m)wjH(z + m) = 1
|E|1E ⊗ w

j
H(z) = 1

2n|E|
̂̂1E × ŵjH(z), ac-

cording to Relation (2.45), page 79, and this mean is independent of z if

and only if 1̂E×ŵjH(a) = 0 for every a 6= 0n, while we know that wjH , which

has numerical degree j, satisfies that ŵjH(a) = 0 if and only if wH(a) > j.

Given d, we wish to choose this d-th order correlation immune function 1E
with lowest possible (nonzero) weight, since the size of the overhead due to

the masked look-up tables is proportional to the size of the set11.

In [289] is shown that the security notion (at bit level, i.e., in F2) corresponds

in these two cases to d-probing and d-th order bounded moment security models.

Leakage squeezing and RSM needing correlation immune functions of low

weights (with a particular shape in the case of leakage squeezing since the func-

tion must then be the graph indicator of a permutation, see more in [244]), this

has posed a new problematic on Boolean functions, that we begun to address at

pages 332 and following (further work is needed). Most of the numerous studies

made (mostly in the nineties) on correlation immune functions in the framework

of stream ciphers (see page 105) dealt with resilient (balanced) functions and do

not apply to low weight correlation immune functions.

12.1.2 Vectorial functions in univariate form: minimizing the number of nonlinear
multiplications for reducing the cost of countermeasures

In [297] are studied properties that an S-box could possess for being more resilient

against side-channel attacks, like the (almost) preservation of Hamming weight

and a small Hamming distance between input and output; the incidences on the

nonlinearity and differential uniformity are determined.

Additional protections, like masking, are in any case unavoidable. We have

seen that the complexity of masking additions and linear multiplications (like,

for instance, x × x) is negligible compared to that of masking nonlinear multi-

plications. To efficiently mask an algorithm, we need to minimize the masking

complexity of each S-box, that is, the minimum number of nonlinear multiplica-

tions needed to implement it. This parameter is affine invariant.

11 Note however that if the cipher is made like the AES, with identical substitution boxes up
to affine equivalence, the substitution layer can be slightly modified so as to be masked at
no extra cost: the affine equivalent boxes are replaced by masked versions of a same box;

namely, the 16 byte masks which can be applied to the 16 boxes are the codewords of the

[8, 4, 4] self-dual code.
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When the S-box is a power function F (x) = xd like in the AES, minimizing the

number of nonlinear multiplications results in a variant of the classical problem

of minimizing addition chains in a group, see [284]; determining the masking

complexity amounts to finding the addition chain for d with the least number

of additions which are not doublings. For instance, the inverse function x →
x254 = x−1 in F28 can be implemented with 4 nonlinear multiplications, in many

ways (we saw one at page 434, note that the well-known square-and-multiply

algorithm for computing the inverse needs more than 4 multiplications).

When the S-box is a general polynomial, minimizing the number of nonlinear

multiplications is a new paradigm. It is proved in [382] that, for every positive

integer n, there exists a polynomial P (x) ∈ F2n [x] with masking complexity:

MC(P ) ≥
√

2n

n
− 2. (12.1)

There exist several methods for trying to minimize the multiplicative complex-

ity12, MC(P ) of polynomials P and allowing their probing secure evaluation at

minimized cost. We refer to [284, 320] for more details. The two first methods

are provable and the two last are heuristic13 (and more efficient in practice):

• The cyclotomic method consists in rewriting P (x) in the form:

P (x) = u0 +

q∑
i=1

Li(x
αi) + u2n−1x

2n−1 ,

where q is a positive integer and (Li)i6q is a family of linear functions.

Since the transformations x ∈ F2n 7→ x2j are F2-linear, their masking com-

plexity is null. This implies that the masking complexity of
∑q
i=1 Li(x

αi)

is bounded above by the number of non-linear multiplications required to

evaluate all the monomials xαi , that is, by
∑

δ|(2n−1)

ϕ(δ)

µ(δ)
− 1, where µ(m)

denotes the multiplicative order of 2 modulo m and ϕ the Euler’s totient

function.

• The Knuth-Eve method is based on a recursive use of the observation that

any polynomial P (x) of degree t over F2n [x] can be written in the form

P (x) = P1(x2)⊕ P2(x2)x

where P1(x) and P2(x) have degrees bounded above by bt/2c. This implies

that the masking complexity of P (x) is at most:{
3 · 2(n/2)−1 − 2 if n is even,

2(n+1)/2 − 2 if n is odd.

12 This term is meant here at the F2n field level; it can be also considered at the bit level, in

relation with bitsliced implementations, see e.g. [565] and the references therein.
13 In the sense of “not proved”.
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• The Coron-Roy-Vivek (CRV) method [382] starts with a union C of cyclotomic

classes Ci in Z/(2n − 1)Z, such that all power functions xj , j ∈ C, can be

processed with a global small enough number of nonlinear multiplications.

This set of monomials xj spans a subspace P of F2n [x]. A polynomial

R ∈ F2n [x1, · · · , xt] is searched such that:

P (x) = R (P1(x), · · · , Pt(x)) ,

where the Pi’s are taken in P. Denoting by µ the number of non-linear

multiplications required to build C, the search tries to minimizeMC(R)+µ.

A heuristic approach (in order to speed up the process) is proposed:

1. Build the union set C such that all the powers of P ’s monomials are in

C + C,
2. Choose and fix a set of r polynomials P1(x), ..., Pr(x) in P and search

for r + 1 polynomials Pr+1(x), ..., P2r+1(x) in P such that:

P (x) =

r∑
i=1

Pi(x)× Pr+i(x) + P2r+1(x) . (12.2)

Thanks to the fact that P1(x), ..., Pr(x) have been fixed, this results in

solving a linear system of n2n Boolean equations in at most min(r, |C|)×
|C| + |C| unknowns. The condition 2n 6 |C| × (1 + min(r, |C|)) ensures

then that the method outputs at least one solution. The complexity of

the resulting probing secure method is O(
√

2n/n), which is asymptot-

ically better than the complexity of Knuth-Eve’s method. Moreover, a

comparison of Coron’s complexity with Inequality (12.1) shows that it is

asymptotically optimal.

• The CPRR method [321] is more recent and based on another algebraic decom-

position heuristic principle. It decomposes P (x) by means of functions of

low algebraic degree, and designs efficient probing-secure evaluation meth-

ods for such low-degree functions. The decomposition step starts by de-

riving a family of generators:

{
G1(x) = F1(x)

Gi(x) = Fi
(
Gi−1(x)

) where the Fi are

random polynomials of algebraic degree s. Then it randomly generates t

polynomials Qi =
∑r
j=1 Lj ◦Gj , where the Lj are linearized polynomials.

Eventually, it searches for t polynomials Pi of algebraic degree s and for

r + 1 linearized polynomials Li such that:

P (x) =

t∑
i=1

Pi
(
Qi(x)

)
+

r∑
i=1

Li
(
Gi(x)

)
+ L0(x) .

As in the CRV method, the search for polynomials Pi and Li amounts to

solving a system of linear equations over F2n .

For masking a function F of algebraic degree at most s, the method uses

that, for every function from F2n to itself of algebraic degree at most s, the
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mapping

β
(s)
F (a1, a2, . . . , as) =

∑
I⊆{1,...,s}

F
(∑
i∈I

ai

)
is multilinear (which is easily seen and has been first observed in [209]),

which allows proving that, for every d ≥ s:

F
( d∑
i=1

ai

)
=

∑
1≤i1<···<is≤d

β
(s)
F (ai1 , . . . , ais) +

s−1∑
j=0

ηd,s(j)
∑

I⊆{1,...d}
|I|=j

F
(∑
i∈I

ai

)
,

where ηd,s(j) =
(
d−j−1
s−j−1

)
mod 2 for every j ≤ s− 1, and deducing that:

F
( d∑
i=1

ai

)
=

s∑
j=0

µd,s(j)
∑

I⊆{1,...,d}
|I|=j

F
(∑
i∈I

ai

)
,

where µd,s(j) =
(
d−j−1
s−j

)
mod 2 for every j ≤ s. This reduces the complexity

of the d-masking of a degree s function to several s-maskings. An alternative

(tree-based) method is also proposed. It is shown that the processing of

any S-box of dimension n = 8 can be split into 11 evaluations of quadratic

functions, or into 4 evaluations of cubic functions.

12.1.3 Vectorial functions and algebraic side channel attacks

In [990] is introduced an attack on block ciphers called algebraic side channel

attack, which combines the two approaches of algebraic attacks and side channel

attacks. In [272] is studied the algebraic phase of this attack. The notion of

algebraic immunity is modified to include the information from the leakage on

Hamming weight or on Hamming distance, and it is studied how this can allow

obtaining enough equations of degree one to be able to solve the algebraic system

with Gröbner methods. We refer to these two papers for the technical details.

12.1.4 Vectorial functions and threshold implementation

The countermeasures against SCA presented so far suppose, for having good

efficiency, that the leakage has some regularity. Building hardware with such

property is expensive in practice. In particular, hardware glitches, which are

transient faults (coming when the input signals of the combinational logic ar-

rive at different moments in time when they should come simultaneously; signal

switches then several times when it should switch once) common in CMOS tech-

nology, change the leaking into functions L having numerical degree larger than

one, because of the interactions between bits that they cause, and which more-

over vary with time. Glitch-free hardware is very expensive. We present here the
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main known solutions for avoiding needing it.

1. The problem of building implementations secure against d-th order side chan-

nel attacks in the presence of glitches is equivalent to the problem of secur-

ing the processing of a function with several semi-honest players (see [974]).

A related way of masking S-boxes is the so-called polynomial masking , intro-

duced separately in [974] and [562], and which gives a solution to this problem

without needing sophisticated hardware. The idea is to make the global circuit

glitch-free-like by the implementation itself, splitting the circuit implementing

the S-box into several sub-circuits communicating with each other on the basis

of a multiparty computation protocol (see page 169), like the one in [59]. The

masking operation of a sensitive data z ∈ F2n is based on Shamir’s secret shar-

ing seen in Subsection 3.6.1, page 168. It consists in constructing a function

fz(x) =
∑m−1
i=1 aix

i + z, where (ai)1≤i≤m−1 are some random secret coefficients,

then as in Boolean masking, z can be represented by m shares (z0, . . . , zm−1),

with zi = (αi, fz(αi)) for 0 ≤ i ≤ m− 1 for some random inputs (αi)0≤i≤m−1. To

get z (unmasked), we have to reconstruct fz by polynomial interpolation14, and

finally calculate z = fz(0). The advantage of this method is that it is grounded

by a well studied theory (multi-party computation) and the security models are

clear. Its disadvantage is that it is not very efficient, especially when first-order

SCA is considered.

2. Another S-box masking method, also based on ideas of multiparty compu-

tation and aiming at solving the problem posed by glitches, is threshold imple-

mentation15 (TI ). Threshold schemes are attractive from an academic viewpoint,

because they come with an information-theoretic proof of resistance against first-

order DPA while allowing realistic-size circuits16. Introduced in [903] and pre-

sented more completely in [904], they pose interesting challenges on vectorial

functions. In the TI of an (n,m)-function F , the shares of the output of F are

the outputs of several functions of the shares of the input, each such function

being independent of at least one of the shares of the input to F (a different one

for each function); these two properties, called correctness and incompleteness,

provide first order probing security (if the implementation is done properly).

More precisely:

• The masked version with t masks (i.e. with t+1 shares) of each input variable

xi will be denoted by xi = (x
(1)
i , . . . , x

(t+1)
i ) ∈ Ft+1

2 . We shall denote the

sum x
(1)
i ⊕· · ·⊕x

(t+1)
i of the coordinates of xi by s(xi); we have s(xi) = xi

for every i. Extending s to a function over (Fn2 )t+1, we have then s(x) = x,

for every x = (x1, . . . , xn).

• A t-mask (i.e. (t + 1)-share) realization of an (n,m)-function F is a vector

14 Better methods have been very recently found, see [340].
15 Not to be confused with threshold functions, seen in Subsection 10.1.7.
16 Which can still be attacked by (univariate) mutual information and higher-order analyses.
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F = (F1, . . . , Ft+1) of ((t+ 1)n,m)-functions, i.e. a function from (Fn2 )t+1

to (Fm2 )t+1, such that, for all x ∈ (Fn2 )t+1, denoting also
∑t+1
j=1 Fj(x) by

s(F(x)), we have:

if x = s(x), then F (x) = s(F(x)).

This property is called correctness. In practice, the numbers of input and

output shares may be different but we take them equal to simplify the

presentation. To obtain d-th order security against univariate attacks in a

so-called HO-TI, we would need to have td masks and
(
td+1
t

)
shares, and

in a so-called consolidated masking scheme, d masks and (d + 1)t output

shares later synchronized in a register and compressed back to d+ 1 shares

(which is often compared to the ISW multiplication), but with an extra

register to protect against glitches; we shall not develop this and refer the

reader to [85] and [992].

In terms of function graphs, let GF = {(x, F (x));x ∈ Fn2} and GF =

{(x,F(x)); x ∈ (Fn2 )t+1} be the graphs of functions F and F; correctness

corresponds to the fact that the linear function:

(x,y) 7→ (s(x), s(y))

maps GF to GF .

Correctness can be characterized by the Walsh transform in the following way:

Proposition 187 Given a ((t+ 1)n, (t+ 1)m)-function:

F = (F1, . . . , Ft+1) : x ∈ (Fn2 )t+1 7→ F(x) ∈ (Fm2 )t+1

and an (n,m)-function F : Fn2 7→ Fm2 , we have:

s(F(x)) = F (s(x))

if and only if:

∀u(1), . . . , u(t+1) ∈ Fn2 ,∀v ∈ Fm2 , WF((u(1), . . . , u(t+1)), (v, . . . , v)) =

{
2tnWF (u(1), v) if u(1) = · · · = u(t+1)

0 otherwise.

Proof. We have (F1 + · · · + Ft+1)(x(1), . . . , x(t+1)) = F (x(1) + · · · + x(t+1)) if

and only if these two functions have the same Walsh transform, that is, if

for every u(1), . . . , u(t+1) ∈ Fn2 and v ∈ Fm2 , WF1+···+Ft+1((u(1), . . . , u(t+1)), v)

equals the value at ((u(1), . . . , u(t+1)), v) of the Walsh transform of function

(x(1), . . . , x(t+1)) 7→ F (x(1) + · · ·+ x(t+1)), that is,∑
(x(1),...,x(t+1))∈(Fn2 )t+1

(−1)v·F (x(1)+···+x(t+1))+u(1)·x(1)⊕···⊕u(t+1)·x(t+1)

,
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which, by changing x(1) into x(1) + · · ·+ x(t+1), equals:∑
(x(1),...,x(t+1))∈(Fn2 )t+1

(−1)v·F (x(1))⊕u(1)·x(1)⊕(u(1)+u(2))·x(2)⊕···⊕(u(1)⊕u(t+1))·x(t+1)

.

The rest is straightforward. 2

A necessary and sufficient condition for a function G to be the realization of

some function is then as follows:

Corollary 31 Given G = (G1, . . . , Gt+1) : (Fn2 )t+1 7→ (Fm2 )t+1, the function

(G1+· · ·+Gt+1)(x(1), . . . , x(t+1)) depends only on x(1)+· · ·+x(t+1) if and only if,

for every u(1), . . . , u(t+1) ∈ Fn2 , v ∈ Fm2 , WG((u(1), . . . , u(t+1)), (v, . . . , v)) equals

zero when the equalities u(1) = · · · = u(t+1) are not all satisfied. Then, we have

that WG((u(1), . . . , u(t+1)), (v, . . . , v)) is divisible by 2tn for every u(1), . . . , u(t+1).

Proof. The condition that WG((u(1), . . . , u(t+1)), (v, . . . , v)) equals zero when the

equalities u(1) = · · · = u(t+1) are not all satisfied is necessary, according to

Proposition 187. It is also sufficient since we have then, according to the inverse

Walsh transform formula 2.43, page 78:

2(t+1)n(−1)v·(G1+···+Gt+1)(x(1),...,x(t+1)) =∑
(u(1),...,u(t+1))∈(Fn2 )t+1

(−1)u
(1)·x(1)⊕···⊕u(t+1)·x(t+1)

WG((u(1), . . . , u(t+1)), (v, . . . , v))

=
∑
u∈Fn2

(−1)u·(x
(1)+···+x(t+1))WG((u, . . . , u), (v, . . . , v)) (12.3)

and we have that, for every v, function v · (G1 + · · · + Gt+1)(x(1), . . . , x(t+1))

depends then only on x(1) + · · · + x(t+1). It is easily seen that (G1 + · · · +

Gt+1)(x(1), . . . , x(t+1)) depends then only on x(1) + · · ·+ x(t+1).

Using now Relation (12.3) with x(2) = · · · = x(t+1) = 0n and with x instead of

x(1) and applying the inverse Walsh transform formula to the resulting function of

x, we have 2tn
∑
x∈Fn2

(−1)v·(G1+···+Gt+1)(x,0n,...,0n)⊕u·x = WG((u, . . . , u), (v, . . . , v))

and this proves the divisibility property. 2

Correctness is a constraint on the realization F, not really on F itself. But in

threshold implementation, a second property is required for F, and a third one

is desired too; both put also constraints on F :

• In a threshold implementation F = (F1, . . . , Ft+1), every function Fj should

be independent of the j-th coordinate of each xi (in the sense that this j-th

coordinate should not appear at all in the ANF of Fj), i.e. Fj should be in-

dependent of the j-th share of x. This property is called non-completeness17

and implies that the output of Fj , individually, is uncorrelated to any input

17 In (univariate) HO-TI of order d, this property becomes: any combination of up to d

component functions of F must be independent of at least one input share.
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variable xi (assuming, as in the subsections above, that any vector of less

than t+ 1 shares of xi is uncorrelated to xi). Note that if F has algebraic

degree at most t, then it is easy to build such F: starting from the ANF

of F (x), replacing each xi by x
(1)
i ⊕ · · · ⊕ x

(t+1)
i and expanding, we obtain

a sum of monomials in each of which at least one upper index is not ap-

pearing, and then, starting with j = 1 and incrementing j at each step, we

store in Fj all those monomials involving variables whose upper indices are

different from j and which have not yet been stored. This way guarantees

both correctness and non-completeness.

For instance, applying this method to the Boolean function f(x) = x1x2

gives:

f1((x
(1)
1 , x

(2)
1 , x

(3)
1 ), (x

(1)
2 , x

(2)
2 , x

(3)
2 )) = x

(2)
1 x

(2)
2 ⊕ x

(2)
1 x

(3)
2 ⊕ x

(3)
1 x

(2)
2

f2((x
(1)
1 , x

(2)
1 , x

(3)
1 ), (x

(1)
2 , x

(2)
2 , x

(3)
2 )) = x

(3)
1 x

(3)
2 ⊕ x

(1)
1 x

(3)
2 ⊕ x

(3)
1 x

(1)
2

f3((x
(1)
1 , x

(2)
1 , x

(3)
1 ), (x

(1)
2 , x

(2)
2 , x

(3)
2 )) = x

(1)
1 x

(1)
2 ⊕ x

(1)
1 x

(2)
2 ⊕ x

(2)
1 x

(1)
2 .

Non-completeness can be characterized by the Walsh transform in the fol-

lowing way:

Proposition 188 Given a ((t+ 1)n, (t+ 1)m)-function:

F = (F1, . . . , Ft+1) : x ∈ (Fn2 )t+1 7→ F(x) ∈ (Fm2 )t+1,

each function Fj is independent of the j-th coordinate of each xi if and only

if:

∀j ∈ {1, . . . , t+ 1},∀u(1), . . . , u(t+1) ∈ Fn2 ,∀v(1), . . . , v(t+1) ∈ Fm2 ,(
v(k) = 0m,∀k 6= j,

and u(j) 6= 0n

)
⇒ (WF((u(1), . . . , u(t+1)), (v(1), . . . , v(t+1))) = 0).

(12.4)

Indeed, according to the Walsh and inverse Walsh transform formulae, Fj

is independent of (x
(j)
1 , . . . , x

(j)
n ) if and only if, for every (u(1), . . . , u(t+1)) ∈

(Fn2 )t+1 such that u(j) 6= 0n, we have WFj (u
(1), . . . , u(t+1)) = 0.

Definition 86 We call t-mask (i.e. (t + 1)-share) TI, or t-th order TI,

of an (n,m)-function any function F from (Fn2 )t+1 to (Fm2 )t+1 satisfying

correctness and non-completeness.

We shall call F the TI-masked function.

• The following property, called uniformity (of TI), is desired too but is often

not included in the very definition of TI: for every b = (b(1), b(2), . . . , b(t+1))

in (Fm2 )t+1, the number of x in (Fn2 )t+1 for which F(x) = b is equal to

2t(n−m) times the number of x in Fn2 for which F (x) = s(b) (if F is a per-

mutation of Fn2 then this is equivalent18 to saying that F is a permutation

18 If the output of F was shared in more shares than the input, it would be equivalent to

saying that F is balanced.
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of (Fn2 )t+1). This property is needed to make sure that, if the masking of

the input to F is uniform, then the output of F is also a uniform masking of

the output of F . The uniformity property of a TI is then important when

the output of the TI is the input to another block (which is always the case

in an iterative cryptographic primitive such as a block cipher). If we use a

non-uniform TI of a function, we need to add sufficient refreshing (this is

how HO-TI can be multivariate secure). Such possibility is used quite often

in practice but is expensive.

Uniformity is the hard property among the three described above. The

usual method for trying to achieve it is by adding so-called correction terms

to the output of TI when they do not ensure uniformity; these are terms

which are added in pairs to shares in a way preserving non-completeness.

The terms in a pair canceling each other when the sum of output shares is

made, correctness is preserved as well. But this method is difficult and has

to be applied on each S-box; it is not really doable for infinite classes. How

many shares are needed for a uniform TI without extra randomness is also

currently a question without formal answer. The answer for (3, 3)-functions

and (4, 4)-functions was given in [86, 87] by exhaustive search.

In [904, Theorem 1 and Corollary 1], the authors observe that correctness,

non completeness and the fact that the sharing at input is uniform suffices

to ensure that each of the output shares is statistically independent of the

input variables and the output variables and that the same holds for all

intermediate results. Hence, if the power consumption of each shared sub-

circuit implementing one of the functions Fj is independent of the other

sub-circuits, the implementation resists first order SCA, even in the pres-

ence of glitches. Uniformity ensures additionally that no more information

than a possible bias in the output distribution of the TI-masked function

is provided. This uses more random values during the setup and this is a

disadvantage already acknowledged in [903], but it does not need fresh ran-

domness during the process. We shall specify “TI with uniformity” when

needed (that is, when the TI achieves uniformity without additional fresh

randomness).

Uniformity can be characterized by means of the Walsh transforms of F and

F as well: the condition is equivalent to
∑

x∈(Fn2 )t+1,v∈(Fm2 )t+1

(−1)v·(F(x)+b) =

2tn
∑

x∈Fn2 ,v∈Fm2

(−1)v·(F (x)+b), for every b, where v = (v(1), . . . , v(t+1)) and

b = s(b), that is: ∀b ∈ (Fm2 )t+1,

∑
v∈(Fm2 )t+1

(−1)v·b WF(0n(t+1),v) = 2tn
∑
v∈Fm2

(−1)v·s(b)WF (0n, v).
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Algebraic degree of functions admitting a t-mask TI
A drawback of threshold implementation is that functions F of algebraic degree

t can have TI with at least t masks only19 (a necessary and sufficient condition

for the existence of a t-mask TI with or without uniformity is then that the

algebraic degree be at most t). This has been first observed in [903, Theorem 1]

(with incomplete statement and proof).

Proposition 189 Let F be any (n,m)-function admitting a t-mask (i.e. a (t+1)-

share) TI with or without uniformity. Then dalg(F ) ≤ t.

Proof. Consider the ANF of F :

F (x) =
∑

I⊆{1,...,n}

aIx
I , aI ∈ Fn2 ,

where xI =
∏
i∈I xi. Let F be a t-mask TI of F . Because of correctness, the

(unique) ANF of the ((t + 1)n,m)-function (s(F))(x1, . . . ,xn) is obtained by

expanding:

F (s(x1), . . . , s(xn)) =
∑

I⊆{1,...,n}

aI
∏
i∈I

(x
(1)
i ⊕ · · · ⊕ x

(t+1)
i ). (12.5)

Suppose that dalg(F ) ≥ t + 1 and consider a monomial xI of degree dalg(F ).

Then the ANF of F (s(x1), . . . , s(xn)) contains all the monomials of the form∏
i∈I x

(ji)
i where ji ∈ {1, . . . , t + 1}, with nonzero coefficients. Indeed, two dis-

tinct monomials xI and xI
′

of degree dalg(F ) in the ANF of F provide disjoint

sets of monomials in the expansion of (12.5), which cannot then cancel each

others. Moreover, none of the monomials of the form
∏k
i=1 x

(ji)
i where i 7→ ji

is onto {1, . . . , t + 1} can be obtained from (s(F))(x1, . . . ,xn) because of non-

completeness. A contradiction. 2

Hence for instance, the inverse function F (x) = x2n−2 used in the AES which

has algebraic degree n−1 cannot have an (n−1)-share (with (n−2)-masks) TI.

A question is: can it have an n-share (with (n− 1)-masks) TI with uniformity?

Many such questions are open. For instance, recall that, for n odd and t = n+1
2 ,

any almost bent function F has algebraic degree at most t. Does any AB function

have an n+1
2 -mask TI with uniformity?

Even for quadratic functions, there does not always exist a TI with uniformity

of minimum number of masks (that is, with 2 masks): see [87, Corollaries 1 and

2]. In fact, for any t ≥ 2, we do not know how characterizing the functions for

which a t-mask TI exists, despite the theoretical results of [73].

This is a concern since the implementation cost of a function increases then ex-

ponentially with its degree: according to Proposition 189, a monomial of degree

t results in the sum of (t+1)t monomials. This drawback is bypassed by express-

ing (when it is possible) high algebraic degree functions as the compositions of

lower algebraic degree functions for which TI can be found, see [86, 87, 724], see

19 For multivariate 1st order security, or td masks for univariate higher-order security.
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also [321] and page 471 for a general method (the CPRR method) addressing

this problem. Then uniformity can be ensured by introducing (when necessary)

fresh randomness when making the composition of two threshold implementa-

tions, that is, by adding to the output of F, a vector c such that s(c) = 0m and

such that any sub-vector of d components is random (this is sometimes called re-

masking). Note that when creating a masked implementation of a decomposition,

the TI of the lower degree components have to be separated by a register stage

to stop glitches (and reducing the number of these register stages is needed).

Of course, it is preferred to minimize the number of the lower algebraic degree

functions which are composed for giving the S-box.

The TI of small S-boxes has been studied, see [113, 86, 87] and the refer-

ences therein. In particular in [86] is designed the threshold implementation

with at most 4 masks for all (3, 3)-permutations and (4, 4)-permutations20. But

n ≤ 4 is interesting for lightweight ciphers only. In [87] are studied APN (5, 5)-

permutations (affine equivalent to the AB power functions x3, x5, x7, x11 and

x15) and the sole known APN (6, 6)-permutation by different methods, in par-

ticular by expressing them as the compositions of quadratic functions (which

needs re-masking and does not provide a TI, properly speaking). But designing

TI with uniformity for these functions is an open question, as well as for the

multiplicative inverse differentially 4-uniform (8, 8)-function used in AES. Note

that the inverse function plays not only a role in relation with the AES since

we know, see [331, 1184], that any (n, n)-permutation can be expressed as the

composition of functions x 7→ ax+ b and of the inverse permutation.

An alternative approach for designing TI is, given some secondary construction

of functions, to deduce the TI of the built function from the TI of the used func-

tions. In [1094] is studied the following construction of an (n+ 1, n+ 1)-function

H from two (n, n)-functions F and G and two n-variable Boolean functions f

and g:

H : (x, xn+1) ∈ Fn2 ×F2 7→ xn+1(F (x), f(x)) + (xn+1⊕ 1)(G(x), g(x)) ∈ Fn2 ×F2.

Clearly, every (n+ 1, n+ 1)-function can be obtained this way. Note that H is a

permutation if and only if it is injective, that is, if and only if x 7→ (F (x), f(x))

and x 7→ (G(x), g(x)) are injections (which is a necessary and sufficient condi-

tion for the fact that two distinct inputs of the same form (x, 0) or of the same

form (x, 1) do not give the same output) and have disjoint value sets (which

is a necessary and sufficient condition for the fact that an input (x, 0) and an

input (y, 1) do not give the same output). If F and G are permutations, then

the condition simplifies into f ◦ F−1 ⊕ g ◦ G−1 = 1. It is then shown that if

F and f have t-mask TI with uniformity F and f , and if G(x1, . . . , xn) equals

either F (x1, . . . , xn) or F (x1, . . . , xi−1, xi⊕1, xi+1, . . . , xn) for some i = 1, . . . , n,

and g is taken such that f ◦ F−1 ⊕ g ◦G−1 = 1, then H has a t-mask TI with

uniformity. The idea of the proof in the slightly more complex latter case is

20 All (2, 2)-permutations being affine, they do not need to be studied.
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to decompose (F (x), f(x)) in the form xi(Fi(x), fi(x)) + (xi ⊕ 1)(F ′i (x), f ′i(x))

where (Fi(x), fi(x)) (resp. (F ′i (x), f ′i(x))) is the restriction of (F (x), f(x)) to the

hyperplane of equation xi = 0 (resp. xi = 1) and to observe that H(x, xn+1)

equals (xn+1⊕ xi⊕ 1)(Fi(x), fi(x)) + (xn+1⊕ xi)(F ′i (x), f ′i(x)). It would be nice

if less restrictive cases within this general construction could be addressed.

In [105] are constructed (8, 8)-functions based on a Feistel network, a substitu-

tion permutation network or the (special case of) MISTY network [830], all using

quadratic 4-bit S-boxes, which admit a TI implementation while still maintain-

ing a good level of differential uniformity and nonlinearity.

A recent general alternative technique, called the changing of the guards, and

which represents a nice step forward, has been presented in [402] and applied

to the Keccak S-box. It builds a (t + 1)-share threshold implementation with

uniformity of any invertible S-box layer of algebraic degree t, after a trans-

formation (the S-box is subdivided into several stages, separated by registers

and some shares receive additional components, see the details in [402]); each

share at the output of S-box i is made uniform by bitwise adding to it one or

two shares from the input of S-box i − 1; this solves the problem of threshold

implementation with uniformity (but only after such transformation of the S-

box). In a next important step forward, a modification of the changing of the

guards has been given in [1056] and applied to the AES S-box, at the cost of

a significant extension of the AES S-box design, but ensuring in a nice way

uniformity with 3-share TI (while Daemen’s method in [402], as is, needs t + 1

shares, that is, 8 in the case of the AES S-box). The method includes a generic

way to construct a uniform sharing for any function, by changing (by extension

and reduction) the function to an invertible one while maintaining its essen-

tial functionality unchanged21, which can be, in the case of AES S-box, de-

composed into quadratic bijections. The extension of an (n,m)-function F is the

(n+m,n+m)-permutation (x, y) 7→ (x, F (x)+y). If F is a 3-share TI of F , then

a 3-share TI with uniformity of the extension is, still denoting x = (x1, x2, x3)

and y = (y1, y2, y3), the function ((x1, y1), (x2, y2), (x3, y3)) 7→ ((x2,F1(x) +

y3), (x3,F2(x) + y1), (x1,F3(x) + y2)). The reduction of an (n + m,n + m)-

function G is the (n + m,n + m)-function (x, y) 7→ (0n, y). If G is a 3-share

TI of G, then a 3-share TI with uniformity of the reduction is the function

((x1, y1), (x2, y2), (x3, y3)) 7→ ((x2 + x3, y2), (x3, y3), (x2, y1)). Composing these

two 3-share TI provides a 3-share TI with uniformity of (x, y) 7→ (0n, F (x) + y).

See more in [1056].

Invariance of the existence of a t-mask TI
The existence of a t-mask TI of F (x) is invariant when changing F (x) into

F (x + a) (by changing F(x) into F(x + a) for some a such that s(a) = a,

21 So the success of the method does not contradict Proposition 189.
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which also preserves uniformity), and it is also invariant under linear equiva-

lence F ∼ L ◦ F ◦ L′ (which preserves uniformity as well), as observed (and

proved rather informally) in [86, Theorem 2]. Indeed, applying L′ on each share

of x and L on each share of the output of F preserves correctness since L and

L′ are linear and it preserves uniformity since L and L′ are bijective, and it also

preserves non-completeness, since the applications of L and L′ are made sepa-

rately on each share. Hence the existence of a t-mask TI is an affine invariant ,

as well as the existence of a t-mask TI with uniformity. And the existence of a

t-mask TI is also invariant under adding an affine function but it is not clear

whether this preserves uniformity (in other words, affine equivalence preserves

the existence of a uniform TI but extended affine equivalence does probably not).

Remark. Given a permutation F having a t-mask TI, function F−1 does not

necessarily have a t-mask TI, since there are quadratic functions having 2-mask

TI and whose inverses are not quadratic22 and therefore do not have a 2-mask TI,

according to Proposition 189. In particular, if F is a t-mask TI of F , function F−1

is not necessarily a t-mask TI of F−1. This is because the condition “for every

j = 1, . . . , t+ 1, the j-th coordinate function of F is independent of the j-th co-

ordinate of each xi” is not equivalent to the condition “for every j = 1, . . . , t+1,

the j-th coordinate function of F−1 is independent of the j-th coordinate of each

xi”. This subtle difference can be more easily seen with the characterization by

Condition (12.4), which is not the same when applied to F and to its inverse: the

hypothesis “vk = 0n,∀k 6= j and uj 6= 0n” of the implication, when it is applied

to F−1, becomes “uk = 0n,∀k 6= j and vj 6= 0n”, since we know that changing

a function into its inverse corresponds for the Walsh transform to swapping the

parameter(s) living in the domain and the one (those) living in the codomain,

the same value of the Walsh transform being then kept for this new input. 2

3. A more recent way to protect against SCA in the presence of glitches is domain

oriented rather than function oriented; it organizes properly the ISW computa-

tions (we described above the methods based on decompositions of polynomials

and related masking) and implements the concept of share domains (keeping

each domain independent from the others). Each share of a variable is associ-

ated with one share domain. This method is called domain-oriented masking , see

[575, 574], and is an alternative to threshold implementation requiring less chip

area and less randomness, all the more when raising the protection order. 2

12.1.5 Linear complementary dual codes and complementary pairs of codes used
for direct sum masking

Direct sum masking has a weaker relationship with Boolean functions than with

codes. We however briefly describe it, since a large number of recent papers deal

22 This should be checked among quadratic functions with known 2-TI, though.
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with the related notions of linear complementary dual codes and complementary

pairs of codes, and also because the dual distance of codes playing a central role,

correlation immune functions are closely related.

The impact of codes on protection against fault injection attacks is well studied;

the number of detected faults relates to their minimum distance. The (explicit)

use of codes for protecting against SCA is more recent. The direct sum mask-

ing (DSM ) countermeasure [131, 288] is a generalization of Boolean masking

consisting in:

• encoding (see definition at pages 19 and 22) the sensitive data, say x, that

we consider here as living in Fk2 , into a codeword of a k-dimensional linear

subcode C of Fn2 ,

• encoding the mask y drawn at random from Fn−k2 into a codeword of an

(n− k)-dimensional linear subcode D of Fn2 .

The masked version of x equals then the sum of these two codewords. This is

only a first-order masking scheme in terms of probing security, if there is a reuse

of the mask.

If G is a generator matrix of C and G′ a generator matrix of D, we take then:

z = x×G+ y ×G′; x ∈ Fk2 , y ∈ Fn−k2 . (12.6)

For allowing the final demasking at the end of the computation, it must be

possible to recover x from z (but to avoid leaks, the algorithm should not include

a computation of x, unless it has arrived to its end). This means that C and D

must have trivial intersection, that is, be supplementary23:

Fn2 = C ⊕D.

Every vector z ∈ Fn2 can then be written in a unique way as in (12.6). Note that

this provides the possibility of removing the mask without the knowledge of it.

As mentioned above, d-th order masking is a particular case of DSM: we have

then n = (d+ 1)k, C = Fk2 ×{0dk}, where 0dk is the all-zero vector of length dk,

G = [Ik,k : 0k,dk], where Ik,k is the k× k identity matrix and 0k,dk is the k× dk
all-zero matrix, D = {(y0, . . . , yd); yi ∈ Fk2 ,

∑d
i=0 yi = 0k} and, for instance:

G′ =


Ik,k Ik,k 0k,k . . . 0k,k
Ik,k 0k,k Ik,k . . . 0k,k
...

...
...

. . .
...

Ik,k 0k,k . . . . . . Ik,k

 .
But an advantage of DSM is that, when C and D are properly chosen, it can

be also a countermeasure against FIA (while classical masking cannot), which

helps reduce the cost of the overall countermeasure against SCA and FIA.

A pair (C,D) of supplementary codes is called a linear complementary pair

23 We prefer using this term rather than complementary, which is ambiguous; we use the
classical notation ⊕ to denote such direct sum, which needs not to be confused with XOR.
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(LCP) of codes. It is shown in [131] that if the monovariate leak L (which is a

pseudo-Boolean function) has numerical degree 1, the encoding with an LCP of

codes (C,D) as described above protects against d-th order HO-SCA if and only

if the dual distance of D satisfies d(D⊥) > d. Moreover, as shown in [960, Section

3.2], d-th order bit-probing security is then ensured, because by definition, less

than d(D⊥) of those equations expressing the coordinates of z = x×G+ y×G′
by means of the coordinates of x and y, do not allow to eliminate the coordi-

nates of y since less than d(D⊥) columns of G′ are linearly independent (since

as we saw in a remark at page 32, the dual distance of a linear code equals the

minimum nonzero number of linearly dependent columns in its generator ma-

trix). The encoding protects against the injection of faults of Hamming weights

at most d if and only if the minimum distance of C satisfies d(C) > d. Note that

when encoding is made over bits, the ensured security is the so-called bit-probing

security , whose order can be higher than the probing security order when the

attacker can probe symbols belonging to a larger alphabet.

According to the observations above, the security parameter against both HO-

SCA and FIA is min{d(C), d(D⊥)} − 1. But taking this minimum as the sole

security parameter supposes that the orders of needed protection against SCA

and FIA are comparable. This is not always the case. In a safety context like

autonomous trains and cars, it is crucial to ensure the detection of faults and

side-channel leakage is a lesser risk, while in the context of internet of things

(IoT) or banking, minimizing side-channel leakage is a premium objective. We

must then take the pair (d(C)− 1, d(D⊥)} − 1) for security parameter.

In the case of Boolean masking , the codes, seen above, C = Fk2 × {0dk} and

D = {(y0, . . . , yd); yi ∈ Fk2 ,
∑d
i=0 yi = 0k} satisfy d(C) = 1 and d(D⊥) = d + 1.

This confirms that Boolean masking protects against SCA but not FIA.

If D equals the dual C⊥ of C in an LCP of codes, then C and D are so-called

linear complementary dual (LCD) codes. Such codes are well adapted to the

cases where the need for protection is the same for SCA and FIA ; the secu-

rity parameter of an LCD code C when used in so-called orthogonal direct sum

masking (ODSM ) [131, 288] is simply d(C)− 1.

The notion of LCD code is anterior to DSM. In [1134], Yang and Massey intro-

duced it as an optimal linear coding solution for a rather particular problematic:

the two user binary adder channel. They provided a necessary and sufficient

condition under which a cyclic code is LCD. In [75], Bhasin et al. have shown

how also using and implementing LCD codes and LCP of codes to strengthen

encoded circuit against hardware Trojan horses, while minimizing the cost.

Note that D = C⊥ if and only if G′ is a parity check matrix of C, that is,

G×G′t = 0k,k, where G′
t

is the transposed matrix of matrix G′. We can denote

then G′ by H and use an orthogonal projection to recover x and y from z: the

relation z = x×G+y×H implies z×Ht = y×H×Ht and z×Gt = x×G×Gt,
and this provides x and y since “C is LCD”, “the matrix H ×Ht is invertible”

and “the matrix G×Gt is invertible” are equivalent.

Since the introduction of DSM, and the investigation of numerous constructions
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of LCD codes in [288], many papers have studied constructions of such codes

and of LCP of codes, see a description in [295], where a problematic is also de-

scribed: faults are detected by verifying that masks have not been altered during

processing; checking this requires to have access to the masks. A possibility is to

mask with z = (x×G+y×G′, y) instead of z = x×G+y×G′. The leak is then

modified. Some MDS codes can keep the same protection ability when changing

this way the encoding (the code of generator matrix [G′ : In−k], where In−k is

the identity matrix, can have the same dual distance as the code of generator

matrix G′, which can be MDS).

Remark. A particular case24 of DSM25 is inner product masking (IPM ), whose

principle for masking a sensitive data x ∈ F2n is to generate a vector over F2n

whose inner product with some public vector equals x, see [491, 46, 44, 45] (see

also [960, 289, 366]; the latter reference expresses the side-channel resistance of

IPM in terms of, classically, the minimum distance of D⊥, and less classically,

the first nonzero coefficient in its weight enumerator). With the public vector

(1, l1, . . . , ln−1), since we want x = (x × G + y × G′) · (1, l1, . . . , ln−1); x ∈ F2n ,

y ∈ Fn−1
2n as explained above, we can take (as shown in [960]): G = (1, 0, . . . , 0)

(and C has then minimum distance 1, which does not allow detecting FIA) and

y×G′ = (y · (l1, . . . , ln−1), y1, . . . , yn−1), and code D has then generator matrix:
l1 1 0 . . . 0

l2 0
. . .

. . .
...

...
...

. . .
. . . 0

ln−1 0 . . . 0 1


(the masked information is z = (x +

∑n−1
i=1 li yi, y1, . . . , yn−1) and we have x =

z · (1, l1, . . . , ln−1)). Code D⊥ has generator matrix (1, l1, . . . , ln−1) (and the or-

der of protection against SCA equals the Hamming weight of (l1, . . . , ln−1)).

IPM also contains Boolean masking as a particular case (take (l1, . . . , ln−1) =

1n−1) as well as the methods of masking using secret sharing [974] (see Relation

(3.43), page 169). It has been recently modified in [365], so as to allow fault

injection detection as well. 2

An important issue is to compute (in particular, multiply) efficiently over en-

codings. In the case of IPM, solutions exist [46, 44], but for DSM, it remains an

open challenge, except in a simplified framework addressed in [260].

24 With a practical difference, though: IPM works over field elements while DSM often works
over bits; hence probing security may not mean the same in both cases. Nevertheless, it is
proved in [960] that if the deterministic leaks of the shares are linear functions of their
bits, the bounded moment security order of the IPM is equal to the probing security order
of the bitwise encoding obtained by decomposing the elements of F2n over a basis over F2.

25 And also of leakage squeezing, that we saw at page 467, and which is also a particular case

of DSM, but only when F is linear.
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12.1.6 Robust codes, AMD codes and vectorial functions

In many cases of error detection, the assumption that the most probable er-

rors have low Hamming weight cannot be guaranteed. As shown successively in

[666, 667, 664], the classical method of error detection by codes having large

enough minimum distance is then often not efficient. In fact, it is in many cases

almost impossible to predict the error patterns (e.g. in the case of address de-

coder errors, or with power glitches, or when data is compressed for transmission

and decompressed after). For instance, the error characteristics in silicon devices

like memories are changing and in many instances can be unpredictable. This is

becoming still more true while embedded systems are becoming ubiquitous, and

their roles are becoming more mission critical for sensitive applications. Taking

again the example of memories, embedded ones are exposed to unpredictable en-

vironments (when for instance moved in a plane from sea level, where cosmic rays

are weak, to high sky where the error rate can be large) and their reliability is

now a matter of critical importance and safety. This situation of unpredictability

is similar to fault injection attacks (FIA) on hardware implementations of cryp-

tographic algorithms (as also observed in the references above): classical methods

of error detection are ineffective when the error distribution within a device is

controlled by an adversary. For instance, when an attacker induces stress (see

[82]) resulting in that bits vanish one after the other in the processed data, this

results in the injection of an error on each bit which was equal to 1; when in-

creasing the stress, the error distribution turns to almost uniform. Classical codes

(and the codes seen in Subsection 12.1.5) may fail then to detect errors, when

the adversary succeeds in producing an error changing a correct codeword into

a wrong codeword. The worst error masking probability is the maximal proba-

bility that a given error e transforms a codeword into a codeword. In the case

of linear codes, the undetectable errors are the codewords themselves, and the

attacker only needs, for his error injection, to know the code which is used in

the device and to be able to inject codewords as errors. The worst error masking

probability being then equal to 1 (worst possible), linear codes are not adapted

to minimizing worst error masking probability.

Codes robust against fault injection with unknown error
probability
In [667, 717, 665] has been presented the notion of robust code, aiming at provid-

ing uniform protection against all errors, without any assumption on the error

distribution, or on the capabilities of an attacker:

Definition 87 Given a positive integer R, an unrestricted (i.e. non-necessarily

linear) code C ⊂ Fnq is called R-robust if the size of the intersection of C and

any of its translates e+ C, where e ∈ Fnq , e 6= 0n, is bounded above by R. Given

a code C, the smallest possible value of R having this property shall be denoted
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by RC :

RC = max
0n 6=e∈Fnq

|C ∩ (e+ C)|. (12.7)

A binary R-robust code C of length n with M = |C| is denoted by a triple

(n,M,R).

The code can be systematic (recall that this means there exists a subset I of

positions in codewords, called an information set of C, such that every possi-

ble tuple in FIq occurs in exactly one codeword within the specified coordinates

xi; i ∈ I; this implies that M = q|I|). Systematic codes are more practical for

error detection in computer hardware thanks to the separation between infor-

mation bits and check bits. The code equals then, up to a permutation of the

codeword coordinates, the graph of a function: {(x, F (x));x ∈ FIq}, for some

(not necessarily linear) function F . But we shall see that the code cannot then

be perfect robust.

The probability of missing an algebraic manipulation with a code C equals the

so-called probability of error masking, which for each possible error e is denoted

by Q(e) and is defined as:

Q(e) =
|C ∩ (e+ C)|

|C|
. (12.8)

The worst error masking probability maxe 6=0n Q(e) equals then RC
|C| . As observed

in [666], we have maxe 6=0n Q(e) ≥ |C|−1
qn−1 (with equality if and only if the code is

uniformly robust, see below), for any code of length n over Fq (which is easily

shown by using that the maximum of a sequence of values is always larger than

or equal to the arithmetic mean, and equals it if and only if the sequence is

constant, and observing that
∑
e 6=0n

Q(e) = 2
|C|
(|C|

2

)
= |C|−1); a little more can

be shown by using that the numerator in (12.8) is an integer. Note that there is

a slight error in [667] about this result: it is written that for every code, we have

Q(e) ≥ |C|−1
qn−1 for every e 6= 0n, which is false (suppose that the minimum distance

of the code is larger than 1 and take e smaller than the minimum distance).

A code is called a robust code if its worst error masking probability is strictly less

than 1, and it is called a uniformly robust code (or perfect robust code) if Q(e)

is constant for e 6= 0n, that is, Q(e) = |C|−1
qn−1 ,∀e 6= 0n (note that the minimum

distance of such code is necessarily 1). This is equivalent to saying that C is a

difference set in (Fnq ,+), that is, in the case q = 2 and assuming that C is neither

equal to {0n} nor to Fnq , that the indicator function of C is bent.

Robustness and worst error masking probability for supports of Boolean
functions and graphs of vectorial functions
1. Let C be the support of an n-variable Boolean function. Then if we denote by

∆ the symmetric difference between two sets, we have that |C ∆ (e+C)| = 2 |C|−
2 |C ∩ (e+C)| for every e ∈ Fn2 , and therefore |C ∩ (e+C)| = |C|− 1

2 |C ∆ (e+C)|.
Let us revisit the case where the function is bent : we know then that |C| =
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2n−1 + (−1)ε 2
n
2−1 for some ε ∈ F2, and |C ∆ (e+C)| = 2n−1, for every e 6= 0n;

this gives |C ∩ (e + C)| = 2n−2 + (−1)ε 2
n
2−1, Q(e) = 2n−2+(−1)ε 2

n
2
−1

2n−1+(−1)ε 2
n
2
−1 (equal

to the optimum 2n−1+(−1)ε 2
n
2
−1−1

2n−1 ), and C is uniformly robust (but cannot be

systematic since its size is not a power of 2). In [666] (and the references therein)

has been proposed for f the basic Maiorana-McFarland function f(x, y) = x · y;

x, y ∈ F
n
2
2 , n even, but any (binary) bent function would behave the same. In this

same reference is also proposed to take C = {(x, y) ∈ (F
n
2
q )2;x · y = u}, where q

is a power of a prime and n is even. This improves Q(e) in some cases (with a

different value according to whether u is zero or not). This same reference also

investigates codes which are the unions of the codes {(x, y) ∈ (F
n
2
q )2;x · y = u}

for some values of u.

2. Let C be now systematic, i.e. the graph of a vectorial function. We have, by

slightly completing [717]:

Proposition 190 Let C = {(x, F (x)), x ∈ Fk2} be the graph of a vectorial func-

tion F from Fk2 to Fr2, with k and r non-negative. The worst error masking proba-

bility of C equals the differential uniformity of F divided by 2k. It is then bounded

below by 2−r and equals this optimum if and only if F is perfect nonlinear.

Indeed, denoting e = (a, b), we have:

|C ∩ (e+ C)| =
∣∣∣∣{(x, y) ∈ (Fk2)2;

{
x = y + a

F (x) = F (y) + b

}∣∣∣∣ =
∣∣(DaF )−1(b)

∣∣ .
For a = 0k and b 6= 0k, this size is null and maxe 6=0k+r

|C ∩ (e+C)| equals then

the differential uniformity of F (see Definition 40, page 157). We know from the

bound due to Nyberg that it is then bounded below by 2k−r with equality if and

only if F is perfect nonlinear (in which case the derivatives are balanced). Since

C has size 2k, this gives the result.

Note that for this code, the value maxe 6=0k+r
Q(e), equal to 2−r, is larger than

|C|−1
qn−1 = 2k−1

2n−1 (no systematic code can be perfect robust).

Note also that, according to Nyberg’s result26 (Proposition 104, page 296), the

best codes C from Proposition 190 can exist only if k is even and r ≤ k
2 , that is,

the length n = k+ r and the dimension k satisfy n ≤ 3k
2 (i.e. their transmission

rate is at least 2
3 ). If this double condition is not satisfied, we can take F almost

perfect nonlinear, and the worst error masking probability of C is then 2−r+1.

It is observed in [717] that, thanks to the fact that the robust codes above

are nonlinear, the error detection for these codes depends on the encoded data

(while for a linear code, the set of missed errors is the same for all encoded data).

This makes for the attacker the set of necessary errors harder to determine, all

the more when the data depends on the secret key or when randomization is

applied. But this makes also, as observed in [690, 304], that the efficiency of

26 The situation is different in odd characteristic; then, PN (n, n)-functions exist for every n.
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these codes depends on the fact that the data be uniformly distributed, which

is not reasonable in many situations, in particular when the information bits of

messages are also controllable by an attacker. This limitation can be overcome

by algebraic manipulation detection (AMD) codes, that we address in the next

paragraph.

Codes and algebraic manipulation
A model for error injection has been introduced in [395] under the name of al-

gebraic manipulation. This model assumes that the attacker is able to modify

the value of some abstract data storage device, without having read-access to

the data. Such a device is denoted by
∑

(G) and can hold an element g (corre-

sponding to some secret s), from a public finite Abelian (additive) group G. The

attacker is not able to obtain any information about the element g stored in the

device
∑

(G). However, he can change the stored element g by adding an error

e ∈ G of his choice. After such algebraic manipulation (tampering), the abstract

storage device
∑

(G) will store the value g+e. The attacker can choose the value

e only on the basis of what he already knew about g before it was stored in the

device (his a priori knowledge of g). This models for instance the situation with

linear secret sharing schemes (see Subsection 3.6.1, page 168), in which the cor-

rectness of the secret s reconstructed from the shares of a qualified coalition of

players is guaranteed only if all these shares are correct. If the coalition contains

dishonest players and if the honest players in it are not able to reconstruct s on

their own (i.e. if they do not constitute a qualified coalition), then the dishonest

players can cause the reconstruction of a modified secret s′, and they can control

the difference between s and s′, thanks to the linearity of the secret sharing. In

particular, in a minimal qualified coalition of players, a single corrupted player

can cause the reconstruction of an incorrect secret.

Two types of fault injection attacks can be considered. In the weaker ones, the

adversary cannot choose the input. So, from the attacker’s point of view, the

source s is uniformly distributed; he can only inject an error e in the storage de-

vice
∑

(G), but he cannot change value s at his own discretion. In the stronger

version, the adversary knows the value s and moreover can choose it, and change

it after he got some information from the device (in a kind of adaptive chosen

attack). In both types of fault injection attacks, the value g stored in
∑

(G) is

hidden from the attacker.

The countermeasure against algebraic manipulation consists in using so-called

algebraic manipulation detection codes, which were introduced in [395] after that

observations were made in [481]. AMD codes encode an original information

s ∈ S as an element of g ∈ G in such way that any algebraic manipulation is

detected with high probability. No secret key is needed, contrary to the case of

message authentication codes.

Definition 88 An AMD code is a pair of two functions: a probabilistic encoding

function E : S → G from a set S into a finite Abelian group G, and a determin-
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istic decoding function D : G→ S ∪ {⊥}, where ⊥6∈ S symbolizes that algebraic

manipulation has been detected, satisfying that D(E(s)) = s with probability 1

for every s ∈ S.

The AMD code is called ε-secure for ε > 0 if, for every s ∈ S and for every

e ∈ G, the probability that D(E(s) + e) /∈ {s,⊥} is at most ε. It is called weak

ε-secure if, for every e ∈ G and for every s ∈ S sampled from S with uniform

distribution (independently of e, then), the probability that D(E(s) + e) /∈ {s,⊥}
is at most ε.

A systematic AMD code is an AMD code in which set S is a group and the

encoding function E has the form

E : S → G = S ×G1 ×G2

s→ (s, x, F (x, s)),
(12.9)

where G1 and G2 are groups, F is a function and x is randomly chosen with

uniform probability in G1. The decoding is then D(s′, x′, r′) = s′ if F (x′, s′) = r′,

and D(s′, x′, r′) =⊥ otherwise.

Given an AMD code, E(s) can safely be stored on
∑

(G) (supposed protected

from reading) so that the adversary who manipulates the stored value by adding

some nonzero e can cause it to decode to some s′ 6= s with probability at most

ε, only. AMD codes also allow the protection of hardware and memories against

FIA (seen in Section 12.1), see27 [1113].

Note that if the AMD code is ε-secure, then for every s ∈ S, the size |D−1(s)|
of the pre-image of s by D is necessarily at least 1

ε (this property will be used

below), since denoting by Es the set of all possible images of s by E, and choosing

e so that there exists in Es + e an element x of Es′ with s′ 6= s (and so D(x) =

s′ /∈ {s,⊥}), the size of Es needs to be at least 1
ε for allowing the probability

that D(E(s) + e) /∈ {s,⊥} to be at most ε.

Deterministic weak secure AMD codes are a randomization of systematic robust

codes (seen above), with maxe 6=0 Q(e) = maxe 6=0 Prob [D(E(s) + e) /∈ {s,⊥}].
Note that, as already seen, every (|G|, |S|, λ)-difference set D (see page 220) in

(G,+) where G = S × G1 × G2 (assuming that S is an additive group and

that such difference set exists) provides then a weak ε-secure AMD code with

ε = λ
|S| , by taking for E any bijection between S and D. In fact, it is enough

(and necessary) that every nonzero element e in S×G1×G2 can be written in at

most (rather than exactly) λ ways as the difference between two elements of D,

that is, |D ∩ (e+D)| ≤ λ. The graphs of perfect nonlinear (resp. almost perfect

nonlinear) (r, s)-functions have such property with λ = 2r−s (resp. λ = 2r−s+1).

In [395] is proposed the systematic AMD code with F (x, s) = xd+2 +
∑d
i=1 six

i,

where s ∈ Fdq , x ∈ Fq, which provides a systematic d+1
q -secure AMD code, thanks

to the fact that, when ex 6= 0, (x+ ex)d+2 − xd+2 equals a polynomial of degree

exactly d+1 (which matches any value at most d+1 times), and when ex = 0 and

27 In this reference is required for a systematic AMD code that, for any nonzero (ex, es),

Dex,es is non-constant on any section G1 × {s}.



490 Recent uses of Boolean and vectorial functions and related problems

es 6= 0,
∑d
i=1(si + [es]i)x

i−
∑d
i=1 six

i is a nonzero polynomial of degree at most

d (which matches any value at most d times). This construction is generalized

in [396], where is shown (by extending an idea from [1112] which worked with

generalized Reed-Muller codes) how systematic AMD codes can be deduced from

classical codes: from any subset S of GG1
2 (i.e. any code of length |G1| over G2

whose codewords are indexed in G1), we take for F (x, s) the coordinate of index

x in the codeword s; the condition for the ε-security of such AMD code is given

in [396, 397]. The AMD code from [395] given above corresponds to the case

where S equals the subset of a Reed-Solomon code (viewed as in the remark on

RS codes at page 62) whose elements correspond to monic polynomials of degree

d+ 2 with no term of degree d+ 1. Other examples of AMD codes are given in

[397, 668, 1112]. In [535] are proposed modifications of AMD codes, which can

have minimum distances larger than 1, and then not only detect injected faults

but also correct errors caused by natural reasons.

It is shown in [916] (which dealt with cheating detection in secret sharing) and

recalled in [396] that:

• for any ε-secure AMD code, we have |G| ≥ |S|−1
ε2 + 1;

indeed, given s ∈ S, applying the inequality |D−1(s′)| ≥ 1
ε for each s′ 6= s,

we have that the probability that D(E(s) + e) /∈ {s,⊥} when e is chosen

uniformly at random in G\{0} is at least |S|−1
ε(|G|−1) , and we have by hypoth-

esis that this probability is at most ε;

- as observed in [396], the inequality |G| ≥ |S|−1
ε2 + 1 cannot be an equality

for systematic codes, since for such codes, the size of Es (the set of all

possible images of s by E) equals |G1|, which is then at least 1
ε , and we

have also |G2| ≥ 1
ε because, for every s ∈ S and (es, ex) ∈ S×G1 \{(0, 0)},

we have maxeF∈G2
Prob [D(E(s) + (es, ex, eF )) /∈ {s,⊥}] ≥ 1

|G2| , as this

probability equals that of the event F (x+ ex, s+ es)−F (x, s) = eF , where

F (x+ ex, s+ es)− F (x, s) ∈ G2; these two inequalities imply |G| ≥ |S|ε2 ;

- moreover, it is shown in [396] (which adapted a proof from [1112] dealing

with a different notion of AMD codes) that, for any systematic ε-secure

AMD code with ε < 1, we have |G1| ≥ log |S|
ε log |G2| , where log is (for in-

stance) the base 2 logarithm; indeed, the code over G2 of all functions

x 7→ F (x, s) + eF , where (s, eF ) ranges over S×G2, contains |S| |G2| code-

words of length |G1| and has minimum distance at least |G1|(1 − ε) > 0

(since the code is ε-secure); the bound is then deduced from the Singleton

bound28 (see page 21): |G1|(1 − ε) ≤ |G1| − log|G2|(|S| |G2|) + 1, that is,

|G1|ε ≥ log|G2|(|S|);
• for weak ε-secure AMD codes, we have |G| ≥ |S|−1

ε + 1, indeed, all that we

can then say is that |D−1(s′)| ≥ 1.

A stronger definition of AMD codes has been proposed in [1112, 1113], in which

the condition becomes that the probability that D(E(s) + e) /∈ {⊥} is at most ε

28 Recall that this bound is valid for (unrestricted) codes over any alphabet.
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(hence, in this definition, every undetected algebraic manipulation is treated as a

success of the adversary, while in Definition 88, when the source message is unal-

tered, it is not). This is preferred for some applications (like non-malleable secret

sharing schemes [558]). More precisely, systematic AMD codes detect algebraic

manipulation for errors (es, ex, eF ), under the condition that the information

part contains an error: es 6= 0 while this stronger version detects errors with zero

information part (es = 0, ex, eF ); for some secure architectures, the integrity of

redundant bits of the codes is indeed also important. The AMD codes described

above from [395] satisfy this stronger requirement as well as the main construc-

tion in [397]. Lower bounds on the values of ε such that such codes can be ε-secure

are studied in [1113] (with other notation) and constructions are given.

The first domains of application of AMD codes have been, as indicated in

[395], robust secret sharing schemes (which ensure that, given a coalition S of

players able to reconstruct some secret value s, no sub-coalition of (dishonest)

players unable on their own to reconstruct s can modify their shares and lead

with the other players from S to the reconstruction of some value s′ = s + t,

where t 6= 0 could be controlled by the dishonest players; this is achieved by

applying a linear secret sharing scheme to an encoding of the secret by an AMD

code rather than to the secret itself) and robust fuzzy extractors (enabling to

recover a uniformly random key from a noisy and non-uniform secret, such as

those obtained by biometrics, in such way that the key can be recovered from any

value close to the secret) [395]. Other cryptographic applications are the message

authentication codes which remain secure when the adversary can manipulate the

key, unconditionally secure multiparty computation protocols with a dishonest

majority, anonymous message transmission (and quantum communication), and

more applications mentioned in [396, 397]. Applications to memory security have

been developed in [1114, 534].

12.2 Fully homomorphic encryption and related questions on
Boolean functions

We refer to [839, 306, 305] for the present section. We observe nowadays two

complementary phenomena: the proliferation of small embedded devices having

growing but still limited computing (and data storage) facilities, and the de-

velopment of cloud services with extensive storage and computing means. The

cloud becomes then a more and more unavoidable complement to embedded de-

vices. But the outsourcing of data processing raises new privacy concerns. The

users want to prevent the servers from learning about their data, while these

servers are needed to help computing values from them. Gentry’s fully homo-

morphic encryption (FHE ) scheme [536, 537] gives a theoretical solution to this

problem, by allowing encryption CH preserving both operations of addition and
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multiplication:

CH(m+m′) = CH(m) + CH(m′); CH(mm′) = CH(m) CH(m′). (12.10)

Given a vectorial function F from a finite field to itself (possibly, to a subfield),

if Alice wants to compute F (m) and needs the help of the cloud for that, she can

send CH(m) to Claude29, who computes F (CH(m)), which equals CH(F (m)),

thanks to (12.10) and since F has a polynomial representation. After decryp-

tion, Alice gets F (m) but the server has not learned anything about m nor

about F (m).

But repetitive use of homomorphic encryption requires more computational

power and storage capacity than what can offer small devices (see more in [305]).

A solution to this problem is that Alice uses a hybrid symmetric-FHE encryption

protocol, which works according to the following phases:

1. Initialization. Alice sends to Claude her homomorphic public key pkH and

the homomorphic ciphertext of her symmetric key CH(skS) (which is much

easier to compute than CH(m) since skS is much shorter than m, and which

needs to be computed once for all further communication with Claude).

2. Storage. Alice encrypts her data m with the symmetric encryption scheme

CS , and sends CS(m) to Claude.

3. Evaluation. Claude calculates CH(CS(m)) and homomorphically evaluates

the decryption of the symmetric scheme on Alice’s data and gets CH(m).

4. Computation. Claude homomorphically executes the treatment of F on Alice’s

data, and gets CH(F (m)).

5. Result. Claude sends CH(F (m)) and Alice gets F (m) by deciphering (deci-

phering being much less costly than enciphering in FHE).

However, the best adapted generations of FHE, that is, 2nd and 3rd generations,

are noise-based (being built on the learning with errors [LWE] problem) and need

expensive “bootstrapping” when the noise grows too much. It is then mandatory

to reduce the error growth during evaluation-computation and this is more or

less equivalent to reducing the number of multiplications for the 2nd generation

(more precisely, to reduce the multiplication depth), and the number of additions

for the 3rd generation (in fact, the correct parameter is much more complex, it

also depends of multiplications, see [537], but describing it precisely would be

too long). The choice of the symmetric cipher CS is then central for reducing

the cost.

12.2.1 The FLIP cipher

The multiplicative depth of AES being too large (and its additive depth being

still larger), other symmetric encryption schemes have been proposed: block ci-

phers, like LowMC [11], Rasta and Agrasta [480], and the stream cipher Kreyvium

29 The name used now in cryptography to personify the cloud.
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Figure 12.1 Filter permutator construction.

[192]. These solutions have drawbacks: Kreyvium is expensive (all the more if it

needs to be started again, which can happen often), and lowMC has low com-

plexity rounds, but their iteration makes it unadapted, as almost any other block

cipher (if we look precisely how they can work with HeLib [584] for instance),

except for Rasta and Agrasta, which are also well adapted for multiparty com-

putation, but whose originality is not in the choice of the S-box, which is why

we do not describe them here.

The filter permutator and the FLIP cipher
The FLIP cipher is an encryption scheme described in [839], which tries to min-

imize the parameters mentioned above (in particular the multiplicative depth).

It is based on a new stream cipher model, called the filter permutator (see Fig-

ure 12.1 below), consisting in updating at each clock cycle a key register by a

permutation of the coordinates, piloted by a pseudorandom number generator

(PRNG), and in filtering the resulting permuted key with a Boolean function f

whose input is the whole register30 and whose output provides the keystream.

Applying the non-linear filtering function directly on the key bits allows reduc-

ing the noise level when used in hybrid symmetric-FHE encryption protocols. In

theory, there is no big difference between the filter model seen at page 39 and

the filter permutator since the LFSR is simply replaced by a permutator. But in

practice, there is much difference since the filter function has hundreds of input

bits instead of about 20, and there is another important difference that we shall

see in the next subsection.

30 A future version of FLIP gets rid of this constraint.
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In the versions of the cipher proposed in [839], function f has n = n1 +n2 +n3 ≥
500 variables, where n2 is even and n3 equals k(k+1)

2 t for some k and t. It is

defined as:

f(x0, . . . , xn1−1, y0, . . . , yn2−1, z0, . . . , zn3−1) =

n1−1⊕
i=0

xi ⊕
n2/2−1⊕
i=0

y2i y2i+1⊕

t⊕
j=1

Tk

(
z (j−1)k(k+1)

2
, z (j−1)k(k+1)

2 +1
, . . . , z (j−1)k(k+1)

2 +
k(k+1)

2 −1

)
,

where triangular function Tk is defined as:

Tk(z0, . . . , zj−1) = z0 ⊕ z1z2 ⊕ z3z4z5 ⊕ · · · ⊕ z k(k−1)
2
· · · z k(k+1)

2 −1
.

We have seen in Subsection 6.2.6, page 292, how calculating the nonlinearity

of direct sums, in Subsection 9.1.4, page 372, how calculating their algebraic

immunity, and we have calculated in Subsection 10.3.1, page 395 the values of

the nonlinearities and algebraic immunities of triangular functions.

Four sets of parameters were proposed for the filtering function. The Hamming

weight of the input to the function being forced to n
2 where n is the size of

the register, the four proposed instances, displayed in Table 12.1, ensure that(
n
n/2

)
≥ 2λ, where λ is a security parameter (the number of elementary operations

needed for a cryptanalysis by exhaustive search being 2λ). There exists a guess

Name n n1 n2 t k λ

FLIP-530 530 42 128 8 9 80

FLIP-662 662 46 136 4 15 80

FLIP-1394 1394 82 224 8 16 128

FLIP-1704 1704 86 238 5 23 128

Table 12.1 n: total number of variables, n1: linear part, n2: quadratic part, t: number of
triangular functions, k: degree of the triangular functions; λ: resulting security parameter.

and determine attack on a preliminary version of FLIP [490]. It is not efficient

on the regular versions of FLIP. As checked in [839], FLIP is well suited for

reducing the increase of the noise in homomorphic encryption, particularly for

the 3rd generation, and even for the 2nd generation.

12.2.2 Boolean functions with restricted inputs

It was asserted in [839] that function f has sufficiently good cryptographic pa-

rameters (small balance bias, large algebraic degree, large nonlinearity, large

algebraic immunity and fast algebraic immunity), but by definition in the filter

permutator, the input to f has constant Hamming weight (equal to the weight

of the secret key) while the study of f was made over the whole space Fn2 . An
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important question has then been to see if the filtering function proposed in

[839] maintains good behavior with respect to classical attacks when its domain

is restricted. This has been established in a subsequent paper [306]. The work

consisted in:

• reconsidering all classical attacks in the framework of Boolean functions re-

stricted to some generic subset E of Fn2 (resulting from the specifications

of the cryptosystem which uses them, and also possibly of the cryptanal-

ysis performed on it, for instance a guess and determine attack), and in

particular to a set of vectors of constant Hamming weight,

• studying how a generic function can contribute to the resistance against each

attack in such framework,

• revisiting all related criteria, and studying constructions of functions satisfying

the new versions of these criteria,

• studying specifically FLIP’s function and seeing if it provides a good trade-off.

Set E may change when processing the algorithm or during the cryptanalysis.

We may also want the function to be usable in a variety of situations. We are then

interested in Boolean functions achieving good trade-off between all important

cryptographic criteria, when they are restricted to each set E in some family E .

A particular family plays a special role for FLIP, as explained above:

E = {En,1, . . . , En,n−1}, where En,k = {x ∈ Fn2 ; wH(x) = k}.

These sets are called slices in some papers (see e.g. [504, 505]). Note that symmet-

ric functions (see Section 10.1, page 383), among which are balanced functions,

bent functions and functions with optimal algebraic immunity, are constant on

each set En,k and lose then completely their desirable properties. We shall see

other examples of similar degradation.

We recall below from [306] the general study of the most important cryptographic

criteria in such general framework and how they particularize when E lives in

class E above.

Note that for the FLIP cipher, Siegenthaler’s correlation attack (see page 106)

does not seem to apply. We do not study then the resilience of restricted Boolean

functions, but such study could be useful for other ciphers and for the resistance

to guess and determine attacks.

Remark. A probabilistic and asymptotic study has been made in [504, 507, 508]

on the restrictions of Boolean functions to sets of inputs of fixed Hamming weight.

We refer the reader interested to these papers (which also contain other inter-

esting results); we deal here with fixed (generic) numbers of variables.

The nonlinearity of Boolean functions under non-uniform input distribution

(which is another, possibly more general, way of not reducing the study of

Boolean functions to the usual framework) has been also studied in [525], but

the chosen distribution is binomial and does not fit with the framework of FLIP

nor that of guess and determine attacks. 2
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Balance
We denote by wH(f)k the Hamming weight of the restriction of f to En,k:

wH(f)k = |{x ∈ Fn2 , wH(x) = k, f(x) = 1}|.

For all n ≥ 2, there exist balanced Boolean functions which are unbalanced

on En,k for every k ∈ [1, n − 1]; these functions can even be (n − 1)-resilient

(and remain then balanced when at most n − 1 of their variables are arbi-

trarily fixed): an example is the first elementary symmetric Boolean function

σ1(x) =
⊕n

i=1 xi = wH(x) [mod 2]. But there exist, for some values of n, bal-

anced functions which are balanced on each En,k; k ∈ [1, n− 1]:

Definition 89 We call weightwise perfectly balanced the functions which are

balanced on any En,k for k = 1, . . . , n− 1, that is, such that:

∀k ∈ [1, n− 1], wH(f)k =

(
n
k

)
2
, (12.11)

and such that f(0n) = 0 and f(1n) = 1.

The double condition “f(0n) = 0 and f(1n) = 1” makes f globally balanced and

is not restrictive for balanced functions satisfying (12.11), up to the addition

of constant 1. Of course, such functions can exist only if
(
n
k

)
is even for every

k = 1, . . . , n− 1, i.e. n is a power of 2.

Necessary conditions on the Algebraic Normal Form of Boolean functions to be

weightwise perfectly balanced are given in [306]. A secondary construction based

on the “indirect sum” (see Theorem 21, page 329) has been given in this same

reference. We recall the proof.

Proposition 191 [306] Let f , f ′ and g be weightwise perfectly balanced n-

variable functions and let g′ be any n-variable Boolean function, then

h(x, y) = f(x)⊕
n∏
i=1

xi ⊕ g(y)⊕ (f(x)⊕ f ′(x))g′(y); x, y ∈ Fn2

is a weightwise perfectly balanced 2n-variable function.

Proof.

• If wH(x, y) = 0 then h(x, y) = 0.

• If k ∈ {1, . . . , n − 1}, then, the set {(x, y) ∈ F2n
2 ;wH(x, y) = k} equals the

disjoint union of the following sets:

– {0n} × {y ∈ Fn2 ;wH(y) = k}, on which h(x, y) equals g(y) and is then

balanced;

– {x ∈ Fn2 ;wH(x) = i} × {y}, where 1 ≤ i ≤ k and wH(y) = k − i, on

each of which h(x, y) equals f(x)⊕ g(y) if g′(y) = 0 and f ′(x)⊕ g(y)

if g′(y) = 1; in both cases, it is balanced;

• If k = n, then the set {(x, y) ∈ F2n
2 ;wH(x, y) = k} equals the disjoint union

of the following sets:
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– {(0n, 1n)}∪ {(1n, 0n)}, on which h(x, y) equals respectively 1 and 0 and

is then globally balanced;

– {x ∈ Fn2 ;wH(x) = i} × {y}, where 1 ≤ i ≤ n− 1 and wH(y) = n− i, on

each of which h(x, y) equals f(x)⊕ g(y) if g′(y) = 0 and f ′(x)⊕ g(y)

if g′(y) = 1; in both cases, it is balanced;

• If k ∈ {n + 1, . . . , 2n − 1}, then the set {(x, y) ∈ F2n
2 ;wH(x, y) = k} equals

the disjoint union of the following sets:

– {1n} × {y ∈ Fn2 ;wH(y) = k − n}, on which h(x, y) equals g(y) and is

then balanced;

– {x ∈ Fn2 ;wH(x) = i} × {y}, where k − n + 1 ≤ i ≤ n − 1 and wH(y) =

k − i, on each of which h(x, y) equals f(x) ⊕ g(y) if g′(y) = 0 and

f ′(x)⊕ g(y) if g′(y) = 1; in both cases, it is balanced;

• If k = 2n, then wH(x, y) = k is equivalent to x = y = 1n, then h(x, y) = 1. 2

Noting that f(x1, x2) = x1 is weightwise perfectly balanced, we can recursively

build weightwise perfectly balanced Boolean functions of 2` variables, for all ` in

N∗. For instance, with f = f ′, we obtain the following class:

f(x1, x2, . . . , x2`) =
⊕̀
a=1

2`−a⊕
i=1

2a−1−1∏
j=0

xi+j2`−a+1 .

In [787] is proposed another construction based on the nice idea that if a Boolean

function f on F2n satisfies f(0n) = 0, f(1n) = 1 and f(x2) = f(x) ⊕ 1 for all

x ∈ F2n \F2, the function over Fn2 obtained by decomposing x over a normal basis

is weightwise perfectly balanced. Indeed, the transformation x 7→ x2 results in a

cyclic shift. These functions are invariant under a shift by two positions of the

input (we already evoked in Section 10.2, page 392, the interest and risk of such

rotation symmetry). The restricted nonlinearities of the functions (see definition

below) are also studied.

In [1074] is given a large family of Boolean functions which are weightwise per-

fectly balanced if n is equal to a power of 2 and weightwise almost perfectly

balanced (see below) otherwise, and which have optimal algebraic immunity and

keep good algebraic immunity when restricted.

It is possible to extend the construction of Proposition 191 to get for all n

weightwise almost perfectly balanced functions, satisfying by definition that for

all k ∈ [1, n − 1], wH(f)k equals
(nk)
2 when

(
n
k

)
is even and

(nk)±1

2 when
(
n
k

)
is

odd, see the proof and more results in [306].

The transformation f 7→ (g →
∑
x∈Fn2

(−1)f(x)+g(x)), where g ranges over the

set of all symmetric Boolean functions null at zero input, is introduced in this

same reference. This transformation is similar to the Walsh transform, but with

symmetric functions playing the role played normally by affine functions. It is

shown that, for every n-variable Boolean function f , the quadratic mean of the

sequence: k →
∑
wH(x)=k(−1)f(x) equals 1√

n+1
times the quadratic mean of the

sequence: g →
∑
x∈Fn2

(−1)f(x)+g(x).
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Nonlinearity
The Hamming distance between a function f and a linear function `a(x) = a · x
on inputs ranging over some set E equals

dE(f, `a) =
|E|
2
− 1

2

∑
x∈E

(−1)f(x)⊕a·x

(sum performed in Z). The minimal distance nlE(f) between f and affine func-

tions over E, that we shall call nonlinearity with inputs in E, equals then:

nlE(f) =
|E|
2
− 1

2
max
a∈Fn2

∣∣∣∑
x∈E

(−1)f(x)⊕a·x
∣∣∣.

Since
∑
a∈Fn2

(∑
x∈E(−1)f(x)⊕a·x

)2

= 2n |E|, we have then:

nlE(f) ≤ |E|
2
−
√
|E|
2

. (12.12)

For E ( Fn2 , this bound is in general not achievable with equality (contrary to

the unrestricted case for n even). In the case of E = En,k, it is never tight, except

maybe for two particular pairs (n, k): (50, 3) and (50, 47), since Erdös showed

that the binomial coefficient
(
n
k

)
with 3 ≤ k ≤ n/2 is the square of an integer for

the single case
(

50
3

)
.

Bound (12.12) can be improved:

Proposition 192 [306] Let E be a subset of Fn2 and f a Boolean function over

E. Then:

nlE(f) ≤ |E|
2
− 1

2

√
|E|+ λ,

where

λ = max
a∈Fn2 ;a6=0n

∣∣∣ ∑
(x,y)∈E2

x+y=a

(−1)f(x)⊕f(y)
∣∣∣.

Proof. For every nonzero a ∈ Fn2 , we have:

∑
b∈Fn2 ; a·b=0

(∑
x∈E

(−1)f(x)⊕b·x

)2

=
∑

(x,y)∈E2

(−1)f(x)⊕f(y)
∑

b∈Fn2 ; a·b=0

(−1)b·(x+y)

= 2n−1
∑

(x,y)∈E2

x+y∈{0n,a}

(−1)f(x)⊕f(y),

which implies:

max
b∈Fn2 ; a·b=0

∣∣∣∑
x∈E

(−1)f(x)⊕a·x
∣∣∣ ≥√√√√|E|+ ∑

(x,y)∈E2

x+y=a

(−1)f(x)⊕f(y).
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If
∑

(x,y)∈E2

x+y=a

(−1)f(x)⊕f(y) is negative, then we can apply this inequality to func-

tion f ′(x) = f(x) ⊕ v · x where v · a = 1; we have
∑

(x,y)∈E2

x+y=a

(−1)f
′(x)⊕f ′(y) =

−
∑

(x,y)∈E2

x+y=a

(−1)f(x)⊕f(y). Relation (3.1), page 99, completes the proof. 2

Note that this result applied for E = Fn2 proves again that the derivatives of

bent functions are all balanced.

More observations are made for E = En,k in [306] and the case of direct sums is

studied. Proposition 192 is a particular case of a more general and slightly more

complex result given in this same reference, which has been generalized in [878],

where the consequences are studied in detail.

The maximal value of nlE(f) is the covering radius of the punctured first or-

der Reed-Muller code obtained by deleting all the coordinates whose indices lie

outside E and is then at least d
2 , where d is the minimum distance of this code.

For E = En,k, this minimum distance has been determined by Dumer and

Kapralova [488]; we have:

• for 0 ≤ k < n/2, d =
(
n−1
k−1

)
• for k = n/2, d =

(
n−2
k−2

)
• for n/2 < k ≤ n− 1, d =

(
n−1
k

)
• and for k = n, d = 1.

The maximal value of nlEn,k(f) is then nonzero except for particular values of

k.

Nevertheless, fixing the input Hamming weight of some functions may deteri-

orate their nonlinearity in an extreme way: for every n, there exists f of large

nonlinearity such that nlk(f) = 0,∀k = 0, . . . , n. For instance, the (bent) ele-

mentary symmetric function σ2 (n even) has this latter property (like any other

symmetric function). We leave open the determination of all the bent n-variable

Boolean functions such that nlk(f) = 0,∀k = 0, . . . , n. Those which are quadratic

have been studied in [306], but the proof was incomplete, because the third item

of the next technical lemma was viewed as straightforward while it is not.

Lemma 13 Let n be any positive integer.

1. The n-variable Boolean functions such that nlk(f) = 0 for every k = 1, . . . , n

are the functions of the form

f(x) =

n⊕
i=1

xi ϕi(x)⊕ ϕ0(x), (12.13)

where ϕ0, ϕ1, . . . , ϕn are symmetric Boolean functions.

2. Up to the addition of an affine function, such function equals

n⊕
i=1

`i(x)σi(x), (12.14)

where σi is the i-th elementary symmetric Boolean function and where the `i’s

are all affine.
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3. If n ≥ 6, then f is quadratic if and only if, up to the addition of an affine

function, we have:

f(x) = `(x)σ1(x)⊕ ε σ2(x), (12.15)

where ε ∈ F2, and `(x) is a linear function.

Proof. 1. Any function of the form (12.13) coincides with an affine function on

every En,k since each symmetric function is constant on it, and conversely, if

a Boolean function f coincides on every En,k with an affine function, say with

`k(x) =
∑
i∈Ik xi ⊕ εk, then defining, for every x ∈ En,k and every i = 1, . . . , n,

that ϕi(x) = 1 if i ∈ Ik and ϕi(x) = 0 otherwise, and ϕ0(x) = εk, we have

f(x) =
⊕n

i=1 xi ϕi(x)⊕ ϕ0(x), where the ϕi’s are symmetric functions.

2. Expressing each function ϕ0, . . . , ϕn by means of the elementary symmetric

functions σ1, . . . , σn, we obtain, up to the addition of an affine function, f(x) =⊕n
i=1 `i(x)σi(x), where the `i’s are all affine.

3. All the terms obtained after expansion of
⊕n

i=3 `i(x)σi(x) in (12.14) have

degree at least 3 and, using the uniqueness of the ANF of a Boolean function,

f is quadratic if and only if all those whose degree is at least 4 cancel and

those of degree 3 are cancelled by those from `2(x)σ2(x) (the expression of the

function can then be taken equal to the quadratic part of (12.14) expanded). Let

us translate this into explicit conditions on (12.14).

For every i, j = 1, . . . , n, we have xj σi(x) = (
⊕

I⊆{1,...,n}
|I|=i,j∈I

xI)⊕ (
⊕

I⊆{1,...,n}
|I|=i+1,j∈I

xI).

We deduce that, writing `i(x) =
⊕

j∈Ji xj ⊕ εi, we have, for i < n:

`i(x)σi(x) =

 ⊕
I⊆{1,...,n}

|I|=i,|I∩Ji| [mod 2]=εi⊕1

xI

⊕
 ⊕

I⊆{1,...,n}
|I|=i+1,|I∩Ji| odd

xI

 , (12.16)

since each xj , j ∈ Ji, contributes once for each xI such that |I| = i and j ∈ I
and once for each xI such that |I| = i+ 1 and j ∈ I. And for i = n, `n(x)σn(x)

equals σn(x) if |Jn| [mod 2]= εn ⊕ 1 and is zero otherwise. Hence:

• for i = n, we have `n(x)σn(x) = (|Jn| [mod 2]⊕ εn)σn(x),

• for 1 ≤ i ≤ n − 1, specifying the values of the two sub-sums in (12.16), we

have:

– if 0 < |Ji| < n, then `i(x)σi(x) contains terms of degree i but not all

of them (since both parities can be achieved by |I ∩ Ji| when |I| = i)

and terms of degree i + 1 but, if i ≤ n − 2, not all of them as well,

and if i = n− 1 the part in σi+1 = σn has coefficient |Jn−1| [mod 2],

– if |Ji| = 0, then `i(x)σi(x) = εi σi(x) (note that, for i = n − 1, the

coefficient of σi+1, which is then 0, takes the same value |Jn−1| [mod

2], obtained above for 0 < |Ji| < n),

– if |Ji| = n, then `i(x)σi(x) = (σ1(x)⊕ εi)σi(x) = (i [mod 2]⊕εi)σi(x)⊕
(i + 1 [mod 2])σi+1(x) (and the coefficient i + 1 [mod 2] of σn for

i = n− 1 matches the value |Jn−1| [mod 2] above as well).
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It cannot then happen, when the function is quadratic, that 0 < |Ji| < n

for some value of i ≥ 3 and |Ji| = 0 or |Ji| = n for another value of i ≥ 3.

Then f is quadratic if and only if we have εn = (|Jn|+ |Jn−1|) [mod 2] and,

addressing first the two latter cases above and then the first case:

• either, for every i = 2, . . . , n− 1, we have |Ji| = ηi n with ηi ∈ {0, 1} and for

i ≥ 3, εi = (ηi + ηi−1) i [mod 2],

• or, for every i = 3, . . . , n − 1, we have 0 < |Ji| < n and the two follow-

ing sets {I ⊆ {1, . . . , n}; |I| = i and |I ∩ Ji| [mod 2] = εi ⊕ 1} and {I ⊆
{1, . . . , n}; |I| = i and |I ∩ Ji−1| odd} are equal. Denoting by zi the vector

of Fn2 of support Ji, by B≥3 the set of vectors of Fn2 of Hamming weight

at least 3, by E0 (rather than E⊥) the orthogonal of an F2-vector space

E and by E1 its complement, the condition writes: {0n, zi}εi⊕1 ∩ B≥3 =

{0n, zi−1}1 ∩B≥3, or equivalently: {0n, zi}εi ∩B≥3 = {0n, zi−1}0 ∩B≥3.

If n ≥ 6 then the linear space {0n, zi−1}0 contains elements of Hamming

weight at least 5 and every of its elements of weight at most 2 is then the

sum of two elements of {0n, zi−1}0 ∩B≥3 (one of weight at least 5 and one

of weight at least 3); hence the vector space 〈{0n, zi−1}0∩B≥3〉 spanned by

{0n, zi−1}0 ∩ B≥3 equals {0n, zi−1}0; the same is true for {0n, zi}εi ∩ B≥3

if εi = 0, in which case we have zi = zi−1, that is, Ji = Ji−1, and if εi = 1

then {0n, zi−1}0 equals 〈{0n, zi}εi ∩ B≥3〉 which contains {0n, zi}0 for the

same reasons as above and can not be reduced to a hyperplane, and is then

equal to Fn2 , a contradiction.

Summarizing, we have, up to the addition of an affine function:

• we are in the first case above and f(x) equals the quadratic part of a function

of the form `(x)σ1(x) ⊕ (η σ1(x) ⊕ ε)σ2(x), where ε, η ∈ F2, and `(x) is a

linear function. Since η σ1(x)σ2(x) = η σ3(x), we can take η = 0 and we

obtain then (12.15).

• or we are in the second case above with z2 = z3 = · · · = zn−1 and ε3 =

· · · = εn−1 = 0, and f(x) is the quadratic part of `(x)σ1(x) ⊕ ε σ2(x) ⊕
`′(x)(

⊕n−1
i=2 σi(x))⊕ εnσn(x), where ` and `′ are linear and εn = `′(1), that

is, `(x)σ1(x) ⊕ ε σ2(x) ⊕ `′(x)(σ1(x) ⊕ 1 ⊕ δ0(x)) = `(x)σ1(x) ⊕ ε σ2(x) ⊕
`′(x)(σ1(x)⊕ 1) and this second case happens then to be equivalent, up to

the addition of an affine function, to a particular case of the first. 2

Remark. The same proof shows that a function (12.14) has algebraic degree at

most k if and only if all the terms of degree at least k + 2 in
⊕n

i=k+1 `i(x)σi(x)

cancel and those of degree k + 1 are cancelled by those from `k(x)σk(x). The

expression of the function equals then the part of degree at most k in (12.14),

which is the part of degree at most k in
⊕k−1

i=1 `i(x)σi(x) ⊕ (η σ1(x) ⊕ ε)σk(x),

where `i(x) is affine for every i = 1, . . . k − 1, and ε, η ∈ F2. Since the degree k

part of σ1(x)σk(x) equals σk(x) if k is odd and equals 0 otherwise, we obtain

f(x) =
⊕k−1

i=1 `i(x)σi(x)⊕ ε σk(x), where the `i’s are affine and ε ∈ F2. 2
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Proposition 193 [306] For every even n ≥ 6, the quadratic bent functions sat-

isfying nlk(f) = 0 for every k are, up to the addition of an affine function, the

functions f(x) = `(x)σ1(x)⊕ σ2(x), where ` is linear and `(1n) = 0.

Proof. The symplectic form (x, y) → f(x + y) ⊕ f(x) ⊕ f(y) ⊕ f(0n) associated

with the function in (12.15) equals:

`(x)σ1(y)⊕ `(y)σ1(x)⊕ ε
( ⊕

1≤j 6=i≤n

xjyi
)
.

Denoting `(x) =
⊕n

i=1 lixi, the kernel

E = {x ∈ Fn2 ;∀y ∈ Fn2 , f(x+ y)⊕ f(x)⊕ f(y)⊕ f(0n) = 0}

of this symplectic form is the F2-vector space of the solutions of the equations:

(Li) : `(x)⊕ li
( n⊕
j=1

xj
)
⊕ ε
(⊕
j 6=i

xj
)

= 0, i = 1, . . . , n.

If ε = 0, then since the hyperplane of equation
⊕n

j=1 xj = 0 has non-trivial

intersection with the kernel of ` (because n ≥ 3), and since every element in this

intersection satisfies all equations, f cannot be bent. We assume then that ε = 1.

For all those x ∈ E such that
⊕n

j=1 xj = 0, the equation:

(Li + Li′) : (li ⊕ li′)
( n⊕
j=1

xj

)
⊕ (xi ⊕ xi′) = 0,

valid for every i 6= i′, results in xi ⊕ xi′ = 0 and implies that either all xi’s are

null (in which case (Li) is of course satisfied), or all are equal to 1, in which case

(Li) becomes (since n is even) `(1n) = 1. Hence, ε = 1 and `(1n) = 0 is a nec-

essary condition for the function to be bent. It is also sufficient, because for all

x ∈ E such that
⊕n

j=1 xj = 1, according to Equation (Li + Li′) again, all those

xi such that li = 0 are equal to some value η ∈ F2 and all those xi such that

li = 1 are equal to another value, which can be only η ⊕ 1, since
⊕n

j=1 xj = 1,

and the number of i such that li = 1 is odd, that is, `(1n) = 1, a contradiction.

This completes the proof. 2

It is shown in [306] that for the direct sum of any n-variable function f and

any m-variable function g, we have:

nlEn+m,k
(f⊕g) ≥

k∑
i=0

(
n

i

)
nlEm,k−i(g)+

k∑
i=0

nlEn,i(f)

((
m

k − i

)
− 2nlEm,k−i(g)

)
.

We refer to this reference for the proof.

Algebraic immunity
The majority function being, as every symmetric function, constant on all inputs

of the same Hamming weight, and having optimal algebraic immunity, it is an
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extreme example of degradation of the algebraic immunity when inputs are re-

stricted to En,k. We call algebraic immunity with inputs in E of a given Boolean

function f the non-negative integer:

AIE(f) = min{max(dalg(g), dalg((fg)|E )); g 6≡ 0 on E}
= min{dalg(g); (fg)|E ≡ 0 or ((f ⊕ 1)g)|E ≡ 0; g 6≡ 0 on E},

where dalg((fg)|E ) equals the minimum algebraic degree of Boolean functions

over Fn2 which coincide with fg over E, and we call annihilators of f over E the

functions g such that (fg)|E ≡ 0.

The equality between these two minima is shown easily: if g and h = fg achiev-

ing the former minimum coincide on E, we have then g ⊕ h = g(f ⊕ 1) = 0 on

E, where g has nonzero restriction to E, and if they do not, then after multipli-

cation of equality h = fg by f , we have (g ⊕ h)f = 0, where g ⊕ h has nonzero

restriction to E; this proves that the former minimum is bounded below by the

latter. The inequality in the other order is still more obvious since the set over

which the latter minimum is taken is a subset of the set over which the former

is taken.

Remark. Taking the restriction to E may (often) decrease the algebraic immu-

nity (we shall see examples below) since it weakens the condition on g to be an

annihilator of f or of f ⊕ 1, but it may also increase the algebraic immunity, be-

cause it strengthens the condition on g to be nonzero. Take for instance an (n−1)-

variable function f of algebraic immunity at least 2, and define f ′(x, 0) = f(x),

f ′(x, 1) = 0, for every x ∈ Fn−1
2 . Then the indicator of Fn−1

2 × {1} being an

annihilator, we have AI(f ′) = 1, while AIFn−1
2 ×{0}(f

′) = AI(f) ≥ 2. Moreover,

for the same reason, we have AIk(f ′) = 1 for every k ∈ {1, . . . , n− 1}, while for

some functions f , we can have AIk(f) ≥ 2 for some k. 2

The upper bound of Proposition 26, page 112, has been adapted to the alge-

braic immunity with inputs in E.

Proposition 194 [306] Let E ⊆ Fn2 and let f be defined over E. Let d and e be

non-negative integers. Let Md,E be the (
∑d
i=0

(
n
i

)
) × |E| matrix whose term at

row indexed by u ∈ Fn2 such that wH(u) ≤ d, and at column indexed by x ∈ E,

equals
∏n
i=1 x

ui
i .

If rank(Md,E)+rank(Me,E) > |E|, then there exist two Boolean functions g and

h on E, such that g is not identically null on E and:

dalg(g) ≤ e, dalg(h) ≤ d and fg = h on E.

We have then:

AIE(f) ≤ min
{
e; rank(Me,E) >

|E|
2

}
. (12.17)

Proof. By definition, rank(Md,E) equals the maximum size of a free family Fd
of restrictions to E of monomials xu of algebraic degree wH(u) ≤ d (such family
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generates the restrictions to E of the Boolean functions of algebraic degree at

most d) and |E| is the dimension of the F2-vector space of Boolean functions

over E. If rank(Md,E)+rank(Me,E) > |E|, the elements of Fd and the products

between f and the elements of a maximum size free family Fe are necessarily F2-

linearly dependent. Gathering the part of this linear combination dealing with

the elements of Fd and those dealing with Fef , this linear dependence gives two

functions h and g of degrees at most d and e, respectively, such that (fg)|E = h|E
and (g|E , h|E ) 6≡ (0, 0), i.e. g|E 6≡ 0. Inequality (12.17) is then straightforward by

taking d = e. 2

In the case of fixed input weights, a recurring relation on the rank of Md,En,k

has been found in [306] (we refer to this reference for the proof, which is a little

too long for being given), where has been deduced that this rank equals:(
n

min(d, k, n− k)

)
.

For k ≤ n/2, Relation (12.17) implies then that, for every n-variable Boolean

function f :

AIEn,k(f) ≤ min

{
e; 2

(
n

e

)
>

(
n

k

)}
.

It is deduced in this same reference (by technical observations dealing with bi-

nomial coefficients) that the best possible algebraic immunity of a function with

constrained input Hamming weight is lower than for unconstrained functions.

A lower bound exists on the algebraic immunity of the direct sum of two Boolean

functions. We recall the proof from [306]:

Proposition 195 Let (f⊕g)(x, y) = f(x)⊕g(y), x ∈ Fn2 , y ∈ Fm2 , where n ≤ m.

Let k be such that n ≤ k ≤ m. Then the following relation holds:

AIk(f ⊕ g) ≥ AI(f)− dalg(g). (12.18)

Proof. Let h(x, y) be a nonzero annihilator of f⊕g over En+m,k. Let (a, b) ∈ Fn+m
2

have Hamming weight k and be such that h(a, b) = 1. Since (a, b) has Hamming

weight k with n ≤ k ≤ m, we may, up to changing the order of the coordinates

of b (and without loss of generality), assume that, for every j = 1, . . . , n, we

have bj = aj ⊕ 1 and for every j = n+ 1, . . . k, we have bj = 1 (so that for every

j = k + 1, . . .m, we have bj = 0). This is possible since k ≥ n and in all cases,

the last 1 in (a, b) is at position 2n + (k − n) = n + k ≤ n + m. We define the

following affine function over Fn2 :

L(x) = (x1 ⊕ 1, x2 ⊕ 1, . . . , xn ⊕ 1, 1, . . . , 1, 0, . . . , 0),

where the length of the part “1, . . . , 1” equals k − n. We have L(a) = b. The

n-variable function h(x, L(x)) is then non-zero and is an annihilator of f(x) ⊕
g(L(x)) over Fn2 . If g(b) = 0, then function h(x, L(x)) (g(L(x))⊕ 1) is a non-zero

annihilator of f and has algebraic degree at most dalg(h)+dalg(g); then we have
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dalg(h) + dalg(g) ≥ AI(f). If g(b) = 1, then by applying the same reasoning to

f ⊕ 1 instead of f and g ⊕ 1 instead of g, we have dalg(h) + dalg(g) ≥ AI(f).

If h(x, y) is a non-null annihilator of f ⊕ g ⊕ 1 over En+m,k, we have the same

conclusion by replacing f by f ⊕ 1 or g by g ⊕ 1. This completes the proof. 2

Bound (12.18) may seem loose because of the presence of −dalg(g), but it is not.

Let us see with an example (given in [306]) that making the direct sum with

some non-constant Boolean functions g may indeed contribute to a decrease

of the algebraic immunity over inputs of fixed Hamming weight: take n odd,

f(x) = 1 ⊕maj(x) where maj is the majority function over n variables (which

has optimal algebraic immunity n+1
2 ) and g(y) = maj(y) over n variables as

well. Then the 2n-variable function f ⊕ g is null at fixed input weight n, because

if wH(x)+wH(y) = n, then either wH(x) ≤ n−1
2 and wH(y) ≥ n+1

2 , and we have

then f(x) = g(y) = 1, or wH(x) ≥ n+1
2 and wH(y) ≤ n−1

2 , and we have then

f(x) = g(y) = 0. The algebraic immunity with input weight n equals then 0.

Bound (12.18) also shows that, if k ≥ n, then taking g = 0 (i.e. adding m ≥ k

virtual variables to f) gives AIk(f ⊕ 0) ≥ AI(f); this latter bound is tight (take

for f a function whose algebraic immunity equals its algebraic degree). Another

example showing the tightness of Bound (12.18) when dalg(g) = 1 is also given

in this same reference.

It is shown in [306] that for the direct sum of any n-variable function f and any

m-variable function g, we have:

AIk(f ⊕ g) ≥ min
0≤`≤k

(max[AI`(f), AIk−`(g)]).

We refer to this reference for the proof.

Impact of Boolean functions with restricted input on FLIP
Balancedness
For given k, let pk = Prx∈En,k [f(x) = 1] = 1

2−εk. The amount of data needed for

an attacker to detect the bias εk is equal to 1
εk2 . In the case of the FLIP cipher,

we have k = n
2 . It has been checked in [306] that the bias is not exploitable, even

in the case of guess and determine attacks.

Nonlinearity
In a fast correlation attack (approximating the keystream equations by linear ap-

proximation of the filtering function and using a decoding method), the attacker

builds a linear system which can be seen as an instance of the learning parity

with noise (LPN) problem [99], where the noise parameter is ηk =
nlEn,k

(nk)
. The

data complexity of the attack is O(2hη
−2(r+1)
k ) where the parameters h and r

depend on the algorithm used and on the number of variables. It could be shown

in [306] that nlEn, n
2

(f) is large enough for allowing the FLIP cipher to resist the

fast correlation attack, combined or not with a guess and determine attack.
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Algebraic immunity
Proposition 195 has allowed to bound nlEn, n

2
(f) from below, with the help of

the next proposition.

Proposition 196 Let f(x) be an n-variable Boolean function such that:

∀x ∈ Fn−2
2 f(0, 0, x) = f(0, 1, x) = f(1, 0, x).

Let f ′(X,x3, · · · , xn) be the Boolean function in n− 1 variables defined by :

∀x ∈ Fn−2
2 f ′(1, x) = f(1, 1, x) and f ′(0, x) = f(0, 0, x).

If AI(f) ≤ d then AI(f ′) ≤ d.

This proposition, whose proof can be found in [306], implies that if f is the

direct sum of d monomials and if, for every i ∈ [k, d], f has a monomial of

degree i, where k is the smallest degree of all monomials of f , then AI(f) = d.

This allowed to show that all instances of the FLIP cipher resist the algebraic

attack. Determining whether they resist the algebraic attack combined with the

guess and determine attack is open. An interesting point observed in [306] is that

the high number of triangular functions used in FLIP to prevent the guess and

determine attack combined with fast algebraic attack may reduce the algebraic

immunity and there is then a trade-off to be found.

12.3 Local pseudorandom generators and related criteria on Boolean
functions

Recall that the principle of pseudorandom generators is to allow expanding short

random strings (like private keys), called seeds, into pseudorandom strings, whose

length is significantly larger (say, polynomial, that is, in O(ns) where n is the

length of the seed, with s > 1). They are called local if each output bit depends

on a constant number d of input bits. This property, related to the design of

cryptographic primitives that can be evaluated in constant time while using

polynomially many cores, allows a wide variety of applications. The only known

example of a local pseudorandom generator is the so-called Goldreich’s PRG,

which applies a simple d-variable Boolean function (Goldreich calls it a d-ary

predicate) to public random subsets of size d of the seed.

12.3.1 The Goldreich pseudorandom generator

In [541] has been proposed a one-way function (OWF), which is an asymptotic

construction aiming at being a “simplest possible function that we do not know

how to invert efficiently”. This OWF is built as a random local function (see

below) and has been later modified into a local pseudorandom generator [543]

with nice applications (making possible, with constant computational overhead,
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a secure two-party computation of any Boolean circuit, and having other appli-

cations, see [636, 393]).

Let n and m be two integers, let (S1, . . . , Sm) be a list of m subsets of {1, . . . , n}
of size d, where d is small compared to n (it can be logarithmic in n or even

constant), and let f be a Boolean function in d variables (the so-called pred-

icate). The corresponding Goldreich’s function G : Fn2 7→ Fm2 is defined as

G(x) = f(S1(x)), f(S2(x)), . . . , f(Sm(x)) for every x ∈ Fn2 , where Si(x) is a

vector made of those bits of x indexed by Si. Originally, m was of size compa-

rable to n. The one-way property of the function was related to the choice of

the predicate and to the fact that (S1, . . . , Sm) was an expander graph31 (which

corresponds to saying in the particular framework we are in, that for some k,

every k subsets cover k + Ω(n) elements of {1, . . . , n} (which happens to be the

case with probability tending to 1 for subsets drawn at random).

Goldreich’s pseudorandom generator proposed later takes a larger value of m,

polynomial in n. The integer d is called the locality of the PRG and many works

have focused on a framework called “polynomial-stretch local” in which d is

constant and m = ns where s > 1 (s is called the stretch). For these polynomial-

stretch local PRG, the security is considered asymptotically, relative to the class

of polynomial adversaries as linear distinguishers. They are conjectured secure

under some necessary conditions on the predicate and on the subsets Si (see the

survey [22] and, for a faster overview, [393, Section 1.2]). For instance, to avoid

an attack by Gaussian elimination, the predicate f must be non-linear in a basic

sense. Moreover, the higher is the algebraic degree, the better, since a random

local function with a predicate of algebraic degree s cannot be pseudorandom for

a stretch as large as s. The predicate must also be such that, when fixing some

number r of input bits to f , its algebraic degree remains large. Note that this has

a close relation with algebraic immunity (since if the algebraic degree of f falls

down to k when r input bits are fixed, we know that AI(f) ≤ r + k) and alge-

braic attacks have been actually further investigated, and the algebraic immunity

AI(f) (sometimes called rational degree among people working on Goldreich’s

PRG) happens to play a direct role and should be large enough (larger than s).

There is also an attack [889] when the output of the function is correlated with

a number of its input bits smaller than or equal to s
2 , and f should then be

resilient with a sufficient order (all the more since this attack has been extended

to cases where m ≥ λn for large λ); in [915] has been shown that f should be (at

least) 2-resilient. The very simple 5-variable function f(x) = x1⊕x2⊕x3⊕x4x5

(whose structure is similar to that of the FLIP function, but simpler and with

considerably smaller parameters) has been proved resisting some attacks based

on F2-linear distinguishers when m ∈ O(ns) with s < 1.5 (note that its algebraic

degree, resiliency order and algebraic immunity are all three equal to 2), but of

course does not resist the attacks evoked above for larger stretches nor resists

31 A hypergraph whose hyper-edges have size d is said to be (α, β)-expanding if, for any
choice of k ≤ αm edges, their union has size at least βkd.
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algebraic attacks. A general structure has been proposed in [23] for predicates:

the direct sum of the full linear function
⊕k

i=1 xi and of the majority function

(see page 366) in n − k variables. No attack is known on such functions when

k ≥ 2s and dn−k2 e ≥ s.
Of course, constraints also exist on the choice of the subsets (S1, . . . , Sm), more

precisely on the hypergraph (see page 89) given by them, which needs to be suf-

ficiently expanding, but in practice, an overwhelming proportion of hypergraphs

are sufficiently expanding.

As we can see, Goldreich’s PRG gives one more example (and an important

one) where the classical notions on Boolean functions for cryptography play cen-

tral roles in frameworks different from stream or block ciphers. An open question

is asked in this context by Applebaum and Lovett in [23]: given two positive in-

tegers e and k, what is the smallest number of variables (the reference writes

“the smallest arity”) for which there exists a Boolean function (a predicate) of

algebraic immunity (of rational degree) at least e and of resiliency order at least

k? The parameters of the direct sum of the full linear function
⊕k

i=1 xi and of the

majority function in 2e−1 variables show that this number is at most k+ 2e−1

as observed in [838] (Applebaum and Lovett give the bound k+ 2e and propose

as example the direct sum of function
⊕k

i=1 xi and of the majority function in

2e variables; note that this very function is not k-resilient, at least in the usual

sense, because the majority function in 2e variables is not balanced, but they

probably think of a majority function modified into a balanced function with

the same AI). As we can see, the upper bound k + 2e is not optimal and even

k + 2e− 1 may not be optimal.

This problem is clearly related to another open question: is there, for k ≤ n− 2,

an upper bound on the algebraic immunity of k-resilient functions which would

be sharper than min(n − k − 1, dn2 e) (implied by the Siegenthaler bound and

the Courtois-Meier bound)? We specify k ≤ n − 2 because for k = n − 1,

Siegenthealer’s bound gives 1 and not 0 (and the two (n− 1)-resilient functions

equal to the full linear n-variable function and its complement have algebraic

immunity 1). For very large values of k, the reply to the latter open question

is probably no (for instance, for k = n − 2, it is clearly no, and for k = n − 3,

there exist (n− 3)-resilient functions of algebraic immunity 2, which are easy to

obtain with Maiorana-McFarland’s construction; an example is the direct sum

of the full linear (n − 2)-variable function and of the 2-variable majority func-

tion xn−1xn). Note that many infinite classes of 1-resilient functions of optimal

algebraic immunity have been found in even numbers of variables, but as far as

we know, none has been found being 2-resilient, nor 1-resilient in odd numbers

of variables (recall that, if f(x) is a 1-resilient function with optimal AI in odd

number n of variables, then f(x)⊕xn+1 is a 2-resilient function with optimal AI

in n+ 1 variables). So already for k = 2 the question is open.
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12.4 The Gowers norm on pseudo-Boolean functions

The Gowers uniformity norm has been introduced in 2001 in the paper [568]

which provided a new proof of a result originally shown by van der Waerden, on

the existence, for any positive integers k, r, of a positive integer M such that,

in any r-partition of {1, 2, . . . ,M}, there exists at least one class containing an

arithmetic progression of length k. We shall not try to summarize the content

of this rather dense 129-page long paper (available on the internet), in which

the norm was defined for functions over Z/NZ. The Gowers norm can also be

expressed, as in [571], in terms of pseudo-Boolean functions (see below). Since

2001, the Gowers norm has been intensively studied and applied in additive

combinatorics and in the probabilistic testing of specific properties of Boolean

functions (knowing only a few of their values, see the thesis [361], see also [13]

where are addressed the Reed-Muller codes and [542]). When applied to the

sign function of a Boolean function f , it deals, as we shall see, with the higher-

order derivatives of f (whose definition and notation have been given at page

56). It results in a measure related to the higher-order nonlinearity. We shall

see with Corollary 32 below that smaller is the Gowers Uk norm of f , higher

is then the contribution of f to the resistance to attacks by approximations by

Boolean functions of algebraic degree at most k−1 (these attacks are listed after

Definition 20, page 102). The definition of the Gowers Uk norm, valid for all

pseudo-Boolean functions, is as follows:

Definition 90 [568, 569, 571] Let k, n be positive integers such that k < n. Let

ϕ : Fn2 7→ R be a pseudo-Boolean function. The k-th order Gowers uniformity

norm of ϕ equals:

||ϕ||Uk =

Ex,x1,...,xk∈Fn2

 ∏
S⊆{1,...,k}

ϕ

(
x+

∑
i∈S

xi

) 1

2k

,

where Ex,x1,...,xk∈Fn2 is the notation for arithmetic mean (i.e. for expectation in

uniform probability).

Note that, by considering separately the cases where S does not contain k and

those where it does, and using that (x, xk) 7→ (x, x + xk) is a permutation

of (Fn2 )2, the expression Ex,x1,...,xk∈Fn2

[∏
S⊆{1,...,k} ϕ

(
x+

∑
i∈S xi

)]
is equal to

Ex1,...,xk−1∈Fn2

[(
Ex
[∏

S⊆{1,...,k−1} ϕ
(
x+

∑
i∈S xi

)])2
]
. Being then always non-

negative, the expression does admit a 2k-th root.

Equality ||ϕ||Uk =Ex1,...,xk−1∈Fn2


Ex

 ∏
S⊆{1,...,k−1}

ϕ

(
x+

∑
i∈S

xi

)2



1

2k

(12.19)
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has its own interest. For k = 1, it shows that:

||ϕ||U1
=
∣∣Ex∈Fn2 [ϕ(x)]

∣∣ = 2−n

∣∣∣∣∣∣
∑
x∈Fn2

ϕ(x)

∣∣∣∣∣∣ (12.20)

(which is then not a norm), and for k = 2 that:

||ϕ||U2 =

(
Ex1∈Fn2

[(
Ex [ϕ(x)ϕ(x+ x1)]

)2
]) 1

4

.

Another identity is also useful:

||ϕ||Uk = Exk∈Fn2

Ex,x1,...,xk−1∈Fn2

 ∏
S⊆{1,...,k−1}

ψxk

(
x+

∑
i∈S

xi

) , (12.21)

where ψxk(x) = ϕ(x)ϕ(x+ xk).

Proposition 197 For every pseudo-Boolean function ϕ, the sequence (||ϕ||Uk)k≥1

is non-decreasing:

||ϕ||U1 ≤ ||ϕ||U2 ≤ · · · ≤ ||ϕ||Uk ≤ . . . (12.22)

This is due to the inequality:

Ex1,...,xk−1∈Fn2

Ex∈Fn2
 ∏
S⊆{1,...,k−1}

ϕS

(
x+

∑
i∈S

xi

) ≤
Ex1,...,xk−1∈Fn2


Ex∈Fn2

 ∏
S⊆{1,...,k−1}

ϕS

(
x+

∑
i∈S

xi

)2



1
2

,

which is a direct consequence of the Cauchy-Schwarz inequality, since it is equiva-

lent to inequality

 ∑
x1,...,xk−1∈Fn2

Ex∈Fn2

 ∏
S⊆{1,...,k−1}

ϕS

(
x+

∑
i∈S

xi

)2

≤

2(k−1)n
∑

x1,...,xk−1∈Fn2


Ex∈Fn2

 ∏
S⊆{1,...,k−1}

ϕS

(
x+

∑
i∈S

xi

)2
.

As shown in [568], for every k ≥ 2, || · ||Uk is a norm. The triangular inequality

||ϕ+ ψ||Uk ≤ ||ϕ||Uk + ||ψ||Uk

can be checked as follows: expanding
∏
S⊆{1,...,k}(ϕ + ψ)

(
x+

∑
i∈S xi

)
leads

to 22k terms of the form
∏
S⊆{1,...,k} ϕS

(
x+

∑
i∈S xi

)
, where each function ϕS
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is either ϕ or ψ; for each of these terms, we have, using the Cauchy-Schwarz

inequality, and Relation (12.19) (in both ways):∣∣∣∣∣∣Ex,x1,...,xk∈Fn2

 ∏
S⊆{1,...,k}

ϕS

(
x+

∑
i∈S

xi

)∣∣∣∣∣∣ =

∣∣∣∣∣∣Ex1,...,xk−1∈Fn2

Ex∈Fn2

 ∏
S⊆{1,...,k−1}

ϕS

(
x+

∑
i∈S

xi

) ·
Ex′∈Fn2

 ∏
S⊆{1,...,k−1}

ϕS∪{k}

(
x′ +

∑
i∈S

xi

)∣∣∣∣∣∣ ≤
Ex1,...,xk−1∈Fn2


Ex∈Fn2

 ∏
S⊆{1,...,k−1}

ϕS

(
x+

∑
i∈S

xi

)2



1
2

·

Ex1,...,xk−1∈Fn2


Ex∈Fn2

 ∏
S⊆{1,...,k−1}

ϕS∪{k}

(
x+

∑
i∈S

xi

)2



1
2

=

Ex,x1,...,xk∈Fn2

 ∏
S⊆{1,...,k}

ϕS\{k}

(
x+

∑
i∈S

xi

) 1
2

·

Ex,x1,...,xk∈Fn2

 ∏
S⊆{1,...,k}

ϕS∪{k}

(
x+

∑
i∈S

xi

) 1
2

≤ · · ·

≤
∏

S⊆{1,...,k}

∣∣∣∣∣∣Ex,x1,...,xk∈Fn2

 ∏
S′⊆{1,...,k}

ϕS

(
x+

∑
i∈S′

xi

)∣∣∣∣∣∣
1

2k

,

resulting in an upper estimate by ||ϕ||rUk ||ψ||
2k−r
Uk

, where r and 2k − r are the

numbers of times that ϕS equals ϕ and ψ respectively, and this proves that

(||ϕ+ψ||Uk)2k ≤
∑2k

r=0

(
2k

r

)
||ϕ||rUk ||ψ||

2k−r
Uk

, that is, ||ϕ+ψ||Uk ≤ ||ϕ||Uk +||ψ||Uk .

Let now f be an n-variable Boolean function. We can consider the Uk norm

of the sign function fχ = (−1)f or that of f itself, viewed as a function from Fn2
to {0, 1}. In the former case, which is the most studied one, we have from the

very definition:



512 Recent uses of Boolean and vectorial functions and related problems

Proposition 198 Let k, n be positive integers such that k < n. Let f be an n-

variable Boolean function. Then ||fχ||Uk equals the 2k-th root of the average value

of 2−nF(Da1
Da2

. . . Dakf), where F(g) =
∑
x∈Fn2

(−1)g(x), when a1, a2, . . . , ak
range independently over Fn2 .

For any k ≥ 1 and any Boolean function f , according to Proposition 198 and to

the fact that, for every n-variable Boolean function g, we have F(g) ≤ 2n with

equality if and only if g is the null function, we have that ||fχ||Uk is bounded

above by 1, with equality if and only if all k-th order derivatives of f are null, and

we know, according to Proposition 5, page 55, that this is equivalent to saying

that f has algebraic degree at most k − 1.

Relation (12.21) shows that ||fχ||Uk satisfies the “recurrence” relation:

||fχ||Uk =
(
Eh∈Fn2

[
||(Dhf)χ||2

k−1

Uk−1

]) 1

2k

. (12.23)

This relation can be iterated and shows then again the role of higher-order deriva-

tives.

Note that, for k = 2, according to Proposition 198 and to Relation (3.9)

page 119, ||fχ||U2
is related to the second moment V(f) of the autocorrelation

coefficients by:

(||fχ||U2)4 = 2−3n V(f), (12.24)

and all the observations made at page 119 on V(f) give then corresponding equal-

ities and bounds on ||fχ||U2
(hence, studying the U2 norm has limited interest).

For instance, we have nl(f) ≤ 2n−1−2n−1(||fχ||U2
)2 ≤ 2n−1−2

3n
4 −1||fχ||U2

, with

equality on the left-hand side if and only if f is plateaued and overall equality if

and only if f is bent. We have also, according to Relation (12.24) and Relation

(3.10), page 119, that ||fχ||U2 equals the normalized quartic mean of the Walsh

transform of f :

||fχ||U2
= 2−n

∑
b∈Fn2

W 4
f (b)

 1
4

. (12.25)

In fact, it is easily shown that, for any pseudo-Boolean function ϕ, we have:

||ϕ||U2 = 2−n

∑
b∈Fn2

ϕ̂4(b)

 1
4

. (12.26)

Relations (12.23) and (12.25) and Relation (6.5), page 222, directly imply that

a bent function and its dual have the same U3 norm (as observed in [528]).

Of course, thanks to Relation (12.23) iterated k − 2 times, Relation (12.25) re-

sults in a similar relation between ||fχ||Uk and the average quartic mean of the

Walsh transforms of the (k − 2)-th derivatives of f .



12.4 The Gowers norm on pseudo-Boolean functions 513

An important property of the Gowers uniformity norm is that ||ϕ||Uk is an up-

per bound for the normalized correlations
∣∣Ex∈Fn2 ϕ(x)(−1)g(x)

∣∣ between pseudo-

Boolean function ϕ and the sign functions (−1)g of all Boolean functions g of

algebraic degree at most k−1 (and in fact, between ϕ and a larger set of pseudo-

Boolean functions, see below). This is a direct corollary of Proposition 197:

Corollary 32 [568, 572] Let k, n be positive integers such that k < n. Let ϕ be

an n-variable pseudo-Boolean function and g an n-variable Boolean function of

algebraic degree at most k − 1. Then:

∣∣∣Ex∈Fn2 ϕ(x)(−1)g(x)
∣∣∣ ≤ ||ϕ||Uk .

Indeed, according to Relation (12.22), we have that
∣∣Ex∈Fn2 ϕ(x)(−1)g(x)

∣∣ =

||ϕ(−1)g||U1 ≤ ||ϕ(−1)g||Uk = ||ϕ||Uk .

The result applies more generally when replacing (−1)g by what is called, in the

Gowers norm domain, a “polynomial of degree at most k− 1”, that is, a pseudo-

Boolean function ψ such that
∏
S⊆{1,...,k} ψ

(
x+

∑
i∈S xi

)
equals the constant

function 1 for every choice of x1, . . . , xk.

For ϕ = fχ, we have min(dH(f, g), dH(f, g⊕1)) = 2n−1(1−
∣∣Ex∈Fn2 ϕ(x)(−1)g(x)

∣∣),
and taking the minimum for all Boolean functions g of algebraic degree at most

k − 1, Corollary 32 implies:

nlk−1(f) ≥ 2n−1
(
1− ||fχ||Uk

)
. (12.27)

Relation (12.27) means (similarly to what we announced at page 509) that the

functions with small Uk norm have large (k − 1)-th order nonlinearity. Recall

that we have seen at page 103 that, asymptotically and for every ε > 0, almost

all Boolean functions are such that nlk−1(f) > 2n−1(1− ε).
The Gowers inverse conjecture (GIC) is that if ||ϕ||Uk is positive for a given

pseudo-Boolean function of absolute value bounded above by 1, then ϕ correlates

(at a level to be determined for each k) with a polynomial of algebraic degree

k − 1 (as defined above).

This is straightforwardly true for k = 1, according to Relation (12.20) (taking

constant polynomial 1).
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The GIC is also easily checked for k = 2: Relation (12.26) gives:

||ϕ||U2 = 2−n

∑
b∈Fn2

ϕ̂4(b)

 1
4

≤ 2−n

(max
b∈Fn2

ϕ̂2(b)

) ∑
b∈Fn2

ϕ̂2(b)

 1
4

= 2−n

2n
(

max
b∈Fn2

ϕ̂2(b)

) ∑
x∈Fn2

ϕ2(x)

 1
4

≤ 2−
n
2

(
max
b∈Fn2

ϕ̂2(b)

) 1
4

,

and we observe that |ϕ̂(b)| measures the correlation between ϕ and (−1)b·x.

The GIC is proved for ϕ = (−1)f and k = 3 in [1010, Appendix A]. The proof

is a little too long for being included here.

But for generic values of k, the GIC has been independently refuted by Green

and Tao [573] and by Lovett, Meshulam and Samorodnitsky [805] (a counter-

example ϕ for k = 4 is the sign function of the elementary symmetric function

σ4: its maximum normalized correlation with the sign functions of cubic Boolean

functions tends to 0 when n tends to infinity, but its Gowers U4 norm is bounded

below by a strictly positive number). Bergelson, Tao and Ziegler [9] have pro-

posed and proved a modification of the inverse Gowers conjecture valid in low

characteristic, but in characteristic 2, their result does not relate to distances

and a better adapted modification needs then to be found.

In [528] is studied ||fχ||U3
for some Maiorana-McFarland bent functions (the

value is determined when the permutation involved in the definition of the func-

tion, see Relation 6.9, page 233, is APN) and of some cubic monomial functions.
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In this chapter, we list open problems related to the main chapters of this book;

some have been already mentioned in References [245, 248]. We avoid stating

those which seem elusive like the determination of all bent functions. Some open

questions are however quite difficult, while others, more recent, may be easier

to address, and some (which have never been proposed until now) may even be

easy.

13.1 Questions of general cryptography dealing with functions

1. Generalize the higher-order differential attack to block ciphers using S-boxes

CCZ equivalent to quadratic functions.

2. Find an expression of the period of general nonlinear-feedback shift register

sequences (NFSR) by means of the initialization and the feedback function.

13.2 General questions on Boolean functions and vectorial functions

1. Determine, for all values of n, the exact minimum numerical degree of n-

variable Boolean functions depending on all their variables (this value is near

log2 n, according to Proposition 15, page 86, and to the few lines after its

proof); determine the functions having such numerical degree.

2. Determine the set of all possible coset leaders of the first order Reed-Muller

code, i.e. of those Boolean functions whose nonlinearity equals the Hamming

weight , that is, such that the null function is a best affine approximation, or

equivalently such that Wf (0n) = maxa∈Fn2 |Wf (a)| (see page 98).

3. Find simple formulae for the number of balanced quadratic functions in n

variables and for the weight distribution of the dual RM(n− 3, n) of the 2nd

order Reed-Muller code.

4. Determine the possible Hamming weights in the 3rd order Reed-Muller code

(we know they are diverse, see Section 5.3, page 204); determine the weight

distribution of this code (in particular, determine the number of balanced

cubic functions).



516 Open questions

5. Determine, for all values of n and all 3 ≤ k ≤ n− 2, those n-variable Boolean

functions whose Walsh transform is divisible by 2k (see the second remark at

page 83).

6. Use the numerical normal form (see Definition 12, page 65) to design relevant

secondary constructions of Boolean functions (see some ideas of constructions

in [248, Subsection 4.1]).

7. Determine the best nonlinearities of Boolean functions in odd dimension n ≥
9; in particular, find 9-variable Boolean functions having nonlinearity larger

than 242 or show they do not exist.

8. Determine the best nonlinearities of balanced Boolean functions in dimension

n ≥ 8; in particular, find an 8-variable (resp. 10-variable) balanced Boolean

function with nonlinearity 118 (resp. 494) or show they do not exist. Prove

or disprove Dobbertin’s conjecture for balanced functions (see page 325).

9. Find a better upper bound on the nonlinearity of (n,m)-functions than the

known ones when:

- n is odd and m < n;

- n is even and n
2 < m < n.

10. Characterize those n-variable Boolean functions f such that
∑
a∈Fn2

W 4
f (a) =

±2n
∑
a∈Fn2

W 3
f (a) (among which, all plateaued functions, according to Corol-

lary 17, page 288), and those (n,m)-functions F such that
∑
a∈Fn2

W 4
F (a, v) =

±2n
∑
a∈Fn2

W 3
F (a, v) for every v (among which all plateaued (n,m)-functions,

according to Corollary 20, page 309).

11. Given any Boolean function f(x) =
⊕

I⊆{1,...,n} aI x
I and writing the binary

expansion of each coefficient of xI in its NNF as λI =
∑
j≥0 λI,j2

j , let us

denote f (j)(x) =
⊕

I⊆{1,...,n} λI,j x
I . Study the properties of the transforma-

tions: f 7→ f (j) for j ≥ 1 (for j = 0, it is identity) and the cryptographic

properties of the functions f (j) related to particular classes of Boolean func-

tions f , such as affine, bent etc.

13.3 Bent functions and plateaued functions

1. Characterize all bent functions of algebraic degree 3; extend this characteri-

zation to plateaued functions for any amplitude.

2. Determine an efficient lower bound on the number of n-variable bent functions

(see page 268); same question for plateaued functions of any amplitude.

3. Any n-variable Boolean function (n even) of algebraic degree at most n
2 is it

the sum of two bent functions? (this is called the bent sum decomposition

problem, see page 268 as well).

4. Determine an efficient upper bound on the number of n-variable bent functions

(see page 269); same question for plateaued functions of any amplitude.

5. What is the minimum, for all n-variable bent Boolean functions, of the maxi-

mal dimension of those affine subspaces of Fn2 on which they are constant? (we
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know it is strictly smaller than n/2, according to the existence of non-normal

bent functions); same question for plateaued functions of any amplitude.

6. Characterize all self-dual bent functions, see page 222 (quadratic ones have

been determined in [626]).

7. Characterize the algebraic normal forms of the elements of class PS (see page

237) or their trace representations.

8. Investigate the structure of PS, find a constructive definition of PS functions.

9. Evaluate the size of PS; determine whether the subclass of those PS functions

which are related to full spreads is a large part of it (as observed by Dillon,

the PS functions related to those partial spreads which can be extended to

spreads of larger sizes - in particular, those related to full spreads - have

necessarily algebraic degree n/2).

10. What are the possible algebraic degrees of PS+ bent functions?

11. Determine whether all Kasami bent functions trn(ax22k−2k+1) are non-weakly-

normal for n ≥ 14 not divisible by 3 and 1 < k < n/2 co-prime with n and

a ∈ F4 \ F2 (see page 279 and [270]).

12. Clarify what can be all the univariate representations of those Niho bent

functions (see page 246) related to known o-polynomials like Subiaco and

Adelaide.

13. Determine the duals of the Niho-bent functions numbers 1 and 3 of pages 247

and foll. (the dual of function number 2 has been determined in [311]).

14. Determine what is the largest possible number of distinct affine derivatives of a

non-quadratic bent n-variable function (n even), which results in determining

what is the maximal dimension of this vector space (it is easy to see that it

is at least n − 3: take a quadratic bent function g in n − 6 variables and a

cubic bent function h in 6 variables; then g(x) has 2n−6 affine derivatives and

it is easy to see that h can have 23 affine derivatives (take for instance the

Maiorana McFarland function x1y1⊕x2y2⊕(x1x2⊕x3)y3). Then g(x)⊕h(y),

x ∈ Fn−6
2 , y ∈ F6

2, has 2n−3 distinct affine derivatives.

15. Find codes with the same parameters as the Kerdock codes (see page 280) and

which are not equivalent to subcodes of the second order Reed-Muller code.

16. Find new simple and general constructions of perfect nonlinear/bent (n,m)-

functions (see pages 295 and 297).

17. Find hyper-bent functions (see page 270) EA inequivalent to PSap functions

in more than 4 variables (a sporadic example exists in 4 variables [278]).

18. Determine if there exist Boolean functions in more than 3 variables whose

second-order derivatives DaDbf are all balanced when a and b are F2-linearly

independent, see page 284.

19. Find nonquadratic bent functions in class C+, see page 253.

20. Find a geometric interpretation of plateauedness, similar to the one found

with generalized partial spreads for bent functions (see page 267).
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13.4 Correlation immune and resilient functions

1. Determine an efficient lower bound on the number of n-variable k-resilient

functions (see page 341).

2. Determine an efficient upper bound on the number of n-variable k-resilient

functions (see page 342).

3. Determine whether there exists any non-affine 3-resilient symmetric Boolean

function (see page 388).

4. Determine whether the minimum nonzero Hamming weight ωn,t of n-variable

t-th order correlation immune functions satisfies ωn,t ≤ ωn+1,t for every n and

t (see page 334).

5. Determine ωn,t for every n and t.

6. Determine those Boolean functions achieving the Siegenthaler bound (see

Proposition 117, page 313) with equality (this is equivalent to determining

the Boolean functions whose numerical degree equals the algebraic degree,

thanks to Proposition 118, page 314).

13.5 Algebraic immune functions

1. Determine, for n odd and for n even, an efficient lower bound on the number

of n-variable functions of maximal algebraic immunity (see page 112).

2. Determine, for n odd and for n even, an efficient upper bound on the number

of n-variable functions of maximal algebraic immunity.

3. Determine a lower bound on the hyper-nonlinearity of the indicator function

of {α, . . . , α2n−1} in F2n (α primitive element), see page 368, which would be

not far from the values of the nonlinearity computed for n ≤ 26.

4. Find a class of Boolean functions which would be as fast to compute as the

hidden weight bit function (see page 374) and with provably not bad algebraic

immunity and fast algebraic immunity, and whose nonlinearity would be good.

5. Determine, for any n, what is the best possible resiliency order of n-variable

Boolean functions with optimal algebraic immunity.

6. Determine, for any n, what is the best possible nonlinearity of Boolean func-

tions with optimal algebraic immunity.

13.6 Highly nonlinear vectorial functions with low differential
uniformity

1. Determine whether there exist (n, n)-functions with nonlinearity strictly larger

than 2n−1 − 2
n
2 when n is even (see page 402).

2. Determine whether non-quadratic crooked functions exist (see page 306).

3. Find APN functions (see page 159), new up to CCZ equivalence (see page

45), by means of their ANF.
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4. Find new APN exponents (see page 422) or prove that all are known.

5. Determine whether infinite classes of APN functions with bad nonlinearity

exist.

6. Determine whether the APN binomials of Proposition 178, page 438 can be

generalized for t = 4 to trinomials or quadrinomials.

7. Find simple and general secondary constructions of APN and AB functions

(see page 141), and of differentially 4-uniform (n, n)-functions (see page 157)

different from the switching construction (see page 440), and if possible more

systematic.

8. Find classes of AB functions by using CCZ equivalence with Kasami (resp.

Welch, Niho) functions (see pages 430 and 444).

9. Find an example of AB function CCZ inequivalent to power functions and

to quadratic functions (we have only one APN function known, with n = 6,

having such property [494]).

10. Find infinite classes of APN and AB functions CCZ inequivalent to power

functions and to quadratic functions.

11. Determine whether there exist componentwise APN (CAPN ) functions (see

page 423) which are neither AB nor power permutations.

12. Determine whether there exist APN functions in odd dimension which are

not CAPN.

13. Determine whether the CAPNness of permutations is equivalent to the CAPN-

ness of their compositional inverses, and more generally, whether CAPNness

is CCZ-invariant.

14. Determine whether Kasami APN functions are componentwise Walsh uniform

(CWU, see page 449).

15. Find a systematic way, given an APN function F , to build another (EA in-

equivalent) function F ′ such that γF ′ = γF (see Proposition 158, page 407).

16. Find an APN permutation in even dimension n ≥ 8, or better, an infinite

class (this is the so-called “big APN problem”; see observations on this prob-

lem in [136, 199, 248] and how to work with CCZ equivalence to reach EA

inequivalent functions in [145]).

17. Derive new simple and general constructions of APN /AB functions from

perfect nonlinear functions (see page 442), and vice versa.

18. If possible, classify APN functions, or at least their extended Walsh spectra,

or at least their nonlinearities.

19. Determine whether differentially 6-uniform (n, n−2)-functions exist for n > 5.

20. Determine the pairs (n,m) for which Nyberg’s bound (see page 458) is tight.

21. Construct infinite classes of CWU differentially 4-uniform (n, n−1)-functions.

22. Determine all the APN (2n, 2n)-functions equal to the concatenation of ho-

mogeneous bivariate polynomials over F2n , that is, of the form:

F (x, y) =
( ∑

0≤i,j≤2n−1
i+j=k

ai,jx
iyj ,

∑
0≤i,j≤2n−1

i+j=k

a′i,jx
iyj
)

; x, y, ai,j , a
′
i,j ∈ F2n .
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13.7 Recent uses of Boolean and vectorial functions and related
problems

1. Characterize for t ≥ 2 (or at least for t = 2) those functions which admit a

threshold implementation (TI ) with t masks (i.e. a t-th order TI) and with

uniformity, see pages 472 and foll.

2. The multiplicative inverse function F (x) = x2n−2 can it have an (n − 1)-th

order TI with uniformity, in particular for n = 8?

3. Any AB function has it an n+1
2 -th order TI with uniformity?

4. Find generic primary constructions of TI with uniformity.

5. Provide cases of secondary constructions of TI with uniformity more general

than those exhibited in [1094] (see page 479).

6. Determine all non-quadratic bent functions whose restrictions to the set of

binary vectors of length n and Hamming weight k have null nonlinearity (i.e.

coincide with an affine function), for every k = 1, . . . , n−1 (the determination

of the quadratic ones is given in Proposition 193, page 502).

7. Determine, for every 1 ≤ k ≤ n, the smallest integer e such that 2
(
n
e

)
>
(
n
k

)
(providing an upper bound on algebraic immunity with input restricted to

Hamming weight k, see page 504), and study its asymptotic behavior relatively

to the standard algebraic immunity upper bound dn/2e.
8. Determine whether the four instances of the FLIP cipher (see Subsection

12.2.1) resist algebraic attacks combined with guess and determine attacks.

9. Given two positive integers e and k, what is (see page 508) the smallest number

of variables for which there exists a Boolean function of algebraic immunity

at least e and resiliency order at least k?

10. Is there, for k ≤ n−2, an upper bound on the algebraic immunity of k-resilient

functions which would be sharper than min(n− k − 1, dn2 e)?
11. Find a modification of the inverse Gowers conjecture (see page 513) which

would be true in characteristic 2 and would involve Hamming distances.



14 Appendix: finite fields

We briefly recall the basics on finite fields and the main properties used in the

body of our monograph. In the limit of this appendix, we are far from complete,

and we refer then to the books [775, 890], whose sizes show the extent of the

state of the art that we briefly summarize here.

Reminder: A field (F,+, ∗) is by definition such that:

- (F,+) is an Abelian group (we denote its neutral element by 0),

- (F \ {0}, ∗) is an Abelian group (we denote its neutral element by 1),

- and ∗ is distributive with respect to +.

Notation: F \ {0} can be denoted by F∗.
Important property: F has no nonzero “zero divisor” (we call this way any ele-

ment α of F such that there exists β 6= 0 such that α ∗ β = 0).

Exercise: Show (by Euclidean division and factorization) that a polynomial of

degree n over a field can have at most n zeros in this field.

14.1 Prime fields and fields with 4, 8 and 9 elements

14.1.1 Characteristic of a finite field

The cardinality of a field is called its order. Let F be a finite field (i.e. a field

with a finite order, also called a Galois field). The mapping m ∈ N → m · 1 =

1+ · · ·+1 ∈ F cannot be injective. Hence there exist positive integers m,m′ such

that m < m′ and m · 1 = m′ · 1. Then we have (m′−m) · 1 = 0 and m′−m > 0.

The smallest positive integer p such that p ·1 = 0 is called the characteristic of F.

Remark. For every x ∈ F, we have p ·x = (p ·1)∗x = 0, i.e. the iterated addition

of any element with itself is “mod p”. 2

Theorem The characteristic of any finite field is a prime integer.

Proof: Suppose that p = kl for some integers 1 < k < p and 1 < l < p. We have

(kl) · 1 = 0, then k · 1 and l · 1 are nonzero divisors of zero. A contradiction. 2
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Notation: we will now write p instead of p ·1 and the multiplication between field

elements will be (classically) represented with a lack of symbol instead of ∗.

14.1.2 Prime fields

For every field F of characteristic p (prime), we have {0, 1, . . . , p − 1} ⊆ F. As

observed already, 0, 1, . . . , p − 1 have here to be considered as integers mod p.

Hence they belong to Z/pZ. Hence, more precisely, we have Z/pZ ⊆ F.

Theorem Let p be any prime integer. Every field of characteristic p admits

Z/pZ as a subfield, and Z/pZ does not have a proper subfield (and is then called

a prime field).

Indeed, Z/pZ is itself a field (and it is the smallest field of characteristic p): it is

a ring (i.e. (Z/pZ,+) is an Abelian group and ∗ is associative and distributive

with respect to +) and every nonzero element a has an inverse, since the map-

ping x ∈ Z/pZ→ ax ∈ Z/pZ being injective, it is bijective.

If n is not a prime, then Z/nZ is not a field, since it has zero divisors.

Remark. According to Bézout’s identity, for p prime and a ∈ Z/pZ∗, since a

and p are co-prime, there exist u and v such that 1 = au+ pv and (u mod p) is

the inverse of a. It can be calculated by the (extended) Euclidean algorithm. 2

Example: operations in Z/7Z:

+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

* 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

Notation: since Z/pZ is a field, we shall denote it by Fp.

14.1.3 Possible size of a finite field

Let F be a finite field of characteristic p. Since Fp is a subfield, F is a vector space

over Fp, and since F is a finite set, F must have a finite basis, say of size n. Let

{b1, b2, . . . , bn} denote such a basis. Any element of F can be written uniquely

as a linear combination c1b1+c2b2+· · ·+cnbn and there are then pn elements in F.

Theorem A finite field of characteristic p must have size q = pn for some

natural number n.

Number n is called the degree.
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14.1.4 Extending prime fields; fields with 4, 8 and 9 elements

Reminder: C is an extension field of R as follows: every element (a0, a1) of R2 is

identified to the polynomial a0 + a1x; C equals the set of polynomials a0 + a1x

with the usual addition and with multiplication mod x2 + 1; x is written i.

C has no nonzero zero divisor because the polynomial x2 + 1 is irreducible over

R (i.e. cannot be factored). C is a field. It is the smallest field containing R and

an additional element i, solution of the equation x2 + 1 = 0.

C is an extension field of degree 2 of R.

The field F4: It is easily checked that the polynomial x2 + x + 1 is irreducible

over F2. Any element (a0, a1) of F2
2 is identified to the polynomial a0 + a1x, and

F4 equals F2
2 with usual addition and multiplication mod x2 + x+ 1.

+ 0 1 x 1+x
0 0 1 x 1+x
1 1 0 1+x x
x x 1+x 0 1

1+x 1+x x 1 0

* 0 1 x 1+x
0 0 0 0 0
1 0 1 x 1+x
x 0 x 1+x 1

1+x 0 1+x 1 x

F4 has no nonzero zero divisor because x2 + x + 1 is irreducible. The mapping

x ∈ F4 → ax ∈ F4 being injective for a 6= 0, it is bijective and F4 = {0, 1, x, 1+x}
is a field. We have also F4 = {0, 1, x, x2}, that is, x is a generator of F4, which is

related to the fact that x2 + x+ 1 is a primitive polynomial (see below).

Notation: x is written α. It is a root in F4 of the polynomial x2 +x+1. We have:

+ 0 1 α 1+α
0 0 1 α 1+α
1 1 0 1+α α
α α 1+α 0 1

1+α 1+α α 1 0

* 0 1 α 1+α
0 0 0 0 0
1 0 1 α 1+α
α 0 α 1+α 1

1+α 0 1+α 1 α

, that is:

+ 0 1 α α2

0 0 1 α α2

1 1 0 α2 α
α α α2 0 1
α2 α2 α 1 0

* 0 1 α α2

0 0 0 0 0
1 0 1 α α2

α 0 α α2 1
α2 0 α2 1 α

The first representation of the elements 0, 1, α, 1+α of F4 is called the additive

form and the second one 0, 1, α, α2, the multiplicative form.

Exercise: calculate the tables of + and ∗, in the two representations, for

- F8, constructed with F2 and the irreducible (primitive) polynomial x3 + x+ 1

- F9 and F27, constructed with F3 and the irreducible (primitive) polynomials

x2 + x+ 2, x3 + 2x2 + 1.

14.2 General finite fields: construction, primitive element

Let p be a prime number, n a positive integer and f(x) an irreducible polyno-

mial of degree n over Fp (we shall see below that such polynomial exists for any
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p and any n). Then Kronecker’s construction is to identify Fnp with the set of

polynomials of degrees at most n− 1 over Fp and to endow it with the usual ad-

dition and with the multiplication mod f(x). In precise mathematical terms, we

construct Fp[x]/(f(x)), the quotient of the ring Fp[x] by the ideal (f(x)) equal

to the set of multiples of f(x). In more practical words, by denoting x by α, we

take this symbol and allow it to add and multiply with elements of Fp and with

itself, with the restriction that f(α) = 0. We obtain a ring, denoted by Fp(α),

with no nonzero divisor of zero. Since this ring is finite, it is a field: the mapping

x ∈ Fp(α)→ ax ∈ Fp(α) being injective, it is bijective.

Theorem Let f(x) be an irreducible polynomial over any finite field K (in prac-

tice, a prime field). The set K[x]/(f(x)) obtained from Kronecker’s construction

is again a field.

Electronic circuits for calculating in finite fields are based on flip-flops (for storing

bits), adders and multipliers:

+ ∗

For instance in F24 with irreducible polynomial X4 + X + 1, the operation of

multiplication by α results in:

+

Notation: Fp(α) is denoted by Fpn (the same notation1 for all choices of f(x),

for reasons which will appear later).

Remark. Different time/memory trade-offs exist in the literature for imple-

menting multiplications. For hardware implementations and large dimensions n,

several works have been published among which the Omura-Massey method, the

Sunar-Koç method, the Karatsuba algorithm. For software implementations in

small dimensions (e.g. n ≤ 10), the number of pertinent possibilities is reduced.

See a survey in [320]. 2

Remark. In characteristic 2, Newton’s formula (u + v)k =
∑k
i=0

(
k
i

)
uivk−i has

to be applied in conjunction with Lucas’ theorem (see page 528) which says that(
k
i

)
[mod 2] equals 1 if and only if the binary expansion of k covers that of i. 2

1 But some authors write GF (pn) instead of Fpn .
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Calculating the inverse: recall that there is a Euclidean algorithm for poly-

nomials similar to the one for integers. Let a(x), b(x) be a pair of polynomi-

als. The (extended) Euclidean algorithm for polynomials provides their great-

est common divisor d(x) and also a pair of polynomials s(x), t(x) such that

s(x)a(x) + t(x)b(x) = d(x).

In our situation, one of the polynomials, b(x) = f(x), is irreducible and the

other, a(x) representing a nonzero element of the field, is of degree lower than

the irreducible one, so that their greatest common divisor is 1. Then we can find

polynomials s(x) and t(x) such that s(x)a(x) + t(x)f(x) = 1.

Denoting as usual x by α, we have f(α) = 0, then we see that we have found

that s(α) is an inverse of a(α).

Example [Euclidean algorithm for x2 + 1 in F27 constructed with the irreducible

polynomial x3 + 2x2 + 1 over F3]. We detail the operations mathematically,

as an illustration. A simpler method will be possible when we arrive to the

notion of primitive element (thanks to the multiplicative representation). First

we divide f(x) = x3 + 2x2 + 1 by a(x) = x2 + 1. We get x3 + 2x2 + 1 =

(x+ 2)(x2 + 1) + 2x+ 2. The remainder 2x+ 2 is not of degree zero, so we must

divide x2 +1 by 2x+2; we get x2 +1 = (2x+1)(2x+2)+2. Since the remainder

is a constant, the Euclidean algorithm stops; the two polynomials are relatively

prime with greatest common divisor equal to 1 (after division by 2). Expressing

each remainder by its expression obtained in each division, from bottom to top,

we have 2 = x2 + 1 − (2x + 1)(2x + 2) = x2 + 1 − (2x + 1)[x3 + 2x2 + 1 −
(x + 2)(x2 + 1)] = −(2x + 1)(x3 + 2x2 + 1) + (2x2 + 2x)(x2 + 1) and therefore

(2x2 + 2x)(x2 + 1) ≡ 2 [mod x3 + 2x2 + 1]. If we divide by 2 (i.e. multiply by 2),

we conclude that the inverse of x2 + 1 is x2 + x.

14.2.1 The fundamental equation over finite fields

Let Fq be a field of order q = pn, where p is a prime. Consider the multiplicative

group F∗q of nonzero elements of Fq. It has order q−1. Let β denote an arbitrary

element of the multiplicative group. By Lagrange’s Theorem (saying that, for any

finite group G, the order of every subgroup divides the order of G), an element

of a group raised to the order of the group equals the identity, that is, βq−1 = 1

(indeed, the set of all powers of β is a subgroup of F∗q whose order equals the

order of β). This property is called Fermat’s little theorem for finite fields.

This equation is valid for any nonzero β. Multiplying through by β yields

βq = β

which is still valid for nonzero elements and now also valid for zero.

In particular, for all j ∈ Z/pZ, we have jp = j.

Another proof of equation βq = β (without using Lagrange’s Theorem) is to

say that if a1, a2, . . . , aq−1 denote the nonzero elements of Fq and β is any nonzero
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element of Fq, the elements βa1, βa2, . . . , βaq−1 are all different and are then

all nonzero elements of Fq; hence we have a1a2 . . . aq−1 = βa1βa2 . . . βaq−1 =

βq−1a1a2 . . . aq−1 and therefore βq−1 = 1. The rest is similar.

Exercise: Let P (x) be a polynomial over Fq. Show that P (x) is in fact over Fp
if and only if (P (x))p = P (xp).

Note that the polynomial xq − x having degree q, it cannot have more than

q zeros (roots) and we know then all its q distinct zeros in Fq, that is, xq − x
factors completely into linear factors in Fq (i.e. splits): xq − x =

∏
β∈Fq (x− β).

We say that Fq is the splitting field of xq − x:

Fq = {x; xq − x = 0}.

Let us now prove that any irreducible polynomial f(x) of degree n over Fp is a

divisor of xq − x. As we saw, this polynomial f(x) does not have any zero in Fp,
but Kronecker’s construction makes possible to construct an extension field Fq
in which f(x) does have a zero. We know that in Fq the polynomial xq − x has

all elements of the field as zeros, so it must have a zero in common with f(x),

and since f(x) is irreducible, gcd(f(x), xq − x), which is not trivial, equals f(x).

Theorem Let q = pn be a power of a prime. Then every irreducible polynomial

of degree n over the prime field Fp divides the polynomial xq − x.

Moreover, since xq − x splits in Fq, then f(x) also splits in Fq. Since f(βp) =

(f(β))p for every β ∈ Fq, because the Newton formula reduces to (β + β′)p =

βp + β′
p
, and because jp = j for every j ∈ Z/pZ, the elements of the form αp

j

,

j = 0, . . . , n − 1 where α denotes a zero of f(x) in Fq, are zeros of f(x) and

they are then all the zeros of f(x) since the degree of this polynomial is assumed

equal to n and all the elements αp
j

are distinct (otherwise, f(x) would be di-

visible by a polynomial of degree strictly less than n with coefficients in Fp and

would then not be irreducible). Note that if we do not assume anymore that f(x)

has degree n, its degree d is necessarily a divisor of n and xp
d−x divides xp

n−x.

14.2.2 Existence of finite fields

Let q = pn be a power of a prime. If we wish to build Fq, the only thing we need

is an irreducible polynomial of degree n over Fp.

Lemma There exist irreducible polynomials of every degree n over every prime

field Fp.
Proof. Let Fd(x) denote the product of all polynomials irreducible over Fp of
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degree d. Then since distinct irreducible polynomials are co-prime, we have

xq − x =
∏
d|n

Fd(x).

Let Nd denote the number of irreducible polynomials of degree d over Fp. By

equating degrees on both sides of this relation, we see that pn =
∑
d|n dNd.

By the Möbius inversion formula [635], denoting by µ the Möbius function

µ(d) =

{
0 if d is divisible by a square

(−1)nd otherwise, where nd is the number of primes dividing d
, we

have then:

nNn =
∑
d|n

µ(d) pn/d > 0. 2

Hence, for any power of a prime q, there exists a field with q elements.

Reminder: we have
∑
d|n µ(d) =

{
1 if n = 1

0 if n > 1
, which implies the Möbius inver-

sion formula.

14.2.3 Uniqueness of finite fields

We show now that when building Fq by Kronecker’s construction, any irreducible

polynomial of degree n gives the same field up to isomorphism.

Definition Let F and K be two fields, finite or not. An isomorphism between F

and K is a bijective (one-to-one) correspondence φ from F to K such that for

any a and b in F, the following equalities hold:

φ(a+ b) = φ(a) + φ(b)

φ(ab) = φ(a)φ(b).

If such an isomorphism exists, the tables of operations + and ∗ are the same in

the two isomorphic fields, but with different orderings, or names, of the elements.

We shall understand this as: the two fields are in fact the same field.

Exercise: Let q = pn with p prime. Let α be a zero of some irreducible polyno-

mial f(x) over Fp and let Fq = Fp(α). Let K be a field of the same order q.

1. Show that the image of α by any isomorphism from Fq to K must be a zero

of f(x).

2. Prove that sending α to a zero of f(x) in K gives an isomorphism from Fq to K.

Theorem All finite fields of the same size are isomorphic and can be obtained

with Kronecker’s construction.
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Example: Let F27 denote the field obtained by adjoining a zero α of f(x) =

x3 + 2x2 + 1 to F3 and let K27 be the field obtained by adjoining a zero β of

g(x) = x3 + 2x + 1. To find an isomorphism from F27 to K27, we can factor

the polynomial f(x) = x3 + 2x2 + 1 in K27. We know that f(x) must factor

completely in K27. So to factor f(x) we need to only look for its three zeros in

K27, and there are only 27 elements to try (actually, 24, because no element of

F3 is a zero). We obtain f(x) = (x + β2 + 2)(x + β2 + β)(x + β2 + 2β), from

which we can read that the three zeros are 2β2 + 1, 2β2 + 2β , and 2β2 + β. The

isomorphism is now given by sending α into any of the zeros of f(x) in K27.

Exercise: show that xp
n − x divides xp

m − x if and only if n divides m. Deduce

that Fpn is a subfield of Fpm if and only if n divides m.

14.2.4 Frobenius automorphism

In Fq, the mapping φ : x 7→ xp is an automorphism (that we already encountered

above), since:

- (x+ y)p = xp + yp, ∀x, y ∈ Fq, since p being a prime
(
p
i

)
= p

i

(
p−1
i−1

)
is divisible

by p for every 0 < i < p;

- (xy)p = xpyp, and x 7→ xp is bijective since its (additive or multiplicative)

kernel is trivial. It is called the Frobenius automorphism.

This implies for instance that (x+ y)
∑
i∈I p

i

=
∏
i∈I(x

pi + yp
i

), which for p = 2

implies Lucas’ theorem [809, page 404]:
(
n
j

)
is odd if and only if the binary ex-

pansion of j is covered by (i.e. has support included in) that of n.

Exercise: We saw that any polynomial f(X) over Fp satisfies f(φ(β)) = φ(f(β))

for every β ∈ Fq. Show that this is characteristic of polynomials over Fp among

polynomials over Fq.

The automorphisms of Fq are the powers of the Frobenius automorphism; their

set, with the composition operation, is a group, called the Galois group of Fq.

14.2.5 Primitive element

When studying F4, we have seen that the element that we denoted by α is such

that F4 = {0, 1, α, α2}. The lemma below implies that, for every power q of a

prime, the multiplicative group F∗q is also cyclic, that is, there exists α ∈ Fq such

that Fq = {0, 1, α, . . . , αq−2} (i.e. q − 1 is the smallest possible integer i such

that αi = 1). Such α will be called a primitive element .

Exercise: Recall that any irreducible polynomial P (x) ∈ Fp[x] of degree n > 1

is a divisor of xp
n−1 − 1. We say that P (x) is primitive if one of its zeros is a

primitive element of Fpn (and then, all its zeros are).

1. Show that if P (x) is a primitive polynomial then min{m; P (x) |xm − 1} =
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pn − 1.

2. Show conversely that if P (x) is any irreducible polynomial of degree n such

that min{m; P (x) |xm − 1} = pn − 1 then P (x) is primitive.

Lemma Let G be a finite multiplicative group with k elements, in which for ev-

ery m ≤ k, there are at most m solutions for the equation xm = 1. Then G is a

cyclic group.

Proof: Denote by am the number of elements of G of order m (that is, satisfying

xm = 1 and xm
′ 6= 1 for m′ < m). Note that, if m does not divide k, then am = 0,

according to Lagrange’s theorem. If am 6= 0, then there exists g ∈ G of order

m. Then, according to the hypothesis that there are at most m solutions for the

equation xm = 1, the m powers of g are all solutions of xm = 1. Moreover, gi has

order m
gcd(i,m) . Hence, the group generated by g has φ(m) generators, where φ(m)

is Euler’s totient function (whose value is the number of elements in {1, . . . ,m}
which are co-prime with m). Thus, if am is nonzero, then it is precisely φ(m).

But
∑
m|k φ(m) = k and

∑
m|k am =

∑k
m=1 am = k. Hence am = φ(m) for every

m which divides k.

In particular, ak = φ(k) > 0, so G contains elements of order k, and is cyclic. 2

Exercise: We know that every multiplicative subgroup of F∗q has for order a

divisor of q − 1. Show that, for each divisor k of q − 1, there exists a unique

multiplicative subgroup of F∗q of order k. Show that a generator of this subgroup

is α
q−1
k , where α is a primitive element of Fq.

14.3 Representation (additive and multiplicative) ; trace function

For q = pn, Kronecker’s construction with any irreducible polynomial of degree

n over Fp leads to the additive representation of any element x ∈ Fq:

x = x0 + x1α+ x2α
2 + · · ·+ xn−1α

n−1; x0, . . . , xn−1 ∈ Fp.

This is called the additive representation of x

For α primitive, since the fundamental polynomial xq − x splits in Fq, this α is

the zero of an irreducible (a primitive) polynomial over Fp. In other words, for

every n, there exists a primitive polynomial of degree n.

Then any nonzero element x ∈ Fq can be written:

x = αi ; for i ∈ Z/(q − 1)Z that is i ∈ {0, . . . , q − 2}.

This is the multiplicative representation.

Remark. Denote by fn,α(i, j) the bivariate function over Z/(pn − 1)Z such

that αi + αj = αfn,α(i,j). There is no known expression of fn,α(i, j) (see for

instance [890, Subsection 2.1.7.5, page 27], but we have fn,α(i + 1, j + 1) =

fn,α(i, j) + 1, fn,α(pi, pj) = pfn,α(i, j); if k is co-prime with pn − 1, then we
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have fn,αk(i, j) = fn,α(ki, kj), and if β is a primitive element of Fprn and

α = β(prn−1)/(pn−1), then we have frn,β((prn−1)i/(pn−1), (prn−1)j/(pn−1)) =

(prn − 1)fn,α(i, j)/(pn − 1). 2

Exercise: Show that, for every integer i, we have

{xi, x ∈ Fq} = {xgcd(i,q−1), x ∈ Fq}.

14.3.1 Absolute trace function

Let q = pn. Recall that the Frobenius automorphism Φ : x→ xp satisfies Φn = Id

and that Fp is the set of solutions of equation Φ(x) = x. Two elements are called

conjugate if they correspond through Φi for some integer i. We have seen that

the zeros of any irreducible polynomial over Fp are conjugate. The function:

trq/p(x) = x+ Φ(x) + Φ2(x) + · · ·+ Φn−1(x)

= x+ xp + xp
2

+ · · ·+ xp
n−1

is linear over Fq. In the body of our monograph and below, for p = 2 and q = 2n,

we simply write trn instead of trq/p.

Exercise: Show that

trq/p(Φ(x)) = Φ(trq/p(x)) = trq/p(x) for every x ∈ Fq.

Hence trq/p(x) ∈ Fp for every element x of Fq (but not for any element of a

super-field of Fq, if we extend the polynomial function trq/p to this super-field)

and trq/p is an Fp-linear form over the space Fq. It is called the absolute trace

function over Fq.

Exercise: 1. Show that, for every a ∈ Fq the function trq/p(ax) is identically

null on Fq if and only if a = 0.

2. Deduce that the set of all Fp-linear forms over Fq equals the set of these func-

tions.

Remark. For every nonzero a ∈ Fq, the set {x ∈ Fq; trq/p(ax) = 0} is a

hyperplane (a vector space of co-dimension 1) in the vector space Fq over Fp.
If (α1, . . . , αn) is a basis of Fq over Fp and (β1, . . . , βn) an orthonormal ba-

sis (such that trq/p(αiβj) = 1 if i = j and trq/p(αiβj) = 0 otherwise) and if

a =
∑n
i=1 ai βi, x =

∑n
i=1 xi αi, then the equation of this hyperplane in Fnp is∑n

i=1 aixi = 0. 2

Exercise: Show that every hyperplane of Fq (vectorspace over Fp) has this form.
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Exercise: Show that, for every i ∈ Fp, we have

trq/p(X)− i =
∏

u∈Fq ;trq/p(u)=i

(X − u).

Exercise: 1. Recall why a binary linear recurring sequence

sn = a1sn−1 ⊕ · · · ⊕ aLsn−L ; a1, . . . , aL ∈ F2 (14.1)

has ultimate period at most 2L − 1.

2. Show that if aL 6= 0 then the sequence is fully periodic.

3. We assume that the polynomial f(x) = xL + a1x
L−1 + · · ·+ aL is primitive.

a. Show that any sequence of the form sn = trL(aαn) where a ∈ F∗2n and α is a

zero of f(x) satisfies Relation (14.1).

b. Deduce that all the nonzero sequences satisfying Relation (14.1) are of the

form sn = trL(aαn) where a ∈ F∗2n . Show that they admit 2L − 1 as minimal

period.

4. Conversely, we assume that the nonzero sequences sn satisfying Relation (14.1)

admit 2L − 1 as minimal period. Show that f(x) is primitive.

These sequences are called m-sequences.

Exercise: Determine the kernel of the linear mapping x ∈ F2n → x + x2 and

deduce that, for every u ∈ F2n , there exists a solution of the equation x2 +x = u

in F2n if and only if trn(u) = 0.

14.3.2 Subfields and other trace functions

Kronecker’s construction can be applied the same way as before to any finite

field instead of a prime field: let q be a prime power and f(x) be an irreducible

polynomial of degree k over Fq. Then Fq[x]/(f(x)) is a field of order qk. This

implies again that, if n divides m, then (up to isomorphism) Fpn is a subfield of

Fpm . Recall that, conversely, if Fpn is a subfield of Fpm , then n divides m.

The trace function from Fqk to Fq is the function:

trqk/q(x) = x+ xq + xq
2

+ · · ·+ xq
k−1

.

Exercise: Prove that trqk/q is a Fq-linear form over Fqk .

Exercise: Check that, if n |m | s, then trps/pn = trpm/pn ◦ trps/pm .
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14.4 Permutations on a finite field

Exercise: Show that, for every prime power q, every function f(x) from Fq to

Fq is a polynomial function of degree at most q − 1 over Fq, that is:

f(x) =

q−1∑
i=0

aix
i ; ai ∈ Fq

and that this representation is unique.

This polynomial is seen as an element of Fq[x]/(xq−x). It is called a permutation

polynomial if the function f(x) is bijective.

14.4.1 Examples of permutation polynomials

Affine polynomials: P (x) = ax+ b, a 6= 0

Bijective linearized polynomials (or p-polynomials): P (x) =
∑n−1
i=0 aix

pi ,

ai ∈ Fq, such that ker(P ) = {0}. These polynomials being viewed [mod xq − x],

the exponents i are viewed in Z/nZ where q = pn.

Exercise: Show that the gcd of two linearized polynomials L(x) =
∑n−1
i=0 aix

pi ,

ai ∈ Fp, and L′(x) =
∑n−1
i=0 bix

pi , bi ∈ Fp (p-polynomials over Fp), equals∑n−1
i=0 cix

pi , ci ∈ Fp, where
∑n−1
i=0 cix

i = gcd(
∑n−1
i=0 aix

i,
∑n−1
i=0 bix

i). Deduce

that L(x) is a permutation polynomial over Fq if and only if
∑n−1
i=0 aix

i (its p-

associate polynomial) is co-prime with xn − 1.

This result extends to polynomials
∑n−1
i=0 aix

qi , ai ∈ Fq, over Fqn for q = pr.

The sums of such polynomials with constants (affine permutations).

Power (monomial) functions: recall that if α is a primitive element of Fq,
then for every i ∈ Z/(q − 1)Z, αi is primitive if and only if gcd(i, q − 1) = 1.

Exercise: Show that, for every i ∈ Z/(q− 1)Z, the function x→ xi is a permu-

tation of Fq if and only if gcd(i, q − 1) = 1.

Exercise: Show for i = 2j + 1 and q = 2n that gcd(i, q − 1) = gcd(22j−1,q−1)
gcd(2j−1,q−1) =

2gcd(2j,n)−1
2gcd(j,n)−1 and that x→ xi is a permutation of Fq if and only if n

gcd(j,n) is odd.

Dickson polynomials.

Theorem For every positive integer k, there exists a polynomial Dk over Z
satisfying the formal equality Dk

(
x+ 1

x

)
= xk + 1

xk
. We have D1(x) = x,

D2(x) = x2 − 2 and Dk(x) = xDk−1(x)−Dk−2(x) for k ≥ 3.

Proof. By induction on k: if k is odd then
(
x+ x−1

)k
=
∑ k−1

2
i=0

(
k
i

) (
x2i−k + xk−2i

)
and therefore, assuming the property valid until k − 1, it is proved for k and
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xk =
∑ k−1

2
i=0

(
k
i

)
Dk−2i(x) and

Dk(x) = xk −

k−1
2∑
i=1

(
k

i

)
Dk−2i(x)

and if k is even then
(
x+ x−1

)k
=
∑ k

2−1
i=0

(
k
i

) (
x2i−k + xk−2i

)
+
(
k
k
2

)
implies

xk =
∑ k

2−1
i=0

(
k
i

)
Dk−2i(x) +

(
k
k
2

)
and therefore

Dk(x) = xk −
k
2−1∑
i=1

(
k

i

)
Dk−2i(x)−

(
k
k
2

)
.

The rest of the proof is by expanding (x+ x−1)(xk−1 + x−(k−1)). 2

Exercise: 1. Let q = 2n. Recall why the equation x2 +x = c has solutions if and

only if trn(c) = 0. Deduce that, for a 6= 0, the equation x2 +ax = b has solutions

if and only if trn
(
b
a2

)
= 0.

2. a. Let q = 2n. Show that any element x of Fq satisfies tr2n(x) = 0. Deduce

that, for every x ∈ F∗q , there exist two elements h of F∗q2 such that h+ h−1 = x

(by transforming this equation in h into an equation of degree 2 in h
x ) and that

these two elements are inverse of each other.

b. Show that h belongs to Fq if and only if trn(x−1) = 0 and that, otherwise, h

belongs to the multiplicative subgroup of order q + 1 of Fq2 .

3. Let q = pn with p odd.

a. Does any element of Fq have a square root in Fq?
b. Show that, given a primitive element α of Fq2 , every element x ∈ F∗q can be

written αi(q+1) and has a square root in Fq2 .

c. Show that, for every x ∈ F∗q , there exist two elements h of F∗q2 such that

h+ h−1 = x and that these two elements are inverse of each other.

Exercise:

1. Show that the Dickson polynomial defines a function from Fq to Fq.
2. Show that, if gcd(k, q2 − 1) = 1, then Dk is a permutation polynomial over

Fq.
3. To prove the converse, assume that gcd(k, q2 − 1) = d > 1.

a. If d is even, show that Dk(−x) = Dk(x) and −x 6= x.

b. If d is odd, then let r be an odd prime dividing d. Show that there exist two

distinct elements b, c in F∗q2 such that b+ 1
b ∈ Fq, c+ 1

c ∈ Fq, b 6= 1
c and br = cr

(the two cases where r divides q − 1 and r divides q + 1 can be distinguished).

Check that Dk(b+ 1
b ) = Dk(c+ 1

c ) and b+ 1
b 6= c+ 1

c .

Then Dk is not a permutation polynomial over Fq.
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14.4.2 General results on permutation polynomials

Exercise:

1. Show that
∑
b∈Fq b

t =

{
0 if t = 0, . . . , q − 2

−1 if t = q − 1
.

2. Deduce that, for any polynomial P (x) =
∑q−1
i=0 pix

i over Fq, we have pq−1 =

−
∑
b∈Fq P (b).

Exercise: With the usual convention 00 = 1, show that, given b ∈ Fq, we have

q−2∑
t=0

bt =


0 if b 6= 0, 1

1 if b = 0

−1 if b = 1

and
q−1∑
t=0

bt =

{
1 if b 6= 1

0 if b = 1
.

Lemma Let a0, . . . , aq−1 be elements of Fq. These elements are all distinct if

and only if

q−1∑
i=0

ati =

{
0 if t = 0, . . . , q − 2

−1 if t = q − 1
.

Proof: If a0, . . . , aq−1 are distinct then {a0, . . . , aq−1} = Fq and, denoting by α

a primitive element of Fq, we have:

q−1∑
i=0

ati = 0t +

q−2∑
j=0

αjt = 0t +

q−2∑
j=0

(αt)j =

{
0 if t = 0, . . . , q − 2

−1 if t = q − 1
.

Conversely, if
∑q−1
i=0 a

t
i =

{
0 if t = 0, . . . , q − 2

−1 if t = q − 1
, then

P (x) =

q−1∑
i=0

q−1∑
t=0

atix
q−1−t = −1.

For every b ∈ F∗q , we have P (b) =
∑q−1
i=0

(∑q−1
t=0

(
ai
b

)t)
= |{i = 0, . . . , q− 1; ai 6=

b}| [mod p], according to the previous exercise. Hence, |{i = 0, . . . , q − 1; ai =

b}| 6= 0 and the same happens for b = 0. This completes the proof. 2

Theorem (Hermite’s criterion) A polynomial P (x) over Fq is a permutation

polynomial if and only if the following two conditions hold:

1. P (x) has a single root in Fq;
2. for each integer t = 1, . . . , q − 2 not divisible by p, the polynomial (P (x))t

[mod xq − x] has degree at most q − 2.
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Proof. Condition 1 is necessary and implies that
∑
b∈Fq (P (b))q−1 = −1 . Con-

dition 2 is equivalent to
∑
b∈Fq (P (b))t = 0 for every t = 1, . . . , q− 2 not divisible

by p. For t = pt′, we have
∑
b∈Fq (P (b))t =

(∑
b∈Fq (P (b))t

′
)p

. The lemma above

completes the proof.

Exercise: Show that
∑
v∈Fq e

2iπtrq/p(va)

p =

{
q if a = 0

0 otherwise.

Theorem (characterization through component functions) A polynomial P (x)

over Fq is a permutation polynomial if and only if, for every v ∈ F∗q , the function

trq/p(vP (x)) is balanced (that is, takes every value of Fp the same number of

times). Equivalently, for every v ∈ F∗q :∑
c∈Fq

e
2iπtrq/p(vP (c))

p = 0.

Proof. If P (x) is a permutation polynomial over Fq then, for every v ∈ F∗q , the

function trq/p(vP (x)) is balanced since the function trq/p is balanced over Fq.

This implies that
∑
c∈Fq e

2iπtrq/p(vP (c))

p is proportional to
∑p−1
j=0(e

2iπ
p )j = 0.

Conversely, if the condition is satisfied then for every b ∈ Fq we have:

|{c ∈ Fq; P (c) = b}| = 1

q

∑
c∈Fq

∑
v∈Fq

e
2iπtrq/p(vP (c))

p e−
2iπtrq/p(vb)

p = 1. 2

Remark. As proved by Carlitz in [330], all permutation polynomials over Fq
with q > 2 are generated through composition by the multiplicative inverse

monomial xq−2 and the degree 1 polynomials ax+ b with a ∈ F∗q , b ∈ Fq. 2

14.5 Equations over finite fields

Fundamental equation and general equations
We have seen that, for every prime power q, the equation xq − x = 0 admits

Fq as set of solutions. Consequently, given a prime p and two positive integers

r and s, the equation xp
s − x = 0 has for solutions in Fpr the elements of

Fpr ∩ Fps = Fpgcd(r,s) and in Fp′r with p′ 6= p, it has solutions 0, 1.

Important remark. More generally and for the same reason, finding the solu-

tions in Fq of an equation P (x) = 0 over Fq is equivalent to finding the solutions

of the equation gcd(P (x), xq − x) = 0. Since the polynomial xq − x splits over

Fq, the number of solutions equals the degree of gcd(P (x), xq − x).

Equations of degree 1
ax+ b = 0, a 6= 0, has solution −b/a.
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Equations of degree 2
ax2 + bx+ c = 0, a 6= 0, behaves differently according to whether p = 2 or not:

• if p 6= 2 then the usual resolution works;

• if p = 2 then, if a 6= 0 and b 6= 0, ax2 + bx + c = 0 is equivalent to(
ax
b

)2
+ ax

b = ac
b2 . Hence, solving the equation ax2 + bx + c = 0 of degree

2 reduces to solving the equation x2 + x = β for some β. Let c ∈ F2n and

x =

n−1∑
j=1

β2j
( j−1∑
k=0

c2
k)

, then x+ x2 =

n−1∑
j=1

β2j
( j−1∑
k=0

c2
k)

+

n∑
j=2

β2j
( j−1∑
k=1

c2
k)

=

n−1∑
j=1

β2j
( j−1∑
k=0

c2
k)

+

n∑
j=2

β2j
( j−1∑
k=0

c2
k)

+

n∑
j=2

β2jc = β2c+β
( n−1∑
k=1

c2
k)

+

n−1∑
j=2

β2jc =

c trn(β) + β trn(c). This equality and what we have seen already in an ex-

ercise imply:

Theorem Let n be any positive integer and β ∈ F2n . A necessary and

sufficient condition for the existence of solutions in F2n of the equation

x2 + x = β is that trn(β) = 0. Assuming that this condition is satisfied,

the solutions of the equation are x =
∑n−1
j=1 β

2j (
∑j−1
k=0 c

2k) and x = 1 +∑n−1
j=1 β

2j (
∑j−1
k=0 c

2k), where c is any (fixed) element such that trn(c) = 1.

Note that if n = 2m and β ∈ F2m , then the condition trn(β) = 0 is sat-

isfied and x simplifies into x = β (
∑m−1
k=0 c2

k

) +
∑m−1
j=1 β2j (

∑m+j−1
k=j c2

k

) =∑m−1
j=0 (βd)2j , where d =

∑m−1
k=0 c2

k

, and since trn(c) = trnm(d), we have that

x =
∑m−1
j=0 (βd)2j , where d is any element of F2n such that trnm(d) = 1.

Then, for every u 6= 0 and v in F2m , the equation x2 + ux = v has

for solutions x and x + u in F2n , where x = u
∑m−1
j=0

(
vd
u2

)2j
, where d ∈

F2n , tr
n
m(d) = 1.

Remark. For the more general equation x+x2k = b where k is odd, gcd(k, n) = 1

and trn(b) = 0, let Sn,k(x) =
∑n−1
i=0 x

2ki and U = {ζ ∈ F22n | ζ2n+1 = 1}; let ζ ∈
U \{1}; then, for any b ∈ F∗2n , we have {x ∈ F2n | x+x2k = b} = Sn,k

(
b

ζ+1

)
+F2,

see [700]. 2

Equations of degree 3
Theorem [64, 1119] Let t1, t2 denote the roots of t2 + bt+a3 = 0 in F22n , where

a ∈ F2n , b ∈ F∗2n . Then the factorization of f(x) = x3 + ax + b over F2n is

characterized as follows:

- f has three zeros in F2n if and only if trn

(
a3

b2 + 1
)

= 0 and t1, t2 are cubes in

F2n (n even), F22n (n odd).

- f has exactly one zero in F2n if and only if trn

(
a3

b2 + 1
)

= 1.

- f has no zero in F2n if and only if trn

(
a3

b2 + 1
)

= 0 and t1, t2 are not cubes in
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F2n (n even), F22n (n odd).

We refer to [64, 1119] for the proof.

Equations of degree 4 over F2n

The equation x4 + ax3 + bx2 + cx + d = 0 is linear if a = 0 and otherwise,

substituting x with x+ e gives the equation x4 + ax3 + (ae+ b)x2 + (ae2 + c)x+

e4 + ae3 + be2 + ce + d = 0 and choosing e such that ae2 + c = 0 (which is

always possible since a 6= 0) gives an equation with no term in x; substituting

then x with x−1 (assuming that the constant term of the resulting equation

was nonzero) and normalizing leads to a linear equation. So we assume that

a = 0. Then if the homogeneous equation x4 + bx2 + cx = 0 has a nonzero

solution u (i.e. if x4 + bx2 + cx is not a permutation) then the equation writes

(x2 +ux)2 +(u2 +b)(x2 +ux) = d. Substituting then x2 +ux with (u2 +b)y gives

the equation y2 + y = d
u4+b2 and we are sent back to the resolution of equations

of degree 2.

Equation x2k+1 + x+ a = 0
This equation, first studied in [96, 594, 595], is solved in [700] for gcd(k, n) = 1

(which is a breakthrough).

Power equations
The image set of a power function xi equals the union of {0} and of a multiplica-

tive subgroup of F∗q of order q−1
gcd(i,q−1) . The equation xi = a has one solution

if a = 0, no solution if a does not belong to this subgroup and gcd(i, q − 1)

solutions if a belongs to it, since there exist integers k (co-prime with q− 1) and

l (co-prime with i), such that ik + j(q − 1) = gcd(i, q − 1).

Multivariate method: an example
Hans Dobbertin has developed a method for solving some kinds of equations

which play a role when proving that some vectorial functions are APN. The

method applies if n is a multiple of a small positive number, say 2 or 3. Assume

for instance that n is a multiple of 3, denote k = n/3 and assume that we

are given some equation in which x appears with exponents which are linear

combinations of 1, 2k and 22k. The idea of the method is then to introduce the

two new variables y = x2k and z = y2k , to express the equation and its 2k and

22k powers by means of the unknowns x, y, z and to eliminate (for instance by

using resultants) some of these variables from these three equations. Then even

if y and z are eliminated, it happens that the resulting equation is different from

the original one. We give an example of this method taken from [158].

Let s and k be positive integers with gcd(s, 3k) = 1, and n = 3k. Let

d = 22k+2k+s−(2s+1), g1 = gcd(23k−1, d/(2k−1)), g2 = gcd(2k−1, d/(2k−1)),

and let a ∈ F∗2n have the order 22k + 2k + 1 (i.e. a = α2k−1 for some primitive
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element α of F∗2n). Let

∆a(x) = a
(
x22k

+ x2k+s
)

+ x2s + x.

The equation ∆a(x) = 0 has x = 0 and x = 1 for zeros. Let us show that if

g1 6= g2 then there are no other zero.

We denote y = x2k , z = y2k and b = a2k , c = b2
k

the equation ∆a(x) = 0 can

be rewritten as a(z + y2s) + (x2s + x) = 0. By definition, a is always a (2k − 1)-

th power and thus abc = 1. Besides, a /∈ F2. Considering also the conjugated

equations we derive the following system of equations

f1 = ∆a(x) = a(z + y2s) + x2s + x = 0

f2 = f2k

1 = b(x+ z2s) + y2s + y = 0

f3 = f22k

1 = 1
ab (y + x2s) + z2s + z = 0.

Eliminating y and z from these equations gives an equation in x. It happens

that this equation is in general different from the original equation and is often

simpler: we compute

R1 = b(f1)2s + a2sf2 = a2sby22s

+ a2sy2s + a2sy + bx22s

+ bx2s + a2sbx

R2 =
1

a(b+ 1)
(bf1 + af2 + abf3) = y2s +

a+ 1

ab+ a
y +

1

a
x2s +

ab+ b

ab+ a
x

to eliminate z. To eliminate y22s

, we compute:

R3 = R1 + a2sb(R2)2s

=
a2s(b+ 1)2s + (a+ 1)2sb

(b+ 1)2s
y2s + a2sy +

a2sb2
s+1 + b

b2s + 1
x2s + a2sbx.

Using equations R2 and R3 we can eliminate y2s by computing

R4 = R3 +
a2s(b+ 1)2s + (a+ 1)2sb

(b+ 1)2s
R2 = P (a)(y + (b+ 1)x2s + bx),

where

P (a) =
(ab)2s+1 + (ab)2s + a2sb+ a2s + ab+ b

(b+ 1)2s+1a
.

Computing

R5 = (R4)2s + P (a)2sR2 = P (a)2s

×
(
a+ 1

ab+ a
y + (b2

s

+ 1)x22s

+
ab2

s

+ 1

a
x2s +

ab+ b

ab+ a
x

)
we finally get our desired equation by

R6 =
a+ 1

ab+ a
P (a)2s−1R4 +R5 = P (a)2s(b+ 1)2s

(
x22s

+ x2s
)
.

Obviously if x is a solution of ∆a(x) = 0 then R6(x) = 0. For P (a)2s(b+ 1) 6= 0
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this is equivalent to x = 0, 1. Thus to prove the result, it is sufficient to show

that P (a) does not vanish for elements a fulfilling the equation

a =
(
αv2k+2s+1

)2k−1

(14.2)

Note that, if a satisfies (14.2), then a is not a (2k + 2s + 1)-th power, since

α2k−1 is not: g2 = gcd(2k − 1, 2k + 2s + 1) is by hypothesis a strict divisor of

g1 = gcd(2n − 1, 2k + 2s + 1) and α being a primitive element, it cannot be a

(g1/g2)-th power.

Consequently, it is sufficient to show, that if P (a) = 0 then a is a (2k+2s+1)-th

power. For a /∈ F2 the equation P (a) = 0 is equivalent to

a =

(
a+ 1

c+ 1

)2s+1

c2
s+1

(
b+ 1

a+ 1

)
a =

(
a+ 1

c+ 1
c

)2k+2s+1

,

as can be easily seen by dividing this equality by a, simplifying it by (a+1), and

then expanding it, using that c = 1/ab. Note that the right hand side is always

a (2k + 2s + 1)-th power. This proves the property.

14.6 Factoring polynomials

Factoring polynomials is more demanding than solving polynomial equations. A

nicely practical method given in [775, 4.1] is as follows:

Theorem Let F (x) and H(x) be two monic polynomials over Fq such that F (x)

divides (H(x))q −H(x). Then F (x) =
∏
c∈Fq gcd(F (x), H(x)− c).

The proof is straightforward by observing that (H(x))q−H(x) =
∏
c∈Fq (H(x)−

c), that F (x) divides then
∏
c∈Fq gcd(F (x), H(x) − c) and that conversely each

polynomial gcd(F (x), H(x)−c) divides F (x) and these greatest common divisors

are co-prime.

Then for factoring F (x) into irreducible factors, we can factor separately each

polynomial gcd(F (x), H(x)− c).



References

[1] E. Abbe, A. Shpilka and A. Wigderson. Reed-Muller Codes for Random Erasures

and Errors. IEEE Transactions on Information Theory 61 (10), pp. 5229-5252,

2015. See page 174.

[2] K. Abdukhalikov. Bent functions and line ovals. Finite Fields and Their Applica-

tions 47, pp. 94-124, 2017. See page 246.

[3] K. Abdukhalikov. Hyperovals and bent functions. European J. Combin. 79, pp.

123-139, 2019. See page 246.

[4] K. Abdukhalikov and S. Mesnager. Explicit constructions of bent functions from

pseudo-planar functions. Advances in Mathematics of Communications 11 (2), pp.

293-299, 2017. See page 242.

[5] K. Abdukhalikov and S. Mesnager. Bent functions linear on elements of some

classical spreads and presemifields spreads. Cryptography and Communications 9

(1), pp. 3-21, 2017. See page 253.

[6] C. M. Adams. Constructing symmetric ciphers using the cast design procedure.

Designs, Codes and Cryptography 12 (3), pp. 283-316, 1997. See page 42.

[7] C.M. Adams and S.E. Tavares. Generating and Counting Binary Bent Sequences.

IEEE Transactions on Information Theory 36 (5), pp. 1170-1173, 1990. See

pages 260 and 321.

[8] S. Agievich. On the representation of bent functions by bent rectangles. Proceed-

ings of Probabilistic Methods in Discrete Mathematics: Fifth International Con-

ference pp. 121-135, 2002, and arXiv preprint math/0502087, 2005. See pages 262

and 264.

[9] S. Agievich. On the affine classification of cubic bent functions. IACR Cryptology

ePrint Archive (http://eprint.iacr.org/) 2005/44, 2005. See page 232.

[10] S. Agievich. Bent rectangles. NATO Science for Peace and Security Series - D: In-

formation and Communication Security, Vol 18: Boolean Functions in Cryptology

and Information Security, IOS Press, pp. 3-22, 2008. See pages 264 and 265.

[11] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen and M. Zohner. Ciphers

for MPC and FHE. Proceedings of EUROCRYPT (1) 2015, Lecture Notes in Com-

puter Science 9056, pp. 430-454, 2015. See page 492.

[12] N. Alon, O. Goldreich, J. Hastad and R. Peralta. Simple constructions of almost

k-wise independent random variables. Random Stuctures and Algorithms 3 (3), pp.

289-304, 1992. See page 127.

[13] N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. Ron. Testing Reed-Muller

codes. IEEE Transactions on Information Theory 51 (11), pp. 4032-4039, 2005.

See page 509.



References 541

[14] N. Alon and J.H. Spencer. The probabilistic method. Wiley-VCH, 2000 (second

edition). See page 103.

[15] Y. Alsalami. Constructions with High Algebraic Degree of Differentially 4-uniform

(n, n−1)-functions and Differentially 8-uniform (n, n−2)-functions. Cryptography

and Communications 10 (4), pp. 611-628, 2018. See page 459.

[16] A.S. Ambrosimov. Properties of bent functions of q-valued logic over finite fields.

Discrete Mathematics and Applications 4 (4), pp. 341-350, 1994. See page 216.

[17] N. Anbar and W. Meidl. Bent and bent4 spectra of Boolean functions over finite

fields. Finite Fields and Their Applications 46, 163-178, 2017. See pages 293 and 295.

[18] N. Anbar and W. Meidl. Modified planar functions and their components. Cryp-

tography and Communications 10 (2), pp. 235-249, 2018. See pages 293, 294, 295,

and 302.

[19] N. Anbar, W. Meidl and A. Topuzoğlu. On the nonlinearity of idempotent
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by Birkhäuser Verlag, pp. 3-28, 2004. See pages 259, 329, 330, and 347.

[226] C. Carlet. Concatenating indicators of flats for designing cryptographic functions.

Designs, Codes and Cryptography 36, Number 2, pp.189 - 202, 2005. See pages 205

and 324.

[227] C. Carlet. On bent and highly nonlinear balanced/resilient functions and their al-

gebraic immunities. Proceedings of AAECC-16 Conference, Lecture Notes in Com-

puter Science 3857, pp. 1-28, 2006. Extended version of “Improving the algebraic

immunity of resilient and nonlinear functions and constructing bent function”,

IACR Cryptology ePrint Archive (http://eprint.iacr.org/) 2004/276, 2004, and of

“Designing bent functions and resilient functions from known ones, without ex-

tending their number of variables”, Proceedings of IEEE International Symposium

on Information Theory (ISIT),pp. 1096-1100, 2005. See pages 256, 262, 263, 264,

331, 332, 363, and 373.

[228] C. Carlet. On the higher order nonlinearities of algebraic immune functions. Pro-

ceedings of CRYPTO 2006, Lecture Notes in Computer Science 4117, pp. 584-601,

2006. See pages 353 and 362.

[229] C. Carlet. The complexity of Boolean functions from cryptographic viewpoint.

Dagstuhl Seminar Proceedings 06111 Complexity of Boolean Functions, 2006.

http://drops.dagstuhl.de/opus/volltexte/2006/604 See pages 100, 103, and 124.

[230] C. Carlet. A method of construction of balanced functions with optimum alge-

braic immunity. Proceedings of the International Workshop on Coding and Cryp-

tography 2007, World Scientific Publishing, series of Coding and Cryptology, pp.

25-43, 2008. Preliminary version available in IACR Cryptology ePrint Archive

(http://eprint.iacr.org/) 2006/149, 2006. See page 367.

[231] C. Carlet. Partial covering sequences: a method for designing classes of cryp-

tographic functions. Proceedings of “The first Symposium on Algebraic Geometry

and its Applications” dedicated to Gilles Lachaud (SAGA’07), Tahiti, 2007, World

Scientific, Series on Number Theory and its Applications 5, pp. 366-387, 2008. See

pages 206 and 208.

[232] C. Carlet. Recursive lower bounds on the nonlinearity profile of Boolean functions

and their applications. IEEE Transactions on Information Theory 54 (3), pp. 1262-

1272, 2008. See pages 104, 105, and 147.

[233] C. Carlet. On the higher order nonlinearities of Boolean functions and S-boxes,

and their generalizations. Proceedings of International Conference on Sequences

and Their Applications SETA 2008, Lecture Notes in Computer Science 5203, pp.

345-367, 2008. See pages 145, 146, 147, 380, and 381.

[234] C. Carlet. On almost perfect nonlinear functions. Special Section on Signal Design

and its Application in Communications, IEICE Trans. Fundamentals E91-A (12),

pp. 3665-3678, 2008. See pages 144 and 301.

[235] C. Carlet. On the algebraic immunities and higher order nonlinearities of vectorial

Boolean functions. NATO Science for Peace and Security Series, D: Information



556 References

and Communication Security - Vol 23; Enhancing Cryptographic Primitives with

Techniques from Error Correcting Codes, pp. 104-116, 2009. See pages 150, 151,

376, 377, 378, 379, and 380.

[236] C. Carlet. Boolean Functions for Cryptography and Error Correcting Codes.

Chapter of the monograph Boolean Models and Methods in Mathematics, Com-

puter Science, and Engineering, Y. Crama and P. Hammer eds, Cambridge Uni-

versity Press, pp. 257-397, 2010. See pages 3, 222, 231, and 369.

[237] C. Carlet. Vectorial Boolean Functions for Cryptography. Chapter of the mono-

graph Boolean Models and Methods in Mathematics, Computer Science, and Engi-

neering, Y. Crama and P. Hammer eds, Cambridge University Press, pp. 398-469,

2010. See pages 3, 161, and 413.

[238] C. Carlet. Comment on ‘Constructions of Cryptographically Significant Boolean

Functions Using Primitive Polynomials’. IEEE Transactions on Information The-

ory 57 (7), pp. 4852-4853, 2011. See pages 368 and 370.

[239] C. Carlet. Relating three nonlinearity parameters of vectorial functions and build-

ing APN functions from bent. Designs, Codes and Cryptography 59 (1), pp. 89-109,

2011. See pages 142, 161, 163, 164, 425, 439, 441, 442, and 457.

[240] C. Carlet. More vectorial Boolean functions with unbounded nonlinearity profile.

Special Issue on Cryptography of International Journal of Foundations of Com-

puter Science 22 (6), pp. 1259-1269, 2011. See page 105.

[241] C. Carlet. On known and new differentially uniform functions. Proceedings of the

16th Australasian Conference on Information Security and Privacy ACISP 2011,

Lecture Notes in Computer Science 6812, pp. 1-15, 2011. See pages 453 and 454.

[242] C. Carlet. A Survey on Nonlinear Boolean Functions with Optimal Algebraic

Immunity suitable for Stream Ciphers. Proceedings of the SMF-VMS Conference,
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[305] C. Carlet and P. Méaux. Boolean functions for homomorphic-friendly stream

ciphers. Proceedings of the Conference on Algebra, Codes and Cryptology (A2C),

pp. 166-182, Springer, Cham 2019 (this version does not include proofs, a full

paper is to come later). See pages 373, 374, 391, 395, 491, and 492.
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[529] S. Gangopadhyay, E. Pasalic and P. Stănică. A note on generalized bent criteria

for Boolean functions. IEEE Transactions on Information Theory 59 (5), 3233-

3236, 2013. See page 293.

[530] G. Gao, Y. Guo and Y. Zhao. Recent results on balanced symmetric Boolean

functions. IEEE Transactions on Information Theory 62 (9), pp. 5199-5203, 2016.

See page 385.

[531] G. Gao, X. Zhang, W. Liu and C. Carlet. Constructions of quadratic and cubic

rotation symmetric bent functions. IEEE Transactions on Information Theory 58,

4908-4913, 2012. See pages 275 and 277.

[532] J. von zur Gathen and J. R. Roche. Polynomials with two values. Combinatorica

17 (3), pp. 345-362, 1997. See pages 385 and 388.

[533] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge Uni-

versity Press, 3rd edition, 2013. See page 37.

[534] S. Ge, Z. Wang, P. Luo, and M. Karpovsky. Reliable and secure memories based

on algebraic manipulation detection codes and robust error correction. Proceedings

of Int. Depend Symp. Citeseer, 2013. See page 491.

[535] S. Ge, Z. Wang, P. Luo and M. Karpovsky. Secure memories resistant to both

random errors and fault injection attacks using nonlinear error correction codes.

Proceedings of HASP 2013, ACM 2013, pp. 1-8, 2013. See page 490.

[536] C. Gentry. Fully homomorphic encryption using ideal lattices. Proceedings of

ACM STOC 2009, pp. 169-178, 2009. See page 491.

[537] C. Gentry, A. Sahai and B. Waters. Homomorphic Encryption from Learning

with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. Pro-

ceedings of CRYPTO 2013, Part I, Lecture Notes in Computer Science 8042, pp.

75-92, 2013. See pages 491 and 492.

[538] R. Gode and S. Gangopadhyay. Third-Order Nonlinearities of a Subclass of

Kasami Functions. Cryptography and Communications 2, pp. 69-83, 2010. See

page 105.



576 References

[539] C. Godsil and A. Roy. Two characterizations of crooked functions. IEEE Trans-

actions on Information Theory 54 (2), pp. 864-866, 2008). See page 307.

[540] R. Gold. Maximal recursive sequences with 3-valued recursive crosscorrelation

functions. IEEE Transactions on Information Theory 14, pp. 154-156, 1968. See

pages 427, 433, and 434.

[541] O. Goldreich. Candidate One-Way Functions Based on Expander Graphs. Elec-

tronic Colloquium on Computational Complexity (ECCC) 7 (90), 2000. See also

IACR Cryptology ePrint Archive (http://eprint.iacr.org/) 2000/063, 2000. See

page 506.

[542] O. Goldreich. Introduction to property testing. Cambridge University Press, 2017.

See page 509.

[543] O. Goldreich and R. Izsak. Monotone Circuits: One-Way Functions versus Pseu-

dorandom Generators. Theory of Computing 8(1), pp. 231-238, 2012. See page 506.
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[672] C. Kaşıkcı , W. Meidl and A. Topuzoğlu. Spectra of a class of quadratic functions:

Average behavior and counting functions. Cryptography and Communications 8

(2), pp. 191-214, 2016. See pages 201 and 202.

[673] D. J. Katz. Weil sums of binomials, three-level cross-correlation, and a conjecture

of Helleseth. Journal of Combinatorial Theory, Series A 119 (8), pp. 1644-1659,

2012. See page 92.

[674] D. J. Katz. Divisibility of Weil sums of binomials. Proceedings of the American

Mathematical Society 143 (11), pp. 4623-4632, 2015. See page 84.

[675] D. J. Katz and P. Langevin. New open problems related to old conjectures by

Helleseth. Cryptography and Communications 8 (2), pp. 175-189, 2016. See page 92.

[676] D. J. Katz, P. Langevin, S. Lee, and Y. Sapozhnikov. The p-adic valuations of

Weil sums of binomials. Journal of Number Theory 181, pp.1-26, 2017. See page 84.

[677] N. Katz. On a theorem of Ax. American Journal of Mathematics 93, pp. 485-499,

1971. See page 179.

[678] T. Kaufman and S. Lovett. New extension of the Weil bound for character sums

with applications to coding. Proceedings of IEEE 52nd Annual Symposium on

Foundations of Computer Science, pp. 788-796, 2011. See page 211.

[679] T. Kaufman, S. Lovett and E. Porat. Weight Distribution and List-Decoding

Size of Reed-Muller Codes. IEEE Transactions on Information Theory 58 (5), pp.

2689-2696, 2012. See page 179.

[680] S. Kavut. Results on rotation-symmetric s-boxes. Information Sciences 201, pp.

93-113, 2012. See page 394.

[681] S. Kavut. Correction to the paper: Patterson-Wiedemann construction revisited.

Discrete Applied Mathematics 202, pp. 185-187, 2016. See page 350.
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[694] M. A. Khan and F. Özbudak. Improvement in Non-linearity of Carlet-Feng Infi-

nite Class of Boolean Functions. Cryptology and Network Security, Lecture Notes

in Computer Science 7712, pp 280-295, 2012. See pages 167 and 365.

[695] A. Kholosha and A. Pott. Bent and related functions. Handbook of Finite Fields,

Subsection 9.3, pp. 262-273, 2013. See page 220.

[696] K. Khoo and G. Gong. New constructions for resilient and highly nonlinear

Boolean functions. Proceedings of 8th Australasian Conference, ACISP 2003, Lec-

ture Notes in Computer Science 2727, pp. 498-509, 2003. See pages 100, 328,

and 347.

[697] K. Khoo, G. Gong, and D. R. Stinson. A new family of Gold-like sequences.

Proceedings of IEEE International Symposium on Information Theory (ISIT), p.

181, 2002. See page 201.

[698] K. Khoo, G. Gong and D. Stinson. Highly nonlinear S-boxes

with reduced bound on maximum correlation. Proceedings of

2003 IEEE International Symposium on Information Theory, 2003.

http://www.cacr.math.uwaterloo.ca/techreports/2003/corr2003-12.ps See

page 156.

[699] K. Khoo, G. Gong and D. Stinson. A New Characterization of Semi-bent and

Bent Functions on Finite Fields. Designs, Codes and Cryptography 38 (2), pp.

279-295, 2006. See pages 201, 202, 230, 255, and 394.

[700] K. H. Kim and S. Mesnager. Solving x2
k+1 +x+a = 0 in F2n with gcd(n, k) = 1.

IACR Cryptology ePrint Archive (http://eprint.iacr.org/) 2019/307, 2019. See

pages 536 and 537.

[701] S. H. Kim and J. S. No. New families of binary sequences with low correlation.

IEEE Transactions on Information Theory 49 (11), pp. 3059-3065, 2003. See

page 255.



586 References

[702] K. Kjeldsen. On the cycle structure of a set of nonlinear shift registers with

symmetric feedback functions. Journal of Combinatorial Theory, Series A 20 (2),

pp. 154-169, 1976. See page 39.

[703] A. Klapper and M. Goresky. Feedback Shift Registers, 2-Adic Span, and Com-

biners with Memory. Journal of Cryptology 10, pp. 111-147. 1997. See page 39.

[704] A. Klapper and M. Goresky. Arithmetic Correlations and Walsh Transforms.

IEEE Transactions on Information Theory 58 (1), pp. 479-492, 2012. See page 75.

[705] A. Klimov and A. Shamir. Cryptographic Applications of T-Functions. Proceed-

ings of Selected Areas in Cryptography 2003, Lecture Notes in Computer Science

3006, pp. 248-261, 2004. See page 42.

[706] L. Knudsen. Truncated and higher order differentials. Proceedings of Fast Soft-

ware Encryption FSE 1995, Lecture Notes in Computer Science 1008, pp. 196-211,

1995. See pages 136, 159, and 165.

[707] L. R. Knudsen and M. P. J. Robshaw. Non-linear approximations in linear crypt-

analysis. Proceedings of EUROCRYPT 1996, Lecture Notes in Computer Science

1070, pp. 224-236, 1996. See pages 102 and 103.

[708] L. R. Knudsen and M. P. J. Robshaw. The Block Cipher Companion. Information

Security and Cryptography. Springer, 2011. See page 42.

[709] L. R. Knudsen and D. Wagner. Integral cryptanalysis. Proceedings of Fast Soft-

ware Encryption FSE 2002, Lecture Notes in Computer Science 2365, pp. 112-127,

2002. See page 136.

[710] D. E. Knuth. Finite semifields and projective planes. Journal of Algebra 2, pp.

182-217, 1965. See page 252.
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[745] P. Langevin and P. Solé. Kernels and defaults. (Proceedings of the Conference

Finite Fields and Applications Fq4) Contemporary Mathematics 225, pp. 77-85,

1999. See page 204.
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[904] S. Nikova,V. Rijmen and M. Schläffer. Secure hardware implementation of nonlin-

ear functions in the presence of glitches. Journal of Cryptology 24 (2), pp. 292-321,

2011. See pages 473 and 477.

[905] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials.

Comput. Complexity 4, pp. 301-313, 1994. See pages 65, 66, 81, 86, 87, and 350.

[906] K. Nyberg. Perfect non-linear S-boxes. Proceedings of EUROCRYPT 1991, Lec-

ture Notes in Computer Science 547, pp. 378-386, 1992. See pages 157, 213, 296,

297, and 345.

[907] K. Nyberg. On the construction of highly nonlinear permutations. Proceedings

of EUROCRYPT 1992, Lecture Notes in Computer Science 658, pp. 92-98, 1993.

See pages 45, 139, 157, 200, and 347.



References 599

[908] K. Nyberg. Differentially uniform mappings for cryptography. Proceedings of EU-

ROCRYPT 1993, Lecture Notes in Computer Science 765, pp. 55-64, 1994. See

pages 158, 159, 427, 428, 433, 435, and 452.

[909] K. Nyberg. New bent mappings suitable for fast implementation. Proceedings of

Fast Software Encryption FSE 1993, Lecture Notes in Computer Science 809, pp.

179-184, 1994. See page 298.

[910] K. Nyberg. S-boxes and Round Functions with Controllable Linearity and Dif-

ferential Uniformity. Proceedings of Fast Software Encryption FSE 1994, Lecture

Notes in Computer Science 1008, pp. 111-130, 1995. See pages 159, 404, 424, and 443.

[911] K. Nyberg. Multidimensional Walsh transform and a characterization of bent

functions. Proceedings of the IEEE Information Theory Workshop ITW 2007,

Bergen, Norway, pp. 1-4, 2007. See page 93.

[912] K. Nyberg and L. R. Knudsen. Provable security against differential cryptanaly-

sis. Journal of Cryptology 8(1), pp. 27-37, 1995, (extended version of the Proceed-

ings of CRYPT0’ 92, Lecture Notes in Computer Science 740, pp. 566-574, 1993).

See pages 157, 158, and 159.

[913] L. O’Connor. On the Distribution of Characteristics in Bijective Mappings. Pro-

ceedings of EUROCRYPT 1993, Lecture Notes in Computer Science 765, pp. 360-

370, 1993. See page 159.

[914] R. O’Donnell. Analysis of Boolean functions. Cambridge University Press, 2014.

See pages 55, 78, 87, 124, and 390.

[915] R. O’Donnell, D. Witmer. Goldreich’s PRG: Evidence for Near-Optimal Poly-

nomial Stretch. IEEE Conference on Computational Complexity 2014, pp. 1-12,

2014. See page 507.

[916] W. Ogata and K. Kurosawa. Optimum secret sharing scheme secure against

cheating. Proceedings of EUROCRYPT 1996, Lecture Notes in Computer Science

1070, pp. 200-211, 1996. See page 490.

[917] D. Olejár and M. Stanek. On cryptographic properties of random Boolean func-

tions. Journal of Universal Computer Science 4 (8), pp. 705-717, 1998. See page 99.

[918] O. Olmez. Plateaued functions and one-and-half difference sets. Designs, Codes

and Cryptography 76 (3), pp. 537-549, 2015. See page 286.

[919] J. D. Olsen, R. A. Scholtz and L. R. Welch. Bent-function sequences. IEEE

Transactions on Information Theory 28 (6), pp. 858-864, 1982. See page 212.

[920] E. Oswald, S. Mangard, C. Herbst and S. Tillich. Practical Second-order DPA

Attacks for Masked Smart Card Implementations of Block Ciphers. Proceedings of

CT-RSA 2006, Lecture Notes in Computer Science 3860, pp. 192-207, 2006. See

page 462.

[921] D. Panario, A. Sakzad, B. Stevens, D. Thomson, and Qiang Wang. Ambiguity and

deficiency of permutations over finite fields with linearized difference map. IEEE

Transactions on Information Theory 59 (9), pp. 5616-5626, 2013. See page 162.

[922] D. Panario, A. Sakzad, B. Stevens and Q. Wang. Two new measures for permu-

tations: Ambiguity and deficiency. IEEE Transactions on Information Theory 57

(11), pp. 7648-7657, 2011. See page 162.

[923] D. Panario, A. Sakzad and D. Thomson. Ambiguity and deficiency of reversed

Dickson permutations. Proceedings of Fq13, Contemporary Mathematics: Topics

in Finite Fields 632, pp. 347-358, 2013. See page 162.



600 References

[924] D. Panario, D. Santana and Q. Wang. Ambiguity, deficiency and differential

spectrum of normalized permutation polynomials over finite fields. Finite Fields

and Their Applications 47, pp. 330-350, 2017. See page 162.

[925] D. Panario, B. Stevens and Q. Wang. Ambiguity and Deficiency in Costas Arrays

and APN Permutations. Proceedings of LATIN 2010, Lecture Notes in Computer

Science 6034, pp. 397-406, 2010. See page 162.

[926] S. M. Park, S. Lee, S. H. Sung and K. Kim. Improving bounds for the number

of correlation-immune Boolean functions. Information Processing Letters 61, pp.

209-212, 1997. See page 342.

[927] M. G. Parker and A. Pott. On Boolean functions which are bent and negabent.

Sequences, Subsequences, and Consequences, Lecture Notes in Computer Science

4893, pp. 9-23, 2007. See pages 293 and 294.

[928] E. Pasalic. Maiorana-McFarland class: Degree optimization and algebraic prop-

erties. IEEE Transactions on Information Theory 52 (10), pp. 4581- 4594, 2006.

See page 324.

[929] E. Pasalic. Almost fully optimized infinite classes of Boolean functions resistant

to (fast) algebraic cryptanalysis. Proceedings of ICISC 2008, Lecture Notes in

Computer Science 5461, pp. 399-414, 2008. See pages 352 and 367.

[930] E. Pasalic. A note on nonexistence of vectorial bent functions with binomial trace

representation in the PS- class. Inf. Process. Lett. 115(2), pp. 139-140, 2015. See

page 300.

[931] E. Pasalic. Corrigendum to ”A note on nonexistence of vectorial bent functions

with binomial trace representation in the PS- class” [Information Processing Let-

ters 115 (2) (2015) 139-140]. Information Processing Letters 115 (4): 520, 2015.

See page 300.
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differentially δ-uniform, 157

diffusion, 95

Dillon exponents, 240

Dillon’s functions, 238

Dirac (or Kronecker) symbol, 74

direct sum, 258, 292, 326, 372, 393

direct sum masking, 482

direct sum of bent functions, 302

direct sum vector, 394

distance enumerator, 31, 282

distance to linear structures, 122

distance-invariant, 282

distinguisher, 138, 157

distinguishing attack, 109
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Dobbertin function, 433, 445

Dobbertin’s conjecture, 325
domain-oriented masking, 481

double simplex code, 25

DPA, 461
DSM, 482

dual code, 22, 32, 170

dual distance, 32, 108, 186, 312, 320, 344, 468
dual function, 221

dual-bent vectorial function, 296

EA equivalent, 45, 244, 309, 390, 427, 437

EA invariant, 46, 53, 57, 98, 215, 303

edges, 89
encryption, 15

equivalent codes, 23
error detecting / correcting codes, 18

error vector, 24

eSTREAM Project, 38
exact repair problem, 169

exceptional, 436, 437

expander graph, 507
extended code, 21, 412

extended propagation criterion, 118, 349

extended Walsh spectrum, 73, 90
extended Walsh transform, 270

extension of Maiorana-McFarland type, 261

FAA, 114, 319, 376

fast algebraic attack, 114, 213, 312, 319, 351,

366, 370
fast algebraic complexity, 115, 352

fast algebraic immunity, 115, 352

fast correlation attack, 97, 217, 270
fast Fourier-Hadamard transform, 71

fast Möbius transform, 50

fault injection attack, 463
feedback coefficients, 36

feedback polynomial, 36
feedback shift register, 39

Feistel cipher, 42, 134, 457

FHE, 491
FIA, 463

filter model, 38, 109, 149

filter permutator, 493
flat, 53

FLIP cipher, 493

Fourier-Hadamard spectrum, 71
Fourier-Hadamard support, 71

Fourier-Hadamard transform, 70, 139, 155,

336
Frobenius automorphism, 60, 247, 528

fully homomorphic encryption, 491

general affine group, 178

generalized correlation attack, 154

generalized degree, 66
generalized nonlinearity, 154

generalized partial spread, 267

generator matrix, 22

generator polynomial, 27

Gleason theorem, 31

glitches, 472

global avalanche criterion, 118

Gold AB functions, 427

Gold APN functions, 432

Gold Boolean functions, 230

Goldreich’s function, 507

Goldreich’s pseudorandom generator, 507

Golomb-Xiao-Massey characterization, 107,

314, 394

Gowers inverse conjecture, 513

graph, 22, 51, 57, 69, 90, 91, 158, 303, 420

graph algebraic immunity, 150

graph theory, 89

grey box attacker model, 460

group algebra, 175, 436

guess and determine, 117

Hadamard difference set, 220

Hamming bound, 20

Hamming code, 23, 28, 178, 411

Hamming distance, 19, 44

Hamming distance leakage model, 461

Hamming weight, 19, 44, 134, 152, 177, 204,

219, 239, 313, 332, 515, 518, 520

Hamming weight leakage model, 461

hexadecimal, 451

hexanomial APN functions, 441

hidden weight bit function, 375, 518

higher-order differential attack, 136

higher-order nonlinearity, 102, 136

higher-order side channel attack, 462

HO-SCA, 462

homogeneous function, 225, 233, 274

HWBF, 375

hybrid symmetric-FHE encryption, 492

hyper-bent function, 270, 273, 300, 369, 517

hyper-nonlinearity, 369, 518

hypergraph, 89

hyperoval, 244

ideal autocorrelation, 449

idempotent function, 275, 392

imbalance, 135, 296

indicator, 69, 77, 90, 124, 150, 177, 204, 303,

376, 407, 450, 467, 486

indirect sum, 258, 260, 292, 329

influence of variable, 87

information coordinates, 22

information protection, 33

information set, 184, 344, 359, 468

initial functions, 233

inner product, 55, 77, 80, 183, 187, 189, 233,

238

inner product masking, 484

interpolation attack, 165
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inverse Fourier-Hadamard transform

formula, 78, 84, 107

inverse function, 105, 159, 347, 354, 433, 434,
446, 451, 458, 470, 479, 520

inverse Walsh transform formula, 78, 84, 90,

131, 412, 475

IPM, 484

ISW algorithm, 466

Jacobi symbol, 200

Kasami AB functions, 427

Kasami APN functions, 432, 519

Kasami exponents, 256

Kasami function, 452

Kasami-Welch functions, 427

Kerdock code, 280, 517

key scheduling algorithm, 40

keystream, 17, 35, 375, 493

Kloosterman sums, 211

Knuth-Eve method, 470

Krawtchouk polynomial, 386

Kronecker sum, 339

last round attack, 157

LCD, 483

LCP, 483

leakage, 461

leakage squeezing, 467

leakage trace, 462

level of the covering sequence, 206

LFSR, 35

line ovals, 246

linear attack, 137

linear code, 22

linear complementary dual, 483

linear complementary pair, 482

linear complexity, 36, 96

linear exact repairing code, 464

Linear Feedback Shift Register, 35

linear invariant, 46

linear kernel, 120, 415

linear leakage model, 461

linear secret sharing scheme, 170, 488

linear span, 36

linear structure, 120

linearized polynomial, 63

linearly equivalent, 45, 120, 156, 368, 433

local pseudorandom generator, 506

log-alog, 94

look-up table, 47

Lucas’ theorem, 528

m-sequence, 36, 96, 416, 531

Müller-Cohen-Matthews polynomial, 433

Möbius transform over integers, 67

MacWilliams’ identity, 30

Maiorana-McFarland, 188, 290, 321, 345

Maiorana-McFarland original class, 233

Maiorana-McFarland vectorial functions, 190

majority function, 366, 508

masked version of function, 464

masking, 463

masking complexity, 469

masking order, 463

masks, 463

master key, 40

Mattson-Solomon polynomial, 61

maximal odd weighting, 176

maximum correlation with respect to I, 122

maximum distance separable, 21, 29

maximum length sequence, 36, 416

maximum likelihood decoding, 20

McEliece’s theorem, 28, 84, 179

MCM polynomial, 433

MDS, 21, 24, 29, 171, 185, 484

Menon design, 225

message, 19

metric complements, 214

minimal code, 172

minimal codeword, 171

minimum degree, 58

minimum distance, 20

modeled leakage, 461

modified derivatives, 294

modified planar, 296

monomial bent, 255

monomial Boolean (multivariate) function,

395

monomial Boolean (univariate) function, 84

monomial vectorial function, 415

monotone, 395

monovariate attack, 461

multi-output Boolean function, 40

multidimensional Walsh transform, 93

multinomial APN functions, 257, 438

multiparty computation, 169, 473, 491, 493

multipermutation, 152

multiplicative inverse permutation, 433

naive bound, 269

near-bent, 142, 201, 289

nega-bent, 214, 294

NFSR, 39, 515

Niho functions, 427

NNF, 65, 180, 218, 356, 383

nodes, 89

noisy leakage model, 464

non interference, 465

non-completeness, 475

non-trivial covering sequence, 206

nonhomomorphicity, 133

nonlinearity, 98, 139, 400, 515, 518, 520

nonlinearity profile, 102

nonlinearity with inputs in E, 498

nonzeros of the cyclic code, 28
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Nordstrom-Robinson code, 281

normal basis, 275

normal extension, 279

normal function, 126

numerical degree, 66, 86, 88, 90, 225, 315,

388, 515

numerical normal form, 65, 223, 314

Nyberg’s bound, 458, 519

ODSM, 483

one time pad, 34

one-way function, 16, 506

orphan, 182, 289

orthogonal array, 106

orthogonal direct sum masking, 483

orthogonal space, 77

oval polynomial, 244

pair of metrically regular sets, 214

parity check coordinates, 22

parity check matrix, 22

parity check polynomial, 97

parity code, 19

Parseval’s relation, 79, 80, 87, 99, 140, 285

partial bent functions, 285

partial spread, 236

partial spread class, 236

partially defined, 54

partially-bent function, 283

perfect algebraic immune, 352

perfect code, 20

perfect nonlinear, 158, 216, 487, 517, 519

perfect robust code, 486

permutation, 25

permutation equivalent, 45

permutation invariant, 46, 66, 108, 123

physical attack, 463

plaintext, 15

planar, 296

plateaued, 285–288, 291, 302, 307, 311, 414,

423, 425

plateaued with single amplitude, 163, 302,

403

player, 169

Poisson summation formula, 77, 83, 107, 127,

223, 314, 396

polar representation, 191, 298, 372, 382

polynomial masking, 473

polynomial representation of codeword, 27

power bent, 255

power function, 40, 91, 156, 184, 290, 307,
354, 519

preferred cross-correlation, 416

PRG, 35

primary construction, 233, 290, 297, 310,
320, 368, 451, 520

primitive element, 26, 61, 178, 191, 368, 410,

438, 518, 528

primitive length, 27

private-key cryptography, 16

probing security model, 464
projective equivalence, 246

projective plane, 244

propagation criterion, 117, 349
pseudo-Boolean, 33, 54, 283, 409, 483

pseudo-planar, 296
pseudorandom generator, 35, 105, 351, 506

pseudorandom sequence, 35

public-key cryptography, 16
punctured code, 20, 178, 185

puncturing at position i, 20

quadratic bound, 100

quadratic function, 53, 83, 105, 120, 124,

128, 136, 189, 195, 200, 249, 283, 425,
478, 515, 519

quadrinomial APN functions, 438

qualified coalition, 171

radical, 175, 194

random local function, 506
rank of βf , 194

Rayleigh quotient, 222

realization, 473
rectangles, 264

reduced cipher, 137, 157

redundancy, 19
Reed-Muller code, 39, 54, 83, 99, 174, 177,

358, 372, 515, 517

Reed-Solomon code, 29, 62, 174
relative difference set, 220

resiliency order, 106
resilient, 106, 152, 312, 343, 388, 469, 507,

518

reversed Dickson polynomial, 422
robust code, 486

rotating S-box masking, 468

rotation symmetric, 274, 320, 392
Rothaus construction, 258

Rothaus’ bound, 224

round key, 40
rounds, 40

RS code, 29

S-box, 40, 134, 150, 152, 156, 400, 515

S-box of the AES, 451
Sarkar et al.’s bound, 316
Sarkar-Maitra’s divisibility bound, 315

SCA, 460

SCV bound, 140
second order covering sequence, 217

second-order bent function, 284
second-order Poisson summation formula,

81, 83, 396

secondary construction, 167, 233, 236, 258,
278, 293, 300, 326, 347, 394, 479, 496,

519
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secret sharing scheme, 169, 463

self-dual bent function, 222, 517

semi-bent function, 201, 289, 295

semi-direct sum, 260

sensitive variable, 461

sequences, 415

session key, 17

Shannon effect, 125

sharing, 169

shifted bent, 295

shortened code, 21

side channel attacks, 460

Sidelnikov-Chabaud-Vaudenay bound, 140

Sidon set, 418, 420

Siegenthaler bound, 313, 508

sign function, 73

simplex code, 23, 28, 178, 413

simplified ANF vector, 385

simplified value vector, 383

Singer set, 421, 449

Singleton bound, 21, 490

slices, 495

slide attack, 165

source vectors, 19

spectral complexity, 131, 404

spectral immunity, 116, 357

sphere covering bound, 21

sphere-packing bound, 20

splitting field, 28, 526

spread, 237

statistical distance, 464

Stickelberger theorem, 179

stream cipher, 17

stretch, 507

strict avalanche criterion, 117

strongly plateaued, 302, 306

subfield trace representation, 61

substitution box, 40

substitution permutation network, 42

sum-free set, 420

sum-of-squares indicator, 118, 316

supplementary subspaces, 81, 236

support of function, 44

support of vector, 44

switching, 435, 439

symmetric Boolean function, 230, 270, 352,
358, 366, 383, 518

symmetric cryptography, 16

symplectic matrix, 194, 222

synchronous, 35

syndrome, 24, 25

systematic, 22, 173, 184, 344, 486, 489

systematic form, 170

systematic generator matrix, 22

T-function, 42

Tarannikov et al.’s construction, 329

three-valued almost optimal, 289

three-valued functions, 285

threshold function, 390
threshold implementation, 473, 520

threshold secret sharing schemes, 171

TI, 473, 520
Titsworth relation, 80

trace form, 61

transmission rate, 21, 487
triangular function, 395, 494

trinomial APN functions, 440
triple construction, 254, 420

truth-table, 47, 175, 189, 327, 392

Tu-Deng function, 370
two-weight code, 173

uniformity (of TI), 476
uniformly packed code, 25, 414

uniformly robust code, 486

unitary transformation, 293
univariate attack, 461

univariate representation, 59, 165, 238, 246,

256, 299, 517
unrestricted code, 22, 39, 102

unrestricted nonlinearity, 153

usual inner product, 22, 30, 55, 71, 139, 188,
214, 337

vectorial bent4 functions, 302
vectorial Boolean functions, 40

Vernam cipher, 34

vertices, 89

Walsh functions, 71, 131

Walsh spectrum, 73, 90
Walsh support, 73, 90

Walsh transform, 73, 90

weakly APN, 415
weight distribution, 30

weight enumerator, 30

weightwise almost perfectly balanced, 497
weightwise perfectly balanced, 496

Weil’s bound, 211

Welch functions, 427
Wiener-Khintchine formula, 80

worst error masking probability, 485, 486

zero-difference 2-balanced, 426
zeros of the cyclic code, 27
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